Cognitive Science

[ undergraduate program | graduate program | faculty ]

Courses

For course descriptions not found in the UC San Diego General Catalog, 2012–13, please contact the department for more information.

Lower Division

1. Introduction to Cognitive Science (4)

A team taught course highlighting development of the field and the broad range of topics covered in the major. Example topics include addiction, analogy, animal cognition, human-computer interaction, language, neuroimaging, neural networks, reasoning, robots, and real-world applications.

3. Introduction to Computing (4)

A practical introduction to computers. Designed for undergraduates in the social sciences. Topics include: basic operations of personal computers (MAC, PC), UNIX, word processing, e-mail, spreadsheets, and creating web pages using the World Wide Web. No previous background in computing required.

8. Hands-on Computing (4)

Introductory-level course that will give students insight into the fundamental concepts of algorithmic thinking and design. The course will provide the students with first-person, hands-on experience programming a web crawler and simple physical robots.

10. Cognitive Consequences of Technology (4)

The role of cognition and computation in the development of state-of-the art technologies such as human computational interaction in aviation, air traffic control, medical diagnosis, robotics and telerobotics, and the design and engineering of cognitive artifacts.

11. Minds and Brains (4)

How damaged and normal brains influence the way humans solve problems, remember or forget, pay attention to things; how they affect our emotions, and the way we use language in daily life.

14. Design and Analysis of Experiments (4)

Design, statistical analysis, and interpretation of experiments in the main areas of cognitive science: brain, behavior, and computation. Introduction to mathematical foundations of probability and statistical decision theory. Decision theory is applied to the problem of designing and analyzing experiments. Students will participate in a group project in which they must design scientific experiments, collect data and analyze results. May fulfill general education requirements; ask a college advisor. Prerequisites: Mathematics 10A or equivalent.

15. What the *#!?: An Uncensored Introduction to Language (4)

This course uses the study of swearing to introduce topics in language: how children learn it, why it changes over time, and how people pronounce and understand it. Students who believe they could be offended by the study of swearing and other taboo language might not find this course appropriate for them.

17. Neurobiology of Cognition (4)

Introduction to the organization and functions of the nervous system. Topics include molecular, cellular, developmental, systems, and behavioral neurobiology. Specifically, structure and function of neurons, peripheral and central nervous systems, sensory, motor, and control systems, learning and memory mechanisms. (Students may not receive credit for both Biology 12 and Cognitive Science 17. This course fulfills general-education requirements for Marshall and Roosevelt Colleges as well as Warren by petition.)

18. Introduction to Programming for Cognitive Science (4)

Fundamentals of computer programming are introduced. Topics include: fundamentals of computer architecture, variables, functions, and control structures; writing, testing, and debugging programs; programming style and basic software design. Examples and exercises focus on cognitive science applications. Prerequisites: Mathematics 10A or 20A.

25. Introduction to Web Programming (4)

Introduction to web programming languages and their real-world applications. Concepts and languages covered include document structure (XHTML). A basic background in computing is required, but no prior programming experience.

87. Freshman Seminar (1)

The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

91. SCANS Presents (1)

The department faculty and the Students for Cognitive and Neurosciences (SCANS) offer this seminar exploring issues in cognitive science. It includes informal faculty research presentations, investigations of topics not covered in the curriculum, and discussions on graduate school and careers. (May be repeated when topics vary.)

92. Resiliency in the Face of Adversity (2)

Psychological resiliency will be addressed both scientifically and pragmatically. Students will explore the way cognitive and behavioral factors contribute to one’s ability to cope with the stresses of life and emerge from them stronger than before. P/NP only.

99. Independent Study (2 or 4)

Independent literature or laboratory research by arrangement with and under direction of a Department of Cognitive Science faculty member. Prerequisites: lower-division standing, completion of thirty units of UC San Diego undergraduate study, a minimum UC San Diego GPA of 3.0, and a completed and approved Special Studies form.

Upper Division

101A. Sensation and Perception (4)

An introduction to the experimental study of cognition with a focus on sensation and perception. Prerequisites: Cognitive Science 1.

101B. Learning, Memory, and Attention (4)

A survey of the experimental study of learning, memory, and attention. Topics include conditioning, automaticity, divided attention, memory systems, and the nature of mental representation. Prerequisites: Cognitive Science 1. Recommended: Cognitive Science 101A.

101C. Language (4)

An introduction to structure of natural language, and to the cognitive processes that underline its acquisition, comprehension, and production. This course covers findings from linguistics, computer science, psychology, and cognitive neuroscience to provide an integrated perspective on human language abilities. Recommended: Cognitive Science 101A.

102A. Distributed Cognition (4)

Cognitive processes extend beyond the boundaries of the person to include the environment, artifacts, social interactions, and culture. Major themes include the philosophy and history of cognitive science, the role of artifacts in human cognition, and theories of socially-distributed, embodied, and extended cognition. Prerequisites: Cognitive Science 1 and Cognitive Science 14.

102B. Cognitive Ethnography (4)

This course examines memory, reasoning, language understanding, learning, and planning directly in everyday, real-world settings. The course work includes projects in which students make observations of real-world activity and analyze their cognitive significance. Prerequisites: Cognitive Science 102A.

102C. Cognitive Design Studio (6)

This is a project-based course focused on the process of cognitive design. Students work in teams to design and evaluate a prototype application or redesign an existing system. Three hours of lecture and two hours of design laboratory. Prerequisites: Cognitive Science 102B or consent of instructor.

107A. Neuroanatomy and Physiology (4)

This first course in the sequence focuses on principles of brain organization, from neurons to circuits to functional networks. It explores developmental plasticity, neuronal connectivity, cellular communication, complex signaling, and how these various dimensions form functional brain systems. Prerequisites: Cognitive Science 1 or Cognitive Science 17.

107B. Systems Neuroscience (4)

This course focuses on the electrical dynamics of neurons and how their patterns relate to perception, thought, and action. Neural activity patterns underlying vision, touch, audition, proprioception, and head orientation are examined in detail. Also examined are motor control, sleep/wake state production, action planning, learning, memory, attention, spatial cognition and function of the cerebellum, basal ganglia, and hippocampus. Prerequisites: Cognitive Science 107A.

107C. Cognitive Neuroscience (4)

This course reviews research investigating the neural bases for human mental processes, including processing of affective, social, linguistic, and visuospatial information, as well as memory, attention, and executive functions. Also discussed are brain development and brain aging, and the nature of intelligence and creativity. Prerequisites: Cognitive Science 107B and its prerequisites.

109. Modeling and Data Analysis (4)

Exposure to the basic computational methods useful throughout cognitive science. Computing basic statistics, modeling learning individuals, evolving populations, communicating agents, and corpus-based linguistics will be considered. Prerequisites: Cognitive Science 18 or equivalent programming course or consent of instructor.

110. The Developing Mind (4)

(Cross-listed with HDP 121.) This course examines changes in thinking and perceiving the physical and social world from birth through childhood. Evidence of significant changes in encoding information, forming mental representations, and solving problems is culled from psychological research, cross-cultural studies, and cognitive science. Prerequisites: HDP 1 or Cognitive Science 1.

115. Neurological Development and Cognitive Change (4)

This course provides an overview of neurological development and explores the relations between physiological change and the experience for the child from the prenatal period through adolescence. Prerequisites: BILD 10, or Cognitive Science 17, or HDP 110.

118A. Natural Computation I (4)

This course is an introduction to computational modeling of biological intelligence, focusing on neural networks and related approaches to supervised learning. Topics include estimation, filtering, optimization, multilayer perceptrons, support vector machines, boosting, Bayes nets. Prerequisites: Cognitive Science 109, Mathematics 20E, Mathematics 20F, and Mathematics 180A or consent of instructor.

118B. Natural Computation II (4)

This course is an introduction to computational modeling of biological intelligence, focusing on neural networks and related approaches to unsupervised learning. Topics include density estimation, clustering, self-organizing maps, principal component analysis, information theoretic models, and evolutionary approaches. Prerequisites: Cognitive Science 109, Mathematics 20E, Mathematics 20F, and Mathematics 180A or consent of instructor.

120. Human Computer Interaction (4)

This course is an introduction to the field of human computer interaction (HCI). It provides an overview of HCI from the perspective of cognitive science. Recommended: Cognitive Science 10 and an introductory programming course.

121. Human Computer Interaction Programming Studio (4)

This course covers fundamentals of user interface design and implementation of web-based systems. A major component is completion of a substantial programming project in which students work together in small teams. Three hours of lecture and one hour of laboratory. Prerequisites: Cognitive Science 120, Cognitive Science 18 or Cognitive Science 3 or Computer Science and Engineering 5A or Computer Science and Engineering 8A or Computer Science and Engineering 8B or Computer Science and Engineering 11 or Computer Science and Engineering 12 or Mechanical and Aerospace Engineering 9, or consent of instructor.

143. Animal Cognition (4)

Review of historical perspectives: introspectionist, behaviorist, and cognitivist models. Examination of how perceptual and motor constraints and ecological demands yield species-specific differences in cognitive repertoire. Contemporary issues in the comparative study of the evolution of human cognition. Prerequisites: upper-division standing.

151. Analogy and Conceptual Systems (4)

Human thought and meaning are deeply tied to the capacity for mapping conceptual domains onto each other, inducing common schemas and performing mental simulation. This course examines major aspects of this cognitive activity including metaphor, conceptual blending, and embodied cognition. Prerequisites: upper-division standing.

152. Cognitive Foundations of Mathematics (4)

How the human mind/brain creates mathematics: embodiment, innovation, and creativity. The emergence and power of abstract concepts, such as infinity, infinitesimals, imaginary numbers, or zero. Cognitive approaches that connect mathematics to human thought in general. Prerequisites: Cognitive Science 1, or Philosophy 1, or Psychology 1, or Education Studies (20 or 30 or 31); upper-division standing.

153. Language Comprehension (4)

The processes and representations involved in understanding language—processing words, syntax, semantics, and discourse—are examined in light of evidence from both psychological experiments and computer simulations. Prerequisites: upper-division standing.

154. Communication Disorders in Children and Adults (4)

Neural bases of language use in normal adults, and neural bases of language and communication development in normal children. Evidence on the language and communication deficits in adults (especially aphasia and dementia) and children (specific language impairment, focal brain injury, retardation, and autism). Prerequisites: upper-division standing.

155. Gesture and Cognition (4)

Spontaneous gestures and their relationship to speech, cognition, brain, and culture. The course covers, among others, gesture and language development, gesture and conceptual systems, speech-gesture co-production and its brain bases, evolution of language, and gestural behavior in special populations. Prerequisites: upper-division standing.

156. Language Development (4)

A comprehensive survey of theory, method and research findings on language development in children ranging from the earliest stages of speech perception and communication at birth to refinements in narrative discourse and conventional fluency through middle childhood and adolescence. Prerequisites: upper-division standing and background in development psychology and/or linguistics is recommended.

157. Music and the Mind (4)

Explores how humans (and other species) process music, including pitch, meter, emotion, motor aspects, links to language, brain activity. Students should have experience reading musical notation. Prerequisites: Cognitive Science 101A or Cognitive Science 101B or Cognitive Science 101C.

160. Upper-Division Seminar on Special Topics (4)

Special topics in cognitive science are discussed. (May be repeated when topics vary.) Prerequisites: department approval.

171. Mirror Neuron System (4)

This class will examine the evidence that mirror neurons may form the basis for the ability to make inferences about the actions and emotions of others and thus form the core of complex social interactions. Prerequisites: upper-division standing.

172. Brain Disorders and Cognition (4)

A review of the patterns of impaired and intact cognitive abilities present in brain-damaged patients in terms of damage to one or more components of a model of normal cognitive functioning. (Cognitive science majors may not receive elective credit for both Psychology 139 and Cognitive Science 172.) Prerequisites: Cognitive Science 107A.

174. Drugs: Brain, Mind, and Culture (4)

This course explores how drugs interact with the brain/mind and culture. It covers evolutionary and historical perspectives, brain chemistry, pharmacology, expectancies and placebo effects, and models of addiction. It also provides a biopsychosocial survey of commonly used and abused substances. Prerequisites: upper-division standing.

175. The Neuropsychological Basis of Alternate States of Consciousness (4)

This course will review the literature that correlates brain rhythms in the human EEG with aspects of cognition, behavioral states, neuropsycho-pharmacology, and psychopathology in order to understand the psychological and neurophysiological underpinnings of these experiences. Prerequisites: Cognitive Science 101A or Cognitive Science 107A.

176. From Sleep to Attention (4)

This course will combine an examination of the neural character of quiet and active sleep states and their potential functions with an examination of the different mechanisms by which the brain mediates attention to specific features of the world. Prerequisites: Cognitive Science 107B.

179. Electrophysiology of Cognition (4)

Survey the theory and practice of using electrical recordings (event-related brain potentials) to study cognition and behavior including attention, language, mental chronometry, memory, and plasticity. Prerequisites: Cognitive Science 107A or Psychology 106; Cognitive Science 101A or Psychology 105.

184. Modeling the Evolution of Cognition (4)

This interdisciplinary course integrates data on evolutionary theory, hominid prehistory, primate behavior, comparative neuro-anatomy, cognitive development, and collaboration. After lectures, readings, discussions, and Museum of Man tour, students generate a detailed timeline of five million years of human cognitive evolution. Prerequisites: Cognitive Science 17, or 107A, or 107B, or 107C.

187A. Usability and Information Architecture (6)

Examines the cognitive basis of successful web and multimedia design. Topics: information architecture, navigation, usability, graphic layout, transaction design, and how to understand user interaction. Prerequisites: CSE 7; upper-division standing.

187B. Practicum in Professional Web Design (4)

This course follows up on the basics of multimedia design taught in Cognitive Science 187A. Students will probe more deeply into selective topics, such as animation, navigation, graphical display of information, and narrative coherence. Prerequisites: COGS 187A; upper-division standing.

188. Representation, Search, and the Web (4)

Computational methods for finding and exploiting structure across vast data corpora, from personal e-mail collections to the entire WWW. Students will implement and evaluate algorithms used as part of modern search engines, and connect these to models of shared cognition. Prerequisites: Cognitive Science 109 or Computer Science and Engineering 12. Recommended: Cognitive Science 102A or Cognitive Science 118B.

190A. Pre-Honors Project in Cognitive Science (4)

This course prepares students for the Cognitive Science Honors Program. The aim is to refine the research project and to teach students what a successfully written proposal entails. Students may be admitted to the Honors Program contingent upon completion and progress in the course. (See “Cognitive Science Honors Program” section for more information). Course should be taken for a letter grade. Prerequisites: upper-division standing; instructor and department approval.

190B. Honors Studies in Cognitive Science (4)

This course will allow cognitive science honors students to explore advanced issues in the field of cognitive science research. It will also provide the opportunity to develop a thesis on the topic of their choice and begin work under faculty supervision. Prerequisites: Cognitive Science 190A and formal admittance to the Cognitive Science Honors Program; department stamp. (See “Cognitive Science Honors Program” section for more information.)

190C. Honors Thesis in Cognitive Science (4)

This course will provide honors candidates an opportunity to complete the research on and preparation of an honors thesis under close faculty supervision. Oral presentation of student’s thesis is required to receive honors; additionally, student must receive grade of A– or better in 190B and 190C to receive honors. Prerequisites: Cognitive Science 190B with grade of A– or better and formal admittance to the Cognitive Science Honors Program. (See “Cognitive Science Honors Program” section for more information.)

190D. Preparation for Thesis Presentation (1)

This course is affiliated with the honors program (190A-B-C) and is required of honors students during spring quarter. Its aim is to prepare students to present research results to an audience. Emphasis will be on the oral presentation (organization, wording, graphics), but there will also be some discussion about written research reports. Seminar style format with occasional short lectures wherein students will practice oral presentations and provide constructive criticism to each other. Prerequisites: must be concurrently enrolled in 190B or 190C.

191. Laboratory Research (1–4)

Students engage in discussions of reading of recent research in an area designated and directed by the instructor and also participate in design and execution of original research. Assignments include both oral and written presentations and demonstrating the ability to pursue research objectives. Prerequisites: consent of the instructor and department approval. (May be repeated for credit, but not to exceed eight units).

195. Instructional Apprenticeship in Cognitive Science (4)

Students, under the direction of the instructor, lead laboratory or discussion sections, attend lectures, and meet regularly with the instructor to help prepare course materials. Applications must be submitted to and approved by the department. Prerequisites: upper-division standing; 3.0 GPA; instructor and department approval. P/NP only.

198. Directed Group Study (4)

This independent study course is for small groups of advanced students who wish to complete a one- quarter reading or research project under the mentorship of a faculty member. Students should contact faculty whose research interests them to discuss possible projects. Prerequisites: upper-division standing; 2.5 GPA; consent of instructor and department approval.

199. Special Project (2 or 4)

This independent study course is for individual, advanced students who wish to complete a one- quarter reading or research project under the mentorship of a faculty member. Students should contact faculty whose research interests them to discuss possible projects. Prerequisites: upper-division standing; 2.5 GPA; consent of instructor and department approval.

Graduate

200. Cognitive Science Seminar (4)

This seminar emphasizes the conceptual basis of cognitive science, including representation, processing mechanisms, language, and the role of interaction among individuals, culture, and the environment. Current developments in each field are considered as they relate to issues in cognitive science. (May be repeated for credit.)

201. Systems Neuroscience (4)

Examination of the neurophysiological and neuroanatomical basis for perception, cognition, and learning. Lectures will focus on the dynamics of neural activity in cortical and subcortical structures as they relate to sensory processing, motor control, attention, arousal state, and memory.  

202. Cognitive Science Foundations: Computational Modeling of Cognition (4)

This course surveys the development of symbolic and connectionist models of cognition. Selected readings from the late 1940s to the present are covered. Topics include: Turing machines, information theory, computational complexity, search, learning, symbolic artificial intelligence, and neural networks.

203. Cognitive Science Foundations: Theories and Methods in the Study of Cognitive Phenomena (4)

Surveys a variety of theoretical and methodological approaches to the study of human cognition. Topics include language structure, language processing, concepts and categories, knowledge representation, analogy and metaphor, reasoning, planning and action, problem solving, learning and expertise, and emotion.

205. Introduction to Thesis Research (4)

This course is taken to focus the students’ development of a thesis topic and research proposal. Students prepare an outline of thesis proposal and make an oral public presentation of the proposed topic prior to the end of the third year. S/U only.

210A-B-C. Introduction to Research (4-4-4)

This sequence is an intensive research project. Students under faculty mentorship perform a thorough analysis of the problem and the literature, carry out original studies, and prepare oral and written presentations. Students should aim for a report of publishable quality. Letter grade required.

211A-B-C. Research Methods in Cognitive Science (2-2-2)

Issues in design, implementation, and evaluation of research in cognitive science are discussed. Students will present and comment on their own research projects in progress. Discussions also include presentations of research to various audiences, abstracts, reviews, grant process, and scientific ethics. Letter grade required.

213. Issues in Cognitive Development (4)

This course examines current issues in human development of interest to cognitive scientists. An emphasis is placed on the foundations of mind and how information is represented at various stages of learning and development. (May be repeated once, when topics vary.)

215. Neurological and Cognitive Development (4)

This course is presented in two sections. The first part of the course focuses on early neurological development. The second part addresses questions concerned with the relations between cognitive brain development, and linguistic and affective development.

220. Information Visualization (4)

This seminar surveys current research in information visualization with the goal of preparing students to do original research. The focus is on the cognitive aspects of information design, dynamic representations, and computational techniques. Topics vary each time course is offered.

234. Distributed Cognition (4)

This course focuses on aspects of individual and socially distributed cognition. Empirical examples are drawn from natural and experimental settings that presuppose, tacitly or explicitly, socially distributed knowledge among participants. The class examines the way locally managed, pragmatic conditions influence how decisions are framed.

238. Topics in Cognitive Linguistics (1–4)

(Same as Linguistics 238) Basic concepts, empirical findings, and recent developments in cognitive and functional linguistics. Language viewed dynamically in relation to conceptualization, discourse, meaning construction, and cognitive processing. (As topics vary, may be repeated for credit.)

241. Ethics and Survival Skills in Academia (3)

(Same as Neurosciences 241) This course will cover ethical issues that arise in academia, including: dishonesty, plagiarism, attribution, sexual misconduct, etc. We will also discuss ‘survival’ issues, including job hunting, grant preparation, journal reviews, writing letters of recommendation, mentoring, etc. S/U only.

243. Statistical Inference and Data Analysis (2 or 4)

This course provides a rigorous treatment of hypothesis testing, statistical inference, model fitting, and exploratory data analysis techniques used in the cognitive and neural sciences. Students will acquire an understanding of mathematical foundations and hands-on experience in applying these methods using Matlab.

252. Cognitive Science of Mathematics (4)

Empirical investigation of the nature of mathematics. How the human mind/brain creates abstract concepts, such as infinity, infinitesimals, imaginary numbers, or zero: embodiment, creativity, and history. Cognitive approaches that connect mathematics to human thought in general.

253. Semantics and Cognition (4)

This course explores current issues in the study of meaning and its interaction with other areas of cognitive science. The focus is on cognitive semantics, pragmatics, and meaning construction in general.

254. Pragmatics and Common Sense Reasoning (4)

A study of the pragmatic principles involved in language comprehension and the logic of everyday life. Cognitive, linguistic, cultural, and sociological aspects will be covered.

260. Seminar on Special Topics (1–4)

Specific topics in cognitive science are discussed. (May be repeated when topics vary.)

272. Topics in Theoretical Neurobiology (4)

The main focus of this course is the relationship between nervous system function and cognition. It covers broad theoretical issues and specific topics. Material comes from lectures, papers, and the text. Topic varies each time the course is offered. (May be repeated for credit.)

277. Mirroring in Social Cognition (4)

The discovery of mirror neurons in the monkey brain raised the possibility that “mirroring” constitutes instances of mental simulation. In this seminar, we will examine the neural basis of social cognition and specifically the relationship between mirroring processes and cognition.

279. Electrophysiology of Cognition (4)

(Cross-listed with NEU 279) This course surveys the theory and practice of using recordings of electrical and magnetic activity of the brain to study cognition and behavior. It explores what brain waves reveal about normal and abnormal perception, processing, decision making, memory, preparation, and comprehension. Graduate students will be required to do additional readings for the material each week (different for each grad) and to present orally (as well as in a written page) a critical analysis of the readings. Prerequisites: Cognitive Science 107A or Psychology 106; Cognitive Science 101A or Psychology 105.

290. Cognitive Science Laboratory Rotation (2)

Laboratory rotations provide students with experience in the various experimental methods used in cognitive science. Prerequisites: consent of instructor. S/U only.

291. Laboratory Research (1–4)

Students engage in discussions of reading of recent research in an area designated and directed by the instructor and also participate in the design and execution of original research. Students are expected to demonstrate oral and written competence in presenting original research. Prerequisites: consent of the instructor and departmental approval. (May be repeated for credit.)

298. Directed Independent Study (1–12)

Students study and research selected topics under the direction of a member of the faculty.

299. Thesis Research (1–12)

Students are provided directed research on their dissertation topic by faculty advisors.

500. Teaching Apprenticeship (1–4)

This practicum for graduate students provides experience in teaching undergraduate cognitive science courses. S/U only.