Contents

Contact individual departments for the most current information.

Correspondence Directory

Academic & Administrative Calendar

Undergraduate Admission Information and Enrollment Deadlines

Graduate Admissions Information and Enrollment Deadlines

Introduction

Choosing a College at UCSD

Revelle College (overview)

John Muir College (overview)

Thurgood Marshall College (overview)

Earl Warren College (overview)

Eleanor Roosevelt College

Sixth College (overview)

Undergraduate Admissions, Policies and Procedures

Estimated Expenses for Undergraduate Residents of California

Undergraduate Registration

Academic Regulations

Graduate Studies

Campus Services and Facilities

Academic services and programs, student services and programs, and other services and programs

Research at UCSD

Rady School of Management

School of Medicine

Skaggs School of Pharmacy and Pharmaceutical Sciences

Scripps Institution of Oceanography (overview)

Graduate School of International Relations and Pacific Studies

UCSD Faculty Members

Courses, Curricula and Program of Instruction Major/minor requirements, faculty lists, and courses

Appendix Student policies, university officers, and facts and figures
Correspondence Directory

Campus Directory Information

(858) 534-2230

UNDERGRADUATE

<table>
<thead>
<tr>
<th>Category</th>
<th>Office Details</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admissions</td>
<td>Office of Admissions and Relations with Schools</td>
<td>Fourth Floor, Student Services Center, 0021</td>
<td>(858) 534-4831</td>
</tr>
<tr>
<td>Campus Tours</td>
<td>Office of Admissions and Relations with Schools</td>
<td>First Floor, Student Services Center, 0075</td>
<td>(858) 822-4750</td>
</tr>
<tr>
<td>Educational Opportunity Program</td>
<td>Office of Admissions and Relations with Schools</td>
<td>Student Services Center, 0021</td>
<td>(858) 534-4831</td>
</tr>
<tr>
<td>Program (EOP)</td>
<td>Financial Aid Office</td>
<td>Third Floor, Student Services Center, 0013</td>
<td>(858) 534-4480</td>
</tr>
<tr>
<td>Financial Aid (Loans and Grants)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Student Affairs</td>
<td>Office of International Education</td>
<td>International Center, 0018</td>
<td>(858) 534-3730</td>
</tr>
<tr>
<td>Housing</td>
<td>On-Campus</td>
<td>Housing Administration</td>
<td>(858) 534-4010</td>
</tr>
<tr>
<td></td>
<td>Off-Campus</td>
<td>Commuter Student Services</td>
<td>(858) 534-3670</td>
</tr>
<tr>
<td>Part-Time Employment</td>
<td>Career Services Center</td>
<td>Career Services Center, 0330</td>
<td>(858) 534-3750</td>
</tr>
<tr>
<td>(On- and Off-Campus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provosts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earl Warren College</td>
<td>Computer Science and Engineering (EBU 3), Room 1100</td>
<td>Warren Campus, 0422</td>
<td>(858) 534-4350</td>
</tr>
<tr>
<td>Eleanor Roosevelt College</td>
<td>Eleanor Roosevelt College Admin. Building</td>
<td>ERC Campus, 0546</td>
<td>(858) 534-2247</td>
</tr>
<tr>
<td>John Muir College</td>
<td>H&SS Building, Room 2126</td>
<td>Muir Campus, 0106</td>
<td>(858) 534-3583</td>
</tr>
<tr>
<td>Revelle College</td>
<td>Revelle Provost Building</td>
<td>Revelle Campus, 0321</td>
<td>(858) 534-3490</td>
</tr>
<tr>
<td>Sixth College</td>
<td>Pepper Canyon Hall, Second Floor</td>
<td>University Center, 0054</td>
<td>(858) 822-5955</td>
</tr>
<tr>
<td>Service</td>
<td>Office</td>
<td>Address</td>
<td>Phone</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Registration</td>
<td>Registrar’s Office</td>
<td>261 Student Services Center, 0021R</td>
<td>(858) 534-3150</td>
</tr>
<tr>
<td>Residence Status</td>
<td>Registrar’s Office</td>
<td>261 Student Services Center, 0021R</td>
<td>(858) 534-4586</td>
</tr>
<tr>
<td>Scholarships</td>
<td>Financial Aid Office</td>
<td>Third Floor, Student Services Center, 0013</td>
<td>(858) 534-3263</td>
</tr>
<tr>
<td>Student Activities</td>
<td>University Events Office</td>
<td>Price Center, 0078</td>
<td>(858) 534-4090</td>
</tr>
<tr>
<td>Transfer Student Services</td>
<td>Office of Admissions and Relations with Schools</td>
<td>First Floor, Student Services Center, 0075</td>
<td>(858) 534-4831</td>
</tr>
</tbody>
</table>

GRADUATE

<table>
<thead>
<tr>
<th>Service</th>
<th>Office</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Graduate Studies</td>
<td>Office of Graduate Studies</td>
<td>Fourth Floor, Student Services Center, 0003</td>
<td>(858) 534-3555</td>
</tr>
<tr>
<td>Admissions</td>
<td>(Address the appropriate department of instruction.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affirmative Action</td>
<td>Office of Graduate Studies</td>
<td>Fourth Floor, Student Services Center, 0003</td>
<td>(858) 534-3871</td>
</tr>
<tr>
<td>Fellowships</td>
<td>Office of Graduate Studies</td>
<td>Fourth Floor, Student Services Center, 0003</td>
<td>(858) 534-3556</td>
</tr>
<tr>
<td>Financial Aid (Loans and Grants)</td>
<td>Financial Aid Office</td>
<td>Third Floor, Student Services Center, 0013</td>
<td>(858) 534-4480</td>
</tr>
<tr>
<td>Graduate Women’s Program</td>
<td>Office of Graduate Studies</td>
<td>Fourth Floor, Student Services Center, 0003</td>
<td>(858) 534-3555</td>
</tr>
<tr>
<td>Housing</td>
<td>Graduate Apartments/Residential Apartments Office</td>
<td>Housing Dining Hospitality Services Building, 0383</td>
<td>(858) 534-4010</td>
</tr>
<tr>
<td>Teaching and Research Assistantships</td>
<td>(Address the appropriate department of instruction.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCHOOL OF MEDICINE

<table>
<thead>
<tr>
<th>Service</th>
<th>Office</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admissions</td>
<td>Admissions Office</td>
<td>180 Medical Teaching Facility, 0621</td>
<td>(858) 534-3880</td>
</tr>
</tbody>
</table>
Academic and Administrative Calendar, 2010–11

Fall Quarter, 2010

- Fall quarter begins: Monday, September 20
- Instruction begins: Thursday, September 23
- Veterans Day: Wednesday, November 11
- Thanksgiving holiday: Thursday–Friday, November 25–26
- Instruction ends: Friday, December 3
- Final exams: Monday–Saturday, December 6–11
- Fall quarter ends: Saturday, December 11
- Christmas holidays: Thursday–Friday, December 23–24
- New Year holidays: Thursday–Friday, December 30–January 31

49 Days of Instruction • 60 Days in Quarter

Winter Quarter, 2011

- Winter quarter begins: Friday, January 3
- Instruction begins: Monday, January 3
- Martin Luther King, Jr. holiday: Monday, January 17
- Presidents’ Day holiday: Monday, February 21
- Instruction ends: Friday, March 11
- Final exams: Monday–Saturday, March 14–19
- Winter quarter ends: Saturday, March 19

48 Days of Instruction • 55 Days in Quarter

Spring Quarter, 2011

- Spring quarter begins: Thursday, March 24
- Cesar Chavez holiday: Friday, March 25
- Instruction begins: Monday, March 28
Memorial Day holiday observance Monday, May 30
Instruction ends Friday, June 3
Final exams Monday–Friday, June 6–10
Spring quarter ends Friday, June 10

49 Days of Instruction • 57 Days in Quarter

Independence Day holiday Monday, July 4, 2011
Labor Day holiday Monday, September 5, 2011

For the most accurate and up-to-date information, please see the academic and administrative calendar online at the Registrar’s Office: http://registrar.ucsd.edu.
Undergraduate Admission Information and Enrollment Deadlines, 2010–11**

<table>
<thead>
<tr>
<th></th>
<th>FALL QUARTER 2010</th>
<th>WINTER QUARTER 2011</th>
<th>SPRING QUARTER 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENROLLMENT BEGINS (Continuing Students)</td>
<td>May 5</td>
<td>Nov. 3</td>
<td>Feb. 9</td>
</tr>
<tr>
<td>BILLING STATEMENTS AVAILABLE ON TRITONLINK</td>
<td>Sept. 1</td>
<td>Dec. 1</td>
<td>Mar. 2</td>
</tr>
<tr>
<td>ENROLLMENT BEGINS (New Students)</td>
<td>Aug. 19</td>
<td>TBA</td>
<td>TBA</td>
</tr>
<tr>
<td>REGISTRATION FEE PAYMENT DEADLINE</td>
<td>Sept. 17</td>
<td>Dec. 15</td>
<td>Mar. 18</td>
</tr>
<tr>
<td>QUARTER BEGINS</td>
<td>Sept. 20</td>
<td>Jan. 3</td>
<td>Mar. 24</td>
</tr>
<tr>
<td>DEADLINE TO PAY AND ENROLL WITHOUT LATE FEES</td>
<td>Sept. 17</td>
<td>Dec. 15</td>
<td>Mar. 18</td>
</tr>
<tr>
<td>LAST DAY FOR STUDENTS ON FINANCIAL</td>
<td>Sept. 17</td>
<td>Dec. 15</td>
<td>Mar. 18</td>
</tr>
</tbody>
</table>
AID, SCHOLARSHIPS, AND FULL FEE WAIVERS
TO NOTIFY THE CAMPUS IF NOT ATTENDING

<table>
<thead>
<tr>
<th>Event</th>
<th>Sept. 23</th>
<th>Jan. 3</th>
<th>Mar. 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTRUCTION BEGINS</td>
<td>Oct. 8</td>
<td>Jan. 14</td>
<td>Apr. 8</td>
</tr>
<tr>
<td>FINAL DAY TO ADD COURSES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAST DAY TO APPLY FOR PART-TIME STATUS</td>
<td>Oct. 8</td>
<td>Jan. 14</td>
<td>Apr. 8</td>
</tr>
<tr>
<td>LAST DAY TO DROP WITHOUT "W."</td>
<td>Oct. 22</td>
<td>Jan. 28</td>
<td>Apr. 22</td>
</tr>
<tr>
<td>LAST DAY TO CHANGE GRADING OPTION, CHANGE VARIABLE UNITS</td>
<td>Oct. 22</td>
<td>Jan. 28</td>
<td>Apr. 22</td>
</tr>
<tr>
<td>LAST DAY TO DROP WITH "W" OR FINAL GRADE MUST BE ASSIGNED.</td>
<td>Nov. 29</td>
<td>Mar. 4</td>
<td>May 27</td>
</tr>
<tr>
<td>INSTRUCTION ENDS</td>
<td>Dec. 3</td>
<td>Mar. 11</td>
<td>June 3</td>
</tr>
<tr>
<td>FINAL EXAMINATIONS</td>
<td>Dec. 6–11</td>
<td>Mar. 14–19</td>
<td>June 6–10</td>
</tr>
<tr>
<td>QUARTER ENDS</td>
<td>Dec. 11</td>
<td>Mar. 19</td>
<td>June 10</td>
</tr>
<tr>
<td>COMMENCEMENT</td>
<td></td>
<td></td>
<td>June 11–13</td>
</tr>
</tbody>
</table>

*If open—contact Undergraduate Admissions for details, (858) 534-4831. Students applying for winter or spring quarter admission and also applying for financial aid are urged to apply early as mid year funds for winter and spring applicants may be limited to only bank loans, Federal Pell Grant, and/or Renewal Cal Grant.

**All dates subject to change. For most current dates please see http://tritonlink.ucsd.edu.
Graduate Admission Information and Enrollment Deadlines

ADMISSION

Graduate admissions information is available at http://graduateapp.ucsd.edu and in the Graduate Studies section of this catalog. Application deadlines are specific to each graduate program and are available at http://ogs.ucsd.edu/admissions/programs.

<table>
<thead>
<tr>
<th>GRADUATE ENROLLMENT DEADLINES</th>
<th>FALL QUARTER 2010</th>
<th>WINTER QUARTER 2011</th>
<th>SPRING QUARTER 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN ENROLLMENT:</td>
<td>May 5</td>
<td>Nov. 3</td>
<td>Feb. 9</td>
</tr>
<tr>
<td>CONTINUING STUDENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW STUDENT ENROLLMENT</td>
<td>Aug. 16</td>
<td>Nov. 29</td>
<td>Mar. 7</td>
</tr>
<tr>
<td>APPLICATION FOR</td>
<td>Aug. 13</td>
<td>Dec. 3</td>
<td>Feb. 25</td>
</tr>
<tr>
<td>INTERCAMPUS EXCHANGE PROGRAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILING APPROVED LEAVE OF ABSENCE</td>
<td>Oct. 8</td>
<td>Jan. 14</td>
<td>Apr. 8</td>
</tr>
<tr>
<td>DEADLINE DAY TO ENROLL AND PAY REGISTRATION FEES WITHOUT LATE FEES</td>
<td>Sept. 17</td>
<td>Dec. 15</td>
<td>Mar. 18</td>
</tr>
</tbody>
</table>

Enrollment and payment of fees after this date require payment of $50 for late enrollment and $50 for late payment of fees, totaling $100.
<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUARTER BEGINS</td>
<td>Sept. 20</td>
<td>Jan. 3</td>
<td>Mar. 24</td>
</tr>
<tr>
<td>INSTRUCTION BEGINS</td>
<td>Sept. 23</td>
<td>Jan. 3</td>
<td>Mar. 28</td>
</tr>
<tr>
<td>FINAL DAY TO ADD OR DROP VIA THE WEB</td>
<td>Oct. 8</td>
<td>Jan. 14</td>
<td>Apr. 8</td>
</tr>
<tr>
<td>DEADLINE TO CHANGE GRADING OPTION</td>
<td>Oct. 22</td>
<td>Jan. 28</td>
<td>Apr. 22</td>
</tr>
<tr>
<td>DEADLINE FOR DROPPING CLASSES WITHOUT “W” APPEARING ON THE TRANSCRIPT</td>
<td>Oct. 22</td>
<td>Jan. 28</td>
<td>Apr. 22</td>
</tr>
<tr>
<td>MASTER’S DEGREE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filing for advancement to candidacy with completion in same quarter</td>
<td>Oct. 8</td>
<td>Jan. 14</td>
<td>Apr. 8</td>
</tr>
<tr>
<td>Filing approved thesis</td>
<td>Dec. 10</td>
<td>Mar. 18</td>
<td>June 10</td>
</tr>
<tr>
<td>DOCTOR OF PHILOSOPHY DEGREE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filing draft dissertation with doctoral committee for current quarter completion</td>
<td>Nov. 5</td>
<td>Feb. 4</td>
<td>Apr. 29</td>
</tr>
<tr>
<td>Filing approved dissertation and related materials</td>
<td>Dec. 10</td>
<td>Mar. 18</td>
<td>June 10</td>
</tr>
<tr>
<td>DROPPING CLASSES WITHOUT PENALTY OF “F” GRADE</td>
<td>Nov. 29</td>
<td>Mar. 4</td>
<td>May 27</td>
</tr>
<tr>
<td>INSTRUCTION ENDS</td>
<td>Dec. 3</td>
<td>Mar. 11</td>
<td>June 3</td>
</tr>
<tr>
<td>FINAL EXAMINATIONS</td>
<td>Dec. 6–11</td>
<td>Mar. 14–19</td>
<td>June 6–10</td>
</tr>
<tr>
<td>REMOVING INCOMPLETE GRADES (I) ASSIGNED IN PRIOR QUARTER</td>
<td>Dec. 13</td>
<td>Mar. 21</td>
<td>June 13</td>
</tr>
</tbody>
</table>
QUARTER ENDS Dec. 11 Mar. 19 June 10

COMMENCEMENT June 12

COMPLETION OF REQUIREMENTS

Final date for completion of Dec. 11 Mar. 19 June 10
all requirements for
degrees to be awarded at
end of quarter

Dates are subject to change; see quarterly Schedule of Classes for changes: http://tritonlink.ucsd.edu.
Introduction

HISTORY
UC San Diego is one of the ten campuses which make up the University of California system. The other campuses are located in Berkeley, Davis, San Francisco, Santa Cruz, Santa Barbara, Riverside, Los Angeles, Irvine, and Merced. Each has its own distinct academic and social character, and each offers programs and facilities which set it off from the others.

As a member of the ten-campus family of the University of California, UCSD is a university in scale and scope. Graduate and undergraduate programs, offered in a wide range of disciplines, lead to the bachelor’s, master’s, M.B.A., Ed.D., M.D., Ph.D., and Pharm.D. degrees. UCSD’s Scripps Institution of Oceanography is internationally renowned, and UCSD’s School of Medicine has won national acclaim for excellence. UCSD’s Graduate School of International Relations and Pacific Studies is the only school of international affairs in the UC system. The UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences enrolled its charter class in 2002, and the Rady School of Management enrolled Executive MBA students in 2004 and full-time students in 2005. At both the undergraduate and graduate levels, UCSD’s curricula and programs have been highly ranked in recent surveys of American higher education.

UCSD enrolled its first undergraduates in 1964. Nevertheless, the campus can trace its origins in this area as far back as the late 1800s. At that time, zoologists on the Berkeley campus, seeking a suitable location for a marine field station, found La Jolla a very desirable site. The facility they established became a part of the University of California in 1912 and was eventually named the Scripps Institution of Oceanography. In the late 1950s, when the Regents of the University of California decided to situate a general campus in the San Diego region, the Scripps Institution formed the nucleus of the new campus.

Today UCSD is recognized throughout the academic world for its faculty and for its graduate and undergraduate programs. The faculty now includes eight Nobel laureates (four of whom hold joint appointments with the nearby Salk Institute); three recipients of the National Medal of Science; one winner of the Pulitzer Prize; sixty-three members of the National Academy of Sciences; eighty-two Fellows of the American Academy of Arts and Sciences; fourteen Fellows of the American Philosophical Society; eight fellows of the Econometric Society; fourteen members of the National Academy of Engineering; five members of the International Academy of Astronautics; twenty-five members of the Institute of Medicine; and three members of the National Academy of Education.

UCSD houses a chapter of Phi Beta Kappa, the best-known honor society for the liberal arts and sciences in America. The campus is one of 265 four-year institutions selected for this distinction since the society was founded in 1776, and more than 200 current faculty and staff are members.

UCSD is a member of the Western Association of Schools and Colleges (WASC) and is fully accredited by the Senior College Commission of WASC. WASC is located at 985 Atlantic Avenue, Suite 100, Alameda, CA 94501, and may be reached at (510) 748-9001 or by fax at (510) 748-9797.

UNIVERSITY AND COMMUNITY
There are certain facts about UCSD to consider in making your choice. Among them are:

• UCSD, a four-year undergraduate campus, is also a full-fledged graduate and research institution. UCSD faculty and scholars are continually involved in research and developmental projects that put this campus on the cutting edge of science, technology, and the arts and humanities.

• San Diego has become one of America’s major centers for high-technology electronics and biomedical industries. Students concentrating on sciences or engineering are actively sought by these industries to fill summer jobs and career positions. Off-campus internships also are available to UCSD students in all fields of study.

• UCSD is recognized nationally as a major center for the arts and humanities, including music and theater.

• Undergraduates are offered opportunities to participate in certain research projects conducted by UCSD faculty. A number of UCSD undergraduates have developed computer skills that have led to their employment by leading computer manufacturers, and still others have gone on to form their own software enterprises as a direct result of their UCSD training.

• UCSD’s unique small-college structure encourages undergraduates to play a more active role in student government, social life, and athletics than is generally open to them in other major universities. Opportunities for involvement in student governance are especially strong as there are student governing bodies at the campus level as well as within the six individual colleges.

• Campus athletic facilities include the Recreational and Intramural Athletic Center (RIMAC), two gymnasiums, two swimming pools, and numerous tennis and handball courts. The university’s recreational and intramural athletic programs are among the most varied and extensive in the nation today.

MAJOR FIELDS OF STUDY
UCSD offers a wide variety of nationally recognized majors in a broad array of fields, see Departmental Undergraduate Majors. (For a listing of graduate programs, refer to the section of this catalog titled “Graduate Studies.”)

For academic departments of UCSD see Undergraduate Departments. Details and requirements of the various individual courses are found in the “Courses, Curricula, and Programs of Instruction” section.

UCSD has limited the number of its academic departments. For example, there is only one Department of Literature. This system has proved especially valuable to undergraduates who choose to avoid overspecialization early in their studies.

A number of special, individually oriented programs use the combined resources of two or more departments. Among these are Chinese Studies, Classical Studies, Computing and the Arts, Critical Gender Studies, Environmental Systems, Human Development, German Studies, International Studies, Italian Studies, Japanese Studies, Judaic Studies, Latin American Studies, Study of Religion, Russian and Soviet Studies, the Education Studies Program, Third World Studies, and Urban Studies and Planning.

Engineering students may choose from a number of majors in the Department of Bioengineering (BE), the Department of Computer Science and Engineering (CSE), the Department of Electrical and Computer Engineering (ECE), the Department of Mechanical and Aerospace Engineering (MAE), the Department of NanoEngineering, or the Department of Structural Engineering (SE). All six departments seek to educate the engineer of tomorrow.

Undergraduates interested in premedicine and prelaw majors should note that a variety of departments can serve their needs. For premed students, the common choices are biology, chemistry, psychology, and bioengineering. Some students are electing double majors or are combining nontraditional majors with science majors. For prelaw students, nearly any undergraduate major will qualify a student for admission to a law school.

Should you need help in deciding on a major, many UCSD professionals are available to aid you. Among them are the deans of academic advising in the provosts’ offices of the six colleges, faculty members, and departmental advisors. Additional specialists in Career Services Center and in Psychological and Counseling Services are available to help you appraise your personal aptitudes.

SUMMER SESSION
UCSD offers Summer Session, consisting of courses selected from the regular undergraduate curriculum and taught by UCSD faculty. UCSD is in transition toward state-supported year-round instruction.

The Summer Session Program offers open enrollment to UCSD students, students of other colleges and universities, qualified high school juniors and seniors, and the general public.

Summer Session courses are shorter and more intensive. Students may be able to progress more rapidly toward their degree, make up course deficiencies, or explore new areas of study.

Summer Session enrollment and registration policies and procedures are available at http://summersession.ucsd.edu. UC students pay a per-unit fee equivalent to the fee paid for fall, winter, or spring. Contact summer@ucsd.edu or call 858.534.5258.

WHAT UCSD DOES NOT OFFER
Although the range and variety of programs offered at UCSD are very wide, there are certain disciplines which are not available on this campus. In some instances, the absence of a particular program reflects the academic philosophy of the UCSD campus and its faculty. In others, the absence of a
RECREATION AT UCSD

UCSD's undergraduate colleges are situated on a parklike site at La Jolla. La Jolla has some of the finest beaches and coves, art galleries, and other attractions in the nation.

Much of UCSD's recreational and social life centers on the waterfront, with surfing, SCUBA diving, and beach activities among the favorite diversions of UCSD students. Throughout the area, students find a variety of amusements, ranging from the small-town atmosphere of waterfront Del Mar to the primitive wilderness of Mexico's Baja California peninsula. The city of San Diego, some twelve miles south of the campus, offers a wide range of recreational opportunities, including Old Town (California's birthplace), Sea World on Mission Bay, and the world-famous San Diego Zoo and Wild Animal Park. A year-round calendar of major league sporting events is offered in the city's Sports Arena, PETCO Park, and in San Diego Qualcomm Stadium.

There are numerous theaters in San Diego. A year-round program of contemporary and classical professional theater may be enjoyed in the Old Globe and the adjacent Cassius Carter Centre Stage, and special summer theater fare is featured on the park's outdoor Festival Stage.

On-campus entertainment includes a year-round series of movies and cultural programs, dances, chamber music, and rock-band concerts sponsored by the University Events Office. The Department of Theatre and Dance presents plays in both the 500-seat Mandell Weiss Theatre and the 500-seat Forum Theatre. The Department of Visual Arts offers a continuing series of art shows in the Mandeville Art Gallery and displays of student art in other campus galleries.

Informal meeting places on campus are hubs of student activity throughout the day and evening, among them the Muir Rathskeller, Marshall College Mountain View Lounge, and the Price Center.

MOUNTAINS, DESERTS, AND BEACHES

Many Southern Californians enjoy the out-of-doors. The San Diego metropolitan area enjoys the most comfortable year-round climate in the United States. Fishing opportunities are plentiful offshore in kelp beds west of La Jolla and surrounding the Coronado Islands in Mexican waters. Fresh water fishing is available in nearby lakes. An hour’s drive to the east, the Laguna Mountains provide pleasure during all seasons for campers and hikers. Beyond the Lagunas lies the vast Anza-Borrego Desert with its breathtaking display of wildflowers every spring.

The peninsula of Baja California, one of the world's last great wilderness areas, stretches for 900 miles southward from the international gateway at Tijuana. It is the site every year of the grueling Baja cross-country auto race.

SPORTS AT UCSD

Through its intercollegiate athletic and intramural programs, UCSD provides its students with one of the more extensive and competitive sports programs in the United States. UCSD fields a wide variety of intercollegiate athletic teams along with several club sports teams, while the intramural program provides for student competition in a wide variety of sports in three categories of play: men, women, and coed.

NEED MORE INFORMATION? CHECK THE FOLLOWING:

How do I apply for admission? See page 32.
Undergraduate Admissions, Policies & Procedures. (See also “Note,” below.)
• How much does a UCSD education cost?
 See “Fees and Expenses” at “Undergraduate Admissions, Policies, and Procedures”.
• What’s the grading system at UCSD? See “Grading Policy” at “Academic Regulations”.
• How should I decide which college to choose at UCSD? See “Choosing a College at UC San Diego”.
• What services and facilities are available to students at UCSD? See “Campus Services and Facilities”.
• Where do I write for more information? See “Correspondence Directory”.

Note: An admissions packet for students interested in applying to UCSD can be obtained from any California high school or community college counselor’s office, by writing to the Office of Admissions on any University of California campus, or online at http://www.ucop.edu/pathways/appctr.html.
DEPARTMENTAL UNDERGRADUATE MAJORS

ANTHROPOLOGY
- Anthropological (Archaeology) B.A.
- Anthropology B.A.
- Anthropology (Biological Anthropology) B.A.
- Anthropology (Sociocultural Anthropology) B.A.

BIOENGINEERING (BE)
- Bioengineering B.S.
- Bioengineering: Premedical B.S.
- Bioengineering: Biotechnology B.S.
- Bioengineering: Bioinformatics B.S.

BIOLOGICAL SCIENCES, DIVISION OF
- General Biology B.S.
- Biology with a Specialization in Bioinformatics B.S.
- Biochemistry and Cell Biology B.S.
- Ecology, Behavior, and Evolution B.S.
- Human Biology B.S.
- Microbiology B.S.
- Molecular Biology B.S.
- Physiology and Neuroscience B.S.

CHEMISTRY AND BIOCHEMISTRY
- Chemistry B.S.
- Biochemistry/Chemistry B.S.
- Chemical Education B.S.
- Chemical Physics B.S.
- Chemistry (Earth Sciences) B.S.
- Environmental Chemistry B.A./B.S.
- Molecular Synthesis B.S.
- Pharmacological Chemistry B.S.
- Bioinformatics B.S.

COGNITIVE SCIENCE
- Cognitive Science B.A./B.S.
- Cognitive Science (Clinical Aspects of Cognition) B.S.
- Cognitive Science (Computation) B.S.
- Cognitive Science (Human Cognition) B.S.
- Cognitive Science (Human Computer Interaction) B.S.
- Cognitive Science (Neuroscience) B.S.

COMMUNICATION
- Communication B.A.

COMPUTER SCIENCE AND ENGINEERING (CSE)
- Computer Science B.A./B.S.
- Computer Engineering B.S.
- Computer Science with Specialization in Bioinformatics B.S.

ECONOMICS
- Economics B.A.
- Management Science B.S.
- Joint Economics—Mathematics B.A.

EDUCATION
(see Footnote 1)

EDUCATION STUDIES
(see Footnote 1)

ELECTRICAL AND COMPUTER ENGINEERING (ECE)
- Computer Engineering B.S.
- Electrical Engineering B.S.
- Electrical Engineering and Society B.A.
- Engineering Physics B.S.

ENGINEERING
(see BE, CSE, ECE, MAE, NE, and SE)

ENGLISH
(see Literature)

ETHNIC STUDIES
- Ethnic Studies B.A.

HISTORY
- History B.A.

LINGUISTICS
- Linguistics (Cognition and Language) B.A.
- Linguistics (Language and Society) B.A.
- Language Studies B.A.
- Linguistics B.A.

LITERATURE
- Literatures in English B.A.
- French Literature B.A.
- German Literature B.A.
- Italian Literature B.A.
- Russian Literature B.A.
- Spanish Literature B.A.
- Literature (Composite) B.A.
- Literature (Cultural Studies) B.A.
- Literature/Writing B.A.
- Literatures of the World B.A.

MATHEMATICS
- Mathematics B.A.
- Mathematics (Applied) B.A.
- Mathematics—Computer Science B.A.
- Mathematics—Applied Science B.A.
- Joint Mathematics—Economics B.A.
- Mathematics—Scientific Computation B.S.
- Mathematics—Secondary Education B.A.
- Probability and Statistics B.S.

MECHANICAL AND AEROSPACE ENGINEERING (MAE)
- Aerospace Engineering B.S.
- Engineering Sciences B.S.
- Mechanical Engineering B.S.
- Environmental Engineering B.S.

MUSIC
- Interdisciplinary Computing and the Arts B.A.
- Music B.A.
- Music/Humanities B.A.

NANOENGINEERING (NE)
- Chemical Engineering B.S.

PHILOSOPHY
- Philosophy B.A.

PHYSICS
- General Physics B.A.
- General Physics/Secondary Education B.A.
- Physics B.S.
- Physics/Biophysics B.S.
- Physics with Specialization in Computational Physics B.S.
- Physics with Specialization in Earth Sciences B.S.
- Physics with Specialization in Materials Physics B.S.
- Physics with Specialization in Astrophysics B.S.

POLITICAL SCIENCE
- Political Science B.A.
- Political Science (American Politics) B.A.
• Political Science (Comparative Politics) B.A.
• Political Science (International Relations) B.A.
• Political Science (Political Theory) B.A.
• Political Science (Public Law) B.A.
• Political Science (Public Policy) B.A.

PRELAW (see Footnote 2)

PREMEDICAL (see Footnote 3)

PSYCHOLOGY
• Psychology B.A./B.S.

SCRIPPS INSTITUTION OF OCEANOGRAPHY
• Earth Sciences with Specialization in Geology B.S.
• Earth Sciences with Specialization in Geochemistry B.S.
• Earth Sciences with Specialization in Geophysics B.S.

SOCILOGY
• Sociology B.A.
• Sociology—International Studies B.A.
• Sociology—American Studies B.A.
• Sociology—Science and Medicine B.A.
• Sociology—Economy and Society B.A.
• Sociology—Culture and Communication B.A.
• Sociology—Social Inequity B.A.
• Sociology—Law and Society B.A.

STRUCTURAL ENGINEERING (SE)
• Engineering Sciences B.S.
• Structural Engineering B.S.

THEATRE
• Dance B.A.
• Theatre B.A.

VISUAL ARTS
• Visual Arts (Art History/Criticism) B.A.
• Visual Arts (Media) B.A.
• Visual Arts (Studio) B.A.
• Interdisciplinary Computing and the Arts B.A.

UNDERGRADUATE DEPARTMENTS

ARTS
• Music
• Theatre and Dance
• Visual Arts

SCHOOL OF ENGINEERING
• BE (Bioengineering)
• CSE (Computer Science and Engineering)
• CE (Chemical Engineering, Program)
• ECE (Electrical and Computer Engineering)
• MAE (Mechanical and Aerospace Engineering)
• NE (NanoEngineering)
• SE (Structural Engineering)

HUMANITIES
• History
• Literature
• Philosophy

SCIENCE AND MATHEMATICS
• Biological Sciences
• Chemistry and Biochemistry
• Mathematics
• Physics

SOCIAL SCIENCE
• Anthropology
• Cognitive Science
• Communication
• Economics
• Ethnic Studies
• Linguistics
• Political Science
• Psychology
• Sociology

INTERDISCIPLINARY MAJORS
• Chinese Studies B.A.
• Classical Studies B.A.

Footnote 1: The teaching credential in California requires an academic major, plus professional preparation courses in education, an approved program of practice teaching or an internship, and a full year of college work beyond the baccalaureate. The Education Studies Program leads to a single subject (secondary) or multiple-subjects (elementary) credential.

Footnote 2: Law schools do not require any particular major, but they do require evidence of good scholarship in demanding subjects. Almost any undergraduate major can qualify a student for consideration by a law school. The UCSD career services staff includes professional prelaw advisors.

Footnote 3: Like law schools, medical schools do not generally demand a particular major but ask for a solid background in the sciences upon which medicine is built. Most premed students major in biology, chemistry, physics, or bioengineering, but a substantial number major in the humanities and social sciences. The UCSD career services staff includes professional premedical advisors.
Choosing a College at UC San Diego

One of the features that sets UC San Diego apart from most major universities in the United States is its family of undergraduate colleges: Revelle, John Muir, Thurgood Marshall, Earl Warren, Eleanor Roosevelt, and Sixth.

The division of the campus community into small colleges was patterned after the concept which has served Oxford and Cambridge so successfully for centuries. The planners of the UC San Diego campus were convinced that students learn more, and find greater fulfillment in their personal lives, when joined academically and socially with a relatively small group of students. At the same time, the advantages of size in a university, including a faculty of international renown, first-rate teaching and research facilities, laboratories, libraries, and other amenities, were to be an important part of the design.

The result was an arrangement which combined the academic advantages of a large research university with the finest features of a small liberal arts college—the UC San Diego college system. Each of these semi-autonomous undergraduate colleges has its own residence facilities, staff, traditions, general-education requirements, and distinctive educational philosophy. The system was inaugurated with the opening of Revelle College in 1964. In the intervening years, five more colleges—John Muir, Thurgood Marshall, Earl Warren, Eleanor Roosevelt, and Sixth—have been established. Although many American university campuses have a separate college structure, in most cases, these colleges are designed to serve specific disciplines, such as engineering or business administration. At UC San Diego, however, any undergraduate may select from the full range of majors available. The choice of a college is not based on your major, but on your preferences in terms of the various educational philosophies and environments offered by the colleges.

UC San Diego’s college system allows undergraduates to choose from among six distinct general-education curricula supplementing their major requirements. These curricula range from a very structured liberal arts program to a program with a broad range of electives. By contrast, most universities offer only one general-education curriculum.

Students must rank the colleges in order of preference when applying for admission. Brief summaries of the various college curricula and philosophies follow. Later in this section, these variations are spelled out in considerable detail, college by college.

REVELLE COLLEGE PROGRAMMATIC THEME

Revelle College stresses the broad character of general education. A structured liberal arts curriculum establishes a strong educational foundation for any major. All students complete a highly respected core humanities sequence and courses in the arts and social sciences. Students either meet proficiency in a foreign language or complete the fourth quarter of college-level instruction. All students also complete sequences in calculus and science, with separate courses available for science and non-science majors. Throughout the final two years, students concentrate on developing professional competence in an academic discipline.

Revelle College is distinguished by its emphasis on specific general-education requirements and high academic standards. A high percentage of Revelle College students enroll in graduate or professional schools (law, medicine, management, etc.), graduate with double majors, design individualized interdisciplinary majors, work on a research project, and graduate with university honors.

JOHN MUIR COLLEGE PROGRAMMATIC THEME

John Muir College has established a set of general-education and graduation requirements that ensures breadth and depth of learning and encourages the students of the college to take an active role in their own intellectual development. Students complete four year-long sequences drawn from the social sciences; the natural sciences or mathematics; and two sequences out of the following three areas: the humanities, fine arts, or foreign languages. Many choices are available for each of these year-long sequences. Students complete two analytical writing courses in addition to the four year-long sequences. Muir has a one-course U.S. cultural heritage and identity graduation requirement in addition to a minimum number of 18 upper-division four-unit courses (72 upper-division units) among the 180 units required to graduate.

Muir’s general-education and graduation requirements accommodate a wide range of interests and aptitudes. Muir’s academic advisors meet with students on a one-to-one basis to help students make informed decisions. The general structure and options of the general-education requirements make Muir College particularly attractive to exceptionally able and well-prepared students with well-defined or developing academic interests. John Muir is distinguished by its atmosphere of friendliness, informality, and deep concern for the rights and welfare of others. Concern for one’s fellow students goes well with Muir’s educational philosophy, which stresses individual choice and development. The environment thus created fosters responsibility for informed academic decisions, consequences of academic choices, and, ultimately, well-rounded students.

THURGOOD MARSHALL COLLEGE PROGRAMMATIC THEME

The dedicated focus of Thurgood Marshall College is the active development of the student as scholar and citizen. The college, a small liberal arts and sciences community, is characterized by an open, friendly environment in which students pursue any major in the natural and physical sciences, social sciences, engineering, humanities, and fine arts offered at the university. The college’s educational philosophy is guided by the belief that, regardless of a student’s major, a broad liberal arts education must include an awareness and understanding of the diversity of cultures that comprise contemporary American society, and the richness that socio-cultural diversity brings to the lives of American people.

Integral to the Marshall experience is the unique, three-quarter core sequence, “Dimensions of Culture—Diversity, Justice, and Imagination.” This interdisciplinary, issues-oriented curricular experience explores both the diversity of American experiences across race, religion, class, and gender, and also the shared resources all Americans draw on when their different identities and interests conflict. Students also choose courses in mathematics or logic, natural/physical sciences, writing, humanities, and fine arts to fulfill general-education requirements.

In addition to the strong academic program, Thurgood Marshall College is proud of its emphasis on the student as citizen. Students are encouraged to integrate educational alternatives and public service opportunities, such as Partners at Learning (PAL), for which they earn academic credit, into their curriculum. Through PAL and other options, such as study abroad, internships, public service and leadership activities, students develop skills learned in the classroom and apply them to real-world experiences. Toward that end, the Student Leadership Program is especially designed to encourage active participation in the governance of the college and in community service.

Thurgood Marshall College’s hallmark is community, where students are encouraged to be active participants in their university education and to take advantage of the abundance of opportunities to learn and develop as exemplary scholars and citizens in a multicultural twenty-first century.

EARL WARREN COLLEGE PROGRAMMATIC THEME

Earl Warren College was founded in 1974 and named in honor of the former governor of California and Chief Justice of the United States Supreme Court. Consistent with Earl Warren’s principles, the college is committed to preparing students for life intellectually, socially, and professionally as responsible citizen-scholars. Warren’s guiding philosophy, “Toward a Life in Balance,” helps students define their individual educational and career paths. The college strives to provide all students with an experience that underscores the harmony necessary between academic and cocurricular endeavors.

Earl Warren’s focus on the individual’s relationship with society is reflected in the required course Ethics and Society. This class examines ethical principles and their social and political applications to contemporary issues. All students enroll in the two-quarter Warren College Writing Program, which stresses written argumentation based on primary and secondary sources. The college sponsors two interdisciplinary minors, open to all UCSD undergraduates. The law and society minor emphasizes the interrelationship of legal, social, and ethical issues in their historical context. The health care-social issues minor analyzes complex social and ethical implications of healthcare policies and delivery systems. Additionally, Warren College is home to the Academic Internship Program...
Program, which offers qualified UCSD juniors and seniors the chance to acquire valuable work experience related to academic and career interests. Warren College’s general-education requirements and academic philosophy guarantee that students will acquire both the breadth and depth necessary to successfully compete in graduate school, professional school, or the workplace. The college’s requirements include a major and two additional programs of study that encompass academic areas outside of a student’s major. Additional courses in formal skills and cultural diversity provide an essential educational complement. Warren students are encouraged to pursue academic internships as well as study abroad; both opportunities create well-rounded students with heightened cultural and intellectual curiosity. Earl Warren College offers students flexibility in fulfilling their general-education requirements, and provides a vibrant and welcoming home for the pursuit of rigorous academic study and personal growth.

ELEANOR ROOSEVELT COLLEGE PROGRAMMATIC THEME

Eleanor Roosevelt College (ERC) emphasizes a comprehensive general education designed to prepare students to compete successfully in the global and multicultural economy of the twenty-first century. Successful professional people will need to understand their own cultural heritage as well as those of people from other societies with whom they will be interacting in their workplaces and communities.

The perspectives gained at ERC prepare students well for the future, whatever their goals and their major field of study, and whether they plan to go on to graduate school, professional school, or the worlds of science and technology, business, or the arts.

At the core of the curriculum are six courses comprising the Making of the Modern World (MMW). This interdisciplinary sequence was developed by faculty from anthropology, history, literature, political science, and sociology. It teaches students to think historically and analytically, as well as across disciplines, about both Western and non-Western societies, and the ways humans have organized their experience in different places and times.

ERC students receive exposure to natural science, quantitative methods, foreign language, and fine arts, and each selects a geographic region for in-depth study. Interested students are encouraged and assisted in finding ways to study, work, or travel in other countries to expand their horizons.

A friendly and supportive campus community, ERC is also distinguished by its emphasis on helping each individual reach his or her full potential intellectually, and in those skills, contributing to effective participation and leadership.

As Eleanor Roosevelt wrote, “Whether or not they have made the world they live in, the young must learn to be at home in it, to be familiar with it. They must understand its history, its peoples, their customs and ideas and problems and aspirations.” ERC students and graduates find themselves as much “at home” in the world as any of their generation, and more than most!

SIXTH COLLEGE PROGRAMMATIC THEME

Sixth College opened in 2002. As the newest college at UC San Diego, Sixth is characterized by a spirit of creativity and collaboration. The college theme, Culture, Art, and Technology, embraces the rich opportunities available in new interdisciplinary approaches to learning and practice. In doing so, it bridges the divisions traditionally separating social and natural science, humanities, technology, and the arts. By piloting educational initiatives and building partnerships with such groups as the Center for Telecommunication and Information Technology (Calit2), the Center for Research in Computing and the Arts, the Jacobs School of Engineering, and the University Events Office, we are developing opportunities for our students to participate in meaningful creative learning experiences across the entire campus, as well as the larger community. A supportive yet challenging integrated learning environment, both in and out of the classroom, helps our students develop the cultural competence and understanding necessary to become fully engaged, effective global citizens in the twenty-first century.

Sixth College’s theme is woven into an educational philosophy and curriculum intended to prepare students for a future that demands ethical integrity, creativity, self-understanding, critical reasoning, appreciation of the powers and implications of science and technology, and flexibility. Students will learn interactive skills and approaches needed for success in an increasingly global society: teamwork, cross-cultural understanding, strong writing and multimedia communication skills, and information technology fluency.

All students must complete the three-quarter core sequence in Culture, Art, and Technology (CAT). The sequence, with its imbedded writing program, develops our students’ abilities to achieve a reflexive understanding of themselves and their society by approaching issues and problems from interdisciplinary perspectives. It examines the foundations, historical interactions, and future possibilities of culture, art, and technology in relation to the problems and potentials afforded by human nature and the larger environment on which we depend. The Sixth College breadth requirements build on the core approach by including courses in art making and information technology fluency, as well as social science, humanities, natural science, mathematics and logic, and statistical methods. The curriculum culminates in a capstone experience that offers our students the opportunity to engage with the real world in a meaningful way through a self-directed, community- or team-based practicum project followed by an upper-division writing course in which they will reflect on the significance of their practicum project for their entire educational experience at UC San Diego.

COLLEGE ADMINISTRATION

The provost is a faculty member who acts as the college’s chief administrative officer and academic dean. In addition to the provost, each college has a dean of academic advising and a dean of student life.

The academic departments and the college academic advising offices are designated campus units responsible for providing official academic advice and direction to undergraduate students. The college academic advising staff have primary responsibility for providing academic advice and services that assist new and continuing students in developing educational plans and course schedules which are compatible with their interests, academic preparation, and career goals.

The college academic advising offices conduct academic orientation/enrollment programs for all new students and advise continuing students about college general-education and graduation requirements. The advising staff of each college provide general academic and curricular information, clarify academic rules and regulations, review all aspects of academic probation, monitor academic progress, assist students with decision-making strategies, and give information about prerequisites and screening criteria for majors. In conjunction with the academic departments and the Office of the Registrar, the advising offices certify students for graduation and facilitate their academic adjustment to the university.

Moreover, college academic advisors are available to counsel students about educational alter-natives; selection of courses and majors; program changes; new academic opportunities; and special programs such as exchange programs, honors programs, outreach programs, etc.

With a central concern for student development, dean’s staff members provide a variety of nonacademic services such as coordinating educational and social programs; overseeing residential programs; assisting students with decisions and procedures regarding withdrawal from school; coordinating disciplinary procedures, both academic and social; and making referrals to other student services on campus. (See also “Student Services and Programs.”)

Whatever the question or concern, the provost and his or her staff stand ready at all times to assist undergraduates.

PHI BETA KAPPA

The UC San Diego chapter of Phi Beta Kappa elects student members on the basis of high scholastic achievement in academic programs emphasizing the liberal arts and sciences. Phi Beta Kappa was founded in 1776 at the College of William and Mary in Virginia and is the oldest, most prestigious, academic honor society in America.

HONORS

Each college awards honors to outstanding students on the basis of criteria approved by the Academic Senate. These honors are posted on students’ transcripts and noted on their diplomas.

TRANSFER STUDENTS

Students transferring to UC San Diego must complete the requirements of the chosen undergraduate college. Students are strongly advised to complete all lower-division preparation for the major prior to enrollment at UC San Diego. The college academic advising staff will review the transfer course work for applicability to general-education and college
graduation requirements. Students are encouraged to choose carefully the UCSD undergraduate college which best fits their general-education program or course work. Academic departments will review courses applicable to students’ majors. See Undergraduate Admissions, Policies and Procedures, “University of California Transfer Agreement.”

GRADUATION REQUIREMENTS IN THE UC SAN DIEGO COLLEGES

Unless otherwise indicated, the figures in this chart refer to the number of COURSES rather than the number of units. Most UC San Diego courses carry four quarter-units of credit, and a student usually takes four courses each quarter. Academic disciplines are classified as humanities/fine arts, social sciences, and mathematics/natural sciences/engineering. The term “noncontiguous” refers to a discipline that is different from that of the major. Students must meet the Entry Level Writing requirement prior to enrolling in the writing courses of their respective college. Each college’s cultural diversity requirement can be fulfilled as noted by an asterisk (*) below.

Revelle College

General Education

HUMANITIES — 5
Includes intensive instruction in university-level writing.

FOREIGN LANGUAGE — 0 TO 4
Proficiency exam or number of courses.

FINE ARTS — 1
Art, music, theatre

NATURAL SCIENCE — 5
Includes physics, chemistry, and biology. (Sequences are available for science and non-science majors.)

CALCULUS — 3
(Sequences are available for science and non-science majors.)

SOCIAL SCIENCE — 2
Two lower-division courses in the social sciences chosen from an approved list, to include two courses in the same social science, and at least one course in American cultures.

AMERICAN CULTURES — 1

AREA OF FOCUS — 3
Three courses in one area, noncontiguous to the major. Minor/Additional Graduation Requirements Optional Minor

Minimum Number of Courses Required for Graduation
B.A./B.S. degrees require a minimum of 46 courses (184 units); at least 15 courses (60 units) must be upper-division.

John Muir College

General Education

WRITING — 2

SOCIAL SCIENCES — 3
A three-course sequence

MATHEMATICS (CALCULUS) OR NATURAL SCIENCE — 3
A three-course sequence in either category. Specific sequences are available for non-science majors.

FINE ARTS — HUMANITIES — FOREIGN LANGUAGE — 6
A three-course sequence in two of these categories.

Minor/Additional Graduation Requirements
Optional Minor
*One U.S. cultural diversity course to be chosen from an approved list as part of the major, optional minor, elective, or an appropriate general-education course.

Minimum Number of Courses Required for Graduation
B.A./B.S. degrees require a minimum of 45 courses (180 units); at least 15 courses (72 units) must be upper-division.

Thurgood Marshall College

General Education

DIMENSIONS OF CULTURE — 3
Core courses include two six-unit courses with intensive instruction in university-level writing.

HUMANITIES — 2

FINE ART — 1

NATURAL SCIENCES — 3
One course each in biology, chemistry, and physics. (Courses are available for science and non-science majors.)

MATHEMATICS, STATISTICS, OR LOGIC — 2
(Courses are available for science and non-science majors.)

DISCIPLINARY BREADTH — 4
Noncontiguous to the major. Two must be upper-division; one must include writing.

PUBLIC SERVICE — (OPTIONAL)
The four-unit public service option may be used to fulfill one course in disciplinary breadth.

Minor/Additional Graduation Requirements
Optional Minor

Minimum Number of Courses Required for Graduation
B.A./B.S. degrees require 45 courses (180 units). At least 60 units must be upper-division.

Earl Warren College

General Education

WRITING — 2

ETHICS AND SOCIETY — 2

FORMAL SKILLS — 2
Calculus, symbolic logic, computer programming, and/or statistics.

PROGRAMS OF CONCENTRATION* — 12
(for B.A./B.S. degrees in arts/sciences)
Two programs of concentration, each containing six courses, and each noncontiguous to the major and to each other.

OR

AREA STUDIES — 6
(for B.S. degrees in engineering)
Two area studies, one in the humanities/fine arts and one in the social sciences, each containing three courses.

Minor/Additional Graduation Requirements
Optional Minor—May be used in lieu of a program of concentration or Area Study if noncontiguous to the major and to the other program of concentration or Area Study.

*One cultural diversity course to be chosen from an approved list as part of the major, programs of concentration/area studies, or elective.

Minimum Number of Courses Required for Graduation
B.A./B.S. degrees require 45 courses (180 units). At least 15 courses (60 units) must be upper-division.
Eleanor Roosevelt College

General Education

MAKING OF THE MODERN WORLD—6
Includes two quarters of intensive instruction in university-level writing.

FOREIGN LANGUAGE—0 TO 4
Proficiency exam or number of courses.

FINE ARTS—2
Includes study of both Western and non-Western arts.

NATURAL SCIENCES—2
(Courses are available for science and non-science majors.)

QUANTITATIVE METHODS/FORMAL SKILLS—2
(Courses are available for science and non-science majors.)

REGIONAL SPECIALIZATION—3
To include at least two courses taken at the upper-division level.

Minor/Additional Graduation Requirements
Optional Minor—Students may combine foreign language and regional specialization course work to create a minor focusing on a particular geographic area.

Minimum Number of Courses Required for Graduation
B.A./B.S. degrees require 45 courses (180 units). At least 15 courses (60 units) must be upper-division.

Sixth College

General Education

CULTURE, ART, AND TECHNOLOGY—3
Includes two quarters of intensive instruction in university-level writing and digital literacy.

INFORMATION TECHNOLOGY FLUENCY—1
This requirement may be satisfied with courses from a variety of departments.

MODES OF INQUIRY—7
Two courses in the social sciences, two courses in the humanities, two courses in the natural sciences, one course in math/logic (different options available for science and non-science majors).

UNDERSTANDING DATA—1
One course in statistical methods (different options available for science and non-science majors).

SOCIETAL AND ETHICAL CONTEXTS—2
One course in ethnic or gender studies; one course in ethics.

ART MAKING—2
Two courses in music, theatre (including dance), or the visual arts.

PRACTICUM—2
Capstone project with a four-unit course in upper-division writing.

Minor/Additional Graduation Requirements
Optional Minor

Minimum Number of Courses Required for Graduation
B.A./B.S. degrees require a minimum of 45 courses (180 units). At least 15 courses (60 units) must be upper-division.

Major

Note: Students normally may pursue any major, except for college individualized majors, regardless of the college they choose. Majors are identical regardless of the student’s chosen college. Most majors require twelve to eighteen upper-division courses based upon adequate lower-division preparation; such preparation may be part of the general-education requirements. Majors in certain engineering programs may require as many as twenty-one upper-division courses.
Revelle College

Revelle College, the first college on the UC San Diego campus, was named in honor of Dr. Roger Revelle, former University of California dean of research and director of the Scripps Institution of Oceanography. Dr. Revelle is perhaps best known for his plenary research on greenhouse gases and his predictions of their effects.

The initiative of Revelle College in 1958 provided the faculty with the opportunity to design a complete undergraduate curriculum for some of the country’s best-prepared students. The faculty asked the fundamental question: What should an educated person know? The Revelle College general-education requirements offer a specific but broad introduction to the academic disciplines of the university. A student graduating from Revelle College will have attained
1. a basic knowledge of calculus; foreign language; the physical, biological, and social sciences; the fine arts; and the humanities
2. preprofessional competence in an academic discipline
3. an understanding of an academic area outside his or her major discipline

GENERAL-EDUCATION REQUIREMENTS

Students are encouraged to meet the general-education requirements and the prerequisites to the major early in their university career.

Freshmen with Advanced Placement credits can use many of these advanced courses to meet general-education requirements (see Advanced Placement chart in “Undergraduate Admissions, Policies and Procedures”). Transfer students may meet all general-education requirements before entering by following articulation agreements with community colleges or taking, at any institution, courses which Revelle College judges equivalent in content to those at UCSD.

The general-education requirements are:
1. Five courses in an interdisciplinary humanities sequence that includes two six-unit courses with intensive instruction in university-level writing and three four-unit courses with less intensive writing instruction.
2. One course in the fine arts—music, theatre and dance, or visual arts.
3. Two lower-division courses in the social sciences.
4. One course in American Cultures.
5. Three courses in calculus.
6. Five courses in the physical and biological sciences to include four quarters of physics and chemistry and one quarter of biology.
7. Basic conversational and reading proficiency in a modern foreign language, or advanced reading proficiency in a classical language. This requirement may be met by passing a UCSD proficiency exam offered in a select number of languages, or by completion of the fourth quarter (or third semester) of foreign language instruction with a passing grade, or with an equivalent Advanced Placement Exam score or an SAT II Language Exam score of 700 or higher.
8. Three courses in an area unrelated to the major and focused in one department, subject area, or topic.

1. Humanities

The humanities requirement confronts students with significant humanistic issues in the context of a rigorous course. It is also an introduction to the academic disciplines of history, literature, and philosophy and provides training and practice in rhetorical skills and particularly persuasive written expression.

Students may satisfy this requirement by completing the five-quarter interdisciplinary (history, literature, and philosophy) humanities sequence.

For course descriptions, see “Courses, Curricula, and Programs of Instruction: Humanities.”

2. Fine Arts

One course is required. It serves as an introduction to creativity in theatre, dance, music, or visual arts.

(See “Courses, Curricula, and Programs of Instruction: Theatre and Dance, Music, and Visual Arts.”)

3. Social Sciences

Two lower-division courses from the same department chosen from anthropology, critical gender studies, economics, ethnic studies, human development, linguistics/general, political science, psychology, sociology, or urban studies and planning.

4. American Cultures

One course in American Cultures from an approved list, available at http://revelle.ucsd.edu. (TAG students exempt.)

5. Calculus

Three quarters of calculus are required. There are two beginning-year sequences which meet the Revelle College calculus requirement. Both sequences include integral and differential calculus. Freshman placement in these sequences depends upon the student’s preparation in mathematics and the student’s choice of major. Students are urged to keep their mathematical skills at a high level by taking mathematics during their senior year in high school.

(See “Courses, Curricula, and Programs of Instruction: Mathematics.”)

6. Natural Sciences

The natural science courses present current developments in the fundamental concepts of modern physics, chemistry, and biology.

Students choose their five required physical and biological science courses from the sequences depending upon their interests, prior preparation, and intended majors.

Students planning to major in a science must consult the appropriate departmental listing under “Courses, Curricula, and Programs of Instruction” to find the additional preparation needed for their major.

7. Foreign Language

Revelle College students are required to demonstrate basic conversational and reading proficiency in any modern foreign language, or advanced reading proficiency in a classical language or complete the fourth quarter of foreign language instruction with a passing grade.

Modern foreign language programs are currently offered in American Sign Language, Chinese, French, German, Hebrew, Italian, Japanese, Korean, Russian, Spanish, and Heritage Languages, and classical language programs are offered in Greek, Latin, and Hebrew. Students who have preparation in other languages should contact Revelle College Academic Advising for information on a proficiency examination. This exam may also be taken by native speakers of any foreign language without further course study.

8. Area of Focus

Three courses from a single department in an area noncontiguous to the major are required. The three courses must be interrelated and should focus on some discipline, subject area, or topic. For the purposes of this requirement, the humanities/arts, the social sciences, and the natural sciences/engineering/mathematics are considered three different areas. Courses from more than one department should be approved prior to enrolling. The area of focus is not posted to the diploma or transcript.

These three courses may not be used on any other requirements. These courses may be upper division or lower division but one should keep in mind that graduation requirements stipulate that at least sixty units of all work must be from upper-division courses. The courses may be taken Pass/Not Pass and Advanced Placement or International Baccalaureate credits may be used.

Students may complete an optional noncontiguous minor to replace this requirement, if they wish to do so.

Sample Program

FALL WINTER SPRING

FRESHMAN YEAR

Foreign Language Calculus
Foreign Language Calculus
Natural Science UC Entry-Level Writing Requirement or Fine Arts
Natural Science Natural Science

SOPHOMORE YEAR

Natural Science Social Science Humanities 3
American Cultures Humanities 4
Major Preparation Major Preparation

* Science majors may want to take part of the social science requirement in the junior year to allow time for additional science laboratories and/or calculus.

2010-2011 UC SAN DIEGO GENERAL CATALOG • REVELLE COLLEGE
TRANSFER STUDENTS

Transfer students may enter Revelle College by following community college articulation agreements which can be viewed at http://www.ASSIST.org or by signing up for specific transfer Admissions Guarantee (TAG) plans or by following the Intersegmental General Education Transfer Curriculum (IGETC). However, Revelle College does not accept IGETC as satisfaction of all of its lower-division requirements. Revelle accepts IGETC courses to meet requirements with additional classes in science, calculus, and foreign language. Students are exempt from the language requirement if they can pass proficiency in a foreign language. Note: Proficiency exams are not available in all languages. Consult Revelle College Academic Advising for more information. Science and mathematics majors will need these additional classes in preparation (or to meet prerequisites) for their major. The additional math/science classes or language classes can be taken at the community college or after transfer to UCSD. See details on our Web site http://revelle.ucsd.edu.

THE MAJOR

All undergraduate majors offered at UCSD are available to Revelle College students. An exceptional student who has some unusual but definite academic interest for which a suitable major is not offered on the San Diego campus may, with the consent of the provost of the college and with the assistance of a faculty advisor, plan his or her own major. The Revelle Individual Major must be submitted no later than three quarters before the student’s intended graduation and be approved by the Executive Committee of the college before it may be accepted in lieu of a departmental or interdepartmental major. The faculty advisor will supervise the student’s work, and the provost must certify that the student has completed the requirements of the individual major before the degree is granted.

Students who fail to attain a grade-point average of at least 2.0 in work taken in the prerequisites for the major, or in the courses in the major, may, at the option of the department, be denied the privilege of entering or of continuing in that major. For a list of majors requiring additional screening for acceptance into the major, visit the Revelle College Web site at http://revelle.ucsd.edu.

OPTIONAL MINOR

A minor is not required in Revelle College. However, if a student wishes to complete a Department Minor or a Project Minor and have it posted to the transcript, he or she may do so.

If a student completes either of these types of minors in a field noncontiguous to that of the major, it will replace the three-course noncontiguous area of focus general education requirement.

There are two types of minors available at Revelle College:
1. Department Minor—All courses for the minor are taken in one department and they are chosen with the advice and approval of a minor advisor in that department.
2. Project Minor—A project minor focuses on a topic or period chosen by the student. The project is often interdepartmental and interdisciplinary. The program must have the approval of a minor advisor. (See “Academic Regulations: Undergraduate Minors and Programs of Concentrations.”)

The current university guidelines for the minor require seven courses (twenty-eight units), five of which must be upper division.

ENHANCING YOUR EDUCATION

Students may participate in the UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP) while still making regular progress toward graduation. Information on EAP/OAP is detailed in the Education Abroad Program section of the UC San Diego General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit the Web site at http://www.icenter/pao. Financial aid recipients may apply aid to the program and special study abroad scholarships are readily available. Programs are now available for sophomores, juniors, and seniors. With careful planning students should be able to fulfill some general-education, major, and/or minor requirements while studying abroad.

PASS/NOT PASS GRADING OPTION

1. No more than one-fourth of an undergraduate student’s total course units taken at UCSD and counted in satisfaction of degree requirements may be graded on a Pass/Not Pass basis.
2. Courses used to satisfy the noncontiguous area of focus may be taken on a Pass/Not Pass basis. Use of Pass/Not Pass grades on the optional minor is decided by the department.
3. Courses taken as electives may be taken on a Pass/Not Pass basis.
4. The following general education courses may be taken Pass/Not Pass: American Cultures, fine arts, language and area of focus. Non-science majors may take courses for the natural science requirement Pass/Not Pass.
5. Upper-division courses to be counted toward a departmental major may not be taken on a Pass/Not Pass basis. Individual departments may authorize exceptions to this regulation.

GRADUATION REQUIREMENTS

To graduate from Revelle College, a student must
1. Satisfy the University of California requirements, including the UC Entry-Level Writing Requirement and American History and Institutions.
2. Satisfy the general-education requirements.
3. Successfully complete a major according to all requirements of that department.
4. Complete a minimum of fifteen upper-division courses (sixty units).
5. Pass at least 184 units for the B.A./B.S. degree. (No more than three units of physical education transferred from another institution may be counted toward graduation.)
6. Attain a C average (2.0) or better in all work attempted at the University of California (exclusive of UC San Diego Extension). Students are responsible for checking with the department of the major for all regulations.
7. Meet the senior residence requirement. (See “Academic Regulations: Senior Residence.”)

HONORS

Particularly well-prepared students are invited to join a freshman honors program, which includes weekly participation in small faculty seminars (Revelle 20). Acceptance into the honors program at admission is automatic for Regents Scholars and National Merit Scholars as well as those students entering with a high school GPA of 3.8 or higher and verbal and math SAT scores of 700 or higher. Admission to the program’s winter quarter is offered to those who achieve a 3.7 GPA in at least twelve graded units taken at UCSD during the fall quarter. A variety of other perquisites are also awarded.

Quarterly provost’s honors, honors at graduation, departmental honors, and Phi Beta Kappa honors are awarded. At least five outstanding graduating seniors are honored at graduation each year with a monetary honorarium. An honors banquet is given for the top two hundred students in Revelle each spring. Seniors are selected for participation in honors seminars. For additional information, see “Revelle Honors Program” and “Honors” in the index.
John Muir College

John Muir College admitted its first students in the fall of 1967 and moved to its present quarters in 1970. The college was named for John Muir (1838–1914), a Scottish immigrant who became a famous California naturalist, conservationist, and author. Muir explored the Sierra Nevada and Alaska, and worked for many years for the cause of conservation and the establishment of national parks and forests. Please visit our Web site at http://muir.ucsd.edu.

THE CHARACTER OF THE COLLEGE

Inspired by John Muir's remarkable life, Muir College stresses the spirit of individual choice and responsibility within the framework of a strong and supportive community. It encourages awareness of environmental issues and involvement in environmental preservation and sustainability both on and off campus. The interdisciplinary minor in Environmental Studies was started and continues to flourish at Muir. The college also sponsors the Film Studies minor, the Critical Gender Studies major and minor, and courses in contemporary issues. It has also established an individualized major called the Muir Special Project. And it has inaugurated an exchange program with Dartmouth College, one of the most distinguished undergraduate institutions in the United States. Each quarter UC San Diego students attend Dartmouth, while a similar number come from Dartmouth to Muir. By these and other means, the college maintains at UCSD the heritage of the remarkable man for whom it was named.

THE GENERAL-EDUCATION PHILOSOPHY AND REQUIREMENTS

The faculty of John Muir College established Muir's general-education program to guide students toward a broad and liberal education while allowing them substantial choice in the development of that education. This is accomplished by granting students the responsibility and flexibility to customize to a high degree their general-education courses within a broad framework of learning.

General-education requirements at Muir College include the completion of one three-quarter sequence from each of the following areas:

- Social Science
- Mathematics (calculus) or Natural Sciences
- Fine Arts
- Humanities
- Foreign Languages

The freedom to choose carries with it the responsibility on the part of the student to plan carefully. Before making a final selection of courses, students should request from the college's Academic Advising unit a list of general-education requirements and approved sequences in each area. As they plan, students should be aware that:

1. Only complete sequences may be applied to the general-education requirement. Ordinarily, an entire sequence from one department is taken in one academic year.
2. Courses taken to satisfy only the general-education requirements and not for a major or minor may, in general, be taken Pass/Not Pass.
3. Units obtained from advanced placement may be applied toward the 180 units needed for graduation; some units may be used to fulfill some of the general-education requirements.

For students who transfer to Muir College from another institution, the general-education requirements will be interpreted in this way: two semester-courses or three quarter-courses in one subject represented on the approved list normally will be accepted as completing one of the four required sequences. After the Office of Admissions evaluates a student's transcript, the Academic Advising unit of the Office of the Provost makes an evaluation of prior work for each student at the time of his or her first enrollment.

In addition to the four-year-long sequences, Muir College has the following two general-education requirements:

- Composition Requirement: A two-course sequence in critical thinking, rhetorical analysis, and expository writing. Freshman students fulfill this requirement with Muir College Writing 40 and Muir College Writing 50. TAG- and IGETC-certified transfer students have the option of completing an upper-division Muir College Writing course. The writing courses should be completed during the first year of attendance and are offered for a letter grade only.
- U.S. Cultural Diversity Requirement: One four-unit course exploring the diversity of the United States. A list of acceptable courses may be obtained from the Academic Advising unit of the Office of the Provost.

PASS/NOT PASS GRADING OPTION

Muir students are reminded that to take a course Pass/Not Pass, they must be in good academic standing (2.0 GPA). No more than one-fourth (25 percent) of an undergraduate student's total UCSD course units counted in satisfaction of degree requirements may be in courses taken on a Pass/Not Pass basis. All major-related courses, most minor courses, and MCWP 40, 50, and 125 must be taken for a letter grade. Students are advised to check with their major or minor department regarding restrictions or exceptions.

ENHANCING YOUR EDUCATION

Students may enhance their undergraduate education by participating in the UC Education Abroad Program (EAP) and UCSD's Opportunities Abroad Program (OAP) while still making regular progress toward graduation. Information on EAP/OAP is detailed in the Education Abroad Program section of the UC San Diego General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit the Web site at http://pao.ucsd.edu. Financial aid recipients may apply aid to the EAP program, and special study abroad scholarships are available.

Many programs are now available for sophomores, as well as juniors and seniors. With careful planning students should be able to fulfill some general-education, major, and/or minor requirements while studying abroad.

MAJOR PROGRAMS AND SPECIAL PROJECTS

A Muir College student may pursue any of the approximately 136 undergraduate majors offered at UCSD. Most major programs at UCSD require a pattern of prerequisites at the lower-division level before students may enroll in upper-division major courses. Students must declare a major upon accumulating ninety units. Careful planning will assure the student access to a wide range of majors. Students are strongly encouraged to consult regularly with the college academic advisors as well as departmental major advisors concerning the selection of appropriate courses so as to graduate by the 200 unit maximum limitation.

Each academic department has, in its section of this catalog, a paragraph entitled “The Major Program.” Students are encouraged to read these sections carefully, for they indicate both the extent and the nature of courses required for the specific program. The following points are useful to keep in mind:

1. A substantial command of at least one foreign language is required by some departments (e.g., International Studies, Linguistics, Literature).
2. Specific science courses are required by many departments. For example, the Department of Computer Science and Engineering and the Department of Electrical and Computer Engineering require Physics 2A-B-C-D or Physics 4A-B-C-D-E; the Department of Chemistry and Biochemistry requires Physics 1A-B-C, Physics 2A-B and C or D, or Physics 4A-B-C-D-E, etc.
3. The Physical and Life Sciences, Applied Sciences (the Jacobs School of Engineering majors) together with certain Social Sciences (including Cognitive Science and Economics), require at least one year of calculus.

The Muir Special Project (MSP) major is a B.A. degree only and is intended for students who have specific talents and interests which are not accommodated by one of the departmental majors. Each proposal and senior thesis or project must be approved by the Muir provost. The MSP normally includes regular course work and independent study representing up to fifteen upper-division four-unit courses as well as a project or thesis. The project may be one of two kinds: creative work of some sort (e.g., a book of poetry, a collection of musical compositions) or a detailed program of study and research in a particular area. The latter results in a long paper representing a synthesis of knowledge and skill acquired. In either case, a tenured member of the UCSD faculty must serve as an advisor to a student doing the project. It should be understood that the demands of a special project major are great, and
this option is not appropriate for a student who simply does not want the discipline of a normal major. For a course to be included as part of a Muir Special Project, the student must earn in it a grade of C– or better. Please note: there is no MSP minor available. Further information may be obtained from the Muir Academic Advising Office.

GRADUATION REQUIREMENTS

To receive a degree of bachelor of arts or bachelor of science, a John Muir College student must

1. Declare graduation by completing the electronic Degree and Diploma Application. Please see the Muir Academic Advising Office for further information. Students who plan to graduate at the end of a summer session must complete the above-mentioned process early in spring quarter. **Degrees are not automatically granted: students must file their intention to graduate online at http://degree.ucsd.edu.**

2. Meet the general university requirement in Entry Level Writing (formerly Subject A). (See “Undergraduate Admissions, Policies, and Procedures.”)

3. Satisfy the University of California requirement in American History and Institutions.

4. Meet the Muir College requirement in writing proficiency. This requirement asks that the student demonstrate an ability to write English according to standards appropriate for all college work. (See Muir College course listings: “The Writing Program.”)

5. Fulfill the general-education requirements.

6. Fulfill the U.S. cultural diversity requirement.

7. To receive a B.A. or B.S. degree, students must complete a minimum of forty-five four-unit courses (180 units), which include a **minimum of sixteen upper-division courses (72 units).**

8. Show some form of concentration and focus of study. Ordinarily this is accomplished by completing a department or interdisciplinary major. Students in the college may attempt any major upon completion of the prerequisites. (Some departments require students to attain a minimum GPA in prerequisite courses and apply for admission to majors in the departments. Refer to the departments for current detailed information.) Students who do not choose to meet this requirement by means of a departmental or interdisciplinary major and who qualify may propose a special project major. (See the section, “Major Programs and Special Projects” above.)

9. Satisfy the residency requirement, which stipulates that thirty-six of the last forty-five units passed be taken at UCSD as a registered Muir College student. Students planning to study abroad during the senior year should be aware that they must return to complete a minimum number of twenty-four units at UCSD. Such students should see their college academic advisor for clarification.

10. Accumulate a grade-point average of at least 2.0 overall and in most majors. Departments may require a C average in all upper-division courses used for the major or C– grades in each course used for the major. Students should consult with their department to determine which grading regulation applies.

11. Make up all incomplete grades. Students may not graduate with “NRs” or “Incomplete” entries on their transcript. Therefore, they should be sure that all Incompletes have been cleared and final grades have been properly recorded by the end of the quarter in which they plan to graduate. Additionally, at graduation courses still on the record as graded “IP” must be treated as courses attempted in computation of the student's grade-point average.

12. Complete all requirements for the degree during the quarter in which students file to graduate. If the degree requirements are completed after the expiration of the deadline in a quarter, but before the beginning of the next quarter, students must retrace their Degree and Diploma Application and reapply to graduate for the subsequent quarter.

13. Retract the electronic Degree and Diploma Application if unable to satisfy all graduation requirements, including grade changes, by the end of the proposed graduating quarter. Students will graduate at the end of the quarter in which deficiencies are satisfied.

14. **It is the students’ responsibility to contact their department advisor to verify that they have satisfied departmental requirements for graduation.**

While John Muir College does not call for the completion of a minor to fulfill its requirements for the degree of bachelor of arts or bachelor of science, it does acknowledge the completion of an approved departmental minor on a student's transcript. **No upper-division courses may be used to satisfy both a major and a minor.**

For a minor, students are required to complete a minimum of **twenty-eight units** of interrelated work, of which at least **twenty units** must be upper-division. Departments or programs may establish more stringent criteria than the minimum. **A formal request for the minor must be approved by the department or program and college by the quarter before graduation.**

Upon satisfaction of the graduation requirements, Muir College will recommend that students be awarded the degree of bachelor of arts or bachelor of science.

HONORS

Quarterly provost's honors, departmental honors, Latin honors, membership in the Caledonian Society of John Muir College, and Phi Beta Kappa honors are awarded. **Please note that graduating seniors must have letter grades for eighty units of work completed at the University of California for Latin honors.**

HONORARY FELLOWS OF MUIR COLLEGE

- Hannes Alfvén, Scientist and Nobel laureate
- Georg von Bekesy, Psychologist and Nobel laureate
- Oscar (Budd) Boetticher, Filmmaker
- David Brower, Conservationist
- Francis H.C. Crick, Scientist and Nobel laureate
- Ernst Krenek, Composer
- Ernest Mandeville, Philanthropist
- William J. McGill, Educator
- Jonas Salk, Scientist
- Claude E. Shannon, Mathematician
- John L. Stewart, Founding Provost
- Earl Warren, Jurist and Statesman
- Robert Penn Warren, Poet and Novelist
- Mandell Weiss, Philanthropist

Robert Penn Warren, Poet and Novelist
Thurgood Marshall College

Thurgood Marshall College, formerly known as Third College, was founded in 1970. From its inception, the college has enriched the lives of undergraduates with its intellectual and philosophic commitment to the development of students as both scholars and citizens. In July of 1993, the college was renamed in honor of the famous lawyer and Supreme Court Justice, Thurgood Marshall. Justice Marshall was widely known and recognized for his historic contributions to American life and dedication to breaking down barriers to education, civil rights, freedom of speech, women’s rights, and the right to privacy. Thurgood Marshall College, its faculty, staff, and students are committed to furthering the ideals and dreams of Justice Marshall; accordingly, students are provided opportunities to develop as both scholars and citizens.

Thurgood Marshall’s 3,900 students pursue any major in a variety of disciplines. About 40 percent choose majors in biology, the physical sciences, mathematics, and engineering; 35 percent select majors in the social sciences; and 25 percent pursue majors in biology, the physical sciences, and mathematics. It guarantees a basic understanding of the principal branches of knowledge: the humanities and arts, social sciences, the natural sciences, and mathematics.

2. It enables students with well-defined interests and goals to begin work in their chosen field of study as first-year students.
3. It allows students who have not decided on a major to sample an array of potential majors while simultaneously satisfying the general-education requirements of the college.

GENERAL-EDUCATION REQUIREMENTS

General-education requirements are established by Thurgood Marshall College faculty to be broad and flexible enough to encourage students to integrate other alternatives, such as public service, internships, study abroad, research, special studies, etc., into their academic program. This permits students flexibility in pursuit of their academic goals and in the practical application of their liberal arts degree, whether they wish to enter the work force or continue their education in graduate or professional school. These courses are designed to introduce students to the academic focus of the college, provide a broad liberal arts and science background, and furnish students with the academic skills and the basic knowledge necessary to pursue any departmental or interdisciplinary major.

The general-education requirements for first-year students are composed of a core sequence and a menu of choices within a liberal arts framework:

1. DIVERSITY, JUSTICE, AND IMAGINATION: This is a three-course interdisciplinary sequence. Two of the three courses are six-units and include intensive instruction in university-level writing. This is a required sequence for all first-year students. All courses must be completed at UCSD and taken on a letter-grade basis only. (See “Dimensions of Culture” in the departmental listings.)
2. FINE ARTS: One course in either music, theatre, or visual arts (non-performance).
3. NATURAL SCIENCES: Three courses. Choose one course each in biology, chemistry, and physics. Courses are available for science and non-science students.
4. QUANTITATIVE/FORMAL SKILLS: Choose two courses in mathematics or one course in mathematics or statistics and one in computing or logic. Courses are available for majors and non-majors.
5. HUMANITIES AND CULTURE: Two courses. Choose one course each from ethnic studies and Third World studies.
6. DISCIPLINARY BREADTH: Four courses. Students choose four courses from a variety of disciplinary breadth areas: humanities/foreign language; social sciences; natural sciences; math/engineering. Courses used to satisfy the disciplinary breadth requirement come from fields outside the major field of study. Two of these courses must be upper-division. At least one upper-division course must include significant writing.
7. PUBLIC SERVICE (optional): This four-unit public service option may be used to fulfill one course in Disciplinary Breadth for any major and fulfills the upper-division writing requirement. (See “Partners at Learning” and “Education Studies Program” listings.)

The Thurgood Marshall College Executive Committee publishes an annual fact sheet with specific course choices which may be used to meet these requirements. Contact the college academic advising office for additional information or refer to the college Web site.

GRADUATION REQUIREMENTS

To receive a bachelor’s degree from Thurgood Marshall College, a student must
1. Satisfy the university English Language Writing Requirement (ELWR). (See “Undergraduate Admissions, Policies and Procedures”)
2. Satisfy the university requirement in American History and Institutions. (See “Undergraduate Admissions, Policies and Procedures”)
3. Fulfill the general-education requirements as described.
4. Complete a departmental or interdisciplinary major.
5. Satisfy the college residency requirement (thirty-five of the last forty-five units must be completed as a registered Thurgood Marshall College student).
6. Successfully complete a minimum of 180 units for the B.A./B.S. degree. At least 60 of these units must be completed at the upper-division level.
7. A 2.0 or better GPA is required for graduation.

TRANSFER STUDENTS

Transfer students have a variety of academic options available to complete lower-division general education prior to transfer. Specific details regarding appropriate general-education agreement are in the section on “Undergraduate Admissions” and through the community college. Students may also contact UCSD Transfer Student Services prior to transfer. Also, the college Web site http://marshall.ucsd.edu contains pertinent information.

2010-2011 UC SAN DIEGO GENERAL CATALOG • THURGOOD MARSHALL COLLEGE 1
MAJORS AND MINORS

Majors: Thurgood Marshall College students may pursue any of the departmental or interdisciplinary majors offered at UCSD. The majority of the academic departments have established lower-division prerequisites. Generally, these prerequisites must be completed prior to entry into upper-division major courses. Many of these courses may be counted for general-education credit as well. Students are strongly encouraged to work closely with department faculty and college advisors. For details on the specific major departments, refer to the “Courses, Curricula, and Programs of Instruction” section of this catalog.

Minors are optional. However, students are encouraged to keep as many options open as possible. A minor provides an excellent opportunity to complement the major field of study.

Students are required to complete twenty-eight units of interrelated work, of which at least twenty units must be upper-division. See your college or department for further information.

PASS/NOT PASS GRADING OPTION

1. Courses to be counted toward a departmental major or as prerequisites to the major must be taken on a letter-grade basis.
2. Only one upper-division course to be counted toward a college independent studies minor may be taken on a Pass/Not Pass basis.
3. Courses taken toward completion of the college general-education requirements, with the exception of Dimensions of Culture (Diversity, Justice and Imagination), may be taken on a Pass/Not Pass basis, while at the same time the restrictions for prerequisites to majors and courses counted toward a minor must be observed.
4. Courses taken as electives may be taken on a Pass/Not Pass basis, while at the same time the restrictions on the majors and minors must be observed.
5. No more than one-fourth of the total University of California, San Diego units may be completed on a Pass/Not Pass basis.

HONORS

Quarterly provost’s honors, honors at graduation, departmental honors, and Phi Beta Kappa are awarded to Thurgood Marshall College students. For additional information see “Honors” in the Index, speak with the academic honors program advisor in the academic advising office, or go to http://marshall.ucsd.edu/programs/honors.html.

ENHANCING YOUR EDUCATION

Students are able to enhance their undergraduate education by participating in the UC Education Abroad Program (EAP) and UCSD Opportunities Abroad Program (OAP) while still making regular progress toward graduation. Information on EAP/OAP is detailed in those sections in the General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit the Web site at http://orpheus.ucsd.edu/center/pao/index.html.

Individual Studies Major

The Individual Studies major allows students to pursue a coherent course of study not formally offered at UCSD. To apply for the major, students must have a 3.25 grade point average. A written proposal with supporting documentation from a ladder-ranked faculty advisor, a list of prerequisite courses, and a proposed curriculum plan are required. Students pursuing this major must be goal-oriented and self-directed.

Partners-at-Learning Program (PAL)

Students may participate in the Partners-at-Learning Program (PAL) by taking specified Education Studies (EDS) courses that train and place them as tutors and mentors in local elementary and high schools, as well as the on-campus Preuss School, Gompers Preparatory Academy, and Lincoln High School in Southeast San Diego. Participation in the PAL program can be counted toward satisfying the Public Service option at Thurgood Marshall College. This campuswide program is open to all students in good standing and at the junior level. (See EDS in the department listing—specifically EDS 130, 134, 136, 138, and 139.)

Price Public Affairs Forum

The Price Public Affairs Forum invites leading public figures to speak on important contemporary issues. Such wide-ranging topics as “Race and Justice in America,” “Women’s Role in the Workplace,” and “The Modern American Family” have been presented. These forums are open to the general public.

Public Service Minor

Thurgood Marshall College sponsors the Public Service Minor at UCSD, which encourages students to understand the history and practices of public service and to participate in the development of civic skills. This minor is open to all UCSD students in good standing. Please see “Public Service Minor” in the departmental listings or visit the Web site at http://publicsvcminor.ucsd.edu.

African-American Studies Minor

The African-American Studies Minor is an interdisciplinary program that seeks to provide comprehensive understanding and appreciation of African-American history, social politics, culture, and art. Please see “African-American Studies Minor” in the departmental listings or visit the Web site at http://af-amstudies.ucsd.edu.

Thurgood Marshall College Honors Program

The Thurgood Marshall College Honors Program sponsors activities and events designed to introduce students to the excitement of pioneering research and innovative scholarship in all disciplines at UCSD and to create opportunities for discussion on public issues with locally and nationally known figures. See Thurgood Marshall College Honors Program in the department listings or visit the Web site at http://marshall.ucsd.edu/programs/honors.html.

Thurgood Marshall Institute

The Thurgood Marshall Institute is deeply devoted to undergraduate research, public debate, and vital policy papers. The institute has organized and supported faculty and student group research projects in education and public law; hosted conferences and symposia on pressing issues; trained junior and senior high school instructors in the teaching of the United States Constitution and its amendments; commissioned political drama on radio and on stage; and created an active blog with political essays and interviews. Also, visit the Web site at http://marshall.ucsd.edu.

UCSD-Morehouse/Spelman Student Exchange Program

The UCSD-Morehouse/Spelman Student Exchange Program was established in the fall quarter of 1989. This formal exchange program was developed by Thurgood Marshall College and is open to all UCSD undergraduates. Morehouse and Spelman Colleges are located in Atlanta, Georgia. The purpose of the program is to provide a unique opportunity for students to live and study at important institutions of higher learning that are significantly different from the social and educational environment typical of California state colleges and universities. Similarly, the exchange students coming to UCSD from Morehouse and Spelman will have an opportunity to experience an exciting and very different educational environment. See the program coordinator in the college academic advising office for additional information or visit the Web site at http://marshall.ucsd.edu/programs/spelman.html.

Student Leadership Program

Complementary to its strong academic programs, Thurgood Marshall College is proud of its emphasis on the student as citizen. The Student Leadership Program is especially designed to encourage active involvement in the governance of the college and participation in community and public service programs. College life outside of the classroom and laboratory is a vital part of each student’s undergraduate experience. The college offers a wide variety of opportunities for students to shape the nature and character of student life. This active participation allows students to develop self-confidence and strong interpersonal, organizational, and leadership skills. The friendly and outgoing manner of Thurgood Marshall students contributes to a sense of community and mutual respect. This spirit of cooperation is a college hallmark.

HONORARY FELLOWS OF THE COLLEGE

- Maryann Callery, College Activist
- *Cesar Chavez, Civil Rights Activist
- Ernesto Galarza, Novelist and Educator
• Samuel Goldwyn, Jr., Film Producer and Director
• Joseph W. Watson, Educator, Professor, Vice Chancellor
• Marian Wright Edelman, President, Children's Defense Fund
*Deceased
Earl Warren College

Earl Warren College opened in the fall of 1974, and currently enrolls more than 4,000 students. The college is named for the only three-term governor of California and former Chief Justice of the United States. A native Californian, Justice Warren earned his college and law school degrees at the University of California. During his governorship, he served as an ex-officio member of the Board of Regents of the University of California for eleven years. He also saw public service as District Attorney of Alameda County and as Attorney General of California.

As governor during an era of lightning growth for California, Earl Warren developed the State Department of Mental Hygiene and led reforms of the prison system in California by establishing the Board of Corrections and the Prisoner Rehabilitation Act. In his final role as a public servant, he served as Chief Justice of the United States. Under his leadership, the Supreme Court elaborated a doctrine of fairness in such areas as criminal justice, voting rights, legislative districting, employment, housing, transportation, and education.

The college derives its core values from Earl Warren's judicial examination of the relationship between the individual and society. All students in the college explore this critical nexus and its profound implications in two required core courses in Ethics and Society. Earl Warren College also administers two campus-wide interdisciplinary minors, Law and Society and Health Care–Social Issues (open to all UC San Diego students). The college employs the scales of justice in its logo, and the symmetry of this image represents the college's philosophy, Toward a Life in Balance. Warren College strives to encourage students in the discovery of that essential balance through their undergraduate years and beyond.

Whether students wish to continue their education in graduate or professional school, seek an immediate career, or pursue other options, the college stands ready to assist. The Earl Warren College administration encourages students to identify their abilities and interests, examine career possibilities, and prepare for the future. The required, two-course Warren College Writing Program provides a strong grounding in written argumentation and prepares students for the demands of crafting college-level analytical papers. The Warren College Writing Center offers all Warren students extracurricular assistance in honing their writing skills. The college-administered Academic Internship Program affords students the opportunity to explore classroom theory in a professional work environment. In addition, Earl Warren College is a strong supporter of international education and encourages students to pursue the many opportunities that are available for study abroad.

Warren College's students and faculty represent all disciplines offered at UC San Diego. Graduation requirements, which include a major and two additional areas of academic focus, enable students to cover a wide range of material while concentrating on specific topics in depth. The diversity of its academic program has made Earl Warren College an exciting home for students who seek flexibility in designing their own educational paths.

GENERAL-EDUCATION REQUIREMENTS

The Earl Warren College faculty firmly believes that each student should have the opportunity to develop a program best suited to his or her individual interests within a framework that ensures both depth and breadth of study. All students are required to have significant exposure to the social sciences, arts and humanities, and the sciences. The faculty and staff of the college provide extensive advising on individual academic programs and possible career implications within each program. Students who enroll at Earl Warren College are required to work within the following academic plan:

Warren College Writing Program: Following successful completion of the UC Entry Level Writing requirement, each student must complete a two-course sequence in writing, Warren Writing 10A-B, for a letter grade.

Ethics and Society: After completion of Warren Writing 10A-B, all students must complete two courses in Ethics and Society, offered jointly by the Departments of Political Science and Philosophy (Political Science/Philosophy 27 and 28) for a letter grade.

Formal Skills: All students must satisfy the formal skills requirement by completing two courses chosen from an approved list that includes calculus, computer programming, statistics, and symbolic logic.

Programs of Concentration/Area Studies: All students are required to complete two focused collections of courses outside the areas of their majors to ensure a significant exposure to the three disciplines: humanities/fine arts, sciences, and social sciences.

For students other than B.S. engineering majors, two Programs of Concentration are required. Each program consists of six courses outside the discipline of the major. A minimum of three courses must be upper division. A student may choose to declare a minor in lieu of a Program of Concentration.

For B.S. engineering majors, students are required to complete two Area Studies, one in the humanities/fine arts and one in the social sciences. Each Area Study consists of three courses. A minimum of two courses must be upper division. A student may choose to declare a minor in lieu of an Area Study.

An Interdisciplinary Program of Concentration or Area Study must be approved by the Earl Warren College Academic Advising Office. A minor must be approved by the academic department or program.

ADVANCED PLACEMENT AND INTERNATIONAL BACCALAUREATE CREDIT

Advanced Placement (AP) and International Baccalaureate (IB) units may be substituted for corresponding lower-division course work in a Program of Concentration or Area Study. In general, a maximum of twelve units may be applied toward each Program of Concentration and a maximum of four units may be applied toward each Area Study.

MAJORS

Earl Warren College students may pursue any major(s) offered at UC San Diego. For details on the specific major department requirements, refer to “Courses, Curricula, and Programs of Instruction.”

A student may declare a double major upon the approval of both departments and the Warren College Academic Advising office. If the two majors are from non-contiguous disciplines, one Program of Concentration or Area Study from the third discipline will be required. If the two majors are from the same discipline, two Programs of Concentration or Area Studies will be required from each of the remaining non-contiguous disciplines.

Earl Warren College Individualized Studies Major

This major is designed to meet the needs of students who have a definite academic interest for which a suitable major is not offered at UC San Diego. The student must submit a written proposal explaining the merits of the program and why it cannot be accommodated within existing UC San Diego majors. The proposal must first be approved by a faculty advisor and then approved by the Warren College Executive Committee of the Faculty.

MINORS

In lieu of a Program of Concentration or Area Study, Earl Warren College students may pursue a minor to fulfill general-education requirements. A minor applied toward the general-education requirement will be posted to the student’s official transcript. Upper-division courses taken for the minor may not overlap with courses in the major, the Programs of Concentration, or the Area Studies.

PASS/NOT PASS GRADING OPTION

Programs of Concentration and Area Studies courses may be fulfilled by courses taken on a Pass/Not Pass basis. Major requirements and prerequisites are required to be taken for a letter grade. The total number of Pass/Not Pass units may not exceed one-fourth (25 percent) of a student’s total UCSD units.

GRADUATION REQUIREMENTS

To receive a B.A. or B.S. degree from Earl Warren College, a student must
1. Satisfy the University of California requirement in American History and Institutions, and the UC Entry Level Writing Requirement. (See “Undergraduate Admissions, Policies, and Procedures.”)
2. Fulfill the general-education requirements described above.
3. Complete one course, chosen from an approved list, in Cultural Diversity in U.S. Society. This course may overlap with the major, the general-education requirements, or be taken as an elective.
4. Successfully complete a major chosen from those regularly offered at UC San Diego or, with prior approval, an Earl Warren College Individualized Study major.

5. Attain a minimum cumulative GPA of 2.0. Major GPA requirements may differ by department.

6. Satisfy the senior residency requirement that thirty-six of the last forty-five units passed must be completed as a registered Earl Warren College student.

7. Pass a minimum of 180 units for the B.A./B.S. degree, 60 units of which must be taken at the upper-division level.

TRANSFER STUDENTS

Students who completed their lower-division general-education requirements at an accredited four-year college or completed an approved core curriculum in a California community college prior to entering UC San Diego, must complete three upper-division courses non-contiguous to the discipline of the major to satisfy the Warren College general-education requirements. All other transfer students must complete the Earl Warren College general-education requirements (see “Earl Warren College”).

WARREN COLLEGE HONORS PROGRAM

The Warren College Honors Program offers students educational, cultural, and social experiences designed to broaden their intellectual interests. The activities vary annually and are planned to foster student interaction and promote a sense of community. Entering freshmen with a high school GPA of 3.8 or above and SAT I scores of 700 reading/700 math/700 writing, or the ACT equivalent, are eligible to participate in the Honors Program. Students must maintain a cumulative UC San Diego GPA of 3.7 to remain in the program. Students who do not qualify for the Honors Program at the time of admission, and all transfer students, may join as soon as a cumulative GPA of 3.7 is attained on twelve or more graded units completed at UC San Diego.

WARREN COLLEGE SCHOLARS SEMINAR

Freshmen who meet the Warren College Honors Program requirements may qualify for admission to the Scholars Seminar by submitting a writing sample. Students who are invited to participate in the two interdisciplinary seminars enroll in Warren 11A-B. The seminars replace the required Warren College writing courses (WCWP 10A-B) and must be taken for a letter grade.

HONORS

Quarterly Provost’s Honors, honors at graduation, department honors, and Phi Beta Kappa honors are awarded. For additional information, see “Honors.”

WARREN COLLEGE INTERDISCIPLINARY PROGRAMS

Law and Society

The Law and Society Program at UC San Diego offers courses, speakers, and events that emphasize the interrelationship and complexity of legal, social, and ethical issues in their historical context. The interdisciplinary minor offers students the opportunity to examine the role of the legal system in society and study specific legal issues from the perspectives of the social sciences and the humanities. Students benefit from the program by learning how to analyze and understand legal implications related to policy and decision making. The program is administered by Warren College and is open to all undergraduate students with an interest in law.

Health Care–Social Issues

The Health Care–Social Issues Program at UC San Diego is designed to enhance student competence in analyzing complex social and ethical implications related to health-care issues by offering an interdisciplinary minor. Students gain an understanding of how the economy, culture, and social and psychological processes affect modern health care. The program is administered by Earl Warren College and is available to all students with a general interest in health care.

ACADEMIC INTERNSHIP PROGRAM

The Warren College Academic Internship Program (AIP) is open to students from all six colleges. The program is based on the conviction that academic learning is enriched when opportunities exist for students to apply classroom knowledge and analytical skills in diverse corporate and community settings. AIP counselors work closely with students to help them identify and secure internships that are aligned with their major areas of academic study and individualized career goals. Students may enroll for four, eight, or twelve units per quarter, with a maximum of three internships allowed (not to exceed sixteen units). To be eligible for the program, students must have completed at least ninety units of credit with at least two upper-division courses and have a minimum 2.5 GPA at the time of application. Although most placements are in the San Diego area, the Academic Internship Program is national in scope and diverse in offerings. Students might work for a senator in Washington; the governor in Sacramento; a legal-aid office in Los Angeles; a business, T.V. station, research lab, or social service agency in San Diego; a public relations firm in London; or any number of other possibilities. Working closely with faculty advisors, students complete research papers or projects that draw on both their academic backgrounds and internship experience. For more information, see “Academic Internship Program.”

EDUCATIONAL ENRICHMENT

Students are encouraged to earn credit toward graduation by studying abroad through the University of California’s Education Abroad Program (EAP). Earl Warren College offers students an option to complete an EAP Program of Concentration with an emphasis in either humanities/fine arts or social sciences. EAP participants study in more than 130 institutions in thirty-five countries. Students may choose to study abroad for a full academic year or for a shorter term. Most EAP programs require a minimum 2.5 to 3.0 cumulative GPA and junior standing at the time of participation.
Eleanor Roosevelt College

Eleanor Roosevelt College (ERC), formerly known as Fifth College, was established in 1988 and is currently home to almost 3,500 men and women. In 1994, the College was named after Eleanor Roosevelt, affirming the connection between the College's educational program and Mrs. Roosevelt's legacy as one of the most influential figures of the twentieth century. During the Great Depression and World War II, Mrs. Roosevelt traveled widely in the United States and abroad to understand and propose solutions to social problems and political conflicts. Throughout her life, she was an active champion for civil and social rights in the U.S. She carried that experience into her role as the leading architect of the United Nations Universal Declaration of Human Rights, adopted by the United Nations in 1948. She earned worldwide respect and became known as the “First Lady of the World.”

Eleanor Roosevelt College proudly embraces Mrs. Roosevelt’s legacy and has as its primary goal the education of students with a global vision. Consistent with the College’s motto of Developing World Citizens through Scholarship, Leadership and Service, the general education program is designed to prepare students to be effective contributors to their professions and citizens of a rapidly changing world. The core curriculum of the college exposes students to a variety of academic disciplines, providing a foundation in critical thinking, writing, and analysis that is suitable for all career aspirations. The program develops students' intellectual capacities, expands general knowledge, and strengthens foundational skills. Students have many choices within the program’s structured framework.

Eleanor Roosevelt College serves students interested in pursuing academic excellence in any of the over 150 majors offered at UC San Diego. The general education program in tandem with majors in all academic divisions (engineering, social sciences, physical and biological sciences, the arts and humanities) prepares students to work effectively in any professional environment. Students planning postgraduate study in fields as diverse as medicine, business, law, public policy, and traditional doctoral programs will be well prepared by the combination of strong training in the major and the broad curriculum of the college.

ERC combines an academic program with student life programs that help students engage in thoughtful leadership and meaningful service. In the college’s supportive community, students are valued and respected. They are challenged and helped to succeed as they make the transitions to college and the world beyond.

GENERAL EDUCATION

The general-education requirements at ERC are designed to provide students with a broad intellectual foundation. The curriculum offers undergraduates opportunities to learn about the various fields that may be open to them, thus assuring that their choices in selecting a major, pursuing graduate study, or seeking employment will be based on clear understandings about the nature of the work and their own interests and talents.

Advanced Placement Credits

University credit may be granted for College Board Advanced Placement Tests on which a student earns a score of 3 or higher. The credit may be applied toward general-education requirements (approximately half of which can be met by Advanced Placement credit), elective units for graduation, as subject credit for use in a minor, or as a prerequisite to a major. For further details, see the advanced placement chart in “Undergraduate Admissions, Policies and Procedures.”

ERC academic counselors provide information about advanced placement or courses that meet the general education requirements of the college. Students should take advantage of the counseling available in the Academic Advising Office to help them effectively incorporate the college general-education requirements into their academic program.

ERC GENERAL-EDUCATION REQUIREMENTS FOR STUDENTS ENTERING AS FRESHMEN

The Making of the Modern World (six quarters)

This interdisciplinary sequence of six courses incorporates humanities (literature, history, and philosophy) and social sciences as well as writing. The courses examine Western and non-Western societies, cultures, and state systems both historically and comparatively. The Making of the Modern World (MMW) is taught by faculty from many disciplines, including anthropology, history, literature, political science, and sociology.

Natural Sciences (two quarters)

Two courses are to be chosen from selected offerings in biology, chemistry, physics, and/or earth sciences.

Quantitative Methods (two quarters)

Two courses are to be chosen from selected offerings in pre-calculus, calculus, statistics, symbolic logic, or computer programming.

For students majoring in scientific fields, these courses are preparation for major study; for students who will continue their studies outside the sciences, they provide a basic understanding and appreciation of methods and developments in the fields. Many of the selected courses are designed for non-science majors.

Foreign Language (zero to four quarters)

ERC students are required to demonstrate basic conversational and reading proficiency in a modern foreign language, or advanced reading proficiency in a classical language, by completing the fourth quarter of foreign language instruction (or equivalent) with a passing grade.

Students may also complete this requirement by demonstrating advanced language ability on a special proficiency exam. Students considering this option should consult with an ERC academic counselor during their first year at UCSD.

Advanced placement scores in language or literature, and IB scores in language, may exempt students from all or part of the ERC language requirement.

College-level language study is a prerequisite for study abroad in most non-English speaking countries and enhances understanding of those societies. Students wishing to study abroad in non-English speaking countries may need to take additional language classes, and will need to take all language courses for letter grades.

Fine Arts (two quarters)

Two four-unit courses are required, to include study of both Western and non-Western music, theatre, dance, and/or visual arts. These courses help students appreciate the rich range of human expression to be found in cultures and ages other than their own.

Regional Specialization (three quarters)

Each ERC student selects three courses dealing with a single geographic region of the world. The college has defined regions broadly enough to assure course availability and narrowly enough to ensure coherence of subject matter. These courses may be chosen from offerings in humanities, social sciences, and fine arts. At least two of the three must be taken at the upper-division level. See “Minors” below about application of this course work to an optional ERC minor.

Upper-Division Writing Requirement

To demonstrate competency in written English at the upper-division level, students submit to the Academic Advising Office a paper or papers of specified lengths that were written for one or more upper-division courses and graded C– or higher.

PASS/NOT PASS GRADING OPTIONS

1. Courses that meet the following ERC general-education requirements may be taken Pass/Not Pass: fine arts, foreign language, natural sciences, quantitative methods, and one regional specialization course. All other general-education courses must be taken for letter grades.

2. No more than 25 percent of total UCSD units counted in satisfaction of degree requirements may be taken on a Pass/Not Pass basis.

3. Electives may be taken on a Pass/Not Pass basis except if they are to be applied to majors or minors. Check with the appropriate department or college for rules applying to specific majors or minors.
SAMPLE PROGRAM

A program like the sample shown here would lead to completion of most general-education requirements during the first two years of college. Some variation will occur depending upon a student's academic preparation, choice of major, and individual interests and priorities. For example, students planning to major in science, math, or engineering will be taking many prerequisite courses for their major; those courses typically also fulfill the general-education requirements in natural sciences and/or quantitative methods.

FALL WINTER SPRING

MMW 1 MMW 2 MMW 3
Foreign Language Foreign Language Foreign Language
fine art quantitative methods quantitative methods
Entry Level Writing Entry Level Writing Entry Level Writing
requirement, major, major or major or
fine art elective elective

LEADERSHIP AND COMMUNITY

ERC students are recognized for their strong sense of community. These bonds are created in part by common classroom experiences in MMW. They also grow from shared explorations in a variety of college programs in which students take active roles: college and campus-wide student government, service to the campus and the larger community, the acquisition of leadership skills, and sports and social activities.

The college is home to UCSD's International House, which offers informative and dynamic discussions for the campus community at its weekly International Affairs Group meetings. ERC also hosts (with the Programs Abroad Office) a retreat each fall to welcome back study abroad returnees from all six colleges and assist with their re-integration into the UCSD community.

TRANSFERRING TO ERC

Transfer students may meet most ERC general-education requirements before entering UCSD if they have followed articulation agreements with community colleges, or taken courses elsewhere that ERC deems equivalent in content to UCSD courses that meet the college's requirements. All transfer students must take three quarters of MMW, and it is recommended that the three courses be taken in sequence. Students who have not met their freshman writing requirement elsewhere must complete it by taking MMW 2 and/or MMW 3 as part of this three-course requirement.

All transfer students must also take two upper-division regional specialization courses and satisfy the upper-division writing requirement. See "Graduation Requirements" below.

ERC HONORS PROGRAM

The Freshman and Sophomore Honors programs at ERC have been established to provide exceptionally motivated and capable students with enhanced educational experiences in association with faculty and other honors students.

Selected new students are invited to enroll in the Freshman Honors Seminar. During fall quarter, students meet with a variety of faculty members to learn more about their research and about academic enrichment opportunities at UCSD. Seminar members also participate in other enriching academic and cultural events.

The Freshman Honors Seminar continues during winter quarter (and some years through spring quarter) with faculty speakers who focus on international themes. In winter (and spring) quarters, these seminars carry one unit of credit each (ERC 20). See "Eleanor Roosevelt College" in the department listings.

Sophomores who have earned cumulative grade-point averages (GPAs) of 3.5 or higher have opportunities to pursue independent study with individual faculty for credit (ERC 92). See "Eleanor Roosevelt College" in the department listings.

Additional honors opportunities are offered in MMW. Students with excellent grades in MMW 1, 2, and 3 and high cumulative GPAs are eligible to take honors sections of MMW (4H, 5H, and 6H). These students attend regular MMW lectures and meet in separate honors discussion sections. They also attend special guest lectures and enrichment activities related to course content.

At the upper-division level, students may qualify to enroll in honors programs offered by their major departments. These programs usually include research under the direction of a faculty mentor and the writing and presentation of an honors thesis.

HONORS RECOGNITION

Students who earn a quarter GPA of 3.5 or higher are notified of having achieved Provost's Honors. Students who maintain GPAs of 3.5 or higher for a full academic year are awarded Provost's Honors certificates.

Every spring, ERC holds an academic honors recognition event to which high achieving students are invited, and graduating seniors are encouraged to invite individual faculty as their guests.

Also each spring, UCSD's chapter of the Phi Beta Kappa Society invites to membership seniors who have demonstrated outstanding academic achievement (3.65 GPA), breadth in their academic programs (including humanities, language, and quantitative methods), and good character, among other criteria. See "Phi Beta Kappa" in the index.

At Commencement, ERC graduates with extraordinarily outstanding overall academic records are named Provost's Scholars. Graduates with final cumulative GPAs equivalent to approximately the top 14 percent of UCSD graduates become eligible for University Honors and receive their degrees Cum Laude (with honors), Magna Cum Laude (with high honors), or Summa Cum Laude (with highest honors).

MAJORS

An ERC student may pursue any of the approximately 150 undergraduate majors offered at UCSD. Students may complete more than one major, provided they comply with all Academic Senate regulations concerning double majors. To declare a double major, a student must have accrued at least ninety but no more than 135 units, have at least a 2.50 GPA, and meet university requirements regarding total maximum number of units earned and quarters attended at UCSD.

Most majors require the completion of specified "pre-major" or prerequisite courses at the lower-division level before enrollment in upper-division major courses. For some majors, admission to upper-division course work is contingent upon a satisfactory GPA in certain pre-major courses. Students are strongly encouraged to work closely with department advisors as well as college academic counselors to assure adequate and timely preparation for their majors.

Completion of certain majors may take more than four years or the minimum 180 units required for graduation. Time-to-graduation in other instances may be affected by a student's level of preparation for upper-division work in the major or by a decision to change major. See "The Undergraduate Program(s)" in respective department listings.

ERC INDIVIDUAL STUDIES MAJOR

ERC offers an Individual Studies major to meet the needs of students who have defined academic interests for which suitable majors are not offered at UCSD. Students who find themselves in this situation should consult a college academic counselor at the first opportunity.

This major includes regular course work and often independent study, representing a minimum of twelve upper-division four-unit courses. A regular member of the faculty serves as advisor to the student. Students admitted to the Individual Studies major may enroll in ERC 199, an independent study course supervised by a faculty member, who tailors the content to fit the major.

Qualifying seniors pursuing an Individual Studies major may undertake an honors thesis research project (ERC 196) under the tutelage of their faculty mentor. See "Eleanor Roosevelt College" in the department listings.

Further information about an Individual Studies major may be obtained from the ERC Academic Advising Office.

MINORS AND ERC SPECIAL MINORS

Minors are not required at ERC. However, completion of a minor can be an educational or pre-professional asset. All students have the option of completing any approved departmental or interdisciplinary minor.
Alternatively, students may wish to combine foreign language course work with an associated regional specialization to earn an ERC Special Minor in, for example, Asian Studies or Middle Eastern Studies. Such minors must conform to Academic Senate policies: For students entering the University before January 1998, this means completion of at least six courses (twenty-four units), of which at least three (twelve units) must be at the upper-division level. Students entering in January 1998 or later must complete at least seven courses (twenty-eight units), of which at least four (sixteen units) must be at the upper-division level. Upper-division courses applied toward a minor may not be used to meet the requirements of the major.

INTERNATIONAL MIGRATION STUDIES MINOR

Eleanor Roosevelt College and the Center for Comparative Immigration Studies jointly host the only International Migration Studies minor in the country. It focuses on one of the most significant social, economic, and political influences in the modern world—the voluntary and forced flow of people across international borders and the dispersal of cultural communities around the world. The minor, open to students from all colleges, enables students to understand how migration has historically shaped different societies and economies as well as the policies governments have adapted to control population movements. Requirements include seven courses from a list of approved courses, at least five of which must be upper division. Students may pursue one of three tracks for the minor: course work (seven courses from a list approved for the minor); a combination of courses and an approved, related internship; or field research (participation in the Mexican Migration Field Research program or courses and an independent research project). The research track affords students an excellent opportunity to work closely with faculty, learning the craft of research and writing a report. Students in the Mexican Migration Field Research program co-author a published book on each year’s project. For details on the minor, see “International Migration Studies.”

HUMAN RIGHTS MINOR

The purpose of the Human Rights minor is to encourage students to treat human rights as an intellectual and practical question. Students will engage openly with the history and the implementation of human rights, explore its origins and trajectory, the passions it arouses, and the range of its influences and effects. The development and multiple meanings of human rights, its institutional advocates and adversaries, and the attendant moral dilemmas are all recognized today as topics of profound interest and objects of study. Many of the courses in the minor have a clear international content, but a good portion has a U.S. or comparative approach. This program helps to prepare students for a career in research and teaching, and working in NGOs that advocate for and monitor human rights compliance, government agencies, or law.

To receive a minor in Human Rights, a student must complete seven four-unit courses (twenty-eight units)—including two required courses (HMNR 100 and HMNR 101)—and five courses from the list of approved courses, at least two of which should be from the list of Core Courses. Since the Human Rights minor is an interdisciplinary program, students are allowed to take no more than three courses in any one department. The Human Rights minor is administered by Eleanor Roosevelt College in cooperation with the Institute for International, Comparative, and Area Studies (ICAS).

STUDY ABROAD

Students whose interests extend beyond our borders are encouraged and assisted in finding opportunities to spend part of their college career in another country. There are many options, including short-term or year-long academic programs, work opportunities, and career-related internships.

At one time or another, men and women from ERC have studied in more than forty different countries in Europe, Africa, Latin America, the Middle East, and Asia.

Students on university financial aid who participate in the UC Education Abroad Program pay UCSD fees and retain their financial aid packages, which are budgeted to include study abroad expenses. In addition, there are a number of sources for scholarship aid designated for study abroad.

INTERNSHIPS

Internships, whether for credit, pay, or experience, can be a useful part of a student’s undergraduate experience. They offer an opportunity to apply classroom learning, develop pre-professional experience and networks, and test out possible career paths. Students can find internship placements through the Academic Internship Program (AIP) which offers credit-bearing opportunities in San Diego, Washington D.C., and many other locations. Alternatively, the UCDC and UC Sacramento programs combine course work and internships in those two capital cities. Finally, through Career Services, students can identify paid and service internships. Some internships require upper-division standing. For details on each program, see separate listings in the catalog.

GRADUATION REQUIREMENTS

To graduate with a baccalaureate degree from the University of California, an Eleanor Roosevelt College student must:

1. Satisfy two University of California requirements: the Entry Level Writing requirement in English composition and the American History and Institutions requirement. See “Undergraduate Admissions, Policies and Procedures.”

2. Fulfill the ERC general-education requirements as described.

3. Complete an approved departmental or interdisciplinary major, meeting all requirements as specified by the major department or program.

4. Satisfy the senior residency requirement that thirty-five of the final forty-five units must be completed as a registered UCSD student.

Students studying abroad in their senior year may petition to have this requirement waived.

5. Complete and pass a minimum of 180 units for the Bachelor of Arts or Bachelor of Science degree.

At least sixty of those (fifteen courses) must be at the upper-division level. The B.S. degree is awarded in biology, physics, cognitive science, chemistry, earth sciences, management science, and designated engineering and psychology programs; the B.A. is awarded in all other majors.

6. Earn a cumulative GPA of 2.0 or higher.
Sixth College is the newest of UC San Diego’s six undergraduate colleges, drawing on its theme, Culture, Art, and Technology, to meet the lifelong educational needs of students in the twenty-first century. New global challenges demand new approaches to visualization, problem solving, information handling, and communication across cultural and disciplinary boundaries. Intellectual flexibility; creative, critical thinking; ethical judgment; fluency in assessing and adapting to technological change; and the ability to engage effectively in collaboration with others from a wide range of backgrounds will be critically important to our graduates. To help prepare our students for the future, Sixth College offers an integrated learning environment that emphasizes collaborative learning; creative imagination; interdisciplinary inquiry; and written, visual, kinetic and auditory investigation, argument, and expression. Students will learn to use digital as well as traditional communication and research tools. The college is committed to helping students develop skills necessary for lifelong learning, including self-reflection with information technology and the crucial ability to learn from experts.

Sixth College offers students opportunities to explore its theme, Culture, Art, and Technology, both within its academic program and through non-classroom based programs that provide our students with learning, work, and research experiences both on and off campus.

Sixth College challenges students to examine the multidimensional interactions between culture, art, and technology in order to imagine the future and create new forms of inquiry and communication. Teamwork, artistic expression, interdisciplinary ways of thinking and knowing, and multicultural awareness are core educational goals.

Sixth College students will be encouraged to engage with the outlying community through the practicum. More than an ethical obligation to serve, such an engagement is integral to the process of learning to listen across cultures and to consider implications of diverse agencies of change. Sixth College is committed to pioneer meaningeful application of evolving technologies inside and outside the classroom. For example, wireless communication technology is incorporated into the very design of this college’s physical infrastructure and curricular planning, allowing Sixth College to pioneer new teaching, communication, community, and lifelong learning paradigms. On campus and off, students will be linked in many ways—by digital media, by team-based course and extracurricular projects and learning exercises, by social and local community engagement (e.g., practicum project), and by diverse cultural and intellectual events that seamlessly connect many aspects of residential life and student affairs programming with the college curriculum. All these linkages help ensure that Sixth College students have the opportunity to develop, learn, and act as integral members of a local and larger community.

Culture, Art, and Technology

All students will take a three-quarter core sequence titled Culture, Art, and Technology (CAT). CAT is a highly interdisciplinary sequence integrating learning in arts and humanities, social sciences, and science and engineering. It introduces students to thinking across disciplines so they can identify interactions, recognize patterns, and provide opportunities for learning by inquiry in a collaborative environment. Exercises and instruction that develop fluency with information technology and information literacy, as well as writing and communication skills, will be embedded in the core sequence.

Practicum

Sixth College Practicum program is an opportunity to put education in action. The practicum is an academic learning experience in which students address a real-world problem by undertaking a project. Under faculty mentorship, the students plan, execute, and reflect upon the project and their effectiveness. The practicum reflects Sixth College's commitment to form bridges with the UCSD campus units and to San Diego's communities, to engage students in communal issues, and to foster students' ethical obligation to service.

GENERAL-EDUCATION REQUIREMENTS

The Sixth College breadth requirements have three primary goals: (1) to produce comprehensive knowledge and connections, (2) to encourage creative imagination, and (3) to accomplish these activities from an ethically informed perspective. The aim is to allow students to discover the richness of UCSD's academic life and to see relationships among the sciences, social sciences, engineering, arts, and the humanities. Because Sixth College emphasizes cross-disciplinary ways of thinking, it is critical for students to appreciate the different modes of inquiry within academic disciplines. For information about courses available to satisfy the general-education requirements, please visit the academic advising office in the Sixth Administration Building or check the Web site at http://sixth.ucsd.edu.

1. Culture, Art, and Technology: Three courses. Core Sequence CAT 1, 2, and 3. Includes two (6 unit) quarters of intensive instruction in university-level writing.

2. Information Technology Fluency: One course. This requirement may be satisfied with courses from a variety of departments.

3. Modes of Inquiry: Seven courses. Two courses in social sciences, two courses in humanities, two courses in natural sciences, one course in math/logic (different options available for science and non-science majors).

4. Understanding Data: One course in statistical methods (different options available for science and non-science majors).

5. Societal and Ethical Contexts: Two courses. One course in ethnic or gender studies and one course in ethics.

6. Art Making: Two courses in two different artistic genres in literature, music, theatre (including dance), or visual arts.

7. Practicum: Upper-division students must complete a Practicum Project that extends outside the classroom, for which they will receive four units of credit. They must also take the Practicum Reflective Writing course (CAT 125), in which they write about their Practicum Project experience. See the Sixth College advising center for details.

GRADUATION REQUIREMENTS

In order to graduate from Sixth College, all students must

1. Satisfy the University of California requirements in Entry Level Writing and American History and Institutions (See “Academic Regulations: UC Entry Level Writing Requirement”; and “American History and Institutions”).

2. Satisfy the general-education requirements, including the practicum and the practicum writing requirement (CAT 125).

3. Successfully complete a major according to all regulations of that department.

4. Complete at least 60 units at the upper-division level.

5. Pass at least 180 units for the B.A./B.S. degree. No more than 3 units in physical education (activity) courses may count toward graduation.

6. Attain a C average (2.0) or better in all work attempted at UC. Departmental requirements may differ. Students are responsible for checking with the department of the major for all regulations.

7. Meet the senior residence requirement. (See “Academic Regulations: Senior Residence”).

TRANSFER STUDENTS

Transfer students may meet all or most of Sixth College’s lower-division requirements before entering UCSD if they have followed transfer agreements or preparation programs. Specific details regarding appropriate general-education agreements are in the catalog section “Undergraduate Admissions.” Additional resources of information for transfer students include UCSD Transfer Services, the Sixth College Web site, and the student’s community college.

MAJORS AND MINORS

Majors: Sixth College students may pursue any of the departmental or interdisciplinary majors offered at UCSD. The majority of the academic departments have established lower-division prerequisites. Generally, these prerequisites must be completed prior to entry into upper-division major courses. Many of these courses may count for general-education credit as well. Students are strongly encouraged to work closely with department faculty and college advisors. For details on the specific major departments, refer to the “Courses, Curricula, and Programs of Instruction” section of this catalog.

Minors are optional. However, students are encouraged to keep as many options open as
possible. A minor provides an excellent opportunity to complement the major field of study. Students are required to complete twenty-eight units of inter-related work, of which at least twenty units must be upper division.

SIXTH COLLEGE INDIVIDUAL STUDIES MAJOR

Sixth College offers an Individual Studies Major (ISM) to meet the needs of students who have unusual and/or multiple academic interests for which a suitable major is not offered at UCSD. To apply for the major, students must have completed at least sixty units of work at UCSD, including CAT 1, 2, and 3, have a minimum cumulative GPA of 3.25 and be in good academic standing. Transfer students must have at least one quarter of residence at UCSD. Students pursuing this major must be goal-oriented and self-directed and must submit a written proposal explaining the merits of the program and why it cannot be accommodated within existing UCSD majors. The proposal must first be approved by two faculty advisors (a primary and secondary advisor) to ensure that students will have the opportunity to work closely with a faculty mentor throughout their undergraduate career at UCSD. Specifically:

- The major program must include a minimum of twelve four-unit upper-division classes from at least two different academic departments at UCSD. No more than nine courses can be completed in the same department.
- With prior approval, students will be allowed to use courses taken abroad under the Education Abroad Program (EAP) and Opportunities Abroad Program (OAP) toward their ISM.
- All major courses must be taken for a letter grade, and students must earn at least a C– in each course to have it counted toward the major.
- A grade point average of 2.0 overall and in the major is required for graduation.
- No more than twelve units of Independent Study (199) may be used toward the major, including CAT 199, CAT 198, and CAT 197.
- The major must satisfy the residency requirements which states that nine of the twelve upper-division courses must be completed at UCSD.

PASS/NOT PASS GRADING OPTION

Some general-education requirements may be fulfilled by courses taken on the Pass/Not Pass basis. Sixth College students are reminded that major requirements and prerequisites must be taken on a graded basis. In accordance with University Academic Regulations, the total number of Pass/Not Pass units may not exceed one-fourth of a student’s total UCSD units.

HONORS

In addition to the College Honors Program (see under Sixth College), there are many types of Honors at UCSD.

Provost Honors—Awarded each quarter based on completion of twelve graded units with a GPA of 3.5 or higher. For each year of Provost’s Honors, a certificate of merit is awarded.

- Departmental Honors—Outstanding students often enroll in departmental honors programs, and they may receive university honors at graduation. They may also be eligible to be invited to membership by the UCSD chapter of Phi Beta Kappa, the nation’s oldest, most respected academic honor society.
- College Honors designation at graduation—College honors awarded include summa cum laude, magna cum laude, and cum laude.

EXPANDING YOUR EDUCATIONAL HORIZONS

Leadership and Community

http://sixth.ucsd.edu/

Collaboration and connectedness are central values of Sixth College. These values are reflected in Sixth’s commitment to providing meaningful opportunities for students to contribute to the direction and evolution of UCSD’s youngest college. Student leadership opportunities include serving on the Sixth College Student Council or in campus-wide student governance roles. Additionally, students assume leadership in the Sixth community through service as resident advisors, orientation leaders, and members of the Sixth College Executive Committee. These opportunities and others not only contribute to shaping what Sixth College is and will become, but also foster the development of life skills that prepare students to be effective citizens and leaders in a world of ever-increasing complexity and diversity.

UNDERGRADUATE RESEARCH

Research opportunities for undergraduates at UCSD

UCSD encourages all undergraduates to become involved in the research life of the university. Every academic department has opportunities for undergraduates to work with faculty on the cutting edge research projects for which UCSD is world-renowned. Working closely with faculty, students will deepen their knowledge and skills in areas of special academic interest, while experiencing what it means to be part of an intellectual community engaged in research. Information can be found through Undergraduate Research at UCSD: http://uqresearch.ucsd.edu; Academic Enrichment Program: http://aep.ucsd.edu/, and Summer Research Opportunities: http://sea.ucsd.edu/summer_research/

California Institute for Telecommunications and Information Technology (Calit2)

http://www.calit2.net/

Calit2 ensures that California maintains its leadership in the rapidly changing telecommunications and information technology marketplace. The institute encourages undergraduate participation in its research activities and provides undergraduate summer research scholarships.

Pacific Rim Undergraduate Experiences (PRIME)

http://www.pragma-grid.net/PRU/index.htm

This undergraduate research program provides opportunities to participate in an international research and cultural experience that will prepare students for the global workplace of the twenty-first century. Students will live and work at an international host site either in Japan, Taiwan, China, or Australia, and gain greater cultural understanding of a new region.

COMMUNITY WORK

BIO-BRIDGE

http://BioBridge.ucsd.edu

Bio-Bridge combines biotech laboratory training, lecture, and group discussions to help college students communicate scientific concepts to high school and middle school students and underserved communities in San Diego. Students gain practical experience while working with the Bio-Bridge network to bridge the gap between progressive scientific research and the grade school science curriculum. UCSD students also engage in supervised group mentoring to middle school and high school students and teachers throughout the project.

PAL (Partners at Learning)

http://tep.ucsd.edu/service.shtm

PAL is the service-learning division of UCSD’s Teacher Education Program. PAL classes give UCSD students meaningful opportunities to learn about and experience issues of equity and education in San Diego’s K–12 schools. Through PAL, UCSD students serve as tutors and mentors in K–12 classrooms throughout San Diego County. Each year, PAL students contribute about 20,000 hours of service to underserved schools.

TIES (Teams in Engineering Service)

http://ties.ucsd.edu

TIES is a new and innovative academic program putting UCSD undergraduates and their technical and creative skills to work for San Diego nonprofit organizations. Multidisciplinary teams of UCSD students design, build, and deploy projects that solve technology-based problems for community partners.

CULTURAL ENRICHMENT

The Center for Research in Computing and the Arts (CRCA)

http://crca.ucsd.edu/

CRCA is an organized research unit of UCSD whose mission is to facilitate the invention of new art forms that arise out of the developments of digital technologies. Current areas of interest include interactive networked multimedia, virtual reality, computer-spatialized audio, and live performance techniques for computer music and graphics. Through Sixth College’s partnership with CRCA, students have
opportunities to participate in special events, meet artists, and engage in research.

Arts6

Arts6 is a unique and powerful connection between ArtPower! (http://www.artpower.ucsd.edu/), UC San Diego's performing arts program, and Sixth College's theme of Culture, Art, and Technology. Arts6 provides opportunities for students to engage with diverse, world-renown artists through vibrant, challenging, multidisciplinary, and multimedia performances that explore ways in which art reveals and communicates what is significant and universal in contemporary society. Arts6 supports string quartet concerts at the college, workshops with professional artists, music listening parties with world-renown musicians, and heavily discounted performance tickets for Sixth College students.

Programs Abroad Office (PAO)

http://pao.ucsd.edu/pao/

Through the Programs Abroad Office, students can take advantage of a variety of international opportunities, including study, work, volunteer, and internship programs. Each year, UCSD sends about 1,000 students overseas. Students may choose from the University of California's systemwide Education Abroad Program (EAP) that has educational opportunities in thirty-five countries, or from the Opportunities Abroad Program (OAP) that links students with worldwide opportunities sponsored by organizations and universities other than the University of California.

PROFESSIONAL PREPARATION

Academic Internship Program (AIP)

http://aip.ucsd.edu/

The program offers qualified juniors and seniors the opportunity to acquire valuable work experience related to academic and career interests. Although most internships are in the San Diego area, the Academic Internship Program is national and international in scope, including the popular Washington, D.C., program and the London program. An extensive library lists more than 2,000 available internships in varied settings including, but not limited to, TV and radio stations; law offices; medical research labs and clinics; government agencies; high-tech and biotech companies; engineering, advertising and public relations firms; and financial institutions. Students also can work with the internship office to set up their own positions.

Departmental Internships

Most departments offer internships for their majors; the courses are numbered 197 (see individual departments for additional information).
Undergraduate Admissions, Policies, and Procedures

All communications concerning pre-applicant undergraduate admission should be addressed to:
Office of Admissions and Relations with Schools
Student Affairs
University of California, San Diego
9500 Gilman Dr. # 0021
La Jolla, CA 92093-0021
E-mail: admissionsreply@ucsd.edu
http://admissions.ucsd.edu

(858) 534-4831
La Jolla, CA 92093-0021
E-mail: transferinfo@ad.ucsd.edu
http://prospective.ucsd.edu/uqo/transfer

A NONRESIDENT APPLICANT

A student who lives outside the state of California and who is required to present a higher scholarship average than is required of California residents to be eligible for admission to the university, in addition to paying the nonresident tuition fees.

A INTERNATIONAL APPLICANT

A student who holds or expects to hold any nonimmigrant visa.

All communications concerning pre-applicant undergraduate admission for international applicants, whether at the freshman or transfer level, should be addressed to:
Office of Admissions and Relations with Schools
Student Affairs
University of California, San Diego
9500 Gilman Dr. # 0021
La Jolla, CA 92093-0021
(858) 534-4831
E-mail: internationaladmissions.ucsd.edu
http://internationaladmissions.ucsd.edu

DEFINITIONS

An application to the University of California, San Diego is processed and evaluated as a freshman or transfer, California resident; freshman or transfer, nonresident; or freshman or transfer, international applicant. See definitions below.

AN UNDERGRADUATE APPLICANT

A student who wishes to complete a program of studies leading to a bachelor of arts or a bachelor of science degree.

A FRESHMAN APPLICANT

A student who has graduated from high school but who has not enrolled since then in a regular session in any accredited college-level institution. This does not include attendance at a summer session immediately following high school graduation.

A TRANSFER APPLICANT

A high school graduate who has been a registered student in another accredited college or university or in college-level extension classes other than a summer session immediately following high school graduation. A transfer applicant may not disregard his or her college record and apply for admission as a freshman.

An undergraduate student can earn transfer credit upon successful completion of college-level work which the university considers consistent with courses it offers. Such credit may be earned either before or after high school graduation. The acceptability of courses for transfer credit is determined by the Office of Admissions and Relations with Schools.

For more information regarding transferring to UC San Diego call or write:
University of California, San Diego
Transfer Student Services
Office of Admissions and Relations with Schools
Student Affairs
9500 Gilman Dr. # 0021

EDUCATIONAL OPPORTUNITY PROGRAMS

The Educational Opportunity Program (EOP) is a recruitment and academic support program established by the university to increase the enrollment of educationally disadvantaged and low-income students. Students are provided with pre-admission counseling and with academic and personal support services. EOP eligibility is based on family income level.

Services available to EOP students cover a broad range of needs. Recruitment and application-related services include pre-admission counseling, application fee waivers, application follow-up, and deferral of the Statement of Intent to Register fee. Academic support for EOP students is offered through the Office of Academic Support and Instructional Services (OASIS).

The method of applying is online at http://www.universityofcalifornia.edu/apply. To apply for EOP, check the appropriate box in the UC application designated for the Educational Opportunity Program. Fill in the information requested in the application pertaining to family size and income, parental education level and occupation. This information is used in conjunction with other information from the admission application in determining eligibility for EOP.

Financial aid is available to eligible EOP students from the regular state, federal, and university sources administered through the UC San Diego Financial Aid Office at http://fas.ucsd.edu. Although EOP eligibility does not guarantee financial aid, the low-income ceilings for EOP eligibility mean that most EOP applicants should qualify for substantial financial assistance. Financial aid information is available from the UCSD Financial Aid Office.

Admissions information can be sought from your high school or community college counselor or the Office of Admissions and Relations with Schools. For additional information about EOP eligibility requirements, program services, or general information regarding UC San Diego, call or write:
University of California, San Diego
Office of Admissions and Relations with Schools
Student Affairs
9500 Gilman Dr. # 0021
La Jolla, CA 92093-0021
(858) 534-4831
E-mail: admissionsreply@ucsd.edu
http://admissions.ucsd.edu

UNDERGRADUATE COLLEGES AND MAJORS

COLLEGES

Even though you may be uncertain about your major, your application for admission must include the name of the UC San Diego college with which you want to affiliate (Revelle, John Muir, Thurgood Marshall, Earl Warren, Eleanor Roosevelt or Sixth College). Rank all the colleges in your order of preference, starting with your first choice. Applicants may be assigned to another college by the Office of Admissions and Relations with Schools if enrollment quotas prohibit placing them in their first-choice college. Applicants who do not indicate any UC San Diego college preference will be assigned a college.

In the “Choosing a College” section, which describes the educational philosophies of the six colleges at UC San Diego, you will find information concerning the general-education requirements of each college. It is very important that you read that section of the catalog carefully, and that you decide which college is the right one for you. You can also find information about UCSD’s six colleges, and much more, on the Web site of the Office of Admissions and Relations with Schools: http://admissions.ucsd.edu or at http://colleges.ucsd.edu.

IMPACTED MAJORS

It sometimes becomes necessary to limit enrollment in certain majors. When this occurs the affected majors will be listed in the UC San Diego General Catalog as soon as possible. When the catalog does not reflect these conditions, newly admitted students will be notified of them in the university’s admissions letter. Currently, the following majors are considered impacted for freshmen: aerospace engineering and mechanical engineering (both within the Department of Mechanical and Aerospace Engineering), bioengineering and bioengineering: biotechnology (both within the Department of Bioengineering), and all majors in the Division of Biological Sciences (biochemistry, cell biology; ecology, behavior and evolution; general biology; human biology; microbiology; molecular biology; physiology and neuroscience). Entering freshmen who have indicated the desire to major in these impacted majors will be further evaluated based on their Comprehensive Review.
Freshmen considering applying to these majors must also select an alternate major on the UC application. Students admitted to UC San Diego who are not admitted directly into one of these majors will be admitted into their alternate major, provided it is not impacted. However, transfer students are strongly recommended to complete their major preparation classes for success in their chosen major.

Continuing UC San Diego students who wish to transfer into one of the majors designated as being impacted should have completed at least one year (three quarters) in residence at UC San Diego and have completed all lower-division requirements for the requested major. A target number of applications will be accepted two times per year and applicants will be ranked by their UCSD overall GPA on the date of the application. For the 2010–11 academic year, eligible continuing students will be admitted into the major based on the GPA ranking system.

PRE-MAJORS

The following majors admit students to pre-major status only: engineering physics, human development, literature/writing, and math-computer science.

As a pre-major, you must satisfy all prerequisites before admission to the major. The set of conditions, determined on a department-by-department basis and approved by the San Diego Committee on Educational Policy, is explained in detail under the department listing in this catalog.

Other departments may be approved to offer pre-majors by the Committee on Educational Policy subsequent to this publication. Please refer to “Major Fields of Study” in the introduction to the catalog.

UNDERGRADUATE ADMISSIONS

Minimum Requirements

The university’s minimum undergraduate admission requirements, which are the same on all University of California campuses, are based on three principles. They are (1) the best predictor of success in the university is high scholarship in previous work; (2) the study of certain subjects in high school gives a student good preparation for university work and reasonable freedom in choosing an area for specialized study; and (3) standardized assessment tests provide a broad base for comparison, and mitigate the effects of differing grading practices.

The academic requirements for admission are minimum entrance standards. Students admitted to UC San Diego are chosen from a large number of highly competitive applicants, most of whom will have greatly exceeded the minimum requirements. Therefore, selection depends on additional factors.

Academic preparation is the principal basis for gaining admission to UC San Diego. Students are encouraged to pursue the most rigorous academic curriculum possible, including honors, Advanced Placement (AP) courses, and/or International Baccalaureate (IB) courses, in order to prepare for the university experience. High test scores are necessary in conjunction with strong performance in classes and a consistent pattern of courses. Overall performance must be well above minimum requirements in order to gain admission to the campus and major of your choice.

UC SAN DIEGO ADMISSION POLICY AND SELECTION CRITERIA

The undergraduate admission policy at the University of California, San Diego is designed to select a highly qualified and diverse student body. As a major public institution of higher education serving the teaching, research, and public service needs of California, UC San Diego strives to reflect the diversity of the population of the state. This undergraduate admission policy has been developed by the UC San Diego campus in compliance with the University of California Policy on Undergraduate Admissions that “seeks to enroll a student body that, beyond meeting the University’s eligibility requirements, demonstrates high academic achievement and exceptional personal talent, and that encompasses the broad diversity of California.”

FRESHMAN SELECTION

The number of applicants to UC San Diego far exceeds the number of spaces available, and it has become necessary to adopt standards which are much more demanding than the minimum requirements to admit students. The San Diego campus has developed the following procedures for the selection of applicants to be admitted from its pool of eligible candidates.

Comprehensive Review

All applicants will receive a review which considers a combination of factors: academic, personal characteristics, and achievement, including:

- Uncapped grade-point average (maximum of eight semesters of approved honors, AP/IB HL, or UC-transferable college-level courses)
- Scores of all required examinations
- Number of “a-g” courses beyond the minimum specified for UC eligibility
- Eligibility in the Local Context (ELC)
- Educational environment
- Low family income
- First-generation college attendance
- Demonstrated leadership
- Special talents, achievements, and awards
- Volunteer/community service
- Sustained participation in educational preparation programs
- Special circumstances and/or personal challenges

Academic achievement constitutes approximately 75 percent of the overall comprehensive review score. Applicants with the highest level of academic, personal characteristics, and achievement will be admitted in sufficient numbers to meet UC San Diego’s enrollment goals.

ADVANCED-STANDING SELECTION

Admitted applicants will be selected primarily on the basis of academic performance, as assessed by review of the GPA in all UC-transferable courses and the total number of UC-transferable units completed one full term prior to the initial quarter of attendance at UC San Diego.

Applicants who have satisfactorily completed sixty transferable semester units (ninety quarter units) one full term prior to the term of admission will be considered for admission. California community college applicants must have a competitive GPA (based on the strength of the applicant pool) in UC-transferable courses. Highest priority for admission is given to upper-division transfer students from California community colleges, followed by upper-division transfer students from other UC campuses, upper-division California resident transfer students from other two-year or four-year institutions, and upper-division transfer students who are not residents of California.

More than 90 percent of UC San Diego’s transfer students come from California community colleges. A California community college applicant is defined as follows: a student who was enrolled at one or more California community college campuses for at least two terms, excluding summer sessions; the last college attended before admission to UCSD was a California community college; and the student has completed thirty semester (forty-five quarter) UC-transferable units at one or more California community colleges.

ADMISSION AS A FRESHMAN APPLICANT

MINIMUM REQUIREMENTS

To be eligible for admission to the university as a freshman you must meet the high school diploma requirement, the subject requirement, the scholarship requirement, and the examination requirement, which are described below.

HIGH SCHOOL DIPLOMA REQUIREMENT

You must earn a diploma from a high school in order to enter the university as a freshman. The Certificate of Proficiency, awarded by the California State Department of Education upon successful completion of the High School Proficiency Examination, proficiency tests from other states, and the General Education Development (GED) certificate, will be accepted in lieu of the regular high school diploma. Subject, scholarship, and examination requirements discussed below must also be met.

SUBJECT REQUIREMENT

A student applying for admission as a freshman to the University of California must have completed a minimum of fifteen units of high school work during grades nine through twelve. At least seven of the fifteen units must have been earned in courses taken during the last two years of high school. (A one-year
course is equal to one unit; a one-semester course is equal to one-half unit.)

These units must have been earned in academic or college preparatory courses, as specified below. Lists of approved courses are compiled by the UC Office of the President for high schools in California. Lists are specific to each high school and are available through your high school's counseling office, and on the Web site (http://www.ucop.edu/a-gGuide/ag/a-g/welcome.html). A detailed description of the “a–g” requirements can be found at http://pathstat1.ucop.edu/ag/a-g. Applicants from high schools outside California may find the following guidelines helpful in determining acceptability of courses.

Specific “a–g” Course Requirements

(a) HISTORY/SOCIAL SCIENCE

Two units (equivalent to two yearlong courses or four semesters) are required. Course work must include

• World History, Cultures, and Geography—One year, which can be met by a single integrated course or by two or one-half courses; and
• U.S. History/American Government (Civics)—One year of U.S. History, or one-half year of U.S. History combined with one-half year of American government (civics)

(b) ENGLISH

Four units (equivalent to four yearlong courses or eight semesters) of college preparatory composition and literature are required. Both reading and writing components must be included in the courses.

Reading—Acceptable courses must require extensive reading of a variety of literary genres, including classical and/or contemporary works. Reading assignments must include full-length works. Excerpts from anthologies, articles, etc., can be supplemental but cannot constitute the main component of reading assignments.

Writing—Courses must also require substantial, recurrent practice in writing extensive, structured papers. Student must demonstrate understanding of rhetorical, grammatical, and syntactical patterns, forms, and structures through responding to texts of varying lengths in unassisted writing assignments.

(c) MATHEMATICS

Three units (equivalent to three one-year courses) of college preparatory mathematics are required.

• Elementary Algebra
• Geometry—Courses must include topics in two- and three-dimensional geometry.
• Advanced Algebra

(d) LABORATORY SCIENCE

Two units (equivalent to two one-year courses) of laboratory science are required (three units are strongly recommended) by a course that either

1. Covers the core concepts in one of the fundamental disciplines of biology, chemistry, or physics; or
2. Has as a prerequisite of biology, chemistry, or physics, and builds upon that knowledge. Such a course may include elements of another scientific discipline.

(e) LANGUAGE OTHER THAN ENGLISH

Two units (equivalent to two one-year courses) of course work in a single language. Three units are recommended.

Minimum Performance Objectives—Courses should emphasize speaking and understanding, and include instruction in grammar, vocabulary, reading, and composition. At this level, emphasis should not be on the ability to describe grammatical features of the language. The minimum performance objectives after two years of high school study should be the following:

• The ability to sustain a brief conversation on simple everyday topics demonstrating good use of the whole sound system (good pronunciation), and the basic structural patterns in the present, past, and future tenses, the subjunctive, and commands.
• Summarize orally and in writing, the main points of a relatively simple reading passage not involving specialized vocabulary.

Classical languages (Latin, Greek) and American Sign Language (ASL) are acceptable to fulfill the (e) requirement.

(f) VISUAL AND PERFORMING ARTS (VPA)

One year-long approved arts course from a single VPA discipline: dance, drama/theater, music, or visual art.

Intention—To provide a meaningful experience and breadth of knowledge of the arts. Approved VPA courses must be directed at acquiring concepts, knowledge, and skills in the arts disciplines.

Prerequisites—Acceptable courses need NOT have any prerequisite course.

Co-Curricular Work—Work outside class must be required: for example, portfolio/performance preparation, reading, writing, research projects, and/or critical listening/viewing.

Course Standards—Courses should provide students with an experience that implements the intent of the California State Board of Education approved Visual and Performing Arts (VPA) Content Standards. Each VPA course shall sufficiently address the state content standards under all five component strands:

1. Artistic Perception
2. Creative Expression
3. Historical and Cultural Context
4. Aesthetic Valuing
5. Connection, Relations, and Application

(g) COLLEGE PREPARATORY ELECTIVE COURSES

One unit (equivalent to two semester courses) is required. Course(s) can be taken in 9–12 grades but must fall within the following subject areas: visual and performing arts (non-introductory-level courses), history, social science, English, advanced mathematics, laboratory science, and language other than English.

Intent—To encourage prospective UC students to fill out their high school programs with courses that will meet one or more of a number of objectives:

- To strengthen general study skills, particularly analytical reading, expository writing, and oral communications;
- To provide an opportunity to begin work that could lead directly into a major at the university; and
- To experience new areas of academic disciplines that might form the basis for future major or minor studies at the university.

Quality—All courses are expected to meet standards of quality similar to those required for the “a–f” requirements.

Alternatives—Courses such as political science, economics, geography, humanities, psychology, sociology, anthropology, journalism, speech or debate, computer science, computer programming, and others may also qualify. In addition, courses that are interdisciplinary, drawing knowledge from two or more of these fields, are also acceptable. Approved alternative courses must provide academically challenging study at the same level as advanced courses in the “a–f” subject matter fields. These elective courses must be at the eleventh or twelfth grade level, have appropriate prerequisites, and present material at a sufficient depth to allow students to achieve mastery of fundamental knowledge that prepares them for university work or a future career path.

Courses Satisfying the “g” Requirement

History: Courses should enable students to establish a breadth of understanding of history and should provide an understanding of the human past, including its relation to the present. Courses should develop a student’s ability to think critically, to evaluate historical data, and to analyze and synthesize evidence. All history courses should require extensive reading and writing.

Social Science: Courses should be in one of the social sciences: anthropology, economics, geography, political science, psychology, or sociology. Courses could also be interdisciplinary in nature, drawing knowledge from two or more of these fields. Course objectives should include as many of the following as are applicable to the field: (1) an understanding of the development and basic features of major societies and cultures, (2) an examination of the historic and contemporary ideas that have shaped our world, (3) an understanding of the fundamentals of how differing political and economic systems function, (4) an examination of the nature and principles of individual and group behavior, and (5) a study of social science methodologies. A social science course must include a body of basic knowledge, extensive reading, and written and oral exposition. Courses that are designed to meet state-mandates social studies graduation requirements are acceptable provided that they meet the above criteria. Courses with applied, service, or career-related content are acceptable only.
if those components are used to augment the strong academic content of the course.

English: Courses should require substantial reading with frequent and extensive practice in writing that is carefully evaluated and criticized, as noted in the "b" English requirement (above). Courses in journalism, speech, debate, creative writing, or advanced-level ESL are acceptable electives if they meet the general requirements in reading and writing stated above.

Advanced Mathematics: Courses with second-year algebra as a prerequisite such as trigonometry, linear algebra, pre-calculus (analytic geometry and mathematical analysis), calculus, probability, and statistics are acceptable. A computer science course is acceptable if it fulfills the following objectives: (1) enables students to express algorithms in a standard language; (2) requires students to complete substantial programming projects; and (3) involves the study and mastery of various aspects of computer science (e.g., how computers deal with data and instructions, the internal components of a computer, and the underlying computer logic).

Laboratory Science: Acceptable courses should cover topics from the biological or physical sciences and include laboratory activities. A terminal course designed only to meet graduation requirements is not acceptable.

Language Other Than English: Elective courses in the same language used to satisfy the "e" requirement must have at least two years of the language as a prerequisite. In order for a second language other than English to qualify as an elective, at least two years of this language must be completed.

Visual and Performing Arts (VPA): Advanced courses in the Visual and Performing Arts can meet the "g" - Elective" requirement, but must still address the five components of the state VPA standards. Advanced courses should enable students to understand and appreciate artistic expression and, where appropriate, to talk and write with discrimination about the artistic material studied. Courses devoted to artistic performance and developing creative artistic ability, should have prerequisites (either one year of introductory course work or experience approved by the instructor) and should assume proficiency beyond the introductory level. Courses must require on the average the equivalent of a five-period class per week. Work outside of the class must be required (e.g., portfolio/performance preparation, reading, writing, research projects, and critical listening/viewing).

Honors Level Courses

The University of California encourages students to take demanding advanced academic courses in all fields. Accordingly, the grades in up to four units of eleventh and twelfth grade honors courses will be counted on a scale A = 5, B = 4, C = 3, if these courses are certified by the high school and the University of California as offered at an honors level. Honors credit will also be given for up to two of these four units taken in tenth grade. Grades lower than C do not earn honors credit.

Examination Requirement

Freshman applicants must submit the following test scores:
- The ACT Assessment plus Writing or the SAT Reasoning Test. The verbal, mathematics, and writing scores on the SAT must be from the same sitting. Students who take the ACT must report each test score and the composite score.
- Two SAT Subject Tests in two different areas, chosen from the following: history literature, mathematics (Level 2 only), science, or language other than English.

Students applying for admission to the fall term must take these tests no later than December of their senior year, preferably earlier, to ensure that their application receives prompt and full consideration.

If tests are repeated, the university will accept the highest score received. See your counselor for information and registration forms or write to the College Board ATP, P.O. Box 6200, Princeton, New Jersey 08541-6200; Web site: http://www.collegeboard.com. For ACT information, write to the ACT Registration Unit, P.O. Box 168, Iowa City, Iowa 52240; Web site: http://www.act.org.

Writing Requirement

As a UC undergraduate, you must demonstrate proficiency in writing. Admitted students who do not meet the Entry Level Writing requirement (previously known as the Subject A requirement) prior to April 1 are required to achieve a passing score on the UC Analytical Writing Placement Examination (previously known as the Subject A Examination). Notice of this exam will be sent to all admitted students from the Educational Testing Service. There will be a $75 fee.

FRESHMAN ELIGIBILITY

California Residents (Minimum Requirements)

(Refer also to "Admission as a Freshman Applicant")

Please be advised that these are minimum eligibility requirements. The San Diego campus has been unable to accommodate all minimally eligible applicants. You must exceed these requirements in order to be considered for admission. See "UC San Diego Admission Policy and Selection Criteria.”

Eligibility Index: You must earn the required combination of GPA and college admission test scores as specified in the University’s Eligibility Index. California applicants must earn at least a 3.0 (3.4 for nonresidents) in their “a-g” courses to meet the Scholarship Requirement.

Eligibility Index: You must earn the required combination of GPA and college admission test scores as specified in the University’s Eligibility Index. California applicants must earn at least a 3.0 (3.4 for nonresidents) in their “a-g” courses to meet the Scholarship Requirement.

The index, along with an online calculator you can use to test your eligibility, is available at http://www.universityofcalifornia.edu/admissions/scholarshipreq.
years of mathematics, two to three years of language other than English, three years of laboratory science, two or more years of history/social science, and one or more years of visual and performing arts.

Reading: Freshman-level university work demands a great amount, and high level, of reading. Proficiency in reading and understanding technical materials and scholarly works is necessary. Learn to read analytically and critically, actively questioning yourself about the author's intentions, viewpoint, arguments, and conclusions. Become familiar and comfortable with the conventions of standard written English and with various writing strategies and techniques. Your reading experience should include original works in their entirety (not just textbooks and anthologies) that encompass a wide variety of forms and topics.

Writing: Prospective students must learn to write clearly and skillfully. You will be expected to write papers for English and many other university classes, and many exams will include essays. You will have to think critically and analyze what you learn in class and in outside reading, and present your ideas in a clear and persuasive manner. By university standards, a student who is proficient in English composition is able to (a) understand the assigned topic; (b) select and develop a theme by argument and example; (c) choose words which clearly and precisely convey the intended meaning; (d) construct effective sentences; (e) demonstrate an understanding of the rules of standard written English; and (f) punctuate, capitalize, and spell correctly.

If you plan to attend the university, it is imperative that you take English courses in high school that require the development and practice of these skills. You must take at least four years of English composition and literature that stress expository writing: the development of persuasive critical thinking on the written page.

Mathematics: Many fields require preparation in mathematics beyond that necessary for admission to the university. Courses in calculus are included in all majors in engineering and the physical, mathematical, and life sciences, as well as in programs leading to professional degrees in fields such as medicine, dentistry, optometry, and pharmacy. Moreover, many majors in the social sciences, business, and agriculture require statistics or calculus, and sometimes both.

Most students take calculus or statistics, if required, during the freshman year. The university strongly recommends that students take four years of mathematics in high school, including pre-calculus in the senior year. Courses in mathematics should include basic operations with numerical and algebraic functions; operations with exponents and radicals; linear equations and inequalities; polynomials and polynomial equations; functions and their graphs; trigonometry, logarithms, and exponential functions, and applications and word problems.

Laboratory Science: The university requires two years of laboratory science in high school, but many majors require additional science courses. Programs in the biological sciences and some natural resource fields require high school biology, chemistry, and physics. Programs in the physical sciences, mathematics, engineering, agriculture, and the health sciences require chemistry and physics, and recommend biology.

COLLEGE CREDIT: FRESHMAN APPLICANTS

There are many steps you can take to earn credit which will be applicable to your graduation from college. Some of these steps may be taken even before you graduate from high school. Among them are the following:

College Courses

Many high schools have arrangements with nearby postsecondary institutions, allowing you to take regular courses while you are still in high school. Many of these courses are accepted by the university exactly as they would be if you were a full-time college student if courses are posted for credit on the college transcript.

No matter how many college units you earn before graduating from high school, you will still apply as a freshman.

College Board Advanced Placement

The university grants credit for all College Board Advanced Placement Tests on which a student scores 3 or higher. The credit may be subject credit, graduation credit, or credit toward general-education or breadth requirements. Students who enter the university with AP credit do not have to declare a major earlier than other students, nor are they required to graduate earlier.

Students are encouraged to take AP tests when appropriate. Counselors should advise a student who is fluent in a language other than English to gain AP credit. AP test scores will not adversely affect a student’s chances for admission.

The university grants credit for Advanced Placement tests as described in the AP listing in this catalog. Credit is expressed in quarter-units.

The listing also details requirements met by AP tests by college. Even if subject credit or credit toward specific requirements is not mentioned in the college lists, students receive university credit as described in the chart for all AP tests on which they score 3 or higher. If a student is exempt from a particular course at UCSD, duplication of this course does not earn academic credit.

ADMISSION AS A TRANSFER APPLICANT

UC San Diego welcomes transfer students. Approximately 25 percent of each year's new students on campus are transfer students. The Transfer Student Services office provides admissions counseling and a variety of programs and services for prospective transfer students. The university defines a transfer applicant as a high school graduate who has been a registered student in another accredited college or university or in college-level extension classes other than a summer session immediately following high school graduation. A transfer applicant may not disregard his or her college record and apply for admission as a new freshman.

Each year UC San Diego receives more applications from eligible transfer students than the campus can accommodate. In addition to satisfying UC minimum requirements, only transfer students who have completed ninety or more transferable quarter-units by the end of spring term are considered for admission. Priority is given to students transferring from California community colleges. See “Advanced-Standing Selection.”

UC San Diego admits transfer applicants at the junior level only. To be competitive, applicants need to present an academic profile stronger than that represented by the minimum UC admissions requirements, and they should prepare for their intended field of study to the best of their ability.

IMPACTED MAJORS

It sometimes becomes necessary to limit enrollment in certain majors. When this occurs the affected majors will be listed in the UC San Diego General Catalog as soon as possible. When the catalog does not reflect these conditions, newly admitted students will be notified of them in the university’s admissions letter. Effective fall 2010, certain majors will be considered impacted majors for freshmen. These are aerospace engineering and mechanical engineering (in the Department of Mechanical and Aerospace Engineering), bioengineering and bioengineering: biotechnology (in the Department of Bioengineering), and all majors in the Division of Biological Sciences (biochemistry/cell biology; ecology, behavior and evolution; general biology; human biology; microbiology; molecular biology; physiology and neuroscience). Note that these majors will not be considered impacted for transfer students until fall 2011. It is strongly recommended that transfer students continue to complete the major preparation classes to succeed in their chosen major in engineering or biology. Transfer students interested in applying to any of the above majors must select an alternate major on the UC application. Qualified applicants not admitted directly to the major will be admitted to their alternate major, provided it is not also impacted.

PRE-MAJORS

The following majors admit students to pre-major status only: engineering physics, human development, literature/writing, and math-computer science.

To be a pre-major, you must satisfy all prerequisites before admission to the major. The set of conditions, determined on a department-by-department basis, and approved by the San Diego Committee on Educational Policy, is explained in detail under the department listing in this catalog.

Other departments may be approved to offer pre-majors by the Committee in Educational Policy subsequent to this publication. Please refer to “Major Fields of Study” in the introduction to the catalog.
TRANSFER ELIGIBILITY

California Residents (Minimum UC Requirements)

As a transfer applicant you must meet one of the requirements described below to be considered for admission to the university. Admission to UCSD is very competitive. You must exceed the minimum UC admission requirements.

1. If you were eligible for admission to UC when you graduated from high school—meaning you satisfied the subject, scholarship, and examination requirements, or were identified by the university during your senior year in high school as eligible under the Eligibility in the Local Context (ELC) program—you are eligible to transfer if you have a C (2.0) average in your transferable course work.

2. If you met the scholarship requirements but did not satisfy the subject requirement, you must take transferable college courses in the missing subjects, earning a C or better in each required course, and have an overall C average in all transferable course work to be eligible to transfer.

3. If you were not eligible for admission to UC when you graduated from high school because you did not meet the scholarship requirements, you must have
 a. Completed ninety quarter-units (sixty semester-units) of UC-transferable college credit with a grade-point average of at least 2.4, and;
 b. Completed a course pattern requirement, earning a grade of C or better in each course, to include
 • two UC-transferable college courses (three semester- or four to five quarter-units each) in English composition, and;
 • one UC-transferable college course (three semester- or four to five quarter-units each) in mathematical concepts and quantitative reasoning, and;
 • four UC-transferable college courses (three semester- or four to five quarter-units each) chosen from at least two of the following subject areas: the arts and humanities, the social and behavioral sciences, the physical and biological sciences.

 Students who satisfy the Intersegmental General-Education Transfer Curriculum prior to transferring to UC may satisfy Option 3b above of the transfer admission requirements.

TRANSFER ELIGIBILITY

Non-California Residents (Minimum UC Requirements)

The minimum admission requirements for nonresident transfer applicants are the same as those for residents, except that nonresidents must have a grade-point average of 2.8 or higher in all UC-transferable college course work.

TRANSFER ELIGIBILITY

Second Baccalaureate/Limited Status Applicants

For the past several years, UC San Diego has not accepted applications from students who have earned a four-year degree. There is no change in the current policy. However, if there were a policy change in the future, then applications received by the Undergraduate Admissions from non-degree-seeking students, or those who have earned a four-year degree, would be reviewed by the college provost’s office. Limited-status (non-degree-seeking) applicants and those seeking a second B.A. or B.S. would be held to the same restrictions as are other newly admitted students; fields that have restrictions for admission would also be restricted to these applicants.

DETERMINING YOUR GRADE-POINT AVERAGE

Your grade-point average for admission purposes is determined by dividing the total number of acceptable units you have attempted into the number of grade points you earned on those units. You may repeat courses that you completed with a grade lower than C (2.0).

The scholarship standard is expressed by a system of grade points and grade-point averages earned in courses accepted by the university for advanced-standing credit. Grade points are assigned as follows: for each unit of A, four points; B, three points; C, two points; D, one point; and F, no points.

CREDIT FROM ANOTHER COLLEGE

The university gives unit credit to transfer students for courses they have taken at other accredited colleges and universities, including some extension courses. To be accepted for credit, the courses must be consistent with those offered at the university, as determined by the Office of Admissions and Relations with Schools. Applications from students who have more than 135 quarter-units (ninety semester-units) of transfer credit and meet selection criteria are considered to have excess units (senior standing). Applicants in this category may be reviewed for admission if space permits.

Many students who plan to earn a degree at the university find it to their advantage to complete their freshman and sophomore years at a California community college. Each community college offers a full program of courses approved for transfer credit. The university will award graduation credit for up to seventy semester- (105 quarter-) units of transferable course work from a community college. Courses in excess of seventy semester-units will receive subject credit and may be used to satisfy university subject requirements.

The transferability of units from California community colleges and other postsecondary institutions is as follows: (1) the UC Office of the President determines unit transfer policies which are binding upon, and implemented by, each campus’ admissions office; (2) applicability of transferred units to breadth (general-education) requirements is determined for each UCSD college by its provost (see also “Transfer Agreements” below); (3) applicability of units toward the major is determined by the appropriate UCSD academic department. Before applying to UC San Diego you may obtain more information on many of these matters from the Office of Admissions and Relations with Schools. Applicants who have completed courses at a postsecondary institution outside the U.S. should have these records sent to the Office of Admissions and Relations with Schools as soon as possible. Advanced standing credit for appropriate courses will be decided on an individual basis.

Note: The University of California does not give credit for CLEP examinations.

UNIVERSITY OF CALIFORNIA/UC SAN DIEGO TRANSFER AGREEMENTS AND PREPARATION PROGRAMS

UC San Diego strongly recommends that transfer students complete lower-division breadth and general-education (B/GE) requirements prior to transfer. Transfer students are also strongly advised to complete all lower-division preparation for the major prior to enrollment.

The University of California, San Diego has established five transfer agreements and preparation programs. These agreements and programs—Transfer Admission Guarantee (TAG) with full certification of IGETC, UniversityLink, UC Transfer Reciprocity, Intersegmental General-Education Transfer Curriculum (IGETC) Agreement, and Articulation—allow students to fulfill all or most lower-division B/GE requirements prior to transfer.

Transfer students may fulfill their lower-division B/GE requirements with any of these agreements or programs, or they may fulfill them at UCSD. Completion of IGETC or UC Reciprocity agreements will satisfy the lower-division requirements of Earl Warren, Thurgood Marshall, Sixth, or John Muir College only. Students who follow IGETC or UC Reciprocity are welcome to apply to Eleanor Roosevelt or Revelle College. Courses completed prior to transfer will be applied toward the college’s own lower-division requirements. Revelle students must also complete the remainder of the college’s requirements. Students at Eleanor Roosevelt College must complete three academic quarters of the “Making of the Modern World” sequence in addition to the IGETC or UC Reciprocity requirements. They must also complete any of the college’s general education requirements which can be met by transfer course work. The college will make every effort to apply as much transfer course work as possible. Transfer applicants should refer to the catalog pages for individual departments’ specific courses for GPA requirements.

TRANSFER ADMISSION GUARANTEE (TAG)

TAG eligibility includes all California community colleges. The program will be offered for students transferring in the fall quarter only. California community college students* can participate in this guarantee if they complete the requirements and
submit a UC application during the filing period for fall (November 1–30). You must indicate TAG and Intersegmental General Education Transfer Curriculum (IGETC) on your UC application, and if you meet the TAG requirements, you will be guaranteed admission to UC San Diego. Full completion of IGETC is required. Send your IGETC certification form by July 15 (IGETC completed by end of the previous spring). TAG does not guarantee your choice of one of UC San Diego’s six colleges; please rank your college choices on your UC application.

*You must meet the definition of a California community college (CCC) student applying for admission with junior status (sixty UC transferable semester units or ninety UC transferable quarter units completed by spring):

- Enrolled at one or more CCCs for at least two regular terms (excludes summer sessions)
- Last college before UCSD admission is a CCC (excludes summer sessions)
- Completed at least thirty semester (forty-five quarter) UC transferable units at a CCC

You must earn a cumulative 3.0 minimum UC GPA by the end of fall term one year prior, and maintain a 3.0 GPA through the end of spring term, before you enroll at UC San Diego. You must be in good standing during your last regular term. Both UC English courses and the UC math course must be completed by the end of fall term prior to fall admission.

This agreement is available to U.S. citizens, permanent residents, AB540 students, and former UC students in good standing (except former UCSD students). TAG does not apply to students with senior class standing (students with ninety or more UC transferable semester units or 135 quarter units) from accredited four-year universities and community colleges combined.

Students cannot reach senior standing with only community college units completed. A maximum of seventy UC transferable community college semester or 105 quarter units will be accepted toward graduation. Subject credit is awarded for community college units taken beyond the seventy semester units or 105 quarter units. All UC-transferable units completed at a four-year university apply toward the limit of ninety semester units or 135 quarter units. Advanced Placement and International Baccalaureate units earned prior to high school graduation do not apply to the limit of ninety semester units or 135 quarter units.

TAG applies to general admission but not necessarily to an impacted major. We strongly recommend that applicants plan their course selection to prepare for their major. Students declaring one of the designated majors that require lower-division preparation prior to admission into the major may be admitted with pre-major status. For more information about major preparation course work, see the agreements by major between UC San Diego and your community college at http://www.assist.org. All transfer students are strongly advised to complete lower-division major requirements before enrolling at UC San Diego.

UNIVERSITYLINK

UniversityLink provides guaranteed admission to high school seniors who sign an agreement and successfully complete academic and program requirements at a participating community college. UniversityLink partnerships are currently established with the following colleges: Cuyamaca, East Los Angeles, Grossmont, Imperial Valley, Mira Costa, Palomar, San Diego City, San Diego Mesa, San Diego Miramar, and Southwestern.

TRANSFER PREPARATION PROGRAMS

The following avenues do not guarantee admission. However, they do allow you to fulfill your lower-division general-education requirements at the community college or other UC campus.

UC Transfer Reciprocity Agreement

Transfers who have attended any campus of the University of California and satisfied lower-division breadth and general-education (B/GE) requirements at that campus prior to transfer may consider these requirements satisfied for John Muir, Thurgood Marshall, Sixth, or Earl Warren college only. Students who follow UC Reciprocity are welcome to apply to Eleanor Roosevelt or Revelle college. Courses completed prior to transfer will be applied toward the college’s own lower-division requirements. Revelle students must also complete the remainder of the college’s requirements. Students at Eleanor Roosevelt College must complete three academic quarters of the “Making of the Modern World” sequence in addition to the UC Reciprocity requirements. They must also complete any of the college’s general education requirements which can be met by transfer course work. The college will make every effort to apply as much transfer course work as possible.

Transfers in this category should obtain a “certificate of completion of GE requirements” from the campus at which these requirements were satisfied. This can be in the form of a letter or memo addressed to your UCSD undergraduate college academic advising office.

Intersegmental General-Education Transfer Curriculum Agreement

Transfers from California community colleges can fulfill the UC lower-division breadth and general-education (B/GE) requirements by completing the Intersegmental General-Education Transfer Curriculum (IGETC). Completion of IGETC will satisfy the lower-division B/GE requirements at UCSD for Earl Warren, Thurgood Marshall, Sixth, or John Muir college only. Students who follow IGETC are welcome to apply to Eleanor Roosevelt or Revelle college. Courses completed prior to transfer will be applied toward the college’s own lower-division requirements. Revelle students must also complete the remainder of the college’s requirements. Students at Eleanor Roosevelt College must complete three academic quarters of the “Making of the Modern World” sequence in addition to the IGETC requirements. They must also complete any of the college’s general education requirements, which can be met by transfer course work. The college will make every effort to apply as much transfer course work as possible.

Transfers should obtain the “IGETC Certification” from their community college and submit it to the Office of Admissions and Relations with Schools.

Students are encouraged to provide this certification prior to the start of classes at UC San Diego.

Articulation

UC San Diego has major preparatory agreements with California community colleges for all majors. These agreements can be found on the ASSIST Web site (http://www.assist.org), which includes statewide transfer information.

INTERNATIONAL APPLICANTS

International applicants must meet highly rigorous selection criteria for admission.

Courses at UC San Diego are conducted in English, and every student must have sufficient command of that language to benefit from instruction. To demonstrate such command, students whose native language is not English will be expected to take the Test of English as a Foreign Language (TOEFL). Arrangements for taking this test may be made by writing to the Educational Testing Service, TOEFL Registration Office, P.O. Box 6151, Princeton, New Jersey 08541-6151, U.S.A. Online information is available at http://www.toefl.org. The minimum acceptable TOEFL score is 550 (paper-based exam) or 83 (Internet-based exam).

In lieu of the TOEFL, a score of 7 (academic module) on the International English Language Testing System (IELTS) will also be accepted. Information is available at http://www.ielts.org.

The results of this test will be used to determine whether the applicant’s command of English is sufficient to enable him or her to pursue studies effectively at UC San Diego. Students whose command of English is slightly deficient will be required to take an English course and, therefore, a reduced academic program.

In addition to an adequate English-language background, international students must have sufficient funds available to cover all fees; living, and other expenses; and transportation connected with their stay in the United States (see “Fees and Expenses”).

International students are required to obtain health insurance for themselves and dependents who accompany them. Suitable insurance policies and additional information are available at the Student Health Service and at the International Center.

Address all communications concerning undergraduate admission of international students to University of California, San Diego, Office of Admissions and Relations with Schools, Student Affairs, 9500 Gilman Drive # 0021, University of California, San Diego, La Jolla, CA 92093-0021, e-mail: infointernational@ad.ucsd.edu. How to Apply for Admission

Undergraduate admissions applications are available online in the fall at the UC Pathways Web site (http://www.universityofcalifornia.edu/apply). Follow the accompanying directions carefully. If you choose to print and mail your application, please send it to...
Applications need to rank the undergraduate colleges at UC San Diego (Revelle, John Muir, Eleanor Roosevelt, Thurgood Marshall, Earl Warren, and Sixth) in order of preference, starting with their first choice when filing out the UC application. Each college has enrollment goals that limit the number of new freshmen and transfer students, and students are not always assigned to their first-choice college. The Office of Admissions and Relations with Schools will assign a college if the alternate choices are not indicated.

Transcripts

If you are admitted for the fall term, you must arrange to have final, official transcripts sent to the Admissions Office no later than July 15. If you attended school outside the United States, see the information in the box below.

Freshman Applicants: If you are admitted you must arrange to have an official, final high school transcript (showing your date of graduation) sent to the campus where you plan to enroll. Unless a campus requests it, do not send a sixth or seventh semester transcript.

Transfer Applicants: If you are admitted, you will be asked to submit official transcripts from all schools and colleges you attended, including high school, regardless of the length of attendance or whether you believe the credit is transferable. Some campuses may request transcripts prior to admission.

Transcript Information for Applicants Who Have Attended School Outside the United States

The Admissions Office may make a preliminary evaluation of your application based on the information you provide on your application. However, if you are admitted, the university must receive an official academic record directly from each institution you attended, beginning with grade nine, and up to and including, the school or college/university you currently attend.

Each academic record must list the dates you attended the institution, the titles of courses and examinations you completed, the grades (marks) you received, the credit, hours or units earned, and any degree or diploma you may have received. In the United States, the academic record is called a “transcript.” It may be called by another name—such as leaving certificate, maturity certificate, baccalauréat, or baccalauréat—in your country.

Because it may take some time for schools outside the U.S. to forward your records to the university, you are encouraged to send a legible photocopy of your official foreign academic records directly to the Admissions Office at each campus to which you apply.

The university recognizes that it may be difficult to obtain foreign records in the event of political upheaval or natural disaster; however, these situations are rare. Failure to provide official records may jeopardize your enrollment at the university. The transcripts and other documents that you submit as part of your application become the property of the university; they cannot be returned to you or forwarded in any form to another college or university.

Checklist for Applicants

1. File an application on the University of California’s Pathways Web site (http://www.universityofcalifornia.edu/apply) during the November filing period. Fee may be paid by credit card, or you may ask the UC application processing services to bill you by mail.

2. You must rank UC San Diego colleges in order of preference. Be sure to sign the form.

3. Complete your personal statement.

4. Fill in the self-reported academic data and test information carefully and accurately.

5. Take the ACT Assessment plus Writing or the SAT Reasoning Test, and SAT Subject Tests (in two different areas) if you are a freshman applicant no later than December of your senior year. Refer to the Examination Requirement section above for full details.

6. Request that your school(s) send transcripts and other required documents directly to Office of Admissions and Relations with Schools ATTN: TRANSCRIPTS University of California, San Diego 9500 Gilman Dr. #0021 La Jolla, CA 92093-0021

Final high school transcripts, and all college transcripts for transfer students, must be on file in the UCSD Office of Admissions and Relations with Schools by July 15.

Notification of Admission

Admission—Freshmen

If you are a freshman applicant and you filed your application on time, UC San Diego will notify you, between mid-March and March 31, whether you have been admitted. All offers of admission are provisional until the receipt and verification of your test results and official final high school transcript (and college transcript, if applicable). If you are offered admission based on your self-reported academic record, official documents will be used to verify the self-reported academic data you submitted. Offers of admission will be rescinded if a) there are discrepancies between your official transcripts and your self-reported academic record; b) you do not complete the “a–g” courses listed as “in progress” or “planned;” or c) you do not complete your twelfth-grade courses at the same academic level as in previous course work.

Admission—Transfer

If you are applying to transfer for the fall quarter and you submitted your application on time, UC San Diego will notify you between mid-March and April 30. All offers of admission are provisional until the receipt and verification of all official transcripts. If you are offered admission based on your self-reported academic record, your official high school transcript
and transcripts from all colleges attended will be used to verify the self-reported academic data you submit. Offers of admission will be rescinded if a) there are discrepancies between your official transcripts and your self-reported academic record; b) any college or school attended is omitted from your application; c) you do not complete the courses listed as "in progress" or "planned;" or d) the specified GPA is not maintained for courses "in progress" or "planned."

After receipt of notification of admission,
1. Read the information in your online admission notification carefully, noting any special provision governing your admission.
2. Request that any outstanding transcripts be forwarded to the Office of Admissions and Relations with Schools by the stated deadline.
3. Complete and submit to the Office of Admissions and Relations with Schools the Statement of Intent to Register (SIR), online or by mail, and the online Statement of Legal Residence (SLR). Please note the deadline to return your SIR. If it is submitted or postmarked after this date, you may be denied enrollment due to space limitations. The deadline for return of your SIR and SLR is May 1 for freshmen and June 1 for transfer students.

STATEMENT OF INTENT TO REGISTER (SIR)

Upon receipt of your Statement of Intent to Register (SIR), the Office of Admissions and Relations with Schools provides information to various campus offices including the Financial Aid Office, Housing and Dining Services, and your college provost. You will then receive additional information from each of these offices. The $100 nonrefundable fee accompanying your SIR (if required at that time) is applied toward payment of the university registration fee for the quarter of your admission.

Even though you may be admitted to more than one campus of the University of California, you can return the SIR to only one campus.

STUDENT HEALTH REQUIREMENT

Entering students are required to complete a Medical History form and to send it to the Student Health Center. Forms and complete instructions are usually sent to entering students well in advance of registration, or they may be obtained at the Student Health Center. Information submitted to the Student Health Service is kept confidential and is carefully reviewed to help provide individualized health care.

Mandatory Health Insurance: The University of California has established mandatory health insurance as a non-academic condition of enrollment for undergraduates. Health insurance packages will be available for year-round coverage. The cost will be factored into grants, loans, and work-study programs offered to students who receive financial assistance. Students already covered by adequate health insurance can waive the requirement. The new campus-based insurance plan will not replace the primary medical care and referral services provided by the Student Health Service.

Hepatitis B Immunization: The California State Legislature mandates that first-time enrollees at the University of California who are eighteen years of age or younger provide proof of full immunity against Hepatitis B prior to their enrollment. All students who accept UC San Diego's offer of admission, and who will still be eighteen years old by the beginning of their first quarter, will receive the Hepatitis B information by campus e-mail. The immunization consists of a series of three vaccinations, which you must start in time to complete the sequence by your second quarter of enrollment. You can receive further information through your health care provider or county health department. You can also review the Hepatitis B FAQs from UC San Diego's Student Health Service at http://studenthealth.ucsd.edu/hepbFAQs.shtml.

Students are urged also to submit a physical examination form completed by their family physician, particularly if they plan to take part in intercollegiate athletic competition. Routine physical examinations are not provided by the Student Health Service. An additional student health plan that provides additional benefits off campus may be purchased at the time registration fees are paid. Student health insurance is also mandatory for all international and graduate level students and is a condition of enrollment.

REAPPLICATION

An application for admission is effective only for the quarter for which it is submitted. If you are ineligible for admission, or if you are admitted and do not register, you must file a new application to be considered for a later quarter. The selection criteria in effect for the new term must be met.

If you have been admitted to the university, enrolled, and paid registration fees, but did not attend, you will need to contact your undergraduate college to withdraw; contact the Registrar’s Office for information on refunding your registration fees.

FEES AND EXPENSES

The exact cost of attending the University of California, San Diego will vary according to personal tastes and financial resources of the individual. For planning and budgeting purposes, check the UCSD Web pages for prospective students concerning estimated expenses. All estimates are based on information available at the time of publication, and are subject to change.

It is possible to live simply and to participate moderately in the life of the student community on a limited budget. The university can assist the student in planning a budget by indicating certain and probable expenses. For information regarding student employment, loans, scholarships, and other forms of financial aid at UC San Diego, see “Campus Services and Facilities” in this catalog.

ADVANCED PLACEMENT CREDIT: APPLICATION TO COLLEGE AND MAJOR REQUIREMENTS

EXAM AND UNITS FOR UNIVERSITY CREDIT

- Art (Studio)
 - Drawing Portfolio—8
 - 2D Portfolio—8
 - 3D Portfolio—8
 (8-unit maximum for all tests)
- Art—History—8
- Biology—8
- Chemistry—8
- Computer Science
 - A (Java Programming)—2
 - AB (Java Programming, and Data Structures and Object-Oriented Programming)—4
 (4-unit maximum for both tests)
- Economics
 - Microeconomics—4
 - Macroeconomics—4
- English
 - Composition and Literature—8
 - Language and Composition—8
 (8-unit maximum for both tests)
- Environmental Science—4
- Geography, Human—4
- Government and Politics: United States—4
- Government and Politics: Comparative—4
- History: United States—8
- History: European—8
- History: World—8
- Language
 - Chinese—8
 - French—8
 - German—8
 - Italian—8
 - Spanish—8
- Latin
 - Latin: Virgil—4
 - Latin: Literature—4
- Literature
 - French—8
 - Spanish—8
- Mathematics
 - Calculus AB—4
 - Calculus BC—8
 (8-unit maximum for both tests)
- Music
 - Theory—8
- Physics
 - Physics B—8
 - Physics C Mechanics—4
 - Physics C Electricity and Magnetism—4
 (8-unit maximum for all three tests)
• Psychology—4
• Statistics—4

UCSD COURSE EXEMPTIONS
(OR USE ON MAJOR)

• Art (Studio)
 None

• Art History
 None

• Biology
 Score of 4 or 5 = exempts BILD 1, 2, and 3. Score of 3 = BILD 10; may take BILD 1, 2, 3 for credit.

• Chemistry
 Score of 3 = exempts Chem. 4 or 11. Score of 4 = exempts Chem. 4, 11 or 6A; may take Chem. 6AH, 6BH, 6CH for credit. Score of 5 = exempts Chem. 6A-B-C or Chem. 11; encouraged to take Chem. 6AH, 6BH, 6CH for credit.

• Computer Science
 Score of 4 on A = exempts CSE 8A and 8AL; Student should take CSE 11. Score of 5 on A = exempts CSE 11. Score of 4 or 5 on AB = exempts CSE 11. Score of 5 on AB = exempts CSE 12 with departmental approval.

• Economics
 Score of 3 AP Micro = Econ. 1. Score of 5 AP Micro = Econ. 3. Score of 3, or 4 = elective units.

• English
 Score of 3, 4, or 5 meets Entry Level Writing requirement.

• Environmental Science
 Score of 4 or 5 = exempts SIO 10

• Geography, Human
 None

• Government and Politics: United States
 Score of 3, 4, or 5 satisfies American History and Institutions. Score of 5 = exempts Poli. Sci. 10.

• Government and Politics: Comparative
 Score of 5 = exempts Poli. Sci. 11

• History: United States
 Score of 3, 4, or 5 = exempts 2 quarters U.S. History: May take HILD 2A, 2B, or 2C. Satisfies American History and Institutions.

• History: European
 None

• History: World
 None

• Language
 Score of 3 = exempts Ling. 1C/1CX, Chinese 10C, LiLT 1C/1X, LiLT 1C. Score of 4 = exempts Ling. 1D/1DX or Lit. 2A, Chinese 20A, LiLT 2A. Score of 5 = exempts Lit. 2B, Chinese 20B, LiLT 50.

• Latin
 Score of 3, 4, or 5 = exempts LTLA 1, 2, 3

• Literature
 Score of 3 = exempts Ling. 1D/1DX or Lit. 2A. Score of 4 = exempts Lit. 2B. Score of 5 = exempts Span. Lit. 2C or French Lit. 50.

• Mathematics
 Score of 3 on AB exam = exempts Math. 10A.
 Score of 3 on BC exam = exempts Math. 20A or = exempts Math. 10A, 10B. Score of 4 or 5 on BC exam = exempts Math. 20A, 20B or 10A, 10B. Score of 4 or 5 on AB exam = exempts Math. 20A or 10A.

• Music
 None

• Physics
 B exam = elective credit and exempts Phys. 10.
 C exam (Mech.) score of 3 or 4 = exempts Phys. 1A.
 C exam (Mech.) score of 5 = exempts Phys. 2A, 4A.
 C exam (E&M) score of 3, or 4, or 5 = exempts Phys. 1B.
 C exam (E&M) score of 5 = exempts Phys. 2B or 4C.

• Psychology
 Score of 4 or 5 = exempts Psychology 1

• Statistics
 None

REVELLE COLLEGE

• Art (Studio)
 Fulfills fine arts requirement and 1 course of the noncontiguous area of focus or may meet 2 courses of the noncontiguous area of focus

• Art History
 Fulfills fine arts requirement and 1 course of the noncontiguous area of focus or may meet 2 courses of the noncontiguous area of focus

• Biology
 Score of 3, 4, or 5 meets Revelle biology requirement

• Chemistry
 Partial completion of natural science requirement

• Computer Science
 Partial completion of noncontiguous area of focus

• Economics
 Each score of 3, 4, or 5 exempts student 1 course on social science requirement

• English
 2 courses of the noncontiguous area of focus or 8 units of elective credit

• Environmental Science
 Elective units or may meet 1 course of noncontiguous area of focus

• Geography, Human
 4 units of elective credit or may meet 1 course of noncontiguous area of focus

• Government and Politics: United States
 1 course toward social science requirement or 1 course of noncontiguous area of focus

• Government and Politics: Comparative
 1 course toward social science requirement or 1 course of noncontiguous area of focus

• History: United States
 2 courses toward social science requirement or 2 courses of noncontiguous area of focus

• History: European
 2 courses of the noncontiguous area of focus

• History: World
 2 courses of the noncontiguous area of focus

• Language
 Score of 4 or 5 meets language proficiency requirement

• Latin
 Usually prepares student to take Lit/Latin 100; may meet 2 courses of the noncontiguous area of focus or may be used as 8 units of elective credit.

• Literature
 Score of 3, 4, or 5 meets proficiency requirement

• Mathematics
 AB exam = 1 course toward math. requirement; BC exam = 2 courses toward math. requirement.

• Music
 Fulfills fine arts requirement and 1 course of the noncontiguous area of focus

• Physics
 B exam = meets 1 course of the natural science requirement. C exam = (Mech. or E&M) each 4 units can meet 1 course of the natural science requirement.

• Psychology
 1 course toward social science requirement or 1 course of the noncontiguous area of focus

• Statistics
 4 units of elective credit

MUIR COLLEGE

• Art (Studio)
 8 units of elective credit

• Art History
 8 units of elective credit

• Biology
 Score of 3 exempts BILD 10. Score of 4 or 5 exempts BILD 1, 2 and 3.

• Chemistry
 Refer to “UCSD Course Exemptions”

• Computer Science
 2-4 units of elective credit. If applied to major, refer to “UCSD Course Exemptions”

• Economics
 Refer to “UCSD Course Exemptions”

• English
 8 units of elective credit and clears Entry Level Writing requirement (8 units maximum to both tests)

• Environmental Science
 Score of 4 or 5 exempts SIO 10

• Geography, Human
 4 units of elective credit

• Government and Politics: United States
 Refer to “UCSD Course Exemptions” and American History and Institutions requirement

• Government and Politics: Comparative
Refer to “UCSD Course Exemptions”

- **History: United States**
 Refer to “UCSD Course Exemptions” and clears American History and Institutions requirement. May take HILD 2A OR 2B OR 2C to complete G.E. sequence.

- **History: European**
 Score of 3, 4, 5 exempts 2 courses of European history. 3rd course by petition after student consults with Muir advisor.

- **History: World**
 Score of 3, 4, 5 exempts 2 courses of non-Western history. 3rd course by petition after student consults with Muir advisor.

- **Language**
 See “UCSD Course Exemptions.” Determines placement in language sequence and clears 2 courses in a G.E. sequence if student chooses the Foreign Language option.

- **Latin**
 Refer to “UCSD Course Exemptions”

- **Literature**
 Refer to “UCSD Course Exemptions.” Determines placement in language sequence if student chooses the Foreign Language option.

- **Mathematics**
 Refer to “UCSD Course Exemptions”

- **Music**
 8 units elective credit only

- **Physics**
 Refer to “UCSD Course Exemptions”

- **Psychology**
 Score of 4 or 5 = exempts Psychology 1

- **Statistics**
 4 units of elective credit

THURGOOD MARSHALL COLLEGE

- **Art (Studio)**
 2 courses toward Disciplinary Breadth if noncontiguous to major

- **Art History**
 1 course toward Fine Arts requirement

- **Biology**
 1 course toward Natural Science requirement. May also apply 1 course toward Disciplinary Breadth if noncontiguous to major.

- **Chemistry**
 1 course toward Natural Science requirement. May also apply 1 course toward Disciplinary Breadth if noncontiguous to major.

- **Computer Science**
 A exam score of 3, 4, 5 = 2 units of elective credit. AB exam score of 3 = 4 units of elective credit. AB exam score of 4, 5 = 1 course toward Math., Statistics, and Logic requirement or 1 course toward Disciplinary Breadth if noncontiguous to major.

- **Economics**
 Score of 3, 4 = 4 units of elective credit. Score of 5 = 1 course toward Disciplinary Breadth if noncontiguous to major.

- **English**
 8 units of elective credit and clears Entry Level Writing requirement (8 units maximum for both tests)

- **Environmental Science**
 Score of 3 = 4 units of elective credit. Score of 4, 5 = 1 course Natural Science requirement.

- **Geography, Human**
 4 units of elective credit

- **Government and Politics: United States**
 Score of 3, 4 = 4 units of elective credit. Score of 5 = 1 course toward Disciplinary Breadth if noncontiguous to major.

- **Government and Politics: Comparative**
 Score of 3, 4 = 4 units of elective credit. Score of 5 = 1 course toward Disciplinary Breadth if noncontiguous to major.

- **History: United States**
 2 courses toward Disciplinary Breadth if noncontiguous to major

- **History: European**
 2 courses toward Disciplinary Breadth if noncontiguous to major

- **History: World**
 2 courses toward Disciplinary Breadth if noncontiguous to major

- **Language**
 2 courses toward Disciplinary Breadth if noncontiguous to major

- **Latin**
 1 course toward Disciplinary Breadth if noncontiguous to major

- **Literature**
 2 courses toward Disciplinary Breadth if noncontiguous to major

- **Mathematics**

- **Music**
 2 courses toward Disciplinary Breadth requirement if noncontiguous to major

- **Physics**
 If 4 units earned = 1 course toward Natural Science requirement or 1 course toward Disciplinary Breadth if noncontiguous to major. If 8 units earned = 1 course toward Natural Science requirement and 1 course toward Disciplinary Breadth if noncontiguous to major.

- **Psychology**
 Score of 3 = 4 units of elective credit. Score of 4, 5 = 1 course toward Disciplinary Breadth if noncontiguous to major.

- **Statistics**
 4 units of elective credit

WARREN COLLEGE

- **Art (Studio)**
 2 courses toward Visual Arts or Humanities PoF or Area Study

- **Art History**
 2 courses toward Visual Arts or Humanities PoF or Area Study

- **Biology**
 Score of 3 = 2 courses toward Science and Technology or Fundamentals of Biology PoF. Score of 4 or 5 meets 2 courses toward Biology or Science and Technology PoF or Fundamentals of Biology PoF. May not take BILD 1, 2, 3, or 10.

- **Chemistry**
 Score of 3 meets 2 courses toward Science and Technology PoF. Score of 4 meets 2 courses toward Science and Technology PoF; or 1 course toward Chemistry or Science and Technology PoF.

- **Computer Science**
 A exam, score 3, 4, 5 = 2 units of elective credit. AB exam, score 3, 4, 5 = 1 course toward Formal Skills or Science and Technology PoF.

- **Economics**
 Each score of 3 or 4 meets 1 course toward Perspectives of Social Science PoF. Each score of 5 meets 1 course toward Perspectives of Social Science or Economics PoF.

- **English**
 8 units of elective credit and clears Entry Level Writing requirement (8 units maximum for both tests)

- **Environmental Science**
 1 course toward Science and Technology PoF.

- **Geography, Human**
 4 units of elective credit

- **Government and Politics: United States**
 1 course toward Perspectives in Social Science PoF or Political Science PoF or Area Study. Satisfies American History and Institutions requirement.

- **Government and Politics: Comparative**
 1 course toward Perspectives in Social Science PoF or Political Science PoF or Political Science Area Study

- **History: United States**
 2 courses toward History or Humanities PoF or Area Study

- **History: European**
 2 courses toward History or Humanities PoF or Area Study

- **History: World**
 2 courses toward History or Humanities PoF or Area Study

- **Language**
 Score of 3 meets 2 courses toward a Foreign Language and Culture PoF or Area Study; score of 4 meets 2 courses toward a Foreign Language and Culture PoF or Area Study or 1 course toward a Humanities or Literature PoF.
or Area Study; score of 5 meets 2 courses toward a Foreign Language and Culture, Literature, or Humanities PoC or Area Study.

- **Latin**
 Score of 3, 4, or 5 either test meets 1 course toward Classical Studies, Humanities, or Literature PoC or Area Study.

- **Literature**
 Score of 3 meets 2 courses toward a Foreign Language and Culture or 1 course toward Literature, Humanities PoC or Area Study; score of 4 or 5 meets 2 courses toward a Foreign Language and Culture or 2 courses toward Literature, Humanities PoC or Area Study; score of 5 meets 2 courses toward a Foreign Language and Culture, Literature, or Humanities PoC or Area Study.

- **Mathematics**
 - AB exam meets 1 course toward formal skill requirement; BC exam completes 2 courses formal skills requirement.
 - Music
 2 courses toward Humanities or Music PoC or Area Study

- **Physics**
 B exam: score of 3, 4, or 5 meets 2 courses toward Science and Technology PoC. Either C exam: score of 3 or 4 meets 1 course toward Science and Technology PoC. Score of 5 meets 1 course toward Physics or Science and Technology PoC.

- **Psychology**
 1 course toward Perspectives in Social Science PoC or Psychology PoC or Area Study

- **Statistics**
 1 course toward Formal Skills

ELEANOR ROOSEVELT COLLEGE

- **Art (Studio)**
 1 course toward Group B fine arts requirement

- **Art History**
 1 course toward Group B fine arts requirement

- **Biology**
 Score of 3, 4, or 5 fulfills the natural science requirement.

- **Chemistry**
 Score of 3, 4, or 5 fulfills the natural science requirement.

- **Computer Science**
 A exam = 2 units elective credit. AB exam = 1 of 2 courses quantitative/formal skills requirement.

- **Economics**
 4-8 units of elective credit

- **English**
 8 units of elective credit and clears Entry Level Writing requirement (8 units maximum for both tests)

- **Environmental Science**
 Meets 1 course toward natural science requirement

- **Geography, Human**
 4 units of elective credit

- **Government and Politics: United States**
 4 units of elective credit

- **Government and Politics: Comparative**
 4 units of elective credit

- **History: United States**
 8 units of elective credit

- **History: European**
 1 course may apply toward regional specialization. See ERC academic counselor for details.

- **History: World**
 8 units of elective credit

- **Language**
 Score of 3 = 8 units of elective credit Score of 4 or 5 meets language proficiency requirement

- **Latin**
 Must take the Latin proficiency exam

- **Literature**
 Meets language proficiency requirement

- **Mathematics**
 AB exam = 1 course toward quantitative/formal skills requirement. BC exam completes quantitative formal skills requirement.

- **Music**
 1 course toward Group B fine arts requirement

- **Physics**
 B exam = 2 courses for natural science; C exam (E&M) = 1 course for natural science; C exam (Mech.) = 1 course for natural science for a total of 2 courses maximum. Physics B or Physics C exam = 1 course toward Analytical Methodologies/Scientific Method.

- **Psychology**
 4 units of elective credit

- **Statistics**
 1 course toward quantitative/formal skills requirement

SIXTH COLLEGE

- **Art (Studio)**
 Score of 3, 4, or 5 meets 1 course toward Art Making

- **Art History**
 Score of 3, 4, or 5 meets 1 course toward Narrative, Aesthetic, and Historical Reasoning

- **Biology**
 Score of 3, 4, or 5 meets 1 course toward Analytical Methodologies/Scientific Method

- **Chemistry**
 Score of 3, 4, or 5 meets 1 course toward Analytical Methodologies/Scientific Method

- **Computer Science**
 Score of 4 or 5 meets 1 course toward Information Technology Fluency requirement

- **Economics**
 Score of 4 or 5 meets 1 course toward Social Analysis. Score of 3 = elective credit.

- **English**
 8 units elective credit and clears Entry Level Writing requirement (8 units maximum for both tests)

- **Environmental Science**
 Score of 4 or 5 meets 1 course toward Analytical Methodologies/Scientific Method

- **Geography, Human**
 4 units of elective credit

- **Government and Politics: United States**
 4 units of elective credit

- **Government and Politics: Comparative**
 4 units of elective credit

- **History: United States**
 8 units of elective credit

- **History: European**
 1 course may apply toward regional specialization. See ERC academic counselor for details.

- **History: World**
 8 units of elective credit

- **Language**
 Score of 3, 4, or 5 meets 1 course toward Narrative, Aesthetic, and Historical Reasoning

- **Latin**
 Must take the Latin proficiency exam

- **Literature**
 Meets language proficiency requirement

- **Mathematics**
 AB exam = 1 course toward quantitative/formal skills requirement. BC exam completes quantitative formal skills requirement.

- **Music**
 1 course toward Group B fine arts requirement

- **Physics**
 B exam = 2 courses for natural science; C exam (E&M) = 1 course for natural science; C exam (Mech.) = 1 course for natural science for a total of 2 courses maximum. Physics B or Physics C exam = 1 course toward Analytical Methodologies/Scientific Method.

- **Psychology**
 4 units of elective credit

- **Statistics**
 1 course toward quantitative/formal skills requirement

INTERNATIONAL BACCALAUREATE CREDITS

EXAM AND UNITS FOR UNIVERSITY CREDIT

- Anthropology—8
- Biology—8
UCSD COURSE EXEMPTIONS
(OR USE ON MAJOR)

- **Anthropology**
 Score of 5, 6, or 7 = exempts ANTH 1

- **Biology**
 Score of 5 = exempts BILD 10. Score of 6 or 7 = exempts BILD 1, 2, 3.

- **Chemistry**
 Score of 5 = exempts Chem. 6A. Score of 6 = exempts Chem. 6A and 6C. Score of 7 = exempts 6A, 6B, 6C.

- **Computing Studies**
 Score of 5, 6, or 7 = elective credit only

- **English**
 Score of 5, 6, or 7 meets Entry Level Writing Requirement

- **History of the Americas**
 Score of 5, 6, or 7 = exempts LTLA 1, 2, 3.

- **Latin**
 Score of 5, 6, or 7 = exempts LTLA 1, 2, 3.

- **Linguistics**
 Score of 5 = exempts LING 1D/1DX. Score of 6 or 7 = exempts LING 1D/1DX

- **Literature**
 Elective credit only

- **Mathematics**
 Score of 5, 6, or 7 = See Math Placement office

- **Music**
 Elective credit only

- **Physics**
 Score of 5, 6, or 7 = Phys. 10 or 11, or 1A and 1B or 2A, 2B, or 4A, 4C

- **Psychology**
 Score of 5, 6, or 7 = exempts Psychology 1

REVELLE COLLEGE

- **Anthropology**
 Meets 2 quarters of social science requirement

- **Biology**
 Meets biology requirement

- **Chemistry**
 Partial completion of natural science requirement

- **Computing Studies**
 2 courses for area of focus if noncontiguous to major

- **English**
 Elective credit only (fulfills UC Entry Level Writing Requirement)

- **History of the Americas**
 Meets 2 quarters of social science requirement

- **Latin**
 Usually prepares student to pass proficiency exam or may meet 2 courses of area of focus if noncontiguous to major

- **Linguistics**
 5 = need 1 course to meet proficiency requirement. 6 or 7 = meets language proficiency requirement.

- **Literature**
 2 courses for area of focus if noncontiguous to major

- **Mathematics**
 5, 6, or 7 = exempts Math. 10A or 20A and 4 units of elective credit. If series and differential equations completed, may petition to receive credit for both 10A and 10B or 20A and 20B.

- **Music**
 Meets fine arts requirement

- **Physics**
 Meets 2 quarters of natural science requirement

- **Psychology**
 Meets 2 quarters of social science requirement

MUIR COLLEGE

- **Anthropology**
 Exempts ANTH 1

- **Biology**
 5 = BILD 10, 6 or 7 = BILD 1, 2, 3

- **Chemistry**
 Score of 5 = exempts Chem. 6A. Score of 6 = exempts Chem. 6A and C. Score of 7 = exempts Chem 6A, B, and C.

- **Computing Studies**
 5, 6, or 7 = elective credit only

- **English**
 Elective credit only (fulfills UC Entry Level Writing Requirement)

- **History of the Americas**
 2 courses toward Disciplinary Breadth if noncontiguous to major

- **Latin**
 Score of 5, 6, or 7 = LTLA 1, 2, 3

THURGOOD MARSHALL COLLEGE

- **Anthropology**
 2 courses toward Disciplinary Breadth if noncontiguous to major

- **Biology**
 1 course toward Natural Science requirement and 1 course toward Disciplinary Breadth if noncontiguous to major

- **Chemistry**
 1 course toward Natural Science requirement and 1 course toward Disciplinary Breadth if noncontiguous to major

- **Computing Studies**
 Elective credit only

- **English**
 Elective credit only (fulfills UC Entry Level Writing Requirement)

- **History of the Americas**
 2 courses toward Disciplinary Breadth if noncontiguous to major

- **Latin**
 2 courses toward Disciplinary Breadth if noncontiguous to major

- **Linguistics**
 2 courses toward Disciplinary Breadth if noncontiguous to major

- **Literature**
 Elective credit only

- **Mathematics**
 1 course toward Math., Statistics, and Logic requirement, and 4 units elective credit

- **Music**
 Elective credit only

- **Physics**
 1 course toward Natural Science requirement, and 1 course toward Disciplinary Breadth if noncontiguous to major

- **Psychology**
 2 courses toward Disciplinary Breadth if noncontiguous to major
WARREN COLLEGE

- Anthropology
 2 courses toward Anthropology PoF or Area Study
- Biology
 2 courses toward Science and Technology or Fundamentals of Bio PoF
- Chemistry
 5 or 2 courses toward Science and Technology PoF. 6 or 7 = 2 courses toward Science and Technology or Chem. PoF
- Computing Studies
 2 courses toward Formal Skills or Science and Technology PoF
- English
 Elective credit only (fulfills UC Entry Level Writing Requirement)
- History of the Americas
 2 courses toward History or Humanities PoF or Area Study
- Latin
 2 courses toward Lit or Humanities PoF or Area Study
- Linguistics
 2 courses toward Foreign Languages and Culture PoF or Area Study
- Literature
 2 courses toward Lit or Humanities PoF or Area Study
- Mathematics
 5, 6, or 7 = 2 courses toward Math. 10A or 20A and 4 units of elective credit. If series and differential equations completed, may petition to receive credit for both 10A and 10B or 20A and 20B.
- Music
 2 courses toward Music or Humanities PoF or Area Study
- Physics
 2 courses toward Science and Technology PoF
- Psychology
 2 courses toward Perspective of Social Science PoF or Psychology PoF or Area Study

ELEANOR ROOSEVELT COLLEGE

- Anthropology
 8 units elective credit
- Biology
 Completes 2-course requirement in natural science
- Chemistry
 Completes 2-course requirement in natural science
- Computing Studies
 Completes 2-course requirement in quantitative / formal skills
- English
 Elective credit only (fulfills UC Entry Level Writing Requirement)
- History of the Americas
 8 units elective credit
- Latin
 Usually adequate to pass language proficiency
- Linguistics
 5 = need 1 course to meet proficiency requirement. 6 or 7 = meets language proficiency requirement.
- Literature
 8 units of elective credit
- Mathematics
 Completes 2-course requirement in quantitative/ formal skills
- Music
 1 course toward Group B fine arts
- Physics
 Completes 2-course requirement in natural science
- Psychology
 8 units of elective credit
- Sixth College
- Anthropology
 1 course toward Social Analysis
- Biology
 1 course toward Analytic Methodologies / Scientific Method
- Chemistry
 1 course toward Analytic Methodologies / Scientific Method
- Computing Studies
 Elective credit
- English
 Elective credit only (fulfills UC Entry Level Writing Requirement)
- History of the Americas
 1 course toward Narrative, Aesthetic, and Historical Reasoning
- Latin
 1 course toward Narrative, Aesthetic, and Historical Reasoning
- Linguistics
 1 course toward Narrative, Aesthetic, and Historical Reasoning
- Literature
 Elective credit
- Mathematics
 1 course toward Structured Reasoning
- Music
 Elective credit
- Physics
 1 course toward Analytic Methodologies / Scientific Method
- Psychology
 1 course toward Social Analysis

INTERSEGMENTAL GENERAL-EDUCATION TRANSFER CURRICULUM (IGETC)

SUMMARY OUTLINE

Completion of the Intersegmental General-Education Transfer Curriculum (IGETC) will permit a student to transfer from a community college to a campus in the University of California system without the need, after transfer, to take additional lower-division, general-education courses.

It should be noted that completion of the IGETC is not a requirement for transfer to UC (with the exception of students following the Transfer Admission Guarantee (TAG) Program), nor is it the only way to fulfill the lower-division, general-education requirements of UC prior to transfer. Depending on a student’s major and field of interest, the student may find it advantageous to take courses fulfilling the general-education requirements of the UC campus or college to which the student plans to transfer. IGETC is applicable at Earl Warren, Sixth, Thurgood Marshall, and John Muir colleges only. Courses completed prior to transfer will be applied toward the college’s own lower-division requirements. Revelle students must also complete the remainder of the college’s requirements. Students at Eleanor Roosevelt College must complete three academic quarters of the “Making of the Modern World” sequence in addition to the IGETC requirements. They must also complete the remainder of the college’s general-education requirements.

Transfers should obtain the “IGETC Certification” from their community college and submit it to the Office of Admissions and Relations with Schools. Students are strongly encouraged to provide the IGETC certification prior to the start of classes at UC San Diego English Communication

One course, English Composition, three semester- (four to five quarter-) units; this course is a prerequisite to Critical Thinking.

One course, Critical Thinking-English Composition, three semester- (four to five quarter-) units; strong emphasis on writing; prerequisite: English Composition.

Mathematical Concepts and Quantitative Reasoning

One course, Mathematics/Quantitative Reasoning, three semester- (four to five quarter-) units.

Arts and Humanities

Three courses, at least one course in arts, and at least one course in humanities, nine semester- (twelve to fifteen quarter-) units.

Social and Behavioral Sciences

Three courses in at least two disciplines or an interdisciplinary sequence, social and behavioral sciences, nine semester- (twelve to fifteen quarter-) units.
Physical and Biological Sciences

One course in each area, at least one must include a laboratory; two courses, seven to nine semester- (nine to twelve quarter-) units.

Language Other than English

Proficiency equivalent to two years' high school study in the same language.
Estimated 2010–11 Expenses for Undergraduate Residents of California

(Subject to change)

<table>
<thead>
<tr>
<th>Budget Category</th>
<th>Living With Parents</th>
<th>University Housing</th>
<th>Off Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resident Fees</td>
<td>$11,339.00</td>
<td>$11,339.00</td>
<td>$11,339.00</td>
</tr>
<tr>
<td>Room and Board</td>
<td>$4,358.00</td>
<td>$11,527.00</td>
<td>$10,292.00</td>
</tr>
<tr>
<td>Books and Supplies</td>
<td>$1,573.00</td>
<td>$1,095.00</td>
<td>$2,138.00</td>
</tr>
<tr>
<td>Transportation</td>
<td>$1,959.00</td>
<td>$1,538.00</td>
<td>$1,730.00</td>
</tr>
<tr>
<td>Personal Expenses</td>
<td>$1,894.00</td>
<td>$888.00</td>
<td>$888.00</td>
</tr>
<tr>
<td>Health Insurance Fee/Allowance</td>
<td>$888.00</td>
<td>$888.00</td>
<td>$888.00</td>
</tr>
<tr>
<td>Basic Budget Totals</td>
<td>$22,011.00</td>
<td>$27,960.00</td>
<td>$27,960.00</td>
</tr>
</tbody>
</table>

Mandatory Orientation Fees

- **Entering Freshmen**: $140.00
- **Entering Transfers**: $65.00

Non-Resident Tuition for Undergraduates

$22,021 + $858 Education Fee

Note: Tuition and fees are subject to change.
Undergraduate Registration

ENROLLMENT IN COURSES

Prior to the quarter for which they have been admitted, new students will receive information from their college regarding orientation dates, course enrollment, and fee-payment deadlines. Enrollment materials will be provided at the college provosts’ offices on the days assigned for new students’ registration. New freshman students admitted for the fall quarter will be invited to attend a new student orientation during the summer preceding fall quarter.

NEW STUDENT ORIENTATION/ENROLLMENT

Orientation programs are designed to acquaint students with the nature, functions, and purposes of UCSD’s college system, and to show students how to deal with a variety of requirements set by the university, college, and academic departments. Although all six colleges have the same goals for students, each has developed its own distinctive program. The professional staffs of Revelle, Muir, Marshall, Warren, Roosevelt, and Sixth Colleges have designed programs for their respective students and the students’ parents.

New students will be made aware of the opportunities offered by their college and the UCSD community as a whole.

All new students are required to attend an orientation session, and they will be charged a fee for the program. Parents’ attendance is optional and varies across the colleges, and a fee is typically charged. Details will be provided by the college.

Orientation and enrollment are two distinct and separate events occurring at different times. All new students, regardless of their college orientation schedule, enroll online (but not on campus) during the same enrollment period. The colleges’ academic advisors guide students through this online process. Details of both the orientation and enrollment proceedings are posted on the colleges’ respective Web sites after the final publicized deadline for Statement of Intent to Register (SIR), which is determined by the Office of Admissions.

In addition to the Summer Orientation, students should attend Welcome Week—the week before the official opening of the fall quarter and the beginning of classes.

CONTINUING STUDENT ENROLLMENT

Continuing students (those currently registered or eligible to register) should refer to TritonLink for enrollment information, dates, and fee payment instructions: http://tritonlink.ucsd.edu/.

DEFINITIONS

Students are considered enrolled when they have requested space in at least one course and space in classes has been reserved. Students are not considered registered until they have both enrolled in courses and paid registration fees. Waitlisting a class does not constitute enrollment.

Enrollment is processed using WebReg in TritonLink on the Web. Continuing undergraduate students are assigned a start time, after which they may enroll in classes. Start times are based on the number of units completed. Students who have completed more units will receive earlier start times than students with fewer units.

Students are responsible for all courses in which they are enrolled. Students should check TritonLink/WebReg to confirm class enrollments. Students must make any necessary changes by the Add/Change/Drop process (through WebReg in TritonLink) or by appropriate withdrawal.

ADDING,-changing, AND DROPPING COURSES

After enrollment, students may make any necessary corrections to their class schedules on WebReg in TritonLink, through pre-authorization by departments. Through the second week of instruction, students may add courses via TritonLink. During the third and fourth weeks, students only with extraordinary circumstances or with documentation of a university error may petition to add courses. Please refer to TritonLink for appropriate approvals required.

Students may continue to change grading options through the end of the fourth week and to drop courses through the end of the ninth week of instruction. Students who wish to drop all their courses are required to file an Undergraduate Withdrawal form with their college academic advising or dean’s office. Please see the W (Withdrawal) grade regulation that applies after the fourth week of instruction.

Weeks

1–2: ADD/DROP/CHANGE Grade Option
2–4: DROP/CHANGE Grade Option
5–9: DROP ONLY—“W” recorded on transcript
10 and later: No changes; final grade assigned

THE UNDERGRADUATE PROGRAM

The undergraduate program consists of four four-unit courses each quarter, or sixteen units per quarter, for four years. Students must complete a minimum of thirty-six units in three consecutive quarters in order to satisfy the minimum progress requirements (see “Minimum Progress” in the “Academic Regulations” section). Undergraduate students wishing to take more than twenty-two units of credit in a quarter will need their college provost’s approval.

APPROVAL FOR ENROLLMENT FOR MORE THAN 200 UNITS

The minimum unit requirement for the bachelor’s degree is 184 quarter-units in Revelle College and 180 quarter-units in Muir, Marshall, Warren, Roosevelt, and Sixth Colleges. A student is expected to complete the requirements for graduation within this minimum unit requirement. The bachelor of science degree may require satisfaction of additional units, depending upon the student’s major.

Candidates for B.S. degrees in engineering are permitted 230 units (240 for engineering majors in Revelle and Roosevelt colleges).

Under special circumstances, students may extend their undergraduate training beyond the minimum. Non-engineering students who are attempting to achieve more than 200 quarter-units will not be permitted to register without their college provost’s approval. Other exceptions will be granted only for compelling academic reasons and only with the approval of the college provost and the concurrence of the Committee on Educational Policy. Transfer units applicable toward general-education requirements or major requirements are included in the maximum unit calculation; all other transfer units are excluded. Advanced placement and international baccalaureate units are excluded. (See information regarding “Maximum Unit Limitation” in the “Academic Regulations” section of this catalog.)

ENROLLMENT AND REGISTRATION HOLDS

A student may have a “hold” placed on his or her enrollment or registration (payment of fees) and/or academic transcripts for the following reasons:

1. Failure to respond to official notices.
2. Failure to settle financial obligations when due or to make satisfactory arrangements with the Student Business Services Office.
3. Failure to present certification of degrees and/or status on leaving previous institution(s).
4. Failure to comply with admission conditions.
5. Failure to declare major after ninety units.

Each student who becomes subject to a hold action is given advance notice and ample time to deal with the situation. However, if the student fails to respond, action will be taken without further notice, and he or she is entitled to no further services of the university, except assistance toward reinstatement.

Undergraduate students wishing to have their status restored must secure a release from the office initiating the hold action. Reinstatement is not final until the registration process is completed.

CHANGE OF ADDRESS

UCSD has identified electronic mail as the recognized and official means of communication by which university officials, at their discretion, may send communications to students. Such communications may be sent exclusively using electronic mail. Students can use TritonLink to request and maintain their university-assigned e-mail address.

In addition, students who change their local or permanent addresses are expected to update their address via TritonLink. Students will be held responsible for communications from any university office sent to the last address on record and should not claim indulgence on the plea of not receiving the communication.
Tuition Fee for Nonresident Students

If you have not been living in California with intent to make it your permanent home for more than one year immediately before the residence determination date for each term in which you propose to attend the university, you must pay a nonresident tuition fee in addition to all other fees. The residence determination date is the day instruction begins at the last of the University of California campuses to open for the quarter—and for schools on the semester system, the day instruction begins for the semester.

Law Governing Residence

The rules regarding residence for tuition purposes at the University of California are governed by the California Education Code and implemented by Standing Orders of the Regents of the University of California. Under these rules, adult citizens and certain classes of aliens can establish residence for tuition purposes. There are particular rules that apply to the residence classification of minors. (See below.)

Who Is a Resident?

If you are an adult student (at least eighteen years of age) you may establish residence for tuition purposes in California if: (1) you are a U.S. citizen; (2) you are a permanent resident or other immigrant; or (3) you are a nonimmigrant who is not precluded from establishing a domicile in the United States. Nonimmigrants who are not precluded from establishing domicile in the United States include those who hold valid visas of the following types: A, E, G, H-1, H-4, I, K, L, O-1, O-3, R, T, U, or V. To establish residence you must be physically present in California for more than one year and you must have come here with the intent to make California your home as opposed to coming to this state to go to school. Physical presence within the state solely for educational purposes does not constitute the establishment of California residence, regardless of the length of your stay. You must demonstrate your intention to make California your home by severing your residential ties with your former state of residence and establishing those ties with California. If these steps are delayed, the one-year durational residence period will be extended until you have demonstrated both presence and intent for one full year. Effective fall 1993, if your parents are not residents of California or you were not previously enrolled as a UC student, you will be required to be financially independent in order to be a resident for tuition purposes. Your residence cannot be derived from your spouse, registered domestic partner, or your parents.

Requirements for Financial Independence

You will be considered “financially independent” if one or more of the following applies: (1) you are at least twenty-four years of age by December 31 of the calendar year for which you are requesting residence classification; (2) you are a veteran of the U.S. Armed Forces; (3) you are a ward of the court or both parents are deceased; (4) you have legal dependents other than a spouse or registered domestic partner; (5) you are married, a registered domestic partner, or a graduate student or a professional student, and you were not claimed as an income tax deduction by your parents or any other individual for the tax year immediately preceding the term for which you are requesting resident classification; or (6) you are a single undergraduate student and you were not claimed as an income tax deduction by your parents or any other individual for the two tax years immediately preceding the term for which you are requesting resident classification, and you can demonstrate self-sufficiency for those years and the current year; (7) your parents are residents of the State of California; (8) you reach the age of majority in California while your parent(s) were residents of this state AND the California resident parent(s) leave the state to establish a residence elsewhere AND you continue to reside in the State of California with all your ties here after your parent(s) departure. (Note: Financial dependence will not be a factor in residence status for graduate student instructors, graduate student teaching assistants, research assistants, junior specialists, postgraduate researchers, graduate student researchers, and teaching associates who are employed forty-nine percent or more of full time or awarded the equivalent in University-administered funds, e.g., grants, stipends, or fellowships at the University of California in the term for which classification is sought.)

Establishing Intent to Become a California Resident

Indications of your intent to make California your permanent residence can include the following: registering to vote and voting in California elections; designating California as your permanent address on all school and employment records, including military records if you are in the military service; obtaining a California driver’s license or, if you do not drive, a California Identification Card; obtaining California vehicle registration; paying California income taxes as a resident, including taxes on income earned outside California from the date you establish residence; establishing a California residence in which you keep your personal belongings; and licensing for professional practice in California. The absence of these indicia in other states during any period for which you claim residence can also serve as an indication of your intent. Your intent will be questioned if you return to your former state of residence when the university is not in session. Documentary evidence is required, and all relevant indications will be considered in determining your classification.

General Rules Applying to Minors

If you are an unmarried minor (under age eighteen), the residence of the parent with whom you live is considered to be your residence. If you have a parent living, you cannot change your residence by your own act, by the appointment of a legal guardian, or by the relinquishment of your parent’s right of control. If you lived with neither parent, your residence is that of the parent with whom you last lived. Unless you are a minor alien present in the U.S. under the terms of a nonimmigrant visa that precludes you from establishing domicile in the U.S., you may establish your own residence when both your parents are deceased and a legal guardian has not been appointed. If you derive California residence from a parent, that parent must satisfy the one-year durational residence requirement.

Specific Rules Applying to Minors

Divorced/Separated Parents

You may be able to derive California resident status from a California resident parent if you move to California to live with that parent on or before your eighteenth birthday. If you begin residing with your California parent after your eighteenth birthday, you will be treated like any other adult student coming to California to establish residence.

Parent of Minor Moves from California

You may be entitled to resident status and not be required to establish financial independence if you are a minor U.S. citizen or eligible alien whose parent(s) was a resident of California who left the state within one year of the residence determination date if:
1. you remained in California after your parent(s) departed;
2. you enroll in a California public post-secondary institution within one year of your parent(s)/ departure; and
3. once enrolled, you maintain continuous attendance in that institution.

Two-Year Care and Control

You may be entitled to resident status if you are a U.S. citizen or eligible alien and you have lived continuously with an adult who is not your parent for at least two years prior to the residence determination date. The adult with whom you are living must have been responsible for your care and control for the entire two-year period and must have been residing in California during the one year immediately preceding the residence determination date.

Exemptions from Nonresident Tuition

Member of the Military

- Members and Dependents of Members of the U.S. Armed Forces
 - Member of the U.S. Armed Forces Stationed in California on Active Duty:
 - An undergraduate student is entitled to a resident classification for as long as the student maintains the eligibility requirements.
 - A graduate or professional student will be eligible for a resident classification for two years, by which time he or she must fulfill the UC residence requirements in order to maintain his or her residence status.
Students assigned for educational purposes to a state-supported institution of higher education are not eligible for this provision. You must provide the residence deputy on campus with a statement from your commanding officer or personnel officer stating that your assignment to active duty in California is not for educational purposes. The letter must include the dates of your assignment to the state.

- **Former Member of the U.S. Armed Forces Stationed in California on Active Duty**
 - An undergraduate or graduate student who is a former member of the armed forces of the United States stationed in California who was on active duty for more than one year immediately prior to being discharged from the armed forces may be eligible for a resident classification for the length of time he or she lives in this state after being discharged up to the minimum time necessary to become a resident (366 days).

- **Dependent of Member of the U.S. Armed Forces Stationed in California on Active Duty**
 - An undergraduate student who is the spouse, registered domestic partner, or dependent child of a member of the military is entitled to a resident classification for as long as the student maintains the eligibility requirements.
 - A graduate or professional student who is the spouse, registered domestic partner, or dependent child of a member of the military will be eligible for a resident classification for one year, by which time he or she must fulfill the UC residence regulations in order to maintain his or her resident status.

Those who may qualify for an exemption from nonresident tuition and fees* (based on federal law: The Higher Education Opportunity Act of 2008):

1. An undergraduate or graduate student who is a member of the armed forces of the United States on active duty for a period of more than thirty days and whose domicile or permanent duty station is in California, or the spouse, registered domestic partner, or dependent child of such member of the armed forces, is entitled to an exemption from nonresident tuition. Student must be continuously enrolled at the university, notwithstanding a subsequent change in the permanent duty station to a location outside of California.

2. A graduate of a California high school who is employed by a school district in a full-time service in the public schools of the state of California operated by the Federal Bureau of Indian Affairs, Native American Graduates of a BIA High School
 - If you are a graduate of a California high school operated by the Federal Bureau of Indian Affairs, you may be eligible for an exemption from the nonresident fee.

3. Employee of a California Public School District
 - Any person holding a valid credential authorizing service in the public schools of the state of California who is employed by a school district in a full-time certificate position may be eligible for a nonresident tuition waiver.

4. Student Athlete in Training at U.S. Olympic Training Center; ARCO
 - Any amateur student athlete in training at the United States Olympic Training Center in Chula Vista may be eligible for a waiver of the nonresident tuition until he or she has resided in the state the minimum time necessary to become a resident.

5. Graduate of California High School (AB 540)
 - A student who attended high school in California for three or more years (ninth grade included) and graduated from a California high school (or attained the equivalent) may be exempt from nonresident tuition. For eligibility requirements: www.ucop.edu/sas/sfs/ucefaq.pdf.

6. Surviving Dependents of California Residents Killed in 9/11/01 Terrorist Attack
 - A student who was a dependent of a California resident who was killed in the September 11, 2001, terrorist attacks on the World Trade Center, the Pentagon Building, or the crash of United Airlines Flight 93. Eligible students must meet the financial need requirements for the Cal Grant A program.

Recipients of the Congressional Medal of Honor
- Any undergraduate student who is a recipient of a Congressional Medal of Honor or who is the child of a recipient of the Congressional Medal of Honor. The recipient must be a California resident or must have been a California resident at the time of his or her death. The student may not be older than twenty-seven, and the student’s annual income may not exceed the national poverty level.

Maintaining Residence During a Temporary Absence

If you are a nonresident student who is in the process of establishing a residence for tuition purposes and you return to your former home during noninstructional periods, your presence in the state will be presumed to be solely for educational purposes and only convincing evidence to the contrary will rebut this presumption. A student who is in the state solely for educational purposes will NOT be classified as a resident for tuition purposes regardless of the length of his or her stay.

If you are a student who has been classified as a resident for tuition purposes and you leave the state temporarily, your absence could result in the loss of your California residence. The burden will be on you (or your parents if you are a minor) to verify that you did nothing inconsistent with your claim of continuing California residence during your absence. Steps that you (or your parents) should take to retain a California residence include:

1. Continue to use a California permanent address on all records—educational, employment, military, etc.
2. Satisfy California resident income tax obligations. (Note: If you are claiming California residence, you are liable for payment of income taxes on your total income from the date you establish California residence. This includes income earned in another state or country.)
3. Retain your California voter's registration and vote by absentee ballot.
4. Maintain a California's driver's license and vehicle registration. If it is necessary to change your driver's license and/or vehicle registration while you are temporarily residing in another state, you must change them back to California within the time prescribed by law.

Petition for Resident Classification

You must submit petition and documentation by mail or drop off at the Registrar's Office for a change of classification from nonresident to resident status. For further information, please visit http://tritonlink.ucsd.edu.

Incorrect Classification

If you were incorrectly classified as a resident, you are subject to a nonresident classification and to payment of all nonresident tuition fees not paid. If you concealed information or furnished false
Inquiries and Appeals

Inquiries regarding residence requirements, determinations, and/or recognized exceptions should be directed to the Residence Deputy, Office of the Registrar, 9500 Gilman Drive # 0022, La Jolla, CA 92093-0022, or the Legal Analyst-Residence Matters, Office of the General Counsel, University of California, 1111 Franklin Street, 8th Floor, Oakland, CA 94607-5200. No other university personnel are authorized to supply information relative to residence requirements for tuition purposes.

A complete version of the regulations is available in the Office of the Registrar. Please note that changes may be made in the residence requirements between the publication of this statement and the relevant residence determination date. Any student, following a final decision on residence classification by the residence deputy, may appeal in writing to the legal analyst within thirty calendar days of notification of the residence deputy’s final decision.

PAYMENT OF REGISTRATION FEES

Billing Statement and Payment Information

Registration at UCSD is a two-step process: (1) enrollment in classes and (2) payment of fees. You must enroll first so that your fees can be assessed. You can pay fees anytime after you enroll in classes. An E-Bill notice will be e-mailed to your UCSD e-mail address after enrollment; however, if you wait to enroll just prior to the enrollment deadline, you will not receive an E-Bill notice. Pay by e-check on TritonLink or make checks payable to: UC Regents. Mail checks to UCSD Cashier’s Office, 9500 Gilman Dr., La Jolla, CA 92093-0009. Be sure to include your student PID number on your check and include the remittance stub from TritonLink or the top portion of your billing statement. Fees are due and payable by the published deadline whether or not an E-Bill notice is received. Payments must be posted to your student account by published deadlines. Your current account activity and balance are available on TritonLink during normal TritonLink hours.

Your monthly billing statement from the university will list your charges and credits. Charges include registration fees, housing, parking, and other indebtedness. Credits include payments and, if you are a financial aid recipient, the funds which are disbursed through UCSD, e.g., Pell Grants, scholarships, and Stafford and Perkins Loans. Financial aid credits will offset against the statement’s charges, and you will either pay the remaining amount on the statement or receive a refund if there is a credit. If you have any questions about the entries, use the phone numbers listed online to contact the appropriate office.

E-Bill notices are sent to students’ UCSD e-mail address and up to three other authorized payers’ e-mail addresses that the student sets up on TritonLink. See http://sbs.ucsd.edu for more information.

If your fees are fully paid by financial aid or other programs and you decide not to attend UCSD, it is very important that you contact your college and initiate withdrawal/leave of absence procedures immediately. Graduate students should refer to the “Graduate Studies” section of the catalog for leave of absence or withdrawal procedures. Failure to do this may result in F grades being assigned to your courses.

Financial Aid/Credit Balances and Refunds

Student financial aid, graduate support, or fee waivers awarded to pay registration fees will be directly credited to your student account and appear on your billing statement as a credit. Financial aid will not be credited to your account until you have completed the enrollment process. Financial aid recipients are expected to be enrolled full-time.

Student Business Services will refund all financial aid, including outside agency scholarships and private loans, through direct deposit. For those students who choose not to sign up for direct deposit, refund checks will be mailed to the current mailing address on TritonLink. All Federal Perkins Loan borrowers must complete the information sheet or references and Perkins Loan master promissory note. Loan funds will not be released (credited) to student accounts until the master promissory note is signed. You may complete these documents during your financial aid award and acceptance process, by going to the Student Business Services Web site: http://sbs.ucsd.edu.

Loan Counseling

It is required by federal law and/or university policy that all students receiving Perkins, Stafford (subsidized/unsubsidized), or university loans have a pre-loan counseling session wherein they are informed of the rights, obligations, and consequences attached to the loans. These counseling sessions are called entrance interviews. These sessions can be conducted online and provide the student with an understanding of the issues involved in receiving a loan. Also, all graduating students and students who withdraw or take a leave of absence who have received a loan must have final counseling before they leave school. These sessions are called exit interviews. At this time, students are individually told how much they owe on student loans, what their repayment amounts will be, and when their repayments will begin. In both sessions, all counseling content and documentation is made available. You may complete your exit interview by going to the Student Business Services Web site: http://sbs.ucsd.edu or in person at the Student Business Services Office. Please call (858) 822-4555/4727 for more information.

Registration and Other Payments through the Central Cashier’s Office

Registration payments must be made by mail, E-check, or in the Cashier’s Office drop box as early as possible. The Central Cashier’s Office receives payments for all university debts. The mailing address of the Cashier’s Office is: Central Cashier’s Office, UCSD, 9500 Gilman Drive # 0009, La Jolla, CA 92093-0009. (Make checks or money orders payable to: UC Regents.)

Triton Registration Installment Plan

The UCSD Triton Registration Installment Plan (TRIP) is available for students who desire an alternative method of financing their registration fees on a short-term basis. All students in good financial and academic standing are eligible for the program, except for those students whose financial aid or graduate support will pay their registration fees.

A prerequisite to apply for the program is enrollment for the term. The Triton Registration Installment Plan allows registration fees to be paid in up to three installments each quarter. On a three-month plan, the first payment is required by the quarterly registration due date. The remaining payments are itemized on the student’s next two monthly UCSD Billing Statements. There is a $30 per quarter nonrefundable application fee for California residents and a $45 quarterly nonrefundable application fee for nonresidents that must be submitted with the first payment. This fee is used strictly to offset the costs of the program. Students may enroll online using TritonLink.

Indebtedness Counseling and Student Business Services Hold Releases

Entering college for the first time can be an overwhelming experience. And part of that experience is learning to handle your own finances. Most students have no real problem, but sometimes things can get out of control. Student Business Services staff members will counsel you on campus indebtedness which you may have already incurred and how to prevent such conditions in the future.

It is the policy of the University of California that no student can continue in the next academic quarter if that individual owes the university money. Consequently, when a student owes the university money, an automatic hold prevents him or her from future registration, and from receiving financial aid and transcripts until the bill is paid. It is recognized that there are occasional problems and situations which may be taken into account. On occasion, after counseling, the Student Business Services Office may authorize a Time Payment Agreement (TPA) with a non-current student.

If a student does not resolve their balance, their account may be assigned to an outside collection agency and reported to a credit bureau.

Location

The Central Cashier’s office and Student Business Services are both located in the Student Services Center on the corner of Myers and Rupertus in the University Center. Central Cashier’s is on the ground level, suite 170. Student Business Services is on the third floor, suite 355.

Office Hours

The Central Cashier’s Office is open from 8:00 a.m. to 4:00 p.m. Monday through Friday.
The Student Business Services Office is open from 8:00 a.m. to 4:30 p.m. Monday through Friday, except on Thursday, when the office opens at 10:00 a.m.

Deadlines and Penalty Fines

Students should refer to TritonLink for actual deadline dates.

All prior delinquent debts must also be paid.

Health insurance is mandatory for all students, both graduate and undergraduate, as a condition of enrollment. All students will be assessed the cost of the policy provided by the campus. Undergraduates who already have adequate health insurance should access TritonLink to request a waiver of this premium. An additional charge will be made for failure to pay required fees or deposits by the dates announced in this catalog and on TritonLink. Please note that students who enroll in courses but fail to pay fees by the published deadline will be assessed a late payment fee. Students who fail to enroll in courses prior to the registration deadline will also be assessed a late enrollment fee and a late payment fee. Currently these fines are $50 each. (See "Miscellaneous Expenses").

With the exception of appeals to the legal analyst regarding a student’s residence classification, no claim for remission of fees will be considered unless such claim is presented during the fiscal year to which the claim is applicable.

Receipts are issued for all payments made in person at the Central Cashier's Office, and these should be carefully preserved. No student will be entitled to a refund except after surrender to the Cashier's Office of the student's original receipt, if issued, or canceled check or money order receipt.

Exemption from Fees

Except for miscellaneous fees and service charges, no fees of any kind are assessed any surviving child of a California resident who was an active law enforcement or active fire suppression official and who was killed in the performance of active duties or died as a result of an accident or injury caused by external violence or physical force incurred in the performance of such duties.

No fees of any kind are assessed a student who was a dependent of a California resident who was killed in the September 11, 2001, terrorist attacks on the World Trade Center, the Pentagon Building, or the crash of United Airlines Flight 93. Eligible students must meet the financial need requirements for the Cal Grant A program. No fees of any kind are assessed any undergraduate student who is a recipient of a Congressional Medal of Honor or who is the child of a recipient of the Congressional Medal of Honor. The recipient must be a California resident or must have been a California resident at the time of his or her death. The student may not be older than twenty-seven, and the student’s annual income may not exceed the national poverty level.

Students who believe themselves entitled to one of these exemptions must apply for a fee exemption at the Office of the Registrar before registering. Without this authorization, students will not be permitted to register without payment of the entire fee. Graduate students should apply to the dean of Graduate Studies.

Nonresident Tuition

Students who have not established and maintained California residence for at least one year immediately prior to the residence determination date for the term during which they propose to attend the university, and who do not otherwise qualify for resident classification under California law, are charged, along with other fees, a nonresident tuition fee each quarter. The residence determination date is the day instruction begins at the last of the University of California campuses to open for the quarter. Final classifications are made by the residence deputy, who is located in the registrar’s office, on the basis of a Statement of Legal Residence completed by the student and signed under oath. Prospective students who have questions regarding their residence status should consult the General Catalog or contact the residence deputy.

University Registration Fee

The university registration fee covers services that benefit the student and are complementary to, but not a part of, the instructional program, and it includes recreational activities, student organizations, and the Student Health Service. No part of this fee is refunded to students who do not make use of these privileges.

In addition, there is a campus activity fee for undergraduates, a university center fee for all students to be used for the construction and operation of the student centers, and a recreational facility fee. Note: Fees are subject to change. Please refer to "Finances" at http://tritonlink.ucsd.edu for the most current fee information.

Educational Fee

The educational fee was established by the regents for all students beginning fall quarter 1970. The educational fee is a charge assessed against each registered student to cover part of the cost of the student’s education at the University of California. The educational fee for resident undergraduates and for nonresident undergraduates differs. The educational fee may be reduced by one-half for students approved on part-time status. Note: Fees are subject to change. Please refer to "Finances" at http://tritonlink.ucsd.edu for the most current fee information. Mandatory Health Insurance

All undergraduate, graduate, professional, and international undergraduates are required to have health insurance as a condition of enrollment. Undergraduates are automatically enrolled in the Undergraduate Student Health Insurance Plan (USHIP). The Graduate Student Health Insurance Plan (GSHIP) provides coverage for graduate, professional, and international undergraduates. USHIP and GSHIP premiums are automatically assessed and paid with registration fees each quarter. For full information on both the USHIP and GSHIP, visit http://www.ucsd.edu/current-students/student-life/health-safety/student-health-insurance.html or contact the Student Insurance Office at (858) 822-5981 or (858) 534-2123.

Miscellaneous Expenses, Fees, Fines, and Penalties

Books and supplies average about $520 per quarter. However, students should be aware of the following possible expenses:

- **Statement of Intent to Register fee**
 - New undergraduate: $100.00
- **Application fee (each campus)**
 - Domestic: 60.00
 - International: 70.00
- **Duplicate Photo I.D. Card**: 15.00
- **Transcript of record**: 6.00
- **Verification of Student Data/Status**: 6.00
- **Eleanor Roosevelt (per quarter)**: 7.50
- **Revelle Activity (per quarter)**: 9.00
- **Sixth College Activity (per quarter)**: 10.00
- **Thurgood Marshall Activity (per quarter)**: 6.00
- **Warren College Activity (per quarter)**: 7.32
- **Late enrollment**: 50.00
- **Return check collection**: 35.00
- **Return e-check collection**: 35.00
- **Late payment of fees (late registration)**: 50.00
- **Duplicate diploma**: 25.00
- **Statement late charge**: 25.00

(See also "Withdrawal from the University").

Returned Check Policy

Several facilities at UCSD accept personal checks for payments and/or cash. Any individual who writes checks with insufficient funds will be subject to all legal action deemed appropriate by the university. In addition, anyone who writes to the university three or more checks that are subsequently returned will have their check writing privileges permanently revoked.

Parking

Students who park motor vehicles on the campus are subject to parking fees. Parking permits may be purchased through TritonLink or at the parking office in the Gilman parking structure. A copy of the campus parking regulations may be obtained from the cashier at the time of permit purchase.

PART-TIME STUDY AT THE UNIVERSITY OF CALIFORNIA

General Policy

1. Degree programs in the university may be open to part-time students where good educational reasons exist for so doing.
2. No majors or other degree programs will be offered only for part-time students, except as specifically authorized by the Academic Senate.
3. For the purposes of this statement of policy and procedures, the following definition applies:
A part-time undergraduate student is one who is approved to enroll for ten units or fewer, or an equivalent number of courses, per quarter.

Admissions and Enrollment

1. The same admissions standards that apply to full-time students will apply to part-time students.
2. Approval for individual students to enroll on a part-time basis will be given for reasons of occupation, family responsibilities, health, or, for one quarter only, graduating senior status.
3. Approval to enroll as a part-time student shall be given by the appropriate dean or provost.
4. Students must apply for part-time study prior to the end of the second week of the quarter and must be enrolled in ten or fewer units at that time (including any units taken through UCSD Extension) to qualify for reduced fees.

Procedures

Students must apply for part-time status on the Part-Time Study application form available at their colleges prior to the end of the second week of the quarter. Approval for part-time study is granted for one academic year only—fall through spring quarters, winter through spring quarters, or spring quarter only. Students must reapply for approval each fall quarter and substantiate reasons for request. Approval for part-time study will automatically exempt students from the thirty-six unit-per-year minimum progress requirement. Students who are receiving financial assistance should contact their college financial aid office regarding eligibility requirements.

Reduced Fees

Undergraduate students who have been approved for part-time study and who are enrolled in ten units or fewer at the end of the second week of classes are eligible for a reduction of one-half of the educational fee and one-half of nonresident tuition, if applicable. Students who drop to ten or fewer units after this date will receive no reduction, and any student who receives a reduction in fees will be billed for the difference if the number of units increases to ten and one-half or more anytime in the quarter.

Undergraduates enrolled in Education Abroad and other special programs are excluded from this reduced fee policy. Employees of the university enrolled as students in the Employee Program have fees reduced by waiver from the Personnel Office and are not eligible to receive this further reduction. Extension courses taken by students in the Complimentary Enrollment Program will be included in the unit count whether or not the credit is accepted as part of a university degree program. Questions concerning this policy may be addressed to the Office of the Registrar.
Academic Regulations

UNDERGRADUATE DEGREE REQUIREMENTS

Each of the undergraduate colleges on the San Diego campus has specific requirements for a degree. (See “Choosing a College at UCSD.”)

CHANGES IN REQUIREMENTS

When a change in graduation requirements is introduced, it is implemented so that continuing students (as defined below) are not substantially hindered in the orderly pursuit of their degrees. Since changes in requirements vary greatly in character, this principle will have different implications for different changes. For purposes of this policy, “continuing students” are those who began higher education at UC San Diego or elsewhere before the change. Colleges and departments may deny protection under this policy to a student who has interrupted his or her education for more than two years.

Students transferring to UCSD from another UC campus who have completed their lower-division general-education requirements at a UC campus are considered to have met UCSD’s lower-division general-education requirements at Thurgood Marshall College, Warren College, Sixth College, and John Muir College. A letter certifying satisfaction of general education requirements under the UC reciprocity agreement must be sent to the Academic Advising Office of the student and the UCSD upper-division general education requirements must be satisfied. (See “Graduation Requirements” for each undergraduate UCSD college.)

Students transferring to UCSD from California Community College campuses may elect to satisfy their lower-division general-education and breadth requirements prior to transfer by completing general-education/breadth requirements using the UCSD Articulation Agreement on file at the California Community Colleges; following the Interssegmental General Education Transfer Agreement; or signing a TAG (Transfer Admission Guarantee) contract and meeting TAG requirements prior to entering UCSD. See “University of California Transfer Agreements” in the “Undergraduate Admissions, Policies and Procedures” section of this catalog.

REQUIREMENTS FOR THE BACHELOR’S DEGREE

All course work required for a degree must be completed by the end of the quarter filed for graduation.

Every candidate for a bachelor’s degree must have completed a major.

1. A major shall require the equivalent of twelve or more upper-division courses (forty-eight or more units).

2. Requirements for majors shall be determined by departments and programs, subject to the approval of the Committee on Educational Policy.

3. Double Majors: With the approval of both departments or programs and of the college provost, a student in good standing may declare a double major.
 a. A student with a double major must fulfill the separate requirements of each major, and the equivalent of at least ten upper-division courses (forty units) must be unique to each major. Courses taken in fulfillment of lower-division requirements may overlap to any degree.
 b. The two majors may not be within the School of Engineering, nor, except with the approval of the Committee on Educational Policy, within a single department.
 c. A student who has declared a double major is not subject to the maximum-unit limitations of Regulation 600.C. and may accrue up to 240 units.
 d. A student with a double major may graduate only upon completion of all requirements for both majors. Both majors will be noted on the student’s transcript and diploma. If the two majors lead to different degrees (B.A. and B.S.), that fact will be noted on the transcript, and the two degree designations will appear on one diploma.
 e. A student who has declared a double major may graduate in one major upon completion of all requirements for that major, but may not continue in the University for completion of the second major.

4. An undergraduate student must have declared a major or pre-major upon completion of ninety units.

Other requirements for graduation shall be determined by the colleges in conformity with universitywide regulations and subject to approval by the San Diego Division of the Academic Senate.

AMERICAN HISTORY AND INSTITUTIONS

A knowledge of American history and of the principles of American institutions under federal and state constitutions is required of all candidates for the bachelor’s degree. This requirement may be met in any one of the following ways:

1. By having passed with a grade of C or better one high-school unit in American history, or one-half high-school unit in American history and one-half high-school unit in civics or American government.

2. By completing with a grade of P or C– or better any one-quarter course of instruction accepted as satisfactory by the Committee on Educational Policy and Courses. Any of the following courses are suitable for fulfilling the requirement: HILD 2A-B-C, HILD 7A-B-C, or any course listed under HIUS (other than HIUS Colloquia); Political Science 10, 100A, 100B, 100C, 102C, 102H, 104A, 110EA-EB, 110J, 142A, and Ethnic Studies 112A-B, 125, 130, 131, 149, 167, 170A-B.

3. By presenting proof of having received a score of 550 or more on the SAT II Subject Test of the College Entrance Examination Board (CEEB) in American History.

4. By presenting proof of having received a grade of 3 or higher on the Advanced Placement Test in American History administered by the Educational Testing Service, Princeton, New Jersey.

5. By presenting proof of having satisfied the present requirement as administered at another collegiate institution within the state.

6. By presenting proof of successful completion of an acceptable one-quarter or one-semester course, with a grade of C or better, in either American history or American government at a community college within the state.

7. By presenting proof of successful completion of an acceptable one-quarter or one-semester course, with a grade of C or better, in either American history or American government at a recognized institution of higher education, junior college included, in another state.

8. An alien attending the university on an F-1 or J-1 student visa may, by showing proof of temporary residence in the United States, petition for exemption from this requirement through the office of his or her college provost.

UC ENTRY LEVEL WRITING REQUIREMENT

(formerly Subject A: English Composition)

The University of California requires all undergraduate students (including international students) to demonstrate a minimum proficiency in English composition (the Entry Level Writing requirement). This proficiency can be demonstrated by:

1. Submitting a score of 680 or better on either the Writing Test, English Composition, or the English Composition with Essay Test, SAT II Subject Tests of the College Entrance Examination Board (CEEB) (Note: not to be confused with the verbal portion of the Scholastic Assessment Test [SAT I]); or

2. Submitting a score of 3, 4, or 5 on the CEEB Advanced Placement Test in English; or

3. Submitting a score of 5 or better in the International Baccalaureate Higher Level examination in English (Language A only); or

4. Submitting proof of completion, prior to enrollment at UCSD, of an acceptable transfer-level college course of four quarter-units or three semester-units in English composition with a grade of C or better; or

5. Writing a passing essay on the UC Analytical Writing Placement Exam (which is required of all students who have not otherwise met the requirement). This exam is administered statewide during May and on campus at the start of fall quarter. This examination may be taken only once.

6. Achieving a minimum score on the ACT Assessment Writing Test (English/Writing score).
1. An undergraduate student may register for no more than 200 course units. An exception is permitted for candidates for B.S. degrees in engineering, for whom the limits are 240 units in Revelle and Roosevelt Colleges and 230 units in all other colleges. Other exceptions are granted only for compelling academic reasons and only with the approval of the college provost and the concurrence of the Committee on Educational Policy.

2. Transfer units applicable toward general-education requirements or major requirements are included in the maximum unit calculation; all other transfer units are excluded. Advanced Placement and international baccalaureate units are excluded.

Special kinds of study—e.g., laboratories, reading programs, studio work—may be required in addition to the basic course work in given curricula.

GRADUATION CREDIT FOR PHYSICAL EDUCATION COURSES

No more than three units of physical education, whether earned at UCSD or transferred from another institution, may be counted toward graduation.

UNDERGRADUATE MINORS AND PROGRAMS OF CONCENTRATION

A minor curriculum—or “minor” for short—is a set of courses on a well-defined subject: A minor shall consist of at least twenty-eight units, of which at least twenty units must be upper-division. For sound academic reasons and with the approval of the Committee on Educational Policy, a minor may be established with fewer than twenty upper-division units. All minor curricula must be approved by the Committee on Educational Policy and be published in this General Catalog. A student may not apply toward the minor any upper-division course that has been used to satisfy the requirements of his or her major curriculum. A student’s successful completion of a minor curriculum will be recorded on his or her transcript at graduation.

Certain colleges require their students to complete one or more “programs of concentration” before graduation, and the courses or types of courses acceptable for programs of concentration are determined by the faculty of the college or a subcommittee thereof. A program of concentration is not necessarily a minor. Indeed, a program of concentration is a minor only if it meets the criteria in the above paragraph, and only then may it be listed on a student’s transcript as a minor. Otherwise it will be recorded as a concentration at graduation.

HONORS

College Honors at Graduation

The Academic Senate has established the following standards for award of college honors at graduation:

There shall be a campus-wide requirement for the award of college honors at graduation. No more than 14 percent of the graduating seniors on campus shall be eligible for college honors. Normally, no more than the top 2 percent shall be eligible for summa cum laude and no more than the next 4 percent for magna cum laude, although minor variations from year to year shall be permitted. The remaining 8 percent are eligible for cum laude. The ranking of students for eligibility for college honors shall be based upon the grade-point average. In addition, to be eligible for honors, a student must receive letter grades for at least eighty-quarter-units of course work at the University of California. Each college may award honors at graduation only to those who are eligible to receive college honors.

Department Honors

Each department or program may award honors to a student at graduation in accordance with the following criteria:

1. The student must have completed a special course of study within the department or program. The requirements for this special course of study shall be approved by the divisional Committee on Educational Policy and published in the catalog. The requirements must include 8–12 units of supervised research or other creative activity leading to the preparation of a paper or other appropriate project. Public presentation of the project, through performance, participation in the undergraduate research conference, or other appropriate means, shall explicitly be encouraged.

2. The department or program shall establish formal procedures and criteria for application and admission to the program, which shall normally include a GPA of 3.5 in the major as a prerequisite. Students with a GPA lower than 3.5 may be admitted by exception if they show promise of success in research or creative activity.

3. Each student whose project earns the equivalent of a grade of “B” or better and who has maintained a GPA of at least 3.25 in the major shall be entitled to the designation “with distinction” on the diploma after the departmental or program name. Subject to the approval of the Committee on Educational Policy, each department or program shall establish criteria for the award of the designations “with high distinction” and “with highest distinction.”

Honors awarded by departments may be designated on the diploma by the words “with distinction,” “with high distinction,” and “with highest distinction” after the departmental or program name. Currently the departments and majors listed below are approved to award honors to graduating seniors:

Provost Honors

Provost honors are awarded quarterly based upon the completion of twelve graded units with...
a GPA of 3.5 or higher with no grade of D, F, or NP recorded for the quarter.

Phi Beta Kappa

Phi Beta Kappa (PBK) is the oldest and most prestigious American academic honor society for undergraduates in the liberal arts and sciences. UCSD is one of only 278 four-year institutions that has been granted chapters since the society was founded in 1776. In addition to the chapters, there are approximately fifty active PBK alumni associations in major cities across the U.S.

More than 200 UCSD faculty and staff were initiated at their own undergraduate colleges, and they make up the local chapter, Sigma of California. Each spring the UCSD chapter elects new student members on the basis of their high scholastic achievement and the breadth of their academic background. The academic records of potential new members are evaluated at the end of each winter quarter, and the minimum criteria for membership include

1. Successful completion of at least 160 quarter-units by the time of consideration, and at least junior standing.
2. Cumulative GPA between 3.65 and 3.70 or higher for work at UCSD. GPAs from transfer work are considered, but the GPA at UC must be at least 3.65 to 3.70, as must the overall GPA. (Juniors are rarely invited into Phi Beta Kappa; they are held to higher standards, including a minimum GPA of 3.80.)
3. A minimum of seven courses in liberal studies, that is in the humanities or social sciences, explicitly excluding performance or studio courses. This exclusion is required by the National Society of Phi Beta Kappa.
4. At least one year of college-level course credit in a second language or officially demonstrated equivalent literacy and proficiency.
5. At least one year of university-level course credits in mathematics, quantitative science, logic, or statistics (not all science courses fulfill this requirement).
6. Full-time enrollment at UCSD for at least two years (or completion of at least seventy graded credits at UCSD).

As required by the National Society of Phi Beta Kappa, the reviewers examine the excellence of the individual's academic record, the breadth and quality of the courses taken, and evidence that the student has pursued a coherent line of work and is of good character. Invitations to membership are sent simultaneously by e-mail and by letter to each student's permanent address, as maintained by the student on TritonLink. Invitations are sent in mid-May, and initiation takes place in early June.

APPLICATION FOR DEGREE

Undergraduate seniors are required to file a Degree and Diploma Application form with their college academic advising office. Students should check with their college academic advising office for exact deadlines. Advising and counseling sessions should take place well before the quarter of graduation to ensure all degree requirements will be satisfied. Applications not on file by the deadline are subject to special approval. Students who have not completed all degree requirements by the end of the quarter filed for graduation must file a new application. Failure to file this application may delay the receipt of the diploma.

SPECIFIC REGULATIONS TOWARD DEGREES

In order to apply the units of a course toward unit requirements for a degree, a student must receive an A, B, C, D, P, or S grade in the course. (Plus or minus suffixes (+/-) may be affixed to A, B, and C.) Further, an undergraduate student must have a 2.0 or higher grade-point average (GPA) to receive a bachelor's degree, and a graduate student must have a 3.0 or higher GPA to receive a higher degree.

PROBATION

An undergraduate student is subject to academic probation if at the end of any term his or her GPA for that term or his or her cumulative GPA is less than 2.0.

SUBJECT TO DISQUALIFICATION

An undergraduate student is subject to academic disqualification from further registration if at the end of any term his or her GPA for that term is less than 1.5 or if he or she has completed two successive terms on academic probation without achieving a cumulative GPA of 2.0. Continued registration of an undergraduate who is subject to disqualification is at the discretion of the faculty of the student's college or its authorized agent (generally the provost/Office of the Provost).

If a student is not currently in scholastic good standing or has been denied registration for the next ensuing quarter on the date on which he or she left the university, a statement of his or her status shall accompany his or her transcript. A student who has been disqualified from further registration at the University of California may not register for UCSD courses through Summer Session, through UCSD Extension by way of the concurrent enrollment mechanism, or in UCSD Extension courses offered at the 100 level. Students receiving financial assistance should refer to information in the Financial Aid section of this catalog. Unique scholarship eligibility requirements must be met.

MINIMUM PROGRESS

A full-time undergraduate student is subject to disqualification from further full-time registration if he or she does not complete thirty-six units in any three consecutive quarters of enrollment. Continued registration of an undergraduate who is subject to disqualification due to lack of minimum progress is at the discretion of the faculty of the student's college or its authorized agent (generally the provost/Office of the Provost).

Eligible students may file for an exemption from the minimum progress requirement by completing the Part-time Study application and receiving college approval prior to the end of the second week of the quarter. (See “Part-time Study at the University of California.”)

DOUBLE MAJORS

See “Requirements for the Bachelor's Degree” in this section.

REPETITION OF COURSES

Repetition for credit of courses not so authorized by the appropriate Committee on Courses is allowed subject to the following limitations:

1. A student may repeat a course for which a grade of A, B, C, I, P, or S is recorded on his or her transcript. (Plus or minus suffixes (+/-) may be affixed to A, B, and C.)
2. Courses in which a grade of D or F has been awarded may not be repeated on a P/NP or S/U basis. (Graduate students must petition and receive approval in advance to repeat a course for credit.)
3. Undergraduate students may repeat a course in which a grade of NP has been awarded for a P/NP or letter grade, if applicable. Graduate students may repeat a course in which a grade of U has been awarded on an S/U basis only.
4. Repetition of a course for which a student's transcript bears two or more entries with grades among D, F, NP, or U requires approval of the appropriate provost or dean.
5. All grades received by a student shall be recorded on the student's transcript. A student may receive degree credit for a course only once, unless the course has been approved for repetition.
6. The first sixteen units of courses that have been repeated by an undergraduate student and for which the student has received a grade of D, F, or NP, shall not be used in grade-point calculations, unless the course is repeated by a student who has admitted to or been found guilty of academic dishonesty; in which case, the units for both the initial course and the repeated course shall be counted in grade-point calculations.

Note: Although the University of California grade-point average will not include these repeated courses, other institutions/graduate programs, and agencies may recalculate the grade-point average to reflect all assigned grades.

SPECIAL STUDIES COURSES

Subject to the limitations below, a student may earn credit for supervised special studies courses on topics of his or her own selection. An undergraduate taking one or more special studies courses must complete an application for each such course before the start of the course.

Course Number

Ordinarily, special studies courses are numbered 97, 98, or 99 for lower division and 197, 198, or 199 for upper division. The 97 and 197 courses are for individually arranged field studies. The 98 and 198 courses are for directed group study. The 99 and 199 courses are for individual independent study.
Limitations

1. Enrollment requires the prior consent of the instructor who is to supervise the study and the approval of the department chair. The applicant shall show that his or her background is adequate for the proposed study.

2. A student must have completed at least thirty units of undergraduate study at UCSD and must have attained a UCSD grade-point average of at least 3.0 to enroll in a lower-division special studies course, and at least ninety units of undergraduate study and must have attained a grade-point average of at least 2.5 to enroll in an upper-division special studies course.

3. A student may enroll for no more than a total of four units of 98, 99, 198, and 199 Special Studies courses in one term.

4. Except as may otherwise be authorized by the CEP Subcommittee on Undergraduate Courses (e.g., for honors programs), only a grade of P or NP is to be assigned for undergraduates enrolled in any special studies course.

5. Subject to the approval of the CEP Subcommittee on Undergraduate Courses, a department may impose additional limitations on its supervised special studies courses.

Exceptions

On the advice of the instructor(s) and the department chair concerned, the provost of a student’s college may authorize exceptions to the limitations (2) and (3) listed above.

Procedures

1. Students must complete an “Application for UCSD Special Studies Course Enrollment,” available in department offices and via TritonLink, and secure instructor and department chair approval.

2. Students must submit an approved form to the Office of the Registrar within the specified quarterly timeline in order to enroll in a special studies course.

UNDERGRADUATE ASSISTANCE IN COURSES

An undergraduate instructional apprentice is an undergraduate student who serves as an assistant in an undergraduate course under the supervision of a faculty member. The purpose of the apprenticeship is to learn the methodology of teaching through actual practice in a regularly scheduled course.

Guidelines

1. An undergraduate instructional apprentice shall be an upper-division student.

2. Students are not permitted to assist in courses in which they are enrolled.

3. An undergraduate instructional apprentice must have a minimum grade-point average of 3.0. Departments may establish higher grade-point average requirements.

4. The faculty instructor is responsible for course content and for maintaining the overall quality of instruction, including supervision of undergraduate instructional apprentices. The faculty instructor is responsible for all grades given in the class.

5. The instructor is expected to meet regularly with the undergraduate instructional apprentice to evaluate the student’s performance and to provide the direction needed for a worthwhile educational experience.

6. An undergraduate instructional apprentice may receive credit on a Pass/Not Pass basis only (through registration in a 195 course), subject to approval by the Committee on Educational Policy.

7. A student may not be an undergraduate instructional apprentice more than once for the same course for credit.

8. A student may not be an undergraduate instructional apprentice in more than one course in a quarter.

9. The total credit accumulated as an undergraduate instructional apprentice shall not exceed eight units.

Procedure

All departments/programs using undergraduate instructional apprentices shall submit to the CEP Subcommittee on Undergraduate Courses a description of the role of the undergraduate instructional apprentice, as part of the petition for approval. Any deviation from the guidelines above must be explained and justified in a memo accompanying the petition. Any major change in the function or duty of the apprentice in a course should also be approved by CEP. All UGIA applications must be received and approved by the CEP prior to the start of the quarter in which the student is to apprentice.

WRITING REQUIREMENTS

A student may register in an upper-division course only if the student has satisfactorily completed the writing requirement of his or her college or has obtained the consent of the instructor of the upper-division course. The requirement is waived for a student who has been admitted as a transfer student and has not completed three quarters of residence at UCSD.

FINAL EXAMINATIONS

Final examinations are obligatory in all undergraduate courses except laboratory courses, or their equivalent, as individually determined by the Committee on Courses.

Each such examination shall be conducted in writing whenever practical and must be completed by all participants within the announced time shown in TritonLink under Calendars and Exam Schedules. These examinations may not exceed three hours in duration.

In laboratory courses, the department concerned may, at its option, require a final examination subject to prior announcement in TritonLink under Calendars and Exam Schedules.

RELIGIOUS ACCOMMODATION

It is the policy of the university to make reasonable efforts to accommodate students having bona fide religious conflicts with scheduled examinations by providing alternative times or methods to take such examinations. If a student anticipates that a scheduled examination will occur at a time at which his or her religious beliefs prohibit participation in the examination, the student must submit to the instructor a statement describing the nature of the religious conflict and specifying the days and times of conflict.

1. For final examinations, the statement must be submitted no later than the end of the second week of instruction of the quarter.

2. For all other examinations, the statement must be submitted to the instructor as soon as possible after a particular examination date is scheduled.

If a conflict with the student’s religious beliefs does exist, the instructor will attempt to provide an alternative, equitable examination which does not create undue hardship for the instructor or for the other students in the class.

POLICY ON FINAL EXAMINATIONS

1. Academic Senate Regulations specify that final examinations are required in all undergraduate courses, unless an exception has been approved by CEP or the CEP Subcommittee on Undergraduate Courses. Final examinations are, however, normally not required in laboratory courses.

2. Final examinations may not be given at any time before examination week without explicit approval of CEP.

3. Although the instructor may give a final examination at an alternative time during final examination week with the approval of CEP, students must be permitted to take an equivalent examination at the originally scheduled time if they so desire.

4. An instructor may administer an examination at an alternative time if a valid reason is given by the student for not taking the regularly scheduled examination. Valid reasons include serious illness and family disasters. Rescheduling as a result of a religious obligation is governed by the UCSD Policy on Religious Accommodation.

5. No student may be excused from assigned final examinations.

6. A final examination must, whenever practicable, be written and must be completed by all participants within a previously announced time limit.

7. Final examinations in non-laboratory courses may not exceed three hours duration.

8. No instructor may require a “take-home” final examination be turned in before the date and hour at which the examination for the course was scheduled by the Registrar’s Office.

9. Faculty members (including visiting faculty) must be available to students during final examination week up to the time when the final examinations of their courses are given and, physically present
in the examination room for the entire final examination, except in special cases when an exam is given in more than one room. In cases where the approved absence of a course instructor cannot be avoided, the department chair or program director must seek CEP approval to designate another faculty member to administer the final examination. Nevertheless, faculty course instructors themselves must assign grades for the courses they teach.

10. CEP will not recommend approval of faculty absences during finals week unless arrangements to administer the final examination have been worked out in advance with the department chair or program director.

POLICY ON MIDTERM EXAMINATIONS

1. Faculty are obliged to have posted in the Schedule of Classes the date and time of any midterm which is to be given outside of the regularly scheduled class hours.

2. Additionally, any midterm given outside of the regularly scheduled class hours must be announced in a syllabus distributed to the class at the beginning of the quarter.

3. Midterms given outside regularly scheduled class hours may not exceed two hours in duration. Any midterm given during regularly scheduled class hours may not exceed the scheduled length of the class.

RETENTION OF EXAMINATION PAPERS

Instructors are required to retain examination papers for at least one full quarter following the final examination period, unless the papers have been returned to the students.

CREDIT BY EXAMINATION

Credit by examination may be authorized and given by the instructor for a course with the concurrence of the student's provost (or dean). The examination will cover work for the entire course.

The student requesting credit by examination must not have already received a grade of A or W in the course.

The student requesting credit by examination must be registered and in good academic standing.

A part-time student who, by registering to take a course credit by examination, surpasses the number of units allowed for part-time status, must register and pay fees as a full-time student.

If credit by examination is authorized, the student will receive a grade of A+, A, A-, B+, B, B-, C+, C, C-, D, or F unless the student's petition for examination specifies the grade to be Pass or Not Pass. The student's record will indicate that the course was attempted through credit by examination.

USE OF STUDENT PETITION

For exceptional circumstances, students may request approval for variances to regulations and policies. This should be done by filing out an Undergraduate Student Petition (available on TritonLink), securing the necessary approvals, and filing the petition with the appropriate department or college academic advising office.

GRADING POLICY

Grades in undergraduate courses are defined as follows: A, excellent; B, good; C, fair; D, poor; F, fail; I, incomplete (work of passing quality but incomplete for good cause); and IP (In Progress). The designations P (Pass) and NP (Not Pass) are used in reporting grades for some undergraduate courses. P denotes a letter grade of C– or better. A blank grade indicates no record or no report of grade was received from the instructor. W is recorded on the transcript indicating the student withdrew or dropped the course sometime after the beginning of the fifth week of a quarter.

Note: Students who drop certain laboratory courses after the second scheduled meeting period will receive a W grade.

Instructors have the option of assigning plus (+) and minus (–) suffixes to the grades A, B, and C. This option became available as of fall 1983.

GRADE POINTS

For each student, the registrar will calculate a grade-point average (GPA) over courses taken at any campus of the University of California, not including Extension courses. Grade points per unit will be assigned as follows: A=4, B+=3, B=2, C+=2, C=1, D+=1, F=0. When attached to the grades of B and C, plus (+) grades carry three-tenths of a grade point more per unit. The grade of A+, when awarded, represents extraordinary achievement but does not receive grade-point credit beyond that received for the grade of A. When attached to the grades of A, B and C, minus (–) grades carry three-tenths of a grade point less per unit than the unsuffixed grades. Courses in which an I, IP, P, NP, S, U, or W grade has been awarded will be disregarded in grade-point calculations. A graduate student's GPA will be calculated over courses taken while in graduate standing.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Points</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.0</td>
<td>2.3</td>
</tr>
<tr>
<td>A</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>A–</td>
<td>3.7</td>
<td>1.7</td>
</tr>
<tr>
<td>B+</td>
<td>3.3</td>
<td>1.0</td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>B–</td>
<td>2.7</td>
<td></td>
</tr>
</tbody>
</table>

The grade-point average is computed by dividing the total number of grade points earned by the total unit value of letter-graded courses completed.

At the end of each quarter, the instructor of each course will assign a letter grade to each student who was enrolled in that course at the end of the ninth week of instruction on the basis of the work required for the entire course. An I grade may be assigned if appropriate.

CHANGES IN GRADES

All grades except I and IP are final when filed by instructors on end-of-term grade reports. However, a final grade may be corrected when a clerical or procedural error is discovered. No change of a final grade may be made on the basis of revision or augmentation of a student's work in the course. No term grade except Incomplete may be revised by further examination. No grade may be changed after one calendar year from the time it was recorded.

NO REPORT/NO RECORD

A blank entry appearing on student transcripts in lieu of a grade indicates that no grade was assigned by the instructor. A blank entry will lapse automatically into an F, NP, or U if not replaced by a final grade by the last day of instruction of the subsequent quarter.

PASS/NOT PASS

The Pass/Not Pass option is designed to encourage undergraduate students to venture into courses which they might otherwise hesitate to take because they are uncertain about their aptitude or preparation. Consistent with college policy, an undergraduate student in good standing may elect to be graded on a P/NP basis in a course. No more than one-fourth of an undergraduate student's total UCSD course units may be graded on a P/NP basis. Departments may require that courses applied toward the major be taken on a letter-grade basis. Selection of this option must take place within the first four weeks of the course. A grade of Pass shall be awarded only for work which otherwise would receive a grade of C– or better. Units passed shall be counted in satisfaction of degree requirements, but such courses shall be disregarded in determining a student's grade-point average.

If students wish to change their selected grading option after enrolling, they may use WebReg in TritonLink, or complete an Add/Change/Drop card and file it at the Registrar’s Office. The last day to change grading options is the end of the fourth week of instruction.

Only a grade of P or NP is to be assigned for courses numbered 97, 98, 99, 195, 197, 198, and 199. Subject to the approval of the CEP Subcommittee on Undergraduate Courses, departments may impose additional limitations or restrictions.

Only a grade of P or NP is to be assigned an undergraduate student's work in a noncredit (0-unit) course.

Note: See “Choosing a College at UCSD” section for further information regarding the P/NP grading option.

THE W GRADE

When a student withdraws from the university or drops a course, other than a laboratory course, between the beginning of the fifth week of instruction and the end of the ninth week of instruction of a quarter, the registrar will assign a W to the student for each course affected. Only the registrar may assign a W.

Note: Students who drop certain laboratory courses after the second scheduled meeting period will receive a W grade.

Courses in which a W has been entered on the student’s transcript will be disregarded in determining a student’s grade-point average.

Except as provided in SD S01(C)(2), a student may receive a maximum of one W per course.
Adding and Dropping Courses and the W Grade

A student may, with the approval of the instructor (and advisor, if required), add a course to the study list before the end of the second week of instruction of a quarter.

A student may drop a course before the end of the ninth week of instruction via TritonLink, after first notifying the instructor and/or department. A student who wishes to drop all courses is required to file an Undergraduate Request for Withdrawal form with the college academic advising or dean's office.

1. A course dropped before the end of the fourth week of instruction will not appear on the student's transcript. Note: Students who drop certain laboratory courses after the second scheduled meeting period will receive a W grade.

2. If a student drops a course after the end of the fourth week of instruction and before the end of the ninth week of instruction, the registrar will assign a final grade of W to the student for that course. Students may only receive one W per course.

3. A student may not drop a course after the end of the ninth week of instruction.

When an instructor has assigned a grade in a course in accordance with the Academic Senate policy on Integrity of Scholarship prior to the end of the ninth week of instruction, that grade may not subsequently be changed by dropping the course or withdrawing from the university. If an instructor filed a charge with the academic integrity coordinator, the student may not drop the course.

Withdrawing from School and the W Grade

A student may withdraw from the university before the end of the ninth week of instruction of a quarter. (Timeline varies for Summer Sessions.)

1. If a student withdraws before the end of the fourth week of instruction, no course entries will appear on the student's transcript for that quarter. Note: Students who drop certain laboratory courses after the second scheduled meeting period will receive a W grade.

2. If a student withdraws after the end of the fourth week of instruction and before the end of the ninth week of instruction, the registrar will assign a final grade of W to the student for each course in which the student was enrolled at the beginning of the fifth week of instruction.

3. Each student will receive a final grade for each course in which the student was enrolled at the end of the ninth week of instruction of the quarter.

When an instructor has assigned a grade in a course in accordance with the Academic Senate policy on Integrity of Scholarship prior to the end of the ninth week of instruction, that grade may not subsequently be changed by dropping the course or withdrawing from the university.

THE IN PROGRESS (IP) GRADE

For exceptional and compelling reasons, a course extending over more than one quarter may be authorized with the prior approval of the Committee on Educational Policy and Courses (for undergraduate courses) or the Graduate Council (for graduate courses). In such courses an evaluation of a student's performance may not be possible until the end of the final term. In such cases the instructor may assign the provisional grade IP (in progress).

IP grades shall be replaced by final grades if the student completes the full sequence. The instructor may assign final grades, grade points, and unit credit for completed terms when the student has not completed the entire sequence provided that the instructor has a basis for assigning the grades and certifies that the course was not completed for good cause. An IP not replaced by a final grade will remain on the student's record.

In calculating a student's grade-point average, grade points and units for courses graded IP shall not be counted. However, at graduation, courses still on the record as graded IP must be treated as courses attempted in computation of the student's grade-point average in assessing a student's satisfaction of Senate Regulation 634.

THE INCOMPLETE (I) GRADE

Academic Senate regulations state that the Incomplete grade (I) for undergraduates shall be disregarded in determining a student's grade-point average, except at point of graduation, when students must have an overall 2.0 (C) on all work attempted at the University of California. All work required for a degree must be completed by the end of the quarter the student filed for graduation. Students requesting an I grade the last quarter before graduation may have their graduation date delayed.

Undergraduate students whose work is of non-failing quality but incomplete for good cause, such as illness, must file a Request to Receive/Remove Grade Incomplete form.

Graduate students enrolled in graduate courses may request instructors to assign the grade of “Incomplete” in order to be permitted to complete required work within the following quarter. If the required work is not submitted by the end of the quarter following so that the grade can be reported by the instructor, the grade will automatically be changed to one of “Failure” by the registrar. Graduate students must file a Request to Receive/Remove Grade Incomplete form.

1. Students should complete their portion of the request form, including the reason they are requesting the Incomplete, and provide appropriate documentation to support their request (e.g. doctor’s note). The deadline for filing a Request for an Incomplete shall be no later than the first working day after final examination week.

2. The instructor has the option to approve or disapprove the request and should state on the form how and when the I is to be completed. If approved, the instructor submits the form with term grade reports.

3. Students must complete the work to remove the Incomplete on or before the date agreed upon with the instructor and in time for the instructor to assign a grade before the end of finals week of the following quarter.

4. Failure to complete this work within the regulation time limit will result in the Incomplete lapsing to a permanent F, NP, or U grade.

A student who has received an I grade should not re-enroll in the course to make up the missing work. If the student were to re-enroll, the course would be considered a repeat and would not remove the prior quarter’s Incomplete, which would lapse to a permanent F, NP, or U grade.

Intended Use of the Incomplete

The Incomplete is intended for use when circumstances beyond a student's control prohibit taking the final exam or completing course work.

The Incomplete is not intended as a mechanism for allowing a student to retake a course. A student who has fallen substantially behind and needs to repeat a course can drop the course prior to the end of the ninth week of classes. Otherwise, the instructor should assign the appropriate final grade (D, F, NP, or U, for example).

An Incomplete may not be used simply to allow a bit more time for an undergraduate student who has fallen behind for no good reason. An I may be granted only to students who have a legitimate excuse. Examples of unacceptable reasons for approving an Incomplete include the need to rewrite a paper; the demands of a time-consuming job; the desire to leave town for a vacation, family gathering, or athletic contest; the desire to do well on GRE tests; and the like.

Extension of Incomplete

For justifiable reasons, such as illness, students can petition to extend the Incomplete past one quarter. Petitions to extend the Incomplete must be submitted to the Academic Senate and must have the prior approval of the instructor, the department chair, and the college provost (for undergraduate students) or the dean of OGS (for graduate students).

Requests for extensions must be submitted before the Incomplete grade lapses to an F, NP, U grade. The extension cannot be made retroactively.

An I grade may be replaced upon completion of the work required by a date agreed upon with the instructor, but no later than the last day of finals week in the following quarter. If not replaced by this date, the I grade will lapse into an F, NP, or U grade, depending upon the student's initial grading option.

STUDENT COPY OF FINAL GRADES

At the end of each quarter students should check TritonLink for grade information. Grades are usually available ten working days after the end of final examinations. Students should examine their record for accuracy and report any omissions or errors to the Office of the Registrar immediately.

TRANSCRIPT REQUESTS

Application for an official transcript of record to be sent to another party or institution should be submitted to the registrar several days in advance.
of the time needed. An application for a transcript must bear the student’s signature. Please refer to the UCSD Registrar’s Web site at http://www.registrar.ucsd.edu for the most current transcript information.

GRADE APPEALS

A. 1. If a student believes that nonacademic criteria have been used in determining his or her grade in a course, he or she may follow the procedures described in this regulation.

2. Nonacademic criteria means criteria not directly reflective of academic performance in the course. It includes discrimination on political grounds or for reasons of race, religion, sex, or ethnic origin.

3. Appeals to this committee (see (B)(4)) shall be considered confidential. Neither any member of the subcommittee nor the Academic Senate Office shall release any information about the appeal except as specifically provided in this regulation.

B. 1. The student must attempt to resolve the grievance with the instructor within the first month of the following regular academic quarter.

2. If the grievance is not resolved to the student’s satisfaction, he or she may then attempt to resolve the grievance through written appeal to the department chair or equivalent, who shall attempt to adjudicate the case with the instructor and the student within two weeks.

3. If the grievance is not resolved to the student’s satisfaction, he or she may then attempt to resolve the grievance through written appeal to the provost of the college, the Dean of Graduate Studies, or the Dean of the School of Medicine, who shall attempt to adjudicate the case with the instructor, the chair, and the student within two weeks.

4. If the grievance is not resolved to the student’s satisfaction by the provost or dean, the student may request consideration of the appeal by the CEP Subcommittee on Grade Appeals (hereinafter called the Committee) according to the procedures outlined below. This request must be submitted before the last day of instruction of the quarter following the quarter in which the course was taken.

C. 1. The student’s request for Committee consideration should include a written statement outlining the nature of the grievance, including copies of any and all documents in his or her possession supporting the grievance. The submission of the statement to the Committee places the case before it and restricts any change of the challenged grade to a change initiated by the Committee, unless the Committee determines that all other avenues of adjudication have not been exhausted.

2. Upon receipt of the student’s request, the Committee immediately forwards a copy of it to the instructor, the department chair or equivalent, and the provost or dean with a request for written reports of their attempts to resolve the complaint.

3. The Committee shall have determined that all other avenues of adjudication have been exhausted, shall review the complaint and the reports to determine if there is substantial evidence that nonacademic criteria were used.

a. If the Committee finds substantial evidence that nonacademic criteria were used, it shall follow the procedure in paragraph (D) below.

b. If the Committee decides the allegations are without substance, it shall serve written notification of its findings to the complainant and to the instructor within two weeks. Within ten days the complainant or the instructor may respond to the findings. If there are no responses, or if after consideration of such responses the Committee sustains its decision, the grade shall not be changed.

D. 1. If the Committee determines that there is evidence that nonacademic criteria were used, it shall interview any individual whose testimony might facilitate resolution of the case. The complainant shall make available to the Committee all of his or her work in the course which has been graded and is in his or her possession. The instructor shall make available to the Committee all records of student performance in the course and graded student work in the course which is still in his or her possession. At the conclusion of the case each document shall be returned to the source from which it was obtained.

2. The Committee shall complete its deliberations and arrive at a decision within two weeks of its determination that evidence of the use of nonacademic criteria had been submitted. A record of the Committee’s actions in the case shall be kept in the Senate Office for three years.

3. If the allegations of the complainant are not upheld by a preponderance of the evidence, the Committee shall so notify the complainant and the instructor in writing. Within one week of such notification, the complainant and the instructor shall have the opportunity to respond to the findings and the decision of the Committee. If there are no responses, or if after considering such responses the Committee sustains its decision, it shall so notify the complainant and the instructor in writing and the grade shall not be changed.

4. If the Committee determines that nonacademic criteria were significant factors in establishing the grade, it shall give the student the option of either receiving a grade of P or S in the course or retroactively dropping the course without penalty. A grade of P or S awarded in this way shall be acceptable towards satisfaction of any degree requirement, even if a minimum letter grade in the course had been required, and shall not be counted in the number of courses a student may take on a P/NP basis. If the student elects to receive a grade of P or S, the student may also elect to have a notation entered on his or her transcript indicating that the grade was awarded by the divisional grade appeals committee. E. These procedures are designed solely to determine whether nonacademic criteria have been used in assigning a grade, and if so to effect a change of that grade.

1. No punitive actions may be taken against the instructor solely on the basis of these procedures. Neither the filing of charges nor the final disposition of the case shall, under any circumstances, become a part of the personnel file of the instructor. The use of nonacademic criteria in assigning a grade is a violation of the Faculty Code of Conduct. Sanctions against an instructor for violation of the Faculty Code may be sought by filing a complaint in accordance with San Diego Division By-law 230(D). A complaint may be filed by the student or by others.

2. No punitive actions may be taken against the complainant solely on the basis of these procedures. Neither the filing of charges nor the final disposition of the case shall, under any circumstances, become a part of the complainant’s file. The instructor may, if he or she feels that his or her record has been impugned by false or unfounded charges, file charges against the complainant through the office of the vice chancellor for Student Affairs, the dean of Graduate Studies, or the associate dean for Student Affairs of the School of Medicine.

UCSD POLICY ON INTEGRITY OF SCHOLARSHIP

http://senate.ucsd.edu/manual/appendices/app2.htm

Integrity of scholarship is essential for an academic community. The university expects that both faculty and students will honor this principle and in so doing protect the validity of university intellectual work. For students, this means that all academic work will be done by the individual to whom it is assigned, without unauthorized aid of any kind. Instructors, for their part, will exercise care in planning and supervising academic work so that honest effort will be upheld.

The UCSD Policy on Integrity of Scholarship (herein the “Policy”) states the general rules and
policy on integrity of scholarship as formulated by pharmacy and pharmaceutical sciences (SSPPS) committee on educational policy. Pharmacy, as formulated by the school of medicine handbook for school of medicine advisors and medical students are governed by policies specified and graduate students enrolled in a UCSD course. Procedures associated with student integrity of honest effort; for example:

1. No student shall knowingly procure, provide, or accept any unauthorized material that contains questions or answers to any examination or assignment to be given at a subsequent time.
2. No student shall complete, in part or in total, any examination or assignment for another person.
3. No student shall knowingly allow any examination or assignment to be completed, in part or in total, for himself or herself by another person.
4. No student shall plagiarize or copy the work of another person and submit it as his or her own work.
5. No student shall employ aids excluded by the instructor in undertaking course work or in completing any exam or assignment.
6. No student shall alter graded class assignments or examinations and then resubmit them for regrading.
7. No student shall submit substantially the same material in more than one course without prior authorization.

III. INSTRUCTIONAL ASSISTANTS’ (IA) RESPONSIBILITIES

A student acting in the capacity of an instructional assistant (IA); a category including but not limited to teaching assistants, readers, and tutors, has a special responsibility to safeguard integrity of scholarship. In this role, the student functions as an apprentice instructor, under the tutelage of the responsible instructor. An IA shall equitably grade student work in the manner agreed upon with the course instructor. An IA shall not provide a student with any information or collaboration that would aid the student in completing the course in a dishonest manner (e.g., providing access to unauthorized material related to tests, exams, homework).

IV. RESPONSIBILITY FOR RESOLUTION OF CASES OF VIOLATION OF THE POLICY

The responsibility for maintaining the standards of academic honesty rests with two university authorities: the faculty and the administration. Under the standing orders of the Regents, discipline is the exclusive responsibility of the campus administration, while authority over courses and curricula is delegated to the faculty through the academic senate. All cases in which the student is found responsible for violating the policy will result in both an academic and an administrative sanction.

A. Academic Responsibilities and Sanctions

The instructor shall report the alleged violation to the academic integrity coordinator, shall participate in the process according to the policy, and when the case is resolved, shall determine the student’s grade in the course. Any violation of the policy by the student may be considered grounds for failure in the course, although less serious consequences may be incurred in less serious circumstances. An instructor shall not assign an academic sanction for academic dishonesty unless he or she has submitted a report of an alleged violation of the policy and the student has either admitted responsibility for, or has been found responsible for, violating the policy.

B. Administrative Authority and Sanction

The appropriate administrative authority shall impose an administrative sanction in accordance with guidelines authorized by the committee on educational policy. For undergraduates, the appropriate administrative authority is the council of deans of student affairs. For graduate students, the appropriate administrative authority is the assistant dean of graduate studies. Administrative sanctions range in severity from administrative probation to dismissal from the university. Students found responsible for multiple cases of academic dishonesty shall be subject to dismissal from the university.

C. The Academic Integrity Coordinator (AIC)

The AIC is the initial contact for the instructor and the administrative manager for the processing of cases of policy violations. The AIC may extend any timelines in the policy when practical exigencies so dictate, in which case all involved parties will be notified in writing and via e-mail. The AIC shall maintain a record of all cases and shall report annually to the academic senate committee on educational policy, to the council of provosts, and to the senior vice chancellor for academic affairs on the number, nature, and type of cases; the pattern of decision-making; the severity and type of academic and administrative sanctions; and other relevant matters as directed by the committee on educational policy.

V. PROCEDURES FOR RESOLUTION OF CASES OF VIOLATIONS OF THE POLICY

The procedure for resolution of cases of violating the policy is divided into three phases: A. Reporting Phase; B. Decision and Resolution Phase; C. Appeals Phase.

A. The Reporting Phase

When an instructor has reason to believe that a student has violated the policy, the instructor should proceed in one of two ways:

1. Meet with the student to discuss the suspected violation. If the instructor decides that there is evidence of a policy violation, he or she must submit a formal charge describing the suspected violation to the office of the academic integrity coordinator (AIC).

2. Submit a formal charge to the AIC describing the alleged violation.

All alleged cases of academic dishonesty must be reported. To file a charge of violating the policy with the AIC, an instructor must submit in writing or via e-mail the following information: the student’s name, the student’s PID, the course name and number, the date of the alleged incident, and a description of the incident. Upon receiving the charge, the AIC will initiate the resolution process, as described in section B below.

If the instructor has submitted a formal charge of violating the policy, he or she will refrain from assigning a course grade for the student until the charge has been resolved. If the course concludes before the charge is resolved, the instructor will assign an in progress (“IP”) grade on the course grade sheet for the student’s grade and will indicate in the memorandum column that this IP is for a “Pending Charge of Academic Dishonesty.” If there is insufficient time to submit a charge of violating the policy before grades are due (e.g., suspected violation occurred during the final exam), then the instructor may assign an IP grade for the course before a charge is filed with the AIC. In this case, the instructor must:

- assign an in progress (“IP”) grade on the course grade sheet for the student’s grade and indicate in the memorandum column that this IP is for a “Pending Charge of Academic Dishonesty.”
- notify the AIC within forty-eight hours of submitting the grade sheet of the student’s name that an integrity IP has been assigned, and that a formal charge is forthcoming, and
- file a formal charge to the AIC within fifteen (15) business days of assigning the IP grade.

If, after reporting a charge to the AIC, the instructor decides to withdraw the charge, the instructor shall notify the AIC via e-mail of his or her decision. The instructor shall determine the grade for the course. If an IP has been assigned, the instructor shall assign a grade for the course by submitting to academic records an official change of grade form with the note “Faculty Hold Resolved.” The AIC shall notify the student, the appropriate dean, the department chair/program director, and academic records that the charge against the student has been withdrawn by the instructor. All notation of the charge shall be removed from the student’s
academic record. The charge may be reinstated in accordance with this Policy should new evidence become available.

B. The Decision and Resolution Phase

Once the instructor has reported a charge of violating the Policy to the AIC, the AIC shall immediately notify the appropriate dean in writing and via e-mail, with a copy to the instructor and to Academic Records that the student is charged with violating the Policy. Within two (2) business days, the dean shall notify the student in writing and via e-mail of the charge and copy the AIC and the instructor. The official notice shall be sent to the student’s UCSD e-mail address, and a written notice shall also be sent to the student’s current address of record on file with the UCSD Registrar’s Office. It shall be assumed that the notice of the charge was received by the student when it is sent in this manner.

If students from two or more undergraduate colleges are allegedly involved in the same incident, the AIC will direct the case to the chair of the Council of Deans of Student Affairs. The chair will then appoint one of the deans to proceed with the case for all students, regardless of undergraduate college. If the charge involves both undergraduate and graduate students, the chair of the Council of Deans of Student Affairs and the assistant dean of Graduate Studies shall consult and agree on how to proceed with the case.

1. The student’s deadline for responding to charge(s) of violating the Policy

Within ten (10) business days of the date of notification by the dean, the student must respond to the dean acknowledging receipt of the charge and arranging to meet (either in person or via telephone) with the dean to discuss the charge(s) and possible administrative sanctions. The dean shall review the charge(s) with the student and may advise and assist the student regarding possible administrative sanctions and the process for resolution of the charge(s) of violating the Policy. Within twelve (12) business days of the date of notification by the dean, the student must report to the dean his or her decision either to accept the charge of violating the Policy or to contest the charge and request an Academic Integrity Review. If the student does not meet with or notify the dean of his or her decision by the end of the twelfth (12) business day following the date of notification by the dean, he or she will be presumed to have decided to accept the charge(s) of violating the Policy.

2. Decision I: Student accepts charge(s) of violating the Policy

Sanctions shall be determined as follows.
1. Administrative Sanction

Administrative sanctions range from administrative probation to dismissal from the university, depending on the severity of the case, any previously recorded offenses, and any mitigating circumstances.

For undergraduate students, the appropriate dean shall make a recommendation of the administrative sanction(s) to the Council of Deans of Student Affairs. The Council of Deans of Student Affairs shall determine the administrative sanction(s) and shall notify the AIC of the decision within thirty (30) calendar days from the date of the AIC’s notification of the charge.

For graduate students, the assistant dean of Graduate Studies shall determine the administrative sanction(s) and shall notify the AIC of the administrative decision within thirty (30) calendar days from the date of the AIC’s notification of the charge.

A record of the administrative sanction(s) shall be maintained by the AIC, the appropriate dean, the Council of Deans of Student Affairs (for undergraduates), and Academic Records.

2. Academic Sanction

Within ten (10) business days of being notified of the administrative sanction(s), the AIC shall notify the instructor, the department chair/program director, and Academic Records of the administrative sanction(s) and shall direct the instructor to assign a grade for the course and submit the Change of Grade form if an IP has been assigned.

The instructor shall determine the grade for the course. If an IP has been assigned, the instructor shall assign a grade for the course by submitting to Academic Records an official Change of Grade form with the note “Faculty Hold Resolved.” Upon notification from Academic Records that the final grade has been recorded, the AIC will notify the student, the instructor, the dean, and the department chair/program director of the resolution of the case with a report of both the administrative and academic sanctions.

3. Decision II: The student contests the charge of violating the Policy and requests an Academic Integrity Review

If the student contests the charge of violating the Policy (Decision II), he or she must submit a written request for an Academic Integrity Review to the appropriate dean.
1. This request must be received by the appropriate dean within twelve (12) business days of the date of the notification of the charge.

2. Within two (2) business days of receiving the student’s written request for an Academic Integrity Review, the dean shall transmit the written request to the AIC along with any additional relevant documentation.

3. Within two (2) business days of receiving the dean’s request, the AIC shall notify the student, the instructor, and the dean via e-mail that the request for an Academic Integrity Review was received.

4. The Academic Integrity Review (AIR)

The purpose of an Academic Integrity Review is to explore and investigate the incident giving rise to the charge and to reach an informed, evidence-based conclusion as to whether the Policy was violated.

5. Composition of the Academic Integrity Review Board and the Review Panel

The composition of the Academic Integrity Review Board (AIRB) shall be as follows:

- Twenty-five (25) faculty members appointed by the Academic Senate Committee on Committees.
- At least six (6) graduate students appointed by the Graduate Student Association in collaboration with the assistant dean of Graduate Studies.
- At least twelve (12) upper division undergraduate students, two from each college, appointed by the college dean.

For each AIR request, the AIC shall select from the AIRB five (5) members (the “Review Panel”), which shall normally be composed of three faculty members, one graduate student, and one undergraduate student. The AIC shall also select a college dean, who is not the dean of the student, to serve as the presiding officer. The presiding officer shall conduct the review and advise the Review Panel on procedure, but shall not vote. In the event that a five-member Review Panel is not available (e.g., during the summer months or due to unforeseen circumstances, a recusal or challenge of a Review Panel member, or last minute absences), the student shall be given the option of electing to proceed with a reduced Review Panel. If the student elects to proceed with a reduced Review Panel, the presiding officer, or the AIC when appropriate, may agree to proceed with not less than two (2) faculty members and one (1) student (either undergraduate or graduate).

A Review Panel member may recuse himself or herself or the student may challenge the participation of a Review Panel member only when a reasonable person would recognize a conflict of interest or an inability of the Review Panel member to be unbiased; for example, when there is a personal or authoritative relationship between the student and a Review Panel member. The presiding officer shall make the final determination on challenges to Review Panel composition. In the event that the AIR cannot proceed due to Review Panel composition, the presiding officer shall call for a continuance until such time as an appropriate Review Panel can be constituted.

6. Notice of the Academic Integrity Review

As soon as possible, and normally no longer than one quarter after receipt of the request for an AIR, the AIC shall schedule a review of the case by a Review Panel. The AIC shall normally provide at least ten (10) business days’ notice to the student and the instructor of the time, date, and location of the AIR, although exceptions can be made if both the student and the instructor agree. The official notice shall be sent to the student’s UCSD e-mail address, and a written notice shall also be sent to the student’s current address of record on file with the UCSD Registrar’s Office. It shall be assumed that the notice of review was received by the student when it is sent in this manner.
The notice shall include a statement that the UCSD Policy on Integrity of Scholarship is alleged to have been violated and a statement that an AIR has been scheduled. If the time and place of the AIR are not known, the notice shall include a statement indicating that a subsequent notice will be sent specifying same. In the event that the time or place is adjusted after the original notice is sent, an e-mail notifying the parties to this effect shall be deemed sufficient notice.

Objections to the time and date of the AIR will be ruled on by the presiding officer no later than five (5) business days before the AIR. Academic Integrity Reviews shall not normally be rescheduled to accommodate the student’s work, class, or personal conflicts unless undue hardship would otherwise be experienced by the student. Academic Integrity Reviews shall not normally be rescheduled to accommodate the availability of relevant parties.

7. The Review Packet

Once an AIR has been requested by the student, the relevant documents will be collected, including the facts of the charge by the instructor and the student’s dispute of the facts of the charge. The student or the instructor may also submit to the AIC additional documents relevant to the charge, or the names and contact information of any additional people (e.g., classmates, teaching assistants) who have knowledge relevant to the charge (relevant parties). All documents must be submitted to the AIC within ten (10) business days of the receipt of the review request by the AIC.

The AIC will make available to the presiding officer, the instructor, and the student a copy of the documents relevant to the charge (the review packet) no later than five (5) business days before the date of the AIR.

Newly available documents not included in the review packet can be presented at the AIR subject to the approval of the presiding officer. In such circumstances, the presiding officer should provide the Review Panel, the student, and the instructor with adequate time to review the new information.

8. Parties Attending the AIR

A relevant party is one with direct and material understanding of the allegation. Normally, the instructor bringing the charge forward and the student requesting the AIR must be present for the AIR. However, in lieu of attending the AIR, the instructor and/or the student may forfeit in-person participation and provide a written statement.

The student’s absence from or silence during the AIR shall not imply acceptance of responsibility. The university will normally conduct a single AIR to address the charges made against multiple students in the same incident unless the students would experience substantial prejudice as a result of a joint AIR. The dean with whom the students meet to request an AIR will, in consultation with the AIC, hear and decide on prejudice concerns. Recognizing their formal role in the university instruction, in cases where an instructional assistant (IA) is involved, the IA may also be present for the entire AIR rather than partially as a relevant party.

The student may be accompanied by an Associated Students student advocate in the AIR. The student should present his or her own case, but the advocate may assist the student with questioning and procedural issues. The advocate may not normally appear at the AIR in lieu of the student, but in the event that the advocate is present but the student is not, the AIC may continue at the discretion of the presiding officer, questions may be asked of the advocate, and the advocate may address procedural issues on behalf of the student. Prior to the AIR, the AIC shall be available to advise the instructor of the procedures and options for presentation of the case, but the instructor may be accompanied in the AIR only by a faculty colleague acting under the same restrictions as a student advocate.

The instructor and the student shall have the right to present relevant parties and question all relevant parties present at the AIR. In lieu of relevant parties attending the AIR, the instructor and/or the student may submit written statements from relevant parties as part of the review packet. Normally, relevant parties are present at the AIR only for the time they are presenting their statements and being questioned by the instructor, the student, and the Review Panel.

9. The Academic Integrity Review Process

The Review Panel shall hold an AIR and decide based on the preponderance of evidence presented at the AIR whether or not the student is responsible for violating the Policy. Academic Integrity Reviews are fundamentally educative and investigative in nature, and thus the rules of evidence used in legal proceedings do not apply.

The presiding officer shall conduct the AIR in such a manner as to ensure fairness to the student and to the instructor, to maintain order and decorum, to facilitate presentation of evidence, and to provide an opportunity for questions to be asked by the Review Panel.

No AIR shall be undertaken without a reliable recording. The presiding officer shall provide for either a reliable audio recording of the AIR or keep written minutes summarizing the AIR. Any recording shall be retained as part of the permanent record by the student’s dean. Transcripts of the AIR will not be made by the university, but if either the instructor or the student makes a transcript at his or her own expense, copies should be provided to the other party for the cost of the copy or ten cents per page, whichever is less. Procedures for such record keeping are covered by the UCSD Student Records Policy as implemented by PPM 160-2.

No other recording or broadcasting devices shall be allowed in the AIR.

The final determination of the case shall rest with the Review Panel. The instructor and the student, along with any other parties to the AIR, will be excused before the Review Panel begins its deliberations. Review Panel deliberations shall always be confidential and conducted in private with only the Review Panel members and the presiding officer present. The responsibility of the Review Panel is only to determine whether the student violated the Policy, although the Review Panel can make recommendations regarding administrative sanctions to be considered by the Council of Deans. In AIRs where there is more than one student charged, the Review Panel must make a separate determination for each student.

Within five (5) business days from the date on which the AIR is completed, the presiding officer shall forward via e-mail the Review Panel’s determination to the appropriate dean, with copies to the AIC, the department chair/program director, the instructor, and the student.

10. Determination of Sanctions

If the student is found responsible for violating the Policy, sanctions shall be determined as follows:

1. Administrative Sanction

If an undergraduate student is found responsible for violating the Policy, the appropriate dean shall make a recommendation of the administrative sanction(s) to the Council of Deans of Student Affairs. The Council of Deans of Student Affairs shall determine the administrative sanction(s) and shall inform the student and the AIC in writing within ten (10) business days after the receipt of the notice of the Review Panel’s determination.

If a graduate student is found responsible for violating the Policy, the assistant dean of Graduate Studies shall decide the administrative sanction(s) and shall inform the student and the AIC in writing within ten (10) business days after the receipt of the notice of the Review Panel’s determination.

A record of the administrative sanction(s) shall be maintained by the AIC, the appropriate dean, the Council of Deans of Student Affairs (for undergraduates), and Academic Records.

2. Academic Sanction

The AIC shall notify the instructor, the department chair/program director, and Academic Records of the administrative sanction(s) and shall direct the instructor to assign a grade for the course and submit the Change of Grade form if an IP has been assigned.

Within ten (10) business days after receiving the official notice from the AIC, the instructor shall determine the grade for the course. If an IP has been assigned, the instructor shall assign a grade for the course by submitting to Academic Records an official Change of Grade form with the note “Faculty Hold Resolved.” Upon notification from Academic Records that the final grade has been recorded, the AIC will notify the student, the instructor, the dean, and the department chair/program director of the resolution of the case with a report of both the administrative and academic sanctions and that the case is closed.

If the Review Panel finds the evidence insufficient to sustain the charge of violating the Policy, the administrative authority and the instructor shall dismiss the matter without further action against the student, who shall be permitted either to complete the course without prejudice or to withdraw from it. The AIC shall notify the student of his or her options and, within five (5) business days of the date of the letter, the student shall
notify the AIC of his or her decision. If the student does not notify the AIC within this timeframe, it shall be assumed that the student is electing to complete the course without prejudice. The AIC shall then notify the instructor and Academic Records of the student’s decision. If the student withdraws from the course, the course shall not be listed on his or her transcript.

C. The Appeals Phase

The student may appeal the determination of the Review Panel, the academic sanction determined by the instructor, and/or the administrative sanction(s) determined by the appropriate administrative authority

1. Appeal of the Determination of the Review Panel

An undergraduate student may appeal the Review Panel’s determination by submitting a written appeal to the Council of Provosts, with a copy to the AIC, within five (5) business days of formal notification of the determination of the Review Panel. The Council of Provosts will consider the appeal within ten (10) business days from the date the appeal was received. The decision of the Council of Provosts regarding the student’s appeal shall be sent to the student (via mail and e-mail) and copied to the student’s dean, the AIC, and Academic Records.

A graduate student may appeal the Review Panel’s determination by submitting a written appeal to the dean of Graduate Studies, with a copy to the AIC, within five (5) business days of formal notification of the determination of the Review Panel. The dean of Graduate Studies will consider the appeal within ten (10) business days from the date the appeal was received. The decision of the dean of Graduate Studies shall be sent to the student (via mail and e-mail) and copied to the student’s dean, the AIC, and Academic Records.

The basis for appeal of the Review Panel’s determination shall be: (i) that the standards of procedural fairness were violated, e.g., that the student did not have sufficient opportunity to present his or her side of the case; or (ii) that there exists newly discovered important evidence that has substantial bearing on the determination of the Review Panel. If the appeal is sustained, the case shall be referred back to the AIC to schedule a new AIR before a new Review Panel. Except for such appeals, the determination of the Review Panel shall be final.

2. Appeal of the Academic Sanction

Appeals must be submitted to the CEP Subcommittee on Grade Appeals within five (5) business days of receiving notice from the AIC of the academic sanction assigned. If the case was reviewed by a Review Panel, the subcommittee shall receive the determination of the Review Panel and accept its determination as to the facts of the case. The CEP Subcommittee on Grade Appeals shall consider the appeal in accordance with its established procedures.

3. Appeal of Administrative Sanction(s)

An appeal of the administrative sanction(s) shall be submitted by an undergraduate student to the Council of Provosts with a copy to the AIC within five (5) business days of receiving notice from the AIC of the administrative sanction. The Council of Provosts shall evaluate the student’s appeal and make a final decision within ten (10) business days of receiving the appeal. The decision of the Council of Provosts shall be sent by the Chair of the Council of Provosts to the student (via mail and e-mail) and copied to the dean, the AIC, and Academic Records.

An appeal by a graduate student shall be directed to the dean of Graduate Studies with a copy to the AIC within five (5) business days of receiving notice from the AIC of the administrative sanction. The dean of Graduate Studies shall evaluate the student’s appeal and make a decision within ten (10) business days of receiving the appeal. The decision of the dean of Graduate Studies shall be sent to the student (via mail and e-mail) and copied to the assistant dean of Graduate Studies, the AIC, and Academic Records.

A decision of the Council of Provosts or of the dean of Graduate Studies regarding an appeal is final.

IV. POLICY REGARDING STUDENT ACADEMIC RECORDS

- Until a charge of violating the Policy has been resolved, the student’s transcript will show an “IP” for the course. Academic Records will note in attached text to the course (i.e., not on the student’s transcript) that the hold is for a “Pending Charge of Academic Dishonesty.”
- While a hold is in effect, the student shall not drop the course. If the student drops the course before the charge of violating the Policy has been resolved, he or she will be administratively reenrolled in the course by Academic Records.
- The faculty hold shall not be removed by Academic Records until notification from the AIC that the case is resolved or that the instructor has withdrawn the charge.
- If a passing grade is assigned and a conflict arises because of the student’s enrollment in a duplicate, cross-listed, or equivalent course taken after the charge has been resolved, Academic Records shall drop the student from the duplicate course or remove the grade for the duplicate course from the student’s record.
- If the student has been found responsible for violating the Policy, the grade assigned by the instructor will be counted in the student’s GPA even if the course is retaken. Academic Records will permanently note in text attached to the course (i.e., not on the student's transcript) that the grade was given as a result of “Academic Dishonesty.”
- If the student withdraws from UCSD before the final resolution of the case, the following policy shall govern. If the student is found responsible for violating the Policy, and the instructor assigns the student a final grade in the course, this grade shall be permanently entered on the transcript.

If the administrative sanction is dismissal, the transcript shall bear a notation that readmission is contingent upon the approval from the chancellor. Any administrative penalty less severe than dismissal shall be imposed if and when the student returns to the university.

- If a case of alleged Policy violation is also the subject of an administrative inquiry under the Policy on Integrity of Research, then the senior vice chancellor for Academic Affairs, in consultation with the Review Panel, may make such modifications in procedure as are necessary to coordinate the two inquires.
- If the administrative sanction is suspension or dismissal, the fact that the student was suspended or dismissed for violating the Policy must be posted on the academic transcript for the duration of the sanction.

V. REVIEW OF THIS POLICY

The Committee on Educational Policy shall periodically review this Policy and propose changes as it deems necessary.

SPECIAL PROGRAMS

EDUCATION ABROAD PROGRAM AND THE OPPORTUNITIES ABROAD PROGRAM

Please refer to the “Courses, Curricula, and Programs of Instruction” section of this catalog, where the Education Abroad Program and the Opportunities Abroad Program are described in full.

INTERCAMPUS TRANSFER (ICT)

An undergraduate in good academic standing who is now, or was previously, registered in a regular session at any campus of the University of California and has not since registered at any other institution may apply for admission as a transfer in the same status to another campus of the university.

How to Apply

Intercampus transfers must complete the University of California Undergraduate Application form. These forms are available in the Office of the Admissions, or at http://www.universityofcalifornia.edu/apply. You may apply to one or to as many as nine UC campuses of the university using one application form. Send your completed application to: University of California Admissions Application Processing Service P.O. Box 23460 Oakland, CA 94623-0460 Mail only your application form if downloaded, fees, and essay to the processing service address above. Send your transcripts, test scores, and all other correspondence relating to your application directly to the Admissions Office at the university campus(es) to which you apply. The processing service will not forward them.

You may apply online using Pathways: http://www.ucop.edu/pathways.
Application Fees

The basic application fee entitles you to apply to one university campus. If you apply to more than one campus, you must pay an additional fee for each campus you select. These fees are not refundable.

When to Apply

Priority dates for filing applications for intercampus transfer are identical to the application filing dates for new students: fall, November 1–30; winter, July 1–31; and spring, October 1–31. UC Berkeley fall semester, November 1–30.

A campus will accept applications after the priority period only if it still has openings. If you apply after the priority filing period to a campus that is no longer accepting applications, the Admissions Application Processing Service will notify you by mail that your application will not be forwarded to that campus. In this case, you may receive a full or partial refund of the application fee.

UCSD does not accept applications for winter and spring quarters. Consult the application for undergraduate admission for information regarding other campuses.

INTERCAMPUS VISITOR (ICV)

Qualified undergraduates may take advantage of educational opportunities on other campuses of the University of California as an Intercampus Visitor (ICV). This program is designed to enable qualified students to take courses not available on their home campus, to participate in special programs, or to study with distinguished faculty members on other campuses of the university. Students who meet the following requirements should complete an application available in the Office of the Registrar.

1. An undergraduate student must have completed at least one year in residence on the home campus and have maintained a grade-point average of at least 2.0 (or equivalent) to apply as an intercampus visitor.
2. Approval of the appropriate provost office is required.
3. Some UC campuses have additional requirements. See the application for requirements and deadlines.

If students meet the above conditions, they should complete the ICV application form and return it to the Office of the Registrar on the home campus, on or before the appropriate deadlines. The ICV application is subject to approval of both the home and host campuses.

A nonrefundable fee is charged for each ICV application.

SIMULTANEOUS ENROLLMENT OF UCSD STUDENTS AT OTHER UC CAMPUSES

UCSD students may enroll in classes at another UC campus for the same term providing the student:

- Has completed one quarter as a matriculated student at UCSD
- Is enrolled and paid for a minimum of twelve units for the current term at UCSD and maintains this status
- Is in good standing
- Has the appropriate academic preparation as determined by the host campus.

Financial aid is available only through UCSD. Students eligible for veterans, rehabilitation, social security, and other federal, state, or county benefits must secure eligibility certification through the UCSD financial aid office. Units taken at both campuses may be combined to establish full-time enrollment for financial aid.

ROTC

UCSD does not have an ROTC program. Students may, however, with the permission of their college, enroll in ROTC courses at another institution in conjunction with completing their degree programs at UCSD.

ROTC courses are conducted on the campuses of the University of San Diego and San Diego State University. Further information on these programs may be obtained from the ROTC advisor at the Aerospace Studies Department, (619) 594-5545, and the Military Science Department, (619) 594-4943, at San Diego State University, or the Department of Naval Science, (619) 260-4811, at the University of San Diego.

ABSENCE/READMISSION TO THE UNIVERSITY

Undergraduate students absent for no more than one quarter are considered to be continuing students and may enroll on TritonLink.

Students in good academic standing who are absent for two or more consecutive quarters must file an application for readmission no later than four weeks prior to the beginning of the quarter. A nonrefundable fee is charged. The Web site containing the online readmission application and information is: http://tritonlink.ucsd.edu. Select the “Academics” tab then select “Readmission.”

Students in good academic standing who were absent for three quarters or more, should consult with a college academic advisor before enrollment to ensure adherence to graduation requirements. Students who were on probation or subject to dismissal the last quarter of attendance at UCSD may be required to consult with an academic advisor prior to approval of the readmit application and establish a contract before enrollment.

Students who were dismissed from UCSD, but have subsequently met the conditions stipulated in their original dismissal letter, must consult with an academic advisor and establish a quarterly contract before readmission and enrollment.

Students who attended another institution since leaving UCSD must submit official transcripts for all academic work completed. This work must be of passing or higher quality.

In the case of major departments with approved screening criteria, students may be readmitted as pre-majors. All students must be readmitted to their same major prior to readmission.

WITHDRAWAL FROM THE UNIVERSITY

Enrolled or registered (paid fees) students who wish to withdraw either prior to or during the quarter are required to complete the Undergraduate Application for Withdrawal. The form should be filed with the student’s college academic advising or dean’s office. These forms serve two purposes: 1) a means to provide a refund of fees, if appropriate (see below); 2) automatic withdrawal from classes (see also “The W Grade”). Students considering withdrawing are urged to consult with their respective college. The colleges recognize that there are many reasons for students withdrawing from the university.

REFUND POLICY

Prior to the first day of instruction, the registration fee is refunded minus the statement of intention to register fee.

Refund Schedule

The following schedule of refunds is effective beginning with the first day of instruction and refers to calendar days (including weekends):

<table>
<thead>
<tr>
<th>Days</th>
<th>Days</th>
<th>Days</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1</td>
<td>2–7</td>
<td>8–18</td>
<td>19–35</td>
</tr>
<tr>
<td>100</td>
<td>90</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>75</td>
<td>50</td>
<td>25</td>
<td>0</td>
</tr>
</tbody>
</table>

(Senet of Change)

The effective date of withdrawal used in determining the percentage of fees to be refunded is the date indicated on the withdrawal form by the college academic advising or dean’s office.

Return of Title IV Federal Student Aid

Financial aid recipients may be required to return some or all of their aid at the time of withdrawal. This requirement applies only to undergraduate students who withdraw prior to completing 60 percent of the quarter. Questions about financial aid repayment should be directed to the Financial Aid Office.

AUDITING

Interested individuals, including registered students, are permitted to audit courses only with the explicit and continuing consent of, and under such rules as may be established by, the faculty member in charge of the course. The instructor is not obligated to devote time to the work of individuals not officially enrolled in the course. All persons auditing are required to abide by University policies and campus regulations.
Graduate Studies

At UC San Diego, all programs leading to master's degrees and to doctoral degrees (other than the M.D.) are under the jurisdiction of the Graduate Council and are administered by the Office of Graduate Studies.

The San Diego campus emphasizes the research character of graduate education. Doctoral and most master's degrees are the culmination of creative effort and attest to the ability of the recipient to continue original inquiry. In addition to requiring original research, most of UCSD's graduate programs expect their students to obtain teaching experience.

Much of the training that UCSD offers takes place outside the classroom—not only in seminars but in independent research and in tutorial work. Students can benefit from the many visitors from other universities; there are opportunities to study at other campuses of the University of California; and many students become involved in the research activities of UCSD's research institutes and centers. La Jolla has become one of the most important intellectual centers of the West. Not only has UCSD attracted many of the world's great scholars, but other research institutions located nearby such as the Salk Institute for Biological Studies, the Burnham Institute, and The Scripps Research Institute have enhanced the area's reputation.

THE NATURE OF GRADUATE INSTRUCTION

Graduate courses demand, on the part of both instructor and student, a capacity for critical analysis and a degree of research interest beyond those appropriate for undergraduate study. These courses generally carry a number in the 200 series and may be conducted in any of several ways: (1) as advanced lecture courses; (2) as seminars in which faculty and students present critical studies of selected problems within the subject field; (3) as independent reading or study under faculty supervision; or (4) as research projects conducted under faculty supervision. Graduate courses numbered 400–499 are designed for professional programs and may not be used to satisfy minimum graduate course requirements for degrees other than the specific degree program for which they are offered. Courses at the upper-division level (100–197) may be taken in partial satisfaction of the requirements for an advanced degree.

Graduate students may take lower-division courses (1–99) for a letter grade, but grades earned in those courses will not be considered in their overall grade-point average (GPA) for the purpose of determining good standing, except for students in the M.P.I.A. program who may take lower-division language courses for a letter grade and for inclusion in their GPA for the purpose of determining good standing.

The graduate student is accorded considerable liberty in choice of courses as long as minimum departmental core course, departmental requirements and grading standards, and residency requirements are met.

ADMINISTRATION

THE OFFICE OF GRADUATE STUDIES

The Office of Graduate Studies is administered by the dean of Graduate Studies, who is responsible for graduate admissions; graduate degree programs; the administration of fellowships, traineeships, and other graduate student support; the development of new programs; and the maintenance of common standards of high quality in graduate programs across the campus.

The dean reports to the senior vice chancellor of Academic Affairs and to the Graduate Council, on the administration of graduate affairs.

THE GRADUATE COUNCIL

The Graduate Council is a standing committee of the San Diego Division of the Academic Senate composed of faculty and graduate students. The primary function of the council is to exercise overall responsibility for graduate study programs and to implement systemwide policies, procedures, requirements, and standards.

THE GRADUATE ADVISOR

The graduate advisor in a department, group, or school is the faculty member to whom graduate students direct requests for information about graduate study in a particular program.

The graduate advisor's duties include
1. Advising the dean on admission of graduate students.
2. Advising graduate students regarding their programs of study and other matters pertinent to graduate work.
3. Appointing individual advisors for each graduate student.
4. Approving official study lists.
5. Acting on the petitions of graduate students.
6. Insuring that adequate records are maintained on all graduate students in the department, group, or school, and supplying relevant information as requested by the dean.
7. Assisting the dean of Graduate Studies in the application of university regulations governing graduate students, graduate study, and graduate courses.
8. Advising the chair of the department and the dean of Graduate Studies about developments of the graduate program in the department, group, or school.

GRADUATE STUDENT ASSOCIATION

The Graduate Student Association (GSA) is the officially recognized graduate student government at UCSD. It represents all graduate and medical students—including those at Scripps Institution of Oceanography, the Graduate School of International Relations and Pacific Studies, Rady School of Management, the School of Medicine, and the School of Pharmacy and Pharmaceutical Sciences—in academic, administrative, campus, and university matters. The GSA Council, composed of six executive officers and representatives from each department, group, and school, nominates graduate student representatives for appointment to campus governing bodies and committees, including the Graduate Council, the Registration Fee Committee, and the systemwide Student Body Presidents’ Council. The GSA also sponsors projects and social activities designed to improve the academic and social lives of students. Meetings are open to all graduate, School of Pharmacy, and School of Medicine students.

For more information contact the GSA at (858) 534-6504, or go to http://gsa.ucsd.edu.

GRADUATE STUDENT DIVERSITY

The University of California, San Diego actively recruits and admits qualified students to graduate programs who will enhance the diversity of UCSD graduate programs.

UCSD recognizes the value to students, faculty, staff, and the community in having a campus which reflects the full richness and talents of the people of California. Diversity is viewed as a campus strength and a critical component of higher education. The campus has a firm commitment to recruit and admit graduate students from all demographic groups including students from traditionally underrepresented backgrounds.

The Graduate Student Affairs Unit in the Office of Graduate Studies provides an array of counseling and advocacy services to assist U.S. citizens and permanent residents in applying to graduate school, obtaining financial support, and successfully completing graduate degree programs.

UCSD offers the San Diego Fellowship Program, which is designed to increase campus diversity. The fellowship provides two awards: The San Diego Fellowship and the Eugene Cota-Robles Fellowship. Incoming students who have overcome significant economic, educational, or social hardship in pursuit of their education, or whose presence would enhance campus or departmental diversity in other ways, are eligible to apply for awards through the San Diego Fellowship Program. Refer to the Fellowship and Traineeship section for more details.

A limited number of graduate student fellowships are available in specific science disciplines through the National Science Foundation, Alliance for Graduate Education and the Professorate (AGEP) Program.

For assistance and further information about special opportunities for underrepresented students, contact the assistant dean, Office of Graduate Studies, Student Services Center (SSC), Fourth Floor, North, (858) 534-3555 or (858) 534-3678.
CAREER SERVICES FOR GRADUATE STUDENTS

The Career Services Center offers a wide range of programs and services to assist graduate students with their career planning and job search needs. Individual career counseling is available on both an appointment and drop-in basis. In addition, workshops and special events are regularly offered covering such areas as resume writing, job search strategies, and nonacademic employment options. The Career Services Center houses a career reference library containing information on employers, job listings, alumni contact lists, salaries, sample resumes, and publications pertinent to graduate students’ career issues. An online database and Internet access computer lab is also available to assist in placement efforts. For more information, see the “Career” section Career Services Center.

GENERAL REQUIREMENTS FOR HIGHER DEGREES

COURSES AND GRADES

Only upper-division and graduate courses in which a student is assigned grades A, B, C (including plus [+ or minus −]), D, or S are counted in satisfaction of the requirements for all doctoral and master’s degrees. An Incomplete grade, as well as an NR, will automatically lapse to an F or U if it has not been removed when the final report for the degree is approved by the Office of Graduate Studies. (See also “Grades.”)

Undergraduate language courses and courses in the 400 series are only used for degree credit in the program for the M.P.I.A. degree offered by the Graduate School of International Relations and Pacific Studies. For course information see the section on “International Relations and Pacific Studies” elsewhere in this catalog.

REGISTRATION IN THE FINAL QUARTER FOR THE AWARD OF THE DEGREE

A student completing course work, using university facilities including the library, or making any demands upon faculty time (other than final reading of the thesis or dissertation, or administering the comprehensive or doctoral examination), must register in the final quarter in which the degree is to be conferred. Students who need only to submit their theses or dissertations, or to take the comprehensive or final examination may pay a filing fee in lieu of registration in the final quarter (see “Filing Fee”).

MASTER DEGREES

MASTER OF ADVANCED STUDY (M.A.S.)

The University of California offers graduate professional degree programs leading to the master of advanced study (M.A.S.) degree. This degree meets the needs of working professionals continuing in educational programs. While some M.A.S. programs are tailored to career advancement, other programs enable individuals to pursue new career directions or advanced study in the liberal arts. Each M.A.S. program accommodates flexible, part-time, academically qualified working adults who cannot be full-time students. All M.A.S. degree programs must be in conformity with one of the following two plans: Plan I. Thesis Plan or Plan II. Comprehensive Examination Plan. Pending program approval, an alternative capstone plan is a third option. Specific degree requirements, curriculum, and other details are available with each individual program.

MASTER OF ARTS (M.A.) AND MASTER OF SCIENCE (M.S.)

The master of arts and master of science degrees are offered under two plans: Plan I. Thesis, and Plan II. Comprehensive Examination. Since some departments offer both plans, with varying unit requirements, students should consult with their advisors before selecting a plan for completion of degree requirements.

MASTER OF BUSINESS ADMINISTRATION (M.B.A.)

The M.B.A. is a professional degree that provides distinguished education in the theory and practice of management. The program provides a comprehensive education in the fundamental disciplines of business coupled with a focus on the business and management issues faced by technology and innovation driven companies. Students interested in becoming managers and leaders in such companies and in understanding the role that technologies play in driving the global business marketplaces will be well suited for the Rady School of Management. For degree requirements and curriculum, please refer to the school.

MASTER OF EDUCATION (M.ED.)

The Education Studies Program offers a master of education (M.Ed.)/multiple subject credential to authorize teaching grades K–6, and a master of education (M.Ed.)/single subject credential for teaching grades 7–12 is offered in the subject areas of biology, chemistry, geoscience, English, mathematics, and physics. Degree requirements, curriculum, and other details regarding the program may be obtained from the Education Studies Program.

MASTER OF ENGINEERING (M.ENG.)

Several departments in the School of Engineering offer the master of engineering (M.Eng.). The M.Eng. is a terminal degree designed to address the technical needs of engineers. Degree requirements, curriculum, and other details regarding the program may be obtained from the Department of Electrical and Computer Engineering and the Department of Bioengineering.

MASTER OF FINE ARTS (M.F.A.)

The master of fine arts degree is offered in the Departments of Theatre and Dance, and Visual Arts under a modified thesis plan. A short written thesis that may be regarded as a position paper, presenting a descriptive background for the student’s work, is required. There is no written final examination, but great weight is given to the candidate’s final presentation and the oral defense of the thesis.

MASTER OF PACIFIC INTERNATIONAL AFFAIRS (M.P.I.A.)

The Master of Pacific International Affairs Program provides training for those interested in pursuing professional careers in international affairs and international management with an emphasis on the countries of the Pacific Rim. For degree requirements and curriculum, please refer to the International Relations and Pacific Studies description under the catalog listings of programs of instruction.

PROGRAMS OF STUDY

Plan I: Thesis Plan

A minimum of at least thirty-six quarter-units are required: eighteen units in graduate courses, including a minimum of twelve units in graduate-level courses in the major field; twelve additional units in graduate or upper-division courses; and six units in research course work leading to the thesis. Consult your department for specific unit and course requirements.

Following advancement to candidacy, the student electing Plan I must submit a thesis. The thesis committee, appointed by the chair of the department or group and approved by the dean of Graduate Studies, consists of at least three faculty members, with at least two from the candidate’s major department.

When all members of the committee have approved the thesis, a Final Report of the Thesis for the Master of Arts or Master of Science Degree under Plan I must be completed. Prior to the formal submission of the thesis to the Office of Graduate Studies, the student is required to pay a fee to the Cashier’s Office. Final approval by the dean of Graduate Studies and acceptance of the thesis by the university archivist (on behalf of Graduate Council) represent the final steps in the completion of all requirements by the candidate for a master of arts or master of science degree on the San Diego campus.

Plan II: Comprehensive Examination Plan

A minimum of at least thirty-six quarter-units are required: twenty-four units in graduate courses, including a minimum of fourteen units in graduate-level courses in the major field; ten additional units in graduate courses; and twelve additional units in graduate or upper-division courses. Consult your department for specific unit and course requirements.
APPRENTICE TEACHING

A maximum of six units of 500-level courses (apprentice teaching) may be credited toward the degree requirements.

ACADEMIC RESIDENCE

The minimum residence requirement is three academic quarters, at least one of which must follow advancement to candidacy. Academic residence is met by satisfactory completion of six units or more per quarter, some of which must be graduate level.

A candidate must be registered in the quarter in which the degree is to be awarded. (See “Registration in the Final Quarter for the Award of the Degree”)

ADVANCEMENT TO CANDIDACY

After completing all preliminary requirements of the major with a GPA equivalent to 3.0 in upper-division and graduate course work undertaken, a total of no more than eight units of F and/or U grades, and a minimum of two quarters or more of residency, the student may file an Application for Candidacy for the Thesis or Comprehensive Examination, Plan I or II, for the Master of Arts or Master of Science Degree. An Application for Candidacy must be filed no later than two weeks after the first day of the quarter in which degree requirements are to be completed. (See “Academic and Administrative Calendar”)

Following advancement to candidacy, the student electing Plan II must pass a comprehensive examination administered by the major department. A Final Report of the Comprehensive Examination for the Master of Arts or Master of Science Degree under Plan II is used to report successful completion of the examination requirement.

TRANSFERRING CREDIT

With the approval of the major department and the dean of Graduate Studies, upper-division and graduate course work completed with a grade of B– or better while in graduate standing at another campus of the University of California may be accepted in satisfactory completion of one of the three quarters of residence and up to one-half of the quarter-units of credit required for the master's degree at UCSD.

On the recommendation of the major department and with the approval of the dean of Graduate Studies, a maximum of eight quarter-units of credit for work completed with a grade of B– or better in graduate standing at an institution other than the University of California may be applied toward a master's degree at UCSD. Courses used must be taken prior to matriculation at UCSD.

In any case, no more than a total of one-half of the units required for a master's degree may be transferred in from any UC or other institutions. Courses used for a previous degree may not be transferred. A letter from the institution from which the courses are being transferred will be required stating the courses were not used toward another degree.

Course work approved for transfer credit will not be included in calculating a student's grade-point average, regardless of the source.

Plan III: Modified Thesis Program

Seventy-two quarter-units for Visual Arts and ninety quarter-units for Theatre, with a GPA equivalent to 3.0 in upper-division and graduate course work undertaken, are required for a master of fine arts degree. Information concerning thesis preparation is contained in the publication, Preparation and Submission Manual for Doctoral Dissertations and Master’s Theses “Bluebook,” which can be found here (PDF). The completed thesis is submitted to the thesis committee for review. Following the filing of an Application for Candidacy for the Modified Thesis, Plan III, the candidate must submit a thesis. The thesis committee, appointed by the chair of the department and approved by the dean of Graduate Studies, consists of four faculty members; three from the department and one, preferably tenured, from outside the department.

When all members of the committee have approved the thesis, a Final Report of the Modified Thesis Examination, Plan III, for the master of fine arts degree must be completed. Approval by the dean of Graduate Studies and subsequent acceptance of the thesis by the university archivist, Special Collections, represents the final step in the completion of all requirements by the candidate for a master of fine arts degree on the San Diego campus.

ACADEMIC RESIDENCE

The minimum residence requirement is six academic quarters for Visual Arts and eight academic quarters for Theatre, at least one of which must follow advancement to candidacy in either program. Academic residence is met by satisfactory completion of six units or more per quarter, some of which must be graduate level. The entire residence requirement must be satisfied at UCSD.

A candidate must be registered in the quarter in which the degree is to be awarded. (See “Registration in the Final Quarter”)

ADVANCEMENT TO CANDIDACY

After completing all preliminary requirements of the department with a GPA equivalent to 3.0 in upper-division and graduate course work undertaken, a total of no more than eight units of F and/or U grades, and a minimum of five quarters of residency, the student may file an Application for Candidacy for the Modified Thesis, Plan III, for the Master of Fine Arts Degree. An application for candidacy must be filed no later than two weeks after the first day of the quarter in which degree requirements are to be completed. (See “Academic and Administrative Calendar”)

GRADUATE WORK COMPLETED ELSEWHERE

In exceptional circumstances, a student may be given a leave of absence for the purpose of studying elsewhere. While appropriate credit may be allowed for course work completed elsewhere with a grade of B or better in a graduate program, the period involved will not reduce the UCSD academic residence requirement of six academic quarters for visual arts and eight quarters for theatre.

DOCTORAL DEGREES

DOCTOR OF AUDIOLGY (A.U.D.)

The Au.D. is a professional doctoral degree offered jointly with San Diego State University (SDSU). The four-year degree program is designed for individuals who intend to specialize in clinical practice and to meet professional standards requiring a clinical doctorate as the entry-level degree for a certified audiologist. Graduates of this program will have the knowledge base, research exposure, and advanced clinical skills to enter the workforce in any setting, and be prepared to function as independent audiology professionals in the expanding health care arena. For degree requirements and curriculum, please refer to the Audiology section in the catalog.

DOCTOR OF EDUCATION (ED.D.)

The Ed.D. is a professional degree in which regional professional educators gain content knowledge as well as specific skills related to instructional leadership within the K–12 and postsecondary educational community. Advanced Ed.D. students will conduct research on professional practice within their own institution addressing specific local problems that have national implications for education. For degree requirements and curriculum, please refer to the “Education Studies Program” section in this catalog.

DOCTOR OF MUSICAL ARTS (D.M.A.)

The D.M.A. degree emphasizes the dual preparation for professional careers in the performance of contemporary music, as well as in the equally demanding area of teaching these skills on an advanced level. Candidates for this degree are expected to demonstrate musical excellence, artistic maturity, and the capability for doing original scholarly work. For degree requirements and curriculum, please refer to the Department of Music description under the catalog listings of programs of instruction.

DOCTOR OF PHILOSOPHY (PH.D.)

The Ph.D. degree is a research oriented degree which requires individual study and specialization within a field or the establishment of connections among fields. It is not awarded solely for the fulfillment of technical requirements such as academic residence and course work. Candidates are recommended for the doctorate in recognition of having mastered in depth the subject matter of their discipline and having demonstrated the ability to make original contributions to knowledge in their field of study. More generally, the degree constitutes an indicative of critical aptitude in scholarship, imaginative enterprise in research, and proficiency in communication, including—in most departments—practice in teaching.

PROGRAM OF STUDY

The student's program of study is determined in consultation with the advisor who supervises the student’s activities until the appointment of the doctoral committee. A doctoral program generally involves two stages.
The doctoral committee administers the qualifying examination and authorizes the issuance of the Report of the Qualifying Examination and Advancement to Candidacy. Formal advancement to candidacy requires the student to pay a candidacy fee to the cashier prior to submitting the form to the dean of Graduate Studies for approval. Students must maintain a GPA equivalent to 3.0 or better in upper-division and graduate course work undertaken with a total of no more than eight units of F and/or U grades in order to take the qualifying examination and advance to candidacy.

Further information may be obtained from departmental graduate coordinators or the Office of Graduate Studies.

ACADEMIC RESIDENCE

The minimum residence requirement for a doctoral degree is six quarters, three of which must be in continuous academic residence at UCSD. Residency is established by the satisfactory completion of six units or more per quarter; at least some of which must be at the graduate level. Joint doctoral students meet the UCSD academic residency requirement by successfully completing a minimum of thirty-six units of course work at UCSD.

A candidate must be registered in the final quarter in which the degree is to be awarded. (See “Registration in the Final Quarter.”)

THE DOCTORAL COMMITTEE

At least three weeks prior to a scheduled qualifying examination, the department requests approval for the appointment of the doctoral committee by the dean of Graduate Studies. This committee conducts the qualifying examination, supervises the preparation and approval of the dissertation, and administers the dissertation defense.

The committee consists of five or more officers of instruction, no fewer than four of whom shall hold professorial titles of any rank. The committee members shall be chosen from two or more departments/programs; at least two members shall represent academic specialties that differ from the student’s field and one of these two must be a tenured UCSD faculty member from another department. Consult the departmental graduate coordinator or the Office of Graduate Studies for further details.

RECONSTITUTED DOCTORAL COMMITTEE

For a variety of reasons a doctoral committee may need to be reconstituted. The request for reconstitution of the membership of a doctoral committee must be submitted on a reconstitution form to the dean of Graduate Studies by the chair of the candidate’s major department, group, or school no less than two weeks prior to the qualifying examination or defense of the dissertation. The request must include departmental affiliation of the members of the proposed reconstituted committee and the reason(s) for requesting the change.

QUALIFYING EXAMINATION AND ADVANCEMENT TO CANDIDACY

If the committee does not issue a unanimous report on the examination, the dean of Graduate Studies shall be called upon to review and present the case for resolution to the Graduate Council, which shall determine appropriate action.

DISSERTATION AND FINAL EXAMINATION

A draft of the doctoral dissertation should be submitted to each member of the doctoral committee at least four weeks before the final examination. The form of the final draft must conform to procedures outlined in the publication, Preparation and Submission Manual for Doctoral Dissertations and Master’s Theses “Bluebook,” which can be found here (PDF).

The doctoral committee shall supervise and approve the candidate’s dissertation and conduct the final oral defense which shall be public and so announced.

If the committee does not issue a unanimous report on the examination, the dean of Graduate Studies shall be called upon to review and present the case for resolution to the Graduate Council, which shall determine appropriate action.

The Report of the Final Examination and Filing of the Dissertation for the Doctoral Degree form is initiated by the department, group, or school, signed by members of the doctoral committee, and the chair of the (major) department, group, or school.

The candidate submits the dissertation to the Office of Graduate Studies. Final approval by the dean of Graduate Studies and acceptance of the dissertation by the university archivist (on behalf of Graduate Council) represent the final steps in the completion of all requirements by the candidate for a doctoral degree on the San Diego campus. All dissertations and theses submitted in partial satisfaction of doctoral or master’s degree requirements shall be catalogued with the university library, and submitted to Proquest Information and Learning, for publication.

CANDIDATE IN PHILOSOPHY DEGREE

In several departments, as approved by the Graduate Council, the intermediate degree of candidate in philosophy (C.Phil.) is awarded to students upon advancement to candidacy for the Ph.D. degree. The minimum residence requirement for this degree is three quarters of continuous academic residence at UCSD. The C.Phil. degree cannot be conferred simultaneously with or following the award of a Ph.D. degree.

POSTGRADUATE APPOINTMENTS

A UCSD graduate student is not eligible for any UCSD postdoctoral appointment until all requirements for the doctoral degree have been completed. Such appointments may begin after the university archivist has accepted the dissertation and the Office of Graduate Studies has accepted the final report.
GRADUATE PROGRAMS IN THE HEALTH SCIENCES

UC San Diego offers research training programs in the health sciences leading to the doctor of philosophy degree. The purpose of these graduate programs is to prepare students for careers in research and teaching in the basic medical sciences. Program requirements are flexible, consisting of graduate courses and supervised laboratory or clinical investigation. Graduate programs in the health sciences are offered by (1) regular campuswide departments with activities related to the health sciences, for example, the Departments of Bioengineering, Biology, Chemistry and Biochemistry, and Psychology and (2) interdisciplinary groups of faculty drawn from the School of Medicine and from campuswide departments or from San Diego State University.

The following departments or interdisciplinary groups provide research-training opportunities in the biomedical sciences and should be contacted directly for further information: biomedical sciences, biochemistry (in either biology or chemistry and biochemistry), bioengineering, bioinformatics, biology, biophysics, chemistry, clinical psychology, molecular pathology, neuroscience, physics, psychology, public health (in either epidemiology or health behavior), and the Scripps Institution of Oceanography.

PH.D.-M.D. PROGRAM

Students may meet the requirements for both the Ph.D. and M.D. degrees in programs offered jointly by the School of Medicine and the graduate programs in the health sciences. In most cases, students are first admitted to the School of Medicine and may then apply for admission to a relevant graduate program. However, those students who wish to be considered for admission to the Medical Scientist Training Program (MSTP) may apply for admission to the School of Medicine and the MSTP concurrently.

Elements of the first two years of the medical school curriculum satisfy many of the requirements of the graduate program, but additional courses will be required. Thus, the student must complete requirements for the Ph.D. in accordance with the regulations of a department or a group and must in addition meet the requirements for the professional degree. Students interested in such programs should consult the associate dean for Student Affairs, School of Medicine.

JOINT DOCTORAL PROGRAMS

Certain departments of the University of California cooperate with similar departments on several campuses in the California State University System to offer joint programs of study leading to the doctoral degree. At UCSD, joint doctoral programs in audiology, biology, chemistry, clinical psychology, language and communicative disorders, engineering sciences (applied mechanics), mathematics and science education, and public health (in either epidemiology, global health, or health behavior) are currently offered in conjunction with San Diego State University, and in educational leadership in conjunction with San Diego State University and California State University, San Marcos. A Ph.D. in drama and theatre is offered in conjunction with University of California, Irvine. Applicants interested in these joint programs should consult the Departments of Biology, Chemistry and Biochemistry, Communicative Disorders, Mechanical Engineering, Psychology, Surgery, Theatre and Dance; or the Office of the Dean, College of Engineering; or the Center for Research in Mathematics and Science Education; or the School of Public Health at San Diego State University. Joint doctoral students meet the UCSD academic residency requirement by successfully completing a minimum of thirty-six units of course work at UCSD.

INTERCAMPUS EXCHANGE PROGRAM FOR GRADUATE STUDENTS

A graduate student registered on any campus of the University of California, who wishes to take advantage of educational opportunities for study and research available on another campus in the UC system, must apply to become an intercampus exchange student on that UC campus. UCSD students must have completed at least one quarter of study and be in good standing prior to beginning an exchange.

Informal arrangements between departmental faculty on the two campuses must be undertaken prior to submission of a student’s application to assure that space in desired courses, seminars, or facilities will be available.

NO LATER THAN FOUR WEEKS PRIOR to the opening of the term on the host campus, a student must complete the Application for Intercampus Exchange Program for Graduate Students available online at http://oas.ucsd.edu/AcademicAffairs/Documents/formicep.pdf. This application, approved by the student’s departmental graduate advisor and the graduate dean of the home campus, is forwarded for approval by the department and the graduate dean on the host campus.

Students participating in an intercampus exchange must pay all required fees and enroll as appropriate at the home campus. Evidence of fee payment, at the home campus, must be presented to enroll in classes at the host campus.

An exchange student is not admitted to graduate standing at the host campus, but is considered a graduate student in residence at the home campus. Grades obtained in courses taken by the student enrolled in the intercampus graduate student exchange program are transferred to the home campus for entry on the student’s official record. Library, health center, and other student privileges are extended by the host campus.

IN-ABSENTIA REGISTRATION

(Other than Intercampus Exchange Program)

If the research and study program of a graduate student requires being outside the state of California for an extended period of a quarter, the student may apply for In-Absentia Registration. During such periods a student is required to remain a registered student at UCSD and to carry twelve units of course work or research. Fifteen percent of the combined educational and registration fees will be assessed. All required fees including, but not limited to the campus based fees, health insurance fee, and nonresident fee, if applicable, must be paid.

A graduate student who holds a fellowship, traineeship, or a research assistantship and desires to register In-Absentia may do so under the following circumstances: The student must obtain the approvals of the academic department and the dean of Graduate Studies, and agree to comply with the rules and regulations governing the award or appointment. Regulations concerning accepting additional awards or compensation for appointments as outlined under the financial assistance section apply to In-Absentia Registration.

UC SAN DIEGO EXTENSION

Students wishing to use UC San Diego Extension course work taken prior to admission at UCSD as a graduate student in partial satisfaction of requirements for a master’s degree must file a General Petition with the Office of Graduate Studies. Acceptance of such course work is subject to the regulations on “Transferring Credit” (which are described elsewhere in this catalog), the recommendation of the major department, and approval of the dean of Graduate Studies, and will be considered upon satisfactory completion of course work in a regular session.

Complimentary Enrollment

Through a reciprocal agreement with UC San Diego Extension, a limited number of spaces in extension classes are open to full-time graduate students (registered for twelve units or more) in good standing without payment of additional fees. The number of spaces available for each quarter varies. The student must obtain a UCSD Application for Enrollment from the Office of Graduate Studies and personally secure the necessary approvals. Course work taken through Complimentary Enrollment cannot be used in partial satisfaction of requirements for a master’s degree, nor can it be used toward the twelve unit full-time enrollment requirement.

EDUCATION ABROAD PROGRAM

Graduate students may apply to study at most Education Abroad Program (EAP) host institutions, provided that they meet EAP requirements and have completed at least one year of graduate work prior to departure, are in good standing, and have the support of their academic department and graduate dean.

Costs vary according to location. Students pay fees to the University of California and are enrolled at UCSD while abroad. Full academic credit is received for courses satisfactorily completed.

At UCSD, complete information and application forms for the various overseas campuses may be obtained from the Programs Abroad Office, International Center, University Center, 0018 or on the Programs Abroad Web site http://pao.ucsd.edu/
centers, see also “Education Abroad Program” in the chapter titled “Courses, Curricula, and Programs of Instruction.” Study abroad information is http://eap.ucsd.edu.

POSTDOCTORAL EDUCATION

Postdoctoral education emphasizes scholarship and continued research training for individuals who have recently completed a doctoral degree. The postdoctoral scholar conducts research under the general oversight of a faculty mentor in preparation for a career position in academe, industry, government, or the nonprofit sector.

The Office of Research Affairs has responsibility for the administrative management of the Postdoctoral Scholar Program. Interested candidates should directly contact the department, research unit, or faculty member for information on available positions or training opportunities. The department or research unit initiates all appointments.

Postdoctoral scholars are eligible for the UC Postdoctoral Scholar Benefits Program, academic photo identification card, and access to campus resources (library, recreation facilities, etc.).

FEES *

The following schedule of quarterly fees is anticipated for the 2010–11 academic year:

<table>
<thead>
<tr>
<th></th>
<th>Resident</th>
<th>Nonresident</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>—</td>
<td>$4,898.00</td>
</tr>
<tr>
<td>Registration</td>
<td>300.00</td>
<td>300.00</td>
</tr>
<tr>
<td>Educational</td>
<td>2,667.00</td>
<td>2,784.00</td>
</tr>
<tr>
<td>Student Center</td>
<td>76.50</td>
<td>76.50</td>
</tr>
<tr>
<td>Recreational Facilities</td>
<td>92.00</td>
<td>92.00</td>
</tr>
<tr>
<td>Graduate Student Assoc.</td>
<td>12.00</td>
<td>12.00</td>
</tr>
<tr>
<td>Health Insurance</td>
<td>552.00</td>
<td>552.00</td>
</tr>
<tr>
<td>Total</td>
<td>$3,399.50</td>
<td>$8,714.50</td>
</tr>
</tbody>
</table>

MISCELLANEOUS FEES AND FINES

Students should also be aware of the following charges:

<table>
<thead>
<tr>
<th>Charge</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application fee for admission</td>
<td>$60</td>
</tr>
<tr>
<td>Domestic</td>
<td>80</td>
</tr>
<tr>
<td>International</td>
<td>10</td>
</tr>
<tr>
<td>Duplicate Photo-ID card</td>
<td>70</td>
</tr>
<tr>
<td>Petition for Readmission</td>
<td>90</td>
</tr>
<tr>
<td>Transcript of Record</td>
<td>6</td>
</tr>
<tr>
<td>Late payment of fees (Late registration)</td>
<td>50</td>
</tr>
<tr>
<td>Late enrollment</td>
<td>50</td>
</tr>
<tr>
<td>Late and retroactive Add/Drop</td>
<td>3</td>
</tr>
<tr>
<td>Returned check collection</td>
<td>35</td>
</tr>
<tr>
<td>Filing Fee</td>
<td>199</td>
</tr>
<tr>
<td>UCSD Statement Late Charge</td>
<td>25</td>
</tr>
<tr>
<td>Master’s Thesis submission fee</td>
<td>55</td>
</tr>
</tbody>
</table>

*Subject to change without notice. Updated information regarding fees may be found on the Web site http://www.ucsd.edu/current-students/finances/fees/registration/index.html.

All receipts for payments made to the cashier, whatever their nature, should be carefully preserved. Not only do they constitute evidence that financial obligations have been discharged, but they may be required to support a claim that certain documents or petitions have been filed.

Fees for graduate students approved for enrollment in a half-time program (not to exceed six units) may be reduced by one-half of the Educational fee and one-half of nonresident tuition for nonresidents.

CALIFORNIA RESIDENCY AND THE NONRESIDENT TUITION FEE

Each new student entering UCSD is required to submit a Statement of Legal Residence to the Office of the Registrar. No tuition is charged to students classified as residents of California. Nonresidents, however, are required to pay a quarterly tuition fee.

A complete statement covering California residency requirements, determination of residence for tuition purposes, and/or recognized exceptions appears in the section "Residence Requirements" or on the Web site http://www.ucsd.edu/current-students/finances/fees/residence/about.html.

Additional information may be obtained from the Campus Residence Deputy, Office of the Registrar, Student Services Center, 2nd Floor, Suite 261. No other university personnel are authorized to supply information relative to residence requirements for tuition purposes. Students seeking to establish California residency for tuition purposes are advised to review the requirements and deadlines. Adherence to the published deadlines is the responsibility of each student and is essential. Exceptions to waive or extend deadlines are not considered.

To the extent funds are available, subject to change, waiver of nonresident tuition may be granted to spouses and dependent, unmarried children under age twenty-one of university faculty members who are qualified for membership in the Academic Senate. Inquiries should be directed to the Office of the Registrar or the Academic Senate Office.

UNIVERSITY REGISTRATION FEE

The university registration fee is a quarterly fee required of all registered students, and it must be paid at the time of the student’s registration. This fee is for services which benefit the student and are complementary to, but not part of, the regular instructional programs of the university. No part of this fee is refunded to students who do not make use of these services; however, students who petition and are approved for out-of-state study will receive a waiver for one-half of the registration fee. Exemption from this fee may be granted to surviving children of certain deceased California fire fighters or police officers. Students who believe they may qualify for an exemption on this basis must consult with the Financial Aid Office, Student Services Center (SSC), Third Floor North, for a ruling.

STUDENT HEALTH SERVICES AND INSURANCE PLANS

The Student Health Service (SHS) is a nationally accredited health care facility providing primary health care for no or minimal charge during the academic year for all students who pay the university registration fee. Students with the Student Health Insurance Plan (SHIP) in the spring have access to the SHS during the summer at no additional charge. Students without SHIP may be seen in the summer for a modest fee. Additional information on the wide variety of services available at SHS is available via the Web at http://studenthealth.ucsd.edu.

SHS provides primary health care to all students with SHIP. Access to SHIP benefits requires written SHS referral except in cases of emergency care or care 150 miles out of the UCSD area.

THE STUDENT HEALTH INSURANCE PROGRAM (SHIP)

SHIP is a mandatory year-round insurance plan for graduate and professional students unless a waiver has been granted (see “Waivers”). Students must be enrolled in SHIP for the spring quarter in order to retain coverage through summer. Three quarterly payments will provide year-round coverage under SHIP. The spring quarter premium extends insurance coverage through the summer quarter. Benefits and additional information may be viewed at the Web site http://studenthealth.ucsd.edu.

Premium payment for SHIP is due with the payment of the registration fee. Premiums for students holding graduate academic appointment titles for a full academic term at 25 percent time or greater will be paid directly by the university. Premiums for most students holding fellowships and training grants are also paid directly. Loans to cover premiums may be available for students who receive need-based financial assistance.

For first-year students arriving on campus prior to the start of the academic calendar year, it is highly recommended that the student review current insurance status and purchase short term coverage if necessary. Insurance information may be obtained by calling the insurance counselor at (858) 534-2124.

Refunds

No premium refunds are permitted, except when a student withdraws on or prior to the first day of classes, in which case a full refund of the premium will be made and coverage for that quarter will be canceled effective from the first day of the quarter. If an insured enters the armed forces, a pro-rata refund of premium paid will be made upon request. Refunds for all other fees are subject to the Schedule of Refunds published in the Schedule of Classes. That refund schedule is effective beginning on the first day of the quarter and counts all calendar days. Students cannot expect exceptions to this schedule, regardless of the circumstances of the leave of absence/withdrawal request.

Leave of Absence

A student is eligible to be enrolled in SHIP when on approved leave of absence for a total of one academic quarter. A student on approved
leave is responsible for his or her health insurance enrollment, premium payment, and Student Health Service fee payment. Enrollment in SHIP is through the Student Health Insurance Office.

Waivers

Students already insured under a policy containing benefits equal to or better than SHIP may be eligible for SHIP waivers for up to one academic year. Documents required for a waiver are: 1) student's written request, 2) proof of present insurance and premium payment to the end of the quarter, 3) a copy of the summary of insurance benefits, and 4) a copy of the insurance identification cards. Submit written requests with all required documents directly to UCSD, Student Health Insurance Office, 9500 Gilman Drive #0039, La Jolla, CA 92093-0039 no later than the last business day of the first week of the quarter. The insurance coordinator will mail final decisions regarding waiver requests to the student.

EDUCATIONAL FEE

The educational fee was established as a required fee for all students beginning with the fall quarter 1970. It is used to cover a variety of educational costs as determined by the regents. The educational fee may be reduced by one-half for students enrolled in six units or fewer (see "Part-Time Study").

STUDENT CENTER FEE

Every student is required to pay a student center fee each quarter.

RECREATION FACILITY FEE

Every student is required to pay a recreation facility fee each quarter.

REDUCED FEE ENROLLMENTS

1. Eighty-five percent of the combined educational and registration fees may be waived for graduate students whose research or study requires them to remain outside the state of California for five weeks or more of the quarter. Students must file a General Petition for this privilege. The reduction pertains to 85 percent of the combined educational and registration fees only. A student must pay, in addition, all required fees including, but not limited to, the remaining educational and registration fees, student center fee, recreation facility fee, health insurance fee, and nonresident tuition fee, if applicable.
2. Graduate students approved for enrollment in a half-time program (not to exceed six units) are eligible for a reduction in fees of one-half the educational fee, and, if applicable, one-half of the nonresident tuition fee.
3. A full-time employee who is not subject to nonresident tuition, who has worked full time for the university for at least six months prior to the latest date that registration will be accepted, and who meets the admission requirements of the university is eligible for two-thirds reduction of both the university registration fee and the university educational fee for up to nine units or three regular session university courses per quarter, whichever is greater. An employee so registered is ineligible for the services and facilities of the Counseling Center, recreation facilities, or the Student Health Services, other than those services to which the employee is regularly entitled (University of California Staff Personnel Policy 260.23). Authorization for this privilege is secured from the Staff Personnel Office for staff employees, or from the Academic Personnel Office for individuals on academic appointments.

Note: In accordance with Academic Senate regulations, no voting member of the San Diego Division of the Academic Senate shall be recommended for a higher degree from UCSD unless the dean of Graduate Studies shall have certified that all requirements for that degree have been met prior to the appointment to a rank carrying the voting privilege.

FILING FEE

A student registered in the immediately preceding quarter, or on an approved leave of absence who has completed all requirements except for the final reading of the dissertation or thesis or the taking of the final examination is eligible to petition to pay a filing fee in lieu of registering and paying all required fees in the final quarter. The filing fee applies to both residents and nonresidents. Students must apply for this privilege by means of a General Petition.

REFUND OF FEES

Students who withdraw from UCSD during the first five weeks of instruction (35 calendar days) may receive partial refunds of fees, excluding health insurance, if applicable. The date of withdrawal, as related to the fee refund schedule, shall be the date on which notice of withdrawal is submitted to the Office of Graduate Studies (OGS). See Schedule of Classes for schedule of refunds.

PARKING FEE

Students who park motor vehicles, including motorcycles, on the campus are subject to parking fees. (See "Transportation Services" in chapter entitled "Campus Services and Facilities").

Penalty Fees

Penalty fees (see "Fees"), are charged for failure to comply with normal deadline dates. To avoid such fines, students should fulfill all requirements in advance of the deadlines listed in the Schedule of Classes.

TRANSCRIPT FEES

Students may obtain transcripts of their UCSD records from the Office of the Registrar for $6 for each copy. Transcripts must be requested several days in advance of date needed.

LATE FEES

Students are responsible for meeting quarterly enrollment and registration (fees payment) deadlines which are published on TritonLink, in the Schedule of Classes, and a variety of student-directed Web sites and publications. A $50 late fee will be assessed for late enrollment and/or late registration up to $100 total. Late enrollment automatically causes late registration as payments cannot be credited to a student's account until enrollment occurs. Late fee waivers are rarely granted and only in extenuating and verifiable circumstances. Only certain staff in the Office of Graduate Studies (OGS) are authorized to grant waivers.

FINANCIAL ASSISTANCE

Several kinds of financial assistance are available to graduate students at UCSD. These include fellowships and traineeships; assistantships in teaching, language instruction, and research; scholarships in full or partial payment of tuition and/or fees; and loans and grants-in-aid. Further details about these awards/appointments may be obtained from departmental, group, or school offices.

Descriptions in this section deal entirely with awards administered directly by the university. Applicants for financial assistance should note the following: “Pursuant to Section 7 of the Privacy Act of 1974, applicants for student financial aid or benefits are hereby notified that mandatory disclosure of their Social Security number is required by the University of California to verify the identity of each applicant. Social Security numbers are used in processing the data given in the financial aid application; in the awarding of funds; in the coordination of information with applications for federal, state, university, and private awards or benefits; and in the collection of funds and tracing of individuals who have borrowed funds from federal, state, university, or private loan programs.”

FELLOWSHIPS AND TRAINEE SHIPS

Regents Fellowships, offered to students with excellent academic and research qualifications, provide a stipend of $20,000 for nine or ten months, plus tax-free resident fees and nonresident tuition, if applicable. These awards may be supplemented with a partial graduate student researcher or research fellowship from available departmental resources. The amount of the supplement varies by department. The San Diego Fellowship is designed to increase the quality of education and research by enhancing campus diversity. Currently it provides a minimum stipend of $1,250 per month plus resident fees and one year of nonresident tuition. These awards are usually given for two years. Academic departments are responsible for two additional years of support for the Ph.D., D.M.A., or Ed.D. students awarded this fellowship. Look online at http://ogs.ucsd.edu/FinancialSupport/Fellowship/Advising/Pages/SanDiego.aspx for further information.

The seven most outstanding nominees for the San Diego Fellowship are awarded the Cota-Robles Fellowship. Fellows receive an $18,000 stipend plus fees for two years. Nonresident fellows are eligible for a tuition scholarship in their first year. Doctoral fellows are guaranteed comparable departmental support for at least two additional years.

The Alliance for Graduate Education and the Professoriate (AGEP) program is funded by the National Science Foundation (NSF). This fellowship is awarded to eight eligible graduate students in...
selected programs in science, mathematics, and engineering. For further information, look online at http://opinweb2.ucsd.edu/agepp/

All other fellowship stipends are established by the department, group, or school and may vary in tenure from one to twelve months and in any amount up to a maximum of $3,222 per month. Fellowships awarded for one, two, or three quarters will also provide tax-free resident fees and nonresident tuition, if applicable. U.S. citizens and permanent residents are eligible for non-resident tuition scholarships only for their first three quarters at UCSD. Awardees must register for twelve units of upper-division and graduate-level work each quarter and must remain in good academic standing, as described under “Standards of Scholarship” of this catalog.

Fellows and trainees on twelve-month tenure are required to devote full time to graduate study and research during the summer as well as during the academic year. A brief resume of proposed summer graduate study or research, approved by the appropriate advisor, must be filed with the dean of Graduate Studies before the end of the spring quarter preceding the summer portion of the fellowship or traineeship tenure.

Some fellowships and traineeships offer the privilege of participation in the teaching or research programs of the university.

The principal types of fellowships/scholarships at UCSD are the following:

1. Regents Fellowships
2. San Diego and Cota-Robles Fellowships
3. Research Fellowships
4. U.S. Public Health Service Predoctoral Traineeships
5. Fee Scholarships
6. Tuition Scholarships (eligibility limited to international students and first-year domestic nonresident students, only)

ASSISTANTSHIPS

Graduate students may be appointed by UCSD on a part-time basis as graduate student researchers and teaching assistants.

Graduate students enrolled full-time (twelve units or more) may be appointed up to 50 percent time (twenty hours/week) during the academic year and 100 percent time during the summer months, although most departments limit support to 50 percent time year-round. Students enrolled for less than full-time (one to eleven units) are eligible, at the discretion of the department, for 25 percent time appointments. Appointees must remain in good academic standing, as described under “Standards of Scholarship.”

Teaching assistants and others appointed on academic titles at 25 percent time or more for the quarter are eligible for payment of partial fee remission of 100 percent of the annual education and registration fees and 100 percent of the Graduate Student Health Insurance fee.

Graduate students appointed as teaching assistants, associates, readers or tutors (ASE’s) are represented by the Association of Student Employees/UAW under a collective bargaining agreement with the University of California. All salary payments under these titles are subject to a deduction for union membership dues or agency fee deduction for students who choose not to become members of the union. The university/UAW Agreement can be retrieved electronically at http://oqs.ucsd.edu/FinancialSupport/Employment/AcademicPages/AcEmOp.aspx.

All graduate students who are U.S. citizens and appointed as teaching assistants or graduate student researchers or are employed by the university in other positions are required by the California Constitution to sign the State Oath of Allegiance. In addition, all graduate student appointees and employees are required by university policy to sign the university’s Patent Agreement. Copies of both documents may be obtained from the student’s academic department.

Taxability of Awards

All compensation is taxable income. All fellowship stipends are established for the following academic year should be an- nounced not later than April 1. UCSD subscribes to the agreement of the Council of Graduate Schools of the United States, under which successful applicants for awards are given until April 15 to accept or decline such awards. An award accepted from one of the member universities may be resigned at any time through April 15. However, an acceptance given or left in force after that date commits the student not to accept another appointment without first obtaining formal release for that purpose.

Continuing and returning students. Consult with their departments.

AWARD NOTIFICATION

The awarding of fellowships and similar awards for the following academic year should be announced not later than April 1. UCSD subscribes to the agreement of the Council of Graduate Schools of the United States, under which successful applicants for awards are given until April 15 to accept or decline such awards. An award accepted from one of the member universities may be resigned at any time through April 15. However, an acceptance given or left in force after that date commits the student not to accept another appointment without first obtaining formal release for that purpose.

LOANS AND GRANTS-IN-AID

An excellent package of grants-in-aid, work-study, and loans is available to graduate students who show evidence of financial need as determined by analysis of a completed Free Application for Federal Student Aid (FAFSA).

See section on “Financial Aid” in chapter entitled “Campus Services and Facilities.”

TIME LIMITS FOR GRADUATE STUDENT SUPPORT

For doctoral students, all financial support administered by UCSD (including fellowships, scholarships, and appointment but excluding loans) is restricted to students who are within their departmental support time limits (see “Doctoral Time Limits” and description of each department’s graduate program).

M.F.A. and M.P.I.A. students can be supported for a maximum of ten quarters. M.A. and M.S. students can be supported for a maximum of seven quarters.
FELLOWSHIPS AND RESEARCH AWARDS FROM OUTSIDE THE UNIVERSITY

In addition to fellowships, traineeships, and loans administered by the university, other types of graduate student support are available through federal agencies and private foundations. Students wishing to explore such sources of support for their studies at UCSD are urged to consult one of the many directories available in the reference section of Geisel Library, the fellowship listings provided via UCSD's SURF Fellowship database (http://research.ucsd.edu/surf/), the Community of Science Web site (http://www.cos.com), Grants Select (http://www.grantselect.com), and the University of California's research opportunity page (http://www.ucop.edu/research/). Most application deadlines occur in the fall or early winter. Among the many organizations which award fellowships to students at UCSD are the Department of Defense; the Department of Education; the Ford Foundation; the Hertz Foundation; Institute of International Education; the National Aeronautics and Space Administration; the National Science Foundation; the Social Science Research Council; and the Woodrow Wilson National Fellowship Foundation. Additional support is offered by the Office of Graduate Studies and the Graduate Fellowship Advisor.

GENERAL POLICIES AND REQUIREMENTS

INTEGRITY OF SCHOLARSHIP

See “UCSD Policy on Integrity of Scholarship” in the “Academic Regulations” section of this catalog.

STUDENT CONDUCT

Graduate students enrolling in the university assume an obligation to conduct themselves in a manner compatible with the university’s function as an educational institution. Rules concerning student conduct, student organizations, use of university facilities, and related matters are set forth in UC San Diego Campus Regulations Applying to Campus Activities, Organizations, and Students. Copies are available online at http://ugr8.ucsd.edu/judicial and at the Office of Graduate Studies, and the Office of Judicial Affairs.

STUDENT APPEALS

Academic Appeals

The faculty of a department or program has primary responsibility for maintaining the excellence of graduate programs, and it is in the best position to judge its students’ academic performance. Consequently a graduate student appeal of an academic decision should first be made to the individual faculty member who made the decision. If this does not result in a resolution that is satisfactory to the student, he or she may appeal to the department or program chair. Graduate students may appeal a course grade or Ph.D. or master’s qualifying or final exam result only if he or she believes that nonacademic criteria were applied in determining the course or exam grade. A student who wishes to appeal a course grade or exam result should follow the procedure described in “Grade Appeals” in the “Academic Regulations” section of the UC San Diego General Catalog.

Non-Academic Appeals

Graduate students may appeal actions of departments, programs, individual faculty members, departments, or administrators relating to a student’s academic program or financial support if they believe that

1. due process was not followed in arriving at a decision
 OR
2. personal prejudice affected the judgment rendered.

A non-academic appeal may be submitted to the department or program chair, individual faculty member, or administrator within one month of the date of learning of the action or the date that the student should have reasonably known of the action.

If an appeal to an individual faculty member or administrator is not resolved to the student’s satisfaction, he or she may then submit a written appeal to the department or program chair, who shall attempt to adjudicate the case with the faculty member or administrator and the student within two weeks.

If the appeal is not resolved to the student’s satisfaction at the department or program level, he or she may then attempt to resolve the matter through written appeal to the dean of Graduate Studies, who will attempt to adjudicate the case within two weeks. The dean may take the appeal to the Graduate Council for review, which may extend the time required to reach a final resolution.

The student’s request for the dean’s review should include a written statement describing the nature of the grievance, along with copies of any and all documents in his or her possession supporting the grievance. Students are encouraged to contact the assistant dean for Student Affairs in the Office of Graduate Studies for assistance with the appeal process.

Employment Appeals

Students holding an academic appointment, such as graduate student researcher, are subject to the Academic Personnel Manual policy 140. A copy of this policy is available in the Office of Graduate Studies or it may be viewed online at http://www.ucop.edu/acadadv/acadpers/apsm/welcome.html. Appeals by teaching assistants, readers, and tutors are covered by the ASE/UAW contract that may be viewed at http://atyourservice.ucop.edu/employees/policies_employee_labor_relations/index.html.

Other Appeals

Grievances concerning violations of student rights are covered by the Student Conduct Code grievance procedures, which are available online at http://ugr8.ucsd.edu/judicial/23_00.html.

STANDARD OF SCHOLARSHIP

Only upper-division, graduate, and professional courses in which grades of A, B, C (including plus [+] or minus [–]), D, or S (Satisfactory) are earned can be counted in satisfaction of the requirements for a higher degree.

EXCEPTIONS

A student may request an exception to the normal procedures and requirements governing graduate studies by submitting a General Petition, available from the department. The petition must state clearly the reasons for requesting the exception and bear all required approvals before being submitted to the Office of Graduate Studies. All requests for exceptions supported by the dean of Graduate Studies will be submitted to the Committee on Educational Policy of the UCSD Academic Senate for consideration.

Requests for exceptions to time limits require a letter of explanation and support from the student’s research advisor, and support and justification from the program’s graduate advisor and endorsement by the department or group chair. Such requests are submitted to the Graduate Council through the dean of Graduate Studies. Exceptions to the time limits policy are granted only in the case of truly exceptional and unavoidable circumstances.

10/2010-2011 UC SAN DIEGO GENERAL CATALOG • GRADUATE STUDIES 9
A student’s grade-point average (GPA) is computed by dividing the total number of grade points earned by the total unit value of graded upper-division, graduate, and professional courses undertaken at UCSD with the exception of those undertaken in UCSD Extension. Grades of S, U, I, IP, NR, and W are excluded in computing a grade-point average. Lower-division course work units are not used in computing a graduate student’s grade-point average or in satisfying program requirements for a higher degree, with the exception of language courses taken by students in the M.P.I.A. program.

Each department or group prepares, not later than the second week of each spring quarter, a detailed, written evaluation of each of its doctoral or M.F.A. students. These evaluations are designed to inform students of their progress and to improve communications between faculty and graduate students. Evaluations are discussed with students who may elect to add written comments before signing the copy of the evaluation sent to the Office of Graduate Studies. A student’s signature on the evaluation indicates knowledge of the assessment but does not necessarily signify agreement.

To be in good standing academically a graduate student must meet departmental standards including a satisfactory spring evaluation, maintain a GPA of 3.0 or the equivalent in upper-division, graduate, and professional course work, and must not have accumulated more than a total of eight units of F and/or U grades overall, unless departmental standards specify more stringent grade requirements.

Good standing is a requirement for:
1. Holding academic and staff appointments.
2. Holding fellowship, scholarship, or traineeship appointments.
3. Participating in the Education Abroad Program (EAP)
4. Advancing to candidacy for a graduate degree.
5. Going on leave of absence.
6. Receiving a graduate degree from UCSD.

Graduate students who are not in good standing for any reason are subject to probation and/or disqualification from further graduate study.

GRADING SYSTEM

The grade of A+, when awarded, represents extraordinary achievement but does not receive grade-point credit beyond that received for the grade of A. The grades of A, B, and C may be modified by plus (+) or minus (-). When attached to the grades of B and C, plus (+) grades carry three-tenths of a grade point more per unit, and when attached to A, B, and C, minus (-) grades carry three-tenths of a grade point less per unit. Grades and grade points are described as follows:

Grade Points per Unit

<table>
<thead>
<tr>
<th>Grade</th>
<th>Grade Points per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.0</td>
</tr>
<tr>
<td>A</td>
<td>4.0</td>
</tr>
<tr>
<td>A–</td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
</tr>
<tr>
<td>B–</td>
<td>2.7</td>
</tr>
<tr>
<td>C+</td>
<td>2.3</td>
</tr>
<tr>
<td>C</td>
<td>2.0</td>
</tr>
<tr>
<td>C–</td>
<td>1.7</td>
</tr>
<tr>
<td>D</td>
<td>1.0</td>
</tr>
<tr>
<td>F</td>
<td>0.0</td>
</tr>
<tr>
<td>S</td>
<td>0.0 (equivalent 0.0 to B– or better)</td>
</tr>
</tbody>
</table>

Grade

- Unsatisfactory
- Incomplete—work of non-failing quality
- In Progress (provisional grade; replaced when full sequence is completed)
- Withdrawal (assigned when withdrawing or dropping a course beginning fifth week to end of ninth week of instruction)

*Requires Request to Receive Grade Incomplete form to be initiated and completed by the student, approved by the instructor, and filed with the department prior to the end of finals week. The incomplete grade will lapse to F or U if not made up by the last day of finals week in the following quarter.

All grades except Incomplete and In Progress are final when entered in an instructor’s course report filed at the end of the quarter.

While grades of U are not computed in a grade-point average, they are not considered satisfactory grades for students on appointment, nor are they considered to be evidence of satisfactory progress on the part of any student. Therefore, a student whose record bears more than eight units of U and/or F grades in upper-division, graduate, or professional course work may not be eligible to continue on appointment and may be subject to academic probation or disqualification.

CHANGES IN GRADES

All grades except I and IP are final when filed by the instructor unless a clerical or procedural error is discovered.

No change of a final grade may be made on the basis of revision or augmentation of a student’s work; no term grade except Incomplete may be revised by further examination; and no grade may be changed after one calendar year from the time the grade was recorded.

REPETITION OF COURSES

A student assigned a grade of D, F, or U may petition to repeat the course on the same grading basis for which it was first taken. That is, a course in which a grade of D or F has been received may not be repeated on an S/U basis. Conversely, a course in which a grade of U has been awarded may not be repeated on the basis of a letter grade.

NO REPORT/NO RECORD

A blank entry appearing on student transcripts in lieu of a grade indicates that the student’s name appeared on a grade report but no grade was assigned by the instructor. A blank entry will lapse automatically into an F or U if not removed or replaced by a final grade by the last day of instruction of the subsequent quarter, and will be computed in the student’s GPA.

I (INCOMPLETE)

The grade of I may be assigned by an instructor only when the student’s work is of passing quality but is incomplete. The student must complete and submit to the instructor the form, Request to Receive Grade Incomplete and Removal of Grade Incomplete, which will contain both the reason for requesting the grade I and the conditions to be met before the Incomplete can be replaced with a final grade. The Incomplete must be made up, the grade assigned, and the completed form filed with the Office of the Registrar no later than the end of final examination week the following quarter.

Incomplete grades assigned in the quarter before a graduate student withdraws or takes an approved leave of absence must be replaced by a final grade before the end of the academic quarter following to prevent the Incomplete from lapsing to F or U.

IP (IN PROGRESS)

An IP is assigned in a sequential course which extends over more than one quarter, and the evaluation of a student’s performance may not be possible until the end of the course. A student who has dropped out without completing the entire sequence may be assigned final grades and unit credit for any quarter(s) completed, provided that the instructor has a basis for assigning the grades and certifies that the sequence was not completed for good cause. An IP not replaced by a final grade will remain on the student’s record. Courses graded IP are not used in calculating a student’s grade-point average until graduation. At that time course units still graded IP on a student’s record must be treated as units attempted in calculating the GPA; thus units graded IP will have the same effect on the overall GPA as an F or U.

S/U (SATISFACTORY/UNSATISFACTORY)

The minimum standard of performance for a grade of Satisfactory shall be the same as the minimum for a grade of B—

With the approval of the Graduate Council, departments may offer graduate courses in which graduate students may elect to be evaluated on an S/U basis and courses in which S/U grading shall be the only grading option. Grading options for a given course are identified in course listings in the UC San Diego General Catalog.

In addition, and with the approval of the department and the instructor concerned, graduate students may elect to have the following courses graded on an S/U basis: any upper-division or lower-division course taken (provided they have obtained approval of the instructor and the department), and any graduate or upper-division course outside their major department. If departmental requirements have been fulfilled for advancement to candidacy for the doctoral degree, graduate students may take any course on an S/U basis.

Selection of S/U as a grading option must be made in the first two weeks of a quarter. Units graded Satisfactory shall be counted in satisfaction
of degree requirements but shall be disregarded in determining a student’s grade-point average. No credit shall be allowed for work marked Unsatisfactory.

W (WITHDRAWAL)

Students who discontinue graduate study any time during a quarter without formally withdrawing will receive failing grades for all course work undertaken. Formal withdrawal requires filing a Leave of Absence, Extension and/or Withdrawal form prior to leaving campus with the Office of Graduate Studies after receiving departmental approval and all other approvals listed on the form. When a student withdraws before the end of the fourth week of instruction, no course entries will appear on the transcript for that quarter. Students who withdraw from the university or drop a course between the beginning of the fifth week of instruction and the end of the ninth week of instruction will be assigned a W (Withdrawn) by the registrar for each course affected.

Courses in which a W has been assigned will be disregarded in determining a student’s grade-point average.

FINAL GRADES

Students may access their full UCSD graduate academic record on TritonLink in the academic history module. The student must have his/her PID and PAC numbers to access TritonLink. If lost or misplaced, the PAC number may only be obtained from the Office of the Registrar (OAR) after providing proof of identification; the PID may be obtained through the departmental graduate program coordinator or the OAR. While grade reports submitted by instructors at the end of the quarter are generally considered final, OAR. While grade reports submitted by instructors at the end of the quarter are generally considered final, the PAC number may only be obtained from the Office of the Registrar (OAR) after providing proof of identification; the PID may be obtained through the departmental graduate program coordinator or the OAR. While grade reports submitted by instructors at the end of the quarter are generally considered final, the student withdraws before the end of the fourth week of instruction, no course entries will appear on the transcript for that quarter. Students who withdraw from the university or drop a course between the beginning of the fifth week of instruction and the end of the ninth week of instruction will be assigned a W (Withdrawn) by the registrar for each course affected.

Courses in which a W has been assigned will be disregarded in determining a student’s grade-point average.

ADMISSION REQUIREMENTS

ACADEMIC

Applicants for graduate admission must present official evidence of receipt of a baccalaureate degree from an accredited institution of higher education or the equivalent, with training comparable to that provided by the University of California. A minimum scholastic average of B or better is required for course work completed in upper-division, or prior graduate study.

ADMISSION POLICIES

DUPLICATION OF ADVANCED DEGREES

Normally, duplication of advanced academic degrees, M.A., M.S., Ph.D., is not permitted. A duplicate academic degree is one at the same level, e.g., a second master’s degree or second Ph.D., regardless of the discipline or the specialization awarding the degree. A professional degree at the master’s or doctoral level, e.g., Au.D., D.M.A., Ed.D., M.B.A., M.Ed., M.F.A., M.P.I.A., M.D. Pharm.D., is not regarded as a duplicate of an academic degree.

Students who already hold an advanced degree may be admitted to UCSD to pursue a second advanced degree at the same level only under limited circumstances, and only with the consent of the Graduate Council. Recognizing that there are circumstances in which it is appropriate for a student to pursue a second degree, the Graduate Council will consider the following criteria when reviewing requests for permission to do so at UCSD.

1. The degree already held by the student must be in a fundamentally different disciplinary field from the department to which the student is applying. A request for permission to be admitted to a degree program at UCSD should document this clearly, and should indicate the differences both in intellectual training and in qualification for future employment that the second degree would confer.

2. The department or program considering the applicant must make a clear case that there is no other way at UCSD for the student to obtain the same outcome for future employment prospects, e.g., by pursuing a master’s program or postdoctoral study rather than a second Ph.D.

If the decision of the Graduate Council is that the student should be admitted to a particular department or program for a master’s degree alone, the student is barred from requesting permission to continue for a Ph.D. in that department or program.

NON-DEGREE STUDY

There is no “student-at-large” classification at UCSD; application for admission must be made to a specific department or group. Applicants who wish to enroll for “course work only” within a department or group and who do not intend to pursue a higher degree at UCSD may request admission for non-degree study. Applicants for non-degree study must satisfy all admission requirements and are not eligible for fellowships or assistantships. Non-degree status is granted for up to one year; students may petition the dean of Graduate Studies for a second year of non-degree status.

PART-TIME STUDY, INCLUDING HALF-TIME

Students who enroll in fewer than twelve graduate or upper-division units each quarter are considered part-time students. International students on F1 or J1 visas must be enrolled full-time each quarter. Students who are approved by their major department and by the dean of Graduate Studies for enrollment in a program of half-time study (maximum of six units or fewer) for reasons of occupation, family responsibilities or health, may be eligible for a reduction in fees. All other part-time students (7–11 units) pay the same fees as full-time students.

Part-time study may be pursued in several masters’ programs and a few doctoral programs at UCSD.

In all instances, part-time students must satisfy the same admission requirements as full-time students and are eligible, at the discretion of a department, for appointment to 25 percent time teaching or research assistantships. Admitted students must file the petition for half-time study with the Office of Graduate Studies no later than the last day of the second week of the quarter to be eligible for a fee reduction.

APPLICATION PROCEDURES

WHEN TO APPLY

Each graduate program sets a unique application deadline. Most deadlines are set between December and February. A few programs accept applications for winter and spring admissions. For specific deadlines refer to the online application instructions at http://ogs.ucsd.edu or contact the specific program office. Applicants need not have completed their undergraduate programs prior to applying.

HOW TO APPLY

UCSD encourages the use of the online application and payment of the nonrefundable application fee by credit card. The online application can be accessed at http://ogs.ucsd.edu where detailed instructions for completion of the application are provided.

Additional program and application information can be obtained from each graduate program office. Access the UCSD Web site http://ucsd.edu and the appropriate program’s graduate study information. Telephone numbers and campus addresses are listed with the department information in this catalog. The Graduate Admissions Application includes application for a fellowship, traineeship, scholarship, or assistantship. The primary documents required in support of an application are listed below. Each program may require additional documents.

REQUIRED SUPPORTING DOCUMENTS

All supporting documents, including letters of recommendation, should be completed using the online system. Any additional supplemental materials are mailed directly to the applicant’s prospective major department.

Academic Records

Applicants must request that official transcripts of all previous academic work, including certification of degrees received or documentation of status upon leaving each institution, be forwarded to their prospective major department. Only official records bearing the signature of the registrar and the seal of the issuing institution will be accepted. Applicants with academic work in progress who expect to complete a degree program before the intended date of enrollment at UCSD must submit evidence of degree conferred and a final academic record, as soon as they are available. The undergraduate degree must be completed prior to the start of graduate study.
Special Note to International Applicants

In all applications for graduate admission, official records bearing the signature of the registrar or other responsible academic officer and the seal of the issuing institution are required. However, true copies, facsimiles, or photostatic copies of foreign academic records will be accepted if, after the copies have been made, they have been personally signed and stamped by an educational official of the issuing institution, who certifies that they are exact copies of the original document. Properly signed copies should be sent instead of irreplaceable original documents. Unless academic records are issued in English by the institution itself, certified English translations must accompany official documents written in a language other than English.

Foreign academic records should show all courses attended each year, examinations passed, seminars completed, and grades or marks received in all institutions where formal records are maintained. Official evidence of degree conferred must also be supplied, together with evidence of rank in class if possible.

Graduate Record Examinations (GRE) Scores

Most graduate programs require that applicants take the GRE. Contact the specific program for further information. Applicants who are applying for admission to a department, group, or school which requires that they take the GRE should do so as early as possible to insure the timely receipt of their score results. Applicants must take the GRE no later than fall in order to meet most departmental deadlines for admission. Consult the GRE Information & Registration Bulletin or the GRE Web site http://www.gre.org for further information. Only official scores sent to UCSD by ETS will be accepted for admission.

To facilitate the processing of applications for admission, applicants may forward to their proposed major department, group, or school a copy of their GRE examination score as soon as it is received; since official copies are not always immediately received by the appropriate department at UCSD.

Letters of Recommendation

Applicants should arrange to have three letters of recommendation submitted online to UCSD. If paper letters are necessary they must be mailed to the prospective major department, group, or school. (Recommendation forms can be printed from the online application site.) It is most important that letters of recommendation be completed by individuals in a position to analyze an applicant’s abilities and academic or professional promise.

International Applicant Financial Statement

International applicants accepting admission to UCSD are required to certify that they possess sufficient funds to cover all fees, transportation, and living expenses during the first academic year of graduate enrollment at UCSD. An International Applicant Financial Statement, for the purpose of indicating the amount and source of funds available for graduate study, is made available to applicants after accepting admission; the financial statement must be submitted to the Graduate Admissions office before visa forms can be provided.

Opportunities for employment, on or off campus, are extremely limited, and international applicants should not base their educational plans on the hope of finding employment after arriving in the United States.

ADMISSIONS EXAMINATION INFORMATION

There are a variety of internationally administered examinations which may be taken to meet requirements for admission to graduate study or to satisfy certain requirements for advanced degrees. Several examinations of importance to UCSD applicants are listed here.

English Language Test

All international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English must take the Test of English as a Foreign Language (TOEFL) or the International English Language Testing System (IELTS) exam and submit their test scores to the Office of Graduate Admissions.

The minimum TOEFL score for admission is 550 for the paper-based test (PBT), 213 for the computer-based test (CBT), or 80 for the Internet based test (IBT). The minimum IELTS score is 7.0. Applicants admitted with low scores may be required to take an English proficiency test upon arrival at UCSD and to enroll in an English course until the required proficiency is attained.

Application: TOEFL information and forms are available online at http://toefl.org or from TOEFL Services, P.O. Box 6151, Princeton, NJ 08541-6151. IELTS information and forms are available online at http://www.ielts.org. Information and forms may also be available at United States embassies, consulates, and related centers.

Test of Spoken English (TSE)

The Test of Spoken English (TSE) helps foreign students provide a reliable measure of proficiency in spoken English. Effective July 2006, the TOEFL Internet based test (IBT) includes a test of spoken English, therefore the TSE is not necessary for students who have taken the IBT. However, in some areas the IBT is not available and students take the TOEFL paper based test (PBT) instead. Students who have taken the PBT may want to consider taking the TSE to better demonstrate their proficiency in spoken English. TOEFL information is available at http://www.ets.org.

ADMISSION AND REGISTRATION

Official admission to graduate study at the university is contingent upon review of an applicant’s record, receipt of final undergraduate transcript showing degree(s) awarded, receipt of official transcripts of all attended institutions, an affirmative recommendation by the prospective department, group, or school, and action by the Office of Graduate Studies. The dean of Graduate Studies or the prospective major department, group, or school may deny admission if an applicant’s scholastic record is undistinguished, if the preparation is judged inadequate as a foundation for advanced work, or in the event that no further students can be accommodated for a given quarter. Only the official Certificate of Admission from the dean of Graduate Studies constitutes formal approval of admission to a graduate program at UCSD.

Official notification of admission by the dean of Graduate Studies will be sent well in advance of the beginning of the quarter for which application has been made. Applicants should call their prospective major department, if formal notification is not received four weeks prior to the beginning of the quarter for which they applied.

Admission to graduate standing does not constitute registration for classes. A student is not officially registered for classes until the entire registration procedure is completed each quarter. Information and all necessary registration materials will be available at department offices approximately two weeks before the opening of the quarter (see “Academic and Administrative Calendar”).

DEFERRAL AND REAPPLICATION

Admission to graduate standing does not constitute registration for classes. A student is not officially registered for classes until the entire registration procedure is completed each quarter. Information and all necessary registration materials will be available at department offices approximately two weeks before the opening of the quarter (see “Academic and Administrative Calendar”).

Students who are denied admission must submit a new application and fee together with required documentation in order to be considered for admission in another academic year.

READMISSION

A graduate student whose status has lapsed because of an interruption in registration must petition his or her department for readmission at least eight weeks prior to the first day of the quarter in which reenrollment is intended. Do not complete an Application for Admission. Students must submit supplementary transcripts of all academic course work undertaken since last enrolled at UCSD, pay a readmission fee of $60, and complete a General Petition and a supplementary Statement of Activities. In addition, a Statement of Legal Residence is required for all students returning after an absence of two quarters or more. Readmission is not automatic.
REGISTRATION REQUIREMENTS AND PROCEDURES

All students must enroll and pay fees on or before the deadline dates established by the Office of the Registrar for each quarter to avoid paying late fees. Enrollment materials are obtained at the major department. (See Schedule of Classes for current deadlines.)

FULL-TIME STUDENT

A full-time student is required to be registered for twelve units each quarter of each academic year until the completion of all requirements for the degree, including the filing of the thesis or dissertation.

PART-TIME STUDENT

A part-time student is enrolled in fewer than twelve units a quarter but is admitted as a regular student. A part-time student must pay full fees unless approved by the dean of Graduate Studies to enroll in half-time status for six units or fewer. A student must file the petition for half-time study with the Office of Graduate Studies no later than the last day of the second week of the quarter to be eligible for reduced fees. (See “Admissions Policies—Part-Time Study”)

SCHEDULE OF CLASSES

Detailed information on registration and enrollment procedures is contained in the quarterly Schedule of Classes, found on the Office of Admissions and Records home page at http://tritonlink.ucsd.edu. It is the responsibility of each graduate student to keep informed of and meet all enrollment and registration (fee payment) deadlines.

PRIORITY ENROLLMENT

Continuing Students

Continuing graduate students may enroll in classes through WebReg during the first two weeks of the quarter or by coming to the Registrar’s office any time during the quarterly enrollment period. A Personal Access Code (PAC) number is issued to graduate students by the Office of the Registrar. Students may also use WebReg to add, change, and drop classes. Students who do not use WebReg may complete Add/Drop Cards and file them with the Office of the Registrar any time during enrollment periods. Complete instructions for enrolling by WebReg or Add/Drop Cards can be found in the quarterly Schedule of Classes and on TritonLink.

Confirmation of classes is immediate by WebReg. Students must officially withdraw from a course to avoid receiving a failing grade.

New Students

New students are given academic advising in their respective academic departments and enroll just prior to or at the beginning of their first quarter at UCSD.

STUDENT PHOTO-IDENTIFICATION CARD

A validated Student Photo-Identification Card is the official ID for registered students and entitles the student to library privileges, a student health card, and use of other university facilities, as well as for purchasing tickets and/or admission to certain university events and voting in student body elections. Registration is validated electronically via the Campus ID card magnetic strip. Quarterly fees are required to be paid for registration validation.

If the Student Photo-Identification Card is lost, students may obtain a duplicate at the Campus ID Office, Student Services Center (SSC), Third Floor, South.

REGISTRATION PROCEDURES

Students are considered enrolled when they have requested at least one course and space in it has been reserved. Every effort will be made to enroll students in their preferred class sections. Students are not considered registered until they have both enrolled in classes and paid registration fees.

PAYMENT OF REGISTRATION FEES

Please refer to the “Payment of Registration Fees” section in the “Undergraduate Registration” portion of this catalog or the quarterly Schedule of Classes, which outlines procedures for payment of registration fees.

Note to Fellowship, Scholarship, or Traineeship Holders

The first billing statement will be sent to each enrolled student about one month prior to the start of each quarter. Fees and tuition awarded to pay registration fees will be credited to the graduate student’s account and appear on the student’s account and appear on the statement as registration fees.

A validated Student Photo-Identification Card is the official ID for registered students and entitles the student to library privileges, a student health card, and use of other university facilities, as well as for purchasing tickets and/or admission to certain university events and voting in student body elections. Registration is validated electronically via the Campus ID card magnetic strip. Quarterly fees are required to be paid for registration validation.

If the Student Photo-Identification Card is lost, students may obtain a duplicate at the Campus ID Office, Student Services Center (SSC), Third Floor, South.

PENALTY FEES

A student who has not completed registration and registered by the registrar, will lapse to F’s or U’s unless cleared by the end of the current quarter. A student who is on leave of absence or who has withdrawn from the university is not entitled to withdraw books from the library or to use other university facilities or faculty time. A student who is withdrawn must petition for readmission to study at a later date, pay the nonrefundable reactivation fee, and be considered for readmission with all other requests for admission to that quarter.

Doctoral degree candidacy will lapse for graduate students who fail to register and are not granted a formal leave of absence. To be reinstated to candidacy, a graduate student must be readmitted, enroll and register, be readvanced to candidacy, and pay the candidacy fee.

LATE REGISTRATION/DEADLINE AND PENALTY FEES

Students will be assessed late fees if not enrolled and registered by the registrar’s published deadlines outlined in this catalog and the quarterly Schedule of Classes. Please refer to the “Graduate Admission Information and Enrollment Deadlines” portion of this catalog or to the quarterly Schedule of Classes for additional information.

A student who has not completed registration (enrolled and paid fees) by the deadline for change of program must petition for permission to register late and will pay late fees totaling $100, regardless of the source of fees payment.

A student whose registration in classes is cancelled for non-payment of fees and seeks reinstatement will be assessed both the late enrollment ($50) and late registration fees ($50), currently totaling $100, regardless of the source of fees payment.

Students are advised to consult the quarterly Schedule of Classes for current deadline dates.
CHANGES IN COURSE SELECTION

Add/Drop Cards reflecting changes in class enrollment must be filed with the Office of the Registrar in order for the student to receive credit for added courses and be relieved of responsibility for dropped courses.

Add/Drop Cards must be completed in full and include correct course information and course codes as listed in the current Schedule of Classes.

After enrolling in courses, a graduate student may add courses, change sections of a given course, or change grading options up to the end of the second week of instruction without fee by completing an Add/Drop Card available at the Office of the Registrar. Students may also use WebReg. Students in some programs must obtain approval of their graduate advisor or department. See Schedule of Classes. Any requests to the dean of Graduate Studies for exception to this policy require written explanation and instructor verification of attendance/course work completion to date.

A graduate student may drop a class up to the end of the ninth week of classes by filling an Add/ Drop Card with the registrar, after first notifying the instructor, and obtaining the approval of the graduate advisor or department and the dean of Graduate Studies. If the course is dropped before the end of the fourth week of instruction and before the end of the ninth week of instruction will remain on the transcript as permanent entries showing course number and title, and the registrar will assign a final grade of W, signifying Withdrawal.

Students may not drop courses after the end of the ninth week of instruction and will receive the earned grade or an Incomplete, if applicable. When a grade in a course has been assigned in accordance with the Academic Senate policy on Integrity of Grades, it is to be used in determining eligibility for readmission. A student who discontinues graduate study with the intention of resuming during a later quarter, with department approval, files a formal Leave of Absence, Extension and/or Withdrawal form prior to leaving the campus. Graduate students must have completed at least one quarter of academic residence and be in good standing (GPA 3.0 minimum or equivalent and no more than eight units of U or F) to be granted a leave. All graduate students are limited to a maximum of three quarters of leave and/or withdrawal.

Prior to the end of the second week of instruction of the quarter in which the leave is to begin, a student must complete a Leave of Absence form and obtain required signatures as listed under the clearance section of the form, and the approvals of the graduate advisor, chair of the (major) department, group, or school, and dean of Graduate Studies. Fee refund will be subject to the refund schedule published in the quarterly Schedule of Classes (see section on “Withdrawal”). A graduate student who enrolled in classes before requesting a Leave of Absence must also request a withdrawal from the class for the quarter of leave to avoid paying fees for that quarter. Graduate students may request an extension of an approved leave prior to the expiration of the leave, up to the maximum of three quarters in all degree programs. For an extension of an approved leave, the student must complete a new leave of absence form and obtain the signatures of the graduate advisor, chair of (major) department, housing, and dean of graduate studies.

ENROLLMENT LIMITS

A full-time graduate student in a regular quarter is expected to enroll in twelve units of upper-division or graduate course work with the exception that in the Graduate School of International Relations and Pacific Studies the normal course load is sixteen units. A student who wishes to take units in excess of these limits must obtain the approval of the graduate advisor or department chair.

Graduate students holding half-time appointments as graduate student researchers, teaching assistants, language assistants, readers, or other employment titles, or who receive support from traineeships, fellowships, or scholarships paid through the university or directly to the student, must enroll and register for twelve units of upper-division and/or graduate course work and research each quarter.

Teaching units (500 series) above the full-time program of twelve units are not considered an overload. Graduate students approved for half-time study are limited to a maximum of six units of upper-division or graduate course work each quarter.

CHANGES OF NAME OR ADDRESS

Students must file official change of name or address forms with the Office of the Registrar. Students are advised to also notify their major department, group, or school.

LEAVE OF ABSENCE/EXTENSION

A student who discontinues graduate study with the intention of resuming during a later quarter, with department approval, files a formal Leave of Absence, Extension and/or Withdrawal form prior to leaving the campus. Graduate students must have completed at least one quarter of academic residence and be in good standing (GPA 3.0 minimum or equivalent and no more than eight units of U or F) to be granted a leave. All graduate students are limited to a maximum of three quarters of leave and/or withdrawal.

Prior to the end of the second week of instruction of the quarter in which the leave is to begin, a student must complete a Leave of Absence form and obtain required signatures as listed under the clearance section of the form, and the approvals of the graduate advisor, chair of the (major) department, group, or school, and dean of Graduate Studies. Fee refund will be subject to the refund schedule published in the quarterly Schedule of Classes (see section on “Withdrawal”). A graduate student who enrolled in classes before requesting a Leave of Absence must also request a withdrawal from the class for the quarter of leave to avoid paying fees for that quarter. Graduate students may request an extension of an approved leave prior to the expiration of the leave, up to the maximum of three quarters in all degree programs. For an extension of an approved leave, the student must complete a new leave of absence form and obtain the signatures of the graduate advisor, chair of (major) department, housing, and dean of graduate studies.

Parenting Leave

A graduate student who is bearing a child, who has primary responsibility for the care of an infant immediately following birth, a child under the age of five, or adoption of a child under age five, and is in good academic standing will be granted, on request, a one-quarter extension of all unexpired doctoral time limits. During the quarter in which childbirth or adoption occurs, the graduate student may choose one of the following registration options:

1. Continue registering as a full-time graduate student and retain eligibility for support.
2. Reduce to part-time status (less than twelve units) and be eligible for up to 25 percent time employment on campus.
3. Take a leave of absence.

After the quarter in which childbirth or adoption occurs, a graduate student who has primary responsibility for caring for a child up to the age of five will be granted, on request, a leave of absence for the purpose of caring for the child for a maximum of two quarters (or three quarters, if a one-quarter extension has not been granted for the quarter in which childbirth or adoption occurred).

The total amount of time for which graduate students may receive extensions of time limits for parenting or childbirth may not exceed three quarters in a graduate student’s career at UCSD. Approved leaves for childbirth and parenting will not count in the three-quarter leave limit available to all graduate students.

A student who has a long-term loan is considered to be out of school while on a leave of absence and must set up an exit interview with the Loan Records Office before leaving the campus. Since rules and regulations pertaining to such loans are complex, it is to the student’s advantage to determine loan requirements prior to seeking a leave of absence. A student on leave of absence may not (1) be employed by UCSD, UCSD Medical Center or UC Extension, or hold a fellowship, traineeship, or similar appointment administered by the university, (2) use university facilities, (3) complete a qualifying examination for advancement to candidacy, or (4) place demands on faculty, including discussion of thesis or dissertation work, either directly or by correspondence, during the period of leave.

A student may remain in student housing while on an approved leave of absence providing he or she has been a full-time student (twelve units or more) for three consecutive quarters immediately prior to the leave of absence and is eligible for university housing.

Students must return all borrowed library material if requesting a leave of absence or withdrawing. Any student on an approved Leave of Absence must contact their major department to be reinstated and cleared for enrollment and registration.

A new Statement of Legal Residence is required for all graduate students returning from a leave of absence of two quarters or more.

WITHDRAWAL

A student withdrawing from the university must obtain a Leave of Absence, Extension and/or Withdrawal form and secure appropriate signatures. The approved form must be filed with the Office of Graduate Studies.

Students who withdraw during the first thirty-five days of instruction will receive refunds of fees in proportion to the number of elapsed calendar days since the first day of instruction. The date of withdrawal used in calculating the refund shall be the date on which the approved notice of withdrawal is submitted to the Office of Graduate Studies.

A registered student who stops attending classes and fails to file a Leave of Absence, Extension, and/or Withdrawal form will receive a grade of F or U in each course, thus jeopardizing eligibility for readmission.

RETURN OF TITLE IV FEDERAL STUDENT AID

Financial aid recipients may be required to return some or all of their aid at the time of withdrawal. This requirement applies only to undergraduate students who withdraw prior to completing 60 percent of the quarter. Questions about financial aid repayment should be directed to Student Financial Services Office.

1. 2010-2011 UC SAN DIEGO GENERAL CATALOG • GRADUATE STUDIES

14
BAR FROM REGISTRATION/ NONACADEMIC

After suitable warning, a student may be barred from further registration for a variety of nonacademic reasons, including failure to comply with official notices, to settle financial obligations when due, to provide final undergraduate transcripts, or other related matters.

BAR FROM REGISTRATION/ACADEMIC

Academic disqualification is determined by the dean of Graduate Studies in consultation with the student’s department, and normally relates to: unsatisfactory academic performance, e.g., failure to maintain a grade-point average of 3.0 or better; failure to meet departmental criteria of performance; failure to advance to candidacy or complete the degree within established time limits; accumulation of more than eight units of F or U grades; or failure to comply with conditions set at the time of admission to a graduate degree program.

GRADUATE DEGREES OFFERED: 2010-11

ANTHROPOLOGY
• Anthropology Ph.D.*
• Anthropology and Cognitive Science Ph.D.
• Anthropology with a Specialization in Anthropogeny Ph.D.

BIOENGINEERING
• Bioengineering M.Eng., M.S., Ph.D.
• Bioengineering (Joint with San Diego State University) Ph.D.***
• Bioengineering with a Specialization in Bioinformatics Ph.D.
• Bioengineering with a Specialization in Multi-Scale Biology Ph.D.

BIOINFORMATICS AND SYSTEMS BIOLOGY
• Bioinformatics and Systems Biology Ph.D.

BIOLOGICAL SCIENCES
• Biology M.S.*, Ph.D.
• Biology (Joint with San Diego State University) Ph.D.
• Biology with a Specialization in Anthropogeny Ph.D.
• Biology with a Specialization in Bioinformatics Ph.D.
• Biology with a Specialization in Multi-Scale Biology Ph.D.

BIOMEDICAL SCIENCES
• Biomedical Sciences Ph.D.*
• Biomedical Sciences with a Specialization in Anthropogeny Ph.D.
• Biomedical Sciences with a Specialization in Bioinformatics Ph.D.
• Biomedical Sciences with a Specialization in Multi-Scale Biology Ph.D.

CHEMISTRY AND BIOCHEMISTRY
Chemistry M.S., Ph.D.
• Chemistry (Joint with San Diego State University) Ph.D.
• Chemistry with a Specialization in Bioinformatics Ph.D.
• Chemistry with a Specialization in Computational Science Ph.D.
• Chemistry with a Specialization in Multi-Scale Biology Ph.D.

CLASSES
• Classics (Tri-Campus Program with UC Irvine and UC Riverside) Ph.D.

CLINICAL PSYCHOLOGY
• Clinical Psychology (Joint with San Diego State University) Ph.D.
• Clinical Psychology and Cognitive Science (Joint with San Diego State University) Ph.D.

COGNITIVE SCIENCE
Cognitive Science Ph.D.*
• Cognitive Science with a Specialization in Anthropogeny Ph.D.

COMMUNICATION
• Communication Ph.D.*
• Communication (Science Studies) Ph.D.
• Communication and Cognitive Science Ph.D.

COMPARATIVE STUDIES IN LANGUAGE, SOCIETY, AND CULTURE
• Comparative Studies in Language, Society, and Culture Ph.D.

COMPUTATIONAL SCIENCE, MATHEMATICS, AND ENGINEERING
• Computational Science, Mathematics and Engineering M.S.

COMPUTER SCIENCE AND ENGINEERING
• Architecture-Based Enterprise Systems Engineering M.A.S.***
• Computer Science M.S., Ph.D.
• Computer Science (Computer Engineering) M.S., Ph.D.
• Computer Science and Cognitive Science Ph.D.
• Computer Science with a Specialization in Bioinformatics Ph.D.
• Computer Science and Engineering (Advanced Manufacturing) M.S.
• Computer Science and Engineering with a Specialization in Computational Science Ph.D.

ECONOMICS
• Economics Ph.D.*
• Economics and International Affairs Ph.D.

EDUCATION STUDIES
Education M.Ed.
• Educational Leadership (Joint with California State University, San Marcos) Ed.D.
• Teaching and Learning Ed.D.
• Teaching and Learning (Curricular Design) M.A.
• Teaching and Learning: Bilingual Education (ASL-English) M.A.

ELECTRICAL AND COMPUTER ENGINEERING
• Electrical Engineering (Applied Ocean Science) M.S., Ph.D.
• Electrical Engineering (Applied Physics) M.S., Ph.D.
• Electrical Engineering (Communication Theory and Systems) M.S., Ph.D.
• Electrical Engineering (Computer Engineering) M.S., Ph.D.
• Electrical Engineering (Electronic Circuits and Systems) M.S., Ph.D.
• Electrical Engineering (Intelligence Systems, Robotics and Control) M.S., Ph.D.
• Electrical Engineering (Joint with San Diego State University) Ph.D.***
• Electrical Engineering (Nanoscale Devices and Systems) M.S., Ph.D.
• Electrical Engineering (Photonics) M.S., Ph.D.
• Electrical Engineering (Signal and Image Processing) M.S., Ph.D.
• Electrical and Computer Engineering (Advanced Manufacturing) M.S.

ETHNIC STUDIES
• Ethnic Studies Ph.D.*

HEALTH SCIENCES
• Audiology (Joint with San Diego State University) Au.D.
• Clinical Research M.A.S.
• Health Law (Joint with California Western School of Law) M.A.S.
• Leadership of Healthcare Organizations M.A.S.
• Public Health (Epidemiology) (Joint with San Diego State University) Ph.D.
• Public Health (Global Health) (Joint with San Diego State University) Ph.D.
• Public Health (Health Behavior) (Joint with San Diego State University) Ph.D.

HISTORY
• History M.A., Ph.D.
• History (Judaic Studies) M.A.
• History (Science Studies) M.A.

INTERNATIONAL RELATIONS AND PACIFIC STUDIES, GRADUATE SCHOOL OF
• International Affairs M.A.S., M.I.A., Ph.D.
• Pacific International Affairs M.P.I.A.

LANGUAGE AND COMMUNICATIVE DISORDERS
• Language and Communicative Disorders (Joint with San Diego State University) Ph.D.

LATIN AMERICAN STUDIES
• Latin American Studies M.A.
• Latin American Studies (Cultural Studies) M.A.
• Latin American Studies (Gender Studies) M.A.
• Latin American Studies (History) M.A.
• Latin American Studies (International Migration) M.A.
• Latin American Studies (Sociology) M.A.

LINGUISTICS
• Linguistics Ph.D.*
• Linguistics and Cognitive Science Ph.D.
• Linguistics with a Specialization in Anthropogeny Ph.D.

LITERATURE
• Literature M.A., Ph.D.*
• Writing M.F.A.

MANAGEMENT, RADY SCHOOL OF
• Business Administration M.B.A.
• Management Ph.D.

MATHEMATICS
• Mathematics M.A., Ph.D.
• Mathematics (Applied) M.A.
• Mathematics with a Specialization in Bioinformatics Ph.D.
• Mathematics with a Specialization in Computational Science Ph.D.
• Statistics M.S.

MATHEMATICS AND SCIENCE EDUCATION
• Mathematics and Science Education (Joint with San Diego State University) Ph.D.

MECHANICAL AND AEROSPACE ENGINEERING
• Engineering Sciences (Aerospace Engineering) M.S., Ph.D.
• Engineering Sciences (Applied Mechanics) M.S., Ph.D.
• Engineering Sciences (Applied Mechanics) (Joint with San Diego State University) Ph.D.
• Engineering Sciences (Applied Ocean Science) M.S., Ph.D.
• Engineering Sciences (Engineering Physics) M.S., Ph.D.
• Engineering Sciences (Mechanical Engineering) M.S., Ph.D.
• Engineering Sciences with a Specialization in Computational Science Ph.D.
• Engineering Sciences with a Specialization in Multi-Scale Biology Ph.D.***

MUSIC
• Music M.A., Ph.D.
• Contemporary Music Performance D.M.A.

NANOENGINEERING
• Chemical Engineering M.S., Ph.D.
• NanoEngineering Ph.D.***

NEUROSCIENCES
• Neurosciences Ph.D.*
• Neuroscience and Cognitive Science Ph.D.
• Neurosciences with a Specialization in Anthropogeny Ph.D.
• Neurosciences with a Specialization in Computational Neuroscience Ph.D.*
• Neurosciences with a Specialization in Multi-Scale Biology Ph.D.

OCEANOGRAPHY, SCRIPPS INSTITUTION OF
• Earth Sciences M.S.*, Ph.D.*
• Geophysics (Joint with San Diego State University) Ph.D.***
• Marine Biodiversity and Conservation M.A.S.
• Marine Biology Ph.D.*
• Oceanography Ph.D.*

PHILOSOPHY
• Philosophy Ph.D.*
• Philosophy (Science Studies) Ph.D.
• Philosophy and Cognitive Science Ph.D.

PHYSICS
• Physics M.S.*, Ph.D.
• Physics (Biophysics) Ph.D.
• Physics with a Specialization in Bioinformatics Ph.D.
• Physics with a Specialization in Computational Science Ph.D.
• Physics with a Specialization in Materials Physics M.S.
• Physics with a Specialization in Multi-Scale Biology Ph.D.***

POLITICAL SCIENCE
• Political Science M.A., Ph.D.*
• Political Science and International Affairs Ph.D.

PSYCHOLOGY
• Psychology M.A.*, Ph.D.*
• Psychology and Cognitive Science Ph.D.
• Psychology with a Specialization in Anthropogeny Ph.D.

SOCIOLOGY
• Sociology Ph.D.*
• Sociology (Science Studies) Ph.D.
• Sociology and Cognitive Science Ph.D.

STRUCTURAL ENGINEERING
• Structural Engineering M.S., Ph.D.
• Structural Engineering (Joint with San Diego State University) Ph.D.***
• Structural Engineering with a Specialization in Health Monitoring, Prognosis and Validated Simulations M.S.

THEATRE AND DANCE
• Drama and Theatre (Joint Program with UC Irvine) Ph.D.

• Materials Science and Engineering M.S., Ph.D.
- Theatre M.F.A.
- Theatre and Dance (Acting) M.F.A.
- Theatre and Dance (Dance Theatre) M.F.A.
- Theatre and Dance (Design) M.F.A.
- Theatre and Dance (Directing) M.F.A.
- Theatre and Dance (Playwriting) M.F.A.
- Theatre and Dance (Stage Management) M.F.A.

VISUAL ARTS

- Art History, Theory and Criticism M.A., Ph.D.
- Art History, Theory and Criticism with a Concentration in Art Practice Ph.D.
- Visual Arts M.F.A.

*The master's degree may be awarded to students pursuing work toward the Ph.D. after fulfillment of the appropriate requirements. See appropriate section of catalog.

**UCSD undergraduates in the junior or senior year may apply to their respective departments for admission to the integrated B.S./M.S. degree program. A similar program is available to UCSD undergraduates in several of the engineering and science specialties. Consult department personnel and/or catalog departmental listing for complete information.

***Pending approval.

Students who have completed some graduate study at UCSD and have been admitted to a doctoral program may apply to several interdisciplinary programs. See appropriate section of catalog.
the Registrar, the college advising offices certify graduation and generally facilitate students' college academic adjustment to the university. Moreover, college academic advisors are available to counsel students about educational alternatives, selection of courses and majors, program changes, new academic opportunities, and special programs such as exchange programs, honors programs, outreach programs, etc.

See your college academic advisor for assistance with academic concerns or referral to appropriate academic support units.

ACADEMIC ADVISING

The college academic advising offices and the academic departments are the designated campus units responsible for providing official academic advice and direction to undergraduate students. The college academic advising offices and departments have primary responsibility for academic advice and services that assist new and continuing students to develop educational plans and course schedules which are compatible with their interests, academic preparation, and educational and career goals.

College Advising Offices

Revelle College, Admin. Building, Mail Code 0321
(858) 534-3490

John Muir College, 2126 H&S, Mail Code 0106
(858) 534-3580

(858) 534-4110

Earl Warren College, Computer Science and Engineering (EBU 3), Mail Code 0422
(858) 534-4350

Eleanor Roosevelt College, Admin. Building Mail Code 0546
(858) 534-9864

Sixth College, Pepper Canyon Hall, 2nd Floor, Mail Code 0054,
(858) 822-5955

Specifically, the college academic advisors conduct academic orientation/enrollment programs for all new students and advise new and continuing students about college general-education and graduation requirements. The advising staff of each college provides general academic and curricular information, clarifies academic rules and regulations, reviews all aspects of academic probation, monitors academic progress, assists students with decision-making strategies, and provides information about major prerequisites as well as criteria for departments that screen students. In conjunction with the academic departments and the Office of repair and upgrade support for most computer and printer models. Drop-off locations include AP&M 1313 and the UCSD Bookstore. For more information, e-mail cri@ucsd.edu.

Instructional Web Development Center
(858) 822-3315
http://iwdc.ucsd.edu

Media Lab
Media Center/Communications Building, Office: Lab 251
(858) 534-1175
http://medialab.ucsd.edu

Media Services
(858) 534-5784
http://mediaservices.ucsd.edu

Residential Networking
(858) 534-3227
http://resnet.ucsd.edu

Software Licensing and Distribution
(858) 534-9676
http://software.ucsd.edu

For enrolled students, the campus has discounted pricing agreements with major software vendors; packages are available at the UCSD Bookstore. Other instructional software available for student use is listed on the Software Distribution Web site. For more information, e-mail software@ucsd.edu.

ACADEMIC ENRICHMENT PROGRAMS/STUDENT EDUCATIONAL ADVANCEMENT/STUDENT AFFAIRS

Student Center Building B, 2nd Floor, Mail Code 0311
(858) 534-1774

Dedicated to providing UCSD undergraduates with research and other academic enrichment experiences beyond the classroom.
Program Descriptions

Faculty Mentor Program
The Faculty Mentor Program offers valuable research experience to juniors and seniors who want to prepare for graduate or professional school. Participants work as research assistants to UCSD faculty members for at least ten hours per week for two quarters. Students receive four units of 199 independent study credit each quarter, attend seminars on various topics, including how to write and present a research paper, and receive graduate school and fellowship information. At the conclusion of the program, students present their research papers at the annual Faculty Mentor Program Research Symposium. Contact: Veronica Henson-Phillips, vhensonphillips@ucsd.edu, (858) 534-5791.

Health and Medical Professions Preparation Program
HMP3 assists students in their undergraduate preparation for careers in the health professions. These include medicine, dentistry, pharmacy, veterinary, public health, nursing, and others. The program provides students with activities and resources including preprofessional seminars, review course scholarships, volunteer placement information, and mentorship opportunities. Participants have access to a Web site with information on summer and postbaccalaureate programs, upcoming conferences, health professional schools, etc. The program also serves as a clearinghouse for information about other campus resources available to the prehealth professional student. Contact: Adele Wilson, awilson@ucsd.edu, (858) 534-7579.

Summer Research Program
The Summer Research Program offers a paid, full-time research experience to students who are interested in preparing for careers in research or university teaching. As research assistants, students work on their faculty mentor’s projects for at least thirty hours per week. Students are trained in research skills, how to write and present a research proposal or paper, and how to prepare for the Graduate Record Examination (GRE). At the conclusion of the program, students present their papers at the annual UCSD Summer Research Conference. Contact: Veronica Henson-Phillips, vhensonphillips@ucsd.edu, (858) 534-5791.

McNair Program
The McNair Program is a U.S. Department of Education initiative designed to serve low-income, first-generation college students and underrepresented minorities who are interested in pursuing a Ph.D. It is a rigorous one-year program of scholarly activities that includes participation in the Faculty Mentor Program and the Summer Research Program. In addition, participants receive training in how to write and present a scholarly paper, preparation for the GRE, and assistance with the graduate school application process. All participants have the opportunity to present a paper at a minimum of two research conferences. Contact: Dr. Tom Brown, tkbrown@ucsd.edu, (858) 534-2937.

CAMP Science Program
The CAMP Science Program is funded by the California Louis Stokes Alliance for Minority Participation in Science, Engineering, and Mathematics (CAMP) grant from the National Science Foundation. This program is designed to provide support and advancement opportunities to. ethically underrepresented students who are seeking bachelor’s degrees in the sciences, mathematics, engineering, and technology. Participants in this program may attend informational and skill-building workshops, tour UCSD laboratories, local companies and research institutes, attend local and/or national conferences, participate in a book exchange program, receive a one-year student membership to a professional/scientific society, attend study break dinners and coffee with faculty and graduate student events, and are eligible to earn book scholarships. In addition, students are encouraged to participate in academic year and/or summer research, and pursue graduate school. Contact: Dr. J. Azize-Brewer, jazize-brewer@ucsd.edu, (858) 534-8839.

University of California Leadership Excellence through Advanced Degrees (UC LEADS)
The University of California Leadership Excellence through Advanced Degrees (UC LEADS) is a selective two-year research program for undergraduates majoring in science, engineering, or mathematics. Students receive stipend support for two summers of research and support for travel to conferences, membership in professional associations, and other research-related activities. UC LEADS participants work on well-defined projects under the supervision of faculty mentors. The UC LEADS experience will prepare students to be competitive applicants for admission to doctoral programs, preferably within the UC system, and eventually to assume leadership positions in society.

Undergraduate Research Conference
The UCSD Undergraduate Research Conference is an annual event where more than 100 students who have written outstanding research papers are invited to present their research. Invitation is by faculty nomination. Students present their papers at small roundtable discussions led by a faculty presider. Contact: Veronica Henson-Phillips, vhensonphillips@ucsd.edu, (858) 534-5791.

AMGEN
The UCSD Amgen Scholars Program is an eight-week, full-time research experience for undergraduates, supported by the Amgen Foundation. The objectives of the program are: to provide students with the skills to become research scholars; to stimulate students’ serious consideration of graduate study; and to increase learning and networking opportunities for students committed to pursuing either a professional or academic research career in biological sciences or bioengineering. Contact Cezarina Gramada, mgramada@ucsd.edu, (858) 534-9014. Additional information is available from http://aep.ucsd.edu/amgen/

Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM)
The Scholarship in Science, Technology, Engineering, and Mathematics (S-STEM) program is funded through a National Science Foundation grant. At UCSD, the Divisions of Physical and Biological Sciences are offering scholarships of up to $3,000 per year (renewable up to four years) for students majoring in quantitative and interdisciplinary sciences. The primary objective of the program is to provide educational opportunities to low-income, academically talented students through scholarly programs that promote full-time enrollment and degree achievement in higher education. Eligible applicants will be UCSD undergraduates who are U.S. citizens, nationals, refugee aliens, or permanent resident aliens with demonstrated financial need who are enrolled full time in one of the following majors: biochemistry, bioinformatics, biophysics, computational physics, molecular biology, pharmacological chemistry, or mathematics. Special consideration will be given to Native Americans (American Indians and Alaska Natives), African Americans, Native Pacific Islanders (Polynesians and Micronesians), and applicants with disabilities. Contact Cezarina Gramada, mgramada@ucsd.edu, (858) 534-9014. Additional information is available from http://aep.ucsd.edu/.

EDUCATION ABROAD PROGRAM (EAP)
International Center (corner of Gilman Drive and Library Walk)
Mail Code 0018
(858) 534-1123
http://pao.ucsd.edu
E-mail: abroad@ucsd.edu
The Education Abroad Program (housed in the Programs Abroad Office, along with the Opportunities Abroad Program and UC San Diego Global Seminars) provides students enrolled at the University of California an opportunity for an intercultural experience at UC centers located in Australia/New Zealand, Africa, Asia, Europe, Latin America, and North America, while allowing normal progress toward a degree. The program is described in detail in the “Courses, Curricula, and Programs of Instruction” section under the “Education Abroad” heading.

INTERNATIONAL SCHOLAR OFFICE
Corner of Gilman and Library Walk
Mail Code 0018
E-mail: ischolars.ucsd.edu
(858) 534-3730
Fax: (858) 534-0909
http://ischolars.ucsd.edu
The International Scholar Office (ISO) serves about 2,400 international scholars annually. ISO provides assistance to academic departments and organized research units in their efforts to recruit, employ, and serve international faculty, researchers, and postdoctoral fellows. ISO advises academic departments with their plans to hire and retain international employees and scholars. ISO prepares visa application documents and petitions.
for a variety of nonimmigrant visa statuses and permanent residence for approval by U.S. Citizenship and Immigration Services.

The International Scholar Office also offers services such as orientation, SEVIS registration, one-on-one advising, support services for complying with various nonimmigrant and immigrant statuses, support in applying for visas, employment authorization, international travel, health insurance, and general advising regarding immigration or personal issues. In addition, ISO provides advising and application support for Social Security numbers, California state driver's licenses, and nonresident tax returns, as well as various immigration services and benefits. In conjunction with the other International Center offices, ISO offers cross-cultural programming, events, and activities for international scholars to integrate and to enrich the campus and local community.

INTERNATIONAL STUDENT OFFICE
(Corner of Gilman and Library Walk)
Mail Code 0018
(858) 534-9370
Fax: (858) 534-0909
http://issu.ucsd.edu

The International Student Office offers a wide array of services and programs for international students and their dependents at UC San Diego in an effort to support their legal stay in the U.S. and help them achieve their personal, academic, and professional goals. In addition, the office provides a variety of high-quality enrichment programs and cross-cultural activities designed to expand international student integration at UC San Diego and in the local community and provide opportunities for domestic students so they can obtain international experiences at home.

During the year, the International Student Office serves over 2,200 students. Most international students come to UC San Diego to enroll in degree programs. Some come as visiting students participating in the University of California Education Abroad Program, Fulbright, and other programs, and still others come to take classes, do research, and be mentored by UC San Diego faculty—experiences to take back and apply to degree programs in their home countries. The director, two international student advisors, a SEVIS Coordinator, support staff, and an outreach and volunteer coordinator make up the International Student Office. In addition, the International Student Office serves more than 100 UC San Diego academic departments and units (such as Admissions and Relations with Schools, Office of Graduate Studies, and Registrar's Office) in their efforts to admit, enroll, and employ international students.

The International Student Office also provides services such as Form I-20/DS-2019 issuance, check-in, new student orientation, SEVIS registration, one-on-one advising, group advising, workshops, support services for complying with various I-94 statuses, support in applying for a visa, employment authorization, international travel, financial planning, health insurance, planning future activities in the United States, and advising regarding immigration, practical, or personal issues. Furthermore, the International Student Office provides advising and application support for Social Security numbers, California state drivers' licenses, nonresident alien tax returns, as well as various immigration services and benefits.

OASIS (OFFICE OF ACADEMIC SUPPORT AND INSTRUCTIONAL SERVICES)
Third Floor, Center Hall
Mail Code 0045
(858) 534-3760

The Office of Academic Support and Instructional Services (OASIS) provides a variety of services to maximize student performance and retention at the University of California, San Diego.

Mission
The mission of OASIS is to assist UC San Diego students in reaching their full potential by developing an appreciation for learning. OASIS strives to facilitate learning by concentrating on learners and supporting their academic, intellectual, and personal growth at UCSD. Services are designed to assist students to develop the academic skills to excel in their subject matter at UCSD and eventually in graduate or professional school.

Services
A description of services offered each quarter is available at the OASIS office on the third floor of Center Hall. All students in any of the six colleges are eligible for OASIS services. Under-represented students are strongly encouraged to use OASIS services in order to maximize their valuable contribution to UCSD.

The Academic Transition Program
The Academic Transition Program coordinates a residential Summer Bridge Program, and professional and academic transition counseling for freshmen at UCSD. A variety of academic support and personal development activities are offered to facilitate a smooth transition from high school to UCSD's fast-paced quarter system.

The Math and Science Tutorial Program
The Math and Science Tutorial Program is designed to support students in their desire to excel in mathematics and science courses. The program offers workshops for mathematics, physics, biology, and chemistry courses.

The Language and Writing Program
Students whose first language is not English are assisted in the Language and Writing Program. In addition, students doing academic work in Spanish or French language courses can participate in Language Program tutorial sessions conducted by bilingual staff. Language Program services include group or individual intensive reading and writing sessions, workshops on grammar and mechanics, and individual conferences where feedback on drafts of writing is provided.

The Student Support Services Program
The Student Support Services Program is a comprehensive U.S. Department of Education initiative designed to support the academic efforts of participating students. The program seeks to maximize the achievement and development of eligible students, particularly those who have been traditionally underrepresented due to race or ethnicity, gender, disability, and/or economic status. Student Support Services also strives to enhance each program participant's eligibility for entrance to graduate and professional schools and to foster an institutional climate which will support the success of program participants. The program consists of intensive individual tutoring, professional counseling, peer mentoring, and various cultural enrichment activities.

The Research and Evaluation Program
Administered jointly by the Office of the Assistant Vice Chancellor for Student Educational Advancement and OASIS, the Research and Evaluation Program maintains data about students using OASIS services and conducts research projects which examine a particular problem or issue related to OASIS services. In addition, longitudinal studies of the effect of services on student users are undertaken, such as follow-up studies on the retention of Summer Bridge students. Evaluation activities that are essential to the provision of effective services to students are also the responsibility of this program.

Education Studies 116
OASIS offers a four-unit, upper-division course that provides instruction to all OASIS student staff members on the teaching-learning process. The course is designed to balance lectures and readings with supervised, practical experience.

OPPORTUNITIES ABROAD PROGRAM (OAP)
International Center (corner of Gilman Drive and Library Walk)
Mail Code 0018
(858) 534-1123
http://pao.ucsd.edu
E-mail: abroad@ucsd.edu

The Opportunities Abroad Program (housed in the Programs Abroad Office, along with the Education Abroad Program and UC San Diego Global Seminars) facilitates participation in programs abroad sponsored by institutions other than the University of California. OAP offers a resource library and advisory services enabling UCSD students to choose study, work, internship, and educational travel abroad programs best suited to their individual needs. Programs are available for students in all majors, for periods ranging from a quarter to a full academic year. Students participating in approved academic programs abroad transfer credit back to UCSD. They receive assistance with this as well as application, financial aid, pre-departure, and reentry issues through the OAP. Special study abroad scholarships are also available. Students participating in nonacademic programs generally do not earn credit but in some instances may arrange to do so, for example, through the Academic Internship Program.
SAN DIEGO SUPERCOMPUTER CENTER (SDSC)

Mail Code 0505
(858) 534-5000 (general inquiries)
(858) 534-5100
http://www.sdsc.edu

Over the past two decades, the San Diego Supercomputer Center (SDSC) has enabled science and engineering discoveries through advances in computational science and high-performance computing. Data is an overriding theme in SDSC activities. By developing and providing data cyberinfrastructure, the center acts as a strategic resource to science, industry, and academia, offering leadership in the areas of data management, grid computing, bioinformatics, geoinformatics, and high-end computing.

The mission of SDSC is to extend the reach of the scientific community by providing data-oriented technology resources above and beyond the limits of what is available in the local laboratory, department, and university environment. SDSC is an organized research unit of UC San Diego. Staff includes scientists, technologists, software developers, and support personnel. Over the years, SDSC has served more than 10,000 researchers at 300 academic, government, and industrial institutions in the United States and around the world. Today, these scientists and engineers increasingly rely on the availability of integrated data cyberinfrastructure tools such as hardware, software, and human support to drive research and education. Cyberinfrastructure provides a broad and useful spectrum of integrated technologies to support increasingly complex, data-intensive, and collaborative scientific endeavors.

When an application's or research project's technological needs outgrow the capabilities of its home environment, cyberinfrastructure extends the reach of the scientist by providing needed storage, high-speed networking, archiving and preservation, high-performance computing, and other resources remotely. SDSC provides both the tools and the facilities that integrate a user's home environment with a high-end, resource-rich, remote environment. Users can take advantage of SDSC's visualization, interdisciplinary expertise, and other resources to extend their home environments and accomplish their goals.

To meet the modern scientist's and engineer's extreme data needs, the center provides an integrated set of software and user services, including:

- An internationally renowned environment for data management, mining, curation, analysis, visualization, access and preservation, as well as leadership-class storage technologies
- A broad spectrum of software tools, portals, workbenches, and packages integrated to enable users to develop and deploy complex applications
- Professional user services that enable users to make the most out of cutting-edge hardware, software, and information resources
- A range of collaboration vehicles for working with partners on strategic and community applications, data collections, and projects
- An advanced cyberinfrastructure laboratory that provides an environment for designing, developing, and testing software and hardware systems at scale

SDSC offers the following additional opportunities for UCSD faculty, staff, and students:

- Access to high-performance computers through UCSD classes—Many UCSD classes make use of the SDSC resources, providing a hands-on way to learn about high-performance computing. Check class listings for biology, chemistry and biochemistry, computer science and engineering, mechanical and aerospace engineering, Scripps

Cyberinfrastructure Resources

SDSC has launched a wide-ranging project called the Triton Resource, a high-impact massive data analysis and preservation system that will accelerate innovation and discovery through the use of leading-edge research cyberinfrastructure at SDSC. The Triton Resource provides supercomputing capabilities in three key areas: a large-scale disk storage facility, a data analysis facility for petascale research, and a shared research cluster. These are connected via a high-speed 10-gigabit network already in place at the UC San Diego campus. The three prongs of Triton consist of:

- Data Oasis, a high-performance storage system, which will assist in the practical manipulation of data across high-bandwidth paths to researchers throughout UC San Diego and the UC system. This system will store, manage, and preserve the deluge of data from research instruments and experiments that forms the basis for future generations of research.
- Petascale Data Analysis Facility, capable of analyzing data from petascale computers, in which one petaflop of compute power equals one quadrillion calculations per second. That is the equivalent of having about 100,000 laptops to create simulations at a level of detail or scope previously not possible for scientists.
- Condo Cluster, a scalable, shared resource or group of linked computers equipped with standard compute nodes but enhanced memory capability. The cluster may be configured to operate in a standard batch mode or be set up to allow users to run customized software stacks at scale, with full connectivity to large-scale storage.

SDSC's new 'green' data center, launched during a new building addition dedication in October 2008, is equipped to house colocation servers for UC San Diego and UC researchers and academic units. The 5,000 square-foot data center, which augments the center's previous 13,000 square-foot data center, contains the latest energy-efficient technologies and is managed by a staff of professionals on a 24/7 basis. Other key features of the new building addition include a state-of-the-art visualization center, high-tech conference room, and an OptiPortal, used by SDSC's chief scientific officer and interim director Michael Norman to visualize results from cosmology simulations on the cutting-edge petascale machines.

The center also is a founding member of and serves as a data-intensive site lead in the National Science Foundation-funded TeraGrid, a multiyear effort to build and deploy the first national-scale grid infrastructure for open scientific research. The center's supercomputing resources include Dash, a new high-performance computer and the first to feature flash-based memory to speed solutions for data-intensive problems.

SDSC also is partnering with UCSD Libraries, the National Center for Atmospheric Research, and the University of Maryland in a data-preservation project called Chronopolis, a geographically distributed data grid that supports the long-term management, stewardship, and access to digital collections. The system incorporates trust and reliability through replication, service-level agreements, monitoring, and rule-based systems.

Research Allocations, Resources, and Support

SDSC provides access to its vast array of data and computational resources and services for all UC researchers with a need for leading-edge research cyberinfrastructure. SDSC offers the foundation for custom cyberinfrastructure capabilities defined by UC-led activities. Any qualified UC researcher can request access to these resources. Some services are available free of charge and others via campus recharge.

All researchers with access to SDSC’s resources are supported by SDSC’s consulting staff, available online (http://www.sdsc.edu/us/consulting), by phone, or by e-mail: 9:00 a.m. to 5:00 p.m., Monday through Friday. Researchers and students with accounts are welcome to attend SDSC’s periodic training workshops (http://www.sdsc.edu/us/training).

For more information and to apply, visit the SDSC Web site at http://www.sdsc.edu or contact opportunities@sdsc.edu.

Additional Opportunities for the Campus Community

SDSC offers the following additional opportunities for UCSD faculty, staff, and students:

- Access to high-performance computers through UCSD classes—Many UCSD classes make use of the SDSC resources, providing a hands-on way to learn about high-performance computing. Check class listings for biology, chemistry and biochemistry, computer science and engineering, mechanical and aerospace engineering, Scripps
Continuing Education: Areas of Study

Art, Music, and Photography
Courses and workshops offered in art history, drawing, mixed media, painting, film, digital photography, harmonics, guitar, piano, and the annual UCSD Jazz Camp. For more information, call (858) 964-1051.

Biological, Pharmaceutical, and Marine Sciences
Courses and intensive programs offered in computer aided drug design, medicinal chemistry, computational biology and bioinformatics, drug discovery and development, regulatory affairs, quality assurance and control, biotechnology manufacturing, proteomics, microarrays, and biomedical product development. For more information, call (858) 882-8027.

Business
Courses offered in accounting, business management, communication, enterprise management, facilities management, finance, fraud examination, fundraising and development, human resources management, international business, marketing, meeting management, project management, purchasing and supply management, real estate, and urban planning. For more information, call (858) 882-8000.

Digital Media and Web Design
Courses offered in computer-aided design, graphic design, and multimedia and Web site design and development. An eighteen-month daytime or twenty-four-month evening program is also available for digital design, Web development, multimedia, marketing practices, and portfolio creation. Internships available. For more information, call (858) 622-5739.

Education
State-approved credential programs offered in Adult Education/Vocational Education, as well as state-approved certificate programs in Cross-Cultural Language and Academic Development (CLAD), Reading and Education of the Gifted and Talented (GATE). Certificate programs and supplementary authorizations courses are offered for Teaching Mathematics and Science. Additional certificates are Teaching English to Speakers of Other Languages (TESOL), Community College Instructor, and Educational Therapy. For more information, call (858) 964-1045.

Engineering
Courses offered in communications engineering, wireless communications, RF engineering, network technologies, embedded computer engineering, systems engineering, semiconductor design, VLSI digital design, CDMA engineering, and SensorNets. Also, certificate programs in New Product Development, Lean Enterprise, Six Sigma, Green/Black Belt, and Professional Engineering Reviews. For more information, call (858) 622-5740.

English Language Studies
Courses and workshops offered in academic writing, intermediate business writing for non-native speakers, conversation improvement, grammar/ vocabulary building, pronunciation and fluency, and accent reduction. For more information, call (858) 534-0049.

Foreign Languages and Travel Study
Courses offered in Arabic, Chinese (Mandarin), French, German, Italian, Japanese, Korean, Persian, Portuguese, Russian, Spanish, and translation and interpretation. Short-term Spanish language immersion programs abroad are available for adults. For more information, call (858) 964-1050.

Health Care and Behavioral Sciences
Courses offered in clinical trials, health care leadership and management, evidence based medicine, medical coding, emergency department nursing, case management, nurse re-entry program, legal nurse consulting, fitness instruction, and lactation education. In behavioral sciences courses offered in alcohol and drug abuse counseling, art therapy, gerontology, and play therapy. For more information, call (858) 964-1010.

Humanities and Writing
Courses offered in copyediting, creative writing, feature writing, history, politics and culture, literature, technical communication, and theatre. Special programs such as Revelle Forum at the Neurosciences Institute and UCSD Jazz Camp round out a diverse and unique set of offerings in the San Diego area. For more information, call (858) 964-1051.

Law
Courses offered in bankruptcy law, business law, domestic relations law, civil litigation, evidence law, California litigation procedures, and law office procedures. Also offered are an ABA-approved paralegal program and a Professional Certificate in Intellectual Property. For more information, call (858) 882-8008.

Leadership and Management Development
For experienced managers taking on new levels of responsibility, programs include the Leadership and Management Program for Technology Professionals (LAMP), Healthcare Executive Leadership Program (HELP), and the Executive Program for Scientists and Engineers (EPSE). Entrepreneurs and others will find of interest courses in biotech business development, writing business plans, financing start-ups, IT governance, business process optimization and ERP essentials, six sigma, lean enterprise, and global supply chain management programs. For more information, call (858) 964-1336.

Occupational Health and Safety
Courses offered through the OSHA Training Institute in occupational health and safety for general industry and construction: hazardous materials, respiratory protection, fall arrest systems, industrial
How to Enroll

Online: http://extension.ucsd.edu/registration
By phone: (858) 534-3400
In person:
La Jolla
9600 N. Torrey Pines Road, Bldg. C
La Jolla, CA 92039
Mission Valley
404 Camino Del Rio South
Suite 102
San Diego, CA 92108
Rancho Bernardo
11770 Bernardo Plaza Court
Suite 270
San Diego, CA 92128
Sorrento Mesa
AT&T Wireless Building
6925 Lusk Blvd.
San Diego, CA 92121

Concurrent registration: Permits individuals who are not officially matriculated UCSD students to enroll for credit in regular UCSD courses. Offered on a space-available basis with the approval of the course instructors. For more information, call (858) 534-3400.

Complimentary enrollment: UC San Diego Extension offers a limited number of complimentary enrollments to full-time UCSD students who may enroll in one course free of charge up to a set dollar limit (students must pay anything over that amount) on a first-come, first-served basis. For more information, call (858) 534-3400.

Community and Regional Economic Development

Academic Connections
http://academicconnections.ucsd.edu

Academic Connections is a summer residential program that provides high school students with access to the resources of a research university. This program gives motivated students the opportunity to explore different fields of study, pursue their interests, and better prepare for a university experience.

Global CONNECT
http://globalconnect.ucsd.edu

Global CONNECT links and engages networks of individuals and organizations committed to building international technology-based enterprises. Global CONNECT’s focus is on the role of research institutions, regional incubators, and initiatives that support innovation and entrepreneurship. Global CONNECT is active in three areas: research and analysis on the dynamics of regional innovation, the provision of technical assistance to regions interested in developing technology commercialization programs, and education and training in areas essential to science-based business clusters. Global CONNECT manages a membership network of more than forty regions from around the globe. The membership shares best practices through international meetings, business-to-business activities, and a Web site.

Helen Edison Lecture Series
http://helenedison.ucsd.edu

The Helen Edison Lecture Series presents free public lectures on issues advancing humanitarian purposes and objectives. Past speakers have included Al Gore, Muhammad Yunus, John Kenneth Galbraith, Noam Chomsky, Luis Valdez, Toni Morrison, Carlos Fuentes, and Robert McNamara.

LAUNCH
http://extension.ucsd.edu/launch

Undergraduates can jumpstart their transition into the workplace with LAUNCH—a new educational offering designed by UC San Diego Extension. Ambitious students earn a certificate in their field of choice while working with an expert career coach to help land a first job upon graduation. Free information sessions offered year round.

San Diego Dialogue
http://www.sandiegodiaglogue.org

The San Diego Dialogue is a center of research on cross-border economic and social issues, as well as a convener of community forums on issues shaping the San Diego-Baja California region. The Dialogue also addresses issues related to infrastructure and public policy and provides the kind of technical assistance, education, and training that helps improve our regional futures.

An primary focus of the San Diego Dialogue is the Cross-Border Innovation and Competitiveness Initiative. Its focus is to help the region become more globally competitive in key science and technology sectors by leveraging cross-border assets and capabilities. Areas of focus include: the biomedical industry, software, semiconductor manufacturing, marine biotechnology, and automobile and aerospace manufacturing.

UC Professional Development Institute
http://ucpdi.ucsd.edu

The UC Professional Development Institute (UCPDI) is a leader in delivering standards-based professional development institutes and training materials focused on the needs of K–12 English learners. UCPDI’s primary goal is to improve and accelerate student achievement. UCPDI is one of only two providers approved by the state of California to offer standards-based intervention programs for English learners.

UCSD Economics Roundtable
http://econ.ucsd.edu/roundtable

The UCSD Economics Roundtable is a forum for more than 2,000 San Diego business and community leaders to exchange ideas and information with world class economists and financial experts. The UCSD Economics Roundtable has hosted several prominent guests including Ben Bernanke, Board of Governors of the Federal Reserve System, and Robert Shiller, professor of economics at Yale University.

Osher Lifelong Learning Institute
http://olli.ucsd.edu

The Other Lifelong Learning Institute (OLLI) rekindles the zest for life for retired San Diego professionals. OLLI is a membership organization that inspires conversations between interesting people about stimulating topics, offering twenty different programs each quarter. Subjects include archaeology, science, tai chi, computing, live musical performances, literature, foreign languages, and master courses and lectures from UCSD faculty members.

UCSD-TV
http://www.ucsd.tv

UCSD-TV, the only broadcast television station operated by the University of California, is an Emmy® winning, noncommercial station that extends the resources of the university to the greater San Diego community and partners extensively with regional civic, cultural, and arts institutions in programming. UCSD-TV broadcasts on UHF Channel 35, Cox Communications, and Time Warner Cable. Programs from UCSD-TV and other University of California campuses are broadcast nationwide on UCTV and on demand.

UC SAN DIEGO GLOBAL SEMINARS (GS)

International Center (corner of Gilman Drive and Library Walk)
Mail Code 0018
E-mail: globalseminar@ucsd.edu
(858) 534-1123
http://pao.ucsd.edu/pao/GSHome.html

UC San Diego Global Seminars are five-week-long study abroad experiences led by a UC San Diego professor. They are offered during summer session. Most seminars take place during summer session I, but some may be offered during summer session II. Students enroll in two courses for a total of eight UC San Diego units. Class sizes are between approximately fifteen and twenty-five students, giving students excellent opportunities for interaction with some of the best professors at UC San Diego. All courses are taught in English, but several programs include a few hours of elementary language instruction to help students navigate the local community. The Programs Abroad Office will assist students with advising, application, financial aid, predeparture orientation, and reentry issues. Special study abroad scholarships are available. For more information, consult the UC San Diego Global Seminars section.
of the Programs Abroad Web site at: http://pao.ucsd.edu/pao/GSSHome.html.

THE UCSD LIBRARIES
http://libraries.ucsd.edu

The UCSD Libraries, a campuswide network of libraries, support the university's mission of research, instruction, public service, and patient care by providing access to rich and deep collections, and by offering a variety of services. The libraries are those found within the Geisel Library building: the Arts Library, the Mandeville Special Collections Library, the Science & Engineering Library, and the Social Sciences & Humanities Library. And those elsewhere: the Biomedical Library, the Center for Library & Instructional Computing Services (CLICS), the International Relations & Pacific Studies Library, the Medical Center Library, and the Scripps Institution of Oceanography Library.

The Libraries serve as physical and virtual centers for study, reading, and scholarship at UCSD. Their collections and services support undergraduate and graduate instructional programs, as well as advanced research. While each library may have varying rules and varying hours, all are open to all members of the UCSD community. Most libraries extend hours during final exam periods.

The Libraries' Web site offers access to information about the Libraries and to digital services and collections, including the online catalog, electronic journals, e-books, databases, and materials assigned for courses. New resources and services are added continually. The Libraries have an ongoing commitment to acquiring and offering materials in digital form. For materials not found at UCSD, the Libraries offer several quick and easy ways to borrow materials from other UC campuses and other universities.

Research assistance is available online and at each of the campus libraries and is designed to assist students and faculty with their course needs and research activities. Through their instruction and outreach programs, the Libraries offer a variety of orientation and instructional opportunities intended to help students succeed in their academic and personal pursuits.

Combined UCSD Libraries Statistics, 2008

<table>
<thead>
<tr>
<th>Category</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumes</td>
<td>3,372,785</td>
</tr>
<tr>
<td>Periodical and other serial publications received Total</td>
<td>14,457</td>
</tr>
<tr>
<td>E-journals</td>
<td>130</td>
</tr>
<tr>
<td>E-books</td>
<td>231,216</td>
</tr>
<tr>
<td>Maps</td>
<td>114,780</td>
</tr>
<tr>
<td>Microforms</td>
<td>3,309,102</td>
</tr>
<tr>
<td>Audio and video materials</td>
<td>144,225</td>
</tr>
<tr>
<td>Slides and other pictorial items</td>
<td>318,820</td>
</tr>
</tbody>
</table>

Arts Libraries

West Wing, Geisel Library
(858) 534-4811
http://artslib.ucsd.edu/

The Arts Library provides collections, services, and facilities in support of the study and teaching of the arts, including film, music, visual arts, photography, and architecture. Arts Library holdings are rich in traditional print materials—such as books, periodicals, and musical scores—a full range of reference tools, and electronic resources. Various media collections, including sound (LP, CD, tape), digital images, moving-image materials (video, DVD, 16 mm film), and licensed resources, such as ARTstor (digital images) and digital audio databases, have been acquired. Our collections total more than a half-million items. The Arts Library offers traditional services, such as research assistance and on-site listening and viewing facilities, and unique services, such as digital reserves, which provide students with 24-7 access to Web-based sound and selected moving-image content in support of their course work.

Biomedical Library and Medical Center Library

Library Walk at Osler Drive
(858) 534-3253
http://biomed.ucsd.edu

The services and collections of the Biomedical Library and its branch Medical Center Library support the teaching, research, and patient care programs of the UCSD School of Medicine, the Skaggs School of Pharmacy and Pharmaceutical Sciences, the Division of Biological Sciences, and the UC San Diego Medical Center. The Libraries' combined collection of more than 217,000 volumes and access to more than 4,600 electronic and print serials provide in-depth access to the biomedical literature for UCSD students, faculty, and clinicians. The Medical Center Library is located in Hillcrest at the UCSD Medical Center, (619) 543-6520.

CLICS (Center for Library & Instructional Computing Services)

Galbraith Hall
(858) 822-5427
http://clics.ucsd.edu

CLICS has 182 computers distributed on two floors in a general purpose computing lab setting, giving students access to many scholarly and reference sources. CLICS' staff teach approximately 4,000 students per year how to do university level research to complete their course assignments. It is where students from all of the colleges mingle. There are small group rooms for collaborating on group projects, and one of the rooms is equipped with a device (CopyCam) that converts notes on the whiteboard to print, disk, or IP address. CLICS also has a presentation practice room equipped to project a student's slideshow from their own laptop to a flat screen monitor so that students can rehearse for class presentations. CLICS is open 24-7 during exam week.

International Relations & Pacific Studies Library

Robinson Complex, Bldg. 3
(858) 534-7785
http://library.ucsd.edu

The IR/PS Library features materials on contemporary political, economic, and business affairs in East Asia, Latin America, and the rest of the Pacific Basin region. Its collection includes 138,000 volumes, 1,300 active periodical subscriptions, 146,000 microfiche, hundreds of online databases, thousands of electronic journals, and e-books in English, Chinese, Japanese, Korean, Spanish, and other languages.

The Mandeville Special Collections Library

West Wing, Geisel Library
(858) 354-2533
http://orpheus.ucsd.edu/spccoll/

The Mandeville Special Collections Library houses rare books, manuscripts, archives, original art, and other primary materials (250,000 books, 32 million manuscripts), which support specialized UCSD research and instructional programs. Areas of strength include experimental American poetry, the Spanish Civil War, Baja California, early voyages of exploration to the Pacific, modern science, Melanesian anthropology, California history, Dr. Seuss, and the history of UCSD. Students are encouraged to use the collections for their academic endeavors.

Science & Engineering Library (S&E)

East Wing, Geisel Library
(858) 354-3257
http://sclib.ucsd.edu

S&E Library print and online resources support research and teaching astronomy, biochemistry and chemistry, bioengineering, computer science, engineering, mathematics, nanotechnology, and physics. Computers, wireless Internet access, group study rooms, a presentation practice room, and a scanner are available. S&E librarians have expertise in finding numeric property data, standards, patents, and other science and technology information.

Scripps Institution of Oceanography Library

(858) 534-3274
http://siolibrary.ucsd.edu

Scripps Institution of Oceanography Library is one of the largest marine science libraries in the world. It has outstanding collections in marine biology, oceanography, climatology, and marine technology, and also specializes in geology, geophysics, and zoology.

Social Sciences & Humanities Library

Geisel Library
(858) 534-3336
http://sshl.ucsd.edu

The Social Sciences & Humanities Library (SSHL) provides services and collections to support the teaching and research of students and faculty in the social sciences and humanities disciplines. Services and collections are designed for all levels, from first-year students to seasoned scholars. The library provides a complete range of public services, including reference and research support, and print and electronic reserves for courses in the social sciences and humanities. The library has study spaces for students on quiet floors, in group study rooms, and open seating areas for discussion and collaboration. There is a Data & GIS Lab and computers for research and general use. Collections comprise 1.5 million printed volumes; San Diego, California, and U.S. government information; maps; geographic and numeric data; social science databases; and full-text electronic resources.
INTRODUCTION

The Office of the Vice Chancellor of Student Affairs is responsible for the overall quality of life at UCSD for undergraduate and graduate students. The office provides coordination and direction to more than two dozen student service departments and works closely with other components of the campus to ensure that programs, services, policies, and procedures foster the development of students and the achievement of their academic and career goals.

CAREER SERVICES CENTER

Located on Library Walk
Mail Code 0330
(858) 534-3750
http://careers.ucsd.edu

The Career Services Center (CSC) helps students and alumni with career-related concerns and offers a wide range of programs and services throughout the year. Online registration at http://career.ucsd.edu through Port Triton is required to use the center.

Exploring Career Options: Career advisors meet one-on-one with students to guide them through the phases of career development. Self-assessment tools, panel presentations, occupational resources, and networking programs are available to help students explore career options and determine career goals. CSC’s career library features career books, CDs, and videos, as well as computers for accessing career information on the Internet.

Internship Resources: All students are encouraged to gain practical work experience through internships. CSC is a one-stop shop for internship resources, information, and opportunities. Services include advising, workshops, internship listings, and the Internship SuperSite at http://careers.ucsd.edu. The internship library includes internship directories, career-specific internship books, and computer stations to help students find local, regional, and national internships, including the UCDC Program in Washington, D.C.

Graduate and Professional School Preparation and Admission: All students considering an advanced degree in any field after graduation from UCSD should visit CSC for advice and information on schools, admission requirements, applications, recommendation letters, tests, essays, fellowships, and interviews. Advisors assist students interested in any field of professional and graduate education, including medicine, law, business, teaching, and other health fields. Resources include over 2,000 professional and graduate school catalogs, directories, and brochures. Recruiters from across the country attend CSC’s Professional and Graduate School Info Fair and Law School Info Fair each fall.

Job/Internship Listings: CSC lists thousands of internships and part-time and full-time job listings year-round on Port Triton, including on-campus and off-campus work-study and non-work-study jobs. To access the listings, you must: 1) be currently enrolled at UCSD; or newly enrolled and have returned the UCSD Statement of Intent to Register; and 2) complete the online registration at http://careers.ucsd.edu. Students are required to update their registration each academic year.

Job Search Preparation and Networking: Services include job search programs, resume and curriculum vitae critiques, and practice interview workshops. Professional association and networking contacts are available for job search advice and career information. CSC presents networking events throughout the year to connect students with professionals.

Job Fairs and On-Campus Interviewing: CSC presents the Triton Fall, Winter, and Spring Job and Internship Fairs each year featuring recruiters from a variety of organizations. Recruiters also conduct interviews on campus at CSC for career positions and internships.

Graduate Student Services: CSC offers special workshops and resources for master’s and Ph.D. students seeking academic or nonacademic careers. Resources include job search handbooks and a UCSD alumni contact list of nearly 700 Ph.D. recipients.

Alumni Services: University of California alumni are eligible to use CSC programs and services. Alumni registration fee required.

Online Resources: The CSC Web site features extensive resources and links, in-depth information, and easy-to-print publications for UCSD students, alumni, faculty, staff, parents, and recruiters.

Calendar of Events: CSC offers a variety of information sessions, group workshops, and special presentations. A quarterly calendar is available online and at CSC.

For more information and building hours, call (858) 534-3750 or go to http://career.ucsd.edu.

COLLEGE DEAN OF STUDENT AFFAIRS’ OFFICES

Revelle, Mail Code 0321, (858) 534-3492
http://reveille.ucsd.edu

Muir, Mail Code 0106, (858) 534-3587
http://muir.ucsd.edu

Marshall, Mail Code 0509, (858) 534-4390
http://marshall.ucsd.edu

Warren, Mail Code 0422, (858) 534-4731
http://warren.ucsd.edu

Roosevelt, Mail Code 0546, (858) 534-2237
http://roosevelt.ucsd.edu

Sixth College, Mail Code 0054, (858) 822-5953
http://sixth.ucsd.edu

The offices of the college deans of student affairs perform many functions. They provide support, advice, counseling, and referral for students and parents in many areas including commuter, transfer, and residential matters. The deans’ offices develop and coordinate activities such as Orientation, Welcome Week, commencement; leadership and co-curricular learning opportunities; decisions about remaining in or withdrawing from school; college disciplinary matters; involvement in student governments; community service/volunteer opportunities; planning social, educational, and cultural activities; assisting students with disabilities; and assisting in hearing procedures regarding grievances.

Contact your college dean of student affairs’ office for assistance, particularly if you do not know which university office or resource would best be able to assist you with your problem or concern.

COUNSELING AND PSYCHOLOGICAL SERVICES (CAPS)

Central Location:
190 Galbraith
Mail Code 0304
(858) 534-3755
http://caps.ucsd.edu

Counseling and Psychological Services (CAPS) provides professional assistance with a wide array of personal difficulties that may interfere with academic success. Specific concerns for which students often seek assistance include loneliness and isolation, homesickness, parent/family/partner conflict, difficulty studying, concentrating or test-taking, challenges in interpersonal relations and communication, educational/career concerns, identity issues, sexuality, depression, and anxiety. Students often consult with counselors when experiencing a variety of life issues, transitions, or emotional situations.

In order to enhance the UC San Diego student experience, Counseling and Psychological Services professionals also offer consultation to the university at large regarding a wide range of student issues.

Individual counseling, psychotherapy, marriage or relationship counseling, family sessions, and many issue-focused groups are provided to support the emotional and social growth of students. During the course of a year, special forums, psychotherapy groups, support groups, and psycho-educational groups are offered to students according to their needs and the demand for services. Listings are posted quarterly on the Web site.

CAPS is geared toward developing a positive and robust mental health climate in the university community. The emphasis is on helping students maintain healthy lifestyles so that they may enjoy a sense of wellness, express themselves with confidence, manifest their creativity and productivity, manage stress successfully, and engage in interpersonal relations as they achieve their career goals.

CAPS staff are clinical and counseling psychologists and psychologists-in-training. Student peer counselors present programs concerning a variety of topics to student groups throughout the year. In order to provide greater accessibility, the service has offices in all colleges, the Women’s Center, Center for Student Involvement, in addition to the central location at Galbraith Hall. Services are available to any currently enrolled undergraduate or graduate student, and appointments can be arranged by contacting the central office. The counseling relationship is private and confidential.

DINING SERVICES

Administration: Housing • Dining • Hospitality
Administration Building
OSD encourages students and dependents to plan to register with OSD prior to the receipt of services. Students and dependents who request accommodations at UC San Diego need documented disabilities. Students and dependents with accommodations for students and dependents with disabilities, ranging in topic from accommodation requests to appeals, are located in a number of areas, including

- The Office for Students with Disabilities (OSD) and its Web site at http://osd.ucsd.edu;
- The Office for Students with Disabilities (OSD) and its Web site at http://osd.ucsd.edu;

FINANCIAL AID

All financial assistance for undergraduate and health sciences students and need-based aid for graduate and professional students is administered by the Financial Aid Office (FAO). Information relating to graduate student support in the form of fellowships and assistantships is presented in the catalog section entitled "Graduate Studies."

The Financial Aid Office, which also includes the Undergraduate Scholarship Office and the Office of Veterans' Affairs, is located in the Student Services Center, Third Floor North, 9500 Gilman Drive # 0013, La Jolla, CA 92093-0013, and can be contacted at the phone numbers below.

Applying for Financial Aid

A student is eligible for financial aid if she or he

1. Is a United States citizen or eligible noncitizen.
2. Has a valid Social Security number.
3. Is not in default on a federal student loan or has made satisfactory arrangements to repay it.
4. Does not owe money back on a federal student grant or has made satisfactory arrangements to repay it.
5. Is registered with Selective Service (males at least eighteen years old, unless not required).
6. Is enrolled at UCSD (minimum of six units per quarter) in a degree or certificate program. Limited status students (non-degree/non-certificate) enrolled in a course of study necessary to be accepted in a degree or certificate program are only eligible for one year of Federal Stafford Loan(s). After one year, these limited status students are not eligible for any financial aid funding.
7. Is making satisfactory academic progress for financial aid recipients.

Students must maintain Satisfactory Academic Progress as a condition for maintaining eligibility for financial aid. For UC San Diego undergraduate financial aid recipients the standards are thirty-six units (or an average of twelve units per quarter for full-time enrollment) and an overall UC grade-point average of 2.0 during the current academic year and the following summer (similar unit requirements apply to graduate students who must maintain a 3.0 minimum overall UC GPA). Undergraduate students are considered for all financial aid sources up to their fifth year of college attendance (except for Cal Grants) and limited funding up to their sixth year. For graduate student duration requirements and for more detailed information on UCSD's Satisfactory Academic Progress standards for students enrolled full-time in a degree program, please see our Web site at http://fao.ucsd.edu. For policy information on approved part-time status students and limited status students, please contact the Financial Aid Office.

For evaluation of financial need, all applicants must submit a Free Application for Federal Student Aid (FAFSA). Gilman Drive # 0013, La Jolla, CA 92093-0013.

No student should leave the university for financial reasons before exploring all possible avenues of assistance with a Financial Aid Office counselor. All information contained herein is intended to serve as a general guide and is subject to change due to new and revised federal, state, and University of California regulations and procedures.
Receiving Financial Aid

UC financial aid for students with demonstrated financial need is funded by a combination, or “package”, of gift and self-help aid. Grants and scholarships are awards that do not have to be repaid. Self-help aid may consist of a loan, which does have to be repaid, or a work-study award, earned by working a part-time job while attending school, or a combination of both. UCSD ensures that students in similar circumstances receive similar packages. Grant funds are directed to the most needy students. Students who are nonresidents of California should note that need-based financial aid funds are not sufficient to meet the additional cost of nonresident tuition and additional education fee (2010–11 undergraduate estimate is $22,879; graduate and professional estimates vary). The family should be prepared to provide this amount from their own personal resources or educational loan programs. The various types of aid and programs that may be included in need-based packages are listed below:

Federal Pell Grant

The Federal Pell Grant program is designed to provide financial assistance to undergraduates attending postsecondary educational institutions. Amounts range from $1,176 to $5,590 for 2010–11.

Federal Academic Competitiveness Grants (ACG)

ACG awards are for first- or second-year undergraduate students who have completed a rigorous secondary school program of study and receive the Federal Pell Grant. Second-year students must have at least a 3.0 cumulative UC GPA as of the end of their first academic year of undergraduate study.

University of California Grant Program

The University of California Grant Program provides grants to undergraduate and graduate students.

University of California Fee Grant

The UC Fee Grant is a need-based grant to partially cover half of the increase in University of California systemwide fees for undergraduate students who do not receive another fee-paying award and whose family income is $120,000 or less. Awards range from $200 to $672 for 2010–11. In order to qualify, a student must meet all other financial aid eligibility requirements.

University of California Blue and Gold Opportunity Plan

Available for California residents in their first four years of undergraduate attendance at UC (first two years if a transfer student) with an annual family income of $70,000 or below and who meet other basic eligibility requirements for need-based financial aid. Awards vary depending upon the total amount of gift aid received; if existing gift aid from all other sources does not cover the systemwide UC fees, the Blue and Gold grant will make up the balance.

Federal Science and Mathematics Access to Retain Talent (SMART) Grants

SMART Grants are available to third- or fourth-year full-time undergraduate students receiving a Federal Pell Grant with at least a 3.0 cumulative UC GPA, pursuing a major in physical, life, or computer sciences, mathematics, technology, engineering, or a critical foreign language.

Federal Supplemental Educational Opportunity Grant (SEOG)

SEOG awards are federally funded and are available only to undergraduates, pending available funds. Awards may range from $100 to $4,000 per academic year.

Cal Grants (Undergraduate)

Cal Grants are awarded by the California Student Aid Commission to undergraduate California residents. All resident applicants for UCSD aid are required to apply for a Cal Grant. To be considered as a new recipient, the FAFSA and the GPA Verification Form must be postmarked or submitted online on or prior to March 2, 2010. Current recipients must file a FAFSA each year to have their awards renewed.

Federal Work-Study

Federal work-study awards are employment programs that provide funds for student employment by the university or by public and private profit/nonprofit organizations. The work-study program provides experience in many fields, including experimental sciences, library work, recreation, computer sciences, peer counseling, and office work. Pay ranges from minimum wage and above. Job listings and referrals are provided through the Career Services Center.

Federal Perkins Loans

This loan carries a 5 percent interest rate. Students begin paying both the principal and the interest nine months after ceasing to be enrolled at least half-time.

University Loans

This loan is available to undergraduate students demonstrating financial need. Repayment of both the principal and the 5 percent fixed interest begins nine months after ceasing to be enrolled at least half-time.

Federal Direct Subsidized Stafford Loans

The annual maximum allowed during the first year of undergraduate study is $3,500. Sophomores can borrow an annual maximum of $4,500, and the yearly limit for juniors and seniors is $5,500, with an undergraduate cumulative maximum of $23,000. Graduate students may borrow up to $8,500 per academic year with an aggregate sum up to $65,000, including the amount borrowed as an undergraduate. The interest rate is fixed at 4.5 percent for loans disbursed on or after July 1, 2010. The federal government pays (subsidizes) the interest on the student’s behalf during in-school (enrolled in six units or more), grace, and authorized deferment periods. Repayment of principal and interest begins six months after the borrower leaves school or ceases to be enrolled as a half-time student.

Federal Direct Unsubsidized Stafford Loans

Students who do not have financial need eligibility for the maximum Federal Direct Subsidized Stafford Loan may borrow under this program. The annual maximum and interest rate are the same as the Subsidized Stafford Loan. Dependent undergraduates may borrow an additional $2,000. Independent undergraduates may borrow an additional $4,000 to $5,000 annually; graduate students may borrow an additional $12,000 annually. The maximums include amounts borrowed under the Federal Direct Stafford Loan program. Aggregate maximums are $31,000 for dependent undergraduates, $57,500 for independent undergraduates, and $138,500 for graduate students. The interest is not paid on the student’s behalf. Interest begins accruing immediately after disbursement, but payment of principal and interest may be deferred until six months after ceasing to be enrolled for six units or more. The amount borrowed cannot exceed the cost of education minus other financial aid resources (including other need-based loans).

Federal Direct PLUS Loans for Parents

Parents of dependent undergraduate students are eligible to borrow under this program if they have no adverse credit history and meet program eligibility requirements. The interest rate for this loan is fixed at 7.9 percent. Parents are eligible to borrow up to the cost of education minus other financial aid (including other loans). The first payment is due within sixty days after disbursement.

Federal Direct PLUS Loan for Graduate and Professional Students

Students registered in graduate and professional programs are eligible to borrow under this federal loan program if they have no adverse credit history and meet other program eligibility requirements. The interest rate for the loan is fixed at 7.9 percent. Students can borrow up to the cost of education minus other financial aid (including other loans). Students should first apply for the Federal Direct Stafford Subsidized and Unsubsidized Loans before applying for the Grad PLUS.
Summer Session Financial Aid

Limited financial aid is available for UCSD students who qualify and enroll in Summer Session at UCSD or other UC campuses. In addition to the FAFSA, a Summer Session application must be completed online via TritonLink in early April. Types of aid include a limited amount of grants and loans. More information on Summer Session financial aid is available at http://fao.ucsd.edu.

Triton Registration Installment Plan (TRIP)

The UCSD Triton Registration Installment Plan (TRIP), administered by the Student Business Services (SBS), is a monthly payment arrangement and is available for students who desire an alternative method of financing their registration fees on a short-term basis. All students in good financial and academic standing are eligible for the program, except for those students whose financial aid or graduate support will pay their registration fees by the quarterly registration fee due date. A prerequisite to applying for the program is enrollment for the term. The TRIP allows registration fees to be paid in up to three installments each quarter. On a three-month plan, the first payment is required by the quarterly registration due date. The remaining payments are itemized on the student’s next two monthly UCSD Billing Statements. There is a $30 (California resident) or $45 (nonresident) nonrefundable quarterly fee that must be submitted with the application to the Billing Services Unit of the Student Business Services Office. This fee is strictly used to offset the costs of the program. For further information, please contact the Billing Services Unit at (858) 822-4727, or online at http://sbs.ucsd.edu.

Short-Term Emergency Loans

The limited emergency loan funds, administered by the Financial Aid Office, are loaned in small amounts to help students in critical short-term emergencies, and usually must be repaid within thirty days. There currently is a service charge of $20 per emergency loan, and students must be enrolled in at least six units. Registration fees must be paid prior to applying. Applications and further information are available from the Financial Aid Office. Students with serious financial concerns should meet with a financial aid counselor.

Federal Tax Credits

Two federal tax credits may benefit you or your parents, if the grants and scholarships you receive do not fully cover your fees. Both tax credits are tied to the tuition and fees paid for college.

- The income phase-outs have increased, now starting at $80,000 for single filers (fully phased out at $90,000) and $160,000 for married filing jointly (fully phased out at $180,000).
- The credit is no longer subject to the Alternative Minimum Tax (AMT).

To find out more about these tax credits, consult your tax advisor or visit the U.S. Department of Education Web site http://studentaid.ed.gov/ and the “Finances” section on TritonLink.

Graduate Financial Assistance

See catalog section titled “Graduate Studies” for additional types of financial assistance available to graduate students.

The Undergraduate Scholarship Program

The purpose of the Undergraduate Scholarship Program at UCSD is to recognize outstanding achievement, to encourage academic excellence, and to offer support to meritorious students. Scholarships are awarded on a competitive basis by the UCSD Faculty Committee on Undergraduate Scholarships and Honors. Merit scholarships are awarded on the basis of academic excellence. Restricted scholarships are awarded based on one or more additional criteria or restrictions such as financial need, in a particular major, or leadership. Students who are awarded scholarships restricted by financial need must file a Free Application for Federal Student Aid (FAFSA) in order to document need and receive the award. Additionally, Undergraduate Research Scholarships are offered to current students, which enable them to pursue special studies and projects under faculty supervision.

Scholarship Donors

UCSD is actively engaged in developing new scholarship opportunities. Many of these awards were established through the generous support of individual donors, foundations, businesses, and community organizations. Every gift toward undergraduate scholarships is appreciated and appropriately recognized. Further information about supporting scholarships at UCSD may be obtained from Kim Signoret-Paar, Director of Student Affairs Development. Ms. Signoret-Paar may be reached at (858) 822-1536 or kspaar@ucsd.edu. Her address is 9500 Gilman Drive # 0937, La Jolla, CA 92093-0937.

Scholarship Application

Scholarship Office Address

The Scholarship Office is part of the UCSD Financial Aid Office and is located in the Student Services Center, 402 University Center, Third Floor North, 9500 Gilman Drive # 0013, La Jolla, CA 92093-0013. Office hours are from 8:00 a.m. to 4:30 p.m., Monday, Wednesday, and Friday; Tuesdays and Thursdays open 10:00 a.m. to 4:30 p.m. For additional information regarding the scholarship program, contact the Scholarship Office at scholarship@ucsd.edu or (858) 534-1067.

How to Apply for Scholarships

Entering Students

The University of California Application for Undergraduate Admission and Scholarships is also used to apply for the UCSD Regents and other entering undergraduate scholarships. No other paperwork is required. The application is submitted in November for the following academic year. Because scholarships are awarded to entering students on a very competitive basis, students should carefully comply with instructions on the UC Application for Undergraduate Admission and Scholarships to ensure full consideration for all eligible scholarships. Entering students who receive a scholarship from UCSD will be notified in writing by or before April 1. We regret that we are unable to mail denial notification letters to other applicants.

Current UCSD Students

Current UCSD students apply for scholarships annually during winter quarter for the following fall quarter by filing the UCSD Continuing Student Scholarship Application. This application is available online via TritonLink in December and is due in February. Current students who receive a scholarship from UCSD will be notified in writing by early June. Students who do not receive an award will not be notified due to the large volume of applications.

UCSD Undergraduate Scholarships

The scholarships listed below are generally available at UCSD. Although every effort is made to present the most accurate information, this listing is subject to change due to federal, state, and university funding limitations, and changes in policy or law.

Entering Freshman Awards

Regents Scholarship: The Regents Scholarship is the most prestigious scholarship awarded to outstanding entering freshmen on the basis of academic achievement. This scholarship is offered to entering freshmen for four undergraduate years. If a student is offered the Regents Scholarship and has demonstrated financial need, the student will receive additional scholarship and/or grant funds up to the amount of demonstrated need for four undergraduate academic years, excluding nonresident tuition and education fee costs. Entering freshmen applying in the 2010–11 academic year without documented financial need will receive a four-year honorarium of $8,000, paid at $2,000 per year for the four years of their undergraduate appointment at UCSD. Entering freshmen apply for the Regents Scholarship through the admissions application. UCSD Regents Scholars are also eligible for certain undergraduate privileges and recognitions such as preferred class enrollment, extended housing benefits for four years (providing housing deadlines are met), UCSD college of choice at time of admission, extended student
library privileges, honors program at select colleges, the Regents Freshman Research Initiative, and the Academic Enrichment Faculty Mentor Program.

Chancellor's Scholarship: Awarded to outstanding entering freshmen on the basis of academic achievement, and other factors, which may include financial need, extracurricular and community activities, educational environment, and first-generation college attendance. As a Chancellor's Scholar, students will receive the following undergraduate benefits: extended housing benefits (provided housing deadlines are met) and priority registration for four years as a UCSD undergraduate scholar; extended library privileges; participation in the Academic Enrichment Faculty Mentor Program, and the Emeriti Mentoring Program. This is a four-year undergraduate award, up to $20,000, paid in the amount of up to $5,000 annually.

The following scholarships are part of the Chancellor's Scholarship Program:
- Albert C. and Elisabeth L. Bayer Scholarship
- Ernest N. Carter Hispanic Scholarship for Engineers
- Hispanic Scholarship Council Scholarship
- Charmaine and Maurice Kaplan Scholarship
- Logan L. Page Scholarship
- Elizabeth Stupp Kohl Scholarship for Women Engineers
- Madge E. Lawhead Scholarship
- S. Falck Nielsen Scholarship
- Gerald and Inez Grant Parker Foundation Scholarship
- Maree Gill Scholarship
- Rose Foundation Scholarship
- Shimotori Memorial Scholarship
- Justin D. Smith Family Scholarship
- Ludwig and Ada Strauss Scholarship
- Woolley Family Scholarship

James Avery Scholarship: Awarded to an African-American student pursuing studies in the performing or visual arts, with a preference for students enrolled in Thurgood Marshall College. This is a four-year award up to $4,000, paid in the amount of up to $1,000 annually.

Black Alumni Scholarship: Awarded to entering African-American students based on academic merit. This is a four-year award up to $4,000, paid in the amount of up to $1,000 annually.

Clayton H. Brace Scholarship: Awarded to an entering student with an interest in communications. This is a one-year award. The award amount varies.

CREATE Undergraduate Scholarship: Awarded to entering freshmen who have graduated from a San Diego high school participating in the UCSD CREATE program. The amount and term of the award varies.

Herbert Greenberg Memorial Scholarship: Awarded to entering freshmen based on academic merit and demonstrated financial need. The award amount and term varies.

Kelly J. Kolozsi Scholarship: Awarded to students in the following priority: (1) Graduates of Menlo Atherton High School; (2) graduates of a high school in the Sequoia Union High School District. Preference is given to students diagnosed with a learning disability. This is a one-year award. The award amount varies. The recipients are chosen by the Kolozsi Scholarship Selection Committee.

Ledell Family Scholarship: Awarded to entering freshmen based on academic merit. This is a four-year award up to $10,000, paid in the amount of up to $2,500 annually.

McFarland Scholarship: Awarded to Native-American entering freshmen based on academic merit. This is a four-year award up to $10,000, paid in the amount of up to $2,500 annually.

Dr. A. R. Moossa Scholarship: Awarded to pre-medical students who plan a career as a physician, have financial need, and are full-time students with at least a 3.0 GPA. This is a four-year award up to $8,000, paid in the amount of up to $2,000 annually.

National Merit Scholarships: UCSD does not sponsor National Merit Scholarships.

Shelley Owen Collins Scholarship: Awarded to African-American students pursuing studies in the life sciences. This is a four-year award up to $4,000, paid in the amount of up to $1,000 annually.

George Parker Memorial Scholarship: Awarded based on financial need to students who were orphaned for at least three years prior to the age of eighteen, and/or who were raised in foster care for at least three years immediately prior to the age of eighteen. Students must show evidence of orphan or foster care status. This is a renewable award, paid in the amount of up to $2,000 annually.

Mary Pilot Scholarship: Awarded to meritorious graduates of San Jose High School Academy, as nominated by the high school principal. This is a one-year award up to $500.

Preuss School Scholarships at UCSD: Awarded to graduates of the UCSD Preuss School who have been admitted to UCSD, and who have high financial need. The award amount and term varies. The following scholarships are part of Preuss School Scholarship Program:
- Jack In The Box Scholarship
- Janice and Steven Chaffin Endowed Scholarship
- Hispanic Scholarship Council Scholarship
- Herbert and Renita Greenberg Scholarship
- Rebecca E. Lytle Scholarship
- Preuss School Scholarship at UCSD Fund
- Ray and Betty Ramseyer Scholarship: Awarded to an entering student with an interest in the social sciences. This is a four-year award up to $4,000, paid in the amount of up to $1,000 annually.

Roger and Ellen Revelle Scholarship: Awarded to entering freshmen based on academic merit. This is a four-year award up to $10,000, paid at up to $2,500 annually.

UC San Diego Athletic Scholarship: Awarded to UCSD Intercollegiate Student Athletes who meet additional required academic criteria. Entering student-athletes meet the academic criteria upon admissions. Renewal requires a cumulative UC GPA of 2.50 for sophomores, 2.60 for juniors, and 2.70 for seniors, and continued participation in Intercollegiate Athletics. This is a one-year $500 award that is renewable up to five years.

Mary S. and Joseph W. Watson Scholarship: Awarded to entering freshmen with financial need from San Diego or Imperial Counties, with preference given as follows: Students whose K-12 education has been in aforementioned counties, first generation college students, not receiving other privately funded UCSD scholarships, majoring in physical sciences or arts and humanities. This is a four-year award up to $8,000, paid in the amount of up to $2,000 annually.

Allene Huanani Wong Scholarship: Awarded to entering freshmen from Hawaii, with a preference for students majoring in science or engineering. This is a four-year award up to $10,000 per year.

Awarded to Students Transferring from Community Colleges

Engelhorn Family Scholarship: The Engelhorn Family Scholarships are awarded to transfer students who are participants in the UniversityLink program, have high financial need, with a preference for students who are first-generation college students. This is a two-year award, paid in the amount of up to $2,000 annually.

Current Student Awards

Alternative Break Scholarship: Awarded to students participating in the Alternative Break Program, with priority for those with demonstrated financial need. This is a one-year award and the amount varies.

Alumni Leadership Scholarship: Awarded to full-time students who will be juniors in 2010–11, with a 3.0+ GPA, demonstrated financial need, and demonstrated college-level academic, campus, or community service/leadership. This is a two-year award up to $2,000 annually.

Other Alumni Leadership Scholarships have been made possible by individual donors. These endowed scholarships may have special criteria. Please see the scholarship Web site for more information:
- Bay Area Alumni Scholarship
- Brutten Family Scholarship
- Gregory T. Bryan Scholarship
- Cambon Family Scholarship
- Dottie Conway Memorial Scholarship
- Hajim Family Scholarship
- Kevin T. Hart Memorial Scholarship
- Violet and Matthew N. Lehrer, ’91, Scholarship
- Joseph H. Lima, ’87, Scholarship
- Marchick-Rallo Scholarship
- Karen Moraghan, ’81, Scholarship
- Nelson Family Scholarship
- Stephen M. O’Leary, ’94, Memorial Scholarship
- Patricia Ordenez Valva, ’92, Memorial Scholarship
- Philip R. and Pamela Freden Palisou, ’72, Family Scholarship
- Leon T. Roach Academic Scholarship for Athletics
- John D. and Diana S. Stobo, Jr. (’87) Scholarship
• TeamPersona Scholarship
• Vickerman/Munoz Family Scholarship
• Walsh Chacon Scholarship
• C. Robert Wartell Memorial Scholarship
• Waxman Family Scholarship

Christopher B. Arratt, ’81—Gay, Lesbian, and Bisexual Scholarship: Awarded to gay, lesbian, or bisexual undergraduate students with a record of active service and involvement in the gay, lesbian, and bisexual community. This is a one-year award up to $1,000.

Charles and Clara Ash Scholarship: Awarded to students with demonstrated financial need. This is a one-year award. The award amount varies.

BAE SYSTEMS Scholarship: Awarded to full-time students who are seniors in the 2010–11 academic year, with a 3.2+ GPA, majoring in computer science, applied mathematics, computer or electrical engineering with a computer sciences emphasis, are U.S. citizens and plan to pursue a career in computer science in San Diego. This is a one-year award up to $5,000.

Errett Bishop Scholarship: Awarded to upper-division mathematics majors with financial need. Preference given to 2010–11 graduating seniors. The award amount varies up to $3,000.

James W. Barnes Scholarship: Awarded to full-time current undergraduate students majoring in mechanical, electrical, computer engineering, or computer science, with a 3.0+ GPA. This is a one-year award up to $2,000.

The Darcy C. and Robert Bingham Scholarship: Awarded to full-time students who are in good academic standing and are employed with UCSD Recreation, UCSD Student Affairs, or UCSD. Students must work for a minimum of fifteen hours per week during the three-quarter academic year at UCSD, and must have worked at least one quarter prior to the submission of their application. This is a one-year award up to $1,500.

Boeing Engineering Scholarship: Awarded to full-time students majoring in electrical engineering, mechanical engineering, aerospace engineering, computer science, or computer engineering, who have demonstrated high financial need. This is a one-year award up to $3,000.

F. Thomas Bond Reveille College Scholarship: Awarded to Reveille College students who will be seniors in 2010–11, have a 3.7+ GPA, and participated in significant extracurricular campus activity. This is a one-year award up to $1,000.

Ken Bowles Scholarship for CSE: Awarded to seniors majoring in computer science engineering, with a 3.0+ GPA. Preference given to financial need students who have knowledge and/or experience with the UCSD Pascal application. This is a one-year award up to $2,000.

Braille Transcribers Guild: Awarded to students who are legally blind, or have substantial, uncorrectable vision loss, registered with the UCSD Office for Students with Disabilities. This award amount and term varies.

CK and Jenny Cheng CSE/ECE Scholarship: Awarded to undergraduate students majoring in computer science and engineering or electrical and computer engineering at the UCSD Jacobs School of Engineering, based on academic merit. The scholarship is a one-year award of up to $500.

Thomas E. Curtis Scholarship: Awarded to juniors or seniors in the 2010–11 academic year, majoring in the fields of biology, chemistry, or physics, who also demonstrate interest in the larger world around them, with leadership-level involvement outside the classroom, and have a minimum 2.75 GPA. This is a one-year award. The award amount varies, up to $2,000.

Brython P. Davis Scholarship: Awarded to current students whose parent is or was a regular member of the U.S. Navy or Marine Corps. This is a one-year award. The award amount varies.

Richard L. and Fern W. Erion and Laidlaw-Erion Scholarships: Awarded to full-time UCSD students who will be seniors in 2010–11, with demonstrated financial need, as determined by information submitted on their 2010–11 FAFSA. The award amount varies, up to $2,000.

Klara D. Eckart Scholarship: Awarded to current students in the fields of computation, mathematics, or physics. This is a one-year award. The award amount varies, up to $1,000.

The Willis and Jane Falconer Foundation and P and G Company Scholarship: This outside agency scholarship is awarded to a graduate of a San Diego County high school with demonstrated financial need. This is a one-year award up to $2,500.

Mayne Anne Fox and James Whitesell Scholarship: Awarded to students majoring in natural sciences or engineering. Preference given to students with financial need, with a preference for students who are dependents of UCSD employees. This is a one-year award and the amount varies.

Jaye Haddad Memorial Scholarship: Awarded to students who have been diagnosed with cancer, with Acquired Immune Deficiency Syndrome, with AIDS-related conditions, or to students with physical disabilities. This is a one-year award up to $1,000.

E. Coke Hill Scholarship: Awarded to students with demonstrated financial need. This is a one-year award. The award amount varies.

I Pledge Student Scholarship: The following scholarships were established by the UCSD Student Foundation and paid for by current students through quarterly donations. The scholarships are awarded to continuing students who have demonstrated college-level academic, campus, or community service/leadership. These are a one-year award up to $1,500.

Dance Marathon Scholarship $1,500

I Pledge Student Scholarship $1,000

Irvine Memorial Scholarship: Awarded to students based on academic merit. This is generally a one-year award. The award amount varies.

Jeffrey R. Leifer Scholarship: Awarded to current students who have demonstrated financial need and academic merit, are the first generation in their family to attend college, and graduated from California high schools that historically are underrepresented at UC campuses. This scholarship has been established through the generous contributions of Jeffrey R. Leifer. As a student at UCSD, he served as associated student body president and founded International Student Pugwash, a worldwide organization dedicated to issues surrounding ethics, technology, and society. This is a one-year award and the amount varies, up to $1,000.

Alice Marriott Scholarship: Awarded to students with demonstrated financial need. This is a one-year award. The award amount varies.

Thurgood Marshall College Scholarship: Awarded to students enrolled in Marshall College who have a 3.2 GPA by the end of spring quarter, and have completed a minimum of seventy-two graded quarter units. Transfer students need thirty-six graded UCSD units with a 3.2 GPA and 3.5 cumulative GPA in advanced-standing work. Seniors who apply should have a minimum of thirty-six units remaining to be completed in the academic year the scholarship is awarded with a minimum 3.2 cumulative GPA. This is a one-year award up to $1,800.

Marx and Marshall—Gay and Lesbian Scholarship: Awarded to gay and lesbian students with a record of active service and involvement in the gay, lesbian, and bisexual community. This is a one-year award. Preference will be given to students with financial need. The award amount is up to $1,000. Recipients may reapply.

Michael Miller Engineering Scholarship for Transfer Students: Awarded to undergraduate transfer students who are majoring in engineering, have a 3.0+ GPA, and demonstrated financial need. This is a one-year award up to $2,500.

LaVerne Noyes Scholarship: Awarded to current students who have demonstrated financial need and are descendants of U.S. World War I Veterans (defined as four months of service in the U.S. military prior to November 11, 1918). This is a one-year award. The award amount varies.

George Parker Memorial Scholarship: Awarded based on financial need to students who were orphaned for at least three years prior to the age of eighteen, and/or who were raised in foster care for at least three years immediately prior to the age of eighteen. Students must show evidence of orphan or foster care status. This is a renewable award, paid in the amount of up to $2,000 annually.

Tracee Parsons Scholarship for UCSD LGBT Students in Math and Science: Awarded to current gay, lesbian, bisexual, and/or transgender undergraduate students based on academic merit, financial need, and demonstrated commitment to the fields of math and/or science. This is a one-year award up to $1,000.

Cheryl Renee Persky Memorial Scholarship: Awarded to electrical engineering or computer science majors. This is a one-year award and the amount varies.

Sven Peterson Memorial Scholarship: Awarded to a current freshman or sophomore, UCSD Warren College student, enrolled full-time, majoring in an area other than engineering or life sciences. The recipient must have been placed on the college provost’s honors list at least one quarter during his or her academic career in advance of applying for the award and must maintain a 3.0 cumulative GPA. The award amount varies.

Tenie Remmel Memorial Scholarship: Awarded based on academic merit and demonstrated financial need to a full-time student in the Division of Physical Sciences. This is a one-year award of up to $1,000.

Gary C. Reynolds Scholarship: Awarded to students who will be juniors or seniors in 2010–11, who are
mathematics-computer science majors, who show exceptional promise for making future contributions in their field of study. The amount of this award varies up to $2,000 to $1,000.

Elizabeth W. Russell Scholarship: Awarded to students who will be juniors or seniors in 2010–11 who are pursuing studies in studio art, art history, or art criticism/ theory. The award amount varies.

SAGA Scholarship: Awarded to juniors, seniors, or fifth-year seniors in 2010–11, with financial need, 3.0+ GPA, a U.S. citizen or permanent resident, open to majors in science and technology, and who work twenty or more hours a week, with a preference for first-generation college students (not required). This is a one-year scholarship up to $4,000 for full-time summer internship and professional skills training.

Senior Gift Scholarship: This scholarship was established by UCSD graduating seniors to recognize outstanding 2010–11 students (not limited to seniors), who have qualified for financial aid and have demonstrated college-level academic, campus, or community service/leadership. This is a one-year award up to $2,000.

Malcolm R. Stacey Memorial Scholarship: Awarded to Jewish students in the following priority: (1) undergraduate who is an orphan and preparing for graduate study in aeronautical engineering, (2) undergraduate in the field of aeronautical engineering, (3) a student in the division of engineering, and (4) a student in any field of study. This is a one-year award. The award amount varies.

William H. Stout Scholarship: Awarded to students based on academic merit. This is a one-year award. The award amount varies.

Russ Iy—Gay and Lesbian Scholarship: Awarded to gay and lesbian students based on academic merit and financial need. This is a one-year award. The award amount is a maximum of $1,000.

UC San Diego Athletic Scholarship: Awarded to UCSD Intercollegiate Student-Athletes who meet additional required academic criteria. Entering student-athletes meet the academic criteria upon admissions. Renewal requires a cumulative UC GPA of 2.50 for sophomores, 2.60 for juniors, and 2.70 for seniors, and continued participation in Intercollegiate Athletics. This is a one-year $500 award that is renewable up to five years.

UCSD Faculty-Staff Employee Dependent Scholarship: Awarded to students with a 3.0+ GPA, demonstrated financial need, who are daughters or sons of university employees. This is a one-year award and the amount varies.

UCSD LGBT Resource Center Undergraduate Scholarship: Awarded to UCSD gay, lesbian, bisexual, and/or transgender students based on merit, need, and significant experience with issues related to sexual orientation and gender identity. This is a one-year award up to $2,000.

UCSD Town and Gown Scholarship: Awarded to full-time 2010–11 juniors or seniors with a 3.4+ GPA, demonstrated financial need, and exceptional promise for making future contributions in public or community service (including but not limited to foreign affairs, medicine, social service, political science). This is a one-year award up to $5,000.

IJIMA Black History Month Scholarship, in honor of Mary and Joseph Watson: Awarded to students with an African American studies minor in the performing arts and humanities and/or the social and natural sciences. This is a one-year award up to $500.

Visual Arts Endowment Scholarship: Awarded to full-time current students, with the intent to support talented undergraduates majoring in visual arts. This is a one-year award up to $4,000.

Robert and Pat Whalen Military Transfer Scholarship: Awarded to transfer students who have served in the U.S. Armed Forces as enlisted or non-commissioned officers, have financial need, and are majoring in engineering. Preference given to those who have transferred to UCSD through Transfer Admission Guarantee (TAG) or UniversityLink. This is a one-year award and the amount varies.

If you have any questions regarding graduate scholarships, they should be directed to the Office of Graduate Studies at (858) 534-3555.

Undergraduate Research Scholarships

These special awards are for current undergraduate students who wish to engage in special studies or research projects under faculty supervision. The award must be above and beyond the normal course of study. The subject matter does not have to be related to the student’s major, minor, or other course work. These are one-year awards; however, a student may submit a new application each year for consideration. Awards are up to $3,500 one-year scholarships.

Applications are available from the UCSD Financial Aid Office in February and are due in April. Winners are notified by the middle of June. All recipients are required to submit a brief final summary report, including details of how the funds were used. Also, the sponsoring faculty member must submit a review and appraisal of the results of the project.

Amylin Pharmaceuticals Research Scholarship will give consideration to juniors or seniors in 2010–11, majoring in biological sciences or bioengineering who submit projects related to diabetes. The award is up to $3,000.

Biological Sciences Eureka! Scholarship promotes engagement in basic and translational biology by facilitating students’ participation in research opportunities both at the UC San Diego campus and at research facilities on the San Diego mesa. Students must be juniors or seniors in 2010–11 with a declared major in the Division of Biological Sciences. Successful proposals will show evidence that the scholarship will provide the students with an opportunity to have a significant research experience. The award is up to $3,500.

David Marc Belkin Memorial Research Scholarship will give preference to those proposals designed to pursue special studies and projects in the areas of environmental and ecological issues. The award amount varies up to $3,000.

Julia Brown Research Scholarship: Awarded to juniors or seniors in the 2010–11 academic year, whose career objectives are in health-care medicine, medical research, pharmacy, pharmaceutical sciences, or public health. Preference given to students with extinguating circumstances or financial need. This is a one-year award up to $3,500.

Chancellor’s Research Scholarship will give consideration to proposals regardless of project topic. The award is up to $3,000.
EAP Scholarships: Awarded primarily on the basis of financial need.

Global Seminars Scholarships: Awarded to students participating in UCSO's Global Seminars. Awarded primarily on the basis of financial need.

Eleanor Roosevelt College (ERC) Scholarships: Awarded to ERC students with financial need. Applicants should apply through ERC.

Ernest Mort International Scholarship for Revelle: Awarded to Revelle students studying abroad.

Fliesbach International Study Scholarship: Awarded to students majoring in visual arts, anthropology, theatre, or dance.

Friends of the International Center: Awarded predominantly on academic merit, with some consideration of financial need.

Judaic Studies Scholarship: Awarded to students bound for Israel, with preference given to students with a major or minor in Judaic studies. Applicant should apply through the Judaic Studies Program.

Stephen P. L'Italian Jr. Memorial Scholarship: Awarded to LGBT students studying abroad. Applicants should apply through the LGBT Resource Center.

So Family Endowed Undergraduate Scholarship for Education and Opportunities Abroad: Awarded to students going to China, Hong Kong, and/or Taiwan.

Internship Programs

University of California President's Washington, D.C. Scholarship: Awarded to students on internship in Washington, D.C. with financial need and a 3.0 GPA. Applicants should apply through the Academic Internship Program Office: (858) 534-4355 or the UCDC Program Office: http://polisci.ucsd.edu/undergrad/ucdc/index.html.

General Information for Incoming Freshmen

Transfer Student Housing

The Village at Torrey Pines

The Village at Torrey Pines is the first transfer student housing available on campus. This newest community is located on the main campus's northern neighborhood, within a short walking distance of the Pangea and Hopkins parking structures, and borders the Eleanor Roosevelt College neighborhood.

The community consists of a combination of seven three- to five-story buildings and one fourteen-story tower. The community includes 202 apartment-style units consisting of two, three, or four bedrooms. Each apartment has a living-dining-kitchen area, shared bathrooms, and storage, and each is furnished to provide ample space for effective studying, sleeping, and storing of personal belongings, books, and clothes. The community also includes residential and common spaces such as laundries, meeting spaces, and administrative offices. Retail space, including a café and a UC San Diego Bookstore annex, are placed on-site, as well as complementary outdoor spaces that have been developed to accommodate a variety of activities for residents.

For more information please view the Housing Web site: http://hdh.ucsd.edu/thevillage or e-mail thevillage@ucsd.edu.

Associated Residential Community Housing (ARCH)

The UC San Diego ARCH team operates several housing complexes on and off campus in an effort to provide the highest level of flexibility when selecting your residence.

Mesa Residential Apartments (located minutes off campus) are designed to house single graduate or medical students, couples with or without children, and single parents. Residents must be enrolled full-time in a degree-granting program or Education Studies. The Mesa Residential Apartments offer unfurnished one-, two-, and three-bedroom units. Each unit features carpeting, blinds/drapes, range/oven, and refrigerator. In addition, apartments the Statement of Intent to Register form must have been received by the specified deadline dates. The priority system for room assignment is explained in the Living on Campus Housing Brochure.

Housing application deadline for fall 2010–11 was May 1, 2010, for incoming freshmen.

The HDH Administrative Services Office recommends that freshmen who were not offered housing by the first of June, contact (858) 534-4010 for further information.
are pre-wired for cable television and feature private patios or balconies.

Gas and water are included in rent. Residents are required to pay for electricity. The community is a parklike setting, and amenities include community rooms, coin-operated laundry rooms, co-op garden plots, storage space for each apartment, ample parking, playgrounds for children, and an outdoor sports area, providing courts for tennis, basketball, and volleyball.

One Miramar Street is designed to house unmarried graduate and medical students without children, and undergraduate couples. Residents must be enrolled full-time in a degree-granting program, or participating in Education Studies. One Miramar Street comprises 403 two-bedroom apartments with two single rooms and a shared living/dining/kitchen area. This new development is close to campus, includes an on-site programming space, central mailroom, and laundry facilities. Most of the two-bedroom units include patios, balconies, and impressive views of La Jolla.

Coast Apartments community consists of 106 apartments within eleven buildings on eleven and a half acres. Coast Apartments is a two-story walk-up garden community consisting of wood frame construction and composite roofs laced with pebbles.

Apartment interior features include: front patio, private balcony, carpet, blinds, range, refrigerator, cable television, and Ethernet connections.

The community offers free parking, bicycle racks, a laundry facility, picnic tables, a community room, and beautifully sculptured landscaping where the relaxed atmosphere of coastal living can be enjoyed.

Coast Apartments complex is designed to house graduate and medical students without children, and undergraduate couples. Residents must be enrolled full-time in a degree-granting program or Education Studies. Roommates must also meet these eligibility requirements.

Single Graduate Apartments (located on the Warren Campus) are designed to house single graduate and medical students without children. Residents must be enrolled full-time in a degree-granting graduate or medical course of study, or participating in Education Studies. Single Graduate Apartments all have four single bedrooms and a shared living room, dining room, kitchen, and bath area. Units are fully furnished with the exception of personal linen and cooking utensils. All utilities are included in the rental rate. All units have cable TV included at no extra charge and optional connections to the campus computer system for a fee. All spaces are available on a twelve-month lease. This is a nonsmoking facility.

Arris Verde Graduate Student Housing (on campus), scheduled to open in the Health Sciences neighborhood in fall 2010, will consist of fully furnished apartments for approximately 450 graduate and professional students. The community will be LEED Silver certified, and feature a “green-roof” gathering space, built-in barbecues, a fitness room, and close proximity to local shopping, dining, and transportation.

Note: All policies and procedures concerning the operation of Associated Residential Community Housing, the eligibility for housing, and the application process are subject to change without notice.

For more detailed information on any of the above housing facilities and/or to apply, please visit our Web site: http://hdh.ucsd.edu/arch/gradhousing.html

Residential Services Office
9500 Gilman Dr. # 0907
La Jolla, CA 29093-0907
(858) 822-3291
E-mail: archinfo@ucsd.edu

INTERGROUP RELATIONS PROGRAM

Price Center East, Level 3
Mail Code 0078
(858) 534-6708
http://irp.ucsd.edu

The Intergroup Relations Program serves as a conflict resolution resource center for the UC San Diego campus, providing programs and services relating to hate/bias prevention, mediation of student intergroup conflict, and issues that affect campus climate. We achieve our mission through the following methods: education, problem resolution, campus climate assessment, and collaboration with UCSD departments and other universities.

Intergroup Dialogue courses are offered to give students an in-depth opportunity to acquire and practice essential communication and leadership skills needed to be a productive and culturally competent citizen in a diverse democracy. Our individual workshops, known as our Coexist programs, equip both individuals and groups with the skills, knowledge, and awareness necessary for working through conflict, understanding differences, and living in an increasingly complex and interconnected world. Information about workshops can be found at our Web site.

Our office also provides the opportunity to report bias incidents on campus. Bias incidents are acts of conduct, speech, or expression that target individuals and groups based on race, religion, ethnic or national origin, gender, age, disability, or sexual orientation. Filing a report helps the university create a safe environment that supports the educational mission of the institution. In addition, unreported bias incidents can perpetuate continued bias and erode the campus climate. Making a report calls attention to bias, reduces further incidents, and benefits the entire campus community. This service is also available at our Web site.

INTERNATIONAL CENTER

Corner of Gilman Drive and Library Walk
Mail Code 0018
(858) 534-3730
Fax: (858) 534-0909
Facility reservation: (858) 534-6442
http://center.ucsd.edu

The International Center assists U.S. students going abroad, as well as international students, scholars, and families, and facilitates interaction among all UC San Diego students, faculty, and staff with international interests. The International Center’s mission is to promote and support international exchange and education, and to:

• Provide the UC San Diego community with experiences that foster global perspectives, cross-cultural competence, and appreciation for diversity.

Support UC San Diego international students, scholars, and study abroad participants with services that enhance the quality of their intercultural experience and contribute to their academic success:

• Facilitate UC San Diego’s participation in global scholarship and international educational exchange.

The International Center is made up of four distinct offices: the Programs Abroad Office (PAO), the International Students & Programs Office (ISP), the International Scholar Office (ISO), and the Dean’s Office. Each office has its own focus. PAO serves the needs of all UC San Diego students. It helps those thinking about education abroad to learn about the options available, and it guides students through the process of applying to a program, going abroad, and returning. Orientation and advising are offered at every step of the way. For more information visit http://pao.ucsd.edu.

The International Students & Programs Office (ISP) offers a wide array of services and programs for international students and their dependents at UC San Diego in an effort to support their legal stay in the U.S. and to help them achieve their personal, academic, and professional goals. In addition, ISP offers a variety of high-quality programs and cross-cultural activities designed to help international students successfully integrate at UC San Diego and in the local community and to provide opportunities for all UC San Diego students to gain experiences that foster the development of international knowledge, skills, and sensitivities. For more information visit http://istudents.ucsd.edu.

The International Scholar Office (ISO) is the office of record for all international scholars. ISO represents the university in all regulatory matters concerning international scholars and is exclusively authorized to file applications and petitions with U.S. Citizenship and Immigration Services. ISO advises academic departments on visa selection for employing and hosting international faculty, researchers, and short-term visitors. ISO provides orientation for international scholars and is exclusively authorized the university in all regulatory matters concerning international scholars. ISO represents the university in all regulatory matters concerning international scholars and is exclusively authorized to file applications and petitions with U.S. Citizenship and Immigration Services. ISO advises academic departments on visa selection for employing and hosting international faculty, researchers, and short-term visitors. ISO provides orientation for international scholars and is exclusively authorized to file applications and petitions with U.S. Citizenship and Immigration Services. ISO advises academic departments on visa selection for employing and hosting international faculty, researchers, and short-term visitors. ISO provides orientation for international scholars and is exclusively authorized to file applications and petitions with U.S. Citizenship and Immigration Services. ISO advises academic departments on visa selection for employing and hosting international faculty, researchers, and short-term visitors. ISO provides orientation for international scholars and is exclusively authorized to file applications and petitions with U.S. Citizenship and Immigration Services. ISO advises academic departments on visa selection for employing and hosting international faculty, researchers, and short-term visitors. ISO provides orientation for international scholars and is exclusively authorized to file applications and petitions with U.S. Citizenship and Immigration Services. ISO advises academic departments on visa selection for employing and hosting international faculty, researchers, and short-term visitors. ISO provides orientation for international scholars and is exclusively authorized to file applications and petitions with U.S. Citizenship and Immigration Services. ISO advises academic departments on visa selection for employing and hosting international faculty, researchers, and short-term visitors. ISO provides orientation for international scholars and is exclusively authorized to file applications and petitions with U.S. Citizenship and Immigration Services. ISO advises academic departments on visa selection for employing and hosting international faculty, researchers, and short-term visitors. ISO provides orientation for international scholars and is exclusively authorized to file applications and petitions with U.S. Citizenship and Immigration Services. ISO advises academic departments on visa selection for employing and hosting international faculty, researchers, and short-term visitors.
Campus Recreation provides UC San Diego students with quality recreation programs. They are designed to meet leisure-time needs and interests through on-campus programs offering clubs, intramural sports, recreation classes, outings, and a myriad of activities and special event programming. Our goal is to provide opportunities promoting a lifetime of health-conscious options.

Facilities
- RIMAC with arena, gymnasium, weight room, racquetball and squash courts, and equipment room.
- Main and Recreation Gymnasium
- Main Gym Weight Room
- Indoor 25-Yard Natatorium Pool and Spa
- Outdoor 50-Meter Canyonview Pools and Spa
- Outback Indoor Climbing Center
- UCSD Challenge Course
- Tennis Courts
- Playing Fields
- Canyonview Weight Room
- Golf Driving Range
- Mission Bay Aquatics Center
- Spanos Training Facility with weight training equipment, martial arts studio, and trainers’ facility
- Running and Jogging Track
- Par Courses
- Sand Volleyball Courts
- Outback Adventures equipment rentals
- Outback Adventures Gear Shop, Price Center

Intramural Sports
The Intramural Sports Program at UCSD is a balanced blend of team and individual sports activities that are designed to meet the diverse needs of the campus community. Sports offered include flag football, floor hockey, tennis, basketball, softball, soccer, bowling, volleyball, tube waterpolo, badminton, and dodgeball.

Recreation Clubs
Recreation Clubs are special-interest activity clubs open to the entire campus community. The clubs are designed to bring together people with common interests. Students may join or begin new recreation clubs and participate in the workouts, meetings, social gatherings, and special events that are part of the RecClub structure.

Sport Clubs
Sport Clubs are those teams that compete on an intercollegiate basis but without many of the restrictions of the formal Intercollegiate Athletic Teams. The clubs offer students the opportunity to become involved in somewhat less traditional competitive sports, while still enjoying the travel to and competition against other institutions. Teams include badminton, dance sport, dance team, triathlon, equestrian, waterski, cycling, lacrosse, sailing, surfing, rugby, alpine ski, snowboard racing, ice hockey, roller hockey, soccer, table tennis, volleyball, water polo, and ultimate disc.

Recreation Classes
Recreation classes provide students and the university community an opportunity for noncredit, nongraded instruction in a wide range of physical and leisure activities. The program includes professional instruction in everything from games (billiards to poker); aquatics (swimming, surfing, scuba diving); dance (ballet, ballroom, hip hop to tango); fitness (indoor cycling, cardio and conditioning, Pilates, weight training); martial arts (aikido, karate to tai chi); mind, body, spirit (meditation to yoga); sports (archery, fencing, gymnastics to tennis) and more.

Outback Adventures
Outback Adventures (outdoor recreation program) is a passport to adventure and the great outdoors. The program offers fun, full-service trips (transportation, meals, instruction, equipment) in backpacking, rock climbing, canoeing, kayaking, surfing, and other outdoor pursuits. The Outback Adventures director will also arrange customized trips. In addition, the program offers instructional workshops, a resource library of maps and park information, and a camping and outdoor equipment rental service that includes downhill skiing and snowboard equipment, camping equipment, and game equipment. Outback also runs the indoor climbing center, with facilities for beginning to advanced climbers, rentals, and instruction as well as the UCSD Challenge Course, offering leadership and team-building workshops. The Outback Adventures Gear shop, at the Price Center, offers outdoor gear (from backpacks to snowboards and surfboards) for rent and for sale.

Aquatics
UCSD Campus Recreation Aquatics encompasses a wide range of aquatic activities. Student users can participate in competitive and training programs in swimming and water polo. Masters Programs in swimming, running, and triathlon provide an intensive competitive and training experience. Special events scheduled throughout the year range from student social activities to international team competitions. Additionally, an extensive recreational lap swim program is maintained to accommodate daily users from the campus and community.

Informal Recreation
Informal recreation provides individuals and groups of students the opportunity to make use of and all of the physical activity facilities at UCSD. From jogging on the par course to shooting hoops in the gym, or playing racquetball in RIMAC, “open rec” time allows students to develop their own leisure activities.

Mission Bay Aquatic Center
Located on Santa Clara Point in Mission Bay, this facility and its programs provide students with an exclusive opportunity to participate in all aspects of aquatic recreation. From highly structured classes to equipment rentals, MBAC is a “first class” operation. (858) 488-1036.

Personal Wellness
Our weight room and Personal Wellness programs offer free student small-group personal-wellness programs and personalized comprehensive fitness programs to sixty students each quarter. Other small-group programs, including Personal Athletics, are also offered, as well as nutrition counseling, personal fitness assessments, personal training, and massage therapy.

Intercollegiate Athletics at UCSD

www.UCSDtritons.com

The UC San Diego Athletic Department sponsors a broad base of men’s and women’s intercollegiate sports, which promote the pursuit of excellence, strength of character, teamwork, ethical conduct, and diversity, as well as other lessons competitive sport teaches. UCSD has been an NCAA Division II member since 2000, and most teams now compete in the California Collegiate Athletic Association, widely considered to be the top Division II athletic conference in the country. With twenty-three highly competitive teams to choose from, students with varying interests in participating in intercollegiate athletics have the opportunity to submerge themselves in A Proud Tradition of Academic and Athletic Excellence!

UCSD’s teams have captured twenty-nine National Championships, while thirty-seven others have finished National Runners-up. Forty-four others have achieved national third place honors. Women’s soccer and women’s volleyball lead the way with seven national championships apiece, followed by women’s water polo with five, women’s tennis with four, men’s soccer with three, and men’s golf with one. In addition to succeeding on a national level, UCSD teams have captured forty-three conference championships and sixteen regional championships since moving to the NCAA Division II level, adding to the thirty-two conference championships and fifty-one regional championships obtained as a Division III competitor. Individualy, 130 Triton student-athletes have won National Championships, while a remarkable 990 student-athletes have been named to All-America teams.

UCSD student-athletes have excelled academically as well, earning twenty-three prestigious NCAA Post-Graduate Scholarships and 140 Academic All-America selections. Consistently, more than 55 percent of the student-athletes earn a cumulative GPA of 3.0 or higher, placing them on the Athletic Director’s Honor Roll.

In 2008–09, UCSD posted a seventh place finish out of more than 300 schools in the Learfield Sports Director’s Cup, an award representing the best overall athletic department in the country. Since moving to Division II, UCSD has placed in the top seven in the Director’s Cup standings on eight different occasions and finished second twice. UCSD finished
first in the standings as a Division III member in 1997–98. At the conference level, UCSD has captured the California Collegiate Athletic Association Commissioner’s Cup title—an award symbolizing the best overall athletic program in the CCAA—every year since its inaugural season in 2005–06. UC San Diego currently offers basketball, crew, cross-country, fencing, soccer, swimming and diving, tennis, track and field, volleyball, and water polo for both men and women, as well as men’s baseball, men’s golf, and women’s softball. In addition to becoming a student-athlete, UCSD students have the opportunity to get involved through a variety of athletic support groups, internships, and volunteer work. Triton Spirit Groups include the UCSD Cheer Team; the school mascot, King Triton; the UCSD Dance Team; Triton Tide; and the UCSD Pep Band. Each of these student organizations has grown steadily in recent years and helps create the spirited environment at Triton athletic events. Students interested in a firsthand experience in the operations of an athletics program should check into opportunities to work in game management, which provide staffing for all home athletic events, or inquire about internships within the Athletics Department.

In addition to the student groups, Triton Athletic Associates, a booster group of parents, alumni, and friends, supports the UC San Diego Athletic Department in its endeavor to provide an optimal student-athlete experience by providing contributions as an investment in The Proud Tradition of Athletic and Academic Excellence developed over nearly three decades of athletic success.

SEXUAL ASSAULT & VIOLENCE PREVENTION RESOURCE CENTER

Student Services Center, Fifth Floor
(858) 534-5793
E-mail: sarc@ucsd.edu
http://sarc.ucsd.edu

The Sexual Assault & Violence Prevention Resource Center (SARC), established in 1988, is the primary resource for educational programs on rape, sexual assault, and interpersonal violence prevention for UC San Diego students. SARC cosponsors the R.A.D. (Rape Aggression Defense) self-defense workshops with the UCSD Police Department and the Women’s Center. In addition, SARC offers (1) crisis intervention for student victims of rape, sexual assault, dating violence, and stalking, (2) accompaniment through the police, hospital, and judicial process, and (3) confidential counseling for student victims, family, and friends. If a sex offense occurs, SARC staff explain the victim’s options of reporting to law enforcement and/or campus administrators. SARC staff will also provide information about other resources (i.e., medical assistance, campus and community counseling, and student services.)

Student Sex Offense Policy

UC San Diego does not tolerate sex offenses in any form, including sexual assault, sexual misconduct, harassment, exploitation, or intimidation. Reports of sex offenses may be made to the Sexual Assault & Violence Prevention Resource Center, the UC San Diego Police Department, the Office of Sexual Harassment Prevention and Policy, Counseling and Psychological Services, Student Health Service, and other campus resources outlined in the UC San Diego Sex Offense Policy. Investigations of reports of sex offenses will be conducted by the Office of Sexual Harassment Prevention and Policy. A student who has been accused of a sex offense may seek assistance from Student Legal Services, Counseling and Psychological Services, the Office of Student Advocacy, and other campus resources outlined in the policy.

Sex offenses can be addressed both through university administrative procedures and through the criminal justice system. Any criminal proceeding is entirely separate from administrative proceedings of the university.

The UC San Diego Sex Offense Policy is available online at http://oshpp.ucsd.edu.

STUDENT HEALTH SERVICE

Mail Code 0039
(858) 534-3300
http://studenthealth.ucsd.edu

Student Health Service (SHS) is accredited by the American Association for Ambulatory Health Care, Inc. (AAACHC). Our purpose is to promote and preserve the health and well-being of all registered students so that they may pursue their academic goals. Our staff of physicians, nurse practitioners, registered nurses, medical assistants, health educators, and other medical professionals is committed to helping students maintain healthy lifestyles. SHS is conveniently located along Library Walk, west of the Price Center and south of Geisel Library. For more information about our services, see our Web site: http://studenthealth.ucsd.edu.

General medical appointments are provided for a minimal fee to all registration-paying students during the academic quarters. There is an access fee for urgent care and first-aid visits. Summer access to SHS is at no additional charge for students enrolled in SHIP. Continuing students not enrolled in SHIP will pay a fee for service to access Student Health Service.

Reduced fees are charged for pharmaceuticals, contraceptives, travel immunizations, and laboratory tests sent to our reference lab. A list of associated costs for urgent care, appointments, immunizations, lab, X-rays, physical therapy, specialty appointments, and nutrition counseling can be viewed on our Web site.

The Optometry Clinic offers modest fees for eyeglasses, designer frames, lenses, sunglasses, contacts and eye exams. Students enrolled in SHIP are eligible for additional product discounts.

Although undergraduate, graduate, medical, and international students may have unlimited visits with SHS, students requiring medical or surgical care from practitioners, hospitals, or clinics other than SHS should be prepared to assume the cost of such care. SHIP provides benefits for ambulance, emergency room, hospitalization, most outpatient services, surgery, and major medical expenses with a written SHS referral (applies when the student is within a hundred-mile radius of UCSD; outside the hundred-mile radius, a referral is not needed for services). SHIP also includes benefits for a dental plan, pharmaceuticals, and discounts at the SHS Optometry Clinic. The cost for SHIP is factored into grants, loans, and work-study programs offered to students who receive financial assistance.

Students covered by private health insurance that meets university waiver criteria can opt out of SHIP by completing the waiver application online through TritonLink prior to posted deadlines. Waivers are processed each academic year. For additional changes, requests, or information, contact the Student Health Insurance Office. All registration-paying students are automatically enrolled in SHIP unless approved for a health-fee waiver. The campus-based insurance plans do not replace the primary medical care and referral services provided by the Student Health Service.

Brochures describing the Student Health Insurance Plan, limitations, exclusions, and open enrollment periods are available at Student Health Service and through our Web site: http://studenthealth.ucsd.edu. Insurance coordinators are available to assist students by phone at (858) 534-2124.

STUDENT LEGAL SERVICES

Student Services Center (SSC), Room 527
Mail Code 0034
(858) 534-4374
E-mail: sls@ucsd.edu
http://sls.ucsd.edu

Student Legal Services (SLS) provides free, confidential counseling, education, and referrals on all types of legal matters to registered undergraduate, graduate, and professional UC San Diego students and student organizations, both individually and in group settings. SLS offers weekly preventative legal education clinics on landlord-tenant issues and other legal topics throughout the year, as well as specially tailored workshops by request for residential halls and student groups. SLS operates the “Discover the Law” program, consisting of a series of legal education workshops in which participants may earn a certificate of accomplishment. SLS also sponsors the “Tax Outreach Program,” in which student volunteers are trained to promote access to resources and assistance to taxpayers for filing state and federal tax returns. Additionally, SLS advises the on-campus pre-law chapter of Phi Alpha Delta International legal fraternity and offers student intern and mentoring opportunities.

STUDENT POLICIES AND JUDICIAL AFFAIRS

Student Services Center (SSC), Room 510
Mail Code 0048
(858) 534-6225
http://sps.ucsd.edu

Student Policies and Judicial Affairs (SP&JA) consists of the administration of student judicial affairs, which includes campuswide coordination of student conduct, including graduate students, monitoring of compliance requirements, with applicable federal and state laws, and university policies and campus regulations, such as Right to Privacy as it affects students. In addition, the director also serves as the liaison to campus counsel and UC general counsel for Student Affairs and other student-related legal matters and policy questions, and provides advice and recommendations for their disposition. Other
UNIVERSITY CENTERS

The facilities, services, and programs of University Centers (Price Center and Student Center) at UC San Diego complement the teaching and research functions of the university. University Centers brings the campus community together through its many services and programs, enhancing the college experience outside the classroom or lab.

Price Center

Mail Code 0076
Administration office: (858) 822-4987
http://universitycenters.ucsd.edu

The recent expansion and renovation of Price Center has transformed the heart of campus and brings students, faculty, staff, and the entire university community together. One of two student unions on campus, Price Center is home to a variety of restaurants and services geared to the needs of students. The vibrant Plaza Food Court brings you quick-service standards including Subway, Rubio’s Baja Grill, Tacone Wraps, Panda Express, and Jamba Juice. You can also enjoy fresh tossed pizza and a pitcher of your favorite microbrew at Round Table Pizza, or pull up a seat at Shogun of La Jolla’s sushi bar. The Atrium Food Court boasts a variety of dining options including Bombay Coast Indian Tandoor & Curry Express, Burger King, Santorini Greek Island Grill, and Tapioca Express. Whether you’re looking for a place to meet friends, study, or relax, the options are almost limitless, especially with the addition of late-night dining and activities, and a twenty-four-hour zone. Comfortable lounges, study rooms, indoor and outdoor spaces, and inviting coffee shops invite you to relax and linger. When you need a break from studying, check out an up-and-coming performer at The Loft, a performance crossroads and social lounge, catch the latest blockbuster movie at the Dolby Digital sound-equipped movie theater, or play a few rounds of pool or videogames in the Game room. Fifteen state-of-the-art conference and meeting rooms are available for use by the campus community. Professional catering and high-tech audio and visual services can also be arranged. Two ballrooms and a dance studio allow for major exhibits, conferences, meetings, concerts, and dances throughout the year. Services and retail venues located in Price Center include ATMs, UC San Diego Bookstore, UCSD Postal Center, a Ticketmaster outlet, and a grocery market. Price Center is home to many student organizations and one Stop, which makes it easy for student organizations to plan and implement events. With their offices in Price Center, Associated Students, Center for Student Involvement, Cross-Cultural Center, and UCSD Alumni Association bring a sense of community to the Price Center and provide the campus with a place to belong. In addition, Express to Success, Commuter Student Services, and University Events Office are all conveniently located at Price Center.

Student Center

Student Center
Mail Code 0323
Administration office: (858) 534-8929
http://universitycenters.ucsd.edu

Nestled in a eucalyptus grove, the wood exterior of Student Center stands in contrast to the modern Jerusalem stone façade of Price Center. The casual atmosphere and unique blend of services make Student Center a special place. The main building is home to UCSD’s student cooperatives: The General Store, Groundwork Books, and the Food Co-op. UCSD’s The Guardian newspaper, KSDT radio station, and SRTV are located here along with several student organizations and alternative campus media. Student Center is a popular study spot with an inviting lounge and fireplace, comfortable outdoor study areas, TreeHouse Computer Lounge, and academic services such as A.S. Soft Reserves and A.S. Lecture Notes. The Women’s Center and LGBT Resource Center provide events, services, and special programs. There are also conference/meeting rooms, three ATMs, and the UCSD BikeShop, which sells, repairs, and maintains bikes and bike accessories. Next to the main building is The Stage at the Pub where dances, concerts, and many other events occur. The Stage is connected to Porter’s Pub, which serves lunch, dinner, and microbrew beer. Students, faculty, staff, alumni, and community members learn the art of neon, pottery, glass blowing, and other crafts in classes offered at the Crafts Center. Nearby, specialty coffees, light cuisine, and an occasional musical performance are served up in the patio setting of the Grove Cafe, one of the most serene places on campus. Just south of the Student Center on the Revelle campus is the Ché Café. The Ché is a student-run cooperative serving a vegan menu at very affordable prices and is home to a variety of all-ages concerts, lectures, and performances.

Student Information Center (EDNA)

Price Center
Mail Code 0076
Administration Office: (858) 534-3362 (EDNA)
http://universitycenters.ucsd.edu

Located in the Price Center East atrium, adjacent to the north entrance, EDNA Information Services assists the campus community by providing information and a variety of other services benefiting the students, faculty, and the general public.

Center for Student Involvement

Price Center East, Level 3
Mail Code 0078
(858) 534-0501
http://getinvolved.ucsd.edu
getinvolved@ucsd.edu

The Center for Student Involvement strongly supports the notion that the university must provide learning experiences for students both within and outside the classroom. Volunteering in the community and participating in leadership workshops, seminars, conferences, and in any of more than 450 student organizations are integral parts of the university experience. With so many organizations and activities to choose from, there is bound to be something that sparks individual interest. If not, students can start their own organization! Registration for student organizations begins in the fall and continues throughout the academic year, and the advisors can assist with selecting an organization or with starting one.

In addition, leadership seminars are organized to help strengthen the leadership potential of students. Listed below are some of the training programs scheduled each year:

- Improving interpersonal skills
- Public relations
- Interviewing techniques
- Fund raising
- Team building
- Running effective meetings
- Time management
- Careers in student affairs
- Budget management
- Motivation
- Stress management
- Ethics
- Publicity/advertising
- Recruiting volunteers
- Diversity

We invite students to stop by the Center for Student Involvement on Level 3 of Price Center East to learn more about student organizations, Greek life, community service, and leadership opportunities!

Student Governments

Associated Students
Fourth Floor, Price Center
Mail Code 0077
AS: (858) 822-3553
Hours: 8:00 a.m.–4:30 p.m. Monday–Friday
http://as.ucsd.edu

Graduate Student Association
Student Center A
First Floor, Room 132
Mail Code 0353
GSA: (858) 534-6504
Hours: 9:00 a.m.–5:00 p.m., Monday–Friday
http://gsa.ucsd.edu

The Associated Students (AS) and the Graduate Student Association (GSA) provide students with practical leadership experience in the areas of programming, financial planning, lobbying, and in the development of programs and services that are designed to meet the students’ needs. The Associated Students (AS) operates AS Lecture Notes, AS Soft Reserves, AS Challenge Course, AS Volunteer Connection, AS Undergraduate Scholastic Grants, AS Safe Ride, AS Academic Success Program, AS SRTV, KSDT Radio, Grove Caffe, and the Holiday Airport Shuttle. The AS has an official liaison with the AS Student Initiated Outreach and Recruitment Commission (SIORC), AS Alliance, AS Women’s Commission, AS Triton Tide, All-Campus Commuter
Board, and the AS All-Campus Transfer Student Association. The AS also sponsors a wide variety of programming events including speakers, concerts, and festivals. The GSA takes a proactive stance on graduate concerns in the areas of housing, TA/RA work-related issues, mandatory health insurance, student fees, and legislative issues. The Student Government staff works with the AS and the GSA in providing logistical, accounting, and programmatic advice. The AS and GSA both have opportunities for student involvement. They appoint students to various campuswide committees, some of which include topics in transportation, admissions, TA development, and student judicial/hearing boards. For a complete listing, see the respective Web sites. Additionally, both AS and GSA provide funding opportunities for student groups.

The student leaders and staff of the AS, the GSA, and the Student Government Services office encourage you to get involved and take part in the many leadership opportunities available at UCSD.

UNIVERSITY EVENTS OFFICE
Mail Code 0077
(858) 534-4090
http://ueo.ucsd.edu

The University Events Office (UEO) is a multifaceted professional arts and events organization of UC San Diego with an outstanding reputation for bringing national and internationally recognized artists to the campus and local community. Our performances and events offer exceptional opportunities for discovery and participation in a variety of artistic disciplines that reflect our culture and challenge our understanding of the world. The University Events Office programs and services include:

- ArtPower! at UC San Diego featuring music, dance, film, and spoken word
- The Loft performance lounge
- University-wide cultural celebrations
- UCSD Box Office
- Concert and event planning
- A.S. programming advising/event management
- Campus performance agreement management
- Campus music licensing

As a central campus resource for events, UEO serves as the advisor to the Associated Students (AS) Programming Office. UEO also advises campus event planners on budgeting, marketing, negotiation, and contracting, and provides production planning and technical assistance for major campus events.

The University Events Office is a department of Student Affairs.

ArtPower! at UC San Diego
Mail Code 0077
(858) 534-TIXS
http://www.artpower.ucsd.edu

ArtPower! at UC San Diego builds creative experiences in music, dance, film, exhibition, and food for our collective pleasure and inspiration. We engage diverse audiences through vibrant, challenging, multidisciplinary performances by emerging and renowned international artists. Through extensive partnerships, ArtPower! provides exciting opportunities for research, participation, and creation of new work, igniting powerful dialogue between artists, students, scholars, and the community. ArtPower!’s programs include

Performing Arts

The university’s critically acclaimed performing arts season features artists of national and international renown in music, dance, and spoken word. Performances by Batsheva Dance Company, Pacifica Quartet, Emerson String Quartet, and Laurie Anderson have provided art power to UCSD.

Film

The ArtPower! film is an eclectic mix of film experiences that challenges and inspires audiences to explore film-going in a whole new way by focusing on interaction with innovative filmmakers, preshow music, film and food pairings, outdoor screenings, and much more.

ArtPower! is a program of the University Events Office.

The Loft at UC San Diego
Mail Code 0077
(858) 534-TIXS
http://theloft.ucsd.edu

The Loft at UC San Diego is a performance lounge and social crossroads where emerging art and pop culture collide. The Loft is an experiment and platform for innovative, left-brained UCSD students and artists. We fuse tastes, visuals, sound, and performance in an ever-changing experience. The Loft favors self-will, contrast, and alternative culture, intends to create good food, art, and nightlife for our collective pleasure and inspiration.

The Loft is a program of the University Events Office.

UCSD Box Office
Mail Code 0078
(858) 534-TIXS
http://boxoffice.ucsd.edu

The UCSD Box Office provides the UCSD and San Diego communities with full-service ticketing to arts and entertainment events on and off campus. Tickets to ArtPower! performances, rock/pop concerts, amusement park tickets, and a host of other activities are available for purchase at the Box Office in person, by phone, or online.

The UCSD Box Office is a program of the University Events Office.

VETERANS AFFAIRS

Located in the Financial Aid Office
Student Services Center, Third Floor North
Mail Code 0013
E-mail: vao@ucsd.edu
(858) 534-4480
Fax: (858) 534-5459

Eligibility

The following persons may be eligible for veteran’s educational benefits:

Chapter 30
Persons who entered active duty for the first time after June 30, 1985, and served continuously for three years.

Chapter 31
Persons who have a service-connected disability.

Chapter 33
Persons who served at least ninety days on active duty after September 10, 2001, and are still on active duty or were honorably discharged.

Chapter 35
Sons, daughters, spouses, and surviving spouses of veterans who died or are permanently and totally disabled as the result of a service-connected disability, or who are persons missing in action or captured in line of duty by a hostile force.

Chapter 1606
Persons who have a six-year obligation to serve in the Selected Reserve signed after June 30, 1985.

Chapter 1607 or Reserve Educational Assistance Program (REAP)
An education benefit available to certain reservists who were activated for at least ninety days on or after September 11, 2001.

College Fee Waiver
The California College Fee Waiver Program: A student who is the child of a deceased veteran or veteran with a service-connected disability may receive a waiver of the state-mandated registration and educational fees. Eligibility is determined by each individual county Veterans Service Office.

VA Contact Information

Chapter Benefits: Forms and application information are available on our Web site. For more eligibility information, to obtain an application online, or to locate your county’s Veterans Service Office, go to http://www.gibill.va.gov/.

College Fee Waiver: For eligibility information, obtain an application online, or to locate your county’s Veterans Service Office, go to http://www.cacvso.org/.
ART GALLERIES

University Art Gallery
Mandeville Center, Room 101
Mail Code 0327
(858) 534-2107
http://uag.ucsd.edu

The University Art Gallery presents exhibitions that integrate contemporary art into the life of the university; exhibits and interprets art as an educational resource for the academic community; and serves as a laboratory for linking visual art with the issues of postmodern society, as an innovator in originating and shaping the contemporary arts agenda, and as a platform for the advancement and outreach of the university in visual arts creativity.

Gallery hours are from 11:00 a.m. to 5:00 p.m., Tuesday through Saturday. The gallery is closed Mondays and university holidays. There is no admission charge.

Mandeville Annex Gallery
Mandeville Center, Room B-118
Mail Code 0327

The Mandeville Annex Gallery is for Visual Arts undergraduate art exhibitions. A new exhibition is mounted each week of the quarter except during summer. Included in the exhibition schedule are individual, group, and class shows. Gallery hours are from 12:00 noon to 5:00 p.m., Monday through Friday. There is no admission charge.

Visual Arts Graduate Gallery
Visual Arts Facility, Room 309
Mail Code 0084
http://visarts.ucsd.edu

The six-building complex houses the Visual Arts Graduate Gallery. First-year review shows and M.F.A. exhibitions are mounted each week of the quarter except during summer. Gallery hours are from 12:00 noon to 5:00 p.m., Monday through Friday. There is no admission charge.

CHILD DEVELOPMENT CENTER

Mail Code 0962
(858) 246-0900
http://child.ucsd.edu

The UCSD Early Childhood Education Center (ECEC) serves the children of students, staff, faculty, and the community at large. Age requirements are three months old through kindergarten. State subsidy is available for income-eligible staff and full-time students on a limited basis. Only full-time enrollment is offered, 7:30 a.m. to 5:00 p.m., Monday through Friday. Breakfast, lunch, and afternoon snack are included in the cost. For further information or to visit, call ECEC at (858) 246-0900 between 7:30 a.m. and 5:00 p.m.

The UCSD Mesa Child Development Center (MCDC) offers part-time child care to students, staff, and faculty. The center offers two half-day sessions on weekdays: morning, 8:00 a.m. to noon, and afternoon, 1:00 p.m. to 5:00 p.m. Age requirements are two-and-a-half to five years old. For further information or to visit, call MCDC at (858) 246-0930 between 8:00 a.m. and 5:00 p.m.

As an alternative, the Infant Toddler Referral Program aids campus families in locating licensed home-care providers for children from six weeks through preschool ages. For assistance, call (858) 246-0900.

CRAFTS CENTER

Mail Code 0338
(858) 534-2021
http://www-crafts.ucsd.edu

Established in 1995, the UCSD Cross-cultural Center (CCC) functions as a campus community center committed to creating space for dialogue while also maintaining an environment conducive to the recruitment and retention of students, staff, and faculty from underrepresented backgrounds.

The CCC offers programs and services specifically designed to reflect UCSD’s commitment to excellence, scholarship, and community through cross-cultural interactions. The center’s focus areas include: faculty, staff, and student exchanges, educational materials and resources, student outreach and retention activities, speakers, film series, community outreach, support and discussion groups, and leadership development.

IMPRINTS

http://imprints.ucsd.edu

UC San Diego Print & Document Services

Three locations on campus provide a variety of print and document services for students, faculty, and staff.

Imprints at Student Services Center provides self-serve copy and print, bindery service, fax service, self-service photo printing, passport photo service, and supplies. Computer workstations are available for use in fifteen-minute increments. Orders for any Imprints service, including large-format and document scanning, may be placed at this center.
TRANSPORTATION SERVICES

Permits are not required on campus on Saturdays. UCSD “S” permits are upgraded and become valid by accessing TritonLink or at the Parking Office, (858) 534-7050, unless otherwise posted. Parking is free at meters property on weekdays, 7:00 a.m. to 11:00 p.m., awareness that a parking permit is required on UCSD Commute Solutions at (858) 534-RIDE. Complimentary parking. For program details, call (858) 534-7050.

Transportation Services offers a free Motorist Assistance Program, which provides battery jumps, lockout assistance, flat tire inflation, or gas for drivers stranded on campus. For assistance call (858) 534-8108.

If you have questions about Transportation Services, purchasing a permit, or parking at UCSD, please call (858) 534-4223, visit http://parking.ucsd.edu, or stop by the Parking Office, located in the Gilman Parking Structure (entrance on Russell Lane).

STUDENT MAIL SERVICES

Located in Price Center West Complex 9500 Gilman Dr. #0008 La Jolla, CA 92093-0008 Monday–Friday, 8:00 a.m.–6:00 p.m. Saturday and Sunday, noon–5:00 p.m. http://bookstore.ucsd.edu For holidays, summer hours, and extended hours at the beginning of each quarter, please see http://bookstore.ucsd.edu/hours.htm

Phone Numbers (all numbers area code 858)

General Information 534-READ (7323)
Clothing and Gifts 534-8530
Computer Store & Repair 534-4291
Course Materials 534-4557
Custom Course Materials 534-7963
Electronics Department 534-3786
Gifts and Accessories 534-8530
Medical Instruments 534-7057
Online Orders/Refunds/Recharge 534-7326
Perks Gift & Coffee Shop 822-7760
Sunshine Market 534-2875
Supplies Department 534-3786
Textbooks 534-4557
Toll Free (800) 520-READ (7323)
Trade, Professional, Medical Book Information 534-3149
Fax Numbers
Book Departments 534-5286
Computer Store 534-1430
Customer Service 534-0003
General Number 534-0565
Supplies, Clothing, Gifts, Accessories 534-0410

Web site: http://bookstore.ucsd.edu

Online Lookup

Undergraduate, graduate, and Extension course materials lists, along with prices and availability, may be viewed online the same day they are entered into the Bookstore’s database once the feature is activated for each term. For graduate and undergraduate classes, within the Schedule of Classes on UCSD’s TritonLink, click on the red book icon for the desired section. For Extension course materials lists, use the lookup/purchase feature at http://bookstore.ucsd.edu/books/extension/index.htm.

Faculty

Each quarter, the UC San Diego Bookstore sends a memo to faculty requesting course materials information (adoptions) for the upcoming quarter. Faculty can submit adoptions directly to the Course Materials Department at the UC San Diego Bookstore, through the various academic departments, or via the Bookstore’s Web site at http://bookstore.ucsd.edu/books/textbooks/coursematerials.htm. Faculty should submit their adoptions before the quarterly deadline to ensure that the course materials can be stocked before classes begin. Information about and links to other campus instructional support services (library eReserves, course Web pages, AS Soft Reserves, Imprints, etc.), are at http://coursematerials.ucsd.edu/

Textbook Reservation Service (TRS)

At the beginning of every fall quarter, the UC San Diego Bookstore offers a convenient and free textbook reservation service (TRS). Beginning in mid-June, students can submit reservations via the Bookstore’s Web site at http://bookstore.ucsd.edu/trs.

Custom Course Materials

As part of the UC San Diego Bookstore’s mission to serve the UCSD community as an essential academic resource, the course materials department provides custom-printed course materials, including course readers, out-of-print and out-of-stock books, journal and newspaper articles, syllabi, anthologies, lab manuals, and original works. To ensure compliance with legal requirements involving reproduced printed materials, the Bookstore secures all necessary copyright permissions. Faculty should submit adoptions for custom-printed materials along with their other adoption requests.
Digital Course Content
Acting in concert with other instructional support departments on campus, the bookstore can assist faculty in locating digital materials and making them available to UCSD students.

Textbook Buy-Back
During the first week and finals week of each quarter, the UC San Diego Bookstore provides a buy-back service allowing students to sell their textbooks for cash. If a title is being used in the upcoming term, students may receive up to half the new price of the book.

Book Information
The book information department’s experienced staff of booksellers can help find just the right book from among the impressive selection of general, technical, scientific, and medical books stocked at the UC San Diego Bookstore. Booksellers can also research any title that is in print in the United States by accessing databases that contain information on hundreds of thousands of additional titles. They are happy to special order books that are not available in the store and to arrange for quick delivery. Ask about rush order service. In addition to offering in-store service, booksellers take orders and answer inquiries via phone, fax, and e-mail and can assist with searching for books and placing orders on http://bookstore.ucsd.edu, which shows availability of more than 140,000 titles contained in their database. To search for and order more titles, the bookstore offers two additional Web sites: BookSense (http://ucsd.booksense.com/NASApp/store/Index.jsp), for trade and technical books, and the UCSD Medical Web store for medical books (http://webmedbooks.com/ucsd).

General, Scientific, and Technical Books
The general, scientific, and technical department contains books from hundreds of different publishers. To support the academic mission of the university, a wide array of academic disciplines in the arts and humanities, social sciences, languages, mathematics, science, and engineering are represented. Strong general interest sections in categories such as fiction, travel, reference, and children’s books complete the selection. Find excellent values in the bargain books section and on discounted best sellers. All regularly priced general, scientific, and technical books are discounted 10 percent during Happy Hour from 4:00 p.m. to close every Wednesday. Check title availability online at http://bookstore.ucsd.edu. The home page provides the opportunity to order any title that is still in print, and to explore their partner stores BookSense, for trade and technical books, and the UCSD Medical Web store, for discounted medical books.

Medical Books and Instruments
The UC San Diego Bookstore is proud of its partnership with the medical community at the university and in the San Diego area. It has long been recognized as the primary resource for an up-to-date, comprehensive selection of medical books and instruments. In the store, find medical textbooks for the UC San Diego School of Medicine and School of Pharmacy and Pharmaceutical Sciences along with more than 5,500 reference titles in nearly one hundred medical categories. A large selection of medical instruments is available along with lab coats, clinical jackets, scrubs, and unique medical gift items. All regularly priced medical books and instruments are discounted 5 percent during Happy Hour from 4:00 p.m. to close every Wednesday. For a larger selection of medical titles, search the UCSD Medical Web store at http://webmedbooks.com/ucsd. This Web site features more than 90,000 titles and offers up to a 5 percent discount on medical and nursing books as well as medical supplies and instruments.

Faculty Authored Books
The UC San Diego Bookstore is pleased to display and sell recent publications authored by UCSD faculty. Inside the bookstore find books shelved in a special Faculty Author section and in the categorical section that applies. Look for a selection of recently published titles on display at the Faculty Club. Faculty members who would like the UCSD Bookstore to stock their new book should contact the Bookstore at (858) 534-3149, (800) 520-7323, or http://bookstore.ucsd.edu/friends/faculty/author-requestform.htm.

Clothing
Visit the clothing department and discover an exciting selection of UCSD insignia merchandise, as well as seasonal, trendy, and everyday clothing. While in the store or online, check out the alumni, parent, and graduation sections. In-store events for this department include the spring break sale, grad fair, and holiday sale, all of which bring a mini mall shopping experience to campus. Shop online at http://bookstore.ucsd.edu/clothing, or call to find out about the latest arrivals, custom insignia orders, and quantity discounts: (800) 520-7323 (READ).

Gifts and Accessories
This area inside the bookstore has an extensive selection of all-occasion gifts, one-of-a-kind jewelry pieces, home decór items, Havaianas flip flops, Hurley purses and accessories, Dr. Seuss collectibles, toys, stuffed animals, earth-friendly stationery, cards, and many unique seasonal items. Please let us know about your gift needs and we will help you find it: (858) 534-4850.

Supplies: School, Art, Office, and Residence Halls
The bookstore caters to UCSD’s office, school, art, and residence hall supply needs as well as professor-required art, engineering, and lab supplies. Students living in the residence halls have a selection of linens, towels, shower caddies, picture hangers, trash cans, white or cork boards, extension cords, T.V. cables, batteries, and much more to get their rooms set up in style. Call (858) 534-3786 to request a copy of the Super Catalog, which features more than 30,000 office, art, school, and residence hall supplies. Special orders are easy to place and usually arrive within one to two days. For some of the most common supplies, shop online at http://bookstore.ucsd.edu/supplies. Custom orders and quantity discounts are available.

Electronics
Calculators, CD players, and voice recorders from brands such as Hewlett Packard, Texas Instruments, Sharp, Sony, and Panasonic are always in stock at the bookstore. This department is full of fun and useful gadgets and accessories.

Computers
The extremely knowledgeable staff of the UC San Diego Bookstore Computer Store is available to assist you with information regarding the latest in Apple, Dell, Sony, Lenovo, Samsung, and Hewlett-Packard computers and accessories, as well as monitors, printers, projectors, digital cameras, peripherals, and supplies. Educational pricing is offered for full-time UCSD students, Extension students (certificate courses), faculty, and staff. Macintosh and Windows software licensing is provided. Special orders are encouraged for products that are not in stock. Visit http://bookstore.ucsd.edu/computers or call (858) 534-4291.

Computer Repair
The UC San Diego Bookstore Computer Store works in conjunction with UCSD Academic Computing Services to provide authorized in-warranty repair for Apple and Lenovo computers. The bookstore is a convenient drop-off point offering extended and weekend hours. The UC San Diego Bookstore Computer Store also repairs most out-of-warranty computers but does not repair out-of-warranty monitors. The average repair time is ten working days.

Special Orders
Books, gifts, clothing, office and art supplies, medical instruments, and computer hardware and software can be special ordered at any time. Call to request a personal shopper: (858) 534-7323 (READ).

Sunshine Market
Monday–Thursday, 7:00 a.m.–9:00 p.m. Friday, 7:00 a.m.–6:00 p.m. Saturday and Sunday, 11:00 a.m.–5:00 p.m. For holidays, summer hours, and extended hours at the beginning of each quarter, please see http://bookstore.ucsd.edu/hours.htm.

Visit Sunshine Market for all your favorite groceries including frozen, microwaveable, and packaged meals; hot soups; hot dogs; snacks; soda; fresh sandwiches and salads; juice; coffee; tea; ice cream; sandwiches; donuts; candy; international foods and snacks; health and personal products; cleaning supplies; and household essentials. Sunshine Market stocks fresh fruit and vegetables as well as a large selection of organic and fair-trade products. Join the Coffee Club: Buy ten cups, get the eleventh cup free! Purchase scantrons, blue books, newspapers, and munchies here when everything else is closed on campus. Established in April 1979 as an auxiliary operation of the UC San Diego Bookstore, Sunshine Market is located in Price Center East, atrium, level 1.
Perks Gift & Coffee Shop
Monday–Thursday, 7:00 a.m.–7:00 p.m.
Friday, 7:00 a.m.–6:00 p.m.
Saturday and Sunday, noon–5:00 p.m.
For holidays, summer hours, and extended hours at the beginning of each quarter, please see http://bookstore.ucsd.edu/hours.htm.

During your visits to Perks you’ll find a full espresso and drip menu serving Barefoot Roasters Artesian coffee which is 100 percent organic and fairly traded. Perks serves up all your other favorite beverages along with a delicious assortment of pastries, cookies, muffins, daily soup specials, organic sandwiches, salads, and wraps. Join the Coffee Club: Buy ten cups, get the eleventh cup free! Opened in July 2007, Perks is located inside the UC San Diego Bookstore on the ground floor off of Lyman Lane and across from the Chancellor’s Complex. Perks offers comfortable seating outdoors under the trees and inside near the fireplace lounge. Books and a news-stand complete this cozy, home-away-from-home space where you may “Relax.Connect.Caffeinate. Repeat” with your friends, family, and colleagues.

Return/Refund Policy
The UC San Diego Bookstore strives for complete customer satisfaction. Should any product you select from the UC San Diego Bookstore fail to meet your expectations, they will respond to your concern and assist you in an exchange, refund, or credit whenever possible within the guidelines that apply to the specific merchandise categories.

- All categories of refundable merchandise require an original receipt to obtain a refund.
- Undergraduate, graduate, Extension, School of Medicine, and Skaggs School of Pharmacy and Pharmaceutical Sciences course materials must meet the conditions and timeframes printed on the reverse side of the receipt.
- General interest, technical, and medical books may be returned for refund, exchange, or credit within fourteen days if they are in resalable condition and are among the titles currently carried in the UC San Diego Bookstore.
- NONRETURNABLE ITEMS: Medical instruments, medical and other testing books (MDTEST and REFEXM), magazines, clearance books and merchandise, bargain books, greeting cards, food and drink, health and beauty products, plants, rain gear, parking permits, phone cards, and undergarments; course materials with broken software seals and/or exposed access codes, opened materials designated with an X before the title, School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences syllabi, and all miniblock materials.
- Computer hardware and software refund policies are available in the Computer Store.
- Clothing, gifts, and school and office supplies may be returned for refund within fourteen days of purchase. Items can be exchanged or returned for store credit if the items are in resalable condition with original packaging and/or tags.
- For Supply Department electronics, the original packaging and cash register receipt are required for refund or exchange. Calculators and voice recorders may be returned for full refund or store credit within fourteen days of purchase if they are unopened and in resalable condition. Refunds will not be given for opened calculators or voice recorders. Exceptions: Defective calculators or voice recorders may be exchanged for same or upgraded model within fourteen days of purchase. Defective merchandise is subject to inspection by bookstore staff.

UCSD POSTAL CENTER
Price Center East, Room 1502
Mail Code 0047
(858) 822-0669

The Price Center Postal Center is a retail operation operated by the university. Stamps and mailing supplies may be purchased and mailed at this location. Shipping services and private mail boxes for rent are also available. The hours of operation during the academic year are Monday to Friday, 8:30 a.m. to 6:00 p.m., and Saturdays, 9:00 a.m. to 2:00 p.m.

UNIVERSITY POLICE DEPARTMENT
Campus Services Complex, Bldg. B
Mail Code 0017
EMERGENCY, DIAL 9-1-1 or (858) 534-4357
Business, (858) 534-4357
http://police.ucsd.edu

The UCSD Police Department protects life and property through the enforcement of local, state, and federal laws. The police department strives for a safe campus environment, where the educational and research pursuits of the university can be realized.

The Police Department provides continuous twenty-four-hour-a-day police patrol to protect the campus community, along with the dispatching of emergency fire and ambulance services.

In addition, student residential areas are provided with additional security with on-site residential security officers (RSOs) during the evening and early morning hours.

Clery Campus Crime Report
For information concerning campus crime statistics, crime reporting, policies and practices pertaining to campus security, and/or crime prevention tips, please visit the UCSD Police Department’s Web site—Crime/Victim Information located at http://www.police.ucsd.edu.

Crime Prevention Program
(858) 534-3644

The Police Department’s Crime Prevention Program offers a variety of information to the campus community on crime prevention methods. Pamphlets and informative seminars are available.

Community Service Officer Program
(858) 534-9255

CSOs are students employed by the UCSD Police Department. They provide a variety of services related to crime prevention and campus safety. One of the services is the safety ESCORT program, which is available every evening from 5:00 p.m. to 1:00 a.m. They also provide security for campus events and facilities. For more information contact the program coordinator at (858) 822-1130.

Lost and Found
(858) 534-4361

The Police Department serves as a central repository for lost and found articles. Lost and found items should be taken to the police station. The station is open twenty-four hours daily.
Research at UC San Diego

Organized Research Units (ORUs) are academic units the University of California has established to provide a supportive infrastructure for interdisciplinary research complementary to the academic goals of departments of instruction and research. The functions of ORUs are to facilitate research and research collaborations; disseminate research results through research conferences, meetings, and other activities; strengthen graduate and undergraduate education by providing students with training opportunities and access to facilities; seek extramural research funds; and carry out university and public service programs related to ORUs' research expertise. The senior staff of these units are faculty members in related academic departments. Institutes and centers currently in operation at UC San Diego are described below.

In addition, the university is formally and informally affiliated with various private research organizations such as the Institute of the Americas, the Salk Institute for Biological Studies, Howard Hughes Medical Institute, Ludwig Institute for Cancer Research, and the Burnham Institute.

Organized Research Units

The Institute of Geophysics and Planetary Physics (IGPP) was established in 1960 and named the Cecil H. and Ida M. Green IGPP in 1994. It is a multicampus research unit of the University of California, headquartered at UC Riverside, with branches at UCSD, UCI, UCLA, UCSC, as well as Los Alamos and Lawrence Livermore National Laboratories. The present facility includes the Roger and Ellen Revelle Laboratory and the Judith Roger and Ellen Revelle Laboratory and the Judith

The University of California Institute on Global Conflict and Cooperation (IGCC) is a multicampus research unit serving all ten UC campuses and the Lawrence Livermore and Los Alamos National Laboratories. IGCC is based at the School of International Relations and Pacific Studies at UC San Diego, whose faculty provides IGCC's leadership.

IGCC's mission to educate the next generation of international problem-solvers and peacemakers is carried out through teaching activities, research, and public service opportunities. Scholars and researchers from inside and outside the UC system, government officials, and students from the United States and abroad have participated in IGCC projects.

IGCC's initial research focused on averting nuclear proliferation through arms control and confidence-building measures between the superpowers. Since then, its research program has diversified to encompass several broad areas of inquiry: regional relations, international environmental policy, ethnic conflict, terrorism, and international trade and policy issues. The receipt of a prestigious NSF award in 2002 for a program to train the next generation of nuclear policy experts has led to a rekindling of interest in research on traditional security issues. In 2009, IGCC won two of the seven awards under the Minerva Research Initiative, a DoD-sponsored, university-based social science research program for projects focusing on China's drive to become a world-class defense and dual-use technological and industrial power and on developing an integrated theory of counterterrorism by collecting and testing new data on political violence and religious radicals.

IGGC supports UC research and teaching through its dissertation fellowships and seed money for cutting-edge projects. IGCC's development office provides an additional resource for UC faculty seeking foundation funding. IGCC also serves as a liaison between the academic and policy communities through its Washington, D.C., office, located in the UC Washington Center. The Washington office hosts the IGCC Foreign Policy Fellows and helps to arrange meetings and events for visiting UC researchers. The Washington office also sponsors the Washington Forum, a series of policy seminars and briefings to showcase UC faculty research results and to provide opportunities for interaction between professors and policymakers.

IGCC receives support from the regents of the University of California and the UC Office of the President (Office of Research). Extramural funding has been provided by the National Science Foundation, the U.S. Department of Energy, the U.S. Department of State, the U.S. Department of Defense, the U.S. Institute of Peace, the U.S. Department of Homeland Security, the Defense Threat Reduction Agency, the U.S. Domestic Nuclear Detection Office, the U.S. Centers for Disease Control and Prevention, the Japan-U.S. Friendship Commission, Japan's National Institute for Research Advancement (NIRA), the Canadian Centre for Foreign Policy Development, and the California Office of Homeland Security.

Important corporate and foundation support has come from the Carnegie Corporation of New York, the Ford Foundation, the MacArthur Foundation, the Ploughshares Fund, the Ocean Fund, the McCormick Tribune Foundation, the East Asia Foundation, the Earhart Foundation, the Smith Richardson Foundation, the Embassy of Japan, and the Lockheed Martin Corporation.

IGGC publishes a monthly e-mail newsletter highlighting funding opportunities, a quarterly general newsletter, and occasional papers. For more information, visit the IGCC Web site at http://igcc.ucsd.edu. IGCC publications can be downloaded from the California Digital Library E-Scholarship Repository at http://escholarship.org/uc/igcc.

The White Mountain Research Station (WMRS) was established as a UC multicampus research unit in 1950 to support high-altitude research. The station includes four laboratory facilities located over a 3,000m (10,000 vertical ft.) altitude transect, ranging from the floor of the Owens Valley to White Mountain at over 14,000 feet above sea level. Located on the western edge of the Great Basin, WMRS also provides access to three major biogeographic regions (Sierra Nevada and White-Inyo montane, Mojave desert, and Great Basin desert), and geologically rich and diverse field sites. WMRS has evolved into a major multidisciplinary research and teaching institution in eastern California, and hosts programs in archaeology and anthropology, atmospheric and space sciences, biological and medical sciences, ecology, conservation and natural resource management, geological, hydrological, and earth sciences.

WMRS facilities include: (1) Owens Valley Laboratories with classrooms, offices, dormitories,
and food services for up to seventy people outside the Sierra resort town of Bishop, (2) a newly reno-
vated lodge, cabins, classrooms, and laboratories for fifty people in the Bristlecone pine forest at Crooked Creek (3,094m altitude), (3) the Nello Pace Laboratory and Mount Barcroft facilities (3,801m altitude), which can house thirty-five people, and (4) the 450-square-
foot Summit Laboratory on White Mountain peak (4,342m altitude), making it the highest research lab
in North America.

All of the laboratories are linked by a high-speed wireless Internet connection providing instant access between campus-based laboratories and remote-sensing projects in the field. The Owens Valley Laboratory includes a modern molecular biology and genetics laboratory used to study adaptations to the environment and management of the majesty— but endangered—Bighorn sheep. A geographic information system (GIS) laboratory that houses the USGS-funded "Eastern Sierra Geospatial Data Clearinghouse" is used by scientists and government agencies for resource research and policy decisions. WMRS also hosts a Center for Astrophysics and Cosmology at Barcroft and "The Deepest Valley Interagency Plant Propagation Center.”

WMRS hosts more than 3,000 users from over 100 institutions per year for research, teaching, and conferences. Research occurs year-round with access to the high-altitude labs at Barcroft via snowmobile. Summer is the busiest time at WMRS, with undergraduate internships, graduate students supported by WMRS Fellowships in residence, plus students and faculty from other universities around the world. Educational uses include several geology field courses and a NSF-funded Research Experience for Undergraduates program. WMRS sponsors professional and postgraduate training courses, annual professional society meetings, a community lecture series, an annual Open House at Barcroft in August, and offers published proceedings from symposia on the environmental science in the region. For more information, please see http://www.wmrs.edu or call the scheduling coordinator at (760) 873-4344 for reservations.

GENERAL CAMPUS RESEARCH UNITS

The BioCircuits Institute (BCI) studies the dynamics and control of the biological networks that underlie the homeostatic regulation and signal responsiveness of cells and organisms. These circuits span the scales of biology, from intracel-
ular submodules of interacting molecules and neurobiological intercellular networks to population dynamics and organ function. The collective dynamics of individual elements embedded in such circuits can provide the foundation for emergent behavioral functions. The potential utilization of these functions in practical devices calls for engineering solutions borrowed from nature, which in turn requires a de-
tailed understanding of the underlying fundamental principles and mechanisms.

The BioCircuits Institute comprises four programs: neuroscience circuits, cell signaling circuits, gene regulatory circuits, and biomimetic circuits. The two cores of BCI are microfluidics/microscopy and computational modeling. Faculty from the biological sciences, chemistry and biochemistry, mathematics, mechanical and aerospace engineering, physics, mathematics, electrical and computer engineering, bioengineering, and structural engineering divisions are actively involved in the institute’s activities and research. A distinctive and important aspect of BCI is the cross-fertilization of ideas arising from scientists and engineers who are addressing similar research problems in differing contexts.

The mission of BCI is the deduction and experimental validation of computational modeling approaches that can be used to understand, predict, and control complex biological behavior. Such an approach will be invaluable in the generation of logically consistent hypotheses and will provide a framework for the systematic comparison of data across multiple experiments. Experimentally validated models will lead to an understanding of how biology solves complex problems, and in this context, such approaches can be used to engineer biologically inspired control systems.

The California Institute for Telecommunications and Information Technology (Calit2) (http://www.calit2.net), an organized research unit, conducts research on the future of telecommunications and information technology and how these technologies will transform a range of applications important to the economy and citi-
zens’ quality of life. These application areas include: environment and civil infrastructure, intelligent transportation, digitally enabled genomic medicine, new media arts, and disaster response.

Calit2, a partnership between UCSD and UCI, is one of four institutes established in December 2000 through the California Institutes for Science and Innovation (Cal ISI) initiative. It is funded by a state capital grant, federal research grants, industry, and foundations.

Calit2 unites faculty, students, and industrial and community partners into multidisciplinary teams with expertise drawn from two dozen academic departments at both campuses. These teams integrate individuals’ deep expertise to enable larger-scale studies than those typically led by single investigators.

Emerging technologies are prototyped in the context of Calit2 “living laboratories,” pushing traditional research one step beyond scholarly publica-
tion to building and testing integrated systems under real-world conditions on and beyond the two participating campuses. Research professionals at leading California telecommunications, computer, software, and applications companies are active partners in the more than forty projects supported by Calit2.

The institute’s goal is to develop technology ap-
proaches that will benefit society and spur the state’s economic development, building on the explosive growth in bandwidth and connectivity provided by the wired and wireless Internet.

Two new facilities constructed at UCSD and UCI feature unique capabilities, shared resources, extreme bandwidth, and reconﬁgurable space. The 215,000-square-foot facility at UCSD, completed in the summer of 2005, is home to a wide range of projects at the intersection of science, engineering, and the arts. The building is a physical manifestation of this multidisciplinary research agenda: It includes clean rooms for nanofabrication, digital theatres in a range of sizes and capabilities to support new media arts and scientific visualization, test and measurement labs for circuit design, smart spaces for experiments in augmented reality, trans-
mision and networking testbeds for wireless and optical communications experiments, and labs for designing systems on a chip. The building juxtaposes people and programs in uncommon proximity to maximize the potential benefit arising from experts in different disciplines working together.

A 120,000-square-foot building dedicated at UCI in November 2004 is equipped throughout with high-speed wireless Internet access, a Voice-over-IP phone system, and customized ad-hoc in-house networks. In addition, in a collaborative effort with the U.S. Geological Survey, the facility employs more than forty seismic sensors to measure ground and building motion with the same system. The facility also boasts a 3,700-square-foot clean room, a large-scale visualization laboratory, and labs for network research, optical devices, nanotechnology measurement, and media arts.

Calit2 has also established a global dedicated opt-
tical network with partners in the U.S., Netherlands, Japan, and Korea, which allows real-time collabora-
tion between faculty and students in multiple research laboratories.

Through Calit2, students complement their course work by working on large-scale, multidis-
ciplinary, team-oriented projects that conduct research, establish prototype technologies, and test those technologies in the field. The experience they gain makes them especially valuable to potential employers, including Calit2 industrial and community partners.

The Center for Astrophysics and Space Sciences (CASS) is an interdisciplinary research unit established in 1979. The center brings together academic and research staff from the Departments of Physics, Chemistry and Biochemistry, and Electrical and Computer Engineering. Research is conducted in the scientific areas of theoretical cos-
mology, computational astrophysics, observational cosmology, interstellar medium, and star formation; solar observational and theoretical studies; X-ray and gamma-ray astrophysics; experimental and theoretical magnetospheric and space plasma phys-
ics; and cosmochemistry, including the chemistry of interstellar matter.

CASS provides a jointly shared facility that has office, laboratory, and computer space to enhance the interchange of expertise. Researchers in CASS have access to many University of California observing facilities, including the two Keck 10m telescopes, Lick Observatories, and Keck Telescopes, and they have contributed experiments to many major NASA space missions, including the Hubble Space Telescope and the Rossi X-Ray Timing Explorer.
associated with CASS are seventeen faculty, about twenty-five Ph.D.-level research staff, twelve graduate students, and thirty technical and administrative support personnel. The center's facilities, faculty, and research staff are available to graduate students in the Departments of Physics, Electrical and Computer Engineering, and Chemistry and Biochemistry who have chosen to write their dissertation on subjects of research encompassed by CASS. Graduate and undergraduate courses in astrophysics, astronomy, and space sciences are developed and taught by the academic staff of CASS. The total yearly budget is about $5 million, mostly from federal funding sources.

The founding members of the Center for Chronobiology (CCB) are twenty scientists from UCSD and the Salk Institute, representing eight different departments within four different UCSD schools. These departments represent the spectrum of disciplines that contribute to chronobiology research: bioengineering, biological sciences, pharmacology, philosophy, psychiatry, psychology, physics, and reproductive medicine. Research organisms span bacteria to humans, and approaches extend from computer modeling and engineering, biochemistry, genomics, and proteomics to animal behavior and clinical analyses of sleep.

The Mission of CCB is to

• Foster innovative research that reveals the mechanisms, general principles, and applications of biological rhythms in diverse organisms.

• Provide support for investigators to incorporate the study of daily rhythmicity into their biological studies, particularly as it relates to behavior, physiology, and medicine.

• Form alliances among scientists working in basic and clinical aspects of chronobiology.

• Train undergraduate, graduate, and postdoctoral students in cross-disciplinary approaches through chronobiology research.

• Produce and disseminate materials for education and scientific advocacy on chronobiology, a topic of intrinsic interest and broad societal relevance.

The Center for Comparative Immigration Studies (CCIS) is an interdisciplinary, multinationa...
Institute for Telecommunications and Information Technology (Calit2):
The center supports five endowed professorial chairs. Research programs address fundamental problems in nanoscale storage technology, including recording physics and micromagnetics, nano-patterned magnetic materials and structures, mechanical interfaces and tribology, servo control systems, signal-processing techniques, and error-control coding. The historical focus on magnetic recording on disks and tapes has been augmented by projects that explore other nonvolatile storage mechanisms, including those based upon novel nanomaterials, optical holography, spintronic materials, and solid-state "flash" devices. System-level research topics include object-based storage paradigms, "intelligent" storage devices, and data security.

Graduate and undergraduate student researchers, postgraduate researchers, professional scientists, and visiting scholars representing international academic institutions and industrial laboratories contribute to a research and educational environment that is dynamic and varied.

As part of the center’s mission to educate future leaders in the vital information-storage industry, faculty members teach specialized classes at the undergraduate and graduate levels that train students in the theoretical methods and experimental techniques underlying advanced magnetic recording technology and other nonvolatile storage techniques. Real-world research opportunities are also available to students through academic-year and summer internships with selected sponsors. In addition, the center contributes to the continuing education of professionals in the storage industry through regular seminars, research reviews, and focused workshops.

CMRR also supports a world-class information center for information-storage technology that provides a range of services to sponsors, resident researchers, and students. These services include licensed database searching, patent searching, document retrieval, and expedited access to proprietary technical resources.

The Center for Networked Systems (CNS) was formally established as an organized research unit at UCSD in 2005. CNS is pursuing a portfolio of large and small multidisciplinary projects designed to develop key technologies and frameworks for networked systems. Each project attacks a critical technical problem or framework and all contribute to our technical capability to build robust, secure, manageable, and open networked systems. CNS combines its research talents and strengths in partnership with key industrial leaders—achieving the critical mass and relevant focus necessary to accelerate research progress and create key technologies, framework, and systems understanding for robust, secure networked systems and innovative new applications. CNS is focusing its initial efforts in four key research areas:

- Robustness: Understanding networked system properties that enable flexible connection (composition) and sharing of networks, grids, and networked system applications while ensuring predictable performance, reliability, quality, and efficiency.
- System and Application Security: Technologies and architectures that enable applications and networked systems to be secured or protected against unauthorized use, observation, or denial of service.
- Manageability: Technologies and architectures that reduce the effort required to understand, design, operate, use, and administer networked systems.
- Application/End-User Quality: Technologies and architectures that provide both capabilities and understanding of application performance and end-user quality of experience, particularly in large-scale and open systems.

The Center for Research in Computing and the Arts (CRLA) is an organized research unit of UCSD that facilitates the creation of vanguard culture via computer science research. Areas of current activity include next generation digital media, multiverse computing, experimental computer games, future cinema, networked multimedia, software studies, cultural visualization, science and art collaborations, virtual reality and computer-spatialized audio. CRLA is also the home of the UCSD branch of the NSF-sponsored Center for Hybrid Multicore Productivity Research.

As the University of California’s oldest arts research center, CRLA pursues speculative cultural activities that draw upon humanistic analysis, engineering innovation, and the insights of artistic expression. Faculty members devise new modes of artistic practice through their liaisons with international cultural institutions, technology industries, and interdisciplinary collaborations. CRLA provides the framework for a broad range of approaches to artistic, scholarly, and technological development that is at the basis of our digitally transformed culture. We actively encourage the investigation of what constitutes the potent cultural acts of our time and the viable mechanisms that should be engaged to create them. More information about the center, its researchers, public events, and the process for engagement, can be found at http://crla.ucsd.edu.

The Center for Research in Language (CRL) emphasizes the combination of theoretical and experimental approaches to language study. The research is interdisciplinary and draws upon the fields of cognitive science, communication, communication disorders, computer science, human development, linguistics, neurosciences, psychology, and radiology.

The center’s facilities accommodate laboratory research projects by the faculty and graduate students; facilities include a number of high-performance work stations, a computer laboratory, extensive equipment for audio recording and analysis, and equipment for psycholinguistic experimentation.

Current research projects include studies of language and cognitive development in children; language impairment in children and adults; word and sentence processing in bilinguals; studies of American Sign Language; cross-linguistic studies of language structure; development of neurally inspired parallel processing models of speech perception; first-language acquisition; cross-linguistic comparisons of language acquisition and aphasia; research on the integration of grammatical analyses and theories; a project to collect large-scale text corpora in electronic form; and a study of expectancy generation in sentence processing. The center administers an NIH pre- and postdoctoral training grant, “Language, Communication and the Brain.” CRL has also entered into several institutional agreements with research institutions in Europe, Asia, and the Americas, providing for the exchange of personnel and support for projects of mutual interest. An ongoing workshop series presents a broad range of experimental approaches to the study of language. The center publishes a monthly electronic newsletter.

The Project in Cognitive and Neural Development is an activity of CRL. Its purpose is to provide a forum for interdisciplinary research on brain and cognition in human children, including research on the neural bases of language and communication. The studies focus on typically developing children and on children with language impairments, Down syndrome, or autism spectrum disorders. The researchers use a wide range of behavioral and neuroimaging methods to yield new information about the interaction between experience and brain development. The results of these studies have important implications for education and clinical practice. The project brings together faculty and research staff from the UCSD Departments of Cognitive Science, Human Development, Neurosciences, Psychology, and Radiology; the San Diego State University Departments of Psychology and the School of Speech and Hearing Sciences; and the Salk Institute for Biological Studies.

The Institute of Engineering in Medicine (IEM) (http://iem.ucsd.edu/) was established in July 2008 at UCSD to bring together outstanding faculty in the Jacobs School of Engineering (JSOE), School of Medicine (SOM), and Skaggs School of Pharmacy and Pharmaceutical Sciences (SSPSS), as well as other units, for interdisciplinary research and education at the interface of engineering and medicine for the improvement of health care. IEM consists of a network of faculty, students, staff, and partners both within and outside of the University of California. Currently the institute has more than 100 participating faculty members and twenty industry members.

The mission of IEM is to synergize the unique strengths at UCSD for the integration of engineering principles and novel technologies with biomedical and translational research, with the ultimate goal of improving health care delivery and enhancing the health and quality of life of humankind.

Research in the Institute of Engineering in Medicine focuses on the convergence of science, technology, and disease by applying an engineering approach to medicine. The four initial disease focus areas are cancer, cardiovascular diseases, metabolic disorders, and neurodegenerative diseases. The technology areas include imaging, genotyping/phenotyping, bioinformatics/system biology, medical devices/instrumentation, nanotechnology/nanomedicine, and stem cells.

The Institute of Engineering in Medicine works with academic departments to help develop interdepartmental, interdisciplinary educational programs that involve many departments on the general campus, as well as industrial partners. The goal is to encourage undergraduates, graduates,
as well as postdoctoral scientists, to work in areas at the interface of engineering and medicine, thus training the leaders of the next generation to drive and implement the applications of engineering and technology to health care.

The science conducted in IEM is organized into specific fields of research defined by the convergence of our broad areas of focus. Each center of research involves expert university faculty working together with industry and physicians to solve important health care problems through technological advancements. The Whitaker Center for Biomedical Engineering (WCBE) is the first such center. WCBE enhances industry-academia collaboration and interaction by fostering fruitful exchanges among WCBE members, the UCSD community, and various industry collaborators. WCBE has an Industrial Advisory Board to guide and further this cooperation. The board works closely with WCBE to enhance research collaboration, foster scientific exchange, facilitate funding opportunity, organize seminars and workshops, and facilitate student internship training and professional development. More information about WCBE is available at http://wcbe.ucsd.edu/.

The Institute for International, Comparative, and Area Studies (IICAS) was created in 2001 to promote research on international, comparative, and cross-regional topics. Building on the substantial strengths of UCSD in international studies, IICAS coordinates and supports the research of faculty in departments, area studies programs, and the Graduate School of International Relations and Pacific Studies. It is closely associated with undergraduate and graduate education in international studies, including Eleanor Roosevelt College and the international studies major, whose program offices are housed within the institute.

IICAS has two principal roles. First, it serves as a research catalyst, fostering and incubating interdisciplinary and cross-area research groups and projects. Activities have included a faculty research project on states at risk, a multiyear, interdisciplinary research workshop examining the empire-to-nation transition, and an annual lecture series on Law and Society (co-sponsored with California Western School of Law). Second, IICAS coordinates and provides services for international and area studies programs in events planning and coordination. In this role, IICAS has co-sponsored campuswide panels and seminars that address critical international issues. It also encourages new programs in international and area studies, such as the European Studies initiative.

The Institute for Neural Computation (INC). The institute’s research projects are directed at understanding the modes of functioning of nervous systems through direct observation, experimental investigation, and modeling of neural structures; uncovering cognitive principles through psychological experimentation and parallel distributed-processing models; applying neural computation to the solution of major technological and scientific problems; and ultimately building a new generation of massively parallel computers based on the principles of neural computation.

The central premise of INC is that these diverse research efforts cannot be adequately achieved independently; instead significant progress will come through the joint efforts of researchers in the relevant disciplines, including neuroscience, philosophy, psychology, cognitive science, physics, mathematics, economics, electrical and computer engineering, computer science and engineering, radiology, and linguistics.

Faculty from the UCSD Departments of Biology, Computer Science and Engineering, Cognitive Science, Economics, Philosophy, Neurosciences, and Radiology, and the Salk Institute for Biological Studies are actively involved in the institute’s activities. The institute has a training program in cognitive neuroscience, an active visitors program and an industrial affiliates program with ongoing joint research projects. The institute sponsors a seminar series, the annual Rockwood Memorial Lecture, and several scientific workshops and conferences annually.

The goal of the Swartz Center for Computational Neuroscience, an off-campus lab of INC, is to observe and model how functional activities in multiple brain areas interact dynamically to support human awareness, interaction, and creativity. Research in the center involves development of computational methods and software, experimental methods and equipment; collection and analysis of human cognitive experiments; and collaborations to analyze data collected by other groups in such experiments.

The Machine Perception Laboratory, another activity of INC, seeks to gain insights into how the brain works by developing embodied systems that solve problems similar to those encountered by the brain. The lab focuses on systems that perceive and interact with humans in real time using natural communication channels (e.g., visual, auditory, and tactile information). To this effect lab personnel are developing perceptual primitives to detect and track human faces and to recognize facial expressions. Developing such systems requires a multidisciplinary approach that combines mathematical modeling, machine learning techniques, computational modeling of brain function, and behavioral experiments. Applications include personal robots, automatic tutoring systems, and automatic assessment of affective disorders.

Other projects include research on human movement disorders, automatic speech recognition, autism, social cognition, how sensory information is represented in the cerebral cortex, how memory representations are formed and consolidated during sleep, and how visuomotor transformations are adaptively organized.

The Institute for Pure and Applied Physical Sciences (IPAPS) is an interdisciplinary research unit that brings together faculty and researchers in physics, chemistry, engineering, and Scripps Institution of Oceanography. The institute is concerned with fluids and materials. Specific subjects of research include superconductivity, ferromagnetism, semiconductor heterostructures, solid surfaces, plasma physics, hydromagnetic, turbulence, fluid mechanics, laser physics, and numerical analysis.

Within IPAPS is the Center for Interface and Materials Science (CIMS), which emphasizes interdisciplinary collaborative research on the properties of surfaces, thin-layered composites, and novel materials, as well as their technological applications. With centralized space and equipment, CIMS brings together faculty and research staff from the Departments of Physics, Applied Mechanics and Engineering Sciences, Chemistry and Biochemistry, Electrical and Computer Engineering, and the Scripps Institution of Oceanography.

The Kavli Institute for Brain and Mind (KIBM) is a virtual environment unhampered by disciplinary boundaries, providing scientists with opportunities for effective interdisciplinary integration of research and knowledge. KIBM will transcend traditional disciplinary barriers to foster new discourse among scientists, accelerating discoveries about the connections between mechanism and behavior.

KIBM’s mission is to support research that furthers our understanding of the origins, evolution, and mechanisms of human cognition, from the brain’s physical and biochemical machinery to the experiences and behaviors called the mind. KIBM leverages UCSD’s preeminence in such fields as neuroscience, biology, cognitive science, psychology, and medicine, along with the extensive resources of the broader La Jolla scientific community, to extend its position as the pacesetter in brain-mind research and education, and as a vibrant hub for dissemination of its discoveries to advance science and benefit humankind.

To achieve its mission, KIBM provides funding for innovative research to focus on ideas that bridge different levels of organization of brain and mind, and for distinguished scientists to visit San Diego to broaden our interdisciplinary research on brain-mind issues.

Faculty from UCSD’s Departments of Neurobiology, Cognitive Science, Neuropsycharmacology, Neuroscience, Philosophy, Psychiatry, Psychology, and Radiology; and scientists from the Salk Institute for Biological Studies, the Neurosciences Institute, and The Scripps Research Institute participate in KIBM research, lectures, and workshops.

The San Diego Supercomputer Center (SDSC) has enabled science and engineering discoveries through advances in computational science and high-performance computing for the past two decades. Data is an overriding theme in SDSC activities. By developing and providing data cyberinfrastructure, the center acts as a strategic resource to science, industry, and academia, offering leadership in the areas of data management, grid computing, bioinformatics, geoinformatics, and high-performance computing. The mission of SDSC is to extend the reach of the scientific community by providing data-oriented technology resources above and beyond the limits of what is available in the local laboratory, department, and university environment. SDSC is an organized research unit of UCSD with a staff of scientists, software developers, and support personnel, primarily funded by the National Science Foundation (NSF). Two key SDSC projects include the Geoscience Network (GEON) and the Science Environment for Ecological Knowledge (SEEK). GEON weaves together separate informational strands into a unified fabric that enables the discovery of data relationships within and across Earth science disciplines.

SEEK uses SDSC’s computational science resources to provide the computational and data-management components of UCSD’s strong computing environment.
environmental informatics program. Reflecting the dramatic increase in humankind’s ability to change the environment, the study of environmental informatics is increasingly critical to California. SDSC and UCSD are building and supporting a program that spans scales from the molecular level to entire populations, accurately modeling the impact of population on the environment.

In addition, SDSC pursues data management activities such as digital library initiatives, data-system standardization, and opportunities to impact large-scale data mining, analysis, and knowledge synthesis with academic, federal, and commercial partners. SDSC’s high-end computing unit is leading a national effort to understand and deploy the most capable computational environments and to make those environments easily accessible and usable by scientific communities—locally, nationally, and globally. SDSC maintains leadership in critical strategic capabilities, including chemistry, parallel applications and performance modeling, scientific visualization, and increasing collaborations with the social sciences.

Researchers involved in SDSC’s integrative biosciences area are developing projects to understand how cellular behavior emerges from the molecular level, how tissue behavior emerges from the cellular level, and so on up to the level of the organism. SDSC is collaborating in this area with the UC San Diego School of Medicine, the Center for Research in Biological Structure, The Scripps Research Institute, the Salk Institute for Biological Studies, and local biotech and pharmaceutical companies. SDSC also is focusing on large-scale collaborative bioscience projects worldwide using an infrastructure based on high-performance computation and analysis of massive amounts of data.

Major academic researchers around the country use the powerful computing resources at SDSC to make breakthroughs in diverse areas of science—from astronomy and biology to chemistry and particle physics.

SDSC’s state-of-the-art computational resources and support include DataStar, a 15.7 teraflops (trillion floating point operations per second) supercomputer with a total shared memory of seven terabytes. DataStar is among the top supercomputers in the world and is used by researchers in academia and industry to conduct large-scale, data-intensive scientific research applications that involve extremely large data sets or have stressful input/output requirements.

SDSC collaborates with eight partners—including the National Center for Supercomputing Applications at the University of Illinois, Argonne National Laboratory, the Center for Advanced Computing Research at the California Institute of Technology, and the Pittsburgh Supercomputing Center—in the TeraGrid project. This multiyear effort builds and maintains the world’s most powerful and comprehensive distributed computational infrastructure for open scientific research. The TeraGrid integrates more than 110 teraflops of computing power through a cross-country network backbone that operates at forty gigabits per second. The storage facilities at SDSC alone include more than one petabyte of high-speed disk and six petabytes of archival storage capacity, one of the world’s largest academic storage installations.

SDSC hosts huge digital collections, including visualizations of earthquake simulations, disaster-recovery records, astronomical images from the 2-Micron All Sky Survey, images from the Art Museum Image Consortium, Chinese text from the Pacific Rim Digital Library Alliance, and tomographic images of the human brain. The data technology is also being used to prototype persistent digital archives for the National Archives and Records Administration and other government agencies with huge data archives.

The Cooperative Association for Internet Data Analysis (CAIDA) at SDSC engages Internet providers, vendors, and users in engineering and technical collaborations to promote a more robust, scalable Internet infrastructure. CAIDA works with the community to develop and transfer tools and technologies that provide engineering and other insights relating to the operation and evolution of the Internet infrastructure. CAIDA works with providers and researchers to refine Internet traffic metrics, foster shared research environments, and encourage the development and testing of advanced networking technologies.

SDSC’s Applied Network Research group is currently conducting two Internet research projects. The first involves the National Laboratory for Applied Network Research (NLANR), an NSF-supported collaboration to provide technical, engineering, and traffic analysis support for NSF’s High-Performance Connections sites and the nation’s high-performance network infrastructure.

The second activity of the Applied Network Research group is the High-Performance Wireless Research and Education Network (HPWREN), a collaboration with Scripps Institution of Oceanography that created a noncommercial, prototype, high-performance, wide-area wireless network in San Diego County.

SCHOOL OF MEDICINE RESEARCH UNITS

The AIDS Research Institute (http://ari.ucsd.edu): In 1996, the AIDS Research Institute (ARI), an Organized Research Unit (ORU), was established by the regents of the University of California to coordinate the diverse HIV/AIDS research and clinical activities on the UCSD campus. The mission of the Institute, housed within the School of Medicine at UCSD, is to become a regional resource for HIV/AIDS research and information in the San Diego area. UCSD faculty have made major advancements in our understanding of how the virus works, how it causes disease, how to treat HIV infection and its complications, and the impact of HIV infection on nationwide health and health-care costs. UCSD programs in HIV/AIDS, including 243 faculty members from thirty-four departments, are internationally recognized for their contributions to science and patient care. UCSD is ranked among the top ten AIDS programs in the country.

ARI programs include:
- The Center for AIDS Research (CFAR)
- The Adult AIDS Clinical Trials Group (ACTU)
- The Adult AIDS Clinical Trials Network Leadership Group
- The Pediatric AIDS Clinical Trials Group (PACTG)
- The California NeuroAIDS Tissue Network (CNTN)
- The Special Infectious Disease Clinic of the VA San Diego Healthcare System
- The Acute Infection and Early Disease Research Program (AIEDRP)
- The California Collaborative Treatment Group (CCTG)
- The HIV Neurobehavioral Research Center (HNRC)
- The Southern California Primary Infection Program
- The HIV Costs and Services Utilization Study (HCSUS)
- The VA Quality Enhancement Research Initiative for HIV (QUERI-HIV)
- The San Diego AIDS Education and Training Center (AETC)
- The Owen Clinic, which provides primary health-care services
- The Antiviral Research Center (AVRC), which conducts clinical trials
- The UCSD Mother, Child, and Adolescent Program

The institute sponsors seminars and workshops and offers development grants to new investigators in the area of human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS) research. Together with research and development, the ARI is fully committed to serve as a community resource for information and assistance regarding infection, treatment, and education in HIV/AIDS. We are here to serve as the regional resource for all aspects pertaining to HIV/AIDS and, as a leader in research and education, to treat the infected and prevent the spread of further disease.

The UCSD-Salk Center for Academic Research and Training in Anthropogeny (CARTA) is based on ongoing efforts dating back more than ten years, and coordinated in the past by the UCSD Project for Explaining the Origin of Humans. The center was established to address some of the oldest questions in the world: “Where did we humans come from, and how did we get here?” To help answer these questions from a scientific perspective, a multidisciplinary group of researchers at UC San Diego, along with colleagues at the Salk Institute for Biological Studies in La Jolla, have founded a center to formally explore the origins of humanity (which is the definition of anthropogeny) and the many facets of what makes us human.

Definitive answers regarding human origins are most likely to come from discussions and studies that bring together a wide variety of approaches in the biological, biomedical, and social sciences, as well as aspects of the arts and humanities, with important input from the physical, chemical, and computing sciences. CARTA is transdisciplinary, meaning that it transcends or goes beyond traditional disciplines and builds bridges between them. In doing so, we are more likely to succeed, by working beyond the confines of individual disciplines and looking at knowledge about human origins as a broad-based continuum. The goals of
CARTA are essentially scholarly (academic) and range from understanding more about human and primate genetics and evolution to advancing knowledge in areas such as language, communication and cognition, and human society and culture.

Activities of CARTA include the organization of regular international symposia, developing an online Museum of Comparative Anthropoony; organizing ethical access to resources for great ape research; development of a Library of Anthropony, stewardship of electronic databases, serum and skeletal collections donated by the Primate Foundation of Arizona; facilitating a graduate elective course and specialization track on human origins at UCSD, the teaching of evolutionary principles at the School of Medicine; and development of a peer-reviewed journal. Support for IT infrastructure and informatics is being provided by the San Diego Supercomputer Center and CalIt2. The CARTA Web site is at http://carta.anthropogy.org.

The Center for Research in Biological Systems (CRBS) is an organized research unit that exists to provide human resources, high-technology equipment, and administrative services to researchers engaged in fundamental research on cell structure and function relationships, particularly those involved in central nervous system processes, cardiovascular networking, and muscular contraction. CRBS scientists investigate these processes through invention, refinement, and deployment of sophisticated technologies, especially:

- High-powered electron microscopes that reveal three-dimensional cell structures
- State-of-the-art X-ray crystallography and magnetic resonance analysis that provide detail on protein structures at high resolution
- Laser-scanning and Confocal light microscopes that reveal molecules tagged with fluorescent markers as they traffic within cells and pass transfer signals within and between cells
- High-performance computing and grid-based integration of distributed data

CRBS facilitates an interdisciplinary infrastructure in which people from biology, medicine, chemistry and biochemistry, and physics can work with those from computer science and information technologies in collaborative research. CRBS researchers share interests in the study of complex biological systems at many scales, from the structures of enzymes, proteins, and the body's chemical communications network at atomic and molecular levels to an organism's physiology, strength, and support at cellular and tissue levels.

CRBS infrastructure integrates resources for high-performance computing, visualization and database technologies, and the grid-integration of large amounts of archival storage data. The California Institute for Telecommunications and Information Technology (CalIt2) and the San Diego Supercomputer Center (SDSC) are collaborators in simulating the activity of biological systems, analyzing the results, and organizing the growing storehouse of biological information.

The aims of CRBS researchers are met in interdisciplinary research activities of major federally funded efforts that are presently the heart of CRBS:

- BIRN, the Biomedical Informatics Research Network (http://www.birn-net.net), tests new modes of large-scale biomedical science. BIRN builds infrastructure and technologies to enable large-scale biomedical data mining and refinement.
- NCMI, the National Center for Microscopy Imaging Research (http://ncmir.ucsd.edu), specializes in the development of technologies for improving the understanding of biological structure and function relationships spanning the dimensional range from 3nm to 50µm.
- NBCR, the National Biomedical Computation Resource (http://nbcr.ucsd.edu), conducts, catalyzes, and advances biomedical research by harnessing, developing, and deploying forefront computational, information, and grid technologies.
- JCSG, the Joint Center for Structural Genomics (http://www.jcsbg.org), creates new technologies to drive high-throughput structure determination. The Bioinformatics Core at UCSD is responsible for target selection, sample tracking, information management, structure validation and deposition, and poststructural analysis. Through these functions, the group provides the integrated informatics backbone required for the successful operation of JCSG.
- CRBS researchers also have significant roles in collaborations with:
 - PRAGMA, Pacific Rim Applications and Grid Middleware Assembly, establishes sustained collaborations and advances the use of grid technologies in applications throughout the Pacific region to allow data, computing, and other resource sharing.
 - Optiputer (http://www.optiputer.net) involves the design and development of an infrastructure to integrate computational, storage, and visualization resources over parallel optical networks using lambda switching communication mechanisms.

CRBS is an entity evolving as research evolves. It was established in 1996 to involve researchers from disciplines across UCSD, the School of Medicine, the Salk Institute for Biological Studies, CalIt2, and SDSC, including bioengineering, biology, chemistry, computer science, mathematics, neurosciences, pharmacology, psychiatry, and physics, and forges interactions with biotechnology and biocomputing companies for technology transfer. Interaction, collaboration, and multiscale research produce new perspectives, reveal fruitful research topics, lead to the development of new technologies and drugs, and train a new generation of researchers in biological systems.

The mission of the San Diego Clinical and Translational Research Institute (CTRI) is to create an environment that advances health care through interactions between basic scientists, clinical investigators, community physicians, and patients. We intend to address the barriers that inhibit productivity and rapid translation of research progress into new therapies.

Biomedical discovery is progressing at an increasingly rapid pace. The translation of laboratory research into interventions that improve human health depends on our collective ability to take new knowledge, develop new treatments and technologies, and then prove these therapies to be safe and effective. These advances must then be translated into improved health care and outcomes. To complete the cycle, the questions and challenges presented by clinicians and the general public seeking even better solutions find their way back into the laboratory, driving fundamental research that leads to further discovery.

CTRI provides an environment where this continuous cycle leading from biomedical research to advances in patient care and back into the laboratory can flourish. Through CTRI we bring together a multidisciplinary network of basic scientists, clinical researchers, physicians and other health care providers, community leaders, patients, and volunteers. Their work is supported by advanced information technologies, powerful imaging tools, and core facilities, such as DNA sequencing and biomarker analysis, to ensure that the path from laboratory to clinical application is speedy, efficient, and cost-effective.

In addition to scientific support, we provide the opportunity for all of our partners to share ideas and collaborate in the process of innovation benefiting patients and society.

CTRI is here to serve our partners and to offer opportunities to participate with us in understanding, preventing, and treating human disease. Please look through our Web site for ways to access our services and to learn more about translational research: http://ctri.ucsd.edu.

CTRI serves as the coordinating center for a multidisciplinary program encompassing:

- Four health sciences professional schools spanning two universities: School of Medicine (UCSD), Pharmacy and Pharmaceutical Sciences (UCSD), Nursing (SDSU), and Public Health (SDSU)
- The Rady School of Management (UCSD)
- Ph.D. degree programs in bioinformatics, clinical psychology, public health (including epidemiology, health behavior, and global health), audiology and hearing sciences, pharmaceutical sciences, biostatistics, and language and communicative disorders. Many of these are dual programs with SDSU, which is a minority-serving institution due to its substantial Latino student population.
- Masters of science degree program in clinical research (the UCSD K30 program)
- The Jacobs School of Engineering, including the new Institute of Engineering in Medicine and the von Liebig Center for Entrepreneurism and Technology Advancement
- Numerous institutes and centers that support translational research

CTRI has additional institutional partners, including:

- Our academic medical center and university (UCSD) with three hospitals (UCSD Medical Center, Rady Children's Hospital, and the VA San Diego Health Care System).
- CTRI is also home to the San Diego National Supercomputing Center (SDSC) with equipment housed at the San Diego Supercomputer Center (SDSC).
• Four biomedical research institutes (Salk Institute for Biological Studies, Burnham Institute for Medical Research, J. Craig Venter Institute, and La Jolla Institute for Allergy and Immunology)

• A community health group (Palomar Pomerado Health) with two hospitals (total of 435 beds) and an enthusiastic group of community physicians in the East County of San Diego

• Three interdisciplinary computing resources (SDSC, Calit2, and Division of Biomedical Informatics)

• A close partnership with the local biotechnology community and their associations. One of these, CONNECT, was founded by UCSD to foster entrepreneurship in the San Diego region by accelerating the growth of businesses in the life sciences. The other key industry organization is BIOCOM, an association representing more than 350 biotechnology companies in Southern California.

Together with biomedical doctoral training programs within our institution (neurosciences, biomedical sciences, molecular pathology, and bioengineering), the Physician Scientist Training Program, and the translational CTRI education programs, we are training the next generation of clinical and translational scientists.

The Glycobiology Research and Training Center (GRTC) seeks to facilitate and enhance glycobiology research and training throughout California. Current faculty membership includes many UCSD faculty from several departments across the School of Medicine, Scripps Institution of Oceanography, and the general campus as well as adjunct faculty at nearby institutions. Affiliate members include interested scientists in the La Jolla area as well as faculty from several other UC campuses and California institutions of higher learning.

Glycobiology is the study of the structure, biosynthesis, and biology of sugar chains (called oligosaccharides or glycans) that are widely distributed in nature. All cells and many proteins in nature carry a dense and complex array of covalently attached glycans. These are often found on cellular and secreted macromolecules, in an optimal position to modulate or mediate events in cell-cell and cell-matrix interactions that are crucial to the development and function of complex multicellular organisms. They can also mediate interactions between organisms (e.g., between host and parasite). Simple rapidly turning-over protein-bound glycans are also abundant in the nucleus and cytoplasm, where they appear to serve as regulatory switches. The development of a variety of new technologies for exploring the structures of these glycans has recently opened up this new frontier of molecular biology.

GRTC (http://grtc.ucsd.edu) seeks to foster interactive research in glycobiology by coordinating the availability of state-of-the-art instrumentation and expertise in the structural analysis of glycans through a Glycotechnology Core Resource (http://glycotech.ucsd.edu), increasing intellectual and collaborative interactions by organizing symposia and joint programs and seminars, coordinating joint applications for extramural support, improving access to relevant informatics, and facilitating the transfer of basic glycobiology research to practical applications. The center also strongly emphasizes graduate, postgraduate, and medical student education in glycobiology, including contributions by the faculty to core curricula, as well as to elective courses and journal clubs.

The UCSD Institute for Genomic Medicine (IGM), founded by the UCSD School of Medicine and the UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, is a center of excellence for organizing the multidisciplinary resources necessary to effectively translate the discoveries of genetic and genomic research from “bench to bedside.” IGM aims to link clinical and genomic information to facilitate personalized health care. By combining UCSD’s expertise in genetics, disease biology, and clinical practice with its strengths in computer science, bioinformatics, and systems biology, IGM is uniquely positioned to support all activities along the continuum of genomic medicine. IGM aims to discover new pathways in human health and disease and to translate these discoveries to clinical and preventive medicine. Our multidisciplinary physician-scientist teams integrate clinical phenotypes with genomic, transcriptomic, proteomic, metabolomic and signaling approaches to understand and treat genetic contributions to human disease. For information about IGM, please contact Peggy Bonine at (858) 246-0949 or mbonine@ucsd.edu.

The Rebecca and John Moores UCSD Cancer Center (CC), active in the fight against cancer since 1979, is a National Cancer Institute-designated Comprehensive Cancer Center. The specific goals of the Cancer Center are to enhance the present level of basic research, increase collaborative research, increase the application of basic science to solve clinical problems through translational research, disseminate new knowledge to oncology professionals and scientists in the San Diego community, enable the biomedical industry to transfer new technology to the clinical setting, develop a strong effort in cancer prevention and control, and educate and train undergraduate and postgraduate physicians, and basic scientists. Under the auspices of a Cancer Center Support Grant from the National Cancer Institute, there are seven active program areas within the Cancer Center. These include Cancer Biology, Cancer Genetics, Cancer Prevention and Control, Cancer Pharmacology, Cancer Symptom Control, Translational Oncology, and Viral Malignancy. Shared resources at the Cancer Center include biostatistics, clinical trials, data compilation and analysis, digital imaging, DNA sequencing, flow cytometry, histology and immunohistochemistry, microarray, molecular pathology, nutrition, radiation medicine, and transgenic mouse.

Research and educational grants support the training of postdoctoral fellows and medical students. The Clinical Trials Office coordinates clinical research trials involving cancer patients at UCSD and is the focal point for a large Oncology Outreach Network, which provides state-of-the-art protocol treatment opportunities for patients in a broad geographic area. Patient care activities of the Cancer Center are located in the Combined Oncology Clinic at the Theodore Gildred Facility and in UCSD Medical Center, both located in Hillcrest, and at the Oncology Clinic of the Perlman Ambulatory Care Center and in UCSD Thornton Hospital, both located in La Jolla. Basic research activities of the Cancer Center are carried out at a variety of other locations on or adjacent to the La Jolla campus. Total membership of the Cancer Center exceeds 260 laboratory investigators and clinical physicians from twenty-two academic departments. The research funding for Cancer Center members exceeds $180 million.

The Sam and Rose Stein Institute for Research on Aging (SIRA) is an ORU committed to the development of the latest advances in biomedical and behavioral science knowledge and their application to issues of successful (healthy) aging and the prevention and reduction of the burden of disability and disease in late life. Established in 1983 as the first ORU on aging within the University of California system, the unit consists of more than 120 faculty members with outstanding track records in research and who encompass a wide range of expertise. These faculty members represent multiple departments within the UC San Diego School of Medicine, ranging from bioengineering and family and preventive medicine to neurosciences and psychiatry.

Over the past two decades, SIRA has made major contributions to research, research training, and dissemination of information to the San Diego, national, and international community in geriatrics and gerontology. It has funded more than seventy-five pilot grants for junior faculty during critical stages of their careers and funded more than 100 undergraduate and medical students interested in aging research. In 2005, SIRA was awarded a grant from the National Institute on Aging (NIA) to conduct summer research training of medical students from around the country, with a focus on healthy aging. In this program, students are paired with experienced scientists from UCSD and provided an opportunity to do hands-on research by pursuing basic science, clinical, or health services projects. In addition, SIRA has also recently targeted its pilot grant awards to junior faculty pursuing research projects pertaining to successful aging. Along with its Web site (http://sira.ucsd.edu), SIRA publishes a monthly newsletter, Successful Aging, which is distributed to more than 2,000 individuals and organizations. The monthly SIRA Public Lecture Series has resulted in more than 250 public lectures provided by SIRA faculty on topics of interest to the general public, with the lectures also broadcast on UCSD-TV. SIRA Grand Rounds and Geriatric Journal Club further enhance the multiple venues provided to educate professionals and the general public on age-related topics. Under the leadership of Dilip Jeste, M.D., director of SIRA since 2003, SIRA has launched comprehensive, longitudinal, bio-psycho-social studies of successful (or healthy) aging. Scientists at SIRA believe that studying health and well-being and how and why people age without significant mental, physical, or social impairment should be at least as important as studying why people become ill. In the coming years, SIRA will strive to become a national and international resource on successful aging and impact people’s ability to age well. For more information, contact us at (858) 534-6299 or steinstitute@ucsd.edu or visit our Web site at http://sira.ucsd.edu.
The goal of the African and African-American Studies Research Project (AAASRP) is to facilitate faculty, postgraduate, and graduate research in the areas of Africa and African diaspora studies in the social sciences and the humanities, and to foster the comparative, cross-national, and interdisciplinary dimensions of research, with a core group of scholars drawn from several fields in the social sciences and humanities. These research efforts are linked directly to larger local and international community concerns.

The project sponsors visiting scholars, focused research groups, a seminar, and symposia. Faculty from seven university departments are involved. The project oversees the African Studies Minor. The project is also part of the UC Systemwide Consortium of African Studies Programs and the national Association of African Studies Programs. It provides the basis for the establishment of an organized research unit on African and African-American Studies at a later time. For more information, contact the AAASRP office at (858) 822-0265.

The Project for Explaining the Origin of Humans is a broad-based multidisciplinary coalition of investigators in the La Jolla area (from UCSD as well as institutions from the surrounding area and around the world) who are interested in defining and explaining the evolutionary origins of humans and in generating testable hypotheses and new agendas for research regarding this matter. Areas of current interest include primate genetics and evolution, paleoanthropology and hominid origins, mammalian and primate neurosciences, primate biology and medicine, the roles of nature and nurture in language and cognition, human and primate society and culture, comparative primate reproductive biology, geographic, environmental and climatic factors in hominid evolution, as well as general theories for explaining humans. The group includes UCSD faculty from the Departments of Anthropology, Biology, Chemistry and Biochemistry, Cognitive Science, Linguistics, Medicine, Neurosciences, Scripps Institution of Oceanography, Pathology, and Psychology.

The Project for Econometric Analysis (PEA) is concerned with the analysis of economic and financial data and with techniques for modeling relationships between economic variables and testing economic theories. As economic variables have properties not generally found in other fields, standard procedures from mainstream statistics are often not appropriate. The field of econometrics has been developed to deal with these issues. Its importance is indicated by its effect on the methodologies in other social sciences, such as political science and empirical history, and the fact that several Nobel Prize winners in economics have been econometricians. In fact, the 2003 Nobel Prize in economics was awarded to Clive Granger and Robert Engle, two of the founders of PEA.

The Project for Econometric Analysis supports the work of an active group of researchers and provides opportunities for productive interaction among faculty and students. Areas of active research include financial econometrics, nonlinear time series modeling, properties of neural network models, the theory of economic forecasting and various actual applications including evaluations of models and forecasts in finance and economics. PEA allows links with workers from other universities in this and other countries. In 2000–01 and 2001–02 the project had visitors from Europe, Asia, North America, and Australia; some were senior and some were pre- and postdoctoral students. Faculty members and graduate students associated with the project presented their research at workshops and conferences worldwide. In addition, PEA facilitates the submission of grant proposals to outside agencies.

The Project in Geometry and Physics (PGP), established in 1987, provides opportunities for increased collaboration between mathematicians and physicists. The project hosts several scientific meetings each year and also sponsors a number of research seminars with distinguished scientists from inside and outside the UCSD community.

The Project on International Affairs (PIA) is one of the international programs within the Institute on International, Comparative, and Area Studies, focusing on economic and political interactions between states. The project serves to promote interdisciplinary research on international politics and international economics; disseminate current research to UCSD faculty and students; provide a multidisciplinary focal point for research and programming; and enhance campus and community understanding of international political and economic affairs.

The Project on Responsible Conduct of Research Education (RCR Education Project) was created in 2003 to promote RCR education both at UCSD and nationally. To achieve this goal, the RCR Education Project facilitated the formation of the Responsible Conduct of Research Education Committee (RCREC), a special interest focus for the Association for Practical and Professional Ethics. RCREC provides leadership to the research community in promoting education in the responsible conduct of research.

The RCR Education Project and RCREC are intended to be a broad-based coalition, representing medical, social, and behavioral research, and public and private institutions. Through these collaborations, the RCR Education Project will lay the foundations for RCREC to advance programs of RCR education, develop RCR education standards, certify or identify programs that meet those standards, facilitate the exchange of RCR education programs among research institutions, and develop outcome measures to evaluate the success of the endeavor. Specific objectives of RCREC are to: 1) promote RCR education as a central responsibility for any institution involved in research; 2) develop clear definitions for RCR education, including goals, standards, competencies, and methods for evaluating the effectiveness of programs; 3) assist institutions, RCR programs, and investigators in identifying and developing RCR education curricula and resources; 4) facilitate discussion and collaboration among federal agencies, public and private research institutions and organizations, professional societies, and businesses in developing, coordinating, and sharing new and existing RCR educational programs within the research community; and (5) identify and overcome barriers to fulfilling RCR educational needs and requirements.

The Public Policy Research Project was established to facilitate interdisciplinary research and educational opportunities in public policy and business-government interaction. Through conferences, focused research groups, and lecture series, the project acts as a catalyst for interaction among economists, political scientists, moral philosophers, historians, cognitive scientists, anthropologists, and sociologists. The project supports programs that: (1) help faculty obtain funding that are engaged in policy-related research, (2) conduct research apprenticeships for doctoral students working on research projects dealing with issues and processes of public policy, and (3) provide technical support and arrange faculty-propided conferences within the scope of the project’s mission statement.

The Natural Reserve System (NRS) was founded to establish and maintain significant examples of California’s diverse ecosystems and terrain. These reserves are used for teaching and research in all disciplines, from geology and environmental sciences to anthropology and art. Faculty and students of the University of California and other institutions are encouraged to use any of the thirty-four reserves in the system for serious academic pursuits. The San Diego campus administers the following four reserves:

Dawson Los Monos Canyon Reserve: This 216-acre reserve is located in the cities of Carlsbad and Vista in north coastal San Diego County. Its young, stream-cut valley contains a year-round creek with precipitous north- and south-facing slopes. The major habitat types are Southern Riparian Woodland, Diegan Coastal Sage Scrub, Perennial Coastal Stream, Coast Live Oak Woodland, Mixed Grassland of native bunchgrass and introduced annuals, and South Coastal Mixed Chaparral. This area is also of unique and significant historical and archaeological value. A small field station provides opportunities for small laboratory classes, overnight stays, and on-site research.

Elliott Chaparral Reserve: Located ten miles to the east of campus, this 107-acre reserve, adjacent to the large expanse of Marine Corps Air Station Miramar that is undeveloped, features Chaminage Chaparral typical of the Southern California coastal plain and a large stand of mature planted eucalyptus. It is readily available during a normal three-hour lab period or for term paper-length field studies as well as for more lengthy projects.

Kendall-Frost Mission Bay Marsh Reserve: This sixteen-acre reserve, together with the city of San Diego’s contiguous Northern Wildlife Preserve, constitute the last remaining forty acres of tidal salt marsh on Mission Bay and one of the few such wetlands remaining in Southern California. It is recognized for the habitat it provides for several rare and endangered birds including the light-footed clapper rail, Belding’s savannah sparrow, and the California least tern, as well as many resident and migratory shorebirds and waterfowl, and several fish.
species. An on-site trailer houses limited residential and laboratory facilities, and extensive facilities exist within ten miles on the UCSD main campus and at the Scripps Institution of Oceanography. There are opportunities for studying restoration ecology of upland and tidal habitats.

Scripps Coastal Reserve: This reserve consists of disjunct shoreline and cliff-top (or “knoll”) portions. The shoreline part consists of the 67-acre San Diego Marine Life Refuge extending seaward 1,000 feet from the high tide line, and surrounding the Scripps Institution of Oceanography (SIO) Pier. Habitats include sandy beach and submerged plain, to 60 feet below mean lower low water, seasonally exposed cobble beach, rocky reef, pier pilings, and upper submarine canyon ledges. Habitats of the clifftop knoll and canyons include coastal sage scrub, maritime succulent scrub, southern coastal mixed chaparral, and disturbed grassland. The latter is particularly suitable for ecological restoration experiments. This reserve is enhanced by the availability of the laboratories and facilities of adjacent SIO and the main UC San Diego campus.

CAMPUSWIDE RESEARCH FACILITIES

ACADEMIC COMPUTING AND MEDIA SERVICES

SAN DIEGO SUPERCOMPUTER CENTER

THE UCSD LIBRARIES
UC San Diego’s School of Management was established in 2001 and was named the Rady School of Management in January 2004. It matriculated its first M.B.A. degree students in fall 2004 into the FlexMBA, a program for executives and working professionals; its first full-time M.B.A. students in fall 2005; and its first Ph.D. students in fall 2009. The school is pioneering the education of tomorrow’s business leaders through an innovative curriculum led by internationally recognized faculty. The school leverages UCSD’s strengths as a preeminent research institution, especially its outstanding programs in science, engineering, medicine, economics, and international relations.

The Rady School moved into its permanent home, Otterson Hall, in June 2007. These new facilities, located on the north side of the UCSD campus, provide a state-of-the-art learning facility for graduate management students.

At steady state, the school will enroll approximately 1,000 M.B.A. students in full-time and part-time programs, 50 Ph.D. students, and 150 undergraduates. Unlike conventional M.B.A. programs, Rady’s program focuses on innovation and the ways in which innovation, particularly in the science and technology sectors, is transforming business and the world.

DEGREE PROGRAMS

The school offers its M.B.A. degree program in several formats to accommodate the educational needs of a broad range of students. These formats include a full-time M.B.A. program and the FlexMBA, specifically designed for working professionals and offered in FlexWeekend and FlexEvening formats.

The school’s M.B.A. program emphasizes the business issues faced by innovation-driven organizations, with a particular interest in science- and technology-driven innovation and change. It provides a thorough grounding in the fundamentals of business and management in a global environment and builds on this with a distinctive curriculum focused on the implications of management principles and business realities for organizations driven by innovation. Special emphasis is placed on the ways in which ideas and innovations move into the marketplace. The school’s M.B.A. program enables students to develop
- knowledge of business fundamentals and their application to real-world situations
- analytical skills for evaluating information and making rigorous decisions
- an understanding of organizations and of the skills essential to collaborating with and managing people effectively
- an integrated understanding of the complex global, technological, and governmental environments in which organizations operate

- advanced abilities to assess the implications of cutting-edge scientific and technological developments for business and to move ideas from development to the marketplace
- effectiveness in communication, collaboration and teamwork, and leadership
- a commitment to ethical behavior and to integrity in business practice

The FlexEvening and FlexWeekend M.B.A. formats are designed to meet the educational needs of working professionals who have gained or anticipate gaining managerial or leadership roles in their organizations. The full-time M.B.A. is designed for those in early or mid-career seeking career growth or change.

The Rady School Ph.D. program is a full-time course of study, designed to prepare candidates for an academic career. Students begin active research at an early stage and work closely with faculty throughout the program. The small program size offers opportunities for rigorous interdisciplinary training and individual mentoring for highly qualified doctoral candidates. Most students complete degree requirements in four to five years, including defending their dissertations (depending on the student’s background and progress). Strong domains of academic and research interests include behavioral science, finance and capital markets, marketing, operations, management science, applied economics, and strategy.

The Rady School also offers nondegree executive education for executives and working professionals as well as a limited number of undergraduate and graduate courses designed for students who are seeking some exposure to business disciplines while majoring in other degree areas. These courses focus on project management, business practices, and bringing innovation to the marketplace. Information on course offerings is available on the school’s Web site.

FACULTY

Under the leadership of founding Dean Robert S. Sullivan, the Rady School is attracting faculty members who are world-renowned experts in their respective fields. Information on faculty is available on the school’s Web site.

For further information, refer to the Rady School of Management Web site at http://rady.ucsd.edu/ or contact M.B.A. Admissions at (858) 534-0864 or by e-mail at MBAAAdmissions@ucsd.edu.
The School of Medicine

The faculty of the School of Medicine is committed to nurturing and reinforcing the attributes that are important in the making of a doctor: dedication, compassion, and intellectual curiosity.

The goal of the medical school curriculum, clinical experiences, and faculty-student interactions is to develop well-trained, scientifically informed, and conscientious physicians prepared for the changing conditions of medical practice and continuing self-education. Students acquire understanding of the basic medical sciences and clinical disciplines and are encouraged to choose their own areas of interest for eventual development into careers in the broadly diversified medical community. Required course offerings are designed to provide students with a strong foundation upon which any medical specialty can be built.

The School of Medicine accepted its charter class in 1968. The founding faculty drew upon the strength of UC San Diego's existing basic science departments rather than re-creating such departments for the new school. Today this unique relationship continues with faculty from campus departments joining faculty from the School of Medicine's fourteen departments in teaching the core courses in medicine. Both preclinical and clinical courses are taught by UCSD faculty physicians who also have active patient caseloads. Courses are continually evaluated and updated by interdisciplinary course committees. Students at the UC San Diego School of Medicine are encouraged to explore a variety of clinical, laboratory, and community-based experiences.

UCSD facilities are the main sites for clinical education and are licensed for 5,300 beds. The majority of UCSD inpatients are admitted at UCSD Medical Center, Hillcrest, where a number of regional care centers are located, including San Diego and Imperial counties' only Level I trauma center and burn center. The UCSD Ambulatory Care Center is located across the street from the hospital tower.

In July 1993 a 120-bed general medical-surgical hospital, the John M. and Sally B. Thornton Hospital, opened at UCSD Medical Center, La Jolla, which is located on the La Jolla campus. Adjacent to Thornton Hospital is Perlman Ambulatory Care Center, Moores UCSD Cancer Center, and Shiley Eye Center.

The VA San Diego Medical Center, located adjacent to the School of Medicine campus in La Jolla, is also an important training site. The UCSD School of Medicine's partnership with Children's Hospital and Health Center enables students to treat a significant number of the region's most interesting and complex pediatric patients.

Outpatient experiences include private medical practice, community clinics, and home visitation programs. Students see patients in many of San Diego's hospitals and outpatient facilities, as well as in some of the disadvantaged neighborhoods of San Diego and Baja California, Mexico.

In all of their clinical experiences, UCSD medical students have an opportunity to see how physicians work as a team with physician assistants, nurses, nurse practitioners, laboratory technicians, social workers, physical and occupational therapists, pharmacists, and other health-care professionals to provide health care.

There are many opportunities for students to participate in cutting-edge research in the laboratories of UCSD School of Medicine researchers, as well as in the laboratories of scientists from the general UCSD campus, the VA San Diego Medical Center, the Salk Institute, the Scripps Clinic and Research Foundation, and some of the many private biomedical research companies in the region.

The medical school curriculum provides flexibility so that the individual needs and goals of each student can be met. The curriculum is divided into two major components: the core curriculum and the elective programs.

Elective opportunities constitute a substantial portion. The core curriculum of the first two years is designed to provide each entering student with an essential understanding of the fundamental disciplines underlying modern medicine. The core curriculum of the last two years is composed of the major clinical specialties taught in hospital settings, outpatient situations, and relevant extended-care facilities.

A Medical Scientist Training Program provides the opportunity for a limited number of students to earn both the M.D. and Ph.D. degrees over a six- to seven-year period of study.

The School of Medicine cooperates with the San Diego State University Graduate School of Public Health (SDSU-GSPH) in assisting interested students who wish to pursue a master's degree in public health (M.P.H.) while enrolled in medical school. Students can also receive an M.P.H. at other schools of public health, although a formal agreement exists only with SDSU-GSPH.

The UCSD School of Medicine and the Department of Family and Preventive Medicine jointly offer a master of advanced studies (M.A.S.) in the leadership of health-care organizations. The degree program permits a student to complete the doctor of medicine (M.D.) curriculum and studies leading to a master's degree in the leadership of health-care organizations in a total of five years.

Each student is expected to develop an individualized independent study project in conjunction with a faculty member and to describe it in writing.

Freshman student enrollment is 125, and a total of 566 medical students were enrolled in 2009–10.

SELECTION FACTORS

Selection is based upon the nature and depth of scholarly and extracurricular activities undertaken, academic record, performance on the MCAT, letters of recommendation, and personal interviews.

The Admissions Committee gives serious consideration to only those applicants with above average GPA values and MCAT scores. The School of Medicine is seeking a student body with a broad diversity of backgrounds and interests that reflect our diverse population.
The newest health sciences professional school on the UC San Diego campus is the Skaggs School of Pharmacy and Pharmaceutical Sciences. Approved by the Regents in Summer 2000, the charter class of students was enrolled in fall 2002 and graduated in June 2006. The school provides an innovative curriculum dedicated to educating future pharmacy practitioners to provide the pharmaceutical care needs of our growing and increasingly diverse society. The goal of the doctor of pharmacy curriculum is to prepare students to be leaders in the profession of pharmacy and to provide them with the tools to practice effectively in a wide variety of currently existing and potential roles in academia, hospitals and clinics, long-term facilities and home care, government, health policy, the pharmaceutical industry, and innovative community pharmacy practice settings. It is expected that the emerging fields of pharmacogenomics and bioinformatics will have a profound influence on the future practice of pharmacy, and that graduates of the UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences will be in an excellent position to bring these advances to the patient care setting.

The Skaggs School of Pharmacy and Pharmaceutical Sciences currently enrolls sixty students in each class. The recently completed Pharmaceutical Sciences Building and Health Sciences Education Center house the administrative, teaching, and research facilities of the school.

Rather than duplicate existing departments on the UCSD campus and in the School of Medicine, the faculty of the school draw upon the strengths of the basic and biomedical science departments that have provided an outstanding education to undergraduate, graduate, and medical students for more than thirty years. Faculty from campus departments and the School of Medicine join Skaggs School of Pharmacy and Pharmaceutical Sciences faculty in teaching the preclinical courses in the curriculum. Clinical faculty, who are active practitioners in a variety of medical center, community, and industry locations, provide both classroom instruction as well as student guidance during advanced pharmacy practice clinical experiences.

The curriculum is dynamic, under constant review, and using faculty and student input, updated by interdisciplinary faculty committees. Presently, the four-year curriculum leading to the doctor of pharmacy degree is designed as follows:

In the first year, students are enrolled in courses in anatomy and histology, pharmaceutical chemistry, pharmaceutics, bioinformatics, law and ethics, biostatistics, and an introduction to the practice of pharmacy. Students gain their first exposure to patient care by working alongside medical students in UCSD-sponsored, student-run free medical clinics in San Diego. Students also participate in introductory pharmacy practice experiences in a variety of pharmacy settings to provide an early exposure to the many facets of pharmacy practice. In the second year, pharmacy and first-year medical students are concurrently enrolled in courses that serve as a foundation for understanding disease and disease management. In this unique environment, pharmacy and medical students study cell biology and biochemistry, organ physiology, pharmacology, endocrinology, reproduction, and metabolism. This is an additional step in the development of the collegial relationship the students will encounter in the patient-care setting. Courses specific to the needs of pharmacy students, such as additional course work in pharmacology, drug study design, laboratory medicine, health policy, and pharmacy practice, are also provided. The third year focuses on the application of the information learned in the previous years, with additional course work in neurology, microbiology, pharmacology, drug information, pharmaceutical chemistry, pharmacokinetics, and pharmacogenomics. A major course sequence in drug therapeutics begins in the fall and continues through the third year. This course begins the process of applying the knowledge gained in the basic sciences to the clinical management and care of patients. The fourth year is devoted entirely to advanced pharmacy practice clinical experiences, where students learn to apply the skills and knowledge obtained in the curriculum to a variety of patient care settings. Many of these advanced practice experiences take place at UCSD-affiliated medical centers, such as UCSD Medical Center-Hillcrest, UCSD Medical Center-La Jolla, the Veterans Administration Medical Center in La Jolla, and the San Diego Rady Children’s Hospital and Medical Center. Many other health care facilities throughout the region are also utilized. Not only do students participate in the care of patients in many of the most modern medical facilities in the San Diego area, but they also learn to appreciate the challenges faced in providing care to some of the less advantaged citizens of the region. Both classroom elective courses and advanced practice experience electives provide flexibility for the student to explore the many facets of the profession, and provide opportunity for the curriculum to meet a particular student’s educational goals and objectives.

The San Diego region ranks third in the nation in the development of new biotechnology and the school is developing relationships with this burgeoning biotechnology industry as well as with the pharmaceutical industry on the La Jolla mesa. There are advanced practice and research experiences available to students in these exciting new areas of practice.

The common required and elective course work taken by pharmacy and medical students, and advanced practice clinical experiences, where medical and pharmacy students work closely together, have been created to foster the development of cooperation between the professions as well as to develop an appreciation for the unique roles that each professional provides in the care of patients.

SELECTION FACTORS

The Admissions Committee seeks a diverse pool of applicants who have demonstrated strong academic ability in both the required prerequisite course work and in their entire academic career, and who have a wide breadth of extracurricular interests. In addition, the committee selects applicants for matriculation who have demonstrated the personal qualities of intelligence, maturity, integrity, and dedication to the ideal of service to society, and who are best suited for meeting the educational goals of the school. The ability to express oneself clearly in both oral and written English is essential. The School of Pharmacy and Pharmaceutical Sciences is committed to admitting students with diverse cultural, economic, and social backgrounds. Although grade-point average is an important factor, it is not the sole criterion for acceptance. In addition to intellectual and academic competence, the Admissions Committee considers communication skills, leadership ability, community service, and health care-related experience. Preference for admission is afforded to California residents when all other selection factors are equal, and consideration at that juncture is given only to applicants who are either United States citizens or permanent residents.

All students are enrolled in the full-time, four-year professional program leading to the doctor of pharmacy degree (Pharm.D.). No students in advanced standing, transfer students from other schools of pharmacy, or part-time students are accepted. All students enter at the first-year level.

The faculty of the Skaggs School of Pharmacy and Pharmaceutical Sciences has implemented a seven-year B.S./Pharm.D. program for UCSD undergraduates and a Pharm.D./Ph.D. program. Information on each of these programs is available on the School of Pharmacy Web site.

For additional information about the UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, visit the school Web site, write, call, or e-mail:

- University of California, San Diego
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- 9500 Gilman Dr. # 0657
- La Jolla, CA 92093-0657
- (858) 822-4900
- General E-mail: pharmacy@ucsd.edu
- Admissions Office E-mail: sppsadmissions@ucsd.edu
- http://pharmacy.ucsd.edu
Scripps Institution of Oceanography

For more than a century, Scripps Institution of Oceanography has been dedicated to providing exceptional educational opportunities. Scripps' excellence in scientific research is accompanied by its leadership in education, with undergraduate and graduate courses in a variety of marine and earth science disciplines.

Scripps is one of the oldest, largest, and most important centers for marine and earth science research, education, and public service in the world. Its preeminence in marine and earth sciences is reflective of its excellent programs, distinguished faculty and research scientists, and outstanding facilities.

Scripps was founded in 1903 as an independent biological research laboratory and became an integral part of the University of California in 1912. At that time the laboratory was given the Scripps name in recognition of donors Ellen Browning Scripps and E.W. Scripps.

In all, Scripps occupies fifty-eight buildings on 170 acres along the Pacific coastline below the mesa on which the UC San Diego main campus is located. The institution enrolls more than 220 graduate students, and has over 1,200 staff. Annual expenditures exceed $160 million.

Research at Scripps encompasses physical, chemical, biological, geological, and geophysical studies of the oceans. Among the hundreds of research programs that may be under way at any one time are studies of air-sea interaction, climate prediction, earthquakes, the physiology of marine animals, marine chemistry, beach erosion, the marine food chain, the ecology of marine organisms, the geological history of the ocean basins, and the multidisciplinary aspects of global change and the environment.

Scripps operates four ships and one floating instrument platform in support of oceanographic research programs conducted by Scripps researchers and oceanographers from other institutions throughout the world. Cruises range from local, limited-objective trips to far-reaching expeditions in the world's oceans. During a student's tenure at Scripps, he or she will have the opportunity to go to sea on Scripps' research vessels as well as on those from other oceanographic institutions.

Investigations supported by contracts and grants—primarily federal—cover a wide latitude of marine research. Scripps is organized into three research administrative sections: biology, earth sciences, and oceans and atmosphere. The three sections are composed of smaller disciplinary and multidisciplinary research units: the Center for Marine Biotechnology and Biomedicine; Climate, Atmospheric Science, and Physical Oceanography Division; Geosciences Research Division; Integrative Oceanography Division; Marine Biology Research Division; Marine Physical Laboratory; and the La Jolla laboratory of the University of California's Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics. Other specialized groups include the Center for Marine Biodiversity and Conservation; Center for Observations, Modeling and Prediction at Scripps; and the Scripps Genome Center.

The California Sea Grant College Program, a systemwide program with thirty to fifty projects and approximately forty trainees supported on California campuses and in several specialized research units, is headquartered at Scripps. The Southwest Fisheries Science Center (SWFSC), located on the Scripps campus, is one of thirty major laboratories and centers operated by the National Marine Fisheries Service, a component of the National Oceanic and Atmospheric Administration of the U.S. Department of Commerce. Also, the Inter-American Tropical Tuna Commission is colocated at SWFSC.

A ship operations and marine technical support unit provides essential services and facilities to all research units of the institution.

Birch Aquarium at Scripps provides a wide variety of educational courses in the marine sciences for students from primary grades to high school level. UCSD students may become involved in work-study programs or serve as volunteers or aquarist trainees. A limited number of students can be accommodated for a four-unit course in independent study by arrangement with a faculty member and the aquarium director. Aquarium staff also teach a UCSD graduate/undergraduate course called Communicating Ocean Sciences to Informal Audiences (COSIA) once each academic year. The aquarium facility's resources include natural habitat groupings of marine life from local and Gulf of California waters; many of these marine groups are on display in the aquarium. The museum exhibits present basic oceanography and earth science concepts and explain research undertaken at Scripps. The aquarium is open from 9:00 a.m. to 5:00 p.m. daily.

Scripps' educational program includes undergraduate and graduate education. Approximately ninety professors are complemented by an academic staff of more than 200 scientists. Scripps offers an undergraduate degree (B.S.) in earth sciences, a contiguous B.S./M.S. degree in earth sciences, and an interdisciplinary minor in marine science. Many Scripps scientists also teach courses in undergraduate programs such as biology, engineering, and environmental systems.

In addition, the Scripps Center for Marine Biodiversity and Conservation, in cooperation with UC San Diego's Extended Studies and Public Programs, has established a program leading to a master of advanced studies in marine biodiversity and conservation. The Scripps graduate program has grown hand in hand with the research programs. Graduate students are typically admitted as candidates for a Ph.D. degree. All educational activities are located in the Scripps Department. Graduate educational programs are divided into three programs: Climate, Oceans, and Atmosphere (consisting of the Applied Ocean Science, Climate Sciences, and Physical oceanography curricular groups); Geosciences of the Earth, Oceans and Planets (consisting of the Geological Sciences, Geophysics, and Marine Chemistry and Geochemistry curricular groups); and Ocean Biosciences (consisting of the Biological Oceanography and Marine Biology curricular groups).

Graduate students enter oceanography with extremely varied interests and backgrounds—ecologists, geologists, chemists, molecular biologists, physicists, engineers, and theorists from the United States and many foreign countries. One thing they have in common, however, is that they come to Scripps with a very strong understanding of science. Most students select positions as research assistants when they enter the program—a practice that not only gives them an early involvement with research, but also provides salaries. The student-faculty ratio at Scripps is about two to one; consequently, classes are small, and the student has the opportunity to work closely with his or her thesis advisor.

Oceanography and earth sciences are interdisciplinary fields that allow for informal exchange and interaction on a variety of levels.

While at Scripps, students have for their use some of the nation's most sophisticated and complete special laboratories and facilities for oceanographic and earth science studies covering a wide range of disciplines from biology and physiology to geophysics and atmospheric sciences. Scripps offers facilities for detailed experimental studies, including two large experimental aquarium rooms. The Marine Science Development Center is equipped with a wide selection of materials and hardware for self-use or assistance by engineering staff who can provide full or assisted design and engineering capabilities in support of research projects for Scripps faculty, staff, and students. The Hydraulics Laboratory features a 90-foot stratified flow channel and a 150-foot wind-wave channel, and the Unified Laboratory Facility has scanning electron microscopes and other high-precision instruments. Among the many computer resources is access to the San Diego Supercomputer Center. The Scripps Library is the University of California's major collection of marine science materials, with outstanding collections in oceanography, marine biology, and marine technology. It also specializes in atmospheric sciences, fisheries, geology, geophysics, and zoology. The various marine life and geological specimens housed in Scripps' Oceanographic Collections comprise a vast and unique "library" available for scientific studies both within Scripps and at other institutions and are the world's largest university-based oceanographic collections. Two underwater research areas that are part of the UC Natural Reserve System are adjacent to the Scripps campus and the institution has a 1,084-foot research pier that enables a scientific diving program, small boat deployment, and research and data collection efforts.

In 2009, Scripps opened the Robert Paine Scripps Forum for Science, Society and the Environment, a stunning oceanfront facility serving the Scripps community and others for meetings, events, and conferences.

The combination of a large scientific staff and extensive facilities at Scripps provides an extraordinary opportunity for each student to enjoy close contact with existing oceanographic concepts and active participation in research.

See "Scripps Institution of Oceanography" in "Courses, Curricula, and Programs of Instruction" for
further details on study programs, requirements, degrees, and courses.
For additional information on the Scripps graduate program, write to
Graduate Student Information
Scripps Institution of Oceanography
University of California, San Diego
9500 Gilman Dr. # 0208
La Jolla, CA 92039-0208
For additional information on undergraduate and graduate programs at Scripps, see
The Graduate School of International Relations and Pacific Studies (IR/PS), at the University of California, San Diego, was created in 1986 as the University of California's only professional school of international affairs. The school is unique in its geographical focus on the Pacific (the Americas and Asia). IR/PS is the only professional program in the United States to concentrate exclusively on the diverse political and economic systems of this region.

The school's programs have been developed in response to the increasing importance of the Pacific in global economic and political affairs. When IR/PS was founded, the globe was still locked in the Atlantic-centric world of the cold war. Today, we see the emergence of nations such as China, Brazil, Korea, Singapore, and Mexico as important players in a globalized world. As a result, professionals who can understand and work in complex international environments are needed in both the public and private sectors. While previously looking to Europe as the site of its primary commercial, financial, and strategic interests, the United States is now shifting its attention westward toward the Pacific—a likely source of both extraordinary prospects and substantial challenges in this century.

The school's primary objectives are to prepare students with an interest in these regions for political careers to understand decision-making in public management, government to appreciate the interests of the region. Programs of public outreach, including visiting lecturers, research seminars, and roundtable discussions, add to the information available to citizens and interest groups about international issues that affect their lives.

DEGREE PROGRAMS

The degrees offered by the school include a professional Master of Pacific International Affairs (M.P.I.A.); a Master of Advanced Studies in International Affairs (M.A.S.-I.A.); a Doctor of Philosophy (Ph.D.) in Political Science and International Affairs offered jointly with the Department of Political Science and a Doctor of Philosophy (Ph.D.) in Economics and International Affairs offered jointly with the Department of Economics; and a Bachelor of Arts/Master of International Affairs (B.A./M.I.A.) offered jointly with the International Studies Program.

Training emphasizes international relations, economics and management, public policy, country and regional studies, and languages of the region.

The B.A./M.I.A. and M.P.I.A. programs are distinctive in several ways.

1. **Expose students to the perspectives of both private business and public policymaking.**
2. **Offer specialized training in international politics, economics, management, environmental policy, public policy, and international development.**
3. **Provide language training necessary for professionals specializing in the countries of the Pacific.**
4. **Require students to focus their studies on the politics, culture, economics, and language of one Pacific country or region.**
5. **Create a laboratory for comparative analysis of economic management, foreign relations, policymaking, and development in the diverse nations of the Pacific.**

The M.A.S.-I.A. program is designed for midcareer professionals who seek specialized and advanced training in the field of international affairs. The program will complement their professional experience and prepare them to assume senior leadership positions in their fields. The program exposes students to the perspectives of both private business and public policymaking.

THE FACULTY

IR/PS has attracted an interdisciplinary faculty from such fields as economics, international relations, comparative politics, public policy, and linguistics. The various programs draw upon and contribute to research which focuses on the regions of the Pacific and on major issues that affect the region.
IR/PS places special emphasis on research in and teaching of topics of particular importance to the program. These topics currently include:

1. Studies of the Pacific as a system, including the interaction of the countries and regions within it (e.g., Latin American–Japanese economic relations, U.S. relations with both East Asia and Latin America, and the placement of the Pacific in the global system of international relations, both contemporary and historical).

2. Studies in international economics, management, and finance, including such subject areas as international competition, comparative industrial organizations, international trade and development, industrial relations, technological innovation, international financial structures, policies, institutions, and historical patterns of development.

3. Comparison of the trajectories of socioeconomic development among the countries of Asia and Latin America, including the exploration of differences and similarities in state-society relations, culture, entrepreneurship, linkage to the global economy, and geopolitical position.

4. Comparative analysis of patterns of policy-making in the countries of the Pacific region to understand how different governmental structures, economic systems, and social group interests shape the policy process and influence policy choices in such areas as budget allocation, regulation of industry, and foreign trade.

For further information, contact:

Office of Admissions
Graduate School of International Relations and Pacific Studies,
UC San Diego
9500 Gilman Dr. # 0520
La Jolla, CA 92093-0520
(858) 534-5914
E-mail: irps-apply@ucsd.edu
Web site: http://irps.ucsd.edu
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
<th>College</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abarbanel, Henry D. J.</td>
<td>Professor, Physics</td>
<td>Revelle</td>
<td></td>
</tr>
<tr>
<td>Abrajan, Marisa A.</td>
<td>Assistant Professor,</td>
<td>Political Science</td>
<td>Warren</td>
</tr>
<tr>
<td>Abramson, Ian S.</td>
<td>Professor, Mathematics</td>
<td>Muir</td>
<td></td>
</tr>
<tr>
<td>Acampora, Anthony</td>
<td>Professor Emeritus,</td>
<td>Electrical and Computer Engineering</td>
<td>Revelle</td>
</tr>
<tr>
<td>Ackerman, Farrell</td>
<td>Professor, Linguistics</td>
<td>Marshall</td>
<td></td>
</tr>
<tr>
<td>Adams, Joseph A.</td>
<td>Professor, Pharmacology</td>
<td>School of Medicine</td>
<td></td>
</tr>
<tr>
<td>Adida, Claire</td>
<td>Assistant Professor,</td>
<td>Political Science</td>
<td></td>
</tr>
<tr>
<td>Adler, Amy</td>
<td>Associate Professor,</td>
<td>Visual Arts</td>
<td>Revelle</td>
</tr>
<tr>
<td>Adler, Steven</td>
<td>Professor/Provost,</td>
<td>Theatre and Dance</td>
<td>Warren</td>
</tr>
<tr>
<td>Agler, Jim</td>
<td>Professor, Mathematics</td>
<td>Muir</td>
<td></td>
</tr>
<tr>
<td>Agnew, Duncan C.</td>
<td>Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alac, Morana</td>
<td>Assistant Professor,</td>
<td>Communication</td>
<td>Revelle</td>
</tr>
<tr>
<td>Alexander, Amy J.</td>
<td>Associate Professor,</td>
<td>Visual Arts</td>
<td>Marshall</td>
</tr>
<tr>
<td>Alexander, Nicholas M.</td>
<td>Professor Emeritus,</td>
<td>Pathology, School of Medicine</td>
<td></td>
</tr>
<tr>
<td>Algaze, Guillermo</td>
<td>Professor, Anthropology</td>
<td>Roosevelt</td>
<td></td>
</tr>
<tr>
<td>Ali, Sayed Nageeb</td>
<td>Assistant Professor,</td>
<td>Economics</td>
<td>Sixth</td>
</tr>
<tr>
<td>Allen, Eric</td>
<td>Assistant Professor,</td>
<td>Scripps Institution of Oceanography/Biological Sciences—Molecular Biology, Scripps Institution of Oceanography/Muir</td>
<td></td>
</tr>
<tr>
<td>Allison, Henry E.</td>
<td>Professor Emeritus,</td>
<td>Philosophy</td>
<td>Revelle</td>
</tr>
<tr>
<td>Allison, William S.</td>
<td>Professor Emeritus,</td>
<td>Chemistry and Biochemistry</td>
<td>Muir</td>
</tr>
<tr>
<td>Almutairi, Adah</td>
<td>Assistant Professor,</td>
<td>Skaggs School of Pharmacy and Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences</td>
<td></td>
</tr>
<tr>
<td>Aluwihare, Lihini L.</td>
<td>Associate Professor,</td>
<td>Scripps Institution of Oceanography, Scripps Institution of Oceanography</td>
<td></td>
</tr>
<tr>
<td>Alvarez, Luis</td>
<td>Associate Professor,</td>
<td>History</td>
<td>Sixth</td>
</tr>
<tr>
<td>Alvarez, Robert R.</td>
<td>Professor, Ethnic Studies</td>
<td>Aerospace Engineering, Roosevelt</td>
<td></td>
</tr>
<tr>
<td>Amir, On</td>
<td>Assistant Professor,</td>
<td>Rady School of Management</td>
<td></td>
</tr>
<tr>
<td>Anagnostaras, Stephan</td>
<td>Assistant Professor,</td>
<td>Psychology</td>
<td>Warren</td>
</tr>
<tr>
<td>Anagnostopoulos, Georgios H.</td>
<td>Professor, Philosophy</td>
<td>Warren</td>
<td></td>
</tr>
<tr>
<td>Ancoli-Israel, Sonia</td>
<td>Professor-in-Residence</td>
<td>Psychiatry, School of Medicine</td>
<td></td>
</tr>
<tr>
<td>Anderson, Donald W.</td>
<td>Professor Emeritus,</td>
<td>Computer Science and Engineering/Mathematics, Muir</td>
<td></td>
</tr>
<tr>
<td>Anderson, Michael</td>
<td>Lecturer (PSOE),</td>
<td>Psychology</td>
<td>Muir</td>
</tr>
<tr>
<td>Anderson, Norman H.</td>
<td>Professor Emeritus,</td>
<td>Psychology</td>
<td>Muir</td>
</tr>
<tr>
<td>Anderson, Patrick W.</td>
<td>Assistant Professor,</td>
<td>Communication</td>
<td>Sixth</td>
</tr>
<tr>
<td>Anderson, Victor C.</td>
<td>Professor Emeritus,</td>
<td>Electrical and Computer Engineering/Scripps Institution of Oceanography, Scripps Institution of Oceanography/Muir</td>
<td></td>
</tr>
<tr>
<td>Andreoni, James R.</td>
<td>Professor, Economics</td>
<td>Marshall</td>
<td></td>
</tr>
<tr>
<td>Anstis, Stuart</td>
<td>Professor, Psychology</td>
<td>Roosevelt</td>
<td></td>
</tr>
<tr>
<td>Antin, David A.</td>
<td>Professor Emeritus,</td>
<td>Visual Arts</td>
<td>Muir</td>
</tr>
<tr>
<td>Antin, Eleanor</td>
<td>Professor Emerita,</td>
<td>Visual Arts</td>
<td>Muir</td>
</tr>
<tr>
<td>Antonovics, Kate</td>
<td>Lecturer (SOE),</td>
<td>Economics</td>
<td>Muir</td>
</tr>
<tr>
<td>Applebaum, Mark</td>
<td>Professor, Psychology</td>
<td>Sixth</td>
<td></td>
</tr>
<tr>
<td>Arias-Castro, Ery</td>
<td>Assistant Professor,</td>
<td>Mathematics</td>
<td>Warren</td>
</tr>
<tr>
<td>Armantrout, Rae</td>
<td>Professor, Literature</td>
<td>Warren</td>
<td></td>
</tr>
<tr>
<td>Armli, Laurence</td>
<td>Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armour, Jon Christopher</td>
<td>Lecturer (SOE),</td>
<td>Biological Sciences—Neurobiology</td>
<td>Revelle</td>
</tr>
<tr>
<td>Arneson, Richard J.</td>
<td>Professor, Philosophy</td>
<td>Marshall</td>
<td></td>
</tr>
<tr>
<td>Arnold, James R.</td>
<td>Professor Emeritus,</td>
<td>Chemistry and Biochemistry</td>
<td>Revelle</td>
</tr>
<tr>
<td>Aroian, Raffi V.</td>
<td>Professor, Biological Sciences—Cell and Developmental Biology, Marshall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aron, Adam R.</td>
<td>Assistant Professor,</td>
<td>Psychology</td>
<td>Marshall</td>
</tr>
<tr>
<td>Arovas, Daniel P.</td>
<td>Professor, Physics</td>
<td>Revelle</td>
<td></td>
</tr>
<tr>
<td>Arrenhuius, Gustaf</td>
<td>Professor Emeritus,</td>
<td>Scripps Institution of Oceanography, Scripps Institution of Oceanography</td>
<td></td>
</tr>
<tr>
<td>Arvaniti, Amalia</td>
<td>Associate Professor,</td>
<td>Linguistics</td>
<td>Warren</td>
</tr>
<tr>
<td>Arya, Gaurav</td>
<td>Assistant Professor,</td>
<td>Mechanical and Aerospace Engineering, Revelle</td>
<td></td>
</tr>
<tr>
<td>Asaro, Robert J.</td>
<td>Professor, Structural Engineering, Revelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asbeck, Peter M.</td>
<td>Professor, Electrical and Computer Engineering, Marshall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attiyeh, Richard E.</td>
<td>Professor Emeritus,</td>
<td>Economics</td>
<td>Revelle</td>
</tr>
<tr>
<td>August, Terrence W.</td>
<td>Assistant Professor,</td>
<td>Rady School of Management</td>
<td></td>
</tr>
<tr>
<td>Azam, Farooq</td>
<td>Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backus, George E.</td>
<td>Professor Emeritus,</td>
<td>Scripps Institution of Oceanography, Scripps Institution of Oceanography</td>
<td></td>
</tr>
<tr>
<td>Bada, Jeffrey L.</td>
<td>Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baden, Scott B.</td>
<td>Professor, Computer Science and Engineering, Sixth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bafna, Vineet</td>
<td>Professor, Computer Science and Engineering, Warren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bailey, Frederick G.</td>
<td>Professor Emeritus,</td>
<td>Anthropology</td>
<td>Muir</td>
</tr>
<tr>
<td>Baird, Stephen M.</td>
<td>Professor of Clinical Pathology Emeritus, Pathology, School of Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baker, Dewleen G.</td>
<td>Associate Professor-in-Residence, Psychiatry, School of Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baker, Timothy S.</td>
<td>Professor, Biological Sciences—Molecular Biology/Chemistry and Biochemistry, Roosevelt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakovic, Eric</td>
<td>Associate Professor,</td>
<td>Linguistics</td>
<td>Muir</td>
</tr>
<tr>
<td>Balog, Jozsef</td>
<td>Associate Professor,</td>
<td>Mathematics</td>
<td>Warren</td>
</tr>
<tr>
<td>Balzano, Gerald J.</td>
<td>Associate Professor,</td>
<td>Music, Sixth</td>
<td></td>
</tr>
<tr>
<td>Bandaru, Prabhakar</td>
<td>Associate Professor,</td>
<td>Mechanical and Aerospace Engineering, Sixth</td>
<td></td>
</tr>
<tr>
<td>Bank, Randolph E.</td>
<td>Professor, Mathematics</td>
<td>Warren</td>
<td></td>
</tr>
<tr>
<td>Bauouendi, M. Salah</td>
<td>Professor, Mathematics</td>
<td>Warren</td>
<td></td>
</tr>
<tr>
<td>Baranga, Thomas</td>
<td>Assistant Professor,</td>
<td>Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies</td>
<td></td>
</tr>
<tr>
<td>Barbeau, Katherine</td>
<td>Associate Professor,</td>
<td>Scripps Institution of Oceanography, Scripps Institution of Oceanography</td>
<td></td>
</tr>
<tr>
<td>Banner, David A.</td>
<td>Assistant Professor,</td>
<td>Psychology</td>
<td>Revelle</td>
</tr>
<tr>
<td>Barnes, Eva W.</td>
<td>Senior Lecturer (SOE),</td>
<td>Theatre and Dance</td>
<td>Marshall</td>
</tr>
<tr>
<td>Barrett, Kim</td>
<td>Professor/Dean,</td>
<td>Medicine/Graduate Studies, School of Medicine</td>
<td></td>
</tr>
<tr>
<td>Bartlett, Douglas H.</td>
<td>Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bassov, Dimitri N.</td>
<td>Professor, Physics</td>
<td>Warren</td>
<td></td>
</tr>
<tr>
<td>Bazargan, Saba</td>
<td>Assistant Professor,</td>
<td>Philosophy</td>
<td>Warren</td>
</tr>
<tr>
<td>Bazilevs, Juris</td>
<td>Assistant Professor,</td>
<td>Structural Engineering, Warren</td>
<td></td>
</tr>
<tr>
<td>Bear, Donald V. T.</td>
<td>Professor Emeritus,</td>
<td>Economics</td>
<td>Revelle</td>
</tr>
<tr>
<td>Beare, Brendan</td>
<td>Assistant Professor,</td>
<td>Economics</td>
<td>Sixth</td>
</tr>
<tr>
<td>Bechtel, William</td>
<td>Professor, Philosophy</td>
<td>Revelle</td>
<td></td>
</tr>
</tbody>
</table>
Beg, Farhat, Professor, Mechanical and Aerospace Engineering, Roosevelt
Behar, Jack, Associate Professor Emeritus, Literature, Revelle
Belew, Richard K., Professor, Cognitive Science, Marshall
Bellare, Mihir, Professor, Computer Science and Engineering, Muir
Belongie, Serge J., Associate Professor, Computer Science and Engineering, Muir
Bender, Edward A., Professor Emeritus, Mathematics, Muir
Benirschke, Kurt, Professor Emeritus, Reproductive Medicine/Pathology, School of Medicine
Benson, Andrew A., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Benson, David J., Professor, Structural Engineering, Marshall
Berg, Darwin K., Professor, Biological Sciences—Neurobiology, Warren
Bergen, Benjamin K., Associate Professor, Cognitive Science, Muir
Berger, Wolfgang H., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Berkowitz, Ami E., Professor Emeritus, Physics, Warren
Berman, Eli, Associate Professor, Economics, Sixth
Berman, Francine D., Professor, Computer Science and Engineering, Sixth
Berman, Ronald S., Professor Emeritus, Literature, Muir
Bertram, H. Neal, Professor Emeritus, Electrical and Computer Engineering, Revelle
Bertram, Timothy H., Assistant Professor, Chemistry and Biochemistry, Muir
Betts, Julian, Professor, Economics, Marshall
Bewley, Thomas R., Associate Professor, Mechanical and Aerospace Engineering, Sixth
Bharadwaj, Prashant, Assistant Professor, Economics, Roosevelt
Bier, Ethan, Professor, Biological Sciences—Cell and Developmental Biology, Sixth
Biernacki, Richard, Associate Professor, Sociology, Roosevelt
Biss, Frank P., Associate Professor, History, Warren
Bigby, Timothy D., Professor of Clinical Medicine, Medicine, School of Medicine
Binder, Amy, Associate Professor, Sociology, Marshall
Bitmead, Robert R., Professor, Mechanical and Aerospace Engineering, Warren
Blair-Loy, Mary, Associate Professor, Sociology, Sixth
Blanco, John D., Associate Professor, Literature, Muir
Blanco-Aguinaga, Carlos, Professor Emeritus, Literature, Marshall
Blantz, Roland C., Professor, Medicine, School of Medicine
Bloor, Colin M., Professor Emeritus, Pathology, School of Medicine
Blumberg, Rae L., Professor Emerita, Sociology, Marshall
Boateng, Akosua Boatema, Assistant Professor, Communication, Muir
Bohn, Roger E., Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
Bond, F. Thomas, Professor Emeritus, Chemistry and Biochemistry, Revelle
Borgo, David, Associate Professor, Music, Warren
Boss, Gerry R., Professor, Medicine, School of Medicine
Both, Andrei, Professor, Theatre and Dance, Marshall
Bourne, Philip E., Professor, Pharmacology, School of Medicine
Bowles, Kenneth L., Professor Emeritus, Computer Science and Engineering, Muir
Brace, Robert A., Professor Emeritus, Reproductive Medicine, School of Medicine
Bradbury, Jack W., Professor Emeritus, Biological Sciences—Ecology, Behavior, and Evolution, Muir
Braff, David L., Professor, Psychiatry, School of Medicine
Branson, James G., Professor, Physics, Marshall
Braswell, Geoffrey E., Associate Professor, Anthropology, Revelle
Bratton, Benjamin, Associate Professor, Theatre and Dance, Sixth
Brenner, Suzanne A., Associate Professor, Anthropology, Warren
Bridges-Kronick, Amy, Professor, Political Science, Marshall
Briggs, Steven P., Professor, Biological Sciences—Cell and Developmental Biology, Revelle
Brink, David O., Professor, Philosophy, Muir
Britton, Karen T., Professor-in-Residence Emerita, Psychiatry, School of Medicine
Bronicki, William, Associate Professor, Literature, Warren
Brody, Stuart, Professor, Biological Sciences— Molecular Biology, Muir
Brown, Barry Alan, Associate Professor, Communication, Sixth
Brown, Gregory, Professor-in-Residence, Psychiatry, School of Medicine
Brown, Joan Heller, Professor, Pharmacology, School of Medicine
Brown, Kevin M., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Brown, Sandra A., Professor, Psychology/Psychiatry, Marshall/School of Medicine
Brown, Sheldon G., Professor, Visual Arts, Sixth
Brown, Willie C., Associate Professor Emeritus, Biological Sciences—Cell and Developmental Biology, Marshall
Broz, J. Lawrence, Associate Professor, Political Science, Revelle
Brueckner, Keith A., Professor Emeritus, Physics, Revelle
Brunton, Laurence L., Professor, Pharmacology/Medicine, School of Medicine
Brydges, Stacey, Lecturer (PSOE), Chemistry and Biochemistry, Muir
Bryson, Norman, Professor, Visual Arts, Muir
Buckingham, Michael J., Professor, Marine Physical Laboratory, Scripps Institution of Oceanography
Buckwalter, James F., Assistant Professor, Electrical and Computer Engineering, Roosevelt
Buji, Jack D., Assistant Professor, Pathology, School of Medicine
Bunch, James R., Professor Emeritus, Mathematics, Warren
Burbridge, E. Margaret, University Professor Emerita, Center for Astrophysics and Space Sciences, Revelle
Burgasser, Adam J., Assistant Professor, Physics, Muir
Burkart, Michael D., Associate Professor, Chemistry and Biochemistry, Warren
Burkhard, Walter A., Professor, Computer Science and Engineering, Warren
Burr, Anthony Ivan, Assistant Professor, Music, Marshall
Burrett, Alan, Professor, Theatre and Dance, Sixth
Burton, Ronald S., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Buss, Samuel R., Professor, Mathematics, Roosevelt
Butler, Madeline, Lecturer (SOE), Biological Sciences—Neurobiology, Revelle
Butov, Leonid, Professor, Physics, Warren
Bynum, Sarah Shun-lien, Professor, Literature, Marshall

C

Caballero, Gabriela, Assistant Professor, Linguistics
Cabrales, Pedro, Assistant Professor, Bioengineering
Caciola, Nancy, Associate Professor, History, Revelle
Calcutt, Nigel A., Professor, Pathology, School of Medicine
Callender, Craig A., Professor, Philosophy, Muir
Cancel, Robert, Associate Professor, Literature, Marshall
Cande, Steven C., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Caponigro, Ivano, Assistant Professor, Linguistics, Sixth
Careathers, John M., Professor, Medicine, School of Medicine
Roosevelt, James, Associate Professor, Theatre and Dance, Warren

Carson, Dennis A., Professor, Medicine, School of Medicine

Carson, Richard T., Jr., Professor, Economics, Muir

Carter, J. Lawrence, Professor Emeritus, Computer Science and Engineering, Revelle

Cartwright, Lisa, Professor, Communication, Warren

Cartwright, Nancy D., Professor, Philosophy, Roosevelt

Carver, Leslie J., Associate Professor, Psychology, Roosevelt

Case, Ted J., Professor Emeritus, Biological Sciences—Ecology, Behavior, and Evolution, Revelle

Casero, Marjorie C., Professor Emerita/Vice Chancellor Emerita, Chemistry and Biochemistry/Academic Affairs, Roosevelt

Cassidy, Steven D., Professor, Literature, Roosevelt

Castillo, Paterno R., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Castro, Robert J., Assistant Professor, Theatre and Dance, Sixth

Cattolica, Robert J., Professor, Mechanical and Aerospace Engineering, Warren

Cauwenberghs, Gert, Professor, Biological Sciences—Neurobiology, Marshall

Cavanee, Webster K., Professor, Medicine, School of Medicine

Cespedes, Guillermo, Professor Emeritus, History, Revelle

Cessi, Paola, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Cha, Jennifer, Assistant Professor, Nanoengineering, Sixth

Champonnois, Sylvain, Assistant Professor, Rady School of Management, Rady School of Management

Chandler, Marsha A., Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies

Chandler, William M., Professor, Political Science, Roosevelt

Chang, William S. C., Professor Emeritus, Electrical and Computer Engineering, Warren

Chao, Lin, Professor, Biological Sciences—Ecology, Behavior, and Evolution, Warren

Charles, Christopher D., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Chau, Pao C., Professor, Mechanical and Aerospace Engineering, Revelle

Chau, Paul M., Associate Professor, Electrical and Computer Engineering, Revelle

Checkley, David M., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Chen, Joseph C. Y., Professor Emeritus, Physics, Roosevelt

Chen, Ju, Professor, Medicine, School of Medicine

Chen, Matthew Y. C., Professor Emeritus, Linguistics, Muir

Chen, Renkun, Assistant Professor, Mechanical and Aerospace Engineering, Revelle

Cheng, Chung-Kuan, Professor, Computer Science and Engineering, Muir

Cheng, Li-Tien, Associate Professor, Mathematics, Roosevelt

Chiba, Andrea, Associate Professor, Cognitive Science, Revelle

Chien, Shu, Professor, Bioengineering/Medicine, Marshall/School of Medicine

Childs, Dennis Ray, Assistant Professor, Literature, Warren

Chilukuri, Lakshmi, Lecturer (PSOE), Biological Sciences—Molecular Biology, Muir

Chisholm, Andrew, Professor, Biological Sciences—Neurobiology, Roosevelt

Chodorow, Stanley A., Professor Emeritus, History, Revelle

Choijker, Mario, Professor-in-Residence, Medicine, SOM

Chow, Bennett, Professor, Mathematics, Warren

Christenson, Nicholas, Professor, Psychology, Roosevelt

Christman, Karen L., Assistant Professor, Bioengineering, Roosevelt

Churchland, Patricia S., Professor Emerita, Philosophy, Muir

Churchland, Paul M., Professor Emeritus, Philosophy, Warren

Cicourel, Aaron V., Professor Emeritus, Cognitive Science/Sociology, Revelle

Clancy, Liam P., Assistant Professor, Theatre and Dance, Revelle

Clark, Leigh B., Professor Emeritus, Chemistry and Biochemistry, Revelle

Cleland, Elsa, Assistant Professor, Biological Sciences—Ecology, Behavior, and Evolution, Muir

Cleveland, Don W., Professor, Medicine/Neurosciences/Cellular and Molecular Medicine, School of Medicine

Cohen, Alan J.-J., Professor, Literature, Muir

Cohen, Harold, Professor Emeritus, Visual Arts, Muir

Cohen, Jonathan D., Professor, Philosophy, Marshall

Cohen, Richard S., Associate Professor, Literature, Roosevelt

Cohen, Seth, Associate Professor, Chemistry and Biochemistry, Warren

Coil, Alison, Assistant Professor, Physics, Sixth

Cole, Michael, University Professor, Communication, Roosevelt

Coleman, Aaron B., Lecture (PSOE), Biological Sciences—Molecular Biology, Roosevelt

Coles, William A., Professor, Electrical and Computer Engineering, Muir

Comiso, Ellen T., Professor, Political Science, Roosevelt

Concha, Jaime, Professor, Literature, Muir

Conlisk, John, Professor Emeritus, Economics, Revelle

Conn, Robert W., Professor Emeritus, Mechanical and Aerospace Engineering, Warren

Constable, Catherine G., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Constable, Steven, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Conte, Joel P., Professor, Structural Engineering, Warren

Continietti, Robert E., Professor, Chemistry and Biochemistry, Warren

Cooper, Charles R., Professor Emeritus, Literature, Marshall

Corbeil, Lynette B., Professor, Pathology, School of Medicine

Cornelius, Wayne A., Professor, Political Science, Roosevelt

Corrigan, Mary K., Associate Professor Emerita, Theatre and Dance, Warren

Cortes, Jorge, Associate Professor, Mechanical and Aerospace Engineering, Six/Cosman, Pamela, Professor, Electrical and Computer Engineering, Marshall

Cottrell, Garrison W., Professor, Computer Science and Engineering, Revelle

Coulson, Seana, Associate Professor, Cognitive Science, Sixth

Courchesne, Eric, Professor, Neurosciences, School of Medicine

Covell, James W., Professor Emeritus, Medicine, School of Medicine

Cowhey, Peter F., Professor/Dean, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies

Cox, Charles S., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Cox, Stephen D., Professor, Literature, Revelle

Craig, Ann L., Associate Professor Emerita, Political Science, Roosevelt

Crandall, Jordan, Associate Professor, Visual Arts, Sixth

Crawford, Nigel, Professor, Biological Sciences—Cell and Developmental Biology, Marshall

Crawford, Vincent P., Professor Emeritus, Economics, Warren
Cree, Sarah C., Assistant Professor, Cognitive Science, Revelle
Crowell, John E, Professor, Chemistry and Biochemistry, Revelle
Crowne, David K., Associate Professor Emeritus, Literature, Revelle
Crutzen, Paul J., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Cruz, Edwin Teddy, Professor, Visual Arts, Muir
Cruz, René L, Professor, Electrical and Computer Engineering, Marshall
Csordas, Thomas, Professor, Anthropology, Muir
Cullen, Julie B., Associate Professor, Economics, Marshall
Curiel, Anthony, Associate Professor Emeritus, Theatre and Dance, Marshall
Curray, Joseph R., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Curtis, Charles R., Professor, Music, Marshall
Czworkowski, John, Professor Emeritus, Music, Muir

Deak, Gedeon O., Associate Professor, Cognitive Science, Roosevelt
Deftos, Leonard J., Professor-in-Residence, Medicine, School of Medicine
Del Alamo, Juan, Assistant Professor, Mechanical and Aerospace Engineering, Roosevelt
Delis, Dean C., Professor-in-Residence, Psychiatry, School of Medicine
Delson, Nathan J., Lecturer (SOE), Mechanical and Aerospace Engineering, Sixth
Deutsch, Alin, Associate Professor, Computer Science and Engineering, Warren
Deutsch, Diana, Professor Emerita, Psychology, Warren
Deutsch, J. Anthony, Professor Emeritus, Psychology, Muir/School of Medicine
Dey, Sugit, Professor, Electrical and Computer Engineering, Muir
Di Ventura, Massimiliano, Professor, Physics, Roosevelt
Diamond, Patrick H., Professor, Physics, Roosevelt
Diaz-Cayeros, Alberto, Associate Professor, Graduate School of International Relations and Pacific Studies, Roosevelt
Dickson, Andrew, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Dijkstra, Abraham J., Professor Emeritus, Literature, Revelle
Dillmann, Wolfgang H., Professor, Medicine, School of Medicine
D kmsdale, Joel E., Professor-in-Residence, Psychiatry, School of Medicine
Dixson, Jack, Professor, Pharmacology/Cellular and Molecular Medicine, School of Medicine/Warren
Dobkins, Karen, Professor, Psychology, Revelle
Dolan, Judith A., Professor, Theatre and Dance, Muir
Dominguez, Ricardo, Associate Professor, Visual Arts, Marshall
Donnelly, Kyle, Professor, Theatre and Dance, Warren
Donoghue, Daniel J., Professor, Chemistry and Biochemistry, Revelle/School of Medicine
Doolittle, Russell F., Professor Emeritus, Chemistry and Biochemistry/Biological Sciences—Molecular Biology, Revelle/School of Medicine
Doppelt, Gerald D., Professor, Philosophy, Warren
Dorman, LeRoy M., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Dorr, Kirstie A., Assistant Professor, Ethnic Studies, Marshall
Dorrestein, Pieter, Assistant Professor, Skaggs School of Pharmacy and Pharmaceutical Sciences/Chemistry and Biochemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences/Sixth
Douglas, Jack D., Professor Emeritus, Sociology, Muir
Dowdy, Steven F., Professor, Cellular and Molecular Medicine, School of Medicine
Drake, Paul W., Professor/Senior Vice Chancellor, Political Science/Academic Affairs, Warren
Dresser, Mark, Professor, Music, Warren
Driscoll, C. Fred, Professor, Physics, Warren
Driscoll, Neal W., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Driver, Bruce K., Professor, Mathematics, Marshall
Dryden, Deborah M., Professor Emerita, Theatre and Dance, Muir
Dubin, Daniel H., Professor, Physics, Muir
Dubnov, Shlomo, Associate Professor, Music, Sixth
Duenas, Alex, Professor Emeritus, Architecture, Muir
Dunseath, Thomas K., Associate Professor Emeritus, Literature, Revelle
Dutton, Richard W., Professor Emeritus, Biological Sciences, School of Medicine
Dynes, Robert C., Professor, Physics, Warren

Dahl, Gordon, Associate Professor, Economics, Marshall
Daly, Alan, Assistant Professor, Education Studies, Muir
D’Andrade, Roy G., Professor Emeritus, Anthropology, Roosevelt
Dasgupta, Sanjoy, Associate Professor, Computer Science and Engineering, Roosevelt
Datnow, Amanda, Professor, Education Studies, Warren
David, Michael, Professor, Biological Sciences—Molecular Biology, Sixth
Davidson, R. Michael, Professor, Literature, Sixth
Davis, Anthony C., Professor, Music, Marshall
Davis, Charles E., Professor Emeritus, Pathology/ Medicine, School of Medicine
Davis, Russ E., Professor Emeritus, CASPO, Scripps Institution of Oceanography
Davis, Zeinabu, Professor, Communication, Roosevelt
Dayton, Paul K., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
de Callafon, Raymond, Associate Professor, Mechanical and Aerospace Engineering, Muir
de Sa, Virginia, Associate Professor, Cognitive Science, Roosevelt
Deak, Frantisek J., Professor Emeritus, Theatre and Dance, Warren
Deak, Gedeon O., Associate Professor, Cognitive Science, Marshall
Debortoli, Davide, Assistant Professor, Economics, Muir

D

Ebenfelt, Peter F., Professor, Mathematics, Roosevelt
Eckmann, Lars, Professor, Medicine, School of Medicine
Edelman, Robert S., Professor, History, Revelle
Edwards, Anthony, Professor, Literature, Marshall
Eggers, John D., Senior Lecturer (SOE), Mathematics, Sixth
Elgamal, Ahmed-W. M., Professor, Structural Engineering, Roosevelt
Elkan, Charles P., Professor, Computer Science and Engineering, Revelle
Elliot, Graham, Professor, Economics, Muir
Ellis, Arthur B., Professor/Vice Chancellor, Chemistry and Biochemistry/Research, Marshall
Ellisman, Mark H., Professor, Neurosciences, School of Medicine
Elman, Jeffrey L., Professor/Dean, Cognitive Science/Social Sciences, Muir
El-Tayeb, Fatima, Assistant Professor, Literature, Revelle
Engstrom, Yrjo, Professor Emeritus, Communication, Marshall
Engle, Robert F., Professor Emeritus, Economics, Marshall
Engler, Adam, Assistant Professor, Bioengineering, Roosevelt
Enright, Thomas J., Professor, Mathematics, Marshall
Erat, Sanjiv, Assistant Professor, Rady School of Management, Rady School of Management
Erickson, Gregory F., Professor Emeritus, Reproductive Medicine, School of Medicine
Erie, Steven P., Professor, Political Science, Marshall
Esener, Sadik C., Professor, Electrical and Computer Engineering, Warren
Escherick, Joseph, Professor, History, Roosevelt
Esko, Jeffrey, Professor, Cellular and Molecular Medicine, School of Medicine
Espiritu, Yen Le, Professor, Ethnic Studies, Marshall
Estelle, Mark A., Professor, Biological Sciences—Cell and Developmental Biology, Warren
Evans, Ivan T., Associate Professor, Sociology, Roosevelt
Evans, John H., Associate Professor, Sociology, Roosevelt
Evans, John W., Professor Emeritus, Mathematics, Muir/School of Medicine
Evans, Ronald J., Professor, Mathematics, Marshall
F
Fagin, Steve, Professor, Visual Arts, Marshall
Fahey, Robert C., Professor Emeritus, Chemistry and Biochemistry, Revelle
Fainman, Yeshaiahu, Professor, Electrical and Computer Engineering, Warren
Famulari, Melissa, Lecturer (SOE), Economics, Warren
Fanestil, Darrell D., Professor Emeritus, Medicine, School of Medicine
Fantino, Edmund J., Professor, Psychology, Muir
Farquhar, Marilyn G., Professor, Cellular and Molecular Medicine, School of Medicine
Farrell, Peter, Professor Emeritus, Music, Warren
Fauconnier, Gilles R., Professor Emeritus, Cognitive Science, Marshall
Feeley, Maurine C., Lecturer (PSOE), Political Science, Sixth
Feher, George, Professor Emeritus, Physics, Revelle
Feinberg, Richard E., Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
Felbeck, Horst, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Fenical, William H., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Feramisco, James R., Professor, Medicine/Pharmacology, School of Medicine
Ferrante, Jeanne, Professor, Computer Science and Engineering, Sixth
Ferree, Karen, Assistant Professor, Political Science, Revelle
Ferreira, Victor, Professor, Psychology, Marshall
Fialko, Yuri A., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Fields, Gary, Associate Professor, Communication, Warren
Fierer, Joshua, Professor-in-Residence, Medicine/Pathology, School of Medicine
Figuroa, Joshua S., Assistant Professor, Chemistry, Muir
Fillmore, Jay P., Professor Emeritus, Mathematics, Muir
Firtel, Richard A., Professor, Biological Sciences—Cell and Developmental Biology, Revelle
Fisk, Zachary, Professor Emeritus, Physics, Muir
Fitzgerald, Carl H., Professor Emeritus, Mathematics, Revelle
Fitzgerald, David, Associate Professor, Sociology, Roosevelt
Fitzsimmons, Patrick J., Professor, Mathematics, Marshall
Flavin, Marjorie, Associate Professor, Economics, Roosevelt
Fogler, Michael, Associate Professor, Physics, Sixth
Fonville, John W., Professor, Music, Revelle
Forbes (Januszewski), Silke I., Assistant Professor, Economics, Warren
Forbes, Camille, Associate Professor, Literature, Sixth
Forbes, Douglass Jane, Professor, Biological Sciences—Cell and Developmental Biology, Muir
Ford, Joseph, Professor, Electrical and Computer Engineering, Muir
Forman-Barzilai, Fonna, Associate Professor, Political Science, Sixth
Fortes, P. A. George, Associate Professor, Biological Sciences—Neurobiology, Marshall
Fowler, James H., Associate Professor, Political Science, Sixth
Fox, Marve Anne, Professor/Chancellor, Chemistry and Biochemistry/U.C. San Diego, Revelle
Fox, Patrick J., Professor, Structural Engineering, Muir
Francheschetti, Massimo, Associate Professor, Electrical and Computer Engineering, Revelle
Frank, Ross H., Associate Professor, Ethnic Studies, Sixth
Frankel, Theodore T., Professor Emeritus, Mathematics, Revelle
Franks, Peter J. S., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Fredkin, Donald R., Professor Emeritus, Physics, Revelle
Freedman, Michael H., Professor Emeritus, Mathematics, Revelle
French, Kathleen A., Lecturer (SOE), Biological Sciences—Neurobiology, Revelle
Frenk, Margit, Professor Emerita, Literature, Marshall
Freund, Yoav S., Professor, Computer Science and Engineering, Roosevelt
Fricker, Helen A., Associate Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Friedman, Jonathan A., Professor, Anthropology, Sixth
Friedman, Richard E., Professor Emeritus, Literature, Muir
Friedmann, Theodore, Professor, Pediatrics, School of Medicine
Frieman, Edward A., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Fu, Xiang-Dong, Professor, Cellular and Molecular Medicine, School of Medicine
Fujitani, Takashi, Professor, History, Roosevelt
Fuller, George M., Professor, Physics, Roosevelt
Fullerton, Eric, Professor, Electrical and Computer Engineering, Marshall
Fung, Yuan-Cheng B., Professor Emeritus, Bioengineering, Revelle
Gaasterland, Terry, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Galambos, Robert, Professor Emeritus, Neurosciences, School of Medicine
Galasko, Douglas, Professor-in-Residence, Neurosciences, School of Medicine
Gallicchio, Anya S., Professor, Visual Arts, Muir
Gallant, Thomas W., Professor, History, Muir
Gallo, Richard, Professor, Medicine/Pediatrics, School of Medicine
Galperin, Michael, Assistant Professor, Chemistry and Biochemistry, Revelle
Galtos, Ion, Professor, Electrical and Computer Engineering, Muir
Gan, Wee Teck, Professor, Mathematics, Warren
Ganiats, Theodore G., Professor, Family and Preventive Medicine, School of Medicine
Garsia, Adriano M., Professor, Mathematics, Revelle/School of Medicine
Gartzke, Erik A., Associate Professor, Political Science, Sixth
Gates, Kelly A., Assistant Professor, Communication, Sixth
Gee, Jeffrey, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Geiduschek, E. Peter, Professor Emeritus, Biological Sciences—Molecular Biology, School of Medicine/ Revelle
Geiger, Eric A., Lecturer (PSOE), Theatre and Dance, Muir
Gentner, Timothy Q., Assistant Professor, Psychology, Sixth
George, Nadine A., Associate Professor, Theatre and Dance, Roosevelt
George, Rosemary M., Associate Professor, Literature, Roosevelt
Gere, Catherine M., Assistant Professor, History, Muir
Gerwick, William, Professor, Skaggs School of Pharmacy and Pharmaceutical Sciences/Scripps Institution of Oceanography
Getoor, Ronald K., Professor Emeritus, Mathematics, Revelle/School of Medicine
Geyer, Mark A., Professor-in-Residence, Psychiatry, School of Medicine
Ghiara, Jayant, Lecturer (PSOE), Biological Sciences—Cell and Developmental Biology, Marshall
Ghosh, Anirvan, Professor, Biological Sciences—Cell and Developmental Biology, Marshall
Ghosh, Gouri Sankar, Professor, Chemistry and Biochemistry, Revelle
Ghosh, Partha, Professor, Chemistry and Biochemistry, Roosevelt
Gianineschi, Nathan C., Assistant Professor, Chemistry and Biochemistry, Sixth
Gibson, Carl H., Professor, Mechanical and Aerospace Engineering/Scripps Institution of Oceanography, Revelle/Scripps Institution of Oceanography
Gibson, Clark, Professor, Political Science, Muir
Gieskes, Joris M.T.M., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Gilbert, J. Freeman, Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Gill, Gordon N., Professor Emeritus, Medicine/Cellular and Molecular Medicine, School of Medicine
Gill, Philip E., Professor, Mathematics, Marshall
Gille, Sarah T., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Gillin, Frances D., Professor-in-Residence Emerita, Pathology, School of Medicine
Gilpin, Michael E., Professor Emeritus, Biological Sciences—Ecology, Behavior, and Evolution, Muir
Glaser, Amelia, Assistant Professor, Literature, Sixth
Glass, Christopher K., Professor, Medicine, School of Medicine
Gleeson, Joseph, Associate Professor, Neurosciences, School of Medicine
Gneezy, Ayelet, Assistant Professor, Rady School of Management, Rady School of Management
Gneezy, Uri, Professor, Rady School of Management, Rady School of Management
Goddard, Joseph D., Professor, Mechanical and Aerospace Engineering, Sixth
Golan, Tal, Associate Professor, History, Warren
Goldberger, Marvin, Professor Emeritus, Physics, Warren
Golden, James W., Professor, Biological Sciences—Molecular Biology, Muir
Gold, Susan, Professor, Biological Sciences—Molecular Biology, Roosevelt
Goldfarb, Brian D., Associate Professor, Communication, Revelle
Goldman, Harvey S., Professor, Sociology, Revelle
Goldrath, Ananda, Assistant Professor, Biological Sciences—Molecular Biology, Marshall
Goldstein, Lawrence S., Professor, Cellular and Molecular Medicine, School of Medicine
Goldstein, Paul S., Associate Professor, Anthropology, Revelle
Goodall, Grant, Professor, Linguistics, Warren
Goodblatt, David, Professor, History, Muir
Goodkind, John M., Professor Emeritus, Physics, Revelle
Gordon, Roger H., Professor, Economics, Warren
Gorin, Jean-Pierre, Professor, Visual Arts, Marshall
Gorman, Michael R., Professor, Psychology, Roosevelt
Gough, David A., Professor, Bioengineering, Marshall
Goulian, Mehran, Professor Emeritus, Medicine, School of Medicine
Gourevitch, Peter A., Professor, Graduate School of International Relations and Pacific Studies/Political Science, Graduate School of International Relations and Pacific Studies/Roosevelt
Govil, Nitin P., Assistant Professor, Communication, Roosevelt
Graff Zivin, Joshua S., Associate Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
Graham, Fan Chung, Professor, Mathematics/CSE, Muir
Graham, Ronald L., Professor, Computer Science and Engineering, Sixth
Granholm, Eric L., Professor-in-Residence, Psychiatry, School of Medicine
Grant, Igor, Professor, Psychiatry, School of Medicine
Green, Allyson, Professor, Theatre and Dance, Sixth
Green, Melvin H., Professor Emeritus, Biological Sciences, Revelle
Greenstein, Jack M., Associate Professor, Visual Arts, Muir
Griest, Kim, Professor, Physics, Roosevelt
Grinstein, Benjamin, Professor, Physics, Muir
Grisswold, William G., Professor, Computer Science and Engineering, Sixth
Gross, Mark W., Professor, Mathematics, Revelle
Grossman, Alexander, Associate Professor, Physics, Warren
Grubesic, Christopher D., Associate Professor, Electrical and Computer Engineering, Warren
Guggenberger, Patrik, Associate Professor, Economics, Sixth
Guadalupe, John, Professor, Medicine, School of Medicine
Guest, Clark C., Associate Professor, Electrical and Computer Engineering, Warren
Guy, Nancy, Associate Professor, Music, Roosevelt
Guza, Robert T., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography

H

Haas, Richard H., Professor, Neurosciences/Pediatrics, School of Medicine
Haff, Leonard R., Professor Emeritus, Mathematics, Marshall
Hafner-Burton, Emilie M., Associate Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
Haggard, Stephan M., Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
Hajnal, Zoltan L., Associate Professor, Political Science, Marshall
Halkin, Hubert, Professor Emeritus, Mathematics, Revelle
Halleck, DeeDee, Professor Emerita, Communication, Warren
Hallin, Daniel C., Professor, Communication, Marshall
Halov, Nikolay, Assistant Professor, Rady School of Management, Rady School of Management
Halpem, Shelley, Professor, Neurobiology, Warren
Halpern, Christopher P., Lecturer (SOE), Education Studies, Warren
Hamburger, Robert N., Professor Emeritus, Pediatrics, Revelle/School of Medicine
Hambourn, Amro M., Assistant Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Hamilton, Bruce, Associate Professor, Medicine, School of Medicine
Haymet, Anthony, Professor/Vice Chancellor, Director, Scripps Institution of Oceanography/Marine Sciences, Scripps Institution of Oceanography

Heaton, Robert K., Professor, Psychiatry, School of Medicine

Hedrick, Stephen M., Professor, Biological Sciences—Molecular Biology/Cellular and Molecular Medicine, Sixth/School of Medicine

Hegemier, Gilbert A., Professor, Structural Engineering, Revelle

Heinrich, Larissa N., Associate Professor, Literature, Sixth

Helinski, Donald R., Professor Emeritus, Biological Sciences—Molecular Biology, Marshall

Heller, Michael J., Professor, Nanoengineering/Bioengineering, Revelle

Helstrom, Carl W., Professor Emeritus, Electrical and Computer Engineering, Muir

Helton, J. William, Professor, Mathematics, Marshall

Henaff, Marcel, Professor, Literature, Warren

Hendershot, Myrl C., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Hendrickson, David N., Professor, Chemistry and Biochemistry, Muir

Hendrickson, Gerald M., Assistant Professor, History, Marshall

Hermann, Thomas C., Assistant Professor, Chemistry and Biochemistry, Sixth

Hernandez-Reguant, Ariana, Assistant Professor, Communication, Revelle

Hertz, Deborah, Professor, History, Revelle

Hertz, Richard K., Associate Professor, Mechanical and Aerospace Engineering, Warren

Hesseler, Robert R., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Heyman, Gail D., Professor, Psychology, Warren

Hildebrand, John A., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Hilliard, Steven A., Professor, Neurosciences, School of Medicine

Hilton, David R., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Hirsch, Jorge E., Professor, Physics, Revelle

Hock, Louis J., Professor, Visual Arts, Sixth

Hodgkiss, William S., Jr., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Hoffmann, Alexander, Associate Professor, Chemistry and Biochemistry, Marshall

Hofmann, Alan F., Professor Emeritus, Medicine, School of Medicine

Hofstetter, Caroline, Lecturer (SOE), Education Studies, Revelle

Hoger, Anne, Professor, Mechanical and Aerospace Engineering, Warren

Hollan, James D., Professor, Cognitive Science, Revelle

Holland, John J., Professor Emeritus, Biology, Warren

Holland, Nicholas D., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography/Revelle

Holst, Michael J., Professor, Mathematics, Warren

Holway, David A., Associate Professor, Biological Sciences—Ecology, Behavior, and Evolution, Muir

Horwitz, Robert B., Professor, Communication, Marshall

Hoshi, Takeo, Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies/Warren

Hoston, Germaine A., Professor, Political Science, Revelle

Houston, Alan C., Professor, Political Science, Roosevelt

Howden, William E., Professor, Computer Science and Engineering, Muir

Howe, Fanny Q., Professor Emerita, Literature, Warren

Howell, Stephen B., Professor, Medicine, School of Medicine

Hu, Ping C., Lecturer (SOE) Emerita, History, Revelle

Hu, Te C., Professor Emeritus, Computer Science and Engineering, Warren

Huang, Xiaohua, Assistant Professor, Bioengineering, Revelle

Huber, David E., Associate Professor, Psychology, Marshall

Huerta, Jorge A., Professor Emeritus, Theatre and Dance, Marshall

Hughes, Judith M., Professor, History, Roosevelt

Humphries, Tom L., Associate Professor, Education Studies/Communication, Marshall

Hunefeld-Frode, Christine F., Professor, History, Marshall

Hutchins, Edwin L., Jr., Professor, Cognitive Science, Marshall

Hutchinson, Tara C., Associate Professor, Structural Engineering, Muir

Hwa, Terence T., Professor, Physics, Revelle

Ideler, Trey, Associate Professor, Bioengineering, Warren

Ierley, Glenn R., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Iizuka, Naomi H., Professor, Theater and Dance, Muir
Imada, Adria L., Assistant Professor, Ethnic Studies, Revelle
Impagliazzo, Russell, Professor, Computer Science and Engineering, Marshall
Inman, Douglas L., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Insel, Paul A., Professor, Pharmacology/Medicine, School of Medicine
Intaglia, Marcos, Professor, Bioengineering, Revelle/School of Medicine
Intriligator, Kenneth, Professor, Physics, Muir
Iragui-Madoz, Vicente J., Professor of Clinical Neurosciences, Neurosciences, School of Medicine
Irons, Peter H., Professor Emeritus, Political Science, Marshall
Isaacs, Jeffry S., Professor, Neurosciences, School of Medicine
Isfahani-Hammond, Alexandra, Associate Professor, Literature, Sixth

J

Jackson, Gabriel, Professor Emeritus, History, Revelle
Jackson, Jeremy, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Jacobsen, Mark R., Assistant Professor, Economics, Sixth
Jacobson, Gary C., Professor, Political Science, Marshall
Jain, Ramesh C., Professor Emeritus, Electrical and Computer Engineering/Computer Science and Engineering, Roosevelt
James, Luther, Associate Professor Emeritus, Theatre and Dance, Muir
Jamora, Colin, Assistant Professor, Biological Sciences—Cell and Developmental Biology, Warren
Javid, Tara, Assistant Professor, Electrical and Computer Engineering, Sixth
Jed, Stephanie H., Associate Professor, Literature, Muir
Jenkins, Elizabeth, Professor, Physics, Muir
Jenkins, Janis H., Professor, Anthropology, Sixth
Jennings, Patricia, Professor, Chemistry and Biochemistry, Roosevelt
Jensen, Henrik, Associate Professor, Computer Science and Engineering, Muir
Jernigan, Terry L., Professor, Cognitive Science, Warren
Jeste, Dilip V., Professor-in-Residence, Psychiatry, School of Medicine
Jhala, Ranjit, Assistant Professor, Computer Science and Engineering, Roosevelt
Jin, Sungho, Professor, Mechanical and Aerospace Engineering, Sixth
Jin, Yishi, Professor, Biological Sciences—Neurobiology, Revelle
Johnson, Catherine L., Associate Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Johnson, Chalmers, Professor Emeritus, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies/Roosevelt
Johnson, Monte, Associate Professor, Philosophy, Muir
Johnson, Randy S., Professor, Biological Sciences—Molecular Biology, Sixth
Johnson, Sara E., Assistant Professor, Literature, Roosevelt
Johnson, Tracy, Assistant Professor, Biological Sciences—Molecular Biology, Revelle
Jones, Barbara, Professor Emerita, Physics, Muir
Jones, Walton, Professor Emeritus, Theatre and Dance, Muir
Jordan, David K., Professor Emeritus, Anthropology, Warren
Joseph, Simpson, Professor, Chemistry and Biochemistry, Roosevelt
Judd, Lewis L., Professor, Psychiatry, School of Medicine
Jules-Rosette, Bennetta W., Professor, Sociology, Muir

K

Kadonaga, James T., Professor, Biological Sciences—Molecular Biology, Revelle
Kagnoff, Martin F., Professor Emeritus, Medicine/Pediatrics, School of Medicine
Kahler, Miles E., Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies/Roosevelt
Kahng, Andrew B., Professor, Computer Science and Engineering/Electrical and Computer Engineering, Revelle
Kalleres, Dayna, Assistant Professor, Literature, Revelle
Kamps, Mark P., Professor, Pathology, School of Medicine
Kane, Alex, Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies/Roosevelt
Kaplan, Sara C., Assistant Professor, Ethnic Studies, Marshall
Karlin, Michael, Professor, Pharmacology, School of Medicine
Karlin, Sidney, Professor-in-Residence Emeritus, Computer Science and Engineering, Warren
Karis, Rebecca E., Professor, Sociology, Marshall
Kartes, Harvey J., Professor Emeritus, Psychology, School of Medicine
Kastner, Miriam, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Kastner, Ryan, Associate Professor, Computer Science and Engineering, Revelle
Kaufman, Kenneth, Professor, Medicine, School of Medicine
Kay, Steve A., Professor/Dean, Biological Sciences—Cell and Developmental Biology, Roosevelt
Kayali, Hasan, Associate Professor, History, Roosevelt
Kearns, David R., Professor Emeritus, Chemistry and Biochemistry, Revelle
Keating, Brian G., Associate Professor, Physics, Muir
Kedlaya, Kiran S., Associate Professor, Mathematics, Roosevelt
Keeling, Ralph F., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Kehler, Andrew, Professor, Linguistics, Roosevelt
Kelly, Carolyn J., Professor-in-Residence, Medicine, School of Medicine
Kelner, Michael J., Professor, Pathology, School of Medicine
Kelle, John R., Jr., Professor, Psychiatry, School of Medicine
Kemp, Todd, Assistant Professor, Mathematics, Revelle
Kennel, Charles F., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Kernell, Samuel H., Professor, Political Science, Warren
Kester, Grant, Associate Professor, Visual Arts, Roosevelt
Kheshit, Roshank, Assistant Professor, Ethnic Studies, Sixth
Kiger, Amy, Assistant Professor, Biological Sciences—Cell and Developmental Biology, Roosevelt
Kim, Hyonny, Associate Professor Emerita, Structural Engineering, Muir
Kim, Judy E., Assistant Professor, Chemistry and Biochemistry, Sixth
Kim, Young-Han, Assistant Professor, Electrical and Computer Engineering, Revelle
Kipps, Thomas J., Professor, Medicine, School of Medicine
Kirkland, Theo N., III, Professor-in-Residence, Pathology/Medicine, School of Medicine
Kirkpatrick, Susan, Professor Emerita, Literature, Muir
Kirsh, David J., Professor, Cognitive Science, Sixth
Kitchlo, Nitya, Associate Professor, Mathematics, Roosevelt
Kless, Rebecca E., Professor, Sociology, Marshall
Klein, Rachel, Associate Professor, History, Warren
Kleinfeld, David, Professor, Physics, Warren
Kleissi, Jan, Assistant Professor, Mechanical and Aerospace Engineering, Marshall
Kluender, Robert E., Associate Professor, Linguistics, Sixth
Knight, Tara L., Assistant Professor, Theatre and Dance, Sixth
Knowlton, Nancy, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Kohn, Joshua R., Professor, Biological Sciences—Ecology, Behavior, and Evolution, Warren
Kokotovic, Milos, Associate Professor, Literature, Muir
Kolodner, Richard D., Professor, Medicine, School of Medicine
Komives, Elizabeth A., Professor, Chemistry and Biochemistry, Roosevelt/School of Medicine
Komunjcer, Ivana, Associate Professor, Economics, Revelle
Konecni, Vladimir J., Professor Emeritus, Psychology, Muir
Kontje, Todd C., Professor, Literature, Marshall
Koo, Edward, Professor, Neurosciences, School of Medicine
Kooymans, Gerald L., Professor-in-Residence Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Komatka, John B., Professor, Structural Engineering, Warren
Kousser, Thaddeus B., Associate Professor, Political Science, Muir
Krasheninnikov, Sergei, Professor, Mechanical and Aerospace Engineering, Muir
Krause, Lawrence B., Professor Emeritus, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies/Roosevelt
Krauss, Ellis S., Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
Kraut, Joseph, Professor Emeritus, Chemistry and Biochemistry, Revelle
Kreutz-Delgado, Kenneth, Professor, Electrical and Computer Engineering, Warren
Kriegman, David, Professor, Computer Science and Engineering, Warren
Kripke, Daniel F., Professor-in-Residence Emeritus, Psychiatry, School of Medicine
Krishnan, Viswanathan, Professor, Rady School of Management, Rady School of Management
Krisman, William B., Jr., Professor, Biological Sciences—Neurobiology, Marshall
Kronick, Richard G., Professor, Family and Preventive Medicine, School of Medicine
Krstic, Miroslav, Professor, Mechanical and Aerospace Engineering, Muir
Kruediger, Ingolf, Assistant Professor-in-Residence, Computer Science and Engineering, Warren
Krysl, Petr, Professor, Structural Engineering, Muir
Ku, Walter H., Professor Emeritus, Electrical and Computer Engineering, Revelle
Kube, Paul R., Lecturer (SOE), Computer Science and Engineering, Sixth
Kubiatk, Clifford P., Professor, Chemistry and Biochemistry, Warren
Kuczynski, Ronald T., Professor-in-Residence, Psychiatry, School of Medicine
Kuester, Falko, Associate Professor, Structural Engineering, Sixth
Kulik, James A., Professor, Psychology, Warren
Kummel, Andrew C., Professor, Chemistry and Biochemistry, Muir
Kuo, Jane, Lecturer (PSOE), History, Sixth
Kuperman, William A., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Kutas, Marta, Professor, Cognitive Science, Muir
Kuti, Julius G., Professor, Physics, Marshall
Kwak, Nancy H., Assistant Professor, History, Muir
Kyte, Jack E., Professor Emeritus, Chemistry and Biochemistry, Warren

Lake, David A., Professor, Political Science, Marshall
Lakoff, Andrew, Associate Professor, Sociology, Warren
Lakoff, Sanford A., Professor Emeritus, Political Science, Warren
Lal, Devendra, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Lal, Ratneshwar, Professor, Mechanical and Aerospace Engineering, Revelle
Lampert, Lisa, Associate Professor, Literature, Revelle
Lampland, Martha, Associate Professor, Sociology, Roosevelt
Lancikiewicz, Gert, Assistant Professor, Electrical and Computer Engineering, Sixth
Landry, Michael R., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Lane, Thomas A., Professor, Pathology, School of Medicine
Langacker, Ronald W., Professor Emeritus, Linguistics, Revelle
Lanza di Scalea, Francesco, Professor, Structural Engineering, Roosevelt
Larson, Lawrence, Professor, Electrical and Computer Engineering, Roosevelt
Larson, Philip C., Professor, Music, Roosevelt
Lasheras, Juan C., Professor, Mechanical and Aerospace Engineering, Marshall
Lau, Silvanus S., Professor, Electrical and Computer Engineering, Muir
Lauga, Dominique O., Assistant Professor, Rady School of Management, Rady School of Management
Lauga, Eric, Associate Professor, Mechanical and Aerospace Engineering, Sixth
Lawder, Standish D., Associate Professor Emeritus, Visual Arts, Warren
Lawson, Mark A., Associate Professor-in-Residence, Reproductive Medicine, School of Medicine
Le, Dzung The, Associate Professor of Clinical Pathology, Pathology, School of Medicine
Lee, Edward N., Professor Emeritus, Philosophy, Revelle
Lee, Jin-Kyung, Associate Professor, Literature, Warren
Lee, Sing H., Professor Emeritus, Electrical and Computer Engineering, Muir
Leffert, Hyam L., Professor, Pharmacology, School of Medicine
Lehmann, Bruce N., Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
Leichter, James, Associate Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Leok, Melvin, Associate Professor, Mathematics, Revelle
Lerer, Seth, Professor/Dean, Literature/Arts and Humanities, Muir
Lerner, Sorin, Assistant Professor, Computer Science and Engineering, Roosevelt
Leutgeb, Jill K., Assistant Professor, Biological Sciences—Neurobiology, Sixth
Leutgeb, Stefan, Assistant Professor, Biological Sciences—Neurobiology, Revelle
Levin, James A., Professor, Education Studies, Sixth
Levin, Lisa, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Levin, Paula, Senior Lecturer (SOE), Education Studies, Marshall
Levine, Fred, Professor-in-Residence Emeritus, Pediatrics, School of Medicine
Levine, Herbert, Professor, Physics, Marshall
Levy, Roger P., Assistant Professor, Linguistics, Roosevelt
Levy, Thomas E., Professor, Anthropology, Sixth
Lewak, George J., Associate Professor Emeritus, Electrical and Computer Engineering, Muir
Li, Bo, Associate Professor, Mathematics, Revelle
Li, Dongmei, Assistant Professor, Rady School of Management, Rady School of Management
Liang, Lei, Assistant Professor, Music, Revelle
Liao, Ping-hui, Professor, Literature, Roosevelt
Libby, Paul A., Professor Emeritus, Mechanical and Aerospace Engineering, Revelle
Lieber, Richard L., Professor, Orthopaedics, School of Medicine
Liebermann, Leonard N., Professor Emeritus, Physics, Revelle
Liphart, Arend, Professor Emeritus, Political Science, Revelle
Lin, Bill, Associate Professor, Electrical and Computer Engineering, Roosevelt
Lin, James P., Professor, Mathematics, Muir
Lin, Jonathan H., Assistant Professor, Pathology, School of Medicine
Lin, Shao-Chi, Professor Emeritus, Mechanical and Aerospace Engineering, Revelle
Linden, Paul F., Professor, Mechanical and Aerospace Engineering, Muir
Lindenberg, Katja, Professor, Chemistry and Biochemistry, Marshall
Lindsley, Dan L., Professor Emeritus, Biological Sciences—Cell and Developmental Biology, Revelle/School of Medicine
Linton, April, Assistant Professor, Sociology, Warren
Liu, David, Assistant Professor, Psychology, Sixth
Liu, Jun, Associate Professor, Rady School of Management, Rady School of Management
Liu, Zhaowei, Assistant Professor, Electrical and Computer Engineering, Sixth
Llewellyn Smith, Stefan G., Professor, Mechanical and Aerospace Engineering, Warren
Lo, Yu-Hwa, Professor, Electrical and Computer Engineering, Marshall
Lomakin, Vitaliy, Assistant Professor, Electrical and Computer Engineering, Revelle
Lonidier, Fred S., Professor, Visual Arts, Revelle
Lonsdale, Peter F., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Loomis, William F., Jr., Professor, Biological Sciences—Cell and Developmental Biology, Revelle
Loose, Margaret, Assistant Professor, Literature, Revelle
Lovberg, Ralph H., Professor Emeritus, Physics, Revelle
Low, Lisa M., Professor, Literature, Muir
Lu, Weijing, Associate Professor, History, Warren
Luco, J. Enrique, Professor, Structural Engineering, Marshall
Luft, David S., Professor Emeritus, History, Revelle
Lugannani, Robert, Professor, Electrical and Computer Engineering, Warren
Luo, Huey-Lin, Professor Emeritus, Electrical and Computer Engineering, Muir
Lykke-Andersen, Jens, Associate Professor, Biological Sciences—Molecular Biology, Sixth
Lyon, James K., Professor Emeritus, Literature, Roosevelt
Lytle, Cecil W., Professor Emeritus, Music, Marshall
Macagno, Eduardo R., Professor, Biological Sciences—Cell and Developmental Biology, Sixth
MacKinnon, Kim R., Professor, Visual Arts, Marshall
MacDougall, J. Douglas, Professor Emeritus, Scripps Institution of Oceanography, Revelle/Scripps Institution of Oceanography
Machina, Mark J., Professor, Economics, Revelle
Mackie, Gerald L., Associate Professor, Political Science, Revelle
MacLeod, Carol L., Professor-in-Residence, Medicine, School of Medicine
MacLeod, Donald I.A., Professor, Psychology, Muir
Madsen, Richard P., Professor, Sociology, Roosevelt
Magagna, Victor V., Associate Professor, Political Science, Muir
Magde, Douglas, Professor, Chemistry and Biochemistry, Warren
Malesky, Edward, Assistant Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
Manaster, Alfred B., Professor Emeritus, Mathematics, Revelle
Mandler, Jeff, Professor Emeritus, Psychology, Muir
Mandler, Jean M., Professor Emeritus, Cognitive Science, Revelle
Mangolte, Babette M., Professor, Visual Arts, Revelle
Manohar, Aneesh V., Professor, Physics, Marshall
Manoury, Philippe, Professor, Music, Revelle
Manovich, Lev, Professor, Visual Arts, Sixth
Maple, M. Brian, Professor, Physics, Revelle
Mares, David R., Professor, Political Science, Muir
Marez, Curtis F., Associate Professor, Ethnic Studies, Sixth
Marino, John A., Professor, History, Sixth
Mariscal, George L., Professor, Literature, Warren
Markenstern, Xanthippe, Professor, Mechanical and Aerospace Engineering, Revelle
Markow, Theresa A., Professor, Biological Sciences—Ecology, Behavior, and Evolution, Muir
Marsden, Alison L., Assistant Professor, Mechanical and Aerospace Engineering, Marshall
Marshall, Margaret C., Senior Lecturer (SOE), Theatre and Dance, Sixth
Marth, Jamey D., Professor, Cellular and Molecular Medicine, School of Medicine
Martin, Kurt, Professor Emeritus, Chemistry and Biochemistry, Revelle
Martin, Isaac, Associate Professor, Sociology, Warren
Martinez-Diaz, Sonia, Associate Professor, Mechanical and Aerospace Engineering, Roosevelt
Martin-Cabrera, Luis, Assistant Professor, Literature, Revelle
Martz, Todd R., Assistant Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Marzullo, Keith, Professor, Computer Science and Engineering, Marshall
Masliah, Eliezer, Professor, Neurosciences/Pathology, School of Medicine
Masouredis, Serafeim P., Professor Emeritus, Pathology, School of Medicine
Masry, Elias, Professor, Electrical and Computer Engineering, Muir
Masters, T. Guy, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Mathieu-Costello, Odile, Professor-in-Residence, Emerita, Medicine, School of Medicine
Mayberry, Rachel, Professor, Linguistics, Sixth
McCammon, James Andrew, Professor, Chemistry and Biochemistry/Pharmacology, Revelle/School of Medicine
McCulloch, Andrew D., Professor, Bioengineering, Muir
McDonald, Marianne, Professor, Theatre and Dance, Revelle
McEneaney, William M., Professor, Mechanical and Aerospace Engineering/Mathematics, Warren
McGinnis, William J., Professor, Biological Sciences—Cell and Developmental Biology, Warren
McGowan, John A., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
McIlwain, Carl E., Professor Emeritus, Physics, Revelle
McIntosh, Craig, Associate Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
McKenzie, Craig R.M., Professor, Psychology/Rady School of Management, Revelle/Rady School of Management
McKittrick, Joanna M., Professor, Mechanical and Aerospace Engineering, Warren
McMorriss, Trevor C., Professor Emeritus, Chemistry and Biochemistry, Marshall
McNeal, Keith E., Assistant Professor, Anthropology, Warren
Meade, Everard, Assistant Professor, History, Marshall
Mederetz, Thomas, Assistant Professor, Sociology, Revelle
Meeker, Michael E., Professor Emeritus, Anthropology, Revelle
Mehan, Hugh B., Jr., Professor, Sociology, Marshall
Mel, Stephanie, Lecturer (PSOE), Biological Sciences—Molecular Biology, Muir
Mellon, Pamela L., Professor, Reproductive Medicine/Neurosciences, School of Medicine
Melville, W. Kendall, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Mendis, D. Asoka, Professor Emeritus, Electrical and Computer Engineering, Muir
Meng, Ying Shirley, Assistant Professor, Nanoengineering, Revelle
Metzger, Thomas A., Professor Emeritus, History, Muir
Meyer, David A., Professor, Mathematics, Revelle
Meyer, Ursula, Senior Lecturer (SOE), Theatre and Dance, Warren
Meyers, Marc A., Professor, Mechanical and Aerospace Engineering, Revelle
Micciancio, Daniele, Professor, Computer Science and Engineering, Marshall
Micou, Melissa, Lecturer (PSOE), Bioengineering, Marshall
Middleman, Stanley, Professor Emeritus, Mechanical and Aerospace Engineering, Warren
Miller, Arnold L., Professor Emeritus, Neurosciences, School of Medicine
Miller, Cory T., Assistant Professor, Psychology, Sixth
Miller, David, Assistant Professor, Economics, Sixth
Miller, David R., Professor Emeritus, Mechanical and Aerospace Engineering, Revelle
Mills, Stanley E., Professor Emeritus, Biological Sciences—Cell and Developmental Biology, Muir
Milstein, Laurence B., Professor, Electrical and Computer Engineering, Warren
Minster, Jean-Bernard H., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Mitchell, Allan, Professor Emeritus, History, Roosevelt
Miyai, Katsumi, Professor Emeritus, Pathology/Medicine, School of Medicine
Mizisin, Andrew P., Professor, Pathology, School of Medicine
Molina, Mario, Professor, Chemistry and Biochemistry, Warren/Scripps Institution of Oceanography
Molina, Natalia M., Associate Professor, Ethnic Studies, Marshall
Molinski, Tadeusz, Professor, Chemistry and Pharmaceutical Sciences, Sixth/Skaggs School of Pharmacy and Pharmaceutical Sciences
Montal, S. Mauricio, Professor, Biological Sciences—Neurobiology, Revelle
Montéon, Michael P., Professor, History, Marshall
Montrose, Louis A., Professor Emeritus, Literature, Revelle
Mookherjea, Shayan, Associate Professor, Electrical and Computer Engineering, Warren
Moore, Bradley S., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Moore, F. Richard, Professor, Music, Revelle
Moore, James J., Associate Professor, Anthropology, Warren
Moore, John C., Professor, Linguistics, Muir
Mosshammer, Alden A., Professor Emeritus, History, Revelle
Muendler, Marc-Andreas, Assistant Professor, Economics, Revelle
Mukerji, Chandra, Professor, Communication, Marshall
Muller, Ulrich F., Assistant Professor, Chemistry and Biochemistry, Marshall
Munk, Walter H., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography/Warren
Murakami, Hidenori, Professor, Mechanical and Aerospace Engineering, Revelle
Muralidharan, Karthik, Assistant Professor, Economics, Sixth
Murphy, Thomas W., Jr., Associate Professor, Physics, Sixth
Murre, Cornelis, Professor, Biological Sciences—Molecular Biology, Sixth
Myers, Robert R., Professor Emeritus, Anesthesiology/Pathology, School of Medicine
Myles, Eileen, Professor Emerita, Literature, Marshall

N
Najimbadi, Farrokh, Professor, Electrical and Computer Engineering, Roosevelt
Nakagawa, Terunga, Assistant Professor, Chemistry and Biochemistry, Sixth
Naoi, Megumi, Assistant Professor, Political Science, Revelle
Narucki, Susan M., Professor, Music, Warren
Naughton, Barry J., Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
Négyesy, János, Professor, Music, Muir
Netkin, Dana, Associate Professor, Philosophy, Roosevelt
Nemat-Nasser, Siavouche, Professor, Mechanical and Aerospace Engineering, Revelle
Nesbitt, Muriel N., Lecturer (SOE), Biological Sciences—Neurobiology, School of Medicine/Warren
Nesterenko, Vitali, Professor, Mechanical and Aerospace Engineering, Roosevelt
Newman, William A., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Newmark, Leonard D., Professor Emeritus, Linguistics, Revelle
Newsome, Elizabeth, Associate Professor, Visual Arts, Revelle
Newton, Alexandra, Professor, Pharmacology, School of Medicine
Ng, Kwai, Assistant Professor, Sociology, Warren
Nguyen, Truong, Professor, Electrical and Computer Engineering, Marshall
Nguyen-Huu, Xuong, Professor Emeritus, Biological Sciences—Molecular Biology/Chemistry and Biochemistry/Physics, Revelle/School of Medicine
Ni, Lei, Professor, Mathematics, Sixth
Nicolau, Kyriacos C., Professor, Chemistry and Biochemistry, Muir
Nie, Jiawong, Assistant Professor, Mathematics, Sixth
Nieh, James C., Associate Professor, Biological Sciences—Ecology, Behavior, and Evolution, Marshall
Niehaus, Paul, Assistant Professor, Economics, Revelle
Nigam, Sanjay, Professor, Pediatrics, School of Medicine
Niller, Pearn P., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Nitz, Douglas A., Assistant Professor, Cognitive Science, Warren
Niwa, Mako, Assistant Professor, Biological Sciences—Molecular Biology, Roosevelt
Nizet, Victor, Professor, Pediatrics, School of Medicine
Nodelman, Sheldon A., Professor, Visual Arts, Warren
Noel, Michael, Assistant Professor, Economics, Marshall
Nomura, Keiko, Professor, Mechanical and Aerospace Engineering, Marshall
Norman, Donald A., Professor Emeritus, Cognitive Science/Psychology, Revelle
Norman, Michael L., Professor, Physics, Marshall
Norris, Joel R., Associate Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Norris, Richard D., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Northcutt, R. Glenn, Professor, Neurosciences, School of Medicine/Scripps Institution of Oceanography
Nuñez, Rafael, Associate Professor, Cognitive Science, Muir

O
Oates, Charles, Senior Lecturer (SOE), Theatre and Dance, Revelle
O’Brien, William A., Associate Professor, Literature, Muir
O’Connor, Daniel T., Professor-in-Residence, Medicine, School of Medicine
O’Connor, Joseph M., Professor, Chemistry and Biochemistry, Marshall
Oegema, Karen, Associate Professor, Cellular and Molecular Medicine, School of Medicine
Oesterreicher, Hans K., Professor Emeritus, Chemistry and Biochemistry, Muir
Ogdon, Wilbur L., Professor Emeritus, Music, Muir
Ohman, Mark D., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Okamura, Melvin Y., Professor, Physics, Revelle
Okikiolu, Kate, Professor, Mathematics, Revelle
Olafson, Frederick A., Professor Emeritus, Philosophy, Revelle
Olefsky, Jerrold M., Professor, Medicine, School of Medicine
Olfe, Daniel B., Professor Emeritus, Mechanical and Aerospace Engineering, Revelle
O’Neill, Thomas M., Professor, Physics, Warren
Onuchic, José N., Professor Emeritus, Physics, Muir
Opella, Stanley J., Professor, Chemistry and Biochemistry, Muir
Oprea, Dragos N., Assistant Professor, Mathematics, Roosevelt
O’Quigley, John, Professor Emeritus, Mathematics, Muir
Oraloglou, Alex, Professor, Computer Science and Engineering, Revelle
Orcutt, John A., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Oreskes, Naomi, Professor/Provost, History/Sixth College, Sixth
Orlitsky, Alon, Professor, Electrical and Computer Engineering, Marshall
Orloff, Marshall J., Professor Emeritus, Surgery, School of Medicine/Muir
Ortiz-Torres, Ruben, Professor, Visual Arts, Roosevelt
Oxman, Michael N., Professor Emeritus, Medicine/Pathology, School of Medicine
Ozurek, Esra, Associate Professor, Anthropology, Roosevelt
Parish, Steven, Professor, Anthropology, Roosevelt
Park, Kyong, Associate Professor, Visual Arts, Sixth
Parker, Robert L., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Parra, Max, Associate Professor, Literature, Marshall
Parish, Michael E., Professor, History, Muir
Paschler, Harold E., Professor, Psychology, Muir
Pasler, Jann C., Professor, Music, Roosevelt
Pasquale, Joseph C., Professor, Computer Science and Engineering, Marshall
Pasquinelli, Amy, Associate Professor, Biological Sciences—Molecular Biology, Marshall
Pastor, Jennifer, Associate Professor, Visual Arts, Sixth
Patrick, Gentry, Assistant Professor, Biological Sciences—Neurobiology, Marshall
Patterson, Patricia A., Professor Emerita, Visual Arts, Muir
Patterson, Patrick H., Assistant Professor, History, Roosevelt
Paturi, Ramamohan, Professor, Computer Science and Engineering, Warren
Pearce, Roy Harvey, Professor Emeritus, Literature, Roosevelt
Pedersen, David E., Assistant Professor, Anthropology, Marshall
Penn, Nolan E., Professor Emeritus, Psychiatry, School of Medicine
Penner, Stanford S., Professor Emeritus, Mechanical and Aerospace Engineering, Revelle
Perrin, Charles L., Professor, Chemistry and Biochemistry, Revelle
Peterson, Laurence E., Professor Emeritus, Physics, Revelle
Petrovich, Victoria, Associate Professor, Theatre and Dance, Roosevelt
Pevzner, Pavel A., Professor, Computer Science and Engineering, Marshall
Phillips, David P., Professor, Sociology, Revelle
Pickowicz, Paul G., Professor, History, Muir
Pillus, Lorraine, Professor, Biological Sciences—Molecular Biology, Revelle
Pilz, Renate B., Professor-in-Residence, Medicine, School of Medicine
Piñada, Jaime A., Associate Professor, Cognitive Science, Roosevelt
Pinkel, Robert, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Piñon, Ramón, Jr., Associate Professor Emeritus, Biology, Marshall
Plant, Rebecca, Associate Professor, History, Muir
Plantamura, Carol, Professor Emerita, Music, Revelle
Pogliano, Joseph, Associate Professor, Biological Sciences—Molecular Biology, Warren
Pogliano, Kit, Professor, Biological Sciences—Molecular Biology, Roosevelt
Politis, Dimitris, Professor, Mathematics, Roosevelt
Pomeroy, Earl, Professor Emeritus, History, Warren
Pomeroy, Robert S., Lecturer (PSOE), Chemistry and Biochemistry, Sixth
Poole, Keith T., Professor, Political Science, Sixth
Popescu, Cristian, Associate Professor, Mathematics, Revelle
Popkin, Samuel L., Professor, Political Science, Marshall
Porter, Lisa, Associate Professor, Theatre and Dance, Revelle
Posakony, James W., Professor, Biological Sciences—Cell and Developmental Biology, Marshall
Postero, Nancy G., Associate Professor, Anthropology, Roosevelt
Powell, Frank L., Jr., Professor, Medicine, School of Medicine
Powell, Henry C., Professor, Pathology, School of Medicine
Pozrikidis, Constantine, Professor Emeritus, Mechanical and Aerospace Engineering, Muir
Prather, Kimberly A., Professor, Chemistry and Biochemistry/Scripps Institution of Oceanography, Muir/Scripps Institution of Oceanography
Prestholdt, Jeremy G., Associate Professor, History, Roosevelt
Price, Paul A., Professor, Biological Sciences—Molecular Biology, Muir
Printz, Morton P., Professor Emeritus, Pharmacology, School of Medicine
Propp, William H., Professor, History, Muir
Provence, Michael, Associate Professor, History, Sixth
Puckette, Miller S., Professor, Music, Sixth

P

Paar, Hans P., Professor, Physics, Roosevelt
Padden, Carol A., Professor, Communication, Sixth
Padoan, Paolo, Associate Professor, Physics, Warren
Paesani, Francesco, Assistant Professor, Chemistry and Biochemistry, Sixth
Palenik, Brian, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Palsson, Bernhard O., Professor, Bioengineering, Warren
Papakonstantinou, Yannis, Professor, Computer Science and Engineering, Roosevelt
Papen, George, Professor, Electrical and Computer Engineering, Sixth
Parast, Mana M., Assistant Professor, Pathology, School of Medicine

Q

Qiao, Yu, Associate Professor, Structural Engineering, Sixth
Quest, Kevin B., Professor, Electrical and Computer Engineering, Warren

R

Rabin, Jeffrey M., Professor, Mathematics, Revelle
Radcliff, Pamela B., Associate Professor, History, Roosevelt
Radić, Stojan, Professor, Electrical and Computer Engineering, Revelle
Rahimi, Babak, Assistant Professor, Literature, Roosevelt
Ramachandran, Vilayanur S., Professor, Psychology, Marshall
Ramanathan, Ramachandra, Professor Emeritus, Economics, Revelle
Ramanathan, Veerabhadran, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Ramey, Garey, Professor, Economics, Warren
Ramey, Valerie A., Professor, Economics, Marshall
Ramsey, Claire, Associate Professor, Education Studies, Sixth
Randel, Fred V., Associate Professor Emeritus, Literature, Sixth
Rao, Bhaskar D., Professor, Electrical and Computer Engineering, Warren
Rao, Ramesh, Professor, Electrical and Computer Engineering, Sixth
Rapaport, David H., Professor, Surgery, School of Medicine
Rapaport, Samuel L., Professor Emeritus, Medicine/Pathology, School of Medicine
Rauch, James E., Professor, Economics, Marshall
Rayner, Keith, Professor, Psychology, Sixth
Rearden, C. Anne, Professor Emerita, Pathology, School of Medicine
Rebeiz, Gabriel, Professor, Electrical and Computer Engineering, Sixth
Reed, Sharon L., Professor, Pathology/Medicine, School of Medicine
Reid, Joseph L., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Reid, Roddye, Professor, Literature, Muir
Reinagel, Pamela, Associate Professor, Biological Sciences—Neurobiology, Warren
Remmel, Jeffrey D., Professor, Mathematics, Muir
Ren, Bing, Professor, Cellular and Molecular Medicine, School of Medicine
Resnik, Robert, Professor, Reproductive Medicine, School of Medicine
Restrepo, José, Professor, Structural Engineering, Revelle
Reynolds, Edward, Professor Emeritus, History, Marshall
Reynolds, Roger L., Professor, Music, Muir
Rheingold, Arnold L., Professor-in-Residence, Chemistry and Biochemistry, Marshall
Richman, Douglas D., Professor-in-Residence, Pathology/Medicine, School of Medicine
Rickard, Timothy, Professor, Psychology, Roosevelt
Rickett, Barnaby J., Professor Emeritus, Electrical and Computer Engineering, Muir
Rickless, Samuel C., Professor, Philosophy, Marshall
Ride, Sally K., Professor Emerita, Physics, Marshall
Rifkin, Scott A., Assistant Professor, Biological Sciences—Ecology, Behavior, and Evolution, Roosevelt
Rincón, Patricia A., Senior Lecturer (SOE), Theatre and Dance, Roosevelt
Ringgold, Faith, Professor Emerita, Visual Arts, Warren
Ringrose, David R., Professor Emeritus, History, Revelle
Rinott, Yosef, Professor Emeritus, Mathematics, Muir
Rivera-Garza, Cristina, Professor, Literature, Roosevelt
Robbins, Joel, Professor, Anthropology, Marshall
Roberts, Justin D., Associate Professor, Mathematics, Warren
Rodin, Burton, Professor Emeritus, Mathematics, Muir
Roeder, Philip G., Professor, Political Science, Roosevelt
Roemer, Thomas A., Assistant Professor, Rady School of Management, Rady School of Management
Roemmich, Dean H., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Rogalski, Daniel S., Assistant Professor, Mathematics, Sixth
Rohrl, Helmut, Professor Emeritus, Mathematics, Revelle
Rona-Tas, Akos, Associate Professor, Sociology, Roosevelt
Rondina, Giacomo, Assistant Professor, Economics, Sixth
Rose, Sharon, Associate Professor, Linguistics, Roosevelt
Rosenberger, Katharina U., Assistant Professor, Music, Warren
Rosenblatt, Murray, Professor Emeritus, Mathematics, Muir
Rosenblatt, Richard H., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Rosenfeld, Michael Geoff, Professor, Medicine, School of Medicine
Rosing, Tajaña S., Assistant Professor, Computer Science and Engineering, Roosevelt
Ross, Lola R., Professor Emerita, Family and Preventive Medicine, School of Medicine/Muir
Rotenberg, Manuel, Professor Emeritus, Electrical and Computer Engineering, Muir
Rothenberg, Jerome D., Professor Emeritus, Literature/Visual Arts, Roos/Rothschild, Linda P., Professor, Mathematics, Sixth
Roudaková, Natalia, Assistant Professor, Communication, Muir
Rouse, Gregory, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Rouse, John, Associate Professor, Theatre and Dance, Roosevelt
Roxworthy, Emily E., Assistant Professor, Theatre and Dance, Warren
Roy, Kaustuv, Professor, Biological Sciences—Ecology, Behavior, and Evolution, Roosevelt
Rubinstein, Kim, Associate Professor, Theatre and Dance, Roosevelt
Rudee, M. Lea, Professor Emeritus, Electrical and Computer Engineering, Warren
Rudnick, Daniel L., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Rudwick, Martin J.S., Professor Emeritus, History, Warren
Ruiz, Ramón E., Professor Emeritus, History, Muir
Rumsey, Victor H., Professor Emeritus, Electrical and Computer Engineering, Muir
Russell, Lynn, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Russell, Percy J., Associate Professor Emeritus, Biology, School of Medicine
Rutherford, Donald P., Professor, Philosophy, Revelle
Ryan, Allen F., Professor, Surgery/Neurosciences, School of Medicine

S

Sah, Robert L.Y., Professor, Bioengineering, Sixth
Saiegh, Sebastian, Assistant Professor, Political Science, Sixth
Saier, Milton H., Jr., Professor, Biological Sciences—Molecular Biology, Muir
Sailor, Michael J., Professor, Chemistry and Biochemistry, Revelle
Sala, Enric, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Salmon, David P., Professor-in-Residence, Neurosciences, School of Medicine
Salmon, Richard L., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Samphantharak, Krislert, Assistant Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
Sánchez, Marta E., Professor Emerita, Literature, Marshall
Sánchez, Rosaura, Professor, Literature, Marshall
Sandwell, David T., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Santos, Andres, Assistant Professor, Economics, Sixth
Sarkar, Sutam, Professor, Mechanical and Aerospace Engineering, Warren
Saul, Lawrence K., Professor, Computer Science and Engineering, Revelle
Savage, Stefan, Associate Professor, Computer Science and Engineering, Marshall
Saville, Jonathan, Associate Professor Emeritus, Theatre and Dance, Revelle
Savitch, Walter J., Professor Emeritus, Computer Science and Engineering, Muir
Savola, Maria, Professor of Clinical Medicine, Medicine, School of Medicine
Sawrey, Barbara, Senior Lecturer (SOE), Chemistry and Biochemistry, Revelle
Saygin, Ayse P., Assistant Professor, Cognitive Science, Warren
Scanziani, Massimo, Professor, Biological Sciences—Neurobiology, Sixth
Schaefer, Ulrike, Rockefeller Fellow, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
Schane, Sanford A., Professor Emeritus, Linguistics, Revelle
Schafff, Immo E., Professor, Biological Sciences—Molecular Biology, Revelle
Schick, Steven E., Professor, Music, Sixth
Schkade, David, Professor, Rady School of Management, Rady School of Management
Schmid-Schoenbein, Geert W., Professor, Bioengineering, Muir
Schmidt, Robert J., Professor, Biological Sciences—Cell and Developmental Biology, Warren
Schneewind, Sarah, Associate Professor, History, Sixth
Schneider, Alan M., Professor Emeritus, Mechanical and Aerospace Engineering, Warren
Schneider, Christina J., Assistant Professor, Political Science, Warren
Schneider, Jerry A., Professor Emeritus, Pediatrics, School of Medicine
Schoeninger, Margaret J., Professor, Anthropology, Marshall
Schrauzer, Gerhard N., Professor Emeritus, Chemistry and Biochemistry, Revelle
Schreiber, Darren, Assistant Professor, Political Science, Warren
Schreibman, Laura E., Professor, Psychology, Warren
Schroeder, Julian I., Professor, Biological Sciences—Cell and Developmental Biology, Warren
Schuckit, Marc A., Professor, Psychiatry, School of Medicine
Schudson, Michael S., Professor, Communication, Marshall
Schuller, Ivan K., Professor, Physics, Revelle
Schultz, Sheldon, Professor Emeritus, Physics, Marshall
Schurgers, Curt, Assistant Professor, Electrical and Computer Engineering, Sixth
Schwartz, Theodore, Professor Emeritus, Anthropology, Muir
Schweinsburg, Jason R., Associate Professor, Mathematics, Roosevelt
Sclater, John G., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Scull, Andrew T., Professor, Sociology, Roosevelt
Sebald, Anthony V., Associate Professor Emeritus, Electrical and Computer Engineering, Marshall
Seible, Frieder, Professor/Dean, Structural Engineering/Jacobs School of Engineering, Marshall
Sejnowski, Terrence J., Professor, Biological Sciences—Neurobiology, Muir
Selverston, Allen I., Professor Emeritus, Biological Sciences—Neurobiology, Warren
Semendeferi, Katerina, Associate Professor, Anthropology, Marshall
Send, Uwe, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Serences, John T., Assistant Professor, Psychology, Revelle
Serlin, David H., Associate Professor, Communication, Warren
Seshadri, Kalyanasundaram, Professor, Mechanical and Aerospace Engineering, Marshall
Severinghaus, Jeffrey, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Shacham, Hovav, Assistant Professor, Computer Science and Engineering, Muir
Shadwick, Robert E., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Shafir, Gershon, Professor, Sociology, Warren
Shah, Nayantara B., Associate Professor, History, Warren
Sham, Lu Jeu, Professor, Physics, Warren
Shank, Adele E., Professor Emerita, Theatre and Dance, Marshall
Shank, Theodore J., Professor Emeritus, Theatre and Dance, Revelle
Shapeil, Vitali, Professor Emeritus, Electrical and Computer Engineering, Physics, Roosevelt
Sharma, Vivek A., Professor, Physics, Muir
Sharpe, Michael J., Professor Emeritus, Mathematics, Muir
Shearer, Peter M., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Shen, Kuiyi, Professor, Visual Arts, Roosevelt
Shenk, Norman AI, Lecturer (SOE) Emeritus, Mathematics, Revelle
Shier, Michael, Professor, Philosophy, Warren
Shelvelow, Kathy, Professor, Literature, Muir
Shing, Benson, Professor, Structural Engineering, Marshall
Shirk, Susan L., Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
Shpyrko, Oleg, Assistant Professor, Physics, Sixth
Shragge, Abraham, Lecturer (PSOE), Marshall, Marshall
Shu, Frank Hsia-San, Professor Emeritus, Physics, Roosevel
Shugart, Matthew F., Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
Shuler, Kurt E., Professor Emeritus, Chemistry and Biochemistry, Revelle
Siegel, Paul, Professor, Electrical and Computer Engineering, Roosevelt
Silva, Denise Ferreira da, Associate Professor, Ethnic Studies, Marshall
Silva, Ernest R., Professor, Visual Arts, Warren
Silva, Gabriel, Associate Professor, Bioengineering, Sixth
Silverman, Gregg J., Professor-in-Residence, Medicine, School of Medicine
Simon, Elizabeth, Lecturer (PSOE), Computer Science and Engineering, Sixth
Singer, S. Jonathan, University Professor Emeritus, Biological Sciences—Cell and Developmental Biology, Revelle/School of Medicine
Sinka, Amitabha, Professor, Chemistry and Biochemistry, Warren
Sinka, Sunil, Professor, Physics, Roosevelt
Skelton, Robert E., Professor Emeritus, Mechanical and Aerospace Engineering, Roosevelt
Skrentny, John D., Professor, Sociology, Warren
Slantzcy, Brani Slav L., Associate Professor, Political Science, Roosevelt
Small, Lance W., Professor Emeritus, Mathematics, Revelle
Smallwood, Dennis E., Associate Professor Emeritus, Economics, Warren
Smarr, Janet, Professor, Theatre and Dance, Revelle
Smarr, Larry, Professor, Computer Science and Engineering, Roosevelt
Smith, Cauleen, Acting Associate Professor, Visual Arts, Marshall
Smith, Donald R., Professor Emeritus, Mathematics, Revelle
Smith, Douglas E., Associate Professor, Physics, Roosevelt
Smith, Douglas W., Professor Emeritus, Biological Sciences—Molecular Biology, Muir
Smith, Jennifer E., Assistant Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Smith, Laurie G., Associate Professor, Biological Sciences—Cell and Developmental Biology, Roosevelt
Smith, Peter H., Professor, Political Science, Marshall
Smith, Susan L., Associate Professor/Provost, Visual Arts/Muir, Muir
Snaith, Yolande, Professor, Theatre and Dance, Muir
Snoeren, Alex, Associate Professor, Computer Science and Engineering, Roosevelt
Sobel, Joel, Professor, Economics, Revelle
Solis, Faustina, Professor Emerita, Family and Preventive Medicine, School of Medicine
Sollberger, Harvey, Professor Emeritus, Music, Muir
Somero, George N., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Somerville, Richard C. J., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Song, Bang-Sup, Professor, Electrical and Computer Engineering, Warren
Sorensen, Harold W., Professor Emeritus, Mechanical and Aerospace Engineering, Revelle
Sorkin, Linda S., Professor, Anesthesiology, School of Medicine
Souviney, Randall J., Senior Lecturer (SOE), Education Studies, Marshall
Spector, Deborah H., Professor, Biological Sciences—Molecular Biology, School of Medicine/Roosevelt
Spector, Stephen A., Professor, Pediatrics, School of Medicine
Spirito, Melford E., Professor Emeritus, Anthropology, Muir
Spirzler, Nicholas C., Professor, Biological Sciences—Neurobiology, Muir
Springer, Anna Joy, Assistant Professor, Literature, Sixth
Squire, Larry R., Professor, Psychiatry/Neurosciences/Psychology, School of Medicine/Warren
Stalbaum, Brett, Lecturer (PSOE), Visual Arts, Sixth
Stark, Harold M., Professor, Mathematics, Muir
Starr, Ross M., Professor, Economics, Warren
Stasch, Rupert S., Associate Professor, Anthropology, Warren
Stegman, David R., Assistant Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Steiger, Rand, Professor, Music, Sixth
Steinbach, Haim, Professor, Visual Arts, Muir
Steinberg, Daniel, Professor Emeritus, Medicine, School of Medicine
Steinmetz, Phel, Associate Professor, Visual Arts, Sixth
Sterbenz, Jacob, Assistant Professor, Mathematics, Sixth
Stern, Lesley, Professor, Visual Arts, Roosevelt
Stevens, Jane, Associate Professor, Music, Revelle
Stevens, Laura, Lecturer (PSOE), Mathematics, Sixth
Stiles, Joan, Professor, Cognitive Science, Muir
Storms, Lowell H., Professor-in-Residence Emeritus, Psychiatry, School of Medicine
Stramski, Dariusz, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Streeby, Shelley, Associate Professor, Literature, Roosevelt
Stroll, Avrum, Professor Emeritus, Philosophy, Revelle
Strom, Kaare, Professor, Political Science, Roosevelt
Strong, Tracy B., Professor, Political Science, Roosevelt
Strum, Shirley C., Professor, Anthropology, Revelle
Subramani, Suresh, Professor, Biological Sciences—Molecular Biology, Warren
Subramaniam, Shankar, Professor, Bioengineering, Roosevelt
Sugihara, George, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Suhl, Harry, Professor Emeritus, Physics, Revelle
Sullivan, Robert S., Professor/Dean, Rady School of Management, Rady School of Management
Sun, Yixiao, Associate Professor, Economics, Roosevelt
Sung, Lanping Amy, Professor, Bioengineering, Warren
Surko, Clifford M., Professor, Physics, Marshall
Swanson, Robert A., Professor Emeritus, Physics, Revelle
Swanson, Steven J., Assistant Professor, Computer Science and Engineering, Revelle
Swartz, Marc J., Professor Emeritus, Anthropology, Muir
Swedlow, Neal R., Professor, Psychiatry, School of Medicine
Sweder, David D., Professor, Electrical and Computer Engineering, Revelle

T

Talbot, Jan B., Professor, Nanoengineering, Muir
Talke, Frank E., Professor, Mechanical and Aerospace Engineering, Warren
Talley, Lynne D., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Takahashi, Sean, Professor, History, Revelle
Tarin, David, Professor, Pathology, School of Medicine
Tartakovsky, Daniel M., Professor, Mechanical and Aerospace Engineering, Marshall
Tauber, Michael, Assistant Professor, Chemistry and Biochemistry, Marshall
Taur, Yuan, Professor, Electrical and Computer Engineering, Warren
Tauxe, Lisa, Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Tay, William Shu-Sam, Professor Emeritus, Literature, Roosevelt
Taylor, Michael B., Assistant Professor, Computer Science and Engineering, Marshall
Taylor, Palmer W., Professor/Dean, Pharmacology/Pharmacy, School of Medicine/Skaggs School of Pharmacy and Pharmaceutical Sciences
Taylor, Susan S., Professor, Chemistry and Biochemistry/Pharmacology, Roosevelt/School of Medicine
Tebo, Bradley M., Professor-in-Residence Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Tejada, Roberto, Associate Professor, Visual Arts, Marshall
Telyukova, Irina, Assistant Professor, Economics, Sixth
Terras, Audrey A., Professor, Mathematics, Revelle
Terry, Robert D., Professor Emeritus, Neurosciences/Pathology, School of Medicine
Tesler, Glenn P., Assistant Professor, Mathematics, Warren
Tezcan, F. Akif, Assistant Professor, Chemistry and Biochemistry, Marshall
Theodorakis, Emmanuel, Professor, Chemistry and Biochemistry, Muir
Thiemens, Mark H., Professor/Dean, Chemistry and Biochemistry/Physical Sciences, Marshall
Thiess, Frank B., Senior Lecturer (SOE) Emeritus, Mathematics, Marshall
Thomas, Ronald G., Professor, Family and Preventive Medicine/Neurosciences, School of Medicine
Thorpe, Charles R., Associate Professor, Sociology, Revelle
Ticho, Harold K., Professor Emeritus/Vice Chancellor Emeritus, Physics/Academic Affairs, Marshall
Timmer, C. Petes, Professor Emeritus, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
Timmerman, Allan, Professor, Economics, Muir
Todd, Michael, Associate Professor, Structural Engineering, Muir
Todorov, Emanuel, Associate Professor, Cognitive Science, Roosevelt
Tohsaku, Yasu-Hiko, Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies/Roosevelt
Tokuyasu, Kiyoteru, Professor-in-Residence Emeritus, Biological Sciences—Cell and Developmental Biology, Revelle
Tolley, Clinton, Assistant Professor, Philosophy, Sixth
Tomp, Gabor, Professor, Theatre and Dance, Sixth
Toor, Navtej S., Assistant Professor, Chemistry and Biochemistry
Tonkovitch, Nicole, Associate Professor, Literature, Muir
Top, Yitzhak, Professor, Chemistry and Biochemistry, Sixth
Trauner, Doris A., Professor, Neurosciences/Pediatrics, School of Medicine

Traver, David, Assistant Professor, Biological Sciences—Cell and Developmental Biology, Revelle

Triglio, Michael J., Lecturer (PSOE), Visual Arts, Warren

Trivedi, Mohan, Professor, Electrical and Computer Engineering, Warren

Troemel, Emily R., Assistant Professor, Biological Sciences—Cell and Developmental Biology, Warren

Trogler, William C., Professor, Chemistry and Biochemistry, Warren

Troupe, Quincy, Professor Emeritus, Literature, Marshall

Truant, Cynthia M., Associate Professor, History, Roosevelt

Tsien, Roger K., Professor, Pharmacology/Chemistry and Biochemistry, School of Medicine/Revelle

Tsang, Ming T., University Professor, Psychiatry, School of Medicine

Tu, Charles W., Professor, Electrical and Computer Engineering, Roosevelt

Tukey, Robert H., Professor, Pharmacology/Chemistry and Biochemistry, School of Medicine/Revelle

Tullsen, Dean, Professor, Computer Science and Engineering, Warren

Turetzky, Bertram J., Professor Emeritus, Music, Muir

Turner, Christena L., Associate Professor, Sociology, Roosevelt

Turner, Eric E., Professor-in-Residence, Psychiatry, School of Medicine

Tuszynski, Mark H., Professor, Neurosciences, School of Medicine

Tynan, George, Professor, Mechanical and Aerospace Engineering, Muir

Tytler, David R., Professor, Physics, Muir

U

U, Hoi-Sang, Professor, Surgery, School of Medicine

Uang, Chia-Ming, Professor, Structural Engineering, Warren

Ung, Chinary, Professor, Music, Roosevelt

V

Vacquier, Victor, Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Vacquier, Victor D., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Vahdat, Amin, Professor, Computer Science and Engineering, Revelle

Valkanov, Rossen, Associate Professor, Rady School of Management, Rady School of Management

Van Den Einde, Yael Dahlia, Lecturer (PSOE), Structural Engineering, Muir

Van Young, Eric, Professor, History, Roosevelt

Vardy, Alexander, Professor, Electrical and Computer Engineering/Computer Science and Engineering, Warren

Varghese, George, Professor, Computer Science and Engineering, Muir

Varghese, Shyni, Assistant Professor, Bioengineering, Muir

Varki, Ajit P., Professor, Medicine/Cellular and Molecular Medicine, School of Medicine

Vami, James W., Professor-in-Residence Emeritus, Psychiatry, School of Medicine

Vasconcellos, Nuno, Associate Professor, Electrical and Computer Engineering, Roosevelt

Vasquez, Olga A., Associate Professor, Communication, Marshall

Vecchio, Kenneth S., Professor, Mechanical and Aerospace Engineering, Roosevelt

Vehrencamp, Sandra L., Professor Emerita, Biological Sciences—Ecology, Behavior, and Evolution, Muir

Verdicchio, Pasquale, Associate Professor, Literature, Sixth

Vernon, Wayne, Professor Emeritus, Physics, Revelle

Verstraete, Jacques B., Assistant Professor, Mathematics, Roosevelt

Vianu, Victor D., Professor, Computer Science and Engineering, Marshall

Vinetz, Joseph M., Associate Professor, Medicine, School of Medicine

Viterbi, Andrew J., Professor Emeritus, Electrical and Computer Engineering, Warren

Voelker, Geoffrey, Professor, Computer Science and Engineering, Muir

Vora, Kalini A., Assistant Professor, Ethnic Studies, Marshall

W

Wadsworth, Adrian R., Professor Emeritus, Mathematics, Warren

Wagner, Arthur, Professor Emeritus, Theatre and Dance, Muir

Wagner, Peter D., Professor, Medicine, School of Medicine

Wahlen, Martin, Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Waisman, Carlos H., Professor, Sociology, Marshall

Walk, Cynthia, Associate Professor Emerita, Literature, Roosevelt

Wallach, Nolan R., Professor, Mathematics, Roosevelt

Walter, Barbara F., Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies

Walter, Gernot F., Professor Emeritus, Pathology, School of Medicine

Wang, Deli, Assistant Professor, Electrical and Computer Engineering, Roosevelt

Wang, Jean Yin Jen, Professor, Biological Sciences—Molecular Biology, School of Medicine/Roosevelt

Wang, Jing, Assistant Professor, Biological Sciences—Neurobiology, Roosevelt

Wang, Joseph, Professor, Nanoengineering, Revelle

Wang, Wei, Associate Professor, Chemistry and Biochemistry, Sixth

Ward, John F., Professor Emeritus, Radiology, School of Medicine

Wasserman, Stephen L., Professor, Medicine, School of Medicine

Wasserman, Steven A., Professor, Biological Sciences—Cell and Molecular Biology, Sixth

Wastal, Carrie, Lecturer (PSOE), Muir

Waters, Les, Professor Emeritus, Theatre and Dance, Roosevelt

Watkins, Eric, Professor, Philosophy, Revelle

Watson, Joel, Professor, Economics, Muir

Watson, Joseph W., Professor Emeritus, Chemistry and Biochemistry, Marshall

Watson, Kenneth M., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Wavrik, John J., Associate Professor Emeritus, Mathematics, Muir

Wayne, Don E., Associate Professor, Literature, Weare, John H., Professor, Chemistry and Biochemistry, Revelle

Webster, Nicholas J. G., Professor-in-Residence, Medicine, School of Medicine

Weinberger, Leor S., Assistant Professor, Chemistry and Biochemistry, Muir

Weinkove, Benjamin, Associate Professor, Mathematics, Sixth

Weiss, Ray F., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Weizman, Haim, Lecturer (SOE), Chemistry and Biochemistry, Marshall

Welchman, John C., Professor, Visual Arts, Muir

Wenkert, Ernest, Professor Emeritus, Chemistry and Biochemistry, Revelle

Wenzl, Hans G., Professor, Mathematics, Marshall

Werner, Bradley T., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography

Wesling, Donald T., Professor Emeritus, Literature, Roosevelt

Wesling, Megan E., Assistant Professor, Literature, Roosevelt

West, John B., Professor Emeritus, Medicine, School of Medicine
Westman, Robert S., Professor, History, Muir
Wheeler, John C., Professor Emeritus, Chemistry and Biochemistry, Revelle
White, Halbert L., Professor, Economics, Revelle
White, Michelle J., Professor, Economics, Roosevelt
Whitehead, Mark C., Professor, Surgery, School of Medicine
Whitesell, James K., Professor, Chemistry and Medicine
Wolff, Christopher M., Associate Professor, History, Sixth
Woodruff, David S., Professor, Biological Sciences—Ecology, Behavior, and Evolution, Roosevelt
Woods, Virgil L., Professor, Medicine, School of Medicine
Woolard, Kathryn A., Professor, Anthropology, Muir
Wu, Congjun, Assistant Professor, Physics, Sixth
Wuerthwein, Frank, Professor, Physics, Warren
Wulbert, Daniel E., Professor/Provost, Mathematics/Revelle, Revelle
Wuthrich, Christian, Assistant Professor, Philosophy, Revelle

Widener, Daniel, Associate Professor, History, Sixth
Wieder, Harry H., Professor-in-Residence Emeritus, Electrical and Computer Engineering, Muir
Wienhausen, Gabriele, Senior Lecturer (SOE), Biological Sciences—Cell and Developmental Biology, Sixth
Wilhelm, James, Assistant Professor, Biological Sciences—Cell and Developmental Biology, Revelle
Williams, Ben A., Professor Emeritus, Psychology, Muir
Williams, Forman A., Professor, Mechanical and Aerospace Engineering, Marshall
Williams, Ruth J., Professor, Mathematics, Warren
Williamson, S. Gill, Professor Emeritus, Computer Science and Engineering, Revelle
Wills, Christopher, Professor Emeritus, Biological Sciences—Ecology, Behavior and Evolution, Warren/School of Medicine
Winant, Clinton D., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Winker, James R., Professor, Theatre and Dance, Marshall
Winkelman, Piotr, Professor, Psychology, Revelle
Winterer, Edward L., Professor Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Wiseman, Jacqueline P., Professor Emerita, Sociology, Warren
Wishard, Alison G., Assistant Professor, Education Studies, Warren
Witztum, Joseph L., Professor, Medicine, School of Medicine
Wixted, John T., Professor, Psychology, Revelle
Wolf, Jack K., Professor, Electrical and Computer Engineering, Roosevelt
Wolfe, Arthur M., Professor, Physics, Warren
Wolynes, Peter G., Professor, Chemistry and Biochemistry/Physics, Warren
Wong, David Y., Professor Emeritus, Physics, Revelle
Wong-Staal, Flossie, Professor Emerita, Molecular Biology/Medicine, Revelle/School of Medicine
Woodhull, Winifred, Associate Professor, Literature, Warren
Woodruff, Christopher M., Associate Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
Woodruff, David S., Professor, Biological Sciences—Ecology, Behavior, and Evolution, Roosevelt
Woods, Virgil L., Professor, Medicine, School of Medicine
Woolard, Kathryn A., Professor, Anthropology, Muir
Wu, Congjun, Assistant Professor, Physics, Sixth
Wuerthwein, Frank, Professor, Physics, Warren
Wulbert, Daniel E., Professor/Provost, Mathematics/Revelle, Revelle
Wuthrich, Christian, Assistant Professor, Philosophy, Revelle

X

Xiang, Jie, Assistant Professor, Electrical and Computer Engineering, Revelle
Xu, Yang, Associate Professor, Biological Sciences—Molecular Biology, Revelle

Y

Yadegari, Shahrokh, Associate Professor, Theatre and Dance, Sixth
Yaffe, Michael P., Professor Emeritus, Biological Sciences—Cell and Developmental Biology, Sixth
Yagil, Avraham, Professor, Physics, Sixth
Yaksht, Tony L., Professor, Anesthesiology/Pharmacology, School of Medicine
Yang, Jerry C., Associate Professor, Chemistry and Biochemistry, Warren
Yang, Jing, Assistant Professor, Pharmacology, School of Medicine
Yang, K. Wayne, Assistant Professor, Ethnic Studies, Marshall
Yanofsky, Martin F., Professor, Biological Sciences—Cell and Developmental Biology, Warren
Yanacos, A. Aristides, Professor-in-Residence Emeritus, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Yelon, Deborah L., Associate Professor, Biological Sciences—Cell and Developmental Biology, Sixth
Ygurabide, Juan, Professor Emeritus, Biology, Marshall
Yip, Wai-Lim, Professor, Literature, Muir
Yoneyama, Lisa, Associate Professor, Literature, Roosevelt
You, Jong-Sung, Assistant Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
Young, William R., Professor, Scripps Institution of Oceanography, Scripps Institution of Oceanography
Yu, Angela, Assistant Professor, Cognitive Science, Roosevelt
Yu, Edward T., Professor, Electrical and Computer Engineering, Marshall
Yu, Paul K. L., Professor, Electrical and Computer Engineering, Revelle
Yuan, Jason X.-J., Professor, Medicine, School of Medicine
Yuasa, Joji, Professor Emeritus, Music, Warren
Yun, Kenneth Y., Associate Professor, Electrical and Computer Engineering, Warren

Z

Zamosc, Leon, Associate Professor, Sociology, Roosevelt
Zanetti, Maurizio, Professor-in-Residence, Medicine, School of Medicine
Zeger, Kenneth A., Professor, Electrical and Computer Engineering, Roosevelt
Zelmanov, Efim, Professor, Mathematics, Sixth
Zeng, Langche, Professor, Political Science, Sixth
Zentella, Ana Celia, Professor Emerita, Ethnic Studies, Marshall
Zhang, Junjie, Assistant Professor, Graduate School of International Relations and Pacific Studies, Graduate School of International Relations and Pacific Studies
Zhang, Kun, Assistant Professor, Bioengineering, Revelle
Zhang, Liangfang, Assistant Professor, Nanoengineering, Revelle
Zhang, Yingjin, Professor, Literature, Warren
Zhao, Yunde, Associate Professor, Biological Sciences—Cell and Developmental Biology, Revelle
Zhiri, Oumelbane, Professor, Literature, Roosevelt
Zhou, Huilin, Associate Professor, Chemistry and Biochemistry, Marshall
Zhou, Yuan Yuan, Associate Professor, Chemistry and Engineering, Revelle
Zhu, Kevin, Associate Professor, Rady School of Management, Rady School of Management
Zhu, Qiang, Assistant Professor, Structural Engineering, Sixth
Zilberg, Elana, Associate Professor, Communication, Muir
Zipser, David, Professor Emeritus, Cognitive Science, Roosevelt
Zisook, Sidney, Professor, Psychiatry, School of Medicine
Zivin, Justin A., Professor, Neurosciences, School of Medicine
Zou, Yimin, Associate Professor, Biological Sciences—Neurobiology, Sixth
Zuker, Charles, Professor, Biological Sciences—Neurobiology/Neurosciences, Revelle/School of Medicine
Zuniga, Elina, Assistant Professor, Biological Sciences—Molecular Biology, Muir
Courses numbered 1 through 99 are lower-division courses and are normally open to freshmen and sophomores. Courses numbered 87 are Freshman Seminars.

Courses numbered 100 through 199 are upper-division courses and are ordinarily open only to students who have completed at least one lower-division course in the given subject, or six quarters of college work.

Courses numbered 200 through 299 are graduate courses and are ordinarily open only to students who have completed at least eighteen upper-division units basic to the subject matter of the course.

Courses numbered 300 through 399 are professional courses for teachers, which are specifically designed for teachers or prospective teachers.

Courses numbered 400 through 499 are other professional courses.

A / B

Academic Internship Program
African American Studies Minor
African Studies Minor
Anthropology
Applied Mechanics and Engineering Sciences: See Engineering, Jacobs School of. Program name changed to Mechanical and Aerospace Engineering (MAE).
Applied Ocean Science
Audiology
Biochemistry
Bioengineering: See Engineering, Jacobs School of.
Bioinformatics and Systems Biology
Biological Sciences, Division of
Biomedical Sciences
Biophysics: See Physics.

C / D

California Cultures in Comparative Perspective Minor
Chemical Engineering. See NanoEngineering (Engineering, Jacobs School of).
Chemistry and Biochemistry
Chicano/a—Latino/a Arts and Humanities Minor (CLAH)
Chinese Studies
Classical Studies
Clinical Psychology
Clinical Research
Cognitive Science
Communication
Comparative Studies in Language, Society, and Culture
Computer Science and Engineering: See Engineering, Jacobs School of.
Computing and the Arts: See Music and Visual Arts, Departments of.
Contemporary Issues
Critical Gender Studies
Culture, Art, and Technology
Dimensions of Culture

E

Earth Sciences: See Scripps Institution of Oceanography.
Economics
Education Abroad Program
Education Studies
Eleanor Roosevelt College
Engineering, Jacobs School of
Bioengineering
Chemical Engineering: See NanoEngineering
Computer Science and Engineering (CSE)
Electrical and Computer Engineering (ECE)
Mechanical and Aerospace Engineering (MAE)
NanoEngineering (NANO)
Structural Engineering
English as a Second Language
Entry Level Writing
Environmental Studies
Environmental Systems
Ethnic Studies
European Studies

F / G / H

Film Studies
Freshman Seminar Program
German Studies

I / J

International Migration Studies Minor
International Relations and Pacific Studies, Graduate School of (IR/PS)
International Studies
Italian Studies
Japanese Studies
Judaic Studies

L

Language and Communicative Disorders
Languages
Latin American Studies
Latin Literature: See Literature.
Law and Society
Linguistics
Literature

M

Making of the Modern World
Management, Rady School of
Marine Biodiversity and Conservation
Materials Science and Engineering Program
Mathematics
Mathematics and Science Education
Mechanical and Aerospace Engineering (MAE): See Engineering, Jacobs School of.
Middle East Studies
Molecular Pathology
Muir College
Music

UC San Diego Global Seminars (GS)
Greek Literature: See Literature.
Health Care—Leadership of Healthcare Organizations
Health Care—Social Issues
Health Law
Hebrew Literature: See Literature.
History
Human Development Program
Humanities
NanoEngineering: See Engineering, Jacobs School of.
Neurosciences
UC San Diego Opportunities Abroad Program
Philosophy
Physics
Political Science
Psychology
Public Health
Public Service Minor

Rady School of Management: See Management,
Rady School of.
Religion, Study of
Revelle College
Russian and Soviet Studies
Science Studies
Science, Technology, and Public Affairs
Scripps Institution of Oceanography
Senior Seminar Program
Sixth College
Sociology
Spanish Literature: See Literature.
Structural Engineering: See Engineering, Jacobs
School of.
Subject A: See Entry Level Writing.

Theatre and Dance
Third World Studies
Thurgood Marshall College
UC San Diego Washington Program (UCDC)
Undergraduate Seminar Programs: See Freshman
and Senior Seminar Programs
Urban Studies and Planning
Visual Arts
Warren College
Academic Internship Program

OFFICE: Literature Building, Second Floor
Warren College
http://aip.ucsd.edu

THE PROGRAM

The Academic Internship Program (AIP) offers qualified juniors and seniors an opportunity to earn credit for valuable work experience related to academic and career interests. Although most internships are in the San Diego area, the Academic Internship Program is national in scope, including the popular Washington, D.C. program, and international, including the PRIME program. The AIP database contains an impressive number of internships in diverse settings, including, but not limited to, television and radio stations; law offices; medical research labs and clinics; government agencies; high-tech, biotech, and engineering companies; advertising and public relations firms; and financial institutions. Students can also work with the internship office to develop their own internships.

The program operates all four quarters; students intern a minimum of ten hours per week and receive upper-division credit. Students may enroll for a maximum of three quarters (not to exceed sixteen units of internship credit) during the course of their junior and senior years. The number of units earned corresponds to the number of hours worked, level of internship responsibilities, and length of the research paper/project. The academic component of the program, which is directed by a faculty advisor, consists of a research paper/project and relevant readings. All students earn grades of P/NP and receive transcript notations.

AIP serves students from all six colleges and all undergraduate majors. Students interested in the Academic Internship Program must apply one quarter before they intend to enroll in the program. To be eligible for the program students must have completed ninety units of credit and have a minimum 2.5 GPA at the time of application.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

197. Academic Internship Program (4, 8, 12)
Individual placements for field learning integrated with academic programs, developed/coordinated by AIP. Written contract received prior to internship includes learning objectives, project outline, means of supervision and evaluation. Consent of Faculty Advisor and Program Chair required for all. Prerequisites: ninety units minimum completed; 2.5 minimum cumulative GPA; at least two upper-division courses, preferably in a related field, completed by date of application; departmental stamp.

197P. Public Service Minor Internship (4)
Individual placements for field learning performed in nonprofit organizations dedicated to providing services in the areas of education, government, social research, and health. Yearlong written contract completed prior to start of internship will include intellectually unified expectations and means of supervision. Faculty member and student will meet regularly. Prerequisites: 2.5 GPA and completion of ninety units, prior declaration of public service minor, departmental stamp.

197PR. Academic Internship Program—PRIME Program (1)
Individual placements for field learning in Pacific Rim countries funded by NSF grant, integrated with academic programs. Grant to last five years; summers 2008–12. Written contract received prior to internship includes learning objectives, project outline, means of supervision and evaluation. Prerequisites: ninety units minimum completed, 2.5 minimum cumulative GPA, two upper-division courses completed by date of application, Students must go through a written application and interview selection process, department stamp.
African American Studies Minor

OFFICE: Thurgood Marshall College, Administration Building, Room 120

AFFILIATED FACULTY
Boatema Boateng, Assistant Professor, Communication
David Borgo, Associate Professor, Music
Robert Cancel, Associate Professor, Literature
Dennis Childs, Assistant Professor, Literature
Anthony Davis, Professor, Music
Zeinabu Davis, Professor, Communication
Fatima El-Tayeb, Assistant Professor, Literature
Ivan Evans, Associate Professor, Sociology
Camille F. Forbes, Assistant Professor, Literature
Nadine George, Associate Professor, Theatre and Dance
Michael Hanson, Assistant Professor, Communication
Sara Johnson, Assistant Professor, Literature
Bennetta Jules-Rosette, Professor, Sociology
Cecil Lyle, Professor Emeritus, Music
Gabriel Mendes, Assistant Professor, Ethnic Studies
Denise Ferreira da Silva, Associate Professor, Ethnic Studies

Cauleen Smith, Acting Associate Professor, Visual Arts
Pat Washington, Lecturer, Ethnic Studies
Megan Welising, Assistant Professor, Literature
Daniel Widener, Assistant Professor, History
Winfred Woodhull, Associate Professor, Literature

THE MINOR

The African American Studies Minor is an interdisciplinary minor which is designed to lead to an understanding of the experiences of African Americans. The Core Requirement sets the stage for the formation and codification of an African American intellectual and political tradition into the twentieth century. The History and Context selection of courses focuses on the formation of identity through the lens of history and media. Polities and Society involves students in an investigation of the contest between that forming identity and the social systems of urbanization, politics, and class stratification. Representation and Voice courses provide for a selection of performing and fine arts experiences as representations of African American culture.

CORE COURSES

(Choose ONE COURSE from the list below)
HILD 7A: Race and Ethnicity in the United States (4)
LTEN 27: Introduction to Afro-American Literature (4)

HISTORY AND CONTEXT

(TWO COURSES selected from list below)
ETHN 105/USP 104: Ethnic Diversity and the City (4)
ETHN 140: Language and American Ethnicity (4)
ETHN 151: Ethnic Politics in America (4)
ETHN 152: Law and Civil Rights (4)
ETHN 163: Leisure in Urban America (4)
ETHN 164/MUS 153: African Americans and the Mass Media (4)
ETHN 165: Sex and Gender in African American Communities (4)
ETHN 166: The Black Press and Social Change (4)
ETHN 184: Black Intellectuals in the Twentieth Century (4)
ETHN 187: Black Nationalism (4)
HIUS 134: From Be Bop to Hip Hop: African American Cultural History Since 1945 (4)
HIUS 135B/ETHN 170B: Slavery and the Atlantic World (4)
HIUS 138/ETHN 167: African American History in War and Peace: 1917–Present (4)
HIUS 139/ETHN 149: African American History in the Twentieth Century (4)
HIUS 164/ETHN 181: Topics in Comparative History of Modern Slavery (4)
HIUS 165/ETHN 182: Segregation, Freedom Movements, and the Crisis of the Twentieth Century (4)
HIUS 175: Crime, Law, and Society in the United States, 1600-1900 (4)
HIUS 176: Race and Sexual Politics (4)
HIUS 183/ETHN 159: Topics in African American History (4)

POLITICS AND SOCIETY

(TWO COURSES selected from list below)
ANLD 23: Debating Multiculturalism: Race, Ethnicity, and Class in American Society
COCU 182: Black Popular Music (4)
COCU 123: Black Women Filmmakers (4)
COSF 124: Black Women, Feminism, and Media (4)
ETHN 141: Language and Culture (4)
ETHN 160: Black Politics and Protest 1885–1941 (4)
ETHN 161: Black Politics and Protest Since 1941 (4)
POLL 109H: Race and Ethnicity in American Politics (4)
POLL 100J: Race in American Political Development (4)
SOC/C 139: Social Inequity: Class, Race, and Gender (4)
SOC/D 1875: The Sixties (4)
USP 103/HIUS 148: American Cities in the Twentieth Century (4)
USP 104/ETHN 105: Ethnic Diversity and the City (4)
USP 132/ETHN 107: African Americans, Religion, and the City (4)

REPRESENTATIONS AND VOICE

(EIGHT UNITS selected from list below)
LTAM 111: Comparative Caribbean Discourse (4)
LTAM 130: Reading North by South (Inter-American Prose) (4)
LTEN 148: Genres in English and American Literature (4)
LTEN 183/ETHN 172: African American Prose (4)
LTEN 184/ETHN 173: African American Poetry (4)
LTEN 185/ETHN 174: Themes in African American Literature (4)
LTEN 186/ETHN 175: Literature of the Harlem Renaissance (4)

LTEN 188: Contemporary Communication and Cultural Expression (4)
MUS 95: Ensemble Performance (2)
Section G: Gospel Choir (Except for the two-unit performing arts courses in Mus which may be repeated for credit)
Section JC: Jazz Chamber Ensemble** [formerly MUS 95: Jazz Ensemble (2)]
Section JL: Large Jazz Ensemble**
MUS 126/ETHN 178: Blues: An Oral Tradition (4)
MUS 127A/ETHN 179A: Jazz Roots and Early Development (4)
MUS 127B/ETHN 179B: Jazz Since 1946: Freedom and Form (4)
MUS 131: Advanced Improvisation Practice (4)
TDHT 109: African American Theatre (4)
TDAC 120: Ensemble (4) [formerly THAC 120: Ensemble (4)]
VIS 1: Introduction to Art Making; Two Dimensional Practices (4)
VIS 126DN: African and Afro-American Art (4)

Students interested in either taking African American Studies courses or completing the minor are encouraged to discuss their interests and develop a course of study with an affiliated faculty member of the program at their earliest convenience. See the Marshall College Academic Advising Office for further information or contact the minor program's coordinator in the Office of the Provost.
The African studies minor provides students with a broad background in African history, societies, culture, and politics. Please contact Professor Bennetta Jules-Rosette in the Department of Sociology (Social Science Building, Rm. 471), (858) 534-4790 or the African Studies Office at (858) 822-0265 for more information. Quarterly course offerings are subject to change. Interested students should consult the program faculty for an up-to-date list.

GROUP A: TRADITIONAL CULTURES AND PREMODERN AFRICA

ANRG 104. Traditional African Societies and Cultures (4)
Com/Cul 118. Oral History (4)
Ethnic Studies 142. Languages of Africa (4)
HIAF 110. History of Africa to 1880 (4)
HIAF 120. History of South Africa (4)
HIUS 135. Slavery and the Atlantic World (4)

GROUP B: AFRICAN SOCIETY AND POLITICS

ANGN 183. Chiefdoms, States, and the Emergence of Civilizations (4)
Com/Cul 179. Colonialism and Culture (4)
Ethnic Studies 157. Ethnic Conflict in the Third World (4)
HIAF 111. Modern Africa since 1880 (4)
HIAF 130. African Society and the Slave Trade (4)
HIAF 140. Economic History of Africa (4)
Political Science 132A. Political Modernization Theory (4)
Political Science 135A. Ethnic Conflict in the Third World (4)
Political Science 136B. Comparative Politics and Political Culture (4)
Soc I/148E. Inequality and Jobs (4)
Soc I/157. Religion in Contemporary Society (4)
Soc I/158. Islam in the Modern World (4)
Soc I/188E. Community and Social Change in Africa (4)
Soc I/188J. Change in Modern South Africa (4)

GROUP C: AFRICAN EXPRESSIVE CULTURE

Com/Cul 127. Folklore and Communication (4)
Com/Cul 146. Culture and Thought (4)
Com/Cul 179. Colonialism and Culture (4)
LTGN 130. Novel and History in the Third World (4)
LTGN 132. African Oral Literature (4)
LTGN 133. Introduction to Literature and Film of Modern Africa (4)
LTGN 185. Literature and Ideas (4)
LTGN 186A/B. Modernity and Literature (4-4-4)
LTEN 187. Black Music/Black Text: Communication and Cultural Expression (4)
LTEN 188. Contemporary Caribbean Literature (4)
MUS 13AF. World Music/Africa (4)
MUS 111. World Music Traditions (4)
MUS 126. Introduction to Oral Music (4)
MUS 127A-B. Music of Black Americans (4-4)
Soc I/105. Ethnographic Film and Media Methods (6)
Soc I/187. African Societies Through Film (4)
TH/HS 109. Modern Black Drama (4)
TH/HS 153. Dance History-Jazz Dance & Related Ethnic Studies (4)
Visual Arts 126A. African and Afro-American Art (4)
Visual Arts 127B. Western & Non-Western Rituals & Ceremonies (4)
Visual Arts 127D. Primitivism and Exoticism in Modern Art (4)
Visual Arts 128E. Topics in Non-Western Art (4)
Anthropology

PROFESSORS
Guillermo Algaize, Ph.D.
Thomas J. Csordas, Ph.D.
Jonathan Friedman, Ph.D.
John B. Haviland, Ph.D.
Janis H. Jenkins, Ph.D.
Thomas E. Levy, Ph.D.
Steven M. Parish, Ph.D.
Joel Robbins, Ph.D., Chair
Margaret J. Schoeninger, Ph.D.
Shirley C. Strum, Ph.D.
Kathryn A. Woolard, Ph.D.

ASSOCIATE PROFESSORS
Geoffrey Braswell, Ph.D.
Suzanne A. Brenner, Ph.D.
Paul S. Goldstein, Ph.D.
Jim Moore, Ph.D.
Esra Ozvurk, Ph.D.
Nancy G. Posteru, Ph.D.
Katerina Semendeferi, Ph.D.
Rupert Stasch, Ph.D.

ASSISTANT PROFESSORS
Keith E. McNeal, Ph.D.
David E. Pedersen, Ph.D.

PROFESSORS EMERITI
F. G. Bailey, Ph.D., Academic Senate Career Distinguished Teaching Award
Roy G. D’Andrade, Ph.D. (No longer in San Diego)
David K. Jordan, Ph.D.
Michael E. Meeker, Ph.D. (No longer in San Diego)
T. Schwartz, Ph.D. (Retired, not available)
Melford E. Spiro, Ph.D.
Marc J. Swartz, Ph.D.

ADJUNCT PROFESSORS
Robert McC. Adams, Ph.D.
Fred Bercovitch, Ph.D.

ASSOCIATED FACULTY
Edwin L. Hutchins, Ph.D., Professor, Cognitive Science
Martha Lampland, Ph.D., Associate Professor, Sociology
Paula F. Levin, Ph.D., Senior Lecturer S.O.E., Education Studies
Christena Turner, Ph.D., Associate Professor, Sociology
Lisa Yoneyama, Ph.D., Associate Professor, Literature

OFFICE: Social Science Building
http://anthro.ucsd.edu

Anthropology stands at the nexus between the social sciences, biological sciences, and humanities. It is dedicated to understanding the worldwide diversity of social institutions and cultural traditions, past and present, as well as to studying our nearest nonhuman relatives. Because there is increasing awareness of the importance of anthropological factors in domestic and international relations, as well as in a number of health-related fields, a bachelor’s degree in anthropology has become accepted as a valuable preparation for careers in law, medicine, business, government, education, and various areas of public service. Anthropology majors can qualify for a California teaching credential from UC San Diego through the Education Studies program. The department offers a full range of courses in archaeology, as well as in biological, social, cultural, psychological, political, and linguistic anthropology. Courses include offerings that focus on specific societies or regions of the world—especially Latin America, Asia, and Oceania—as well as more theoretically oriented topics. The department offers undergraduate major and minor programs, a senior thesis program, an undergraduate internship program, and a graduate program leading to the doctoral degree. Students also may enroll in archaeological field school and study-abroad programs in the Middle East and Latin America.

THE UNDERGRADUATE PROGRAM

LOWER-DIVISION
Lower-division offerings in anthropology are concentrated in the core series: ANTH 1, 2, 3. These courses are designed to provide a comprehensive orientation to the ideas and methods of anthropological investigation and a familiarity with case materials from a number of different societies (ANTH 1), prehistoric eras (ANTH 2 and ANTH 3), and historical periods (ANTH 3).

Students who intend to major or minor in anthropological archaeology are advised to take ANTH 3.

Students who intend to major or minor in biological anthropology must take ANTH 2 (or the equivalent), which is prerequisite for most upper-division biological anthropology courses. ANTH 23, which may not be offered every year, satisfies the campuswide requirement for a course in American Cultures.

Students who have already completed ANTH 103 (or the older sequence ANPR 105, 106, and 107) may not receive academic credit for ANTH 1.

Other lower-division courses are offered from time to time and will vary from year to year.

UPPER-DIVISION
The Department of Anthropology offers many general interest and specialized courses at the upper-division level. In addition to satisfying the requirements of the anthropology major, many of these may satisfy the requirements of other majors.

THE MINOR
Students may choose a minor in anthropological archaeology, biological anthropology, or sociocultural anthropology. Each consists of seven anthropology courses. At least five of these courses must be upper-division, and at least four should be taken at UCSD. Transfer credits from other anthropology departments are usually accepted. Education Abroad Program credits are acceptable at the discretion of the undergraduate advisor.

THE MAJOR
To receive a B.A. degree with a major in anthropology, the student must meet the requirements of Revelle, John Muir, Thurgood Marshall, Earl Warren, Eleanor Roosevelt College, or Sixth College. Additionally, the student must meet the following requirements of the Department of Anthropology:

1. A minimum of twelve four-unit upper-division courses in the Department of Anthropology must be completed.

2. The undergraduate core ANTH 101, 102, and 103 (or the now defunct sequence ANPR 105, 106, and 107) must be completed (included as three of the twelve courses required under #1, above). All or some of the courses in this sequence are prerequisites for some other upper-division courses. This sequence consists of:
 - 101 Foundations of Social Complexity
 - 102 Humans Are Cultural Animals
 - 103 Sociocultural Anthropology

3. No courses taken in fulfillment of the above requirements may be taken on a Pass/Not Pass (P/NP) basis. [An exception is made for some courses accepted from other schools and for one independent study course (199), or one directed group study course (198), and a combination of one internship seminar (ANBI 187A, C or ANTH 187B) with the corresponding academic internship project (AIP 197). However, this exception does not extend to ANTH 101, 102, or 103, or to transfer credits accepted in lieu of them. These must be taken for a letter grade.]

4. For the B.A. degree, a minimum average of 2.0 is required, both as an overall average in all anthropology courses and in the ANTH 101, 102, and 103 sequence (or the defunct ANPR 105, 106, and 107 sequence) considered separately.

5. At least seven of the upper-division courses submitted for the major must be taken at UCSD. The seven normally must include ANTH 101, 102, and 103 (or the older sequence ANPR 105, 106, and 107). A transfer course may be accepted in lieu of one of these core courses if, in the opinion of the director of Undergraduate Studies, the content is substantially the same. In no case will transfer credit be accepted in lieu of more than one of these courses.

6. All undergraduate majors in anthropology must satisfy the requirements of at least one of the three concentrations—anthropological archaeology, biological anthropology, and sociocultural anthropology—described below.

The Major in Anthropology with Concentration in Archaeology

The department offers a B.A. degree in anthropology with concentration in archaeology. A minimum of at least twelve upper-division courses in anthropology are required. Specifically, this degree requires:

1. The Anthropology Core Sequence: ANTH 101, 102 and 103 (or the now defunct ANPR 105, 106, and 107 sequence)

2. The Archaeology Concentration Requirement: ANAR 111 (previously ANGN 181)

3. Three additional four-unit upper-division courses with the prefix ANAR
4. Five additional four-unit, upper-division elective courses within the Department of Anthropology

Some students may elect to take field-school courses such as ANAR 194 or study-abroad courses in archaeology that are more than four units. In these cases, the total number of units for such courses will be applied to the satisfaction of archaeology requirements #3 and #4. For example, a twelve-unit field-school course with the ANAR prefix may be used to satisfy requirement #3 or to partially satisfy requirement #4.

Students majoring in anthropological archaeology are encouraged to take the field-school ANAR requirement #4.

The Major in Anthropology with Concentration in Biological Anthropology

The department offers a B.A. degree in anthropology with concentration in biological anthropology. A minimum of at least twelve upper-division courses within and beyond anthropology are required. Specifically, this degree requires:

1. The Anthropology Core Sequence: ANTH 101, 102, 103 (or the now defunct ANPR 105, 106, and 107 sequence).
2. The Biological Anthropology Concentration Requirement: ANBI 111.
3. Three additional four-unit upper-division courses with the prefix ANBI.
4. Five additional four-unit, upper-division elective courses. At least one of these five electives must be taken from an approved list of biology courses. This list is available from the undergraduate coordinator in the Department of Anthropology. Each of the remaining four electives is to be drawn from that list or must be an upper-division anthropology course.

The Major in Anthropology with Concentration in Sociocultural Anthropology

The department offers a B.A. degree in anthropology with concentration in sociocultural anthropology. A minimum of at least twelve upper-division courses in anthropology are required. Specifically, this degree requires:

1. The Anthropology Core Sequence: ANTH 101, 102, 103 (or the now defunct ANPR 105, 106, and 107 sequence).
2. The Sociocultural Concentration Requirements: Any three of the following six course options:
 - ANSC 120. Anthropology of Religion (previously ANGN 120)
 - ANSC 121. Psychological Anthropology (previously ANPR 107)
 - ANSC 122. Language in Society (previously ANGN 149) or ANSC 118. Language and Culture
 - ANSC 123. Political Anthropology (previously ANGN 151)
 - ANSC 124. Cultural Anthropology (previously ANPR 106)
 - ANSC 125. Gender, Sexuality, and Society (previously ANGN 125)
3. One additional ANSC course focusing on a particular region, country, or religion (e.g., Indigenous Peoples of Latin America, Modernity in Brazil, Global Islam).
4. Five additional four-unit upper-division elective courses within the Department of Anthropology

Senior Thesis Program

The senior thesis is prepared during two successive quarters of ANTH 196, senior thesis research, and is counted as two of the twelve upper-division courses required for a major. Students are admitted to the program by invitation of the faculty. Under normal circumstances, eligibility for the program requires the student (1) to have completed eight upper-division courses, including the core sequence, and (2) to have achieved grade point averages of at least 3.6 both overall and in the anthropology major by the end of the junior year. Some of these requirements may be waived by vote of the faculty. During the first quarter of the program (fall quarter), students select their research topic and write a preliminary paper. Those who receive a B+ or better will be invited to continue in the program and complete a thesis on the chosen topic by the end of the winter quarter. The thesis will be evaluated by a committee consisting of the thesis advisor and one other faculty member appointed by the department chair in consultation with the thesis coordinator. The thesis advisor has the sole responsibility for the grade the student receives in the winter quarter. The reading committee advises the faculty on the merit of the thesis for departmental honors. A senior thesis is required in order to be considered for department honors at commencement.

Students who wish to be considered for the Senior Thesis Program should notify the department's undergraduate advisor by the second week of the spring quarter prior to the senior year.

Internship Program

The department sponsors an internship program that allows students to gain academic credit for supervised work in the Museum of Man, the San Diego Zoo, or the Wild Animal Park. The three tracks of the program allow internship experience in (1) biological anthropology, (2) ethnology and archaeology at the museum, or (3) primate behavior and conservation at the Zoo or Wild Animal Park. A combination of on-campus and on-site supervision makes these courses intellectually provocative but practical and applied. They are an especially valuable complement to a major or minor in anthropology. One four-unit internship (AIP 197) taken with the corresponding two-unit internship seminar (ANBI 187A, C and ANTH 187B) can be counted as one of the twelve upper-division courses for the anthropology major or minor. Applications to these programs are accepted during the first seven weeks of the quarter before the one in which the internship is to be done.

ACADEMIC ENRICHMENT PROGRAMS

FACULTY MENTOR PROGRAM

The program offers research experience to any junior or senior with a GPA of 2.7 or higher who wants to prepare for graduate or professional school. Participants work as research assistants to UCSD faculty members during the winter and spring quarters. Students present their research papers at the Faculty Mentor Research Symposium at the conclusion of the program in the spring.

SUMMER RESEARCH PROGRAM

The program offers full-time research experience to underrepresented (i.e., minorities, women, and low-income, first-generation college) students who are interested in preparing for careers in research or university teaching. Juniors and seniors who have a 3.0 GPA or above and plan to attend graduate or professional school are eligible to participate.

EDUCATION ABROAD PROGRAM

One of the best ways to understand the concept of culture is to live in a different culture for a time. Anthropology majors are encouraged to participate in the UC Education Program (EAP) or UCSD's Opportunities Abroad Program (OAP). Students considering this option should discuss their plans with the faculty undergraduate advisor before going abroad, and courses taken abroad must be approved for credit to the major by the advisor upon return. More information on EAP and OAP is provided under "Education Abroad Program" in the UC San Diego General Catalog. Interested students should contact the EAP staff in the International Center.

THE GRADUATE PROGRAM

The Department of Anthropology offers graduate training in sociocultural (including psychological and linguistic) anthropology, anthropological archaeology, and biological anthropology. The graduate program is designed to provide the theoretical background and the methodological skills necessary for a career in research and teaching anthropology at the university level, and for the application of anthropological knowledge to contemporary problems. It is assumed that all students enter with a master's degree or the Ph.D. must be made by a majority of the faculty.

Graduate Advising

One member of the departmental faculty functions as the graduate advisor and is referred to as the director of graduate studies. The role of graduate advisor is to inform students about the graduate program, to approve individual registration forms, and to give assistance with respect to administrative matters.
First-Year Mentors

Each first-year student is assigned a faculty mentor in the student's subdiscipline. Students are encouraged to meet regularly with their mentors for course planning and guidance in meeting specific requirements and recommendations for their subdiscipline.

After completion of the requirements for the master's degree, the chair of the student's doctoral committee serves as the student's major advisor.

Evaluation

In the spring of each year, the faculty evaluate each student's overall performance in course work, apprentice teaching, and research progress. A written assessment is given to the student after the evaluation. If a student's work is found to be inadequate, the faculty may determine that the student should not continue in the graduate program.

THE MASTER OF ARTS DEGREE

Students entering the doctoral program must complete a master's degree before continuing toward the doctorate. Entering students who already have a master's degree in anthropology are not permitted by university regulations to receive a second social science or related-field master's degree, but are required by the department to complete the requirements for the master's degree. Rare exceptions may be made on a case-by-case basis by the consent of the majority of the faculty and approval of the Office of Graduate Studies.

REQUIREMENTS FOR MASTER'S DEGREE

Required Courses

- ANTH 230. Departmental Colloquium (4 quarters, 1 unit each)
- ANTH 281A-B. Introductory Seminars (1 unit each)
- ANTH 295. Master's Thesis Preparation (1–12 units)
- Four core courses, as specified in the following sections.

Core Course Offerings

Six core courses are offered in the graduate program in anthropology:

- ANTH 280A. Core Seminar in Social Anthropology (4 units)
- ANTH 280B. Core Seminar in Cultural Anthropology (4 units)
- ANTH 280C. Core Seminar in Psychological Anthropology (4 units)
- ANTH 280D. Core Seminar in Anthropological Archaeology (4 units)
- ANTH 280E. Core Seminar in Biological Anthropology (4 units)
- ANTH 263. The Anthropology of Language and Discourse (4 units)

Note: Although not in the 280 series, ANTH 263 is a core seminar. It is also open to graduate students from other departments, with instructor's permission. It may be offered in alternate years.

ANTH 280A, 280B, 280C, and 263 are all core courses within the Sociocultural track. ANTH 280D and 280E are core courses in, respectively, the anthropological archaeology and biological anthropology tracks.

All students must take at least four of these six core courses by the end of their second year in the program (and preferably during the first year) as a requirement for receiving the master's degree or for equivalent advancement in the program. The subfields specify particular choices among these core offerings for the students admitted to their respective tracks, as detailed below. The department strongly encourages all students in all subfields to take additional core courses as elective seminars to complete their program.

Anthropological Archaeology core requirements:

- 280D (Anthropological Archaeology); and
- 280E (Biological Anthropology); and
- Two of the remaining four core courses in anthropology, selected in consultation with the student's assigned mentor.

Biological Anthropology core requirements:

- 280E (Biological Anthropology); and
- 280D (Anthropological Archaeology); and
- Two of the remaining four core courses in anthropology, selected in consultation with the student's assigned mentor.

Sociocultural Anthropology, Psychological Anthropology, and Linguistic Anthropology

All students in sociocultural anthropology and its allied fields of psychological and linguistic anthropology will take at least four core courses, selected as follows and with the consent of the individual student's faculty mentor. Students identifying two or more areas of concentration must satisfy the requirements of each of these areas.

Core requirements for students in the General Sociocultural track:

- 280A (Social Anthropology); and
- 280B (Cultural Anthropology); and
- 280C (Psychological Anthropology) or 263 (The Anthropology of Language and Discourse); and
- 280D (Anthropological Archaeology) or 280E (Biological Anthropology).

Core requirements for students in the Psychological Anthropology track:

- 280C (Psychological Anthropology); and
- 280D (Anthropological Archaeology) or 280E (Biological Anthropology); and
- 263 (Anthropology of Language and Discourse).

Core requirements for students in the Linguistic Anthropology track:

- 263 (Anthropology of Language and Discourse); and
- 280D (Anthropological Archaeology) or 280E (Biological Anthropology); and

Two of the following:

- 280A (Social Anthropology),
- 280B (Cultural Anthropology),
- 280C (Psychological Anthropology).

Master's Thesis

Students must complete a master's thesis or master's thesis equivalency project of a length, format, and scope to be approved by the student's M.A. committee and the director of graduate studies. The M.A. thesis must be at least 8,000 words in length and generally should not exceed 10,000 words. Students must have completed three quarters of course work in order to begin writing a master's thesis. By the end of the spring quarter of the student's first year, he or she will form a master's committee in consultation with the director of graduate studies and first-year faculty mentor.

Students will submit a draft of the master's thesis or master's thesis equivalency project by the first day of winter quarter of their second year. Students may revise the master's thesis or master's thesis equivalency project in the winter quarter. Students will register for four credit hours of ANTH 295 (master's thesis preparation) in the fall quarter of their second year. Upon consultation with the M.A. committee and director of graduate studies, an additional four credits of ANTH 295 may be taken in winter for revisions. Successful completion of the master's thesis or master's thesis equivalency will determine whether an M.A. degree is awarded, where applicable, and weigh significantly in second-year student evaluations.

Elective Courses

Four elective, letter-grade courses are required. These courses can be undergraduate or graduate seminars. At least two of these elective courses must be within the anthropology department. Other electives may be taken outside of the department with the approval of the department chair or the graduate advisor.

THE DOCTORAL DEGREE

Continuation in the doctoral program is granted to students who have satisfactorily completed the master's program and who have completed courses and the master's thesis at a level of excellence that indicates promise of professional achievement in anthropology.

REQUIREMENTS FOR DOCTORAL DEGREE

1. Required Courses

In order to achieve candidacy, students must complete two additional letter-grade electives beyond the four required for the master's degree.

2. Research Methods

Students are required to develop a plan for their training in research methods and present it to the anthropology department faculty on their proposed dissertation committee in the spring quarter of their second year.
3. Apprentice Teaching

In order to acquire teaching experience, each student is required to serve as a teaching assistant for at least one quarter anytime during the first four years of residency. This experience may take place either in our department or in any teaching program on campus. The relevant course in the anthropology department is ANTH 300: Apprentice Teaching, taken for four units and S/U grade. Upon petition, this requirement may be waived by the anthropology faculty.

4. Foreign Language

Unless a student is planning on fieldwork in English-speaking areas, knowledge of one or more foreign languages may be essential for the successful completion of a Ph.D. in anthropology at UCSD. Students will determine specific language requirements for their degree in consultation with the faculty and their doctoral committee.

5. Formation of the Doctoral Committee

All students must choose the chair of their doctoral committee by the end of their second year. They must choose two more internal members of the doctoral committee by the end of the fall quarter of their third year. In consultation with the chair of the doctoral committee, two faculty members from outside the department (one of whom must be tenured) should be added to the committee by the end of the winter quarter of the third year.

Anthropologists in other departments who are identified by the faculty may serve as either inside members or outside members of the committee. However, there must be at least two inside members from within the department, and only one outside member may be an anthropologist. The final composition of the committee is approved by the Office of Graduate Studies.

The chair of the doctoral committee serves as the student’s advisor for the remainder of the student’s program.

6. The Fieldwork Proposal

Advancement to candidacy will be based on the submission of two to three position papers and a research proposal. The position papers are intended as a way for students to demonstrate competence in particular areas of theory, methods, and/or regional studies that are significant to the dissertation research project. The number of the position papers and the specific topics they address are to be formulated in consultation with the student’s committee chair and, as appropriate, with other members of the student’s dissertation committee. It is expected that the position papers will amount to some fifty to sixty pages and that the research proposal will be in the twenty- to thirty-page range. Students should enroll in directed reading courses (ANTH 298) during the quarters in which they are writing the position papers. Additionally, students should also enroll in ANTH 296 during the quarters in which they are writing their dissertation research proposal. A maximum of three quarters is allowed for the preparation of both the position papers and proposal. The position papers, research proposal, and oral examination for advancement to candidacy must be completed no later than the end of the spring quarter of the student’s fourth year.

7. Advancement to Candidacy

Advancement to doctoral candidacy must take place no later than the end of the spring quarter of the fourth year. This requires the successful completion of all course work requirements, the position papers, the dissertation research proposal, and an oral qualifying examination administered by the student’s committee. The proposal and position papers must be turned into the student’s committee at least three weeks prior to the examination.

Upon petition, students may advance to candidacy as early as the spring quarter of the third year, if all candidacy requirements noted earlier have been satisfied by that time. This requires the agreement of the graduate advisor, the student’s dissertation advisor, and other members of his or her committee.

Successful completion of this examination marks the student’s advancement to doctoral candidacy. These exams will be open to the extent that university regulations allow.

8. Dissertation and Dissertation Defense

Upon completion of the dissertation research project, the student writes a dissertation that must be successfully defended in an oral examination conducted by the doctoral committee and open to the public. This examination may not be conducted earlier than four quarters after the date of advancement to doctoral candidacy. A full copy of the student’s dissertation must be in the hands of each of the student’s doctoral committee members four weeks before the dissertation hearing. An abstract of the student’s dissertation must be in the hands of all faculty members ten days before the dissertation defense. It is understood that the edition of the dissertation given to committee members will not be the final form, and that the committee members may suggest changes in the text at the defense. Revisions may be indicated, requiring this examination to be taken more than once. Acceptance of the dissertation by the university librarian represents the final step in completion of all requirements for the Ph.D.

9. Time Limits

Preadjunct status is limited to four years. Candidates for the doctorate remain eligible for university support for eight years. Instructional support (teaching assistantships, readerships, and tutors) is limited to six years (eighteen quarters). The doctoral dissertation must be submitted and defended within nine years. This is in accordance with university policy. Normative time, which is the expected time to complete all requirements for the Ph.D., is six years for anthropology students.

10. Additional Requirements for the Ph.D. in Anthropological Archaeology

Prior to receiving the Ph.D., anthropological archaeology students must complete a minimum total of fifty-six units (the equivalent of fourteen four-unit courses) of formal classroom/seminar courses. Students must choose all courses in consultation with their faculty advisor, who will be assigned during the first quarter. Archaeology students must take at least two sociocultural or topical courses (upper-division or graduate) or two advisor-approved courses in other social science or humanities departments that are relevant to their regional or theoretical focus of study. Each archaeology student must take at least one 200-level course focusing on cultures of the Old World and one 200-level course focusing on cultures of the New World. Students of anthropological archaeology are required to take at least one course in a modern or ancient language, or at least one course in linguistics. If offered, students must take ANTH 286 (Topics in Anthropological Archaeology). Anthropological archaeology students are required to take at least one course in quantitative methods (statistics or GIS). Because archaeology is closely allied to various earth and biological sciences, students are required to take at least one course in either of these fields that is relevant to their interests. Finally, graduate students in anthropological archaeology are expected to seek and obtain archaeology field and laboratory training. This requirement may be fulfilled by working with the anthropological archaeology track faculty in the Department of Anthropology or with archaeologists at other institutions.

INTRODUCTION TO REQUIRED CORE COURSES

ANTH 280A. Core Seminar in Social Anthropology. Core seminar focuses on individual action and social institutions.

ANTH 280B. Core Seminar in Cultural Anthropology. Core seminar focuses on personal consciousness and cultural experience.

ANTH 280C. Core Seminar in Psychological Anthropology. Core seminar focuses on motives, values, cognition, and qualities of personal experience.

ANTH 280D. Core Seminar in Anthropological Archaeology. Integral part of the training for graduate students focusing on anthropological archaeology. It is one of a set of core anthropology courses available to graduate students; required of anthropological archaeology students but open for students in other subfields.

ANTH 280E. Core Seminar in Biological Anthropology. This seminar will examine the central problems and concepts of biological anthropology, laying the foundation for first-year graduate students in biological anthropology as well as providing an overview of the field for graduate students in other areas of anthropology.

ANTH 281A-B. Introductory Seminars. These seminars are held in the first two quarters of the first year of graduate study. Faculty members will present an account of their current research and interests. When appropriate, a short preliminary reading list will be given for the particular lecture.

ANTH 263. Anthropology of Language and Discourse. Examines the theoretical and methodological foundations and principal research questions of linguistic anthropology, providing the fundamentals for graduate study in this area. Required
Prerequisite: for students specializing in linguistic anthropology, and open to other students. Prerequisite: graduate standing in anthropology or consent of instructor.

The Melanesian Studies Resource Center and Archive

These facilities embody the substantial interests in the Pacific Basin that are represented on the UCSD campus and the special prominence of the UCSD Department of Anthropology in the study of cultures and societies of Oceania and especially of Melanesia. In cooperation with the UCSD libraries, the Melanesian Studies Resource Center and Archive has two major projects. First, there is an ongoing effort to sustain a library collection of monographs, dissertations, government documents, and journals on Melanesia that make UCSD the premier center for such materials in the United States. Second, there is an endeavor to collect the extremely valuable unpublished literature on Melanesia, to catalog such materials systematically, to produce topical bibliographies on these holdings, and to provide microfiche copies of archival papers to interested scholars and to the academic institutions of Melanesia. This innovative archival project is intended to be a model for establishing special collections on the traditional life of tribal peoples as dramatic social change overtakes them. In the near future, anthropological research on tribal peoples will take place largely in archives of this kind. These complementary collections will support a variety of research and teaching activities and are already attracting students of Melanesia to this campus.

The Melanesian Studies Resource Center and Archive are directed by members of the Department of Anthropology faculty, in collaboration with Geisel Library.

The Archaeological Research Laboratory

Archaeology laboratories were established at UCSD in 1995. The present facilities are geared to the study of lithics, ceramics, biological remains, and other small finds retrieved on faculty expeditions in the old and new worlds, including Belize, Israel, Jordan, and Peru. Multimedia research, AutoCAD, and other computer-based studies are carried out in the lab. Undergraduate and graduate students are encouraged to participate in lab studies.

The Biological Anthropology Laboratory

The biological anthropology laboratories have twin missions in teaching research. They house collections of modern skeletal material and fossil hominid casts used for teaching both at the lab and in local outreach presentations. The primary research focus involves a large collection of histological sections and computerized images of living and postmortem human and nonhuman primate brains that were obtained through magnetic resonance scans. These are reconstructed in 3-D using state-of-the-art equipment for comparative analysis and study of the evolution of the human brain.

Undergraduate and graduate student involvement in the lab is welcomed.

The Anthropology of Modern Society Faculty Research Group

The Anthropology of Modern Society is a project of graduate training and research dedicated to the critical study of modernity and its counterparts. The group is concerned with the changing nature of membership in modern society. Its participants focus on issues of citizenship and democracy; social formations in tension with the nation-state; modern subjectivities; social and religious movements; governmental rationalities and public works, transnational markets and migrations; relations of local to global processes within the current realignments of regional, national, and transnational sovereignties; and the social life of cities as making manifest these kinds of concerns. Participants are committed to reorienting anthropological theory and ethnographic practice toward such contemporary social and political problems. Guiding this project is the group’s interest in combining critical theory with a comparative and empirically grounded study of cases to constitute an anthropology of modernity.

Courses

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

Note: Not all courses are offered every year. Please check the quarterly Schedule of Classes for specific courses issued fall 2009, winter 2010, and spring 2010.

Anthropology: Lower-Division

ANTH 1. Introduction to Culture (4)

An introduction to the anthropological approach to understanding human behavior, with an examination of data from a selection of societies and cultures. (Formerly known as ANLD 1.) Credit not allowed for both ANLD 1 and ANTH 1.

ANTH 2. Human Origins (4)

An introduction to human evolution from the perspective of physical anthropology, including evolutionary theory and the evolution of the primates, hominids, and modern humans. Emphasis is placed on evidence from fossil remains and behavioral studies of living primates. Prerequisite: for upper-division biological anthropology courses. (Formerly known as ANLD 2.) Credit not allowed for both ANLD 2 and ANTH 2.

ANTH 3. World Prehistory (4)

This course examines theories and methods used by archaeologists to investigate the origins of human culture. A variety of case studies from around the world are examined. (Recommended for many upper-division archaeology courses.) (Formerly known as ANLD 3.) Credit not allowed for both ANLD 3 and ANTH 3.

ANTH 23. Debating Multiculturalism: Race, Ethnicity, and Class in American Societies (4)

This course focuses on the debate about multiculturalism in American society. It examines the interaction of race, ethnicity, and class, historically and comparatively, and considers the problem of citizenship in relation to the growing polarization of multiple social identities. (Formerly known as ANLD 23.) Credit not allowed for both ANLD 23 and ANTH 23.

ANTH 42. The Study of Primates in Nature (4)

Major primate field studies will be studied to illustrate common features of primate behavior and behavioral diversity. Topics will include communication, female hierarchies, protocultural behavior, social learning and tool use, play, cognition, and self-awareness. (Prerequisite for several upper-division biological anthropology courses.) (Formerly known as ANLD 42.) Credit not allowed for both ANLD 42 and ANTH 42.

ANTH 87. Freshman Seminar (1)

The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges. Topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen. Prerequisite: none. (Formerly known as ANLD 87.)

Anthropology: Upper-Division

ANTH 101. Foundations of Social Complexity (4)

Course examines archaeological evidence for three key “tipping points” in the human career: (1) the origins of modern human social behaviors, (2) the beginnings of agriculture and village life, and (3) the emergence of cities and states. Prerequisite: upper-division standing. (Required for all majors in anthropology.)

ANTH 102. Humans Are Cultural Animals (4)

This class examines humans from a comparative perspective: if we ignore culture, what’s left? How do culture and biology interact? And how does biology inform cultural debates over race, sex, marriage, war, peace, etc.? (Note: This is a core course for all anthropology majors. Students may not receive credit for ANTH 102 and ANBI 161.) Prerequisite: ANTH 2 or consent of instructor.

ANTH 103. Sociocultural Anthropology (4)

A systematic analysis of social anthropology and of the concepts and constructs required for cross-cultural and comparative study of human societies. Prerequisite: upper-division standing. (Required for all majors in anthropology.) (Formerly known as ANPR 103.) Credit not allowed for both ANPR 105 and ANTH 103.

ANTH 187B. Intern Seminar in Ethnography and Archaeology (2)

Seminar complements students’ research in the Academic Internship Program in ethnography and archaeology at the Museum of Man. Readings and discussions focus on problems in the analysis of material culture and classifications of artifacts and site excavations. Research paper required. Prerequisites: ANSC 124 and instructor. (Recommended for many upper-division archaeology courses.) (Formerly known as ANLD 124.) Credit not allowed for both ANLD 124 and ANTH 187B.

ANTH 192. Senior Seminar in Anthropology (4)

A senior seminar is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in anthropology (at the upper-division level). Senior Seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior Seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors.

ANTH 195. Instructional Apprenticeship in Anthropology (4)

Course gives students experience in teaching of anthropol- ogy at the lower-division level. Students, under direction of instructor, lead discussion sections, attend lectures, review course readings, and meet regularly to prepare course materials and to evaluate examinations and papers. Course not counted toward minor or major. Prerequisites: upper-division standing and consent of instructor and departmental staff. Received grade of A in course to be taught or equivalent. (Formerly known as ANPR 195.) Credit not allowed for both ANPR 195 and ANTH 195.

ANTH 196A. Thesis Research (4)

Independent preparation of a senior thesis under the supervision of a faculty member. Completion of this course with a grade of at least B+ is a prerequisite to ANTH 196B. Prerequisites: students will be admitted by invitation of the department. Department approval required. (Formerly 2010-2011 UC SAN DIEGO GENERAL CATALOG • ANTHROPOLOGY 5
ANTHROPOLOGY: ARCHAEOLOGY

ANAR 100. Special Topics in Anthropological Archaeology (4)
Course content usually taken by visiting faculty in anthropological archaeology. Course will vary in title and content. When offered, the current description and title is found in the current Schedule of Classes and the anthropology department Web site. (Can be taken a total of four times as topics vary) Prerequisite: upper-division standing or consent of instructor.

ANAR 103. Archaeology in the Holy Land (4)
The Holy Land (Israel, Jordan, Palestinian territories) represents a land bridge between Africa and Southwest Asia. Here we explore human foundations from the Paleolithic (ca. 2 million years B.P.) to the rise of Early Bronze Age cities (ca. 3000 B.C.E.). Prerequisite: upper-division standing or consent of instructor.

ANAR 111. Foundations of Archaeology (4)
(Formerly Anthropological Archaeology) As part of the broad discipline of anthropology, archaeology provides the long chronological record needed for investigating human and social evolution. The theories and methods used in this field are examined. (Archaeology core sequence course.) ANTH 3 is recommended. [Formerly known as ANGN 181.] Credit not allowed for both ANGR 181 and ANAR 111. Prerequisite: upper-division standing.

ANAR 112. Ancient Urbanism (4)
The origins and development of early cities in the Old and New Worlds are compared and contrasted from an archaeological anthropological perspective. Prerequisite: upper-division standing.

ANAR 118. Archaeology of the UCSD Campus (4)
Our campus houses some of the earliest human settlements in North America. This course reviews the archaeology, climate, and environment of the sites and outlines research addressing the lives of these early peoples. [Formerly known as ANGN 108.] Prerequisites: upper-division standing. Consent of instructors. Credit not allowed for both ANGR 108 and ANAR 118.

ANAR 119S. Archaeological Field and Lab Class (8)
The archaeological field and laboratory class will take place at Moquegua, Peru. It is an introduction to the research design of interdisciplinary projects, the technique of data collections, the methods of excavation and post-exavication lab work. Course materials fee is required. [Formerly known as ANGN 119.] Prerequisites: upper-division standing. Consent of instructor. Credit not allowed for both ANGR 119 and ANAR 119S.

ANAR 121A. Digital Archaeology: GIS Foundations (4)
Concerns modern archaeological data with Geographic Information Systems (GIS) and performing spatial analysis. Lectures and lab exercises—learn spatio-temporal analysis techniques with interactive online computer mapping. Hands-on skill building on GIS and several ArcView extensions. [Formerly known as ANGR 121.] Credit not allowed for both ANGR 121 and ANAR 121A. Prerequisite: upper-division standing.

ANAR 140: The Foundation for Social Complexity in the Near East (4)
This course critically examines the theoretical models and archaeological evidence of nascent social complexity and inequality in the Near East. The time period under consideration encompasses the shift from generalized hunting and gathering through complex hunter-gatherers to largescale agricultural communities. [Formerly known as ANRG 115.] Credit not allowed for both ANRG 115 and ANAR 140. Prerequisite: upper-division standing.

ANAR 141. Prehistory of the Holy Land (4)
(Formerly The Archaeology of Society in Syro-Palestine) Israel is a land-bridge between Africa and Asia. Course highlights the prehistory of the Levant and its interconnections from the Paleolithic to the rise of the earliest cities in anthropological perspective. [Formerly known as ANRG 116.] Credit not allowed for both ANRG 116 and ANAR 141. Prerequisite: upper-division standing.

ANAR 142. The Rise and Fall of Ancient Israel (4)
(Formerly The Archaeology of Israel in the Iron Age) The emergence and consolidation of the state in ancient Israel is explored using archaeological data, biblical texts, and anthropological theories. The social and economic processes responsible for the rise and collapse of ancient Israel are investigated. ANTH 3 is recommended. [Formerly known as ANRG 150.] Credit not allowed for both ANRG 150 and ANAR 142. Prerequisite: upper-division standing.

ANAR 143. Archaeology, Anthropology, and the Bible (4)
The relationship between archaeological data, historical research, the Hebrew Bible, and anthropological theory are explored along with new methods and current debates in Levantine archaeology. [Formerly known as ANGR 184.] Credit not allowed for both ANGR 184 and ANAR 143. Prerequisite: upper-division standing.

ANAR 144. Pharaohs, Mummies, and Pyramids: Introduction to Egyptology (4)
An introductory survey of the archaeology, history, art, and architecture of ancient Egypt that focuses on the men and women who shaped Western civilization. [Formerly known as ANRG 120.] Credit not allowed for both ANRG 120 and ANAR 144. Prerequisite: upper-division standing, and ANTH 3 may be taken concurrently.

ANAR 153. The Mysterious Maya (4)
The archaeology, anthropology, and history of the Maya civilization, which thrived in Mexico and Central America from 1000 BC until the Spanish conquest. [Formerly known as ANRG 113.] Credit not allowed for both ANLD 13, ANRG 113 and ANAR 153. Prerequisite: upper-division standing.

ANAR 154. The Aztecs and their Ancestors (4)
Introduction to the archaeology of the ancient culture of Mexico from the early Olmec culture through the Postclassic period. Also the basic cultural characteristics of the Mexica and Aztec states; Agriculture; trade and exchange; political and social organization; kinship networks; religious system, ideology, and worldview. [Formerly known as ANRG 125.] Credit not allowed for both ANLD 125 and ANAR 154. Prerequisite: upper-division standing.

ANAR 1555. Study Abroad: Ancient Mesoamerica (4)
Introduction to archaeology of Mesoamerica, taught through visits to important ancient cities and museums of Mexico and Central America. Complementary to ANAR 154, itinerary and subject will vary, so course may be taken more than once. Course/program fee may apply. [Formerly known as ANGR 106.] Credit not allowed for both ANGR 106 and ANAR 1555. Prerequisite: Consent of instructor only.

ANAR 156. The Archaeology of South America (4)
This course will examine archaeological evidence for the development of societies in the South American continent.

From the initial arrival of populations through to the Inca period and the arrival of the Spaniards. [Formerly known as ANRG 121.] Credit not allowed for both ANRG 121 and ANAR 156. Prerequisite: upper-division standing.

ANAR 156XL. The Archaeology of South America (FDL) (1)
Foreign Language Discussion. Students will exercise Spanish foreign-language skills to discuss topics related to the prehistoric archaeology of South America. A basic knowledge of written and conversational Spanish is required. [Formerly known as ANRG 121XL] Credit not allowed for both ANRG 121XL and ANAR 156XL. Prerequisites: ANAR 156 (corequisite). Upper-division standing or consent of instructor.

ANAR 157. Early Empires of the Andes: The Middle Horizon (4)
The civilizations of Wari and Tiwanaku built the first empires of Andean South America long before the Inca. Middle Horizon (AD 500–1000) mythohistory, urbanism, state origins, art, technology, agriculture, colonization, trade, and conquest are explored using ethnohistory and archaeo- logical sources. Credit not allowed for both ANRG 127 and ANAR 157. Prerequisite: upper-division standing or consent of instructor.

ANAR 157S. Early Empires of the Andes: The Middle Horizon (4)
The civilizations of Wari and Tiwanaku built the first empires of Andean South America long before the Inca. Middle Horizon (AD 500–1000) mythohistory, urbanism, state origins, art, technology, agriculture, colonization, trade, and conquest are explored using ethnohistory and archaeo- logical sources. Credit not allowed for both ANRG 127 and ANAR 157. Prerequisite: upper-division standing or consent of instructor.

ANAR 158. The Inca: Empire of the Andes (4)
The history and culture of the Inca Empire of South America and its fatal encounter with the West. Archaeological excavations, accounts from the sixteenth and seventeenth centuries, and oral traditions of present-day peoples of the Andes are explored. [Formerly known as ANRG 127XL] Credit not allowed for both ANRG 127XL and ANAR 158XL. Prerequisite: ANAR 157 (or corequisite). Upper-division standing or consent of instructor.

ANAR 158XL. The Inca: Empire of the Andes (FDL) (1)
Foreign Language Discussion. Students will exercise Spanish foreign-language skills to discuss topics related to the Wari and Tiwanaku civilizations of South America. A basic knowledge of written and conversational Spanish is required. [Formerly known as ANRG 127XL] Credit not allowed for both ANRG 127XL and ANAR 158XL. Prerequisite: ANAR 157 (or corequisite). Upper-division standing or consent of instructor.

ANAR 163. Evolution of Technology (4)
(Formerly Technological Revolutions and Evolution) While not really existing outside the social order, technological systems are basic to civilization. This course examines the growth across six millennia—complex, largely indeterminate, and marked by irregular spurts of acceleration. While comparative, it concentrates on Europe and the Americas. [Formerly known as ANRG 137.] Credit not allowed for both ANRG 137 and ANAR 163. Prerequisite: upper-division standing.

ANAR 170. Research Design in Anthropological Archaeology (4)
This course trains students to design, implement, and conduct research in anthropological archaeology. Writing and presenting work in progress will take place in a seminar-like forum. Prerequisite: junior/senior standing.

ANAR 181. The Archaeology of Hunters-Gatherers (4)
Course examines current theoretical issues in the field of hunter-gatherer archaeology. Considerable emphasis is given to ethnographic and ethno-archaeological sources.
for understanding such topics as prehistoric hunter-gatherer adaptations, culture change, social organization, and intergroup interaction. [Formerly known as ANGN 103.]

ANBI 132. Origins of Agriculture and Sedentism (4)
Varying theoretical models and available archaeological evidence are used to elucidate the transition from nomadic hunter-gathering groups to fully sedentary agricultural societies in the Old and New Worlds. [Archaeology core sequence course.][Formerly known as ANGN 182.]

ANBI 116. The Evolution of Primate Reproduction (4)
This course examines reproductive biology and its evolution among the Order Primates. Lectures cover the hormonal control of sexual and parental behavior, the evolution of mating systems, mating tactics, and sexual selection. Human reproduction is considered in the comparative perspective. Prerequisites: upper-division standing, ANTH 2 or consent of instructor.

ANBI 133. Conservation and the Human Predicament (4)
(Same as BIEB 176.) Interdisciplinary discussion of the human predicament, biodiversity crisis, and importance of biocultural conservation. Examines issues from biological, cultural, historical, economic, social, political, and ethical perspectives emphasizing new approaches and new techniques for safeguarding the future of humans and other biophere inhabitants. Prerequisites: upper-division standing, ANTH 2, or consent of instructor.

ANBI 140. The Evolution of the Human Brain (4)
Introduction to the organization of the brain of humans and apes. Overview of the theoretical perspectives on the evolution of the primate cortex and limbic system. Exposure to contemporary techniques applied to the comparative study of the hominoid brain.

ANBI 142. The Primate Skeleton (4)
This course will compare long bones, head, and torso shape in tree-living and ground-living primates. The emphasis is on correlating locomotion with bone shapes. Prerequisite: ANTH 42: The Study of Primates in Nature.

ANBI 143. The Human Skeleton (4)
Learn the bones of your body; how bone pairs differ even within the body, between individuals; how nutrition and disease affect them. Course examines each bone and its relationship with other bones and muscles that allow your movements. Prerequisites: upper-division standing.

ANBI 144. Human Anatomy (4)
This course will introduce students to the internal structure of the human body through dissection tutorials on CD-ROM. Prerequisite: upper-division standing.

ANBI 145. Bioarchaeology (4)
How are skeletal remains used to reconstruct human livelihoods throughout prehistory? The effects of growth, use, and pathology on morphology and the ways that skeletal remains are understood and interpreted by contemporary schools of thought. Prerequisites: upper-division standing, ANTH 2, or consent of instructor.

ANBI 146. Stable Isotopes in Ecology (4)
The stable isotopes of carbon, nitrogen, oxygen, and hydrogen in animal tissues, plant tissues, and soils indicate aspects of diet and ecology. The course will introduce students to this approach for reconstructing paleo-diet, paleo-ecology, and paleo-climate.

ANBI 148. Primate Behavioral Ecology (4)
The course examines various behaviors (e.g., group formation, dispersion, parental, coalition formation) from a comparative and evolutionary perspective. Observational methodology and analytical methods will also be discussed. Lab sections are required. Strongly recommended: BIEB 100, Biometry or comparable statistics course, and BIEB 164, Sociobiology. Prerequisites: upper-division standing, ANTH 42.

ANBI 159. Biological and Cultural Perspectives on Intelligence (4)
Attitudes toward other individuals (and species) are often shaped by their apparent "intelligence." This course discusses the significance of brain size/complexity, IQ tests, communication in marine mammals and apes, complex behavioral tactics, and the evolution of intelligence. Prerequisites: upper-division standing, any one of the following: ANTH 2, or ANTH 42, or BILD 3 or consent of instructor.

ANBI 173. Cognition in Animals and Humans (4)
The last divide between humans and other animals is in the area of cognition. A comparative perspective to explore recent radical reinterpretations of the cognitive abilities of different primate species, including humans and their impact on human evolution and for the construction of evolutionary scenarios. Prerequisites: upper-division standing, ANTH 2 or equivalent

ANTH 137A. Intern Seminar in Physical Anthropology (2)
Seminar complements students' research in the Academic Internship Program in physical anthropology at the Museum of Man. Readings and discussions focus on anatomy, pathology, and classification and X-ray analysis of skeletal remains. Research paper required. Prerequisites: ANTH 2 and simultaneous enrollment in Warren 197: Physical Anthropology-Museum of Man. (P/NP grades only.) Department approval required.

ANTH 187C. Intern Seminar in Ethnology (2)
Seminar complements students' research in the Academic Internship Program at the San Diego Wild Animal Park and/or Zoo. Focus on problems of analysis in observational study of animal behavior and conservation in relation to ethological studies. Research paper required. Prerequisites: ANTH 2 and one upper-division course in animal behavior, either in anthropology or biology. To qualify, must be last-quarter junior or senior with a 3.3 GPA. Simultaneous enrollment in Warren 197: Ethnology Zoo. (P/NP grades only.) Department approval required.

ANTHROPOLOGY: SOCIOCULTURAL

ANSC 100. Special Topics in Socio-Cultural Anthropology (4)
Course usually taught by visiting faculty in socio-cultural anthropology. Course will vary in title and content. When offered, the current description and title is found in the current Schedule of Classes and the anthropology department Web site. (Can be taken a total of four times as topics vary.)[Formerly known as ANGN 100.]

ANSC 104. Anthropology of Fantasy (4)
A theoretical examination of the sources and relationships of public and private fantasy, based on cross-cultural studies of dreams, myths, and ritual. [Formerly known as ANGN 104.]

ANSC 108. Tourism and Global Culture (4)
This course examines structures of interaction between tourists and communities they visit. Topics addressed include tourism, authenticity, commodification, primitivism, representation, photography, travel writing, television, stereotypes that tourists and visited peoples hold about each other, and tourism's links to sociocultural conditions of modernity. Prerequisites: upper-division standing or consent of instructor.

ANSC 110. Societies and Cultures of the Caribbean (4)
This course examines societies and cultures of the Caribbean in anthropological and historical perspective. Topics include slavery, emancipation, indentureship, kinship, race, ethnicity, class, gender, politics, multiculturalism, religion, music, festivals, popular culture, migration, globalization, and tourism. [Formerly known as ANRG 110.]

2010-2011 UC SAN DIEGO GENERAL CATALOG • ANTHROPOLOGY
ANSC 120. Anthropology of Religion (4)
Explores religious life in various cultures. Topics addressed include the problem of religious meaning, psychocultural aspects of religious experience, religious conversion and revitalization, comparative approaches to traditional and world religions, religion and social change. [Formerly known as ANGR 120.] Credit not allowed for both ANSC 119GS and ANSC 119.] Prerequisite: upper-division standing or consent of instructor.

ANSC 121. Psychological Anthropology (4)
Interrelationships of aspects of individual personality and various aspects of sociocultural systems are considered. Relations of sociocultural context to motives, values, cognition, personal adjustment, stress and pathology, and qualities of personal experience are emphasized. [Formerly known as ANPR 107.] Credit not allowed for both ANPR 107 and ANSC 121. Prerequisite: upper-division standing.

ANSC 122. Language in Society (4)
After a brief introduction to linguistic concepts, the course covers the sociolinguistic dimension of language and explores how languages reflect culture, how languages change, language and social life, language and political policy. [Formerly known as ANGR 149.] Credit not allowed for both ANGR 149 and ANSC 122. Prerequisite: upper-division standing.

ANSC 123. Political Anthropology (4)
Humans are goal seekers, some with public goals. Course consists of ways goals are pursued, which are desirable, and how this pursuit is carried out at the local level with attention to the parts played by legitimacy and coercion. [Formerly known as ANGR 151.] Credit not allowed for both ANGR 151 and ANSC 123. Prerequisite: upper-division standing.

ANSC 124. Cultural Anthropology (4)
A web of problematic meanings lies behind social relationships and institutional frameworks. This perspective plays an important role in the discussion of human affairs. Course considers the concept of culture in anthropology as a particular form of such a perspective. [Formerly known as ANPR 106.] Credit not allowed for both ANPR 106 and ANSC 124. Prerequisite: upper-division standing.

ANSC 125. Gender, Sexuality, and Society (4)
How are gender and sexuality shaped by cultural ideologies, social institutions, and social change? We explore their connections to such dimensions of society as kinship and family, the state, religion, and popular culture. We also examine alternative genders/ssexualities cross-culturally. [Formerly known as ANGR 125.] Credit not allowed for both ANGR 125 and ANSC 125. Prerequisite: upper-division standing.

ANSC 126. Childhood and Adolescence (4)
This course examines the diversity of practices of child-rearing, socialization, and enculturation across cultures, and the role of culture in the development of personality, morality, spirituality, sexuality, emotion, and cognition. Prerequisite: upper-division standing.

ANSC 127. Discourse, Interaction, and Social Life (4)
The course considers how social life is constituted and negotiated in prior. How do people establish, maintain, and alter social relationships through face-to-face talk, and how do different modalities of interaction (including discourse and gesture) affect social life? Prerequisite: upper-division standing or consent of instructor.

ANSC 128. Culture and Emotion (4)
This course examines the diversity of emotional experience in human societies and the contribution of the study of emotion to understanding culture and human nature. Prerequisite: upper-division standing or consent of instructor.

ANSC 129. Meaning and Healing (4)
This course examines the nature of healing across cultures, with special emphasis on religious and ritual healing. Prerequisite: upper-division standing or consent of instructor.

ANSC 130. Hinduism (4)
An anthropological introduction to Hinduism, focusing on basic religious concepts and practices. Topics include myth, ritual, and symbolism; forms of worship; gods and goddesses; the roles of priest and renouncer; pilgrimages and festivals; the life cycle; popular Hinduism, Tantra. [Formerly known as ANRG 108.] Credit not allowed for both ANRG 108 and ANSC 130. Prerequisite: upper-division standing.

ANSC 131. Urban Cultures in Latin America (4)
This course examines four interrelated and historically structured themes of urban culture in Latin America: the role of cities in organizing national space and society; migration and race; modernism; and popular culture as new religion, music, and film. [Formerly known as ANRG 114.] Credit not allowed for both ANRG 114 and ANSC 131. Prerequisite: upper-division standing.

ANSC 132. Modernity in Brazil (4)
Construction of Brazilian modernity through four perspectives: Liberalism among slave-owning elites compared to alternative traditions of neo-liberalism, and citizens' efforts to promote social change in contemporary democracies. Undergraduates will be evaluated on the basis of a midterm and final; graduates will do additional reading and will write a twenty-page research paper. [Formerly known as ANRG 143.] Credit not allowed for both ANRG 143 and ANSC 132. Prerequisite: upper-division standing.

ANSC 133. Peoples and Cultures of the Middle East (4)
This course explores the living structures, family and gender relations, economy, and religion in the Middle East. We will especially focus on how people come to terms with recent transformations such as nationalism, literacy, globalization, and Islamism. [Formerly known as ANRG 122.] Credit not allowed for both ANRG 122 and ANSC 133. Prerequisite: upper-division standing.

ANSC 134. Global Islam (4)
Course aims to understand the diverse ways in which Muslims give meaning to their religion and use it as a framework to understand the world. [Formerly known as ANRG 118.] Credit not allowed for both ANRG 118 and ANSC 134. Prerequisite: upper-division standing.

ANSC 135. Indigenous Peoples of Latin America (4)
Indigenous peoples in the Americas have long been dominated and exploited. They have also resisted and reworked the powerful forces affecting them. This course will trace this centuries-long contestation, focusing on ways anthropological representations have affected those struggles. [Formerly known as ANRG 143.] Credit not allowed for both ANRG 143 and ANSC 135. Prerequisite: upper-division standing.

ANSC 136. Traditional Chinese Society (4)
Course examines major institutions and culture patterns of traditional China, especially as studied through ethnographic sources. Topics include family, religion, agriculture, social mobility, and personality. [Formerly known as ANRG 170.] Credit not allowed for both ANRG 170 and ANSC 136. Prerequisite: upper-division standing.

ANSC 137. Chinese Popular Religion (4)
The religious world of ordinary premodern times, with some reference to major Chinese religious traditions. Prerequisite: upper-division standing.

ANSC 138. Freud, Psychoanalysis, and Culture (4)
This course examines the work of Sigmund Freud and its relevance to analysis of culture and experience in contemporary society, as well as its impact in the field of psychoanalytic anthropology. Prerequisite: upper-division standing or consent of instructor.

ANSC 140. Human Rights II: Contemporary Issues (4)
This course examines the role of human rights in the global society, with a focus on selected human rights protections—against genocide, torture, enslavement, political persecution, and violence, from the early Cold War to the present. Prerequisite: Anthropology; upper-division or graduate standing or consent of instructor. [Formerly known as HMMR 110.]

ANSC 142. Anthropology of Latin America (4)
This course is conjoined with ANTH 242.] This course will examine the overarching legacies of colonialism, the persistence of indigenous peoples and cultures, the importance of cultural change and reform in the context of neoliberalism, and citizens' efforts to promote social change in contemporary democracies. Undergraduates will be evaluated on the basis of a midterm and final; graduates will do additional reading and will write a twenty-page research paper. [Formerly known as ANRG 142 and ANSC 134.] Credit not allowed for both ANRG 142 and ANSC 142. Prerequisite: upper-division standing; graduates: graduate standing.

ANSC 160. Nature, Culture, and Environmentalism (4)
Course examines theories concerning the relation of nature and culture. Particular attention is paid to explanations of differing ways cultures conceptualize nature. Along with examples from northern Europe and the United States, the course examines the Western environmental ideas embedded in contemporary environmentalism. [Formerly known as ANRG 160.] Credit not allowed for both ANRG 160 and ANSC 160. Prerequisite: upper-division standing.

ANSC 161. Psychoanalysis and Religion (4)
With special attention to the relationship between theory and data, this course deals with the psychoanalytic approaches to the study of religion through a close examination of key ethnographic and historical studies of religious systems and experience. [Formerly known as ANRG 111.] Credit not allowed for both ANRG 111 and ANSC 161. Prerequisite: upper-division standing.

ANSC 162. Language, Identity, and Community (4)
This course examines the use of language difference in negotiating identity in bilingual and bidialectal communities, and in structuring interethnic relations. It addresses social
tensions around language variation and the social significance of language choices in several societies. [Formerly known as ANGN 112.] Credit not allowed for both ANGN 112 and ANSC 162. Prerequisite: upper-division standing.

ANSC 163. Culture and Communication in Education (4) (Previously titled Anthropology of Education.) The ways in which language and culture influence educational goals and processes. Cultural and sociolinguistic implications of school successes and failures are examined. [Formerly known as ANGN 117.] Credit not allowed for both ANGN 117 and ANSC 163. Prerequisite: upper-division standing.

ANSC 164. The Anthropology of Medicine (4) We examine the medical profession, the sick and the healers, and the construction of the medical event through aspects of medical practice and medical research of medicine as well as primitive and peasant systems. Prerequisite: upper-division standing.

ANSC 165. Contemporary South Asia (4) This course explores contemporary cultural life in South Asia by examining selected works of literature, film, and ethnography. Prerequisite: upper-division standing.

ANSC 167. Rituals and Celebrations (4) Explores the nature and significance of ritual. The course will examine religious rituals, civic festivals, and popular celebrations. Topics include ritual symbolism, social and psychological aspects of ritual, life cycle rites, urban festivals, and the theory. [Formerly known as ANGN 167.] Credit not allowed for both ANGN 167 and ANSC 167. Prerequisite: upper-division standing.

ANSC 169. Culture and Environment: Research Seminar and Practicum (4) Examines the role of culture in the way people perceive and interact with the natural environment. Combines reading of select ethnographies with training in ethnographic research methods. Students develop a research project and analyze data. Limit: fifteen students. Prerequisite: upper-division standing or consent of instructor.

ANSC 172. Life-History Seminar and Practicum (4) Examines life-history research as a method for understanding the cultural and psychological experience of people. Combines reading of life-histories with training in life-history research methods. Students develop a life-history project, conduct interviews, and analyze data. [Formerly known as ANGN 172.] Credit not allowed for both ANGN 172 and ANSC 172. Prerequisite: upper-division standing. ANSC121 or concurrent enrollment in ANSC121 and consent of instructor.

ANSC 189. The Anthropology of the End of the World: Millenarian Movements Across Cultures (4) Course focuses on historical and contemporary millenarian movements in the Western and non-Western world. Topics addressed include origins, role of prophets, conceptions of time, relation to politics, and influence on social change. Examples include Christian and non-Christian movements. [Formerly known as ANGN 189.] Credit not allowed for both ANGN 189 and ANSC 189. Prerequisite: upper-division standing.

ANTHROPOLOGY: GRADUATE

ANTH 201. Special Topics in Anthropological Archaeology (4) Course usually taught by visiting faculty in anthropological archaeology. Course will vary in title and content. When offered, the current description and title is found in the current Schedule of Classes on TritonLine, the anthropology department Web site. [Can be taken a total of four times as topics vary.] [Formerly known as ANGR 201.]

ANTH 202. Olmec and Maya Archaeology (4) Course examines the birth of Olmec and Maya civilizations in the Formative period, the rise of city states during the Early Classic, the decline of the Classic Maya, and the resurgence of the Postclassic period. [Formerly known as ANGR 202.] Prerequisite: graduate standing in anthropology.

ANTH 203. Four-Campus Video Conference Seminar (1) Weekly or bimonthly talks by a variety of scholars on varying analytical approaches to social sciences problems. Talks originate at UCSD, UCLA, UCR, or UCI. Participants include graduate students and faculty from those four campuses. Prerequisite: graduate standing.

ANTH 205. Third World Cities: Comparative Urbanization and Social Theory (4) This course examines explosive Third World urbanization as a collision between state-sponsored development projects and insurgent practices of the poor, such as illegal housing, social movements, and new citizenships. Beijing, Calcutta, and São Paulo provide comparative ethnographic and theoretical perspectives. [Formerly known as ANGR 205.] Credit not allowed for both ANGR 205 and ANTH 205. Prerequisite: graduate standing.

ANTH 210. Religion and Globalization (4) Examines the worldwide resurgence of religion in the context of migration, missiorization, the media, postcolonialism, and personal mobility in contemporary global culture. Prerequisite: graduate standing.

ANTH 211. Psychoanalysis and Religion (4) With special attention to the relationship between theory and data, this course deals with psychoanalytic approaches to the study of religion through a close examination of key ethnographic and historical studies of religious systems and experience. [Formerly known as ANGR 211.] Prerequisite: graduate standing.

ANTH 212. Advanced Topics in Biological Anthropology (4) A critical exploration of timely and/or controversial topics in biological anthropology. Course will vary in title and content. [Formerly known as ANGR 212.] Prerequisite: graduate standing in anthropology.

ANTH 215. Advanced Topics in Sociocultural Anthropology (4) A critical exploration of timely and/or controversial topics in sociocultural anthropology. Course will vary in title and content. Prerequisite: graduate standing.

ANTH 216. Global Pentecostalism (4) Pentecostal and charismatic Christianity have recently expanded around the globe. This course explores the cultural and social processes facilitating their spread and examines how these kinds of Christianity shape social life, politics, gender relations, and economic practices in convergent societies. [Formerly known as ANGR 216.] Credit not allowed for both ANGR 216 and ANTH 216. Prerequisite: graduate standing.

ANTH 219. Seminar in Political Anthropology (4) The focus here is “politics,” broadly constructed, in various societies. Analysis is from the perspective of the recourses deployed by all involved, including but not limited to power, with emphasis on the role of culture and social structure. [Formerly known as ANGR 219.] Prerequisite: graduate standing.

ANTH 220. The Human Body in Discourse and Experience (4) This is an interdisciplinary seminar examining the place of the body and embodiment in contemporary culture and culture theory. Prerequisite: graduate standing.

ANTH 221. Phenomenology of Perception (4) This seminar will focus on a close and intensive reading of Maurice Merleau-Ponty’s masterwork, The Phenomenology of Perception. Emphasis will be placed on the relevance of this work for theory, research, and practice in the social sciences. [Formerly known as ANGR 221.] Credit not allowed for both ANGR 221 and ANTH 221. Prerequisite: graduate standing.

ANTH 222. Anthropological Interviewing (4) The course teaches techniques of long-term, intensive interviewing in fieldwork settings with an emphasis on training students in how to use, and to illuminate issues relevant to anthropology. [Formerly known as ANGR 222.] Prerequisite: graduate standing in anthropology or consent of instructor.

ANTH 223. Anthropological Interviewing (4) The critical exploration of timely and/or controversial topics in anthropological perspective. The course explores the role of religion in social life and the formation of religious and ethnic identities. Interdisciplinary readings and research in anthropology, religion, history, philosophy, and psychology.

ANTH 224. Advanced Topics in the Anthropology of Gender (4) A critical analysis of ethnographic and theoretical texts focusing on the sociocultural study of gender. We will also draw on studies of gender and feminism theory from other disciplines, e.g., history, philosophy, and sociology.

ANTH 225. Andean Prehistory: Rise of Complexity (4) This course examines the rise of complex societies in the Andean region from the Preceramic through the rise of chiefdoms, states, and empires. Prerequisites focus on anthropological, sociological, and some ethnographic and ethnographic sources.

ANTH 226. Ethnography of Christianity (4) Directed to graduate students planning ethnographic work in Christian societies, this course explores variations in the examination of the actual process of Christianity using historical and ethnographic sources. [Formerly known as ANGR 226.] Prerequisite: graduate standing or consent of instructor.

ANTH 228. Inca Empire: Society and Statecraft (4) This course examines the Inca’s Andean empire from its origins through the Spanish invasion. Readings include archival sources, ethnohistoric colonial sources, and present-day Quechua and Aymara ethnographies.

ANTH 229. Religion and Healing (4) This seminar is an in-depth analysis of religious meaning, personal experience, and therapeutic process in ritual healing, emphasizing performative/persuasive aspects of the relationship between religion and culture and the cross-cultural perspective. Prerequisite: graduate standing.

ANTH 230. Department Colloquium (1) A forum to present work by faculty, students, and guests. Course will be offered quarterly. [Formerly known as ANGR 230.] Prerequisite: graduate standing in anthropology. (S/U grades only)

ANTH 234. Dynamics of Culture (4) This seminar examines various concepts of culture with attention to the importance of cultural products and social structures. Course goal is to develop skill in understanding the influence, direct and indirect, of culture and behavior. [Formerly known as ANGR 234.] Prerequisite: graduate standing.

ANTH 238. Citizenship and the Nation State (4) This course examines various concepts of citizenship, nation, and state and considers their historical development as fundamental to the organization of most contemporary societies. It covers a range of theoretical readings, recent debates, and case studies. [Formerly known as ANGR 238.] Prerequisite: graduate standing.

ANTH 239. Contemporary Religious Movements (4) Recent decades have witnessed the dramatic rise of religious movements worldwide, posing challenges to secular models of modernity. We will study the sociocultural and political implications of this phenomenon comparatively, focusing especially on new forms of Islamic and Christian practice. Prerequisite: graduate standing.

ANTH 240. Culture and Politics in Southeast Asia (4) This seminar will focus on classic and contemporary studies of Southeast Asia, concentrating on Thailand, Indonesia, and the Philippines. Prerequisites: upper-division standing or consent of instructor.

ANTH 241. Religion and Morality in South Asia (4) Examines religion and morality in South Asia from an anthropological perspective. The seminar explores the role of religion in social life and the formation of religious and ethnic identities. Interdisciplinary readings and research in anthropology, religion, history, and philosophy.

ANTH 242. Advanced Topics in Anthropological Archaeology (4) A critical analysis of ethnographic and theoretical texts focusing on the sociocultural study of gender. We will also draw on studies of gender and feminism theory from other disciplines, e.g., history, philosophy, and sociology.
ANTH 242. Anthropology of Latin America (4)
This course is conjoined with ANSC 142. This course will examine the overlapping legacies of colonialism, the persistence of indigenous peoples and cultures, the importance of class and land reform, the effects of neoliberalism, and citizenship.
This seminar focuses on the cultural and political significance of land-use strategies and their relevance to ethnography.
Prerequisite: graduate standing.

ANTH 243. The Middle Horizon (4)
This seminar compares the distinct urban and expansive state phenomena of the highland Wari and Tiahuanaco cultures (AD 500–1000) with emphasis on their formative origins and the ideological, agrarian, and technological foundations of Middle Horizon political development.
Prerequisite: ANGR 245. Credit not allowed for both ANGR 243 and ANH 244.
Prerequisite: graduate standing.

ANTH 244. Andean Prehistory: Origins of Chiefdoms and States (4)
This seminar examines the prehistory of the Andean region from the peopling of the New World through the formation of dynamic new social and political units; the Chavin Horizon; and the Nasca and Moche States of the Early Intermediate Period.
Formerly known as ANGR 244. Credit not allowed for both ANGR 244 and ANTH 244.
Prerequisite: graduate standing.

ANTH 245. The Inca and the Late Horizon (4)
This seminar considers the ethnohistory, ethnoarchaeology, and historical anthropology of the Inca Empire Tawantinsuyu, with emphasis on the economic, social, and political foundations of the Cusco Inca state and the dynamics of Inca imperial expansion throughout Andean South America.
Formerly known as ANGR 246. Credit not allowed for both ANGR 246 and ANTH 246.
Prerequisite: graduate standing.

ANTH 247. Multimodal Interaction (4)
Human society evolved in the context of face-to-face interaction. The course will examine methods and theoretical approaches to different modalities of interaction—especially speech, gesture, and gaze—their mutual integration, and their relevance to ethnography.
Formerly known as ANGR 247. Credit not allowed for both ANGR 247 and ANTH 247.
Prerequisite: graduate standing in anthropology or consent of instructor.

ANTH 251. Ethnographies of Modern Society (4)
This seminar offers an experience of confrontation with modernity through ethnography. Readings will highlight such issues as the social dynamics of the city; postcolonialism; globalization and transnationalism; the politics of culture; contemporary religious movements; and gender and modernity.
Formerly known as ANGR 251.
Prerequisite: graduate standing or consent of instructor.

ANTH 252. Interrogating Neoliberalism (4)
This seminar will consider the theoretical constructs and deployments of neoliberalism, which has produced an assemblage of capitalist restructuring, transformed governance, and newly produced subjectivities.
Prerequisite: graduate standing.

ANTH 257. Blind, Self, and Identity (4)
This seminar critically examines social, cultural, and psychological theories of the person, and their relationship to conceptions of the person found in moral political and religious discourses. It explores the role of concepts of the person in ethnographic research.
Formerly known as ANGR 257.
Prerequisite: graduate standing in anthropology.

ANTH 258. Analytical Methods in Archaeology (4)
Specialized scientific techniques are increasingly important to archaeology. This seminar examines chronometric date techniques, site formation processes, and geochronology and pedology.
Prerequisite: ANGR 258.
Prerequisite: graduate standing.

ANTH 259. Gender and Mental Health (4)
This seminar in psychological/psychiatric anthropology takes a comparative approach to the study of gender and mental health. Culture and feminist theory is employed to address questions of gender in relation to various problems, such as depression, anxiety, and eating disorders.
Prerequisite: graduate standing.

ANTH 260. Psychodynamic Anthropology (4)
The focus of the seminar will be on the relation between psychodynamic models and culture and society. Readings and discussion.
Formerly known as ANGR 260.
Prerequisite: graduate standing.

ANTH 261. Audio and Video Methods in Ethnography (4)
A seminar/laboratory exploration, both theoretical and practical, of audio and video techniques in ethnography, focusing on graphic images, photography, and audio and video recording in natural and semi-experimental settings, with special critical attention to epistemological and theoretical bases of ethnographic representations.
Prerequisites: graduate standing in anthropology (AN 75, AN 177) or consent of instructor.

ANTH 262. New Directions in Culture, Politics, and History (4)
Anthropology has long analyzed the relationships between culture, economics, and politics. This seminar will examine these issues through ethnographic and historical accounts—engaging contemporary theory and debates.
Prerequisite: graduate standing.

ANTH 263. Anthropology of Language and Society (4)
Examines the theoretical and methodological foundations and principal research questions of Linguistic Anthropology, providing the fundamentals for graduate study in this area. Required for students specializing in Linguistic Anthropology and open to other students.
Formerly known as ANGR 263.
Prerequisite: graduate standing in anthropology or consent of instructor.

ANTH 265. Cultures of Late Capitalism (4)
Radical transformations shifted the boundaries between what is considered political and apolitical, public and private, and legitimate and illegitimate in the twenty-first century. This class studies how these developments shape and are shaped by local political structures.
Formerly known as ANGR 265.
Prerequisite: graduate standing.

ANTH 267. The Anthropology of Ethics (4)
This course examines ethical and moral ideas and their relation to other aspects of culture. It also considers how attention to the ethical dogma can provide a foundation for rethinking social scientific theories of culture and practice.
Formerly known as ANGR 267.
Prerequisite: graduate standing.

ANTH 268. Anthropology of Cities (4)
Although cities are fundamental sites of emergent social relations and cultural forms, the anthropological study of modern urban societies is a relatively recent phenomenon. This seminar aims to develop an anthropological understanding of cities, focusing on recent ethnographies, methodological problems, and theoretical debates.
Formerly known as ANGR 268.
Prerequisite: graduate standing.

ANTH 269. Current Readings on Latin America (4)
This seminar will review papers focusing on new anthropological work about Latin America.
We will cover a wide range of critical current issues, including poverty, the state, gender, race/ethnicity, indigenous politics, memory, and violence.
Formerly known as ANGR 269.
Prerequisite: graduate standing.

ANTH 274. Debates in Anthropology (4)
This seminar will review current debates in anthropology. The debates will be examined in the light of their substantive, theoretical, and epistemological implications, with some attention to the rhetorical elements of the arguments themselves.
Formerly known as ANGR 274.
Prerequisite: graduate standing in anthropology.

ANTH 279. Special Topics in Language and Society (4)
Selected topics in the anthropology of language, such as linguistic ideology, language and identity, multilingualism, discourse analysis.
Topics vary from year to year, and the course may be repeated with instructor's permission.
Formerly known as ANGR 279.
Prerequisite: graduate standing.

ANTH 280A. Core Seminar in Social Anthropology (4)
Core seminar focuses on individual action and social institutions.
Formerly known as ANGR 280A.
Prerequisite: graduate standing in anthropology or consent of instructor.

ANTH 280B. Core Seminar in Cultural Anthropology (4)
Core seminar focuses on personal consciousness and cultural experience.
Formerly known as ANGR 280B.
Prerequisite: graduate standing in anthropology or consent of instructor.

ANTH 280C. Core Seminar in Psychological Anthropology (4)
Core seminar focuses on motives, values, cognition, and qualities of personal experience.
Formerly known as ANGR 280C.
Prerequisite: graduate standing in anthropology or consent of instructor.

ANTH 280D. Core Seminar in Anthropological Archaeology (4)
Seminar focuses on the development of archaeological theory. Required of archaeological and biological anthropology graduate students; sociocultural students may take this course to fulfill core distribution requirement.
Formerly known as ANGR 280D.
Prerequisite: graduate standing in anthropology or consent of instructor.

ANTH 280E. Core Seminar in Biological Anthropology (4)
This seminar will examine central problems and concepts of biological anthropology, laying the foundation for first-year graduate students in Biological Anthropology as well as providing an overview of the field for graduate students in other areas of anthropology.
Formerly known as ANGR 280E.
Prerequisite: graduate standing in anthropology or consent of instructor.

ANTH 281A. Introductory Seminar (1)
These seminars are held in the first two quarters of the first year of graduate study. Faculty members will present an account of their current research and interests.
When appropriate a short preliminary reading list will be given for the particular lecture.
Formerly known as ANGR 281A.
Prerequisite: first-year graduate standing in anthropology.

ANTH 281B. Introductory Seminar (1)
Continuation of seminars held in the first two quarters of the first year of graduate study. Faculty members will present an account of their current research and interests.
When appropriate a short preliminary reading list will be given for the particular lecture.
Formerly known as ANGR 281B.
Prerequisite: first-year graduate standing in anthropology.

ANTH 283A. Fieldwork Seminar (4)
A seminar given to acquaint students with the techniques and problems of fieldwork.
Students carry out ethnographic field research in a local community group under faculty supervision.
Formerly known as ANGR 283A.
Prerequisite: anthropology graduate students or consent of instructor.

ANTH 286. Topics in Anthropological Archaeology (4)
Seminar examines the central problems and concepts of archaeological anthropology, laying the foundation for first-year graduate students.
Also provides an overview of the field in other areas of archaeology.
Formerly known as ANGR 286.
Prerequisite: anthropology graduate students or consent of instructor.

ANTH 288. Archaeological Practicum (12)
Field and laboratory training for graduate students in archaeology.
Students will design and implement archaeological fieldwork or analyze data collected in the field.
Formerly known as ANGR 288.
Prerequisite: consent of the instructor.

ANTH 289. Primate Social Behavior / Neural Correlates (4)
This course explores the interplay between the primate brain and primate social behavior from the perspectives of
neuropsychology, cognitive ethology, and primate field studies. Issues in social cognition will include attention and gaze, working memory, emotions, awareness, and theory of mind. [Formerly known as ANGR 290.] **Prerequisite:** graduate standing or consent of instructor.

ANTH 291. Archaeology of Highland Mexico (4)
Survey of Mesoamerican archaeology focusing on highland Mexico. Topics covered: settling of Mesoamerica, agricultural origins, development of social complexity, rise of cities, emergence of large-scale states. [Formerly known as ANGR 291.] **Prerequisite:** graduate standing.

ANTH 292. Social Evolution/Iron Age Levant (4)
The Iron Age (ca. 1200–586 BCE) represents the rise of small secondary states throughout the southern Levant. Seminar explores these archaic states through ideology, technology, subsistence, trade and social organization based on archaeological data, historical texts, and anthropological models. [Formerly known as ANGR 292.] **Prerequisite:** graduate standing.

ANTH 293. Primate Socioecology (4)
Course examines theories for the causes of sociality in primates. Implications for our understanding of human evolution are considered. [Formerly known as ANGR 293.] **Prerequisite:** graduate standing or consent of instructor.

ANTH 295. Master's Thesis Preparation (1–12)
The student will work on the master's thesis under the direction of the departmental committee chair. The course will be taken in the student's second year. [Formerly known as ANGR 295.] **Prerequisites:** graduate student in anthropology and consent of master's thesis chair. (S/U grades only.)

ANTH 296. Dissertation Fieldwork Proposal Preparation (4)
The student will work in cooperation with his or her departmental committee to develop a research proposal for the doctoral research project. [Formerly known as ANGR 296A/296B.] **Prerequisites:** graduate standing in anthropology and consent of departmental committee chair. (S/U grades only.)

ANTH 297. Research Practicum (1–4)
Supervised advanced research studies with individual topics to be selected according to the student’s special interests. [Formerly known as ANGR 297.] **Prerequisites:** for anthropology graduate students who have returned from their field research. (S/U grades permitted.)

ANTH 298. Independent Study (1–4)
Supervised study of individually selected anthropological topics under the direction of a member of the faculty. [Formerly known as ANGR 298.] **Prerequisite:** graduate standing. (S/U grades only.)

ANTH 299. Dissertation Research (1–12)
[Formerly known as ANGR 299.] **Prerequisite:** Ph.D. candidacy in anthropology. (S/U grades only.)

ANTH 500. Apprentice Teaching (4)
Anthropology graduate students participate in the undergraduate teaching program during one quarter anytime in the first four years of residence. Teaching may be in the anthropology department or other departments or programs on campus. Equivalent to duties expected of a 50 percent T.A. Enrollment in four units documents the Ph.D. requirement. (S/U grades only.) [Formerly known as ANGR 500.] **Prerequisite:** graduate student in anthropology.

ANTH 501. T.A.ing in Sixth College/C.A.T. (4 or 6)
Consideration and development of pedagogical methods appropriate to undergraduate teaching in the interdisciplinary Sixth College Core Sequence, Culture, Art, and Technology under supervision of Core Program faculty, with assistance of the Core Program director, associate director for the Writing Program, and the associate director of the Thematic program. (S/U grades only.) [Formerly known as ANGR 501.] **Prerequisites:** anthropology graduate student teaching for the C.A.T./Sixth College Writing Program.
Applied Ocean Science

ASSOCIATED FACULTY

Professors
Laurence Armi, Ph.D., SIO; IGPP
Michael J. Buckingham, Ph.D., SIO; MPL
LeRoy M. Dormann, Ph.D., SIO; GRD
Carl H. Gibson, Ph.D., MAE; SIO
Sarah T. Gille, Ph.D., SIO; MAE
Robert T. Guza, Ph.D., SIO; IOD
John A. Hildebrand, Ph.D., SIO; GRD; MPL; ECE
William S. Hodgkiss, Ph.D., SIO; MPL; ECE
William A. Kuperman, Ph.D., SIO; MPL
Juan C. Lascheras, Ph.D., MAE
Paul F. Linden, Ph.D., MAE
W. Kendall Melville, Ph.D., SIO; MPL
Robert Pinkel, Ph.D., SIO; MPL
Sutanu Sarkar, Ph.D., MAE
Dariusz Stramski, Ph.D., SIO; MPL
Bradley T. Werner, Ph.D., SIO; IGPP
Clinton D. Winant, Ph.D., SIO; IOD

Professors Emeriti
Douglas L. Inman, Ph.D., SIO; IOD
Richard C.J. Somerville, Ph.D., SIO; CRD
Kenneth M. Watson, Ph.D., SIO; MPL

Acting Associate Professor
Jennifer A. MacKinnon, Ph.D., SIO

Associate Professors
Stefan Llewellyn-Smith, Ph.D., MAE
Keiko K. Nomura, Ph.D., MAE
Joel R. Norris, Ph.D., SIO

Assistant Professor
Todd R. Martz, Ph.D., SIO

Lecturers
C. David Chadwell, Ph.D., SIO; MPL
Grant B. Deane, Ph.D., SIO; MPL
Gerald D'Spain, Ph.D., SIO; MPL
Peter Gerstoft, Ph.D., SIO; MPL
Jules S. Jaffe, Ph.D., SIO; MPL
Jerome A. Smith, Ph.D., SIO; MPL
Hee Chun Song, Ph.D., SIO; MPL
Eric Terrill, Ph.D, SIO; MPL
Aaron Thode, Ph.D., SIO; MPL

Associated Research Groups

Marine Physical Laboratory, MPL
Institute of Geophysics and Planetary Physics, IGPP
Geosciences Research Division, GRD
Integrative Oceanography Division, IOD
Climate Research Division, CRD
Physical Oceanography Research Division, PORD

OFFICE: Old Scripps Building, Room 22, Scripps Institution of Oceanography

THE GRADUATE PROGRAM

Applied Ocean Science (AOS) is an interdepartmental Ph.D. program with a focus on the interface between ocean exploration and technology. It is administered by an interdepartmental group composed of members of the faculties of cooperating departments: the Department of the Scripps Institution of Oceanography (SIO), the Department of Mechanical and Aerospace Engineering (MAE), and the Department of Electrical and Computer Engineering (ECE).

This interdepartmental curriculum combines the resources of these departments to produce oceanographers who are knowledgeable about modern engineering and instrumentation, as well as marine oriented engineering scientists who are familiar with the oceans. Since physical, chemical, geological, and biological aspects of the oceans and all forms of engineering may be involved, the curriculum provides maximum flexibility in meeting the needs of each individual student.

Candidates for admission should apply directly to one of the departments participating in the Applied Ocean Science program, listing Applied Ocean Science as an area of specialization. The choice of department should be based on the individual student’s planned area of major emphasis. Applicants will be expected to meet the admission requirements of the department to which they have applied.

The program is primarily directed toward the Ph.D. degree. However, both the candidate of philosophy and master of science degree (either Plan I, thesis, or Plan II, comprehensive examination) also will be offered under special circumstances. Students applying for a terminal master’s program should be aware of any special requirements for the department to which they apply.

The degrees completed under this program in the Department of SIO will carry the title “Oceanography.” Those degrees completed in the other cooperating departments will have the parenthetical title “(Applied Ocean Science)” appended to the appropriate authorized title.

COURSES

All students enrolled in the program are required to take or demonstrate proficiency in the following core courses or their equivalent:

- SIO 202A-B. (Fundamentals of Wave Physics)
- SIO 203A-B-C. (Introduction to Applied Mathematics) or MAE 294A-B-C. (Introduction to Applied Mathematics)
- Math 210A-B-C. (Mathematical Methods in Physics and Engineering)
- SIO 210. (Physical Oceanography)
- SIO 214A. (Introduction to Fluid Mechanics)
- SIO 240. (Marine Geology)
- SIO 260. (Marine Chemistry)
- SIO 280. (Biological Oceanography)

The students are expected to enroll in the Applied Ocean Science Seminar (SIO 208) throughout their period of residency. This seminar will make use of outside speakers, faculty members, and students in presenting various topics on applied ocean science and related fields. It provides a central forum in which all AOS students can participate. In addition to these basic requirements, the student will be subject to whatever additional requirements are prescribed by his or her department.

Course work occupies much of the first one and one-half to two years of graduate study. During this period there are numerous opportunities for students to investigate the research programs of the various research groups on the campus, and cultivate associations with professors and research groups which can provide support and guidance for thesis research in their selected field of specialization. In consultation with an advisor, students will plan a curricular path of courses which will adequately prepare them in their field of specialization. The courses may be selected from the entire catalog of courses available on the UC San Diego campus or where appropriate from other UC campuses and other universities.
Audiology

Directors:
Steven J. Kramer, Ph.D., San Diego State University
Erika M. Zettner, Ph.D., University of California, San Diego

Faculty
San Diego State University
Arthur Boothroyd, Ph.D.
Laura Dreisbach, Ph.D.
Jacque Georgeson, Au.D.
Steven J. Kramer, Ph.D.
Carol Makersie, Ph.D.
Peter Torre III, Ph.D.
Derin Wester, Ph.D.
Carol Branch, M.A.
Carren Sticka, Ph.D.
University of California, San Diego
Luis D. Benitez, M.D.
Jeffrey P. Harris M.D., Ph.D.
Elizabeth M. Keithley, Ph.D.
Allen F. Ryan, Ph.D.
Erik Virre, M.D., Ph.D.
Erika M. Zettner, Ph.D.
Joni Doherty, M.D., Ph.D.
Quyen Nguyen, M.D., Ph.D.
Shuh-Yow Lin, Ph.D.
Alain Dabdoub, Ph.D.

Joint Doctoral Program between San Diego State University and the University of California, San Diego

http://chhs.sdsu.edu/slhs/audmain.php

PROFESSIONAL DOCTORATE IN AUDIOLOGY (AU.D.)

A professional doctorate in audiology (Au.D.) is offered jointly by San Diego State University (SDSU) and the University of California, San Diego (UCSD). The joint doctoral program in audiology is accredited by the American Speech-Language-Hearing Association (ASHA). The Au.D. program is a four-year graduate degree program designed for individuals who intend to specialize in clinical practice and to meet professional standards requiring a clinical doctorate as the entry-level degree for a certified audiologist. Graduates of this program will have the knowledge base, research exposure, and advanced clinical skills to enter the workforce in any setting, and will be prepared to function as independent audiology professionals in the expanding health-care arena. The program encompasses academic, clinical, and research experiences in audiology and otology, through the combined resources from the School of Speech, Language, and Hearing Sciences at SDSU and the Department of Surgery (Otolaryngology) in the School of Medicine at UCSD. More information http://chhs.sdsu.edu/slhs/audmain.php.

Faculty members of the cooperating institutions teach courses, provide clinic instruction and research experiences, and are available as members of joint doctoral committees and advisors for student doctoral projects.

ADMISSIONS

Students will apply to the Au.D. Joint Doctoral Program through SDSU. It is expected that students will come into this program from a variety of different science backgrounds, including communicative disorders, biological and physical sciences, engineering, psychology, nursing, or a premed curriculum. Applicants for admission to the Au.D. program must meet the general requirements for admission to both universities, classified graduate standing as outlined in the respective catalogs. Applicants must also meet the special requirements of this program. These include: (a) overall grade-point average of 3.20 or better in undergraduate courses and in any graduate courses completed; (b) submission of scores on the GRE with satisfactory performance on both quantitative and verbal portions of the examination; (c) prerequisite completion of at least one course in statistics, one course in biological sciences, one course in physical sciences, and one additional course in either biological or physical sciences, two courses in behavioral/social sciences, and one course in American Sign Language. Deficiencies in these areas may be completed after admission to the program if approved by the admissions committee. Applicants must submit transcripts of all post-secondary course work, three letters of recommendation from former or current professors, supervisors, or other appropriate persons able to judge their academic potential, and an applicant essay (statement of purpose) indicating their interests and strengths relative to their career objectives. Details of these requirements are available on the SDSU school's Web site. Assuming that students meet the requirements for admission outlined above, each student admitted to the program will have a program advisor evaluate their preparation in view of their needs and career goals, as well as professional certification requirements.

Applicant files are reviewed as a group by an admissions committee composed of Au.D. program faculty from each campus. Other Au.D. program faculty may review files and make recommendations to the admissions committee. Given the limited number of years available (ten new admissions each year are anticipated, subject to available facilities), the Admissions Committee will select the best-qualified applicants to fill the available spaces. No minimum set of qualifications will guarantee an applicant admission to the program. The Admissions Committee will make recommendations for admission to the graduate deans from each campus.

APPLICATION

Students seeking admission to the Au.D. program should consult the SDSU school's Web site and Graduate Bulletin. For additional information, write directly to the Au.D. Program Directors, School of Speech, Language, and Hearing Sciences (mail code 1518), San Diego State University, 5500 Campanile Dr., San Diego, CA 92182.

Students will be admitted to the Au.D. program only in the fall semester (first year is at SDSU). Complete applications must be received by January 20 to be considered for the program beginning in the following fall semester.

Post Master’s Degree Admissions: Students admitted to the Au.D. program with a master's degree in audiology will be expected to complete the four-year Au.D. curriculum. However, some students may have had a master's preparation in audiology in which some of the course work was similar to some of the foundation courses in the Au.D. program. Upon entering the program, each individual will be assessed to determine competencies/knowledge in material that would put them on par with expectations for the Au.D. program. For some of the foundation core courses offered the first year at SDSU, e.g., Audiology 705, 710, 725, students may be given credit for the courses or be required to substitute a Doctoral Special Study (Audiology 798) course for one or more of these courses to ensure competencies or remediate deficiencies if approved by the program faculty. Credit for some of the first-year clinic units may also be approved based on work experience; however, a full complement of expected clinical skills must be demonstrated.

Specific Requirements for the Au.D. Degree

Upon admission to the program, each student will be assigned a faculty advisor. The faculty advisor will help the student select a program of study to meet all program requirements. The Au.D. program is a four-year program, including summer semesters after year one through three. An exact unit minimum is not specified due to the mixing of semester units (SDSU) and quarter units (UCSD) and differences in clinical hours at different settings; however, the program is approximately 134 semester-equivalent course units. All students in the Au.D. program will fulfill the following requirements. Any alternative method of fulfilling these requirements requires advanced written permission from the program directors.

Residency Requirements

After formal admission to the Au.D. program, the student must complete a minimum of course hours equivalent to one year’s full-time enrollment at each campus. The definition of residence must be in accord with the regulations of San Diego State University and the University of California, San Diego. The program is designed to be shared, as equally as possible, between the two campuses. The first year is entirely at SDSU, the second year is entirely at UCSD, and the third year will have options from both campuses. The fourth year of the program will be a full-time clinical externship at a program-approved clinic agency or site. Both campuses will share equally in the academic, clinical, and research components of the program.

Course Requirements

The program for each student will consist of prescribed sets of courses, with the first year of courses entirely at SDSU and the second year of courses entirely at UCSD. The student's faculty advisor will approve any changes to the standard curriculum.

Clinic Requirements

Each student will progress through a variety of clinical experiences involving patient assessment and management throughout their program of
Students must pass the first year evaluation in order to enroll in second year courses.

Second Year Evaluation. Students must have achieved a cumulative grade point average of 3.0 on all core and elective courses, and have appropriate clinical skills as determined by the student's clinic supervisors. The student's ability to integrate the academic and clinic procedures appropriate for the end of the second year will be assessed through a Second Year Qualifying Examination. This examination will be a written examination to be taken at the end of the spring quarter. The Second Year Qualifying Examination may be repeated once following additional directed study by the student's advisor. Students must pass the second year evaluation in order to enroll in third year courses.

Comprehensive Examination. At the end of the third year, and after Advancement to Candidacy (see below), the student will take a Comprehensive Examination, which has an integrative written component and a practical component involving clinical procedures. The comprehensive examination must be passed before a student can be registered for the externship.

Advancement to Candidacy
Candidates will be recommended for advancement to candidacy after successfully completing all course, laboratory rotation, and clinic requirements for Year 1 and Year 2 (with a minimum grade point average of 3.0), satisfactory performance on the first and second year evaluations, and approval of the doctoral project proposal. Students cannot enroll in the doctoral project course, take the comprehensive examination, or register for their externship until advanced to candidacy. The program's Executive Committee recommends students eligible for advancement to candidacy to the graduate deans of both institutions.

Doctoral Project
Each student will complete an innovative doctoral project. The doctoral project can take the form of a number of different options, e.g., a research-based investigation, survey, meta-analysis, development of a clinical protocol based on published research findings, or other projects proposed by the student that are accepted by the committee. The project should be designed to allow an opportunity to demonstrate critical thinking on clinical issues. Each student will select a Doctoral Project Committee of two Au.D. program faculty (one from each campus) and a faculty member external to the program. The chair of the committee can be from either campus. The executive committee will approve each student's Doctoral Project Committee. All doctoral projects must be written and have approval by the student's doctoral project committee. The student's final written document will be approved by the student's Doctoral Project Committee. Each student will enroll in the appropriate doctoral project course depending on the campus in which their committee chair resides.

The Doctor of Audiology (Au.D.) degree will be awarded jointly by the Regents of the University of California and the Trustees of the California State University in the names of both cooperating institutions.

Financial Support
Funding for graduate students cannot be guaranteed, although every effort will be made to provide some financial support for as many students as possible, through graduate/teaching assistantships, research grants, clinical traineeships, and/or scholarships. Financial support will be awarded consistent with the policies of the two universities. Tuition and fees will be charged in accordance with the extant policies at the campus in which the student is matriculated in a given year.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

AUD 236. Preceptorship in Neuro-Otology (2)
Observations in UCSD Otology clinic. Learn about procedures for taking histories and performing clinical examinations, patient treatment, and patient education from otologists. Prerequisite: second-year Au.D. student or consent of instructor.

AUD 255. Anatomy and Physiology of the Auditory and Vestibular Systems (4)
Detailed anatomy of the auditory and vestibular systems, including the ultra-structure, histology, and neuronal connections of the systems. In addition, physiological responses that underlie the actions of each system are described, from the cellular to the systems levels. Prerequisite: second-year Au.D. student or consent of instructor.

AUD 256. Pathophysiology of the Auditory and Vestibular Systems (4)
Physiological and anatomical substrates of auditory and vestibular disorders including influences of neurological disorders. Topics include peripheral and central disorders, congenital disorders due to infections, as well as acquired ototoxic, noise-induced, infective, autoimmune, age-associated disorders, and traumatic disorders. Prerequisite: AUD 255 or consent of instructor.

AUD 257. Ear Diseases and Treatment (3)
Differential diagnosis and treatment of auditory and vestibular disorders, audiologic components of neuro-otology, as well as interactions between the audiologist and neuro-otologist in a clinical setting. Prerequisite: second-year Au.D. student or consent of instructor.

AUD 263. Physiological and Behavioral Tests of Vestibular Function (4)
Clinical evaluation of vestibular function, using techniques such as caloric and rotational electronevromyography and posturography. The interpretation of clinical findings and implications for rehabilitative strategies will be covered. The course will include observation of testing in otology clinic settings. Prerequisite: second-year Au.D. student or consent of instructor.

AUD 264. Auditory and Vestibular Development and Genetics (3)
Embryology and functional development of the auditory and vestibular systems, from their initial appearance to adult function. Inherited disorders of these two sensory systems are also addressed, including phenotypic description and genetic basis. Genetic counseling and the potential for gene therapy are also discussed. Prerequisite: second- or third-year Au.D. student or consent of instructor.

AUD 270. Newborn Hearing Screening and Management (3)
This course describes procedures and requirements for newborn hearing screening, and the detection and clinical management of congenital auditory disorders.
Observations of newborn screening in a neonatal ICU environment. **Prerequisite:** second- or third-year Au.D. student or consent of instructor.

AUD 271. Temporal Bone Anatomy (4)
Detailed anatomy of the temporal bone, including surgical approaches. Participation in dissecting a human cadaver temporal bone specimen, and observation of medical residents/staff learning to perform surgical drilling of temporal bone under the supervision of experienced otologic surgeons. Radiographic and magnetic resonance imaging of the temporal bone will be described and discussed. **Prerequisite:** second- or third-year Au.D. student or consent of instructor.

AUD 275. Intraoperative Monitoring (3)
Methods and procedures required for monitoring of evoked auditory responses in the operating room. The indications for the use of intraoperative monitoring and difficulties unique to this setting. The course will include the opportunity to observe auditory potential monitoring in the operating room. **Prerequisite:** second- or third-year Au.D. student or consent of instructor.

AUD 276. Cochlear Implants and Other Implantable Sensory Aids (3)
Theory and practice of cochlear implantation with focus on audiological management of patients after implantation. Current concepts regarding the activation of primary auditory neurons by electrical stimulation and indications for cochlear implantation and surgical procedures are described. **Prerequisite:** second- or third-year Au.D. student or consent of instructor.

AUD 284. Clinical Practice in Audiology II (1-4)
Applications of clinical procedures to patient assessment. Includes clinical observation, interaction with otologists, and supervised patient care involving diagnostics and hearing-aid evaluations in the UCSD audiology clinics. This course may be taken more than once. **Prerequisites:** open to second- or third-year doctoral students or consent of instructor. One quarter unit represents 3 to 4 hours per week. Must also be concurrently enrolled in AUD 291.

AUD 291. Clinical Case Studies/Staffing (1)
Presentations and discussion of clinical cases and issues related to clinical practice. Students' clinical experiences are discussed relative to medical and audiological assessment and management. This course may be taken more than once. **Prerequisite:** second- or third-year Au.D. student or consent of instructor. Must be taken more than once.

AUD 296. Research Practicum (3)
Participation in specific faculty research activities. Become familiar with research methods and objectives of a faculty's research project. Participate in data collection and analysis at the discretion of the faculty investigator. **Prerequisites:** second- or third-year Au.D. student and consent of instructor.

AUD 298. Independent Research (3)
Independent research on topics relevant to audiology, consisting of literature review, data collection. Faculty supervision and mentoring on practical elements of research design and methodology. The course will consist of laboratory experience, focused on practical elements of research design and methodology. **Prerequisites:** consent of Au.D. program advisor and consent of faculty mentor.

AUD 299. Doctoral Project (3)
Individual investigation and preparation of the doctoral project for the Au.D. degree will be performed under the supervision of an experienced research mentor. **Prerequisite:** advancement to candidacy in the Au.D. program.
Biochemistry

Students wishing to major in biochemistry should refer to programs offered by the Division of Biological Sciences, which has an undergraduate major in biochemistry and cell biology, or the Department of Chemistry and Biochemistry, which has an undergraduate major in biochemistry/chemistry.

Both the Division of Biological Sciences and the Department of Chemistry and Biochemistry offer graduate programs with specialization in biochemistry. Those programs are described in the biological sciences and chemistry and biochemistry sections of this catalog.
Bioinformatics and Systems Biology

Participating Faculty

DEPARTMENT OF BIOENGINEERING
Gaurav Arya, Assistant Professor, Nanoengineering
Jeffrey Hasty, Associate Professor
Xiaohua Huang, Assistant Professor
Trey Ideker, Associate Professor
Andrew McCulloch, Professor
Bernhard Palsson, Professor
Shankar Subramaniam, Professor
Kun Zhang, Assistant Professor

DIVISION OF BIOLOGICAL SCIENCES
Steven Briggs, Professor, Cell and Developmental Biology
Steve Kay, Dean, Biological Sciences, Professor, Cell and Developmental Biology
Amy Kiger, Assistant Professor, Cell and Developmental Biology
William Loomis, Professor, Cell and Developmental Biology
Eduardo Macagno, Atkinson Chair, Professor, Cell and Developmental Biology
James Posakony, Professor, Cell and Developmental Biology
Milton Salier, Professor, Molecular Biology
Julian Schroeder, Professor, Cell and Developmental Biology
Inder Verma, Adjunct Professor

BIOMEDICAL SCIENCES PROGRAM
Philip Bourne, Professor, Pharmacology
Christopher Glass, Professor, Cellular and Molecular Medicine
Lawrence Goldstein, Professor, Cellular and Molecular Medicine/Pharmacology
Vivian Hook, Professor, Pharmacology
Richard Kolodner, Medicine
Sanjay Nigam, Professor, Pediatrics
Jerrold Olefsky, Medicine
Bing Ren, Associate Professor, Cellular and Molecular Medicine
Douglas Richman, Professor in Residence, Pathology
Michael Rosenfeld, Professor, Medicine
Palmer Taylor, Professor/Dean, School of Pharmacy and Pharmaceutical Sciences
Ronhui (Lily) Xu, Associate Professor, Family and Preventive Medicine
Gene Yeo, Assistant Professor, Cellular and Molecular Medicine

DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY
Alexander Hoffmann, Associate Professor, Program Co-Director
Patricia Jennings, Associate Professor
Simpson Joseph, Professor
Andrew McCommon, Professor
Susan Taylor, Professor
Roger Tsien, Professor
Wei Wang, Assistant Professor
Leor Weinberger, Assistant Professor
Peter Wolynes, Professor
John Wooley, Adjunct Professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
Scott B. Baden, Professor
Vineet Bafna, Associate Professor
Sanjoy Dasgupta, Assistant Professor
Charles Elkan, Professor
Pavel Pevzner, Ronald R. Taylor Chair, Professor, Program Director

MARINE BIOLOGY RESEARCH DIVISION
Terry Gaasterland, Professor, Marine Biology Research Division

DEPARTMENT OF MATHEMATICS
Michael Holst, Professor
Glenn Tesler, Assistant Professor
Ruth Williams, Professor

DEPARTMENT OF PHYSICS
Terence Hwa, Professor
José Onuchic, Professor

BIOINFORMATICS UNDERGRADUATE PROGRAM

Advances in biotechnology allow us to probe thousands of molecules simultaneously. The wealth of information produced must be analyzed using computation, creating a demand for computational biologists, who are trained in biology, mathematics, chemistry, and computer sciences. Bioinformatics will have a tremendous impact upon our understanding of cellular functions, protein structure and design, evolutionary biology, regulatory networks, and the molecular basis of disease.

An interdisciplinary undergraduate major leading to B.S. degrees with a major or specialization in bioinformatics was created in fall 2001. This major is designed to provide career opportunities in biotechnology, creating a demand for computational biologists who are trained in biology, mathematics, chemistry, and computer sciences. Bioinformatics will have a tremendous impact upon our understanding of cellular functions, protein structure and design, evolutionary biology, regulatory networks, and the molecular basis of disease.

An interdisciplinary undergraduate major leading to B.S. degrees with a major or specialization in bioinformatics was created in fall 2001. This major is designed to provide career opportunities for B.S. graduates, as well as opportunities for future advanced training at the graduate level. Students graduating from this program have been in great demand in top graduate schools, in medical schools, and in industry.

ADMISSIONS

Students wishing to pursue a study in bioinformatics may select from majors offered by the Division of Biological Sciences, or the Departments of Bioengineering, Chemistry and Biochemistry, and Computer Science and Engineering. A major in bioinformatics is available within each of the listed departments and divisions. All participating departments have a substantially common curriculum, but each has its own emphasis through its electives, and there are some differences in the core requirements.

BIOINFORMATICS AND SYSTEMS BIOLOGY GRADUATE PROGRAM

PROGRAM DIRECTOR:
Pavel Pevzner, Professor in Computer Science and Engineering

ASSOCIATE DIRECTOR:
Alexander Hoffmann, Professor in Chemistry and Biochemistry

STUDENT AFFAIRS: (858) 822-4948
bioinfo@ucsd.edu
http://www.bioinformatics.ucsd.edu

PROGRAM FOCUS

The Bioinformatics and Systems Biology Graduate Program draws upon the expertise of affiliated faculty from the Division of Biological Sciences; Departments of Bioengineering, Chemistry and Biochemistry, Computer Science and Engineering, Mathematics, Physics, and the Biomedical Sciences Graduate Program.

The University of California, San Diego is a premier research institution that has fostered interdisciplinary research since its inception. Specifically, bioengineering (at the interface of biology, medicine, and engineering), neuroscience (at the interface of biology and medicine), biophysics (at the interface of chemistry, biology, and physics), and cognitive science (at the interface of medicine and computer science) are all nationally ranked interdisciplinary graduate research programs. This has led to growth and innovation in many new areas of science and engineering research and the training of an exceptionally high caliber of graduate and postdoctoral students.

In recent years, bioinformatics and systems biology have been identified by the UCSD administration as two of the most important growth areas for the campus. With several recent new faculty hires, UCSD has seen a significant increase in the research activity associated with bioinformatics and systems biology—these transcend traditional disciplines.

DEVELOPMENT OF A FIELD

We are witnessing the birth of a new era in biology. The ability to decipher the genetic code of living organisms is dramatically changing our understanding of the natural world and promises to improve substantially the quality of human life. Understanding how genomes work requires sophisticated computer-based information handling tools (bioinformatics), and new high throughput technologies for understanding the function of genes on a genome-wide scale (functional genomics). The combination of experimental and modeling
The most pressing problem in the systems biology era will be to understand the integrated functions of thousands of genes. Dealing with this problem will require an interdisciplinary research structure dedicated to developing intellectual and human capital in bioinformatics and genome science. Due to the complexity of this new paradigm in biology, entirely new sets of tools and human resources will be necessary. Thus, future developments will be dependent upon the scientific progress at the interface of three major disciplines—biology, engineering, and computer science. The accelerated growth of modern biology warrants revolutionary changes in academic curricula.

PARTICIPATING DEPARTMENTS

Each department represented in this program participates in various interdisciplinary graduate programs in addition to providing very strong intradisciplinary graduate training. One example is the La Jolla Interfaces in Science program (LJIS), a campus- and mesa-wide fellowship opportunity sponsored by the Burroughs Wellcome Fund. LJIS supports exploration of interfaces between the biological and biomedical sciences and the physical, computer, and mathematical sciences at UCSD, The Scripps Research Institute (TSRI), the Salk Institute, and the San Diego Supercomputer Center.

Bioengineering, consistently ranked among the top three programs nationally by U.S. News and World Report, has several new faculty hires in the area of bioinformatics and computational biology and has identified bioinformatics as a major area of focus.

Biological Sciences, a premier division at UCSD, will spearhead the interdisciplinary, undergraduate specialization in bioinformatics and is planning to hire new faculty in bioinformatics fields.

Biomedical Sciences, an interdisciplinary Ph.D. program, based in the School of Medicine, with tracks in pharmacology, physiology, and cellular and molecular medicine. It will be closely linked to the planned new School of Pharmacy and Cellular and Molecular Medicine. It will be closely linked to the planned new School of Pharmacy and Cellular and Molecular Medicine.

Chemistry and Biochemistry, the home of leaders in the field of computational statistical mechanics applied to biology and provides the foundation for sophisticated modeling of complex biological systems. Physics also plans to recruit new faculty members whose research focus will be on development of information/theory-based models of biological systems.

ADMISSIONS REQUIREMENTS

Admission is in accordance with the general requirements of the graduate division. Candidates will have an interdisciplinary persuasion to work across computers, biology, medicine, and engineering; and an undergraduate degree majoring in any of the disciplines in biological science, physical science, computer science, mathematics, or engineering with a strong background in quantitative sciences and biology.

Core Training Courses

- **Bioinformatics I: Biological Data and Analysis Tools (Pharm 201)**
- **Bioinformatics II: Sequence and Structure Analysis—Methods and Applications (BENG 202/CSE 257A)**
- **Bioinformatics III: Genomic Analysis (BENG 203)**
- **Bioinformatics IV: Statistical Methods in Bioinformatics (Math 283)**

Program Electives

(Each student will select from five of the eight elective fields below. One must be from the biology field and one from the computer science field. For each elective, multiple course options currently available are listed).

Elective 1: Biochemistry

- **BENG 230: Biochemistry**
- **BIBC 100: Structural Biochemistry**
- **CHEM 114A: Biochemical Structure and Function**
- **CHEM 213: Chemistry of Macromolecules**
- **CHEM 218: Macromolecular Biochemistry**

Elective 2: Data Structures

- **CSE 100: Data Structures**
- **CSE 200: Computability and Complexity**
- **Math 176A: Computer Implementation of Data Structures**

Elective 3: Algorithms

- **CSE 101: (also Math 188) Design and Analysis of Algorithms**
- **Math 173: Mathematical Software Scientific Programming**

Elective 4: Information Retrieval, Databases and Data Mining

- **CSE 132A: Database System Principles**
- **CSE 133: Information Retrieval**
- **CSE 254: Machine Learning**

Elective 5: Molecular Genetics

- **BICD 100: Genetics**
- **BIMM 100: Molecular Biology**
- **BIBC 116: Evolution of Genes and Proteins**
- **BGGN 220: Advanced Molecular Biology**
Elective 6: Cell Biology
- BICD 110: Cell Biology
- BICD 130: Embryos, Genes, and Development
- BIOMED 210: Cellular Biology
- BIOMED 212: Cellular and Molecular Pharmacology
- BGGN 222: Advanced Cell Biology

Elective 7: Physics and Engineering
- BENG 253: Biomedical Transport Phenomena
- BENG 275: Computational Biomechanics
- PHYS 210A: Equilibrium Statistical Mechanics or higher

Elective 8: Mathematics and Statistics
- Math 174: Numerical Methods in Science and Engineering
- Math 181E: Mathematical Statistics
- Math 280A: Probability Theory

Example 1—Sample Program (Year 1)
A student with an undergraduate background in biology might make the following course selections:

Year 1

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioinformatics I</td>
<td>Bioinformatics II</td>
<td>Bioinformatics III</td>
</tr>
<tr>
<td>Bioinformatics IV</td>
<td>CSE 100</td>
<td>CSE 101</td>
</tr>
<tr>
<td>Test out—Chem. 114A</td>
<td>Test out—BENG 275</td>
<td>Test out—BICD 110</td>
</tr>
<tr>
<td>Elective Research</td>
<td>Elective Research</td>
<td>Rotation</td>
</tr>
</tbody>
</table>

Example 2—Sample Program (Year 1)
A sample program for a student with an undergraduate degree in computer science and engineering might be structured as follows:

Year 1

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioinformatics I</td>
<td>Bioinformatics II</td>
<td>Bioinformatics III</td>
</tr>
<tr>
<td>Bioinformatics IV</td>
<td>BIOMED 210</td>
<td>Chem. 213</td>
</tr>
<tr>
<td>Test out—CSE 101</td>
<td>Math. 280A</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective Research</td>
<td>Test out—CSE 132A</td>
<td>Research Rotation</td>
</tr>
</tbody>
</table>

Research Training
Students, upon completion of the appropriate course work, will be given research orientation lectures by the bioinformatics program faculty. Each graduate student will participate in a research experience in the laboratory he or she selects to carry out the research rotation. During this period students will become acquainted with scientific methodology for designing experiments, analyzing the results, organizing the data, conducting research in a responsible manner, preparing oral and poster presentations of research results, and writing scientific papers.

Upon successful completion of the Qualifying Examination (described in the following section), graduate students will choose their research project from the many possibilities offered in the program and begin to work on a research problem with their faculty advisors. In consultation with their mentors, students will formulate the research activity that will lead to their dissertation. Graduate students will have the opportunity to do internships in the local bioinformatics/biotechnology industry if the thesis project is of mutual interest to a corporate sponsor and the thesis advisors. The research program is designed with two key objectives in mind: (1) to provide a truly interdisciplinary research training at the interface area between biology and computer science and engineering; and (2) to address fundamentally strong research problems that will lead to the advancement of the field of bioinformatics. We anticipate that every graduating student will emerge as a highly trained bioinformatician who can either pursue an academic career by choosing optimal postdoctoral research positions or enter the next generation biotechnology/biopharmaceutical industry.

It is our belief that active research under proper tutelage is the best means of training and that the foundations of a good graduate training program rest on an outstanding faculty group, an excellent student body, and a strong and well-coordinated research program. Each of the faculty members in this program has expertise and interests that will contribute importantly to the Interdisciplinary Bioinformatics Graduate Program. Participating faculty have pooled their resources in terms of laboratories, and the knowledge and experience to ensure the success of the program. Through daily contact with faculty and other research colleagues, students will learn to develop critical and creative thinking skills, scientific methodology, and a sound knowledge of research problems.

Second-Year Qualifying Examination
The Bioinformatics and Systems Biology Second-Year Qualifying Examination (BOQ) is designed in an innovative manner to test the ability of students to think analytically and in an interdisciplinary manner. This method was suggested by students of the program during the first two years after inception.

Students are expected to come up with a research problem different from the one he or she may have been working on with a faculty advisor and write a proposal that can be defended at the oral examination to a faculty committee appointed by the chair of BOQ. The written document is
expected to be in the form of a proposal to NSF or NIH, where the student provides the specific aims of the project, the background for and significance of the problem chosen, some preliminary results and/or observations and specific details on the design of the research. The student is tested on his or her ability to formulate and design the problem as well as on the interdisciplinary nature of the approach. Once the student passes the oral portion of the exam, the student is deemed to be qualified for advancing into Ph.D. thesis research in bioinformatics. The student can schedule this examination at any time of the year, but with two provisions. First, the student should have completed all the required and most of the elective courses assigned, and second, the examination should be taken before the student completes his or her second year in the program. At the time of BQE, the student should have decided on his or her two mentors/research advisors, and should have discussed with them about joining their laboratories and obtaining guaranteed funding for the duration of research as long as he or she is in good academic standing. The BQE Oral Examination Committee will discuss these specifics and other program requirements with the students at the oral examination.

ADVANCEMENT TO PH.D. CANDIDACY

Upon completion of formal course requirements, each student will be required to take a written and oral qualifying examination that will admit the student to the candidacy of the Ph.D. Program in bioinformatics. In advance of the qualifying examination, each student, in consultation with his or her faculty advisor(s), will establish a dissertation committee of five faculty members. The committee will consist of three faculty, at least two of whom are affiliated with the bioinformatics and systems biology program, and two other faculty from departments affiliated with the program, or who are themselves members of the program faculty. At least two of the five committee members must be from a department other than the committee chair’s department and at least one of these two must be tenured. The thesis advisors will have the major responsibility for the student’s research and dissertation.

Thesis or Dissertation

Each graduate student in the program will work on a bioinformatics thesis project under dual mentorship of the program faculty.

Final Examination

Bioinformatics graduate students will defend their thesis in a final oral examination. The exam will consist of (1) a presentation of the thesis by the graduate student, (2) questioning by the general audience, and (3) closed door questioning by the thesis committee. The student will be informed of the exam result at the completion of all three parts of the oral examination. The final report of the doctoral committee will be signed by all members of the committee and the final version of the dissertation will conform to the procedures outlined in the publication, Instructions for the Preparation and Submission of Doctoral and Master’s Theses.

Teaching Requirement

Each graduate student admitted to the Ph.D. Program in bioinformatics is mandated to serve as a teaching assistant (TA) for at least two quarters. This will aid in preparing the students for a teaching career. In addition, each student will make periodic research presentations to the graduate program students/faculty. Students will also discuss their progress at the annual program meeting to be held each year. It is anticipated these formal presentations will serve as valuable training in preparing the student for a teaching career.

Bioinformatics graduate students will also participate in additional TA training provided by the Office of Graduate Studies and Research through the Center for Teaching Development (CTD).

Financial Support

It is expected that all students admitted into the Ph.D. Program in bioinformatics will receive financial assistance subject to their continuance and performance in the program. The assistance will be provided from (1) departmental financial commitments, (2) university financial commitments, (3) teaching assistantships, (4) research assistantships, and (5) NIH-funded graduate training grant.

Ph.D. Degrees with a Specialization in Bioinformatics

Currently, UCSD offers Ph.D. degrees with a specialization in bioinformatics from the participating departments listed in this section. Students are admitted into one of the departmental graduate programs and satisfy the requirements of both the department and the interdisciplinary bioinformatics graduate program. If you are interested in the Ph.D. degree with a specialization in bioinformatics, please consult with the Student Affairs Office of the department you are interested in to obtain further information on admission and individual program requirements.

FURTHER INFORMATION

For further information please visit our Web site at http:///www.bioinformatics.ucsd.edu, or contact the bioinformatics student affairs office at (858) 822-4948 or bioinfo@ucsd.edu.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

BNFO 282. Seminar in Bioinformatics (1)
Weekly seminars by faculty and visiting bioinformaticists presenting their research.
Biological Sciences, Division of

PROFESSORS

Raffi Arolan, Ph.D.
Tim Baker, Ph.D.
Darwin K. Berg, Ph.D.
Ethan Bier, Ph.D.
Jack W. Bradbury, Ph.D., Emeritus
Steve Briggs, Ph.D.
Stuart Brody, Ph.D.
Ted J. Case, Ph.D., Emeritus
Lin Chao, Ph.D.
Andrew Chisholm, Ph.D.
Maarten J. Chrispeels, Ph.D., Emeritus
Nigel M. Crawford, Ph.D.
Michael David, Ph.D.
Russell F. Doolittle, Ph.D., Emeritus
Richard W. Dutton, Ph.D., Emeritus
Mark Estelle, Ph.D.
Richard A. Firtel, Ph.D., Associate Dean of Operations
Douglas J. Forbes, Ph.D.
E. Peter Geiduschek, Ph.D., Emeritus
Anirvan Ghosh, Ph.D., Chair Neurobiology Section,
Stephen W. Kuffler Chair in Biology
Michael E. Gilpin, Ph.D., Emeritus
James Golden, Ph.D.
Susan Golden, Ph.D.
Melvin H. Green, Ph.D., Emeritus
Shelley L. Halpain, Ph.D.
Randolph Y. Hampton, Ph.D., Academic Senate
Distinguished Teaching Award, Chancellor’s
Associates Award for Excellence in Teaching
Stephen M. Hedrick, Ph.D., Chair, Molecular Biology
Section, Chancellor’s Associate Endowed Chair VII
Donald R. Helinski, Ph.D., Emeritus
John J. Holland, Ph.D., Emeritus
Terrence Hwa, Ph.D.
Yishi Jin, Ph.D.
Randall S. Johnson, Ph.D.
James T. Kadonaga, Ph.D.
Steve A. Kay, Ph.D., Dean, Richard C. Atkinson
Endowed Chair
Joshua R. Kohn, Ph.D., Chair, Ecology, Behavior and
Evolution Section
William B. Kristan, Jr., Ph.D.
Sydney Kustu, Ph.D., Research Professor
Dan L. Lindsley, Ph.D., Emeritus
William F. Loomis, Jr., Ph.D.
Eduardo R. Macagno, Ph.D., Emeritus
Robert Malinow, Ph.D., Shiley Chair in Alzheimer’s
Disease Research
Therese Markow, Ph.D., Amylin Endowed Chair in
Lifesiences Education and Research
Stephen Mayfield, Ph.D., John Dove Isaacs Chair in
Natural Philosophy
William J. McGinnis, Ph.D., Herbert Stern Chair in
Biology
Stanley E. Mills, Ph.D., Emeritus
S. Mauricio Montal, M.D., Ph.D.
Cornelis Murre, Ph.D.
Xuong Nguyen-Huu, Ph.D., Emeritus
Lorraine Pillus, Ph.D.
Kirt J. Pogliallo, Ph.D.
James W. Posakony, Ph.D.
Paul A. Price, Ph.D., Academic Senate Distinguished
Teaching Award
Kaustuv Roy, Ph.D.
Milton H. Saier, Ph.D.
Massimo Scanziani, Ph.D.
Immo E. Scheffler, Ph.D., Academic Senate
Distinguished Teaching Award, Chancellor’s
Associates Award for Excellence in Teaching, Paul D.
Saltman Professor of Science Endowed Chair
Robert J. Schmidt, Ph.D., Paul D. Saltman Chair in
Science Education
Julian I. Schroeder, Ph.D., Torrey Mesa Research
Institute Chair in Plant Science
Terrence J. Sejnowski, Ph.D.
Allen I. Selverston, Ph.D., Emeritus
S. Jonathan Singer, Ph.D., Emeritus/University
Professor Emeritus
Douglas W. Smith, Ph.D., Emeritus
Laurie G. Smith, Ph.D.
Nicholas C. Spitzer, Ph.D.
Suressubramani, Ph.D.
Kiyotera Tokuyasu, Ph.D., Emeritus
Sandra L. Vehrencamp, Ph.D., Emerita
Steven A. Wasserman, Ph.D., Academic Senate
Distinguished Teaching Award
Christopher J. Willis, Ph.D., Emeritus
Flossie Wong-Staal, Ph.D., Emerita
David S. Woodruff, Ph.D.
Yang Xu, Ph.D.
Michael P. Yaffe, Ph.D., Emeritus
Martin F. Yanofsky, Ph.D., Emeritus
David S. Woodruff, Ph.D.
Emerita
Flossie Wong-Staal, Ph.D., Emeritus
Ronald M. Evans, Ph.D.
Therese Gaasterland, Ph.D.
Fred Gage, Ph.D.
Martin Hetzer, Ph.D.
Anthony R. Hunter, Ph.D.
Walter Jetz, Ph.D.
Dana Leanne Jones, Ph.D.
Katherine Jones, Ph.D.
Jan Karlseder, Ph.D.
Christopher Kintner, Ph.D.
Mitchell Kronenberg, Ph.D.
Kuo-Fen Lee, Ph.D.
Jeffrey Long, Ph.D.
Vicki Lundblad, Ph.D.
Marc R. Montminy, Ph.D.
Dennis D.M. O'Leary, Ph.D.
Cloydah O’Shea, Ph.D.
Satchidananda Panda, Ph.D.
Samuel Pfaff, Ph.D.
Michael Geoffrey Rosenfeld, M.D.
Oliver A. Ryder, Ph.D.
Mosello Schaechter, Ph.D.
Reuben Shaw, Ph.D.
Paul Slesinger, Ph.D.
Deborah Spector, Ph.D.
John B. Thomas, Ph.D.

ASSOCIATE PROFESSORS

Willie C. Brown, Ph.D., Emeritus, Academic Senate
Career Distinguished Teaching Award
P.A.G. Fortes, M.D., Ph.D.
Jeff Hasty, Ph.D.
David Holway, Ph.D.
Jens Lykke-Andersen, Ph.D.
James C. Nieh, Ph.D., Academic Senate Distinguished
Teaching Award
Amy Pasquinelii, Ph.D.
Ramón Pihó, Ph.D., Emeritus
Joseph A. Pogliallo, Ph.D.
Pamela Reingel, Ph.D.
Percy J. Russell, Ph.D., Emeritus
Jonathan Shurin, Ph.D.
Deborah Yelon, Ph.D.
Yunde Zhao, Ph.D.
Yimin Zou, Ph.D.

ASSISTANT PROFESSORS

Eric Allen, Ph.D.
Elsa Cieland, Ph.D.
Ananda Goldrath, Ph.D.
Colin Jamora, Ph.D.
Tracy Johnson, Ph.D.
Amy Kiger, Ph.D.
Carolyn Kurle, Ph.D.
Jill Leutgeb, Ph.D.

Stefan Leutgeb, Ph.D., Walter F. Heiligenberg
Professorship in Neuroethology
Maho Niwa, Ph.D.
Gentry Patrick, Ph.D.
Scott Rifkin, Ph.D.
David Traver, Ph.D.
Emily Troemel, Ph.D.
Jing Wang, Ph.D.
James Wilhelm, Ph.D.
Elina Zuniga, Ph.D.

SENIOR LECTURER WITH SECURITY OF EMPLOYMENT

Gabrielle K. Wienshausen, Ph.D., Associate Dean
for Education, Academic Senate Distinguished
Teaching Award; Chancellor’s Associates Faculty
Award for Excellence in Teaching

LECTURERS WITH SECURITY OF EMPLOYMENT

Jon Christopher Armour, M.D., Ph.D., Academic
Senate Distinguished Teaching Award
Madeline Butler, Ph.D.
Kathleen French, Ph.D.

LECTURERS WITH POTENTIAL FOR SECURITY OF EMPLOYMENT

Lakhmi Chilukuri, Ph.D.
Aaron Coleman, Ph.D.
Jayant Ghiara, Ph.D.
Stephanie Mel, Ph.D.

ADJUNCT FACULTY

Lisa Boulanger, Ph.D.
Seunghyon Choe, Ph.D.
Joanne Chory, Ph.D.
Andrew Dillin, Ph.D.
Joseph Ecker, Ph.D.
Beverly Emerson, Ph.D.
Ronald M. Evans, Ph.D.
Therese Gaasterland, Ph.D.
Fred Gage, Ph.D.
Martin Hetzer, Ph.D.
Anthony R. Hunter, Ph.D.
Walter Jetz, Ph.D.
Dana Leanne Jones, Ph.D.
Katherine Jones, Ph.D.
Jan Karlseder, Ph.D.
Christopher Kintner, Ph.D.
Mitchell Kronenberg, Ph.D.
Kuo-Fen Lee, Ph.D.
Jeffrey Long, Ph.D.
Vicki Lundblad, Ph.D.
Marc R. Montminy, Ph.D.
Dennis D.M. O’Leary, Ph.D.
Cloydah O’Shea, Ph.D.
Satchidananda Panda, Ph.D.
Samuel Pfaff, Ph.D.
Michael Geoffrey Rosenfeld, M.D.
Oliver A. Ryder, Ph.D.
Mosello Schaechter, Ph.D.
Reuben Shaw, Ph.D.
Paul Slesinger, Ph.D.
Deborah Spector, Ph.D.
John B. Thomas, Ph.D.

2010-2011 UC SAN DIEGO GENERAL CATALOG • BIOLOGICAL SCIENCES, DIVISION OF
James Umen, Ph.D.
Wylie W. Vale, Ph.D.
Inder Verma, Ph.D.
Geoffrey M. Wahl, Ph.D.
Jean Wang, Ph.D.
Lei Wang, Ph.D.
Carl Ware, Ph.D.
Matthew Weitzman, Ph.D.
David J. Western, Ph.D.
John Young, Ph.D.
Charles Zuker, Ph.D., Tamara and Kevin Kinsella Chair in Neurobiology

FINANCIAL AND ADMINISTRATIVE OFFICES
1610 Urey Hall, Revelle College
http://biology.ucsd.edu/

DIVISION OF BIOLOGICAL SCIENCES UNDERGRADUATE ADMISSIONS

Because of the large number of students interested in biological sciences undergraduate programs, and the limited resources available to accommodate this demand, the university has declared all majors in the Division of Biological Sciences as “impacted.”

Effective fall 2009, freshmen admission to any of the Biological Sciences majors will be limited. Students will be selected by the UC San Diego Office of Undergraduate Admissions based on the students’ comprehensive review scores and availability of slots in the Division of Biological Sciences. All potential freshmen must indicate on the UC application if they wish to major in biology.

Effective fall 2011, new transfer students will be selected by the UCSD Office of Undergraduate Admissions based on the students’ demonstrated academic performance at the community college or previous university and availability of slots in the Division of Biological Sciences. All potential transfers must indicate on the UC application if they wish to major in biology.

Refer to the UCSD Division of Biological Sciences Web site for specific details and requirements (http://biology.ucsd.edu/).

DIVISION OF BIOLOGICAL SCIENCES LABORATORY REQUIREMENT

Freshmen

The Division of Biological Sciences requires students in all biology majors, with the exception of bioinformatics, to take one biology lab before the end of the sophomore year. Transfer students may petition to have community college course work cover the lab requirement. Transfer students whose community college laboratory course is determined to be equivalent in content to an existing biology lab will have completed the requirement upon transfer. Transfer students are therefore strongly encouraged to complete this requirement at their community college. Transfer students who do not meet this requirement at the time of transfer may petition the division for an extension.

DIVISION OF BIOLOGICAL SCIENCES RESIDENCY REQUIREMENT

To receive a bachelor of science degree in biology from UCSD, all biology majors, including transfer students, must complete at least forty-eight or more units of upper-division course work within the major.

To receive a bachelor of science degree in biology from UCSD, all students must complete at least nine upper-division biology courses (each course must be at least four units) in the Division of Biological Sciences while officially enrolled at UCSD. Students participating in the Education Abroad Program (EAP), and courses at other UC campuses, may petition up to three of these courses to count toward their residency minima. Biology courses completed through the UC Extension program (concurrent enrollment) will not be counted toward this residency requirement.

SATISFACTORY PROGRESS

All students admitted into a biology major must maintain satisfactory progress in order to remain in a biology program. If the GPA in biology courses for such a student falls below 2.0, he or she will be placed on probation during the quarter after the average fell below the line. If the GPA is not brought above the 2.0 level during the quarter on probation, the student will be dropped from the major.

PREREQUISITES

All students are expected to have completed all prerequisites prior to enrolling in any biology course. Please visit the Biology Student and Instructional Services office or consult our web page for the most current information. Prerequisites are enforced in all courses and must be taken for a letter grade. Students who have satisfied the prerequisites of a class at another college may need to be pre-authorized to enroll. Please come to the Biology Student and Instructional Services office (1128 Pacific Hall) before your priority enrollment to be pre-authorized.

CONCURRENT ENROLLMENT IN BIOLOGY COURSES

For more information on concurrent enrollment, please call (858) 534-3400 or e-mail concurrent@ucsd.edu.

Enrollment process for biology courses:

- Select the biology course(s) you wish to enroll in.
- Be sure that you’ve completed the prerequisites.
- Attend class starting the first day of the quarter and continue attending. During the beginning of the third week, obtain the instructor’s signature on the concurrent enrollment add card (available at the UCSD Extension Student Services office).

Please note that instructors are not required to admit you to the course, and that enrollment is on a space-available basis.

- If you have a signed add card, take it to Biology Student and Instructional Services for a department stamp. Space in the course will be verified at this time. Please note that even if the instructor has signed the add card, if space is not available, the card will not be stamped.
- Return your completed UCSD concurrent enrollment card to the Extension Student Services office with your enrollment fee. Submit one card per class. Concurrent enrollment is closed after the third week of the quarter.

Note: Students enrolling in a biology course will not incur a $50 late fee if enrolling during the third week.

READMISSION TO A BIOLOGY MAJOR

Students who were absent for six quarters or more, and who have been readmitted to UCSD, must adhere to the major requirements in effect at the time of readmission or those subsequently established.

Readmitted students may petition to follow the major requirements in effect at the time they left UCSD. These petitions will be reviewed on a case-by-case basis.

GRADE REQUIREMENTS FOR THE MAJORS

The minimum grade requirements for all biology majors, effective fall 2008, are:

- All courses required and used toward any biology major requirements must be passed with a grade of C– or better.
- The minimum grade requirement applies to all lower-division, upper-division, required courses taken in other departments, as well as courses transferred and used toward major requirements.
- Exceptions will be made only for those required courses that have a P/NP only grading option (i.e., BISP 199).

The minimum GPA requirement (for both the major and overall UC) for graduation is 2.0. Students who received D and/or F grades should contact one of the Division of Biological Sciences undergraduate advisors to determine the effect of such grades on their GPAs. The biology major GPA calculation is based on upper-division courses required for the major. (Upper-division courses from other UCs, other UCSD departments, and EAP which have been approved via petition to count toward the major are counted into the major GPA. Other transfer courses do not count toward the UC or major GPA.) All courses, required for any of the eight majors, must be taken for a letter grade with the exception of BISP 195, 196, 197, and 199.

STUDENTS WITH TRANSFER CREDIT

All courses (including prerequisites) taken at other institutions must be reviewed by the Division of Biological Sciences before they can be applied toward any major requirement. Students must obtain approval from the Biology Student and Instructional Services office prior to taking courses.
outside of UCSD (for example, students wishing to take a BILD 1 equivalent at another institution must consult with Biology Student and Instructional Services before enrolling in the substitute course). In addition, any student wishing to satisfy a major requirement with upper-division transfer work (with the exception of organic chemistry) must first submit an Undergraduate Student Petition. Contact Biology Student and Instructional Services (1128 Pacific Hall) for specific information regarding transfer documentation and petition procedures.

The Division of Biological Sciences requires that students take the full content equivalencies to UCSD series in math, chemistry, and physics. The Division of Biological Sciences will follow the respective department’s recommendations for equivalency. In some cases, obtaining full content equivalency will require a student to complete more than two semesters in a subject. If the courses a student took do not provide full content equivalency, s/he will be required to complete the lacking material at UCSD or at a community college where the material is equivalent.

PROGRAMS ABROAD

The Division of Biological Sciences strongly encourages students to participate in the Education Abroad Program (EAP) or the UCSD Opportunities Abroad Program (OAP). It is very important that students who plan to participate in the UC Education Abroad Program (including the Costa Rica Tropical Ecology program) or the UCSD Opportunities Abroad Program obtain the name of a faculty advisor from the Biology Student Affairs Office in order to discuss the proposed program of study. For most EAP programs, it is strongly recommended that biology majors complete biochemistry (BIBC 100 or 102) and genetics (BICD 100) and their prerequisites before going abroad. For more information, please visit http://programsabroad.ucsd.edu.

SPECIAL STUDIES COURSES

For information on requirements and application procedures for special studies courses, students should go to the Biology Student and Instructional Services Office (1128 Pacific Hall) or visit the Web site at http://biology.ucsd.edu/undergrad/BISP_info.html.

How to apply special studies courses toward your biology major:

- Two quarters of BISP 194 (topics must vary) may count as one upper-division elective for any biology major.
- One quarter of BISP 195 may count as an upper-division elective for any biology major.
- One quarter of BISP 196, 197, or 199 may count as an upper division elective for any biology major.
- Biochemistry/Cell Biology, General Biology, Human Biology, and Physiology/Neuroscience. The second consecutive quarter of BISP 196 or 199 taken in the same research laboratory, may be petitioned to substitute for one of the upper-division elective lab requirements. The second quarter of BISP 196 or 199 must be complete prior to petitioning. Students are required to submit an undergraduate petition and summary of research to Biology Student and Instructional Services.
- Microbiology, Molecular Biology, Ecology/Behavior, and Evolution. The second consecutive quarter of BISP 196 or 199, taken in the same research laboratory, may be petitioned to substitute for one of the upper-division required laboratory courses. The content of the BISP 196 or 199 must be equivalent to the content covered in the required lab in order to be approved. The second quarter of BISP 196 or 199 must be complete prior to petitioning. Students are required to submit an undergraduate petition and summary of research to Biology Student and Instructional Services.
- Subsequent quarters of BISP 195, 196, 197, or 199 may be applied toward college and university requirements.

Note: Students who are approved to use a BISP 196 or 199 to satisfy a lab requirement cannot also use BISP 196, 197, or 199 to satisfy an upper-division elective requirement.

BISP 194—Advanced Topics in Modern Biology

Advanced Topics in Modern Biology is a two-unit topics course taught at a high level and open to upper-division students only. The course content will vary. Students should consult the quarterly Schedule of Classes for topics and descriptions.

BISP 195—Introduction to Teaching in Biology

Being a teaching assistant is an important task and can provide students with experience and faculty contact which can be valuable when applying for graduate school. Students who are interested in being an undergraduate tutor should have received a strong grade in the course which they want to teach, have an overall GPA of at least 3.0, and have taken at least ninety total units. Students should apply very early in the quarter prior to the quarter they wish to teach. Applications will be accepted beginning the second week of the quarter prior to the quarter in which the student wishes to teach. All undergraduate tutor applications are online and may be accessed through the biology Web site, http://www.biology.ucsd.edu/undergrad/index.html.

BISP 196—Honors Thesis in Biological Sciences

Students in any one of the eight biology major programs who have a 3.7 grade-point average or above in upper-division science courses, the biology major, and overall UC at the end of their junior year are eligible to undertake the honors thesis. This program covers the senior year of undergraduate study and involves a maximum of twelve units of senior thesis research (BISP 196) taken in addition to the major requirements for graduation. (Four units of senior thesis research BISP 196 are to be taken during three consecutive quarters.) Research is conducted under the supervision of a faculty member of the Division of Biological Sciences only and cannot be performed in the research labs of other departments such as the School of Medicine, SIO, etc. If there are any questions as to which faculty members are eligible, students should consult with Biology Student and Instructional Services. The research will culminate in a senior thesis and an oral report (see below). Students who complete the program satisfactorily will have “Distinction in Biology” recorded on their transcript. Students who fail to make satisfactory progress will be advised to withdraw from the program. Students may also withdraw voluntarily from the program. Grades for BISP 196 are P or NP only.

Application to the Honors Thesis Program

1. Students interested in the program who are eligible as of spring quarter of their junior year (the fourth quarter prior to graduation) need to find a Division of Biological Sciences faculty member willing to act in the capacity of thesis advisor and inform the Biology Student Affairs Office of their intent.

2. After an advisor is selected, the student and the advisor should complete the Special Studies application form and research plan (available on the biology Web site).

3. The application form and research plan should then be submitted to the Biology Student and Instructional Services Office. The deadline for submitting this form is the end of the eighth week of the quarter prior to the quarter the research will begin.

4. The application will be submitted to the honors thesis coordinator after eligibility has been determined.

5. If the student is approved for admission to the program, he or she will then be authorized to register for BISP 196.

Entry into the second and third quarter of the program will require submission to the honors thesis advisor of a written report in which the student summarizes the data obtained in the previous quarters. A brief oral interview with the student on this report can also be expected. If the progress made appears reasonable for an honors student, then the 196 petition will be signed. If not, the student may be dropped from the program. Completion of the program will require a final written report by the student at the end of the third quarter in addition to an oral presentation in the middle of the quarter to a suitable group of faculty and students, including the honors thesis advisor.

BISP 197—Biology Internship Program

The Division of Biological Sciences, in collaboration with local biotech industries, created Biotechnology Internship Opportunities (BIO). The mission of BIO is to provide biology majors with an opportunity to participate in research in an industrial setting. We believe that working as an intern in the private sector will enrich a student’s educational experience. Students will gain valuable insight into the relationship between theory and practice, and hence, a better understanding of the relevance of course work in their major. Most importantly, students will learn the importance of outstanding oral and written communication skills. This course may be counted as one of the upper-division
electives for a biology major, providing that no other special studies courses have already been counted toward the major. Information on BIS may be accessed through the undergraduate biology Web site, http://bioinfo.ucsd.edu.

To enroll in BISP 197, students must have accrued at least ninety-quarter units with an overall UC GPA of at least 3.0.

There will be one weekly scheduled meeting lasting up to 1.5 hours. Attendance and participation at these meetings are mandatory and will affect the grade a student receives. There will be three formal oral and three written presentations, interspersed with informal discussions of progress achieved. All written reports must be done with the input of the industry and must have that mentor’s signature. Grading will be based on the formal and informal written and oral presentations, as well as input from the industry mentor.

BISP 199—Individual Research for Undergraduates

Individual Research BISP 199 is intended to provide interested and qualified biology students with an opportunity to work closely with faculty and professionals in their chosen field and can be a valuable contribution to the student’s preparation for graduate school or career goals. To enroll in BISP 199, students must have accrued at least ninety-quarter units with an overall UC GPA of at least 3.0. Students may select for their instructor any professor at UCSD, but the BISP 199 application must be submitted for approval to the Division of Biological Sciences. The deadline to apply for BISP 199 is the eighth week of the quarter prior to the quarter in which the research will begin.

AIP 197—Academic Internship Program

Because the undergraduate research conducted through the Academic Internship Program is generally done at a site not affiliated with the UCSD Division of Biological Sciences, students who wish to request that an AIP 197 course be counted toward their major must submit an Undergraduate Petition for their request. Biology faculty will review the student’s research and ascertain the project’s compatibility with the student’s academic goals and major requirements. Please be advised that an AIP 197 may not be approved toward major requirements. If an AIP 197 course is approved for the student’s major, no other special studies course (BISP 196, 197, or 199) can be used toward the major. For further information, please see http://aip.ucsd.edu.

MAJOR PROGRAMS IN BIOLOGICAL SCIENCES

For more information, please see biology’s Web page, http://biology.ucsd.edu/.

The UCSD Division of Biological Sciences is structured around the different levels of biological organization—biochemical, cellular, physiological, and ecological. The research and teaching of the division emphasize the fundamentally important processes that occur at each of these levels. With a solid foundation in these processes future training and study in any area of biology is possible, from plant breeding to genetic counseling, from medical microbiology to ecological epidemiology, from veterinary science to cancer research. The UCSD campus is situated among some of the finest research institutions in the world. The Division of Biological Sciences is fortunate in having close ties with the Scripps Institution of Oceanography, the Salk Institute of Biological Studies, and the Scripps Clinic and Research Foundation, all of which open interesting avenues for motivated students.

The division offers eight different major programs, each of which provides an excellent background for future graduate or professional study. They are (1) biochemistry and cell biology, (2) biology with a specialization in bioinformatics, (3) ecology, behavior, and evolution, (4) general biology, (5) human biology, (6) microbiology, (7) molecular biology, and (8) physiology and neuroscience. The requirements of each of the majors are designed to meet the needs of a different group of students. These requirements are quite concordant, reflecting the division’s philosophy that familiarity with certain basic aspects of the subject is fundamental to all specialized understanding. Bachelor of science degrees granted in each of these majors will be so designated.

The Student and Instructional Services Office (1128 Pacific Hall) administers the undergraduate biology program for all six colleges. For complete details regarding policies and procedures pertaining to the biology programs, please contact Biology Student and Instructional Services.

BIOCHEMISTRY AND CELL BIOLOGY MAJOR

This major is designed to provide students with the fundamental courses required for entry into a school of medicine or into postgraduate training in a wide variety of areas of biological and biomedical sciences: biochemistry, biophysics, genetics, molecular biology, cell biology, developmental biology, microbiology, virology, human biology (physiology, metabolism, genetic disorders), cancer biology, pharmacology, and others. The emphasis is on basic principles which help us understand those processes unique to living organisms at the molecular level. The program includes two required upper-division biology laboratory courses to provide practical experience with modern techniques and useful technology for those seeking positions as lab technicians in clinical and basic research laboratories. The opportunity to select four elective courses allows students either to seek a still broader background in a variety of biology courses or to begin specialization in a chosen field of study.

Lower-Division Requirements

- BILD 1 and 3 (Note: BILD 2 is not required, but is a prerequisite for many upper-division courses.)
- Chemistry 6A-B-C and 6BL
- Mathematics 10A-B, and 11 or 10C or 20A-B-C
- Physics 1A/1AL, 1B/1BL, 1C/1CL or 2A-B-C, and one lab

Upper-Division Requirements

1. Organic Chemistry (Chemistry 140A and 140B or 141A and 141B)
2. Organic Chemistry (Chemistry 143A) or Physical Chemistry (Chemistry 105A)
3. Structural Biochemistry (BIBC 100) or Physical Biochemistry (BIBC 110) or Physical Chemistry (Chemistry 126)
4. Metabolic Biochemistry (BIBC 102)
5. Biochemical Techniques (BIBC 103)
6. Genetics (BICD 100)
7. Cell Biology (BICD 110)
8. Molecular Biology (BIMM 100)
9. Capstone Course: (one of the following seven courses) BIBC 104 (Biochemistry and Biotechnology of Plants), BIBC 110 (Physical Biochemistry), BIBC 120 (Nutrition), BIBC 130 (Marine Biochemistry), BICD 118 (Pathways of Intracellular Protein Trafficking and Compartmentation), BIMM 118 (Pharmacology), BIMM 130 (Microbial Biochemistry)
10. One upper-division biology lab to be chosen from the following: BICD 101, 111, 123, 131, 145, BIMM 101, 121, 127, BIPN 105, 145, or Chemistry 143C.
11. Four additional upper-division biology courses (each course must be at least four units) taken through the UCSD Division of Biological Sciences are required.

Note: For more information on how the BISP 194, 195, 196, 197, or 199 can count toward major requirements, please see the previous section “Special Studies Courses.”

The following courses offered by the Department of Chemistry and Biochemistry are recommended as electives for the biochemistry and cell biology major: Chemistry 115, 116, 122, 124, 126, 127. Please note that these courses will not count towards the Division of Biological Sciences residency requirement and must be petitioned to apply towards major requirements.

BIOINFORMATICS SPECIALIZATION IN THE DIVISION OF BIOLOGICAL SCIENCES

This major offers a rigorous, interdisciplinary training in the new and rapidly evolving field of bioinformatics within the Division of Biological Sciences. Bioinformatics refers to advanced computational and experimental methods that model the flow of information (genetic, metabolic, and regulatory) in living systems to provide an integrated understanding of the systems properties of model organisms. For a detailed understanding of the large amount of qualitative and quantitative data that is currently accruing, the bioinformatician of the future must have a substantial mastery in biology, chemistry, mathematics, physics, and computer sciences. This interdisciplinary specialization will be offered by three other departments (computer science and engineering, chemistry, and bioengineering), each with their own set of requirements and electives. The program offered by the Division of Biological Sciences is aimed at a student interested in applying,
Lower-Division Requirements
- Mathematics 20A-B-C, 20F and Mathematics 15B or CSE 21
- Chemistry 6A-B-C, and lab
- Physics 2A-B-C
- BILD 1 and 2
- BILD 94
- CSE 11, CSE 12 (Students may take the slower paced version, CSE 8A + CSE 8B, instead of CSE 11)

Upper-Division Requirements
1. Organic Chemistry (Chemistry 140A-B)
2. Advanced Data Structure (CSE 100 or Mathematics 178)
3. Design and Analysis of Algorithms (CSE 101 or Mathematics 188)
4. Metabolic Biochemistry (BIBC 102) or Biochemical Enertics and Metabolism (Chemistry 114B)
5. Biochemical Techniques (BIBC 103)
6. Physical Biochemistry (BIBC 110) or Physical Chemistry (Chemistry 127)
7. Genetics (BICD 100)
8. Cell Biology (BICD 110)
9. Molecular Biology (BIMM 100) or Molecular and Cellular Biochemistry (Chemistry 114D)
10. Recombinant DNA Lab (BIMM 101)
11. Molecular Sequence Analysis (BIMM 181)
12. Biological Databases (BIMM 182)
13. Applied Genomic Technologies (BENG 183)
14. Computational Molecular Biology (BIMM 184)
15. Bioinformatics Lab (BIMM 185)
16. Probability and Statistics (Math 186)
17. Three additional upper-division biology courses (each course must be at least four units) taken through the UCSD Division of Biological Sciences are required.

Note: For more information on how the BISP 194, 195, 196, 197, or 199 can count toward major requirements, please see the previous section "Special Studies Courses."

ECOLOGY, BEHAVIOR AND EVOLUTION MAJOR
This major includes the fields of population biology, ecology, conservation biology, animal behavior, population genetics, biogeography, and evolution. These fields have in common a focus on evolutionary processes and whole organisms in relation to each other and to their environments. Research careers in ecology, behavior, and evolution can be found in universities, government agencies, and the biotechnology industry. Hence careers in ecology, behavior, and evolution can be found in various fields such as ecological medicine and epidemiology, environmental design and planning, and conservation biology. Because organismal biology spans such a wide variety of topics, this major has been designed to provide the basic fundamentals while allowing maximum flexibility within the general topic areas.

Lower-Division Requirements
- BILD 1, 2, and 3
- Chemistry 6A-B-C. Laboratories in chemistry are not required.
- Mathematics 10A-B, and 11 or 10C or 20A-B-C
- Physics 1A/1AL, 1B/1BL, 1C/1CL or 2A-B-C

Upper-Division Requirements
1. Genetics (BICD 100)
2. Biostatistics (BIEB 100) This course is a prerequisite for several core courses and should be taken in the first or second year.
3. Introductory Ecology (BIEB 102)
4. Evolution (BIEB 150)
5. Seven core courses to be chosen from BIEB 121-176 are required. At least two of these courses must be laboratory or field courses (BIEB 121, 123, 131, 145, 147, 165, 167). Laboratory courses may be taken concurrently with the prerequisite lecture course if Biostatistics (BIEB 100) has been taken. Note that some of the courses may not be offered every year. For that reason, it is recommended that students take as many required courses as possible when the courses are offered. Students who take the intensive EAP field courses in tropical biology offered in Costa Rica or marine biology in Australia will receive credit toward their degree. All EAP courses must be petitioned upon return. Consult the Education Abroad Program Office at the UCSD International Center for details.
6. Three additional upper-division courses (each course must be at least four units) in biology or other departments are required. EBE-related courses are offered in mathematics, chemistry, environmental systems, earth sciences, economics, biological anthropology, urban studies (GIS), some other social science departments, and in the graduate programs at SIO (marine biology and oceanography) and IR/IPS. Students are required to meet the Division of Biological Sciences residency requirement. Courses to be completed outside of the Division of Biological Sciences must be petitioned (prior to enrollment) to satisfy this requirement. EBE students whose graduate education or careers require biochemistry should take Organic Chemistry 140A, 140B, and Metabolic Biochemistry (BIBC 102) to satisfy this three-course requirement.

Note: For more information on how the BISP 194, 195, 196, 197, or 199 can count toward major requirements, please see the previous section "Special Studies Courses."

GENERAL BIOLOGY MAJOR
This program allows the most diversified exposure to biology of any of the majors offered by the Division of Biological Sciences. It is designed for students with broad interests who do not wish to be constrained by the specialized requirements of the other majors and who desire maximum freedom to pursue their particular educational goals.

LOWER-DIVISION REQUIREMENTS
- BILD 1, 2, and 3
- Chemistry 6A-B-C and BL
- Mathematics 10A-B, and 11 or 10C or 20A-B-C
- Physics 1A/1AL, 1B/1BL, 1C/1CL or 2A-B-C

UPPER-DIVISION REQUIREMENTS
1. Organic Chemistry (Chemistry 140A and 140B or 141A and 141B)
2. Metabolic Biochemistry (BIBC 102)
3. Genetics (BICD 100)
4. Two upper-division biology labs to be chosen from the following: BIBC 103, BICD 101, 111, 123, 131, 145, BIEB 121, 165, 167, BIMM 101, 121, 127, BIPN 105, or 145.
5. Seven additional upper-division biology courses (each course must be at least four units) taken through the UCSD Division of Biological Sciences are required.

Note: For more information on how the BISP 194, 195, 196, 197, or 199 can count toward major requirements, please see the previous section "Special Studies Courses."

Although students are free to design upper-division curricula which meet their individual educational goals, Molecular Biology (BIMM 100) and Cell Biology (BICD 110) are strongly recommended for those contemplating applying to graduate or professional schools.

HUMAN BIOLOGY MAJOR
This major is designed to provide students with the fundamental courses required for entry into: schools of medicine, veterinary medicine, dentistry, and pharmacy; Ph.D. programs in the biomedical sciences; and biotech research, teaching, medical technology, patent law, physical therapy, nutrition, and nursing. The core classes required of all human biology majors provide the student with the basic principles that help us understand normal human physiology and the molecular basis of human disease. The course options in Human Physiology, Human Disease, and Biomedical-related laboratories provide the students with educational breadth while
still allowing them considerable flexibility in tailoring their course of study to suit their educational goals.

LOWER-DIVISION REQUIREMENTS

- BILD 1 and 3 (Note: BILD 2 is not required, but is a prerequisite for many upper-division courses.)
- Chemistry 6A-B-C and 6BL
- Physics 1A/1AL, 1B/1BL, 1C/1CL or Physics 2A-B-C, and one lab
- Mathematics 10A-B, and 11 or 10C or 20A-B-C

UPPER-DIVISION REQUIREMENTS

1. Organic Chemistry (Chemistry 140A and 140B or 141A and 141B)
2. Organic Chemistry Lab (Chemistry 143A)
3. Metabolic Biochemistry (BIBC 102)
4. Genetics (BICD 100)
5. Molecular Biology (BIMM 100)
6. Molecular Basis of Human Disease (BIMM 110)
7. Mammalian Physiology I (BIPN 100)
8. Three courses from the following two groups, Human Physiology and Human Disease. At least one course must be taken from each group.

Human Physiology

- Nutrition (BIBC 120)
- Embryos, Genes, and Development (BICD 130)
- Human Reproduction and Development (BICD 134)
- Immunology (BICD 140)
- Endocrinology (BICD 150)
- Circadian Rhythms—Biological Clocks (BIMM 116)
- Mammalian Physiology II (BIPN 102)
- Cellular Basis of Learning and Memory (BIPN 148)

Human Disease

- Virology (BIMM 114)
- Pharmacology (BIMM 118)
- Bacteriology (BICD 120)
- Medical Microbiology (BIMM 124)
- Biology of Cancer (BIMM 134)
- Environmental and Molecular Toxicology (BIMM 166)

9. Two of the following lab courses: Biochemical Techniques (BIBC 103); Cell Biology Lab (BICD 111); Embryology Lab (BICD 131); Laboratory in Molecular Medicine (BICD 145); Recombinant DNA Techniques (BIMM 101); Microbiology Lab (BIMM 121); Animal Physiology Lab (BIPN 105)

10. At least two other upper-division courses (each course must be at least four units) offered by the UCSD Division of Biological Sciences. Recommended courses include additional courses from the Human Physiology and Human Disease lists in section 8 above and BICD 110 (Cell Biology), BIEB 154 (Molecular Evolution), and BICD 118 (Pathways of Intracellular Protein Trafficking and Compartmentation).

Note: For more information on how the BISP 194, 195, 196, 197, or 199 can count toward major requirements, please see the previous section “Special Studies Courses.”

Microbiology Major

The microbiology major is designed to prepare students for graduate studies and for professional careers in a variety of health-related programs. The specialization in microbiology can provide the basic background for work in medical technology, or for further training in public health or other health-related specialties. The program is also designed to provide a foundation for graduate studies in microbiology, virology, and a variety of allied fields as well as for medical and dental school.

LOWER-DIVISION REQUIREMENTS

- BILD 1 and 3 (Note: BILD 2 is not required, but is a prerequisite for many upper-division courses.)
- Chemistry 6A-B-C and BL
- Mathematics 20A-B-C
- Physics 1A/1AL, 1B/1BL, 1C/1CL or 2A-B-C, and one lab

UPPER-DIVISION REQUIREMENTS

1. Organic Chemistry (Chemistry 140A-B or 141A-B)
2. Organic Chemistry Laboratory (Chemistry 143A)
3. Metabolic Biochemistry (BIBC 102)
4. Biochemical Techniques (BIBC 103)
5. Genetics (BICD 100)
6. Immunology (BICD 140)
7. Molecular Biology (BIMM 100)
8. Virology (BIMM 114)
9. Bacteriology (BIMM 120)
10. Laboratory in Microbiology (BIMM 121)
11. Medical Microbiology (BIMM 124)
12. Three additional upper-division biology courses (each course must be at least four units) taken through the UCSD Division of Biological Sciences are required. Other courses of special interest to microbiology majors are listed below:

 - Cell Biology (BICD 110)
 - Regulation of Gene Activity in Eukaryotic Cells (BIMM 112)
 - Microbial Genetics (BIMM 122)
 - Recombinant DNA Techniques (BIMM 101)

Note: For more information on how the BISP 194, 195, 196, 197, or 199 can count toward major requirements, please see the previous section “Special Studies Courses.”

Physiology and Neuroscience Major

This major provides a program for studying the bodily and neural functions of complex organisms. A student may concentrate upon a more specialized area of study, such as neurobiology, animal physiolog-

LOWER-DIVISION REQUIREMENTS

- BILD 1 and 3 (Note: BILD 2 is not required, but is a prerequisite for many upper-division courses.)
- Chemistry 6A-B-C and BL
• Mathematics 10A-B, and 11 or 10C or 20A-B-C
• Physics 1A/1AL, 1B/1BL, 1C/1CL or 2A-B-C, and one lab

UPPER-DIVISION REQUIREMENTS

1. Organic Chemistry (Chemistry 140A, 140B, or 141A, 141B)
2. Organic Chemistry Laboratory (Chemistry 143A)
3. Metabolic Biochemistry (BIBC 102)
4. Genetics (BICD 100)
5. Molecular Biology (BIMM 100)

6. Four from the following eight courses:
 - Mammalian Physiology I (BIPN 100)
 - Mammalian Physiology II (BIPN 102)
 - Comparative Physiology (BIPN 106)
 - Cellular Neurobiology (BIBC 140)
 - Systems Neurobiology (BIBC 142)
 - Developmental Neurobiology (BIBC 144)
 - Computational Neurobiology (BIBC 146)
 - Cellular Basis of Learning and Memory (BIBC 148)

7. One of three laboratories (BICD 131, BIPN 105, BIPC 145)

8. One upper-division biology lab to be chosen from the following: BIBC 103, BICD 101, 111, 123, 131, 145, BIEB 121, 131, 165, 167, BIMM 101, 121, 127, BIPC 105, 145. This requirement may include a lab from number 7 that has not already been taken by the student.

9. Three additional upper-division biology courses (each course must be at least four units) taken through the UCSD Division of Biological Sciences are required and may include the above (numbers 6–8) if not already taken.

Note: For more information on how the BISP 194, 195, 196, 197, or 199 can count toward major requirements, please see the previous section “Special Studies Courses.”

MINOR IN BIOLOGICAL SCIENCES

To receive a minor from the Division of Biological Sciences, a student must complete at least seven four-unit biology courses (for a total of at least twenty-eight units of course work).

LOWER-DIVISION REQUIREMENTS

- BILD 1 and 3 or BILD 10 and 3

UPPER-DIVISION REQUIREMENTS

1. Any five upper-division biology courses offered by the Division of Biological Sciences at UCSD
2. Students may apply transferable biology courses from another institution toward the lower-division requirements, after obtaining approval from the UCSD Division of Biological Sciences.
3. No courses taken outside of the Division of Biological Sciences may be applied toward the biology minor.
4. All courses must be taken for a letter grade.

5. The minimum GPA requirement for the biology minor is 2.0 in the upper-division courses.
6. Advanced placement (AP) biology scores may be applied toward the minor.
7. BISP 195 may not be used toward the biology minor. One quarter of BISP 196, 197, or 199 may be counted toward the minor.
8. Students may not minor and major in the Division of Biological Sciences.

SECONDARY SCHOOL BIOLOGY TEACHING

UCSD’s Division of Biological Science is committed to the education of future biology teachers and offers an excellent preparation for teaching biology in secondary schools. If you are interested in earning a California teaching credential from UCSD, contact Education Studies (EDS) for information about the prerequisite and professional preparation requirements. It is recommended that you contact EDS and the Biology Student and Instructional Services Office early in your academic career to help you plan a suitable biology curriculum. If you plan to get your credential at another institution, keep in mind that a broad education in biology is the best preparation to become a teacher.

http://www-tep.ucsd.edu/

We suggest that students take courses in plant and animal biology, microbiology, ecology, population biology, evolution, marine biology, genetics, and biochemistry. Courses in cellular and molecular biology are also advisable. After completion of BILD 1, 2, and 3, a suggested program of upper-division courses would be: BIBC 100 or 102, BICD 100, 120, 130, BIEB 102, 150, BIPN 106, SIO 275B. This would give you as a prospective teacher the required breadth of education.

CONTIGUOUS BACHELOR’S/MASTER’S DEGREE PROGRAM

A contiguous program leading to a bachelor of science degree and a master of science degree in biology is offered to those undergraduate students who are enrolled in any of the major programs offered by the Division of Biological Sciences at UC San Diego. Qualified students are able to obtain the M.S. degree within one year following receipt of the B.S. degree. Students interested in applying to this program should meet with the B.S./M.S. advisor in the Biology Student and Instructional Services Office before the end of their junior year.

The program is open only to UCSD undergraduates. The Division of Biological Sciences does not have financial aid available for students enrolled in this program although other sources of financial aid may be available to qualified students through the UCSD Financial Aid Office.

ELIGIBILITY AND ENROLLMENT

To be eligible, students must have completed the first two quarters of their junior year in residence at UCSD and must have an overall UC GPA of at least 3.0. Students’ major GPA should be at least 3.3. Students must demonstrate excellent performance in upper-division biology core courses during their undergraduate program to be eligible to enroll in biology graduate core courses.

It is the responsibility of the prospective B.S./M.S. student to select a faculty member (from the Division of Biological Sciences) who would be willing to serve as the student’s advisor and in whose laboratory the student would complete at least twenty-four units of research over a two-year period. The units of research that must be completed during the student’s senior undergraduate year, must be taken in addition to the requirements for the bachelor’s degree. These units will count toward the requirements for the master’s degree only. Students must complete six consecutive quarters of research to fulfill the research component of the program. Any deviation from this plan, such as a break in enrollment for one or more quarters, will be cause for the student to be dropped from the program.

Students who have been approved (by both the Division of Biological Sciences and the UCSD Office of Graduate Admissions) for the program must enroll in a Special Studies Course, BISP 199 (senior year) or BGGN 271 (graduate year only), for each, and every quarter of participation in the B.S./M.S. program. Students can obtain the appropriate course code and division stamp at the Biology Student and Instructional Services Office.

Research work (BGGN 271) will be credited toward the B.S./M.S. program requirements only if it is completed during the time a student is officially enrolled at UCSD and has paid tuition for that quarter.

REQUIREMENTS FOR THE MASTER OF SCIENCE DEGREE

1. Completion of six consecutive quarters of research during the senior undergraduate year and the graduate period.
2. Completion of at least thirty-six units of graduate course work (BGGN 200-level or higher, or approved [via petition] graduate courses offered by related departments at a similar level) during the graduate year. The course of study must be approved by the faculty advisor.
3. Twelve of the thirty-six units must be in courses other than BGGN 271 (BGGN 297 and BGGN 299 may not be used to satisfy this requirement).
4. Serve as a graduate teaching assistant.
5. Maintenance of a grade-point average (both overall and in the major) of at least 3.0 for all course work, both cumulatively and for each quarter of enrollment in the B.S./M.S. program. If the student’s GPA falls below 3.0 (for either overall or in the major), he or she will be automatically dropped from the program.
6. Completion of a thesis, with an oral presentation to, and approval of, a three-member Thesis Committee. Only ladder rank faculty in the Biological Sciences or an adjunct faculty in the Biological Sciences may serve as advisor and chair of the Thesis Committee. The Thesis Committee must contain at least two regular faculty from the Division of Biological Sciences and no more than one adjunct faculty can serve on the committee. If an adjunct faculty serves as chair of the Thesis...
Committee, one of the biology members must serve as co-chair.

7. At least three complete, separate, and consecutive quarters of residency as a graduate student that will commence the quarter immediately following the quarter in which the B.S. degree is awarded. (Note: The summer session is not considered an official quarter during the graduate year.)

8. Students who have been approved for the B.S./M.S. program must provide the Office of Graduate Admissions with a copy of their official UCSD transcripts with the B.S. degree posted, prior to the commencement of the graduate year in the program.

NON-DEGREE PROGRAM

The Division of Biological Sciences will accept applicants into the non-degree program for a maximum of one year only. Qualified applicants must have at least a 3.0 GPA in their upper-division work to be accepted. Justification will not be made for those who fall below the GPA minimum.

Students who wish to apply to the UCSD biological sciences Ph.D. program at a later date should not apply for this program. However, students who have applied to graduate or medical schools elsewhere, but have not yet been accepted, are welcome to apply.

Once accepted into this program, the student has graduate status for the academic year. Courses may be taken on the undergraduate or graduate level with consent of the instructor. Students will not be assigned faculty advisors and must make their own academic plans.

THE DOCTORAL PROGRAM

Graduate studies for a Ph.D. degree in the Division of Biological Sciences in affiliation with the Salk Institute are oriented mainly toward the development of the capacity for independent research and for teaching in the biological sciences.

The requirements for entrance to graduate study in the Division of Biological Sciences are flexible, but a strong background in mathematics, chemistry, and physics is recommended.

Formal course work and opportunities for dissertation research include most basic areas of experimental biology, with emphasis in the general areas of biochemistry, biophysics, cell biology, developmental biology, genetics, immunology, molecular biology, neurobiology, plant molecular biology, ecology, behavior and evolution, virology, and cancer biology.

During the first year of graduate study, each student undertakes a research project in the laboratory of each of four to six different faculty members, and is expected to spend a major portion of his or her academic time on this project. The laboratories are selected by the student in consultation with the first year advisor to provide a broad view of the research interests of the division. The student is also expected to enroll in the first-year graduate biology sequence, which includes a “Boot Camp” that helps develop fundamental lab skills in biology, and advanced material in genetics, developmental biology, plant biology, neurobiology, molecular biology, cell biology, virology, and immunology. Students are also required to complete a minimum of twelve units of BGGN 500 (Apprentice Teaching in Biology).

A program of further study, including seminars and courses appropriate to a student’s background and interests, is arranged through consultation between the student and the faculty. Much reliance is placed on informal instruction through early and close association of the student with the faculty and research staff, and through regular seminars. After becoming familiar with the research activities of the faculty through the laboratory rotation program, the student begins work on a thesis research problem of his or her choice no later than the end of the first year. The student is free to choose for the thesis advisor a regular member of the UCSD faculty or an adjunct member of the Division of Biological Sciences faculty. The student is required to have completed a two-part examination in order to be admitted to candidacy for the Ph.D. degree.

The purpose of the examinations is for the student to demonstrate competence in the field of major interest and in related fields of biology. The major remaining requirement for the Ph.D. degree is the satisfactory completion of a dissertation consisting of original research carried out under the guidance of a faculty member.

Close collaboration with members of the Department of Chemistry and Biochemistry is a vital and stimulating aspect of the biology program. Additional strength and breadth in biology are gained by collaborating with the Department of Marine Biology of the Scripps Institution of Oceanography, with The Scripps Research Institute, and with the Salk Institute for Biological Studies.

DIVISIONAL PH.D. TIME LIMIT POLICIES

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed seven years.

JOINT DOCTORAL PROGRAM WITH SAN DIEGO STATE UNIVERSITY

The Division of Biological Sciences at UCSD participates in a joint graduate program with the Department of Biology at San Diego State University, primarily in the areas of cell and molecular biology, and leading to the Ph.D. degree in biology. Graduate student participants in the joint doctoral program are required to spend one year enrolled at UCSD.

Information regarding admission is found in the current edition of the San Diego State University Graduate Bulletin.

SPECIALIZATION IN ANTHROPOGENY

http://carta.anthropogeny.org/training/specialization-track

A transdisciplinary graduate specialization in anthropogeny is available for doctoral students in the Division of Biological Sciences. The aim of the specialization is to provide graduate students the opportunity to specialize their research and education in addressing the origins of the human phenomenon. The student’s research will be related to one of the oldest questions known to humankind, namely, the origins of humans and humanity. This specialization is not a stand-alone program, but will provide graduate students the opportunity to interact and communicate with peers in radically different disciplines throughout the duration of their Ph.D. projects. Such communication across disciplines from the outset is key to fostering a capacity for interdisciplinary “language” skills and conceptual flexibility.

ADMISSION TO THE SPECIALIZATION

Students are admitted into the Division of Biological Sciences doctoral program. During the early stages of their program, currently enrolled biology students with an interest in human origins are eligible to apply for admission to the specialization in anthropogeny. Selected applicants will have the opportunity to enroll in the specialization.

SPECIALIZATION REQUIREMENTS

Students pursuing this specialization must satisfy the requirements of both the biology doctoral program and the specialization in anthropogeny. For the anthropogeny specialization, students will be required to take a series of courses and participate in research rounds over four years of study. It is advised that students begin their course work in their second year.

1. Course work: Introduction to Anthropogeny (BIOM 225) and Advanced Anthropogeny (BIOM 229) are each taken once, in the winter and spring of the students’ second year. Current Topics in Anthropogeny (BIOM 218) is to be taken every quarter for four years.

2. Research Rounds: Monthly seminars during which all participating students talk about their respective research.

DEGREE REQUIREMENTS (QUALIFYING EXAMINATION, DISSERTATION)

Biological sciences students in the anthropogeny specialization must meet the departmental requirement for advancement to candidacy. In addition, students must meet internal deadlines, mentoring provisions, and proposal standards of the anthropogeny specialization track.

Ph.D. students must complete a dissertation, which meets all requirements of the biological sciences program. In addition, it is expected that the Ph.D. dissertation is broadly related to human origins and will be interdisciplinary in nature.

Time Limits

Students admitted to the specialization in anthropogeny must meet the time limit requirements as all other doctoral students in the Division of Biological Sciences. It is expected that students will retain the same time to degree as students not pursuing this specialization. Additional course load consists only of two regular courses (two quarters, twenty lectures each). The third proposed course takes place only three times a year, from Friday noon to Saturday evening.

SPECIALIZATION IN MULTI-SCALE BIOLOGY

http://interfaces.ucsd.edu/

As of fall 2009, the UCSD campus is offering a new Ph.D. specialization in Multi-Scale Biology that
will be available to doctoral candidates in participating programs that span four divisions: Biological Sciences, Physical Sciences, Jacobs School of Engineering, and Health Sciences at UCSD. The Ph.D. specialization is designed to allow students to obtain standard basic training in their chosen field within the biological sciences, physical sciences, engineering, and health sciences with training in integrative and quantitative analysis across multiple scales of biological organization from molecule to organism in health and disease into their graduate studies. It trains a new cadre of Ph.D. scientists and provides a unique interdisciplinary education at the interfaces between the biological, medical, physical, and engineering sciences. The specific objectives of this program are

1. **Focused Collaboration** across nine graduate degree programs at UCSD to train a new generation of cross-disciplinary scientists.

2. **State-of-the-art Interdisciplinary Training** through a new technology-centered hands-on graduate laboratory course curriculum.

3. **Novel Emphasis on Research** aimed at integrative and quantitative analysis across multiple scales of biological organization from molecule to organism in health and disease.

Prospective students must apply and be admitted into the Ph.D. program in biology described previously. (For more information, see the Biological Sciences Graduate Program and/or the Interdisciplinary Graduate Training Program administered within the Department of Chemistry & Biochemistry, 4010 York Hall, Revelle College.)

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

Note: The division will endeavor to offer many of the courses as outlined below; however, unforeseen circumstances sometimes mandate a change of scheduled offerings. Students are strongly advised to check the Schedule of Classes or the division's Student and Instructional Services Office (1128 Pacific Hall) to obtain current information. Courses required for the major may be scheduled on the same day and/or same time. This is of particular importance in planning schedules for graduation requirements.

Students who have satisfied the prerequisites for courses at another college or by AP credit may need to be pre-authorized to register for the course. Please come to the Biology Student and Instructional Services Office before your registration time to be authorized. If the class is full please place your name on the waitlist and attend the first class meeting. Students who do not attend the first thirty minutes of the first scheduled meeting (be it lab or lecture) will be considered not enrolled in the course and may be administratively dropped. Prior written notification to the instructor regarding an anticipated absence may ensure a space.

IF A STUDENT DROPS A LAB COURSE AFTER THE END OF THE SECOND SESSION, THE DIVISION WILL REPORT A "W" FOR THE COURSE.

LOWER-DIVISION

BILD 1. The Cell (4)
An introduction to cellular structure and function, to biological molecules, bioenergetics, to the genetics of both prokaryotic and eucaryotic organisms, and to the elements of molecular biology. Three hours of lecture and one hour of recitation. **Prerequisite:** Chem. 6A; Chem. 6B may be taken concurrently.

BILD 2. Multicellular Life (4)
An introduction to the development and the physiological processes of plants and animals. Included are treatments of reproduction, nutrition, respiration, transport systems, regulation of the internal environment, the nervous system, and behavior. Three hours of lecture and one hour of recitation. **Prerequisite:** BILD 1.

BILD 3. Organismic and Evolutionary Biology (4)
The first principles of evolutionary theory, classification, ecology, and behavior; a phylogenetic synopsis of the major groups of organisms from viruses to primates. **Prerequisite:** none. **(Note:** E.B.E. majors should complete this course during their first year at UCSD.)

BILD 7. The Beginning of Life (4)
An introduction to the basic principles of plant and animal development, emphasizing the similar strategies by which diverse organisms develop. Practical applications of developmental principles as well as ethical considerations arising from these technologies will be discussed. **Prerequisite:** none.

BILD 10. Fundamental Concepts of Modern Biology (4)
An introduction to the biochemistry and genetics of cells and organisms; illustrations are drawn from modern and human biology. Three hours of lecture and one hour of discussion. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major. **Note:** Students may not receive credit for BILD 10 after receiving credit for BILD 1.

BILD 12. Neurobiology and Behavior (4)
An introduction to the organization and functions of the nervous system; topics include molecular, cellular, developmental, systems, and behavioral neurobiology. Three hours of lecture and one hour of discussion. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major.

BILD 16. History of Life (4)
Life has a very long history on earth and this course will chronicle patterns of biological diversity from its origin over 3 billion years ago to the present day. Topics covered will include methods for reconstructing the history of life on this planet, the origin and evolution of major groups of plants and animals, dinosaur paleobiology, past environmental changes and their effects on species and communities, and extinctions. We will also explore how insights from the past can be used to understand how present and future environmental changes will impact biological diversity. This course is designed for non-biology majors.

Course will focus on issues such as global warming, species extinction, and human impact on the oceans and forests. History and scientific projections will be examined in relation to these events. Possible solutions to these worldwide processes and a critical assessment of their causes and consequences will be covered. **Prerequisite:** none.

BILD 20. Human Genetics in Modern Society (4)
Fundamentals of human genetics and introduction to modern genetic technology such as gene cloning and DNA fingerprinting. Applications of these techniques, such as forensic genetics, genetic screening, and genetic engineering. Social impacts and ethical implications of these applications. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major. **Note:** Students may not receive credit for BILD 20 after receiving credit for BICD 100.

BILD 22. Human Nutrition (4)
A survey of our understanding of the basic chemistry and biology of human nutrition; discussions of all aspects of food: nutritional value, diet, nutritional diseases, public health, and public policy. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major. **Note:** Students may not receive credit for BILD 22 after receiving credit for BIBC 120.

The topics covered are: sexual development in embryo and fetus, the nature and regulation of changes at puberty, the functioning of the mature sexual system. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major. **Note:** Students may not receive credit for BILD 24 after receiving credit for BICD 134.

BILD 26. Human Physiology (4)
Introduction to the elements of human physiology and the functioning of the various organ systems. The course presents a broad, yet detailed, analysis of human physiology, with particular emphasis towards understanding disease processes. Three hours of lecture and one hour of discussion. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major.

BILD 30. The Biology of Plagues: Past and Present (4)
An introduction to diseases caused by viruses, bacteria, and parasites, and the impact of these diseases on human society. Topics include the biology of infectious disease, epidemiology, and promising new methods to fight disease. Three hours of lecture and one hour discussion. This course is designed for non-biology majors and does not satisfy a lower-division requirement for any biology major. **(Note:** Students may not receive credit for BILD 30 after receiving credit for BIMM 120.)

BILD 36. AIDS Science and Society (4)
An introduction to all aspects of the AIDS epidemic. Topics include the epidemiology, biology, and clinical aspects of HIV infection; HIV testing; education and approaches to therapy; and the social, political, and legal impacts of AIDS on the individual and society. Students may not receive credit for BILD 36 after receiving credit for BICD 136.

BILD 87. Freshman Seminar (1)
The freshman seminar program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges. The seminar topic changes from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

BILD 90. Undergraduate Seminar (1)
This seminar is restricted to lower-division undergraduate students (freshmen and sophomores). The course introduces current biological topics. The topics vary with instructors and for each quarter. Examples of topics which may be discussed are: wildlife conservation, signalling within and between cells, mapping the human genome, etc. This course does not satisfy any requirement for the biology major, biology minor, or college general education.

BILD 92. Professional Topics (1)
This seminar will introduce students to the various subdisciplines and their research methodology in the biological sciences. Emphasis will be on bioinformatics, neurophysiology, and biotechnology. Current research topics in the specialized areas in academia and industry will be discussed. The role and professional identity of biologists in research, consulting, government, management, and teaching will be reviewed. In addition, issues surrounding professional ethics will be discussed.

BILD 94. Professional Issues in Bioinformatics (1)
This seminar will introduce undergraduate students, especially freshmen and sophomores, to a variety of issues and topics in the field of bioinformatics.

2010-2011 UC SAN DIEGO GENERAL CATALOG • BIOLOGICAL SCIENCES, DIVISION OF
BIBC 110. Structural Biochemistry (4)
The structure and function of biomolecules. Includes protein conformation, dynamics, and function; enzymatic catalysis; protein regulation; and allosteric regulation; lipids and membranes; sugars and polysaccharides; and nucleic acids. Three hours of lecture and one hour of recitation. Prerequisite: Chemistry 140A; Chemistry 140B may be taken concurrently. (Note: Students may not receive credit for both BIBC 100 and Chemistry 114A.)

BIBC 102. Metabolic Biochemistry (4)
Energy-producing pathways—glycolysis, the TCA cycle, oxidative phosphorylation, photosynthesis, and fatty acid oxidation; and biosynthetic pathways—glucogenesis, glycogen synthesis, and fatty acid biosynthesis. Nitrogen metabolism, urea cycle, amino acid metabolism, nucleotide metabolism, and metabolism of macromolecules. Prerequisite: Chemistry 140A; Chemistry 140B may be taken concurrently. (Note: Students may not receive credit for both BIBC 102 and Chemistry 114B.)

BIBC 103. Biochemical Techniques (4)
Introductory laboratory course in current principles and techniques applicable to research problems in biochemistry and molecular biology. Techniques include protein and nucleic acid purification; identification methods such as centrifugation, chromatography, and electrophoresis; immunological, spectrophotometric, and enzymatic methods. Three hours of lecture and one hour of recitation. Prerequisite: Chemistry 140A. Students may not receive credit for BIBC 103 after taking Chemistry 112A (renumbered to Chemistry 108). Attendance at the first lecture/lab is required. Nonattendance will result in the student's being dropped from the course roster.

BIBC 104. Biochemistry and Biotechnology of Plants (4)
The biochemical and molecular basis of plant genetic engineering to understand modern approaches to crop improvement. Prerequisites: BILD 1; Chemistry 140A, BIBC 102 and Chemistry 140B may be taken concurrently.

BIBC 110. Physical Biochemistry (4)
The theory and applications of physical chemistry to biochemical processes. Special emphasis on techniques used in biochemistry and physiology. Topics include reversible and irreversible thermodynamics, bioenergetics, energy coupling and transduction, solutions of macromolecules, sedimentation, chromatography, electrophoresis, passive and active membrane transport, spectroscopy, and chemical kinetics. Three hours of lecture and one hour of recitation. Prerequisites: calculus and organic chemistry.

BIBC 116. Evolution of Genes and Proteins (4)
The history of an organism can be found in its genome. Analyses of the primary sequences will be used to recognize families of genes that arose by duplication and divergence. Topics include comparisons of amino acid sequences and three dimensional structures and range from the oldest and most widely distributed proteins to modern mosas. Where possible, specific motifs and folds will be traced to their ancestral beginnings. Prerequisites: BIBC 100, BIMG 100.

BIBC 120. Nutrition (4)
Elaborates the relationship between diet and human metabolism, physiology, health, and disease. Covers the functions of carbohydrates, lipids, proteins, vitamins, and minerals, and discusses dietary influences on cardiovascular disease, diabetes, obesity, and cancer. Prerequisites: BIBC 102.

BIBC 130 Marine Biochemistry (4)
Biochemical mechanisms of adaptation in organisms to the marine environment. Special emphasis will be on the effects of pressure, temperature, salinity, oxygen, and light on the physiology and biochemistry. Prerequisite: BIBC 102 or consent of instructor.

GENETICS, CELLULAR AND DEVELOPMENTAL BIOLOGY OF PLANTS AND ANIMALS

BICD 100. Genetics (4)
An introduction to the principles of heredity in diploid organisms, fungi, bacteria, and viruses. Mendelian inheritance; population genetics; quantitative genetics; linkage; sex determination; meiotic behavior of chromosome aberrations; gene structure, regulation, and replication; genetic code. Three hours of lecture and one hour of recitation. Prerequisite: BILD 1 or the equivalent.

BICD 101. Eucaryotic Genetics Laboratory (4)
Students will implement forward and reverse genetic methodologies widely used in contemporary biological research, focusing primarily on model organisms. Lab work is complemented by computer work that includes utilization of genome sequence databases and basic bioinformatics. Prerequisite: BIMM 100. Attendance at the first lecture/lab is required. Nonattendance will result in the student's being dropped from the course roster.

BICD 110. Cell Biology (4)
The structure and function of cells and cell organelles, cell growth and division, motility, cell differentiation and specialization. Three hours of lecture and one hour of recitation. Prerequisites: BIBC 100 or BIBC 102, and BICD 100.

BICD 111. Cell Biology Laboratory (6)
A laboratory course in the application of cellular techniques to biological problems. The establishment, growth, transformation, immunolocalization, and senescence of mammalian cells will be studied at the molecular and the cellular level. Ten hours of laboratory. In addition to the formal lab hours listed above, there will be an average of two hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Prerequisite: BICD 110 (may be taken concurrently); BICC 103 is strongly recommended. Attendance at the first lecture/lab is required. Nonattendance will result in the student's being dropped from the course roster.

BICD 118. Pathways of Intracellular Protein Trafficking and Compartmentation (4)
This course will focus on various subcellular organelles, their function, protein traffic, disulfide bond formation, protein folding, assembly of macromolecular complexes, protein quality control, and cellular responses to misfolded proteins. The emphasis will be on experimental approaches and model systems for the analyses of these problems, and on the connection of these topics to human disease. Three hours of lecture and one hour of mandatory discussion of primary publications per week. Open to upper-division students only. Prerequisites: BICD 110 and BIMM 100.

BICD 120. Fundamentals of Plant Biology (4)
An introduction to the biology of plants. Basic principles of plant anatomy, physiology, development, and diversity are covered as well as specialized topics, including plant genetic engineering, plant disease and stress, medicinal plants, plants and the environment, and sustainable agriculture. Prerequisites: BILD 1 and BILD 2.

BICD 122. Plant Cellular and Molecular Biology (4)
The cellular and molecular basis of plant development, including plant hormones, signal transduction mechanisms, light and plant growth, plant microorganism interaction, plant transformation, genetic engineering of plants. Prerequisites: BIBC 102 required; BICD 120 recommended.

BICD 123. Plant Molecular Genetics and Biotechnology Laboratory (6)
Techniques in plant cell and tissue culture, plant transformation, genetic selection and screening of mutants, host pathogen interactions, gene regulation, organelle isolation, and molecular levels. Basic principles of plant biology and eight hours of laboratory each week. Prerequisite: upper-division standing; BICD 120 strongly recommended. Attendance at the first lecture/lab is required. Nonattendance will result in the student's being dropped from the course roster.

BICD 130. Embryos, Genes, and Development (4)
Developmental biology of animals at the tissue, cellular, and molecular levels. Basic processes of embryogenesis in a variety of invertebrate and vertebrate organisms. Cellular and molecular mechanisms that underlie cell fate determination and cell differentiation. More advanced topics such as pattern formation and sex determination are discussed. Open to upper-division students only. Three hours of lecture and one hour of recitation. Prerequisites: upper-division standing; BICD 100; BIBC 100 or BIBC 102; BICD 110 strongly recommended.

BICD 131. Embryology Laboratory (6)
Descriptive and experimental embryology of various animal species. One and one-half hours of lecture and ten hours of laboratory each week. Prerequisites: BILD 1; BILD 2. Attendance at the first lecture/lab is required. Nonattendance will result in the student’s being dropped from the course roster.

BICD 134. Human Reproduction and Development (4)
This course is addressed to the development of the human sexual system, including gametogenesis, fertilization, and embryo implantation. Emphasis is placed on the physiology of reproductive functions. Three hours of lecture and one hour of discussion. Prerequisites: BIBC 102 and BICC 100.

BICD 136. AIDS Science and Society (4)
An introduction to all aspects of the AIDS epidemic. Topics will include the epidemiology, biology, and clinical aspects of HIV infection, HIV testing, education and approaches to therapy, and the social, political, and legal impacts of AIDS on the individual and society. In order to count for their major, biology majors must take the upper-division course, BICD 136. Prerequisites: BILD 1, BILD 2 recommended.

BICD 140. Immunology (4)
Formation and function of the mammalian immune system, molecular and cellular basis of the immune response, infectious diseases and autoimmunity. Prerequisites: BICC 100, BIMG 100. BICC 100 recommended.

BICD 145. Laboratory in Molecular Medicine (4)
This course focuses upon a molecular and immunological approach to study problems in modern medical research. The emphasis will be on novel approaches in medicine, including lymphocyte biology, cancer biology, and gene transfer. Prerequisites: BICC 103, BIMG 100. Attendance at the first lecture/lab is required. Nonattendance will result in the student's being dropped from the course roster.

BICD 150. Endocrinology (4)
Normal function and diseases of the major hormone systems of the body including the hypothalamus/pituitary axis, the thyroid gland, reproduction and sexual development, metabolism and the pancreas, bone and calcium metabolism, and the adrenal glands. Prerequisites: BIPN 100 (may be taken concurrently).

BICD 170. Topics in Human Genetics (4)
An advanced course covering human genetics using papers from the scientific literature as the major source of information. A review of basic genetics as applied to the human species. Consideration of recent genetic insights into a number of human conditions. Prerequisites: BICC 100, BIMG 100 is strongly recommended.

ECOLOGY, BEHAVIOR, AND EVOLUTION

BIEB 100. Biostatistics (4)
Application of statistics to biological problems. Topics: descriptive statistics, parametric statistics, t-test, correlation, regression, ANOVA, GLM, non-parametric statistics, experimental design. Mandatory homework to apply theory
requires knowledge and application of statistics software. Mandatory one- to two-hour discussion in computer lab.

Prerequisite: BILD 3.

BIBE 102. Introductory Ecology-Organisms and Habitat (4) This course emphasizes principles shaping organisms, habitats, and ecosystems. Topics covered include population regulation, phylogenetic, population ecology, competition, predation, and human exploitation. This will be an empirical look at general principles in ecology and conservation with emphasis on the unique organisms and habitats of California.

Prerequisite: BILD 3 or equivalent.

BIBE 121. Ecology Laboratory (6) A laboratory course to familiarize students with ecologi cal problems and methods. Students will perform outdoor fieldwork and use the Macintosh computer for data exploration and analysis. Two hours of lecture and eight hours of laboratory each week.

Prerequisite: BIBE 100. Attendance at the first lecture/lab is required. Nonattendance will result in the student’s being dropped from the course roster.

BIBE 123. Molecular Methods in Ecology and Evolution Lab (4) Theory and practice of molecular biology techniques used in ecological and evolutionary research. Includes isolation of DNA and RNA, PCR amplification, gene expression analysis, bioinformatics, and molecular and ecological evolution of molecular data. Students may not enroll or receive credit for both BIMM 101 and BIBE 123.

Prerequisite: BILD 3. Attendance at the first lecture/lab is required. Nonattendance will result in the student’s being dropped from the course roster.

BIBE 126. Plant Ecology (4) This course begins with an introduction to plant population biology including whole-plant growth and physiology. We then focus on three classes of ecological interactions: plant-plant interactions, plant herbivore coevolution, and plant reproductive ecology including animal pollination and seed dispersal.

Prerequisite: BILD 3.

BIBE 128. Insect Ecology (4) This course begins with a survey of insect diversity and phylogenetic relationships. We then address ecological issues including thermal ecology, population dynamics (including outbreaks), movement and migration, competition, predation, herbivory, parasitism, insect defense, mimicry complexes, and sociality.

Prerequisite: BILD 3 or equivalent.

BIBE 131. Marine Invertebrate Ecology Laboratory (6) A laboratory course introducing students to marine ecol ogy. Students will participate in outdoor fieldwork and work in the laboratory gathering and analyzing ecological data. We will focus on ecological communities in estuary, sandy beach, and rocky intertidal habitats. Two hours of lecture and eight hours of laboratory each week. In addition to the formal lab, there will be at least nine hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations.

Prerequisites: BILD 3; BIBE 100. Attendance at the first lecture/lab is required. Nonattendance will result in the student’s being dropped from the course roster.

Prerequisite: BILD 3.

BIBE 134. Introduction to Biological Oceanography (4) Basis for understanding the ecology of marine communities. The approach is process-oriented, focusing on major functional groups of organisms, their food-web interactions and community responses to environmental forcing, and contemporary issues in human and climate influences.

Prerequisite: upper-division standing; BILD 3 is recommended.

BIBE 136. Ichthyology (4) Course will study aspects of the biology of fishes from all over the world, from the crushing pressure of the deep sea to the chilling temperatures of Antarctic waters. Students will learn about form/function that allow fishes to thrive in diverse marine environments. Students will conduct an independent field project. Field trips may be required.

Prerequisite: BILD 3 recommended.

BIBE 140. Biodiversity (4) An introduction to the patterns of geographic distribution and natural history of plants and animals living in terrestrial and marine environments, and the evolutionary processes responsible for generating and maintaining biological diversity; and the nature of extinction both in past and present ecosystem.

Prerequisite: BILD 3.

BIBE 144. Quantitative Ecology and Conservation (4) Introduction to mathematical and statistical tools for predicting deterministic and stochastic ecological systems, including age-structured population growth; population regulation; interspecific interaction; species diversity. Conservation biology topics include sustainable harvesting; metapopulation dynamics; extinction; case studies of endangered species.

Prerequisite: BIBE 100 and BIBE 102 recommended.

BIBE 145. Spatial Analyses in Ecology and Conservation (4) Course familiarizes students with the concept and application of geographic analyses in biology and, specifically, the use of GIS and remote sensing. Example studies will be performed that range from global ecology to conservation in San Diego county.

Prerequisites: BIBE 3, BIBE 100, BIBE 102. Attendance at the first lecture/lab is required. Nonattendance will result in the student’s being dropped from the course roster.

BIBE 147. Introduction to Phylogenetics (4) Course will review some of the methods for constructing phylogenetic trees using morphological and molecular data. Topics to be covered will include evolutionary and ecological transformations, biodiversity measurements, biogeography, systematics, and taxonomy among others.

Prerequisite: BILD 3.

BIBE 150. Evolution (4) Evolutionary processes are discussed in their genetic, historical, and ecological contexts. Population genetics, agents of evolution, microevolution, speciation, macroevolution.

Prerequisites: BIBE 1 and BIBE 3.

BIBE 154. Molecular Evolution (4) This course deals with the evolution of genes and the molecules they encode. The role of mutation, selection, and drift at the molecular level are discussed. Molecular phylogenies, jumping genes, viral evolution, and searches for molecular homologies are a few of the topics covered. Three hours of lecture and one hour of discussion.

Prerequisites: BIBE 102, BIBC 100, and BIMM 100 recommended.

BIBE 156. Population Genetics (4) Course on empirical and theoretical population genetics. The goal is to review basic models of population genetics, empirical tests of these models and gain intuitions about the population-level processes underlying genome evolution, phenotypic change and the origin of new species. A working knowledge of basic molecular genetics, algebra, and statistics is assumed.

Prerequisite: BIBC 100.

BIBE 159. Advanced Field Ecology Lab (4) Course will familiarize students with the design, performance, analysis, and presentation of ecological experiments. Students will perform two field studies; one with terrestrial insects, the other with plant biodiversity. Field work in Mexico required during “spring break” for spring course and week prior to fall quarter for fall course. Students will present on campus with lectures and laboratory session in marine ecology.

Prerequisite: BIBE 100. Departmental approval only; departmental approval only; restricted to students participating in NSF/REU program.

BIBE 164. Behavioral Ecology (4) A survey of the patterns of social behavior in animals and a discussion of the ecological principles underlying the evolution of animal societies. Three hours of lecture and one hour of discussion.

Prerequisite: BIBE 3 recommended.

MOLECULAR BIOLOGY, MICROBIOLOGY

Prerequisites: BIBC 100 or BIBC 102, BIBC 100. (Note: Students may not receive credit for both BIMM 100 and Chem. 114C.)

Prerequisite: BILD 1. Students may not enroll in or receive credit for both BIMM 101 and BIBE 123, or BIMM 101 and Chem. 112B (renumbered to Chem. 112B). BIMM 101 recommended.

BIMM 108. Adventures in Chromatin Structure and Gene Expression (4) Chromatin, the natural state of DNA in eukaryotes, has recently emerged as a critical component of many important biological processes. Topics include histone modifications, chromatin dynamics, transcription factors.

Prerequisite: BIME 100.

BIMM 110. Molecular Basis of Human Disease (4) An examination of the molecular basis of human diseases. Course emphasizes inherited human disorders, and some important diseases caused by viruses. Focus on the
application of genetic, biochemical, and molecular biologi-
ical principles to an understanding of the diseases. Three
hours of lecture. Course restricted to upper-division biology
majors. Prerequisites: BICC 100; BIBC 102; BIMM 100.

BIMM 112. Regulation of Gene Activity in Eucaryotic Cells (4)
This course explores problems in the regulation of gene
activity, which can be approached at the molecular
level. The course includes the organization, structure, tran-
scription, and regulation of eucaryotic genes; mechanism
of hormonal regulation in controlling gene activity; induc-
tion of gene expression in eucaryotic cells; role of signal
transduction proteins in control with emphasis on mechani-
isms and regulation of gene activity during differentiation
in developing systems. Examples are taken from eucaryotic microorganisms, invertebrates, as well as mammalian and other vertebrate systems. Three hours of lecture and one hour of discussion.
Prerequisite: BIMM 100.

BIMM 114. Virology (4)
An introduction to virology, with emphasis on animal
virus systems. Topics discussed include the mole-
cular structure of viruses; the multiplication strategies
of the major virus families; and viral latency, persistence, and
oncology. Three hours of lecture and one hour of discuss-
sion. Prerequisite: BIMM 100.

BIMM 116. Circadian Rhythms—Biological Clocks (4)
(Cross-listed with Psych. 133; however, biology majors must
take the course as BIMM 116.) Examples and fundamental
properties of the daily biological clock in animals, humans,
and microbes. Experimental approaches employed to un-
derstand how these organisms keep time and how this applies
to human health. Prerequisite: BILD 1 or Psych. 106 or
consent of instructor.

BIMM 118. Pharmacology (4)
Basics of pharmacology such as drug absorption, distribu-
tion, metabolism, and elimination. Concepts in toxicology
and the use of pharmacology in understanding the toxic
effects of drugs. Additional topics include pharmacokinetics,
the use of bio-assays, normal microbial communi-
ties through metagenomics and enrichment, and bacteria
in biotechnology. Prerequisites: BICC 102 or BIMM 120
strongly recommended; upper-division standing.

BIMM 120. Microbial Genetics (4)
Organization and function of procaryotic genetic systems
involving selection factors, transduction, transformation, plasmid
genetics, transposons, genetic engineering. Three hours
of lecture. Prerequisites: BIMM 100, BICC 100, or consent
of instructor.

BIMM 124. Medical Microbiology (4)
Encompasses the increasingly important areas of viral,
bacterial, and parasitic diseases and understanding the
complex interaction between humans and infectious
agents. Covers human-pathogen interactions, mechanisms
and molecular principles of infectious diseases, immune
responses, countermeasures by pathogens and hosts,
epidemiology, and cutting-edge approaches to therapy.
Prerequisites: BIBC 100 or BICC 102 recommended; upper-
derivation standing.

BIMM 126. Marine Microbiology (4)
The role of microorganisms in the oceans: metabolic
diversity, methods in marine microbiology, interactions of
microorganisms with algae, plants, and animals, biogeo-
chemical cycling, pollution and water quality, microbe-
mineral interactions, extremophiles. Prerequisite: BIBC
102 and BIMM 120 recommended.

BIMM 127. Marine Microbiology Laboratory (4)
Techniques and theory in environmental microbiology.
Students perform experiments concerning a) enrichment,
enumeration, and identification and b) metabolic and physio-
chemical adaptations, along with an independent project
and experimental design and writing to complete the final
report and take a modified final exam. Prerequisite: upper-divi-
sion standing. Attendance at the first lecture/lab is required.
Nonattendance will result in the student's being dropped
from the course roster.

BIMM 130. Microbial Physiology (4)
Prokaryotic microbial physiology will be discussed primarily
from a biological viewpoint with emphasis on mechan-
isms. Topics will vary from year to year but will include
the following themes: Central metabolism, bioenerget-
ics, biosynthesis, regulation, differentiation, prokaryotic
structure-function relationships. Prerequisite: BICC 100
or BICC 102 or equivalent.

BIMM 132. Molecular Biology of Human Retroviruses (4)
Replication cycle and gene regulation of HIV. Molecular
approaches to therapy and vaccines. Three hours of lecture.
Prerequisite: BIMM 100.

BIMM 134. Biology of Cancer (4)
This course covers basic processes of transformation and
tumor formation in two-part format. The first section is
focused on molecular and cellular mechanisms of carcino-
genesis. The second section discusses tumor pathology
and metastasis. Open to upper-division students only.
Prerequisites: BICC 110 and BIMM 100.

BIMM 150. Post-Genomics Biology (2)
This course will focus on large-scale analysis of post-
genomics biological systems. Students will be introduced
to methods for analyzing changes in gene expression,
identifying protein-protein interactions, screening for path-
way inhibitors, characterizing multiprotein complexes, and
function prediction in eucaryotes. Prerequisite: consent of
instructor.

BIMM 162. 3D Electron Microscopy of Macromolecules (4)
Biological macromolecules and supramolecular complexes
as well as organelles, and small cells are being examined
in three-dimensions by modern electron cryomicroscopy
and probing protein localization and function. Prerequisite:
consent of instructor.

BIMM 164. Structural Biology of Viruses (4)
An introduction to virus structures, how they are deter-
mined, and their role in our understanding of the viral
life cycle from host recognition to entry to replication,
assembly, release, and transmission to unaffected host
cells. Prerequisites: BICC 100 or Chem. 114A; upper-divi-
sion standing.

BIMM 166. Environmental and Molecular Toxicology (4)
(Cross-listed with CHEM 166; conjoined with BGGN 256,
BIOM 266, and CHEM 266.) This course will investigate
approaches to study the impact of environmental toxica-
ents on human health. Other modern approaches that are be-
ing implemented to detect and remediate environmental
contaminants will also be examined. Graduate students will
be required to complete an additional paper and/ or exam
beyond that expected of undergraduate students.
Prerequisites: upper-division standing for BIMM 166 and
CHEM 166; graduate standing for BGGN 256, BIOM 266,
and CHEM 266.

BIMM 171. Genomics Research Initiative (1)
This class will examine the theoretical and practical basis
of modern genomics research. Students will learn the theo-
retical basis of genomics and tools used for the sequencing
and annotation of genomic DNA, and computational and
molecular methods for the study of evolution. Prerequisite:
departmental approval required (department will preau-
 thorize students to enroll). Restricted to students participat-
ing in the National Genomics Research Initiative Program.

BIMM 171A. Genomics Research
Initiative Laboratory I (1)
Students will isolate bacterial viruses or other organisms
from the environment and characterize them by methods
including electron microscopy and nucleic acid analysis.
The genomic DNA will be purified, and sent for sequencing.
Prerequisites: departmental approval required. Restricted
to students participating in the National Genomics Research
Initiative Program.

BIMM 171B. Genomics Research
Initiative Laboratory II (4)
Students will characterize the genomic sequence of the
organisms isolated in BIMM 171A and use molecular and
computational tools to resolve ambiguities and close gaps.
They will then annotate the DNA sequence to identify
protein and RNA coding regions. Prerequisites: BIMM
171B and BIMM 171A.

BIMM 171C. Genomics Research
Initiative Laboratory III (4)
Computational methods will be used to characterize the
annotated genome sequence produced in BIMM 171A-B to
study the evolution of genes and their products. Various
mechanisms shaping genome evolution will be discussed
and the genome evaluated for evidence of these processes.
Prerequisites: BIMM 171, BIMM 171A, and BIMM 171B.

BIMM 173. Undergraduate Research
Explorations in Genomics (2)
Analyzing Drosophila dot chromosome sequences and
making comparisons among species to discern patterns of
genome organization related to control of gene expression.
Computational analysis of finished sequence data, annotation
of genes, assessment of repeats, exploration of evolutionary
questions. Prerequisites: BIMM 100, upper-division stand-
ing, department authorization.

BIMM 181. Molecular Sequence Analysis (4)
This course covers the analysis of nucleic acid and protein
sequences, with an emphasis on the application of algo-
rithms to biological problems. Topics include sequence
alignments, database searching, comparative genomics,
and phylogenetic and clustering analyses. Pairwise align-
ment, multiple alignment, DNA sequencing, scoring func-
tions, fast database search, comparative genomics, cluster-
ing, phylogenetic trees, gene finding/DNA statistics.
This course open to bioinformatics majors only.
Prerequisites: CSE 100 or Math. 176, CSE 101 or Math. 188, BIMM 100 or
Chem. 114C.

BIMM 182. Biological Databases (4)
This course provides an introduction to the features of
biological data, how that data are organized efficiently in
databases, and how existing data resources can be utilized
to solve a variety of biological problems. Object-oriented
databases, data modeling and description, survey of cur-
current biological databases and bioinformatics, imple-
mentation of database focused on a biological topic. This
course open to bioinformatics majors only. Prerequisite:
CSE 100 or Math 176.

BIMM 184. Computational Molecular Biology (4)
This advanced course covers the application of machine
learning and modeling techniques to biological systems.
Topics include gene structure, recognition of DNA and
protein sequence patterns, classification, and protein
structure prediction. Pattern discovery, hidden Markov
models/support vector machines/neural network/profiles,
protein structure prediction, functional characterization
of proteins, functional genomics/proteomics, metabolic
pathways/gene networks. This course open to bioinfomatics
majors only. Prerequisites: BIMM 181 or BENG 181 or
CSE 181, BIMM 182 or BENG 182 or CSE 182 or Chem.
182. Bioinformatics majors only.

BIMM 185. Bioinformatics Laboratory (Advanced) (4)
This course emphasizes the hands-on application of bio-
informatics methods to biological problems. Students
will gain experience in the application of existing software,
as well as in combining approaches to answer specific
biological questions. Sequence alignment, fast database
search, protein and motif analysis, functional genomics,
genefinding, phylogenetic trees, protein structure, functional
characterization of proteins, expression analysis, computa-
tional proteomics. This course open to bioinformatics
majors only. Prerequisite: two courses out of BIMM 181 or BENG 181 or CSE 181, BIMM 182 or BENG 182 or CSE 182, BENG 183, BIMM 184 or BENG 184 or CSE 184. Attendance at the first lecture/lab is required. Nonattendance will result in the student being dropped from the course roster.

PHYSIOLOGY AND NEUROSCIENCE

BIPN 100. Mammalian Physiology I (4) This course introduces the concepts of physiological regulation, controlled and integrated by the nervous and endocrine systems. It then examines the muscular, cardiovascular, and renal systems in detail and considers their control through the interaction of nervous activity and hormones. A lecture and one hour of discussion. Prerequisites: BILD 1; BILD 2.

BIPN 102. Mammalian Physiology II (4) This course consists of a survey system organs begun in BIPN 100 by considering the respiratory and gastrointestinal systems. Consideration is given to interactions of these systems in weight and temperature regulation, exercise physiology, stress, and pregnancy and reproduction. Three hours of lecture and one hour of section per week. Prerequisite: BIPN 100; BIBC 102 may be taken concurrently.

BIPN 105. Animal Physiology Lab (6) Experiments are performed on membrane physiology; nerve muscle function; cardiovascular physiology; respiratory, gastrointestinal, and renal physiology. Subjects include experimental animals and humans. Prerequisite: BIPN 100 (may be taken concurrently). Three hours of lecture and ten hours of laboratory each week. In addition to the formal lab hours, there will be at least eight hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Attendance at the first lecture/lab is required. Nonattendance will result in the student being dropped from the course roster.

BIPN 106. Comparative Physiology (4) This course examines the physiological adaptation of animals, invertebrates and vertebrates, to their particular environmental and behavioral niches. Structural, functional, and molecular adaptations of the basic organ systems are discussed. Prerequisites: BILD 2, Chem. 6A-B-C. BILD 3 is recommended.

BIPN 108. Physiology of Exercise (4) Course addresses the human body’s response to exercise, addressing energy metabolism and the effects of both acute and chronic exercise on function in several important organ systems. Designing training regimes and the role of exercise in health will be considered. Prerequisite: BIPN 100 required; BIPN 102 and BIBC 102 recommended.

BIPN 110. Organ Systems and Disease (4) Course will function as an introduction to human anatomy and diseases from the conceptual framework of organ systems. Central nervous system, cardiovascular system, and gastrointestinal system will be discussed in terms of normal anatomy, pathology, and relevant scientific frontiers. Prerequisite: BIPN 100.

BIPN 140. Cellular Neurobiology (4) This course covers the biophysics of the resting and active nerve cell membrane, and learning in the brain will be examined. Prerequisites: upper-division standing.

BIPN 145. Neurobiology Laboratory (6) Basic principles of nerve and muscle physiology will be taught through weekly exercises and individual projects. One hour of lecture and nine hours of laboratory each week. Prerequisite: BIPN 140. Attendance at the first lecture/lab is required. Nonattendance will result in the student being dropped from the course roster.

BIPN 146. Computational Neurobiology (4) An exploration of computational brain models, including biophysical models of single neurons, small neural circuits, and larger scale network models. Prerequisites: BILD 12 or BIPN 140 or Psych. 106 or Cog. Sci. 107 recommended.

BIPN 148. Cellular Basis of Learning and Memory (4) Cellular and molecular mechanisms that underlie learning and memory. Synaptic formation and synaptic plasticity; neurotransmitter systems and their receptors, mechanisms of synaptic modification, and effect of experience on neuronal connectivity, and gene expression. Prerequisites: BILD 1; BILD 2; BIBC 100 or BIBC 102 (may be taken concurrently).

BIPN 150. Diseases of the Nervous System (4) Course will be taught from a research perspective, highlighting the biological pathways impacted by different neurological diseases. Each disease covered will be used to illustrate a key molecular/cellular pathway involved in proper neurological function. Prerequisites: BIBC 102 and BICD 100; BIPN 140 may be taken concurrently.

SPECIAL COURSES

BISP 190. Advanced Biology Seminars for Seniors (2) Experts in diverse areas of biology from major universities in the U.S. and abroad will describe current research activities being conducted in their laboratories. Relevant readings will be assigned. P/NP grades only. Prerequisites: seniors only; concurrent enrollment in BISP 199 or consent of instructor.

BISP 192. Senior Seminar in Biology (1) The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in biology (at the upper-division level). Topics will vary from quarter to quarter. Senior Seminars may be taken for credit up to four times, with a change in topic and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: upper-division standing; department stamp and/or consent of instructor.

BISP 194. Advanced Topics in Modern Biology (2) Course will vary in title and content. When offered, the current description and title are found in the Schedule of Classes and the Biological Sciences Web site. Can be taken a total of four times as topics vary. Students may not receive credit for the same topic. Prerequisites: BIBC 102; BICD 100; upper-division standing.

BISP 195. Introduction to Teaching in Biology (4) Introduction to the teaching of the basic course in biology. A student under the direction of the instructor of the course is assigned one class section and will meet one time per week with the section. A student is required to attend the course lecture, lead a discussion section, and meet with the instructor of the course at least one time per week. Limited to upper-division students who have a B average or higher. Three hours lecture. (P/NP grades only.) Prerequisites: consent of instructor and approval of department chair. (Note: Applications for a BISP 195 are to be submitted to the Division of Biological Sciences by the end of the sixth week of the quarter preceding the quarter in which the BISP 195 will be completed.) This course may be counted as one of the upper-division electives for a biology major.

BISP 196. Honors Thesis in Biology (4) Senior thesis research program. Research is conducted under the supervision of a biology faculty member. This one-year program is taken in addition to the major requirements for graduation. Upon satisfactory completion of the program, students will receive “Distinction in Biology” on their transcripts. Prerequisites: senior standing, 3.5 GPA or above; prior selection by the program board and approval and approval by program coordinator. A department stamp will be used to monitor during registration.

BISP 197. Biology Internship Program (4) Under the joint supervision of a biology faculty advisor and a selected industry mentor, the student will conduct independent research on a problem in an industrial biotech laboratory. The student will gain insight into industry research and practical biotech experience. Prerequisites: BIBC 103 or BIMM 101, BIBC 102, BICD 100, BIMM 100, over-all GPA 3.0, and consent of the biology faculty coordinator.

BISP 199. Individual Research for Undergraduates (2 or 4) Individual research on a problem by special arrangement with a faculty member. Projects are expected to involve primary, experimental approaches that augment training in basic biology and that echo the curricular focus of the Division of Biological Sciences. (P/NP grades only) Prerequisites: Students must have an overall UCSD GPA of at least 3.0, a minimum of ninety units complete, and approval by division chair. Students must complete a “Special Studies” form and a Division of Biological Sciences “Research Plan.” (Note: Applications for a BISP 199 must be submitted to the Division of Biological Sciences prior to the eighth week of the quarter preceding the quarter in which the BISP 199 will be completed.) This course may be counted as one of the upper-division electives for a biology major, providing that no other special studies courses have already been counted toward the major. May be taken for credit three times.

GRADUATE

BGGN 200. Graduate School Fundamentals: Introduction to Graduate Studies in the Division of Biological Sciences (2) Course will cover fundamental issues in academia, including campus resources, research design, ethical issues in research, scientific publishing and review, grant prepa- ration. Required of all first year Ph.D. students in the Division of Biological Sciences. Prerequisites: graduate (Ph.D.) standing only; for students in the following major code B177, or consent of instructor. (S/U grades only.) (F)

BGGN 204. Topics in Community and Population Ecology (3) This course teaches a different topic each quarter on the theoretical or conceptual side of community and popula- tion ecology. Students will read materials in depth, attend weekly discussions, and explore theories and models with statistical, analytical, and algorithmic tools of the trade. Prerequisite: graduate standing or consent of instructor. (S/U grades only.) (Quarter offered varies and course is not offered every year.)

BGGN 205. Communicating Science to the Public (2) Learn effective ways of communicating science to non- scientists. Develop an understanding of how people’s views of science and background knowledge can influence their learning, and develop methods for tailor communication for different audiences. (Quarter offered varies, and course is not offered every year.)

BGGN 206. Topics in Biophysics and Physical Biochemistry (4) Selection of topics of current interest. Examples: primary processes of photosynthesis; membrane biophysics; applications of physical methods to problems in biology and chemistry, e.g., magnetic resonance, X-ray diffraction, fluctuation spectroscopy, optical techniques (fluorescence, optical rotary dispersion, circular dichroism). Topics may vary from year to year. Prerequisite: consent of instructor. (S/U grades permitted.) This course is cross-listed with Physics 206 and Chemistry 206. (Quarter offered varies, and course is not offered every year.)

BGGN 288. Biological Sciences Graduate Boot Camp (4) Intensive lecture-, seminar-, and laboratory-based course for first year graduate students in the biological sciences Ph.D. program. Topics covered: evolution and quantitative biology, including biostatistics, image analysis, bioinformatics, genomics, evolution, analysis of DNA proteins. During the first two weeks in September, students commit to ten to fifteen hours per day. Prerequisites: graduate...
BGGN 222. Graduate Cell Biology (6)
A coverage of modern cell biology for first-year graduate students. There is an up-to-date discussion of topics such as: structure and function of membranes; ion pumps, ion channels, transmembrane signalling; receptor mediated endocytosis; protein synthesis on the rough endoplasmic reticulum, and organelles associated with protein synthesis; the biosynthesis of intracellular organelles in animal and plant cells; the cytoskeleton, motility, molecular motors, cell-cell interactions, mitosis, and the control of cell division. Also included is an in-depth analysis of cell signaling mechanisms and discussions on molecular approaches to cell biology. Prerequisites: BGGN 220 and 221. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only). (W)

BGGN 223. Graduate Genetics (6)
Provides a broad and extensive advanced-level coverage of molecular and cellular aspects of genetics for first-year graduate students. Topics covered include: bacterial genetics, recombination in prokaryotes and eukaryotes, mammalian somatic-cell genetics, developmental genetics, sex determination, dosage compensation, and immunogenetics. Extensive coverage of the use of model systems such as Drosophila and C. elegans is included. General and specific aspects of cellular signalling mechanisms will be covered. Prerequisites: BGGN 220, 221 and 222. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only). (S)

BGGN 224. Graduate Neurobiology (6)
Course covers modern molecular, cellular, developmental, and physiological aspects of neurobiology. Extensive discussion of original research articles will be included. Prerequisites: BGGN 220 and 221. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only). (F)

BGGN 225. Graduate Immunology (4)
The course is devoted to immunology and is organized as a combined lecture-tutorial course stressing classical as well as current literature. Each week will compose a independent section. Topics will include cellular interactions involved in the immune response, lymphoid lineages, and unique to lymphoid factor and receptors. Prerequisites: BGGN 220 and 221. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only). (W)

BGGN 226. Graduate Animal Virology (4)
This course consists of a review of fundamental concepts together with an in-depth analysis of the structure, genetics, multiplication and oncogenicity of animal viruses. Particular emphasis will be given to the DNA and RNA tumor viruses. The format of this section includes lectures and discussion of selected papers. Prerequisites: BGGN 220 and 221. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only). (W)

BGGN 227. Graduate Topics in Plant Biology (4)
This course covers advanced topics in plant biology in the areas of molecular genetic development, and physiological and ecological. We will discuss plant-microbe interactions, transposable elements, protein trafficking, ion transport, and organ development. The format of this section includes lectures and discussion of selected papers. Prerequisites: BGGN 220, 221, and 222. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only). (W)

BGGN 228. Graduate Developmental Biology (4)
This course covers advanced level lectures on developmental biology, emphasizing the use of genetically tractable model systems. Discussion of recent research articles is an integral aspect of this course. Students are introduced to classical experiments and given detailed coverage of recent research papers from all aspects of the field of developmental biology. Prerequisites: BGGN 220 and 221. (Letter grades only). (S)

BGGN 229. Graduate Oncogenes (4)
This course provides detailed coverage of the cellular and molecular basis of cellular transformation and oncogenesis. There will be extensive discussion on the role of oncogenes and their cellular targets. The course also provides an in-depth analysis of intracellular signal transduction mechanisms. Prerequisites: BGGN 220, 221, and 222. (Letter grades only). (S)

BGGN 230. Graduate Signal Transduction (4)
The course will introduce students to a variety of signal transduction pathways and their function in the regulation of cellular processes. Special emphasis will be given to signalling cascades regulating immunological responses and alterations of signaling pathways during oncogenesis. (W)

Recent research papers from all aspects of stem cell biology will be read, presented, and discussed. Papers will range from landmark to current studies, spanning many developmental organisms and cell types. Students will present one paper, provide relevant background, and lead discussions. Prerequisite: graduate standing or consent of instructor. (F)

BGGN 233. Cellular Immunology (3)
This course covers the molecular and cellular events in the humoral and cellular response to antigen, transplantation biology, the structure and function of the major histocompatibility gene complex, the T-cell receptor, lymphokines, and the induction of immunological tolerance. It serves as the second course in a two-part sequence. May be taken by undergraduates who have taken Part 1 (BIBC 140) and by graduate students (S/U grades only). (Quarter offered varies and course is not offered every year.)

BGGN 235. Biology and Biochemistry of Cancer Cells (2)
This course covers recent advances in cell biology, biochemistry, immunology, and virology as they relate to cancer cells and their interaction with the host. Cancer research specialists from outside will be brought in to discuss the most recent evidence and interpretations in key areas of cancer research. This course meets two hours per week for lecture and discussion. It will be at an advanced graduate level but open to a limited number of seniors (with permission of instructor) on a P/NP basis. (S/U grades only). (Quarter offered varies, and course is not offered every year.)

BGGN 238A. Integrative Microbiology I (4)
To introduce students with structural and functional properties of microorganisms and with the role of microbes in the world. Course will emphasize the integrative aspects of microbiology. First course in series. Prerequisite: graduate standing.

BGGN 238B. Integrative Microbiology II (4)
To introduce students with structural and functional properties of microorganisms and with the role of microbes in the world. Course will emphasize the integrative aspects of microbiology. Second course in series. Prerequisite: graduate standing.

BGGN 240. Cellular Neurobiology (2)
Students read classic and modern papers that form the basis of the undergraduate lectures (BIBC 240), which they are encouraged to attend. These papers are presented by the students at weekly discussion sessions. Prerequisite: consent of instructor. (S/U grades only). (F)

BGGN 241. Neurobiology Seminar (3)
Presentation of current research by local and visiting neurobiologists. (S/U grades only)

BGGN 242. Graduate Cancer Biology (3)
Research-oriented approach to oncology topics and problems with an emphasis on interactions between tumor and the immune system. Prerequisite: graduate standing.

BGGN 243. Systems Neurophysiology (3)
Ways in which neurons are assembled into circuits to achieve perception and patterned movement. Prerequisite: graduate standing or consent of instructor. (S/U grades only)

BGGN 246A-B. Computational Neurobiology (2-2)
Students read classic and modern papers that form the basis of the undergraduate lectures (BIBC 146), which they are encouraged to attend. Students present these papers at weekly discussion sessions. The focus of 246A is cellular neuroscience properties and the focus of 246B is properties of neuronal systems. Prerequisite: graduate standing or consent of instructor. (S/U grades only)
BGGN 248. Molecular Mechanisms of Neural Development (4)
This course will cover the cellular and molecular basis of neural development. Focus is on primary research papers and topics include neural induction and neurogenesis, cell patterning, neuronal and glial differentiation, neuronal migration, axon pathfinding, synaptogenesis, neuronal cell death, regeneration, activity-dependent events, topographic maps, invertebrate and vertebrate model systems. Prerequisite: graduate standing or consent of instructor.

BGGN 249B–C. Basic Neuroscience (4-4)
These courses are designed for graduate students in the neurosciences and other departments that are part of the interdisciplinary program (i.e., Biology, Cog. SCI). These courses have been designed to cover as much basic neuroscience as possible in three quarters of study. They will combine three-hour meetings each week with a 1.5-hour lecture and a 1.5-hour discussion of papers. These are required courses for all first-year neurosciences graduate students. Prerequisite: graduate standing or consent of instructor. (F,W,S)

BGGN 251. Molecular Biology (3)
The first section of this course consists of a review of fundamental concepts in molecular biology together with an in-depth analysis of molecular biological topics of medical importance. The second section covers the structure, genetics, and multiplication of animal viruses, with particular emphasis on the DNA and RNA tumor viruses. Other subjects discussed include viral persistence, latency, and approaches to viral chemotherapy. Three hours of lecture. Prerequisite: biochemistry. (Not open to undergraduates.) (S/U grades only.) (F)

BGGN 252. Genetics (3)
Human genetics, with emphasis on basic principles. Topics covered include chromosome abnormalities, the mechanisms of dominant and recessive diseases, pedigree analysis, ascertainment of linkage, the interaction of genotype with diseases. Mechanisms of maintaining genetic diversity in human populations will be discussed along with recent approaches to genetic counseling and intervention. Prerequisite: consent of instructor. (Not open to undergraduates.) (S/U grades only.) (F)

BGGN 253. Immunology (3)
Graduate students will explore topics in specialized areas of immunochemistry and cellular immunology, antigenic and molecular structure of immunoglobin molecules; antigen–antibody interactions; cellular events in the humoral and cellular immune responses; translation immunology. Prerequisite: consent of instructor. The course is similar in content to BICD 140 but is accelerated in pace. (S/U grades permitted; cross-listed with Chemistry 217.) (F)

BGGN 254. Cell and Membrane Physiology (3)
This course is a survey covering current subjects in cell membrane biology relevant to medicine. Subjects are: 1) membrane isolation, composition, and structure; 2) consequences of membrane fluidity (mode of action of anesthetics, intercellular communication, e-endo- and endocytosis biogenesis); 3) sensory perception and response (chemo- and energy reception, cellular neurophysiology, muscle physiology); 4) regulation of membrane function (hormone reception, intercellular adhesion, neoplastic transformation). Prerequisites: biochemistry and genetics. (S/U grades only.) (F,W,S)

BGGN 260. Neurodynamics (4)
Introduction to the nonlinear dynamics of neurons and simple neural systems through nonlinear dynamics, bifurcation theory, and chaotic motions. The dynamics of single cells is considered at different levels of abstraction, e.g., biophysical models for analysis of regularly spiking and bursting cells, their dynamical properties, and their representation in phase space. Laboratory exercises will accompany the lectures. Prerequisite: graduate standing or consent of instructor.

BGGN 262. 3D Electron Microscopy
Macromolecules (4)
Biological macromolecules and supramolecular complexes as well as organelles, and small cells are being examined in three dimensions by modern electron cryomicroscopy and image reconstruction techniques. The basic principles of transmission electron microscopy and 3D image reconstruction are discussed. Chem. 265/BGGN 262 students will be required to complete an additional assignment/exam beyond that expected of students in Chem. 165/BIMM 162.

BGGN 266. Advanced Laboratory in Biophysical Techniques (6)
Experiments that emphasize biophysical principles through hands-on experience. Prerequisite: graduate standing or consent of instructor. (F,W,S)

BGGN 269. Mathematics for Neurobiologists (6)
An intensive course to introduce the mathematical concepts and techniques used in modern neurobiology. Intended for beginning graduate students in the neurosciences, but is also available to advanced undergraduates, with the consent of the instructor. Prerequisite: graduate standing or consent of instructor.

BGGN 271. Advanced Experimental Methods in Biology (4–12)
Advanced laboratory and/or field experience in contemporary biological methodology. Open only to students enrolled in the degree program in Molecular Mechanisms. Prerequisites: consent of instructor and approval of division chair. (F,W,S) Graduate students: letter grades only.

BGGN 290. Advances in Cellular & Molecular Mechanisms
Students present and discuss papers on recent discoveries involving basic mechanistic research into biological phenomena. Papers are selected by instructors from visiting seminar speaker’s research from the biological sciences and biochemistry seminar series. Prerequisites: graduate (Ph.D.) standing only; for students in the following major code B177, or consent of instructor. (S/U grades only.) (F,W,S)

BGGN 292. Professional Pathways in Biological Sciences (1)
Students meet experienced science professionals from a wide variety of backgrounds, including academia, science industry, and government. Through discussions with these professionals, students will refine and improve their professional skills, including communication and presentation expertise, and develop a personal career action plan. Prerequisites: graduate (Ph.D.) standing only; for students in the following major code B177, or consent of instructor. (S/U grades only.) (F,W,S)

BGGN 297. Research Conference (1–3)
Group and individual discussion of research activities and of current literature. Prerequisite: graduate standing. (S/U grades only.) (F,W,S)

BGGN 298. Laboratory Projects in Biology (3–12)
An introduction to contemporary laboratory techniques and research interests through independent, original projects under the direction of individual faculty members. Prerequisite: consent of instructor. (Latter grades only.) (F,W,S)

BGGN 299. Thesis Research in Biology (1–12)
(F,W,S)

BGGN 500. Apprentice Teaching (4)
This course involves participation in upper-division undergraduate teaching at the level of assuming responsibility for recitation sections or laboratories under the supervision of the responsible faculty member. Some experience in lecturing to upper-division classes will occasionally be provided. (S/U grades only.) (F,W,S)

BGJC 201. Journal Club in Cell Biology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGJC 202. Journal Club in Developmental Biology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGJC 203. Journal Club in HIV Molecular Biology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGJC 204. Journal Club in Molecular and Cellular Immunology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGJC 206. Journal Club in Microbial Physiology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (S)

BGJC 208. Journal Club in Plant Molecular Biology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGJC 210. Journal Club in Cell Cycle Regulation (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGJC 213. Journal Club in Computational Neurobiology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGRD 203. Research Discussion in Development of Dictostelium (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGRD 204. Molecular Biology of the Cell (1)
Research reports and discussions based on recent experimental results in cell biology, oncogenesis, genetics, molecular biology and development. Students are expected to present and discuss their own new data and the recent data of others. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGRD 205. Research Discussion in Plant Membrane Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGRD 206. Research Discussion in Metals in Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGRD 207. Research Discussion in Agriculture (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)
BGRD 207. Research Discussion in Neuronal Pattern Generation (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 208. Research Discussion in Mammalian Molecular Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 210. Research Discussion in Virology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 211. Research Discussion in Developmental Cellular Neurobiology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 212. Research Discussion in Behavior and Development of Simple Nervous Systems (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 213. Research Discussion in Golgi Structure and Function (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 214. Research Discussion in Development and Function of the Immune System (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 215. Research Discussion in Lymphocyte Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 216. Research Discussion in Molecular and Cell Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 218. Research Discussion in Plant Molecular Genetics (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 219. Research Discussion in Molecular Biophysics (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 220. Research Discussion in Advanced Evolutionary Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 221. Research Discussion in Behavioral Ecology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 222. Research Discussion in Evolutionary Molecular Ecology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 223. Research Discussion in Ecology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 224. Research Discussion in Plant Population Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 225. Research Discussion in Genetic Variation (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 226. Research Discussion in Conservation Genetics (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 227. Research Discussion in Intracellular Signalling (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 228. Research Discussion in Drosophila Developmental Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 230. Research Discussion in Cell Signalling Pathways (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 231. Research Discussion in Nuclear Transport and Function (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 232. Research Discussion in Chromatin and Transcription Regulation (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 233. Research Discussion in Cell Cycle Motility (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 234. Research Discussion in Cell Signalling in Drosophila (3)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGSE 200. Seminar in Biology (1)
Invited speakers from the U.S. and abroad, who are leaders in various aspects of biological research, describe their current research. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGSE 201. Seminar in Molecular Biology (1)
Invited speakers from the U.S. and abroad, who are leaders in various aspects of biological research, describe their current research. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGSE 202. Seminar in Immunology (1)
Invited speakers from the U.S. and abroad, who are leaders in various aspects of biological research, describe their current research. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGSE 203. Seminar in Population Biology (1)
Invited speakers from the U.S. and abroad, who are leaders in various aspects of biological research, describe their current research. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGSE 204. Seminar in Developmental Genetics (1)
Invited speakers from the U.S. and abroad, who are leaders in various aspects of biological research, describe their current research. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGSE 205. Graduate Research Seminar (1)
Discussions of recent research in various aspects of biologi
cal research conducted by third- and fourth-year doctoral students in the Division of Biological Sciences. (S/U grades only.) (F,W,S)
Biomedical Sciences

PROFESSORS
Kim E. Barrett, Ph.D., Medicine
Timothy D. Bigby, M.D., Clinical Medicine
Roland C. Blantz, M.D., Medicine
Rolf Bodnar, Ph.D., Pediatrics (Adjunct)
Gerry R. Boss, M.D., Medicine
Philip Bourne, Ph.D., Pharmacology
Joan Heller Brown, Ph.D., Pharmacology (Chair)
Laurence L. Brunton, Ph.D., Pharmacology/Medicine
Nigel Calcutt, Ph.D., Pathology
John M. Carethers, M.D., Medicine
Dennis A. Carson, M.D., Medicine
Webster K. Cavenee, Ph.D., Medicine
Ju Chen, Ph.D., Medicine
Shu Chien, M.D., Ph.D., Biomedical Engineering/Medicine
Mario Joukier, M.D., Medicine (In-Residence)
Jerald J. M. Chun, Ph.D., Pharmacology (Adjunct)
Don W. Cleveland, Ph.D., Medicine
James W. Covell, M.D., Medicine (Emeritus)
Antonio de Maio, Ph.D., Surgery
Edward Dennis, Ph.D., Pharmacology/Chemistry and Biochemistry
Jack E. Dixon, Ph.D., Pharmacology/Cellular and Molecular Medicine/Chemistry and Biochemistry (Dean, Scientific Affairs)
Daniel Donohue, Ph.D., Chemistry and Biochemistry
Steven F. Dowdy, M.D., Cellular and Molecular Medicine
Mark H. Ellisman, Ph.D., Neurosciences
Scott D. Emr, Ph.D., Cellular and Molecular Medicine
Gregory F. Erickson, Ph.D., Reproductive Medicine (Emeritus)
Jeffrey Esko, Ph.D., Cellular and Molecular Medicine
Ronald M. Evans, Ph.D., Biology (Adjunct)
Sylvia Evans, Ph.D., Pharmacy/Pharmacology
Marilyn G. Farquhar, Ph.D., Cellular and Molecular Medicine (Chair)
James R. Feramisco, Ph.D., Medicine/Pharmacology
Hudson Freeze, Ph.D., Medicine (Adjunct)
Theodore Friedmann, M.D., Pediatrics
Xiang-Dong Fu, Ph.D., Cellular and Molecular Medicine
Gen-Sheng Feng, Ph.D., Pathology (Adjunct)
Susan Ferro-Novick, Ph.D., Cellular and Molecular Medicine
Minoru Fukuda, Ph.D., Pathology (Adjunct)
Richard Gallo, M.D., Ph.D., Medicine
William Gerwick, Ph.D., Pharmacy
Fran Gillin, Ph.D., Pathology
Mark Ginsberg, M.D., Medicine
Christopher K. Glass, M.D., Ph.D., Cellular and Molecular Medicine/Medicine
Lawrence S. B. Goldstein, Ph.D., Cellular and Molecular Medicine
Steven Gonzas, M.D., Ph.D., Pathology (Chair)
Kun-Liang Guan, Ph.D., Pharmacology
John C. Guatelli, Ph.D., Medicine
Gabriel Haddad, M.D., Pediatrics (Chair)/Neurosciences
Tracy Handel, Ph.D., Pharmacy
Stephen Hedrick, Ph.D., Cellular and Molecular Medicine
Michael C. Hogan, Ph.D., Medicine (Adjunct)
Vivian Hook, Ph.D., Pharmacology
Stephen B. Howell, M.D., Medicine
Ziwei Huang, Ph.D., Pathology (Adjunct)
Paul A. Insel, M.D., Pharmacology/Medicine
Yishi Jin, Ph.D., Cellular and Molecular Medicine/Biological Sciences
Martin F. Kagnoff, M.D., Medicine
Mark Kamps, Ph.D., Pathology
Michael Karin, Ph.D., Pharmacology
Kenneth Kaushansky, M.D., Medicine (Chair)
John Kelsoe, M.D., Psychiatry
Thomas J. Kipps, M.D., Ph.D., Medicine
Richard Klemke, Ph.D., Pathology
Richard Kolodner, Ph.D., Medicine
Elizabeth A. Komives, Ph.D., Chemistry and Biochemistry
Ronald Kuczynski, Ph.D., Psychiatry (In-Residence)
Hyam L. Leffert, M.D., Pharmacology
Fred Levine, M.D., Ph.D., Pediatrics (In-Residence)
Richard Lieber, Ph.D., Orthopaedics
Stuart Lipton, M.D., Ph.D., Neurosciences (Adjunct)
Martin Marsala, M.D., Anesthesiology
Jamey D. Marsh, Ph.D., Cellular and Molecular Medicine
James Andrew McCammon, Ph.D., Chemistry and Biochemistry/Pharmacology
Pamela L. Mellon, Ph.D., Reproductive Medicine/Neurosciences
Mark Mercola, Ph.D., Pathology (Adjunct)
Andrew Mizisin, Ph.D., Pathology
Marc Montminy, M.D., Ph.D., Biological Sciences (Adjunct)
Alexandra Newton, Ph.D., Pharmacology
Sanjay Nigam, M.D., Cellular and Molecular Medicine/Pediatrics
Victor Nizet, Ph.D., Pediatrics
Peter Novick, Ph.D., Cellular and Molecular Medicine
Daniel T. O’Connor, M.D., Medicine (In-Residence)
Jerrod M. Olesiak, M.D., Medicine
Robert Oshima, Ph.D., Pathology (Adjunct)
Ana Pajor, Ph.D., Pharmacy
Maurizio Pellecchia, Ph.D., Pathology (Adjunct)
Manuel Prunzel, Ph.D., Pathology (Adjunct)
Renate B. Piltz, M.D., Medicine (In-Residence)
Frank L. Powell Jr., Ph.D., Medicine
Morton P. Prutz, Ph.D., Pharmacology
Oswald Quehenberger, Ph.D., Medicine (Adjunct)
James Quigley, Ph.D., Pathology (Adjunct)
Eyal Raz, M.D., Medicine (In-Residence)
John Reed, M.D., Ph.D., Pathology (Adjunct)
Douglas S. Richman, M.D., Pathology/Medicine
Ze’ev Ronai, Ph.D., Pathology (Adjunct)
Michael G. Rosenfeld, M.D., Medicine
Robert Ross, M.D., Medicine (In-Residence)
Guy Salvesen, Ph.D., Pathology (Adjunct)
David Schlaepfer, Ph.D., Reproductive Medicine
Sanford Shattil, M.D., Medicine
Geert Schmid-Schoenbein, Ph.D., Bioengineering
Nicholas Schorr, M.D., Psychiatry
Shunichi Shimaski, Ph.D., Reproductive Medicine
Aleem Siddiqui, Ph.D., Medicine
Gregg J. Silverman, M.D., Medicine (In-Residence)
Deborah Spector, Ph.D., Cellular and Molecular Medicine
Stephen A. Spector, M.D., Pediatrics
Charles F. Stevens, Ph.D., Pharmacology (Adjunct)
Palmer W. Taylor, Ph.D., Pharmacy and Pharmaceutical Sciences (Dean)
Susan S. Taylor, Ph.D., Chemistry and Biochemistry
Lynn F. TenEyck, Ph.D., Pharmacology (Adjunct)
Alexey Terskikh, Ph.D., Pediatrics (Adjunct)
Roger Y. Tien, Ph.D., Pharmacology/Chemistry and Biochemistry
Robert H. Tukey, Ph.D., Pharmacology/Chemistry and Biochemistry
Eric Turner, M.D., Ph.D., Psychiatry
Wylie W. Vale, Ph.D., Medicine (Adjunct)
Ajit P. Varki, M.D., Medicine
Judith A. Varner, Ph.D., Medicine (Professor-in-Residence)
Francisco Villarrealad, M.D., Ph.D., Medicine (Adjunct)
Joseph Vinetz, Ph.D., Medicine
Peter D. Wagner, M.D., Medicine
Jean Wang, Ph.D., Medicine
Nicholas J.G. Webster, Ph.D., Medicine (In-Residence)
John B. West, M.D., Ph.D., Medicine
Joseph L. Witzum, M.D., Medicine
Virgil L. Woods, Jr., M.D., Ph.D., Medicine
Tony L. Yoksh, Ph.D., Anesthesiology/Pharmacology
Jason X. Yuan, M.D., Ph.D., Medicine
Mauricio Zanetti, M.D., Medicine (In-Residence)
Dong-Er Zhang, Ph.D., Pathology/Biological Sciences
Kang Zhang, M.D., Ph.D., Ophthalmology

ASSOCIATE PROFESSORS
Joseph A. Adams, Ph.D., Pharmacology
Radha Ayyagari, Ph.D., Radiology/Ophthalmology
Nazeen Dewji, Ph.D., Medicine (Adjunct)
Frank Furnari, Ph.D., Medicine (Associate Adjunct)
Joseph G. Gleesons, M.D., Neurosciences
Bruce Hamilton, Ph.D., Medicine
Mark Lawson, Ph.D., Reproductive Medicine (In-Residence)
Robert Naviaux, M.D., Ph.D. Radiology/Medicine
Elena Pasquale, Ph.D., Pathology (Adjunct)
Bing Ren, Ph.D., Cellular and Molecular Medicine
Maike Sander, M.D., Pediatrics
Evan Snyder, M.D., Ph.D., Pediatrics (Associate Physician)
Bruce Torbett, Ph.D., Pathology (Adjunct)
JoAnn Trejo, Ph.D., Pharmacology

ASSISTANT PROFESSORS
Adah Almutairi, Ph.D., Pharmacy/Pharmaceutical Sciences
Jack Bui, M.D., Ph.D., Pathology
Steven Chessler, M.D., Ph.D., Medicine
Shane Cottle, Ph.D., Medicine (Assistant Adjunct)
Arshad Desai, Ph.D., Cellular and Molecular Medicine
Pieter Dorrestein, Ph.D., Pharmacy, Pharmacology and Chemistry and Biochemistry
Adam Engler, Ph.D., Bioengineering/UCSD Stem Cell Institute
Seth Field, M.D., Ph.D., Medicine
Pradiptha Ghosh, M.D., Medicine
Dorit Hanein, Ph.D., Pathology (Adjunct)
Alexander Kauffman, Ph.D., Reproductive Medicine
Jonathan Lin, M.D., Ph.D., Pathology
Karen Oegema, Ph.D., Cellular and Molecular Medicine
Alexysson Muotri, Ph.D., Pediatrics
Dwayne Stupack, Ph.D., Pathology (Assistant Adjunct)
Lei Wang, Ph.D., Biological Sciences (Assistant Adjunct)
Jing Yang, Ph.D., Pharmacology and Pediatrics
THE GRADUATE PROGRAM

The graduate program offered by the Group in Biomedical Sciences (BMS) is designed to lead to the Ph.D. students through a combination of didactic study, laboratory rotations, and thesis research in basic and translational biomedical sciences. Research opportunities in BMS span a wide spectrum of biological and medical sciences, permitting students the options of selecting molecular, cellular, organismal, and integrated systems approaches in their research projects. Students are encouraged to design and execute original and creative research in a self-critical and independent manner. Undergraduate preparation must include courses in mathematics (through calculus), chemistry (including organic, physical, and biochemistry), and preferably participation in research. Students whose undergraduate backgrounds are significantly different will be considered provided there is sufficient evidence of interest in cell and molecular biology, genetics, pathology, physiology, pharmacology, or other disciplines in biomedical sciences, and a strong commitment to enter a field of active research and academic excellence.

DOCTORAL DEGREE PROGRAM

During the first year, the students enroll in two core courses and specialized track courses in cell biology, molecular biology, pathology, pharmacology, physiology, genetics, and microbiology/immunology. In a required laboratory rotation program, students develop laboratory skills and the ability to formulate scientific hypotheses and become familiar with the research activities of the faculty. Students may differentiate into one of six advanced training modules that cover genes, building a cell, cellular regulation, molecular cell biology, molecular pathology, molecular pharmacology, or physiology. Students can also associate with a number of focus groups in Cancer Biology, Stem Cell Biology, Developmental Biology, Bioinformatics, Neurobiology, Endocrinology, Glycobiology, and Structural-Chemical Biology. Required advanced courses and electives in subsequent years are chosen to develop students' interests and specialized knowledge in the thesis research area and chosen training tracks. BMS students are required to select their thesis advisors and begin their thesis research by the end of the first year in the program, the average matriculation time among BMS students is between five to six years. Besides course work and examinations, BMS students are required to assist in the teaching of undergraduate biology majors at UC San Diego for one academic quarter. The teaching requirement allows BMS students to learn and practice the skills of effective scientific communication, which is of critical importance to the career development of independent investigators in biomedical research.

The graduate program is interdepartmental and interdisciplinary; it includes faculty of the Departments of Cellular and Molecular Medicine, Medicine, Pathology, Pediatrics, Pharmacology, Neurosciences, Reproductive Medicine, Chemistry and Biochemistry, Biology, Bioengineering, Psychiatry, Orthopedics, Anesthesiology, the Moores UCSD Cancer Center, the Skaggs School of Pharmacy and Pharmaceutical Sciences, the Burnham Institute, and The Salk Institute.

The graduate program in biomedical sciences is also designed to educate physician-scientists through the School of Medicine's Medical Scientist Training Program, in conjunction with the School of Pharmacy and Pharmaceutical Sciences (SPPS) Students receive a Pharm.D./Ph.D. degree. Students already admitted to the School of Medicine and the SPSS are eligible for admission to the BMS program for Ph.D. training. Such students generally apply in the first or second year of their medical or pharmacy studies and enter graduate studies following completion of their second year of medical or pharmacy school. Normative time for M.D./Ph.D. or Pharm.D./Ph.D. students is seven years.

EXAMINATIONS

Students obtain letter grades in the core and track courses. Candidacy for the Ph.D. degree is granted following the successful completion of two research-oriented examinations. The first examination, the Research Proposition Exam, tests the student’s preparation for his/her thesis research. Preparation for the Research Proposition Exam begins as soon as students join their thesis laboratories during the first summer quarter in the program. Students prepare a written research proposal and defend the proposal in an oral examination conducted by a program-approved exam committee. The second examination that determines the Advancement to Ph.D. candidacy takes place after the students finalize their thesis research plan, and should be completed by the end of the second summer quarter. Thereafter, the students’ thesis research progress is reviewed annually by the thesis committee. The thesis committee also approves the final dissertation. After the preparation of the dissertation, a public oral defense of the thesis completes the requirement for the Ph.D. in biomedical sciences.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

200A. Molecules to Organisms: Concepts (6)
This course provides a systematic approach to current biomedical research, using analysis of selected topics to focus on the process of research discovery and its critical evaluation. The course progresses through five thematic modules that cover genes, building a cell, cellular responses, organogenesis, and the processes that allow survival in the world. Prerequisite: limited to BMS graduate students except by consent of instructor.

200B. Molecules to Organisms: Approaches (2)
Students will critically evaluate classic and current research papers in biomedical research, in addition to being exposed to state-of-the-art technologies in research. Prerequisite: limited to BMS graduate students except by consent of instructor.

201. Seminars in Biomedical Research (4)
This course includes attendance at seminars in the biomedical sciences and is designed to provoke critical discussion of the presented findings and scientific approaches in a small-group setting. Prerequisite: limited to BMS graduate students except by consent of instructor.

202. Carcinogenesis (3)
This elective will explore carcinogenesis at cellular, molecular, and etiological levels. Guided by faculty, students will research and present papers and principles underlying the biochemistry, genetic, biophysical, and computer-assisted aspects of several assigned topics. Prerequisites: Equivalent background in biology and chemistry. May be concurrent in biology, chemistry plus cell biology, biochemistry, molecular biology. Corequisites as above.

204. Evolution of Modern Concepts in Pharmacology (2)
This course details the evolution of modern principles of pharmacology from first evidences to the present level of knowledge. The course will be independent of but compliment general principles of pharmacology courses for medical and graduate students. Prerequisite: prior or concurrent Principles of Pharmacology, or equivalent course.

206. Ethics in Scientific Research (1)
Overview of ethical issues in scientific research, conflicts of interest; national, statewide, and campus issues and requirement; ethical issues in publications; authorship; retention of research records; tracing of research records; attribution; plagiarism; copyright considerations; primary, archival and meeting summary publications; ethical procedures and policies; NIH, NSF, California and UCSD; case studies and precedents in ethics. Prerequisite: consent of instructor.

222. Essentials of Glycobiology (2)
Advanced elective for graduate/medical students who have had core courses in cell biology or biochemistry. Expert faculty will present a coordinated overview of the field of glycobiology, which explores the structure, synthesis, and functions of sugar chains in biological systems.

224. Topics in Cancer Research (2)
Each quarter will focus on an important area of cancer research such as immunology (fall), growth regulation (winter), and cancer genetics (spring). One-hour lecture coordinated with a one-hour seminar with the opportunity to meet with the invited speaker. Prerequisites: limited to senior undergraduates, graduate students, and medical students. (W, S)

226. Hormone Action (3)
The course covers recent advances in research into hormone action, molecular endocrinology, lipoprotein, and carbohydrate metabolism, and reproductive medicine. Prerequisites: BIOM 200, 201. Limited to BMS graduate students, except by consent of instructor.

228. Modern Drug Discovery Technologies (2)
Drug discovery is an emerging science available to academic investigators. This course provides an overview of these drug discovery techniques, including high throughput screening, cell-based screening, computational methods of lead compound discovery, and chemical methods of optimization. Prerequisite: Graduate student status or consent of graduate program director.

229. Methods in Pharmacology (3)
A combination of lecture and lab exercises presented by the faculty of the Group in Biomedical Sciences, designed to introduce biomedical science graduate students to the essential techniques employed in molecular and cellular pharmacology. Prerequisites: BMS 212, OP, CBB, biochemistry, physiology, general biology, biomedical sciences or consent of instructor. (S)

320. Structural and Quantitative Pharmacology (4)
This course is essentially biophysical pharmacology. Two-thirds will be didactic, covering protein structure, thermodynamic stability, receptor-ligand binding, enzyme kinetics, biophysical methods, visualization of structures/docking, mathematical analysis of data. The last section will involve student presentations of topics in biophysical pharmacology. Prerequisite: knowledge of graduate or undergraduate biochemistry is recommended.
Prerequisites: parasites subvert host defense to produce infectious diseases. We will explore the virulence mechanisms through which pathogens manipulate and subvert host defense systems to survive and multiply. Students will be required to read primary literature and present critical discussions of the mechanisms controlling tissue and organ functