Electrical and Computer Engineering (ECE)

[ undergraduate program | graduate program | faculty ]

Courses

For course descriptions not found in the UC San Diego General Catalog, 2014–15, please contact the department for more information.

The department will endeavor to offer the courses as outlined below; however, unforeseen circumstances sometimes require a change of scheduled offerings. Students are strongly advised to check the Schedule of Classes or the department before relying on the schedule below. For the names of the instructors who will teach the course, please refer to the quarterly Schedule of Classes. The departmental website http://www.ece.ucsd.edu includes the present best estimate of the schedule of classes for the entire academic year.

Lower Division

15. Engineering Computation (4)

Students learn the C programming language with an emphasis on high-performance numerical computation. The commonality across programming languages of control structures, data structures, and I/O is also covered. Techniques for using Matlab to graph the results of C computations are developed. Prerequisites: a familiarity with basic mathematics such as trigonometry functions and graphing is expected but this course assumes no prior programming knowledge.

25. Introduction to Digital Design (4)

This course emphasizes digital electronics. Principles introduced in lectures are used in laboratory assignments, which also serve to introduce experimental and design methods. Topics include Boolean algebra, combination and sequential logic, gates and their implementation in digital circuits. (Course material and/or program fees may apply.) Prerequisites: none.

30. Introduction to Computer Engineering (4)

The fundamentals of both the hardware and software in a computer system. Topics include: representation of information, computer organization and design, assembly and microprogramming, current technology in logic design. Prerequisites: ECE 15 and 25 with grades of C– or better.

35. Introduction to Analog Design (4)

Fundamental circuit theory concepts, Kirchoff’s voltage and current laws, Thevenin’s and Norton’s theorems, loop and node analysis, time-varying signals, transient first order circuits, steady-state sinusoidal response. (Course material and/or program fees may apply.) Prerequisites: Math 20A–B; Math 20C and Physics 2B must be taken concurrently.

45. Circuits and Systems (4)

Steady-state circuit analysis, first and second order systems, Fourier Series and Transforms, time domain analysis, convolution, transient response, Laplace Transform, and filter design. Prerequisites: ECE 35.

65. Components and Circuits Laboratory (4)

Introduction to linear and nonlinear components and circuits. Topics will include: two terminal devices, bipolar and field-effect transistors, and large and small signal analysis of diode and transistor circuits. (Program or material fee may apply.) Prerequisites: ECE 35.

80. Photonics of Everyday Life (4)

This course is a general elective for students interested in the impact of photonic technology in our everyday lives. Topics include digital camera and photography, photography vs. holography, holograms for counterfeit, LCD display and optical storage (CD and DVD) in computers, some varieties of lasers, differences between laser light and ordinary light, optics for telecom, telescope, microscope, spectroscopy, and biophotonics. Prerequisites: simple concepts of calculus (see instructor), or Math 10A or 20A.

85. iTunes 101: A Survey of Information Technology (4)

Topics include how devices such as iPods and iPhones generate, transmit, receive and process information (music, images, video, etc.), the relationship between technology and issues such as privacy and “net-neutrality,” and current topics related to information technology. Prerequisites: none.

87. Freshman Seminar (1)

The Freshman Seminar program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman Seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen. Prerequisites: none.

90. Undergraduate Seminar (1)

This seminar class will provide a broad review of current research topics in both electrical engineering and computer engineering. Typical subject areas are signal processing, VLSI design, electronic materials and devices, radio astronomy, communications, and optical computing. Prerequisites: none.

Upper Division

100. Linear Electronic Systems (4)

Linear active circuit and system design. Topics include frequency response; use of Laplace transforms; design and stability of filters using operational amplifiers. Integrated lab and lecture involves analysis, design, simulation, and testing of circuits and systems. Program or material fee may apply. Prerequisites: ECE 45 and ECE 65. ECE 65 may be taken concurrently.  

101. Linear Systems Fundamentals (4)

Complex variables. Singularities and residues. Signal and system analysis in continuous and discrete time. Fourier series and transforms. Laplace and z-transforms. Linear Time Invariant Systems. Impulse response, frequency response, and transfer functions. Poles and zeros. Stability. Convolution. Sampling. Aliasing. Prerequisites: ECE 45 with grade of C– or better.

102. Introduction to Active Circuit Design (4)

Nonlinear active circuits design. Nonlinear device models for diodes, bipolar and field-effect transistors. Linearization of device models and small-signal equivalent circuits. Circuit designs will be simulated by computer and tested in the laboratory. Prerequisites: ECE 65 and ECE 100. ECE 100 can be taken concurrently. 

103. Fundamentals of Devices and Materials (4)

Introduction to semiconductor materials and devices. Semiconductor crystal structure, energy bands, doping, carrier statistics, drift and diffusion, p-n junctions, metal-semiconductor junctions. Bipolar junction transistors: current flow, amplification, switching, nonideal behavior. Metal-oxide-semiconductor structures, MOSFETs, device scaling. Prerequisites: Phys 2D or Phys 4D and 4E with grades of C– or better.

107. Electromagnetism (4)

Electrostatics and magnetostatics; electrodynamics; Maxwell’s equations; plane waves; skin effect. Electromagnetics of transmission lines: reflection and transmission at discontinuities, Smith chart, pulse propagation, dispersion. Rectangular waveguides. Dielectric and magnetic properties of materials. Electromagnetics of circuits. Prerequisites: Phys 2A–D or 4A–E and ECE 45 with grades of C– or better.

108. Digital Circuits (4)

A transistor-level view of digital integrated circuits. CMOS combinational logic, ratioed logic, noise margins, rise and fall delays, power dissipation, transmission gates. Short channel MOS model, effects on scaling. Sequential circuits, memory and array logic circuits. Three hours of lecture, one hour of discussion, three hours of laboratory. Prerequisites: ECE 25, 35, 45, and 65; ECE 30 or CSE 30; Math 20A-D, and Math 20F; and Phys 2A-D or Phys 4A-E.

109. Engineering Probability and Statistics (4)

Axioms of probability, conditional probability, theorem of total probability, random variables, densities, expected values, characteristic functions, transformation of random variables, central limit theorem. Random number generation, engineering reliability, elements of estimation, random sampling, sampling distributions, tests for hypothesis. Students who completed MAE 108, Math 180A–B, Math 183, Math 186, Econ 120A, or Econ 120AH will not receive credit for ECE 109. Prerequisites: Math 20A-B-C or 21C, 20D or 21D, 20F, with grades of C– or better. ECE 101 recommended.

111. Advanced Digital Design Project (4)

Advanced topics in digital circuits and systems. Use of computers and design automation tools. Hazard elimination, synchronous/asnychronous FSM synthesis, synchronization and arbitration, pipelining and timing issues. Problem sets and design exercises. A large-scale design project. Simulation and/or rapid prototyping. Prerequisites: ECE 108 or CSE 140 with grades of C– or better.

118. Computer Interfacing (4)

Interfacing computers and embedded controllers to the real world: busses, interrupts, DMA, memory mapping, concurrency, digital I/O, standards for serial and parallel communications, A/D, D/A, sensors, signal conditioning, video, and closed loop control. Students design and construct an interfacing project. (Course material and/or program fees may apply.) Prerequisites: ECE 30 or CSE 30 and ECE 35, 45, 65.

120. Solar System Physics (4)

General introduction to planetary bodies, the overall structure of the solar system, and space plasma physics. Course emphasis will be on the solar atmosphere, how the solar wind is produced, and its interaction with both magnetized and unmagnetized planets (and comets). Prerequisites: Phys 2A–C or 4A–D, Math 20A–B, 20C or 21C with grades of C– or better.

123. Antenna Systems Engineering (4)

The electromagnetic and systems engineering of radio antennas for terrestrial wireless and satellite communications. Antenna impedance, beam pattern, gain, and polarization. Dipoles, monopoles, paraboloids, phased arrays. Power and noise budgets for communication links. Atmospheric propagation and multipath. Prerequisites: ECE 107 with a grade of C– or better. (W or S)

134. Electronic Materials Science of Integrated Circuits (4)

Electronic materials science with emphasis on topics pertinent to microelectronics and VLSI technology. Concept of the course is to use components in integrated circuits to discuss structure, thermodynamics, reaction kinetics, and electrical properties of materials. Prerequisites: Phys 2C–D with grades of C– or better.

135A. Semiconductor Physics (4)

Crystal structure and quantum theory of solids; electronic band structure; review of carrier statistics, drift and diffusion, p-n junctions; nonequilibrium carriers, imrefs, traps, recombination, etc; metal-semiconductor junctions and heterojunctions. Prerequisites: ECE 103 with a grade of C– or better.

135B. Electronic Devices (4)

Structure and operation of bipolar junction transistors, junction field-effect transistors, metal-oxide-semiconductor diodes and transistors. Analysis of dc and ac characteristics. Charge control model of dynamic behavior. Prerequisites: ECE 135A with a grade of C– or better.

136L. Microelectronics Laboratory (4)

Laboratory fabrication of diodes and field effect transistors covering photolithography, oxidation, diffusion, thin film deposition, etching and evaluation of devices. (Course material and/or program fees may apply.) Prerequisites: ECE 103.

138L. Microstructuring Processing Technology Laboratory (4)

A laboratory course covering the concept and practice of microstructuring science and technology in fabricating devices relevant to sensors, lab-chips and related devices. (Course material and/or program fees may apply.) Prerequisites: upper-division standing for science and engineering students.

139. Semiconductor Device Design and Modeling (4)

Device physics of modern field effect transistors and bipolar transistors, including behavior of submicron structures. Relationship between structure and circuit models of transistors. CMOS and BiCMOS technologies. Emphasis on computer simulation of transistor operation and application in integrated circuits. Prerequisites: ECE 135A–B with grades of C– or better.

145AL-BL-CL. Acoustics Laboratory (4-4-4)

Automated laboratory based on H-P GPIB controlled instruments. Software controlled data collection and analysis. Vibrations and waves in strings and bars of electromechanical systems and transducers. Transmissions, reflection, and scattering of sound waves in air and water. Aural and visual detection. Prerequisites: ECE 107 with a grade of C– or better or consent of instructor.

146. Introduction to Magnetic Recording (4)

A laboratory introduction to the writing and reading of digital information in a disk drive. Basic magnetic recording measurements on state-of-art disk drives to evaluate signals, noise, erasure, and nonlinearities that characterize this channel. Lectures on the recording process will allow comparison of measurements with basic voltage expressions. E/M FEM software utilized to study geometric effects on the record and play transducers. Prerequisites: ECE 107 with a grade of C– or better.

153. Probability and Random Processes for Engineers (4)

Random processes. Stationary processes: correlation, power spectral density. Gaussian processes and linear transformation of Gaussian processes. Point processes. Random noise in linear systems. Prerequisites: ECE 109 with a grade of C– or better.

154A. Communications Systems I (4)

Study of analog modulation systems including AM, SSB, DSB, VSB, FM, and PM. Performance analysis of both coherent and noncoherent receivers, including threshold effects in FM. Prerequisites: ECE 101 and 153 with a grade of C– or better.

154B. Communications Systems II (4)

Design and performance analysis of digital modulation techniques, including probability of error results for PSK, DPSK, and FSK. Introduction to effects of intersymbol interference and fading. Detection and estimation theory, including optimal receiver design and maximum-likelihood parameter estimation. Prerequisites: ECE 154A with a grade of C– or better.

154C. Communications Systems III (4)

Introduction to information theory and coding, including entropy, average mutual information, channel capacity, block codes and convolutional codes. Prerequisites: ECE 154B with a grade of C– or better.

155A. Digital Recording Systems (4)

This course will be concerned with modulation and coding techniques for digital recording channels. Prerequisites: ECE 109 and 153 with grades of C– or better and concurrent registration in ECE 154A required. Department stamp required.

155B. Digital Recording Projects I (4)

Students registered in this course work one-on-one with a researcher on a project involving the design and evaluation of a digital recording system based upon material covered in ECE 155A. Prerequisites: ECE 155A with grade of C– or better. Concurrent registration in ECE 154B. Department stamp required.

155C. Digital Recording Projects II (4)

Students registered in this course work one-on-one with a researcher on a project involving the design and evaluation of a digital recording system based upon material covered in ECE 155A. The project can be a continuation of a project initiated in Digital Recording Projects I or it can be an entirely new project. Prerequisites: ECE 155B with grade of C– or better. Concurrent registration in ECE 154C. Department stamp required.

156. Sensor Networks (4)

Characteristics of chemical, biological, seismic, and other physical sensors; signal processing techniques supporting distributed detection of salient events; wireless communication and networking protocols supporting formation of robust sensor fabrics; current experience with low power, low cost sensor deployments. Undergraduate students must take a final exam; graduate students must write a term paper or complete a final project. Cross-listed with MAE 149 and SIO 238. Prerequisites: upper-division standing and consent of instructor, or graduate student in science and engineering.

157A. Communications Systems Laboratory I (4)

Experiments in the modulation and demodulation of baseband and passband signals. Statistical characterization of signals and impairments. (Course material and/or program fees may apply.) Prerequisites: ECE 154A with a grade of C+ or better.

157B. Communications Systems Laboratory II (4)

Advanced projects in communication systems. Students will plan and implement design projects in the laboratory, updating progress weekly and making plan/design adjustments based upon feedback. (Course material and/or program fees may apply.) Prerequisites: ECE 154A with a grade of C+ or better.

158A. Data Networks I (4)

Layered network architectures, data link control protocols and multiple-access systems, performance analysis. Flow control; prevention of deadlock and throughput degradation. Routing, centralized and decentralized schemes, static dynamic algorithms. Shortest path and minimum average delay algorithms. Comparisons. Prerequisites: ECE 109 with a grade of C– or better. ECE 159A recommended.

158B. Data Networks II (4)

Layered network architectures, data link control protocols and multiple-access systems, performance analysis. Flow control; prevention of deadlock and throughput degradation. Routing, centralized and decentralized schemes, static dynamic algorithms. Shortest path and minimum average delay algorithms. Comparisons. Prerequisites: ECE 158A with a grade of C– or better.

159B. Queuing Systems: Computer Systems and Data Networks (4)

M/G/1 queuing systems. Computer systems applications: priority scheduling; time-sharing scheduling. Open and closed queuing networks; modeling and performance of interactive computer systems. Elements of computer-communication networks: stability and delay analysis; optimal design issues. Prerequisites: ECE 159A with a grade of C– or better.

161A. Introduction to Digital Signal Processing (4)

Review of discrete-time systems and signals, Discrete-Time Fourier Transform and its properties, the Fast Fourier Transform, design of Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters, implementation of digital filters. Prerequisites: ECE 101.

161B. Digital Signal Processing I (4)

Sampling and quantization of baseband signals; A/D and D/A conversion, quantization noise, oversampling and noise shaping. Sampling of bandpass signals, undersampling downconversion, and Hilbert transforms. Coefficient quantization, roundoff noise, limit cycles and overflow oscillations. Insensitive filter structures, lattice and wave digital filters. Systems will be designed and tested with Matlab, implemented with DSP processors and tested in the laboratory. Prerequisites: ECE 161A with a grade of C– or better.

161C. Applications of Digital Signal Processing (4)

This course discusses several applications of DSP. Topics covered will include: speech analysis and coding; image and video compression and processing. A class project is required, algorithms simulated by Matlab. Prerequisites: ECE 161A.

163. Electronic Circuits and Systems (4)

Analysis and design of analog circuits and systems. Feedback systems with applications to operational amplifier circuits. Stability, sensitivity, bandwidth, compensation. Design of active filters. Switched capacitor circuits. Phase-locked loops. Analog-to-digital and digital-to-analog conversion. (Course material and/or program fees may apply.) Prerequisites: ECE 101 and 102 with grades of C– or better.

164. Analog Integrated Circuit Design (4)

Design of linear and nonlinear analog integrated circuits including operational amplifiers, voltage regulators, drivers, power stages, oscillators, and multipliers. Use of feedback and evaluation of noise performance. Parasitic effects of integrated circuit technology. Laboratory simulation and testing of circuits. Prerequisites: ECE 102 with a grade of C– or better. ECE 163 recommended.

165. Digital Integrated Circuit Design (4)

VLSI digital systems. Circuit characterization, performance estimation, and optimization. Circuits for alternative logic styles and clocking schemes. Subsystems include ALUs, memory, processor arrays, and PLAs. Techniques for gate arrays, standard cell, and custom design. Design and simulation using CAD tools. (Students who have taken CSE 143 may not take ECE 165 for credit.) Prerequisites: ECE 108 with a grade of C– or better.

166. Microwave Systems and Circuits (4)

Waves, distributed circuits, and scattering matrix methods. Passive microwave elements. Impedance matching. Detection and frequency conversion using microwave diodes. Design of transistor amplifiers including noise performance. Circuits designs will be simulated by computer and tested in the laboratory. (Course material and/or program fees may apply.) Prerequisites: ECE 102 and 107 with grades of C– or better.

171A. Linear Control System Theory (4)

Stability of continuous- and discrete-time single-input/single-output linear time-invariant control systems emphasizing frequency domain methods. Transient and steady-state behavior. Stability analysis by root locus, Bode, Nyquist, and Nichols plots. Compensator design. Prerequisites: ECE 45 or MAE 140.

171B. Linear Control System Theory (4)

Time-domain, state-variable formulation of the control problem for both discrete-time and continuous-time linear systems. State-space realizations from transfer function system description. Internal and input-output stability, controllability/observability, minimal realizations, and pole-placement by full-state feedback. Prerequisites: ECE 171A with a grade of C– or better.

172A. Introduction to Intelligent Systems: Robotics and Machine Intelligence (4)

This course will introduce basic concepts in machine perception. Topics covered will include edge detection, segmentation, texture analysis, image registration, and compression. Prerequisites: ECE 101 with a grade of C– or better. ECE 109 recommended.

174. Introduction to Linear and Nonlinear Optimization with Applications (4)

The linear least squares problem, including constrained and unconstrained quadratic optimization and the relationship to the geometry of linear transformations. Introduction to nonlinear optimization. Applications to signal processing, system identification, robotics, and circuit design. Recommended preparation: ECE 100. Prerequisites: Math 20F and ECE 15 or consent of instructor.

175A. Elements of Machine Intelligence: Pattern Recognition and Machine Learning (4)

Introduction to pattern recognition and machine learning. Decision functions. Statistical pattern classifiers. Generative vs. discriminant methods for pattern classification. Feature selection. Regression. Unsupervised learning. Clustering. Applications of machine learning. Prerequisites: ECE 109 and ECE 174.

175B. Elements of Machine Intelligence: Probabilistic Reasoning and Graphical Models (4)

Bayes’ rule as a probabilistic reasoning engine; graphical models as knowledge encoders; conditional independence and D-Separation; Markov random fields; inference in graphical models; sampling methods and Markov Chain Monte Carlo (MCMC); sequential data and the Viterbi and BCJR algorithms; The Baum-Welsh algorithm for Markov Chain parameter estimation. Prerequisites: ECE 175A.

180. Topics in Electrical and Computer Engineering (4)

Topics of special interest in electrical and computer engineering. Subject matter will not be repeated so it may be taken for credit more than once. Prerequisites: consent of instructor; department stamp.

181. Physical Optics and Fourier Optics (4)

Ray optics, wave optics, beam optics, Fourier optics, and electromagnetic optics. Ray transfer matrix, matrices of cascaded optics, numerical apertures of step and graded index fibers. Fresnel and Fraunhofer diffractions, interference of waves. Gaussian and Bessel beams, the ABCD law for transmissions through arbitrary optical systems. Spatial frequency, impulse response and transfer function of optical systems, Fourier transform and imaging properties of lenses, holography. Wave propagation in various (inhomogeneous, dispersive, anisotropic or nonlinear) media. (Course material and/or program fees may apply.) Prerequisites: ECE 103 and 107 with grades of C– or better.

182. Electromagnetic Optics, Guided-Wave, and Fiber Optics (4)

Polarization optics: crystal optics, birefringence. Guided-wave optics: modes, losses, dispersion, coupling, switching. Fiber optics: step and graded index, single and multimode operation, attenuation, dispersion, fiber optic communications. Resonator optics. (Course material and/or program fees may apply.) Prerequisites: ECE 103 and 107 with grades of C– or better.

183. Optical Electronics (4)

Quantum electronics, interaction of light and matter in atomic systems, semiconductors. Laser amplifiers and laser systems. Photodetection. Electrooptics and acoustooptics, photonic switching. Fiber optic communication systems. Labs: semiconductor lasers, semiconductor photodetectors. (Course material and/or program fees may apply.) Prerequisites: ECE 103 and 107 with grades of C– or better.

184. Optical Information Processing and Holography (4)

(Conjoined with ECE 241AL) Labs: optical holography, photorefractive effect, spatial filtering, computer generated holography. Students enrolled in ECE 184 will receive four units of credit; students enrolled in ECE 241AL will receive two units of credit. (Course material and/or program fees may apply.) Prerequisites: ECE 182 with a grade of C– or better.

185. Lasers and Modulators (4)

(Conjoined with ECE 241BL) Labs: CO2 laser, HeNe laser, electrooptic modulation, acoustooptic modulation, spatial light modulators. Students enrolled in ECE 185 will receive four units of credit; students enrolled in ECE 241BL will receive two units of credit. (Course material and/or program fees may apply.) Prerequisites: ECE 183 with a grade of C– or better.

187. Introduction to Biomedical Imaging and Sensing (4)

Image processing fundamentals: imaging theory, image processing, pattern recognition; digital radiography, computerized tomography, nuclear medicine imaging, nuclear magnetic resonance imaging, ultrasound imaging, microscopy imaging. Prerequisites: Math 20A-B-F, 20C or 21C, 20D or 21D, Phys 2A–D, ECE 101 (may be taken concurrently) with grades of C– or better.

188. Topics in Electrical and Computer Engineering with Laboratory (4)

Topics of special interest in electrical and computer engineering with laboratory. Subject matter will not be repeated so it may be taken for credit up to three times. Prerequisites: upper-division standing.

190. Engineering Design (4)

Students complete a project comprising at least 50 percent or more engineering design to satisfy the following features: student creativity, open-ended formulation of a problem statement/specifications, consideration of alternative solutions/realistic constraints. Written final report required. Prerequisites: students enrolling in this course must have completed all of the breadth courses and one depth course. The department stamp is required to enroll in ECE 190. (Specifications and enrollment forms are available in the undergraduate office.)

191. Engineering Group Design Project (4)

Groups of students work to design, build, demonstrate, and document an engineering project. All students give weekly progress reports of their tasks and contribute a section to the final project report. Prerequisites: completion of all of the breadth courses and one depth course.

192. Senior Seminar (1)

The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small setting to explore an intellectual topic in ECE (at the upper-division level). Topics will vary from quarter to quarter. Senior Seminars may be taken for credit up to four times, with a change in topic, and permission of the department. ECE 192 is no longer valid for ECE design credit, students should take ECE 190 instead. Prerequisites: department stamp and/or consent of instructor.

193H. Honors Project (4–8)

An advanced reading or research project performed under the direction of an ECE faculty member. Must contain enough design to satisfy the ECE program’s four-unit design requirement. Must be taken for a letter grade. May extend over two quarters with a grade assigned at completion for both quarters. Prerequisites: admission to the ECE departmental honors program.

195. Teaching (2 or 4)

Teaching and tutorial activities associated with courses and seminars. Not more than four units of ECE 195 may be used for satisfying graduation requirements. (P/NP grades only.) Prerequisites: consent of the department chair.

197. Field Study in Electrical and Computer Engineering (4, 8, 12, or 16)

Directed study and research at laboratories and observatories away from the campus. (P/NP grades only.) Prerequisites: consent of instructor and approval of the department.

198. Directed Group Study (2 or 4)

Topics in electrical and computer engineering whose study involves reading and discussion by a small group of students under direction of a faculty member. (P/NP grades only.) Prerequisites: consent of instructor.

199. Independent Study for Undergraduates (2 or 4)

Independent reading or research by special arrangement with a faculty member. (P/NP grades only.) Prerequisites: consent of instructor.

Graduate

200. Research Conference (2)

Group discussion of research activities and progress of group members. (Consent of instructor is strongly recommended.) (S/U grades only.) Prerequisites: graduate standing.

201. Introduction to Biophysics (4)

The class will cover fundamental physical principles of biological processes at the molecular, cellular, tissue and organ levels that are related to human physiology and diseases. Topics include energetics and dynamics of biological systems, physical factors of environment, and the kinetics of biological systems. Prerequisites: senior or graduate level standing.

202. Medical Devices and Interfaces (4)

This course will cover basic cellular and electrochemical processes, membrane potentials, ionic currents, nerve cell conductance, extracellular and intracellular stimulation, neural probe technology materials and devices, diagnostic and drug delivery devices, material/physiological considerations, biosensors, microfluids, optical, magnetic and electrical screening. Prerequisites: senior or graduate level standing.

203. Biomedical Integrated Circuits and Systems (4)

Integrated circuit analysis and design for medical devices. Introduction to subthreshold conduction in MOS transistor and its similarities to biomolecular transport. Design of instrumentation amplifiers, sensors, and electrical stimulation interfaces. Transcutaneous wireless power transfer and electromagnetic effects on tissue. Recommended preparation: ECE 164 or BENG 186B or equivalent. Prerequisites: senior or graduate level standing.

212AN. Principles of Nanoscience and Nanotechnology (4)

Introduction to and rigorous treatment of electronic, photonic, magnetic, and mechanical properties of materials at the nanoscale. Concepts from mathematical physics, quantum mechanics, quantum optics, and electromagnetic theory will be introduced as appropriate. Students may not receive credit for both ECE 212A and ECE 212AN. Prerequisites: graduate standing.

212BN. Nanoelectronics (4)

Quantum states and quantum transport of electrons; single-electron devices; nanoelectronic devices and system concepts; introduction to molecular and organic electronics. Students may not receive credit for both ECE 212BN and ECE 212C. Prerequisites: ECE 212AN; graduate standing.

212CN. Nanophotonics (4)

Photonic properties of artificially engineered inhomogeneous nanoscale composite materials incorporating dielectrics, semiconductors, and/or metals. Near-field localization effects and applications. Device and component applications. Students may not receive credit for both ECE 212CN and 212B. Prerequisites: ECE 212BN; graduate standing.

222A. Antennas and Their System Applications (4)

Antennas, waves, polarization. Friis transmission and Radar equations, dipoles, loops, slots, ground planes, traveling wave antennas, array theory, phased arrays, impedance, frequency independent antennas, microstrip antennas, cell phone antennas, system level implications such as MIMO, multi-beam and phased array systems. (Recommended prerequisites: ECE107 or an equivalent undergraduate course in electromagnetics.) Prerequisites: graduate standing.

222B. Applied Electromagnetic Theory—Electromagnetics (4)

Graduate-level introductory course on electromagnetic theory with applications. Topics covered include Maxwell’s equations, plane waves in free space and in the presence of interfaces, polarization, fields in metallic and dielectric waveguides including surface waves; fields in metallic cavities, Green’s functions, electromagnetic field radiation and scattering. Prerequisites: ECE 222A; graduate standing.

222C. Applied Electromagnetic Theory—Computational Methods for Electromagnetics (4)

Computational techniques for numerical analysis of electromagnetic fields, including the finite difference time domain (FDTD) method, finite difference frequency domain (FDFD) method, method of moments (MOM), and finite element method (FEM). Practice in writing numerical codes. Review of commercial electromagnetic simulators. Prerequisites: ECE 222B; graduate standing.

222D. Advanced Antenna Design (4)

Review of 222A–B. Fourier transform, waveguide antennas. Mutual coupling, active impedance, Floquet modes in arrays. Microstrip antennas, surface waves. Reflector and lens analysis: taper, spillover, aperture and physical optics methods. Impedance surfaces. Advanced concepts: Sub-wavelength propagation, etc. (chosen by instructor). (Recommended prerequisites: ECE 222A, ECE 222B, or equivalent.) Prerequisites: ECE 222C; graduate standing.

230A. Solid State Electronics I (4)

This course is designed to provide a general background in solid state electronic materials and devices. Course content emphasizes the fundamental and current issues of semiconductor physics related to the ECE solid state electronics sequences. (Recommended prerequisites: ECE 135A–B or equivalent.) Prerequisites: graduate standing.

230B. Solid State Electronics II (4)

Physics of solid-state electronic devices, including p-n diodes, Schottky diodes, field-effect transistors, bipolar transistors, pnpn structures. Computer simulation of devices, scaling characteristics, high frequency performance, and circuit models. Prerequisites: ECE 230A; graduate standing.

230C. Solid State Electronics III (4)

This course is designed to provide a treatise of semiconductor devices based on solid state phenomena. Band structures carrier scattering and recombination processes and their influence on transport properties will be emphasized. (Recommended prerequisites: ECE 230A or equivalent.) Prerequisites: ECE 230B; graduate standing.

235. Nanometer-Scale VLSI Devices (4)

This course covers modern research topics in sub-100 nm scale, state-of-the-art silicon VLSI devices. Starting with the fundamentals of CMOS scaling to nanometer dimensions, various advanced device and circuit concepts, including RF CMOS, low power CMOS, silicon memory, silicon-on-insulator, SiGe bipolar, strained silicon MOSFET’s, etc. will be taught. The physics of nearballistic transport in an ultimately scaled 10 nm MOSFET will be discussed in light of the recently developed scattering theory. Prerequisites: graduate standing.

236A. III-V Compound Semiconductor Materials (4)

This course covers the growth, characterization, and heterojunction properties of III-V compound semiconductors and group-IV heterostructures for the subsequent courses on electronic and photonic device applications. Topics include epitaxial growth techniques, electrical properties of heterojunctions, transport and optical properties of quantum wells and superlattices. (Recommended prerequisites: ECE 230A-B-C.) Prerequisites: graduate standing.

236B. Optical Processes in Semiconductors (4)

Absorption and emission of radiation in semiconductors. Radiative transition and nonradiative recombination. Laser, modulators, and photodetector devices will be discussed. (Recommended prerequisites: ECE 230A and ECE 230C or equivalent.) Prerequisites: ECE 236A; graduate standing.

236C. Heterojunction Field Effect Transistors (4)

The physics and circuit applications of heterojunction field effect transistors (HFETs) and heterojunction bipolar transistors (HBTs). Operating principles of FETs and BJTs are reviewed, and opportunities for improving their performance with suitable material choices and bandgap engineering are highlighted. SiGe and III-V HBTs, III-V FETs, and current research areas are covered. Microwave characteristics, models and representative circuit applications. Students who have already completed ECE 236C and/or D should not enroll in this course. Recommended preparation: ECE 230B or equivalent course with emphasis on physics of solid-state electronic devices. Prerequisites: ECE 236B; graduate standing.

238A. Thermodynamics of Solids (4)

The thermodynamics and statistical mechanics of solids. Basic concepts, equilibrium properties of alloy systems, thermodynamic information from phase diagrams, surfaces and interfaces, crystalline defects. . Cross-listed with Materials Science 201A and MAE 271A. Prerequisites: consent of instructor.

238B. Solid State Diffusion and Reaction Kinetics (4)

Thermally activated processes. Boltzman factor, homogeneous and heterogeneous reactions, solid state diffusion, Fick’s law, diffusion mechanisms, Kirkendall effects, Boltzmann-Manato analysis, high diffusivity paths. Cross-listed with Materials Science 201B and MAE 271B. Prerequisites: ECE 238A.

240A. Lasers and Optics (4)

Fresnel and Fraunhofer diffraction theory. Optical resonators, interferometry. Gaussian beam propagation and transformation. Laser oscillation and amplification, Q-switching and mode locking of lasers, some specific laser systems. (Recommended prerequisites: ECE 107 and ECE 182 or equivalent, introductory quantum mechanics or ECE 183.) Prerequisites: graduate standing.

240B. Optical Information Processing (4)

Space-bandwidth product, superresolution, space-variant optical system, partial coherence, image processing with coherent and incoherent light, processing with feedback, real-time light modulators for hybrid processing, nonlinear processing. Optical computing and other applications. (Recommended prerequisites: ECE 182 or equivalent.) Prerequisites: ECE 240A; graduate standing.

240C. Optical Modulation and Detection (4)

Propagation of waves and rays in anisotropic media. Electro-optical switching and modulation. Acousto-optical deflection and modulation. Detection theory. Heterodyne detection, incoherent and coherent detection. (Recommended prerequisites: ECE 181, ECE 183 or equivalent.) Prerequisites: ECE 240B; graduate standing.

241A. Nonlinear Optics (4)

Second harmonic generation (color conversion), parametric amplification and oscillation, photorefractive effects and four-wave mixing, optical bistability; applications. (Recommended prerequisites: ECE 240A, C.) Prerequisites: graduate standing.

241B. Optical Devices for Computing. (4)

Application of electro-optic, magneto-optic, acousto-optic, and electro-absorption effects to the design of photonic devices with emphasis on spatial light modulation and optical storage techniques. (Recommended prerequisites: ECE 240A–C.) Prerequisites: ECE 241A; graduate standing.

241C. Holographic Optical Elements (4)

Fresnel, Fraunhofer, and Fourier holography. Analysis of thin and volume holograms, reflection and transmission holograms, color and polarization holograms. Optically recorded and computer-generated holography. Applications to information storage, optical interconnects, 2-D and 3-D display, pattern recognition, and image processing. (Recommended prerequisites: ECE 182 or equivalent.) Prerequisites: ECE 241B; graduate standing.

243B. Optical Fiber Communication (4)

Optical fibers, waveguides, laser communication system. Modulation and demodulation; detection processes and communication-receivers. (Recommended prerequisites: ECE 240A-B-C or equivalent.) Prerequisites: ECE 243A; graduate standing.

244A. Statistical Optics (4)

Introduction to statistical phenomena in optics including first order properties of light waves generated from various sources. Coherence of optical waves, high-order coherence. Partial coherence and its effects on imaging systems. Imaging in presence of randomly inhomogeneous medium. Limits in photoelectric detection of light. (Recommended prerequisites: ECE 240A–B.) Prerequisites: graduate standing.

247A. Advanced BioPhotonics (4)

Basic physics and chemistry for the interaction of photons with matter, including both biological and synthetic materials; use of photonic radiation pressure for manipulation of objects and materials; advanced optoelectronic detection systems, devices and methods, including time resolved fluorescent and chemiluminescent methods, fluorescent energy transfer (FRET) techniques, quantum dots, and near-field optical techniques; underlying mechanisms of the light sensitive biological systems, including chloroplasts for photosynthetic energy conversion and the basis of vision processes. Cross-listed with BENG 247A and NANO 247A. Prerequisites: graduate standing.

247B. BioElectronics (4)

Topics to be covered will include photolithographic techniques for high-density DNA microarray production, incorporation of CMOS control into electronic DNA microarrays, direct electronic detection technology used in microarrays and biosensor devices, and focus on problems related to making highly integrated devices (lab-on-a-chip, in-vivo biosensors, etc.) from heterogeneous materials and components. Cross-listed with BENG 247B and NANO 247B. Prerequisites: graduate standing.

247C. BioNanotechnology (4)

Topics include: nanosensors and nanodevices for both clinical diagnostics and biowarfare (bioterror) agent detection; nanostructures for drug delivery; nanoarrays and nanodevices; use of nanoanalytical devices and systems; methods and techniques for modification or functionalization of nanoparticles and nanostructures with biological molecules; nanostructural aspects of fuel cells and bio-fuel cells; potential use of DNA and other biomolecules for computing and ultra-high-density data storage. Cross-listed with BENG 247C and NANO 247C. Prerequisites: graduate standing.

250. Random Processes (4)

Random variables, probability distributions and densities, characteristic functions. Convergence in probability and in quadratic mean, Stochastic processes, stationarity. Processes with orthogonal and independent increments. Power spectrum and power spectral density. Stochastic integrals and derivatives. Spectral representation of wide sense stationary processes, harmonizable processes, moving average representations. (Recommended prerequisites: ECE 153.) Prerequisites: graduate standing.

251A. Digital Signal Processing I (4)

Discrete random signals; conventional (FFT based) spectral estimation. Coherence and transfer function estimation; model-based spectral estimation; linear prediction and AR modeling. Levinson-Durbin algorithm and lattice filters, minimum variance spectrum estimation. Cross-listed with SIO 207B. SIO 207A is intended for graduate students who have not had an undergraduate course in DSP. (Recommended prerequisites: ECE 153 in addition to either ECE 161 or 161A and SIO 207A or equivalent background.) Prerequisites: graduate standing.

251B. Digital Signal Processing II (4)

Adaptive filter theory, estimation errors for recursive least squares and gradient algorithms, convergence and tracking analysis of LMD, RLS, and Kalman filtering algorithms, comparative performance of Weiner and adaptive filters, transversal and lattice filter implementations, performance analysis for equalization, noise cancelling, and linear prediction applications. Cross-listed with SIO 207C. Prerequisites: graduate standing; ECE 251A (for ECE 251B); SIO 207B (for SIO 207C).

251C. Filter Banks and Wavelets (4)

Fundamentals of multirate systems (Noble Identities, Polyphase representations), maximally decimated filter banks (QMF filters for 2-channels, M-channel perfect reconstruction systems), Paraunitary perfect reconstruction filter banks, the wavelet transform (Multiresolution, discrete wavelet transform, filter banks and wavelet). (Recommended prerequisites: ECE 161 or equivalent.) Prerequisites: ECE 251B; graduate standing.

251D. Array Processing (4)

The coherent processing of data collected from sensors distributed in space for signal enhancement and noise rejection purposes or wavefield directionality estimation. Conventional and adaptive beamforming. Matched field processing. Sparse array design and processing techniques. Applications to acoustics, geophysics, and electromagnetics. Cross-listed with SIO 207D. (Recommended prerequisites: ECE 251A.) Prerequisites: graduate standing; ECE 251C (for ECE 251D); SIO 207C (for SIO 207D).

252A. Speech Compression (4)

Speech signals, production and perception, compression theory, high rate compression using waveform coding (PCM, DPCM, ADPCM, . . .), DSP tools for low rate coding, LPC vocoders, sinusoidal transform coding, multiband coding, medium rate coding using code excited linear prediction (CELP). (Recommended prerequisites: ECE 161A.) Prerequisites: graduate standing.

252B. Speech Recognition (4)

Signal analysis methods for recognition, dynamic time warping, isolated word recognition, hidden Markov models, connected word, and continuous speech recognition. Prerequisites: ECE 252A; graduate standing.

253. Fundamentals of Digital Image Processing (4)

Image quantization and sampling, image transforms, image enhancement, image compression. (Recommended prerequisites: ECE 109, 153, ECE 161, ECE 161A).

254. Detection Theory (4)

Hypothesis testing, detection of signals in white and colored Gaussian noise; estimation of signal parameters, maximum-likelihood detection; resolution of signals; detection and estimation of stochastic signals; applications to radar, sonar, and communications. (Recommended prerequisites: ECE 153.) Prerequisites: graduate standing.

255A. Information Theory (4)

Introduction to basic concepts, source coding theorems, capacity, noisy-channel coding theorem. (Recommended prerequisites: ECE 154A-B-C.) Prerequisites: graduate standing.

255B. Source Coding (4)

Theory and practice of lossy source coding, vector quantization, predictive and differential encoding, universal coding, source-channel coding, asymptotic theory, speech and image applications. Students that have taken 255BN cannot take 255B for credit. (Recommended prerequisites: ECE 250, and 259A or 259AN) Prerequisites: ECE 255A; graduate standing.

255C. Network Information Theory (4)

The course aims to provide a broad coverage of key results, techniques, and open problems in network information theory. Topics include background (information measures and typical sequences, point-to-point communication) and single-hop networks (multiple access channels, degraded broadcast channels, interference channels, channels with state, general broadcast channels, Gaussian vector channels, distributed lossless source coding, source coding with side information). Prerequisites: ECE 250; ECE 255B; graduate standing.

257A. Multiuser Communication Systems (4)

Congestion control, convex programming and dual controller, fair end-end rate allocation, max-min fair vs. proportional fairness. Markov Chains and recurrence, Lyapunov-Foster theorem, rate stable switch scheduling, stable (back-pressure) routing versus minimum delay routing versus shortest path routing. Prerequisites: graduate standing.

257B. Principles of Wireless Networks (4)

This course will focus on the principles, architectures, and analytical methodologies for design of multi-user wireless networks. Topics to be covered include cellular approaches, call processing, digital modulation, MIMO technology, broadband networks, ad-hoc networks, and wireless packet access. (Recommended prerequisites: ECE 159A and 154B, or equivalent.) Prerequisites: ECE 257A; graduate standing.

257C. Stochastic Wireless Networks Models (4)

Elements of spatial point processes. Spatial stochastic models of wireless networks. Topological structure, interference, stochastic dependencies. Elements of network information theory/statistical physics models of information flow. Role of signal propagation/random fading models. Decentralized operation, route discovery, architectural principles. Energy limitations/random failures. (Recommended prerequisites: previous exposure to stochastic processes and information theory.) Prerequisites: ECE 257B; graduate standing.

258A–B. Digital Communication (4-4)

Digital communication theory including performance of various modulation techniques, effects of inter-symbol interference, adaptive equalization, spread spectrum communication. Prerequisites: ECE 154A-B-C and ECE 254 or consent of instructor.

259A. Algebraic Coding (4)

Fundamentals of block codes, introduction to groups, rings and finite fields, nonbinary codes, cyclic codes such as BCH and RS codes, decoding algorithms, applications. Students who have taken ECE 259AN may not receive credit for ECE 259A. Prerequisites: graduate standing.

259B. Probabilistic Coding (4)

Convolutional codes, maximum-likelihood (ML) decoding, maximum a-posteriori (MAP) decoding, parallel and serial concatenation architectures, turbo codes, repeat-accumulate (RA) codes, the turbo principle, turbo decoding, graph-based codes, message-passing decoding, low-density parity check codes, threshold analysis, applications. Students who have taken ECE 259BN may not receive credit for ECE 259B. (Recommended prerequisites: ECE 154A-B-C.) Prerequisites: ECE 259A; graduate standing.

259C. Advanced Topics in Coding (4)

Advanced topics in coding theory. Course contents vary by instructor. Example course topics: Coded-modulation for bandwidth-efficient data transmission; advanced algebraic and combinatorial coding theory; space-time coding for wireless communications; constrained coding for digital recording. Students who have taken ECE 259CN may not receive credit for ECE 259C. Prerequisites: ECE 259A–B; graduate standing.

260A. VLSI Digital System Algorithms and Architectures (4)

Custom and semi-custom VLSI design from both the circuit and system designer’s perspective. MOS transistor theory, circuit characterization, and performance estimation. CMOS logic design will be emphasized. Computer-aided design (CAD) tools for transistor level simulation, layout and verification will be introduced. (Recommended prerequisites: undergraduate-level semiconductor electronics and digital system design, ECE 165 or equivalent.) Prerequisites: graduate standing.

260B. VLSI Integrated Circuits and Systems Design (4)

VLSI implementation methodology across block, circuit, and layout levels of abstraction. Circuit building blocks including embedded memory and clock distribution. Computer-aided design (synthesis, place-and-route, verification) and performance analyses, and small-group block implementation projects spanning RTL to tape-out using leading-edge EDA tools. Cross-listed with CSE 241A. (Recommended prerequisites: ECE 165.) Prerequisites: ECE 260A; graduate standing.

260C. VLSI Advanced Topics (4)

Advanced topics in design practices and methodologies for modern system-on-chip design. Different design alternatives are introduced and analyzed. Advanced design tools are used to design a hardware-software system. Class discussion, participation, and presentations of projects and special topics assignments are emphasized. Prerequisites: ECE 260B; graduate standing.

264A. CMOS Analog Integrated Circuits and Systems I (4)

Frequency response of the basic CMOS gain stage and current mirror configurations. Advanced feedback and stability analysis; compensation techniques. High-Performance CMOS operational amplifier topologies. Analysis of noise and distortion. (Recommended prerequisites: ECE 164 and ECE 153, or equivalent courses.) Prerequisites: graduate standing.

264B. CMOS Analog Integrated Circuits and Systems II (4)

Nonideal effects and their mitigation in high-performance operational amplifiers. Switched-capacitor circuit techniques: CMOS circuit topologies, analysis and mitigation of nonideal effects, and filter synthesis. Overview of CMOS samplers, data converters, and PLLs. (Recommended prerequisites: ECE 251A or ECE 251AN.) Prerequisites: ECE 264A; graduate standing.

264C. CMOS Analog Integrated Circuits and Systems III (4)

Integrated CMOS analog/digital systems: Analog to digital and digital to analog converters, Nyquist versus oversampling, linearity, jitter, randomization, calibration, speed versus resolution, pipeline, folding, interpolation, averaging. (Recommended prerequisites: ECE 163 and 164.) Prerequisites: ECE 264B; graduate standing.

264D. CMOS Analog Integrated Circuits and Systems IV (4)

PLL: Phase noise effect, VCO, phase detector, charge pump, integer/fractional-N frequency synthesizer, clock and data recovery, decision feedback. Filter: Continuous-time filter, I-Q complex filter, raised-cosine, Gaussian, delay, zero equalizers. (Recommended prerequisites: ECE 163 and 164.) Prerequisites: ECE 264C; graduate standing

265A. Communication Circuit Design I (4)

Introduction to noise and linearity concepts. System budgeting for optimum dynamic range. Frequency plan tradeoffs. Linearity analysis techniques. Down-conversion and up-conversion techniques. Modulation and demodulation. Microwave and RF system design communications. Current research topics in the field. Prerequisites: ECE 166 or consent of instructor.

265B. Communication Circuit Design II (4)

Radio frequency integrated circuits: low-noise amplifiers, AGCs, mixers, filters, voltage-controlled oscillators. BJT and CMOS technologies for radio frequency and microwave applications. Device modeling for radio frequency applications. Design and device tradeoffs of linearity, noise, power dissipation, and dynamic range. Current research topics in the field. Prerequisites: ECE 166 and ECE 265A or consent of instructor.

265C. Power Amplifiers for Wireless Communications (4)

Design of power amplifiers for mobile terminals and base-stations, with emphasis on high linearity and efficiency. After a discussion of classical designs (Class A, AB, B, C, D, E, F, and S), linearization procedures are presented and composite architectures (envelope tracking, EER, and Doherty) are covered. Familiarity with basic microwave design and communication system architecture is assumed. (Recommended prerequisites: ECE 166.) Prerequisites: ECE 265A and B; consent of instructor.

267. Wireless Embedded and Networked Systems (4)

Study of wireless networked systems from a system design perspective, covering the protocol stack from physical to network layer with a focus on energy. Topics include digital communications, networking and programming, and a basic knowledge of these is recommended. Prerequisites: graduate standing.

270A-B-C. Neurocomputing (4-4-4)

Neurocomputing is the study of biological information processing from an artificial intelligence engineering perspective. This three-quarter sequence covers neural network structures for arbitrary object (perceptual, motor, thought process, abstraction, etc.) representation, learning of pairwise object attribute descriptor antecedent support relationships, the general mechanism of thought, and situationally responsive generation of movements and thoughts. Experimental homework assignments strongly reinforce the fundamental concepts and provide experience with myriad associated technical issues. Prerequisites: graduate standing, an understanding of mathematics through basic linear algebra and probability, or consent of instructor.

271A. Statistical Learning I (4)

Bayesian decision theory; parameter estimation; maximum likelihood; the bias-variance trade-off; Bayesian estimation; the predictive distribution; conjugate and noninformative priors; dimensionality and dimensionality reduction; principal component analysis; Fisher’s linear discriminant analysis; density estimation; parametric vs. kernel-based methods; expectation-maximization; applications. (Recommended prerequisites: ECE 109.) Prerequisites: graduate standing.

271B. Statistical Learning II (4)

Linear discriminants; the Perceptron; the margin and large margin classifiers; learning theory; empirical vs. structural risk minimization; the VC dimension; kernel functions; reproducing kernel Hilbert spaces; regularization theory; Lagrangian optimization; duality theory; the support vector machine; boosting; Gaussian processes; applications. (Recommended prerequisites: ECE 109.) Prerequisites: ECE 271A; graduate standing.

272A. Stochastic Processes in Dynamic Systems I (4)

Diffusion equations, linear and nonlinear estimation and detection, random fields, optimization of stochastic dynamic systems, applications of stochastic optimization to problems. (Recommended prerequisites: ECE 250.) Prerequisites: graduate standing.

272B. Stochastic Processes in Dynamic Systems II (4)

Continuous and discrete random processes, Markov models and hidden Markov models, Martingales, linear and nonlinear estimation. Applications in mathematical finance and real options. Prerequisites: ECE 272A; graduate standing.

273. Convex Optimization and Applications (4)

This course covers some convex optimization theory and algorithms. It will mainly focus on recognizing and formulating convex problems, duality, and applications in a variety of fields (system design, pattern recognition, combinatorial optimization, financial engineering, etc.). (Recommended prerequisites: basic linear algebra.)

275A. Parameter Estimation I (4)

Linear least Squares (batch, recursive, total, sparse, pseudoinverse, QR, SVD); Statistical figures of merit (bias, consistency, Cramer-Rao lower-bound, efficiency); Maximum likelihood estimation (MLE); Sufficient statistics; Algorithms for computing the MLE including the Expectation Maximation (EM) algorithm. The problem of missing information; the problem of outliers. (Recommended prerequisites: ECE 109 and ECE 153.) Prerequisites: graduate standing.

275B. Parameter Estimation II (4)

The Bayesian statistical framework; Parameter and state estimation of Hidden Markov Models, including Kalman Filtering and the Viterbi and Baum-Welsh algorithms. A solid foundation is provided for follow-up courses in Bayesian machine learning theory. (Recommended prerequisites: ECE 153.) Prerequisites: ECE 275A; graduate standing.

280. Special Topics in Electronic Devices and Materials/Applied Physics (4)

A course to be given at the discretion of the faculty at which topics of interest in electronic devices and materials or applied physics will be presented by visiting or resident faculty members. Subject matter will not be repeated, may be taken for credit more than once. Prerequisites: graduate standing.

281. Special Topics in Nanoscience/Nanotechnology (4)

A course to be given at the discretion of the faculty at which topics of interest in nanoscience and nanotechnology will be presented by visiting or resident faculty members. Subject matter will not be repeated, may be taken for credit more than once. Prerequisites: graduate standing.

282. Special Topics in Photonics/Applied Optics (4)

A course to be given at the discretion of the faculty at which topics of interest in photonics, optoelectronic materials, devices, systems, and applications will be presented by visiting or resident faculty members. Subject matter will not be repeated, may be taken for credit more than once. Prerequisites: graduate standing.

283. Special Topics in Electronic Circuits and Systems (4)

A course to be given at the discretion of the faculty at which topics of interest in electronic circuits and systems will be presented by visiting or resident faculty members. Subject matter will not be repeated, may be taken for credit more than once. Prerequisites: graduate standing.

284. Special Topics in Computer Engineering (4)

A course to be given at the discretion of the faculty at which topics of interest in computer engineering will be presented by visiting or resident faculty members. Subject matter will not be repeated, may be taken for credit more than once. Prerequisites: graduate standing.

285. Special Topics in Signal and Image Processing/Robotics and Control Systems (4)

A course to be given at the discretion of the faculty at which topics of interest in signal and image processing or robotics and control systems will be presented by visiting or resident faculty members. Subject matter will not be repeated, may be taken for credit more than once. Prerequisites: graduate standing.

286. State-of-the-Art Topics in Computational Statistics and Machine Learning (4)

Class discusses both fundamental and state-of-the-art research topics in computational statistics and machine learning. Topics vary based upon current research, and have included: nonparametric Bayesian models; sampling methods for inference in graphical models; Markov Chain Monte Carlo (MCMC) methods. Prerequisites: graduate standing.

287. Special Topics in Communication Theory and Systems (4)

A course to be given at the discretion of the faculty at which topics of interest in information science will be presented by visiting or resident faculty members. It will not be repeated so it may be taken for credit more than once. Prerequisites: graduate standing.

289. Special Topics in Electrical and Computer Engineering (4)

A course to be given at the discretion of the faculty at which general topics of interest in electrical and computer engineering will be presented by visiting or resident faculty members. May be taken for credit six times provided each course is a different topic. Prerequisites: graduate standing.

290. Graduate Seminar on Current ECE Research (2)

Weekly discussion of current research conducted in the Department of Electrical and Computer Engineering by the faculty members involved in the research projects. (S/U grades only.) Prerequisites: graduate standing.

291. Industry Sponsored Engineering Design Project (4)

Design, build, and demonstrate an engineering project by groups. All students give weekly progress reports on tasks and write final report, with individual exams and presentations. Projects/sponsorships originate from the needs of local industry. (Recommended prerequisites: ECE 230 or ECE 240 or ECE 251 or ECE 253 or ECE 258 or equivalent.) Prerequisites: graduate standing.

292. Graduate Seminar in Electronic Circuits and Systems (2)

Research topics in electronic circuits and systems. Prerequisites: graduate standing.

293. Graduate Seminar in Communication Theory and Systems (2)

Weekly discussion of current research topics in communication theory and systems. (S/U grades only.) Prerequisites: graduate standing.

294. Graduate Seminar in Electronic Devices and Materials/Applied Physics (2)

Weekly discussion of current research topics in electronic devices and materials or applied solid state physics and quantum electronics. (S/U grades only.) Prerequisites: graduate standing.

295. Graduate Seminar in Signal and Image Processing/Robotics and Control Systems (2)

Weekly discussion of research topics in signal and image processing of robotics and control systems. (S/U grades only.) Prerequisites: graduate standing.

296. Graduate Seminar in Photonics/Applied Optics (2)

Weekly discussion of current research topics in photonics and applied optics, including imaging, photonic communications, sensing, energy and signal processing. (S/U grades only.) Prerequisites: graduate standing.

297. Graduate Seminar in Nanoscience/Nanotechnology (2)

Weekly discussion of current research topics in nanoscience and nanotechnology. (S/U grades only.) Prerequisites: graduate standing.

298. Independent Study (1–16)

Open to properly qualified graduate students who wish to pursue a problem through advanced study under the direction of a member of the staff. (S/U grades only.) Prerequisites: consent of instructor.

299. Research (1–16)

(S/U grades only.)

501. Teaching (1–4)

Teaching and tutorial activities associated with courses and seminars. Number of units for credit depends on number of hours devoted to class or section assistance. (S/U grades only.) Prerequisites: consent of department chair.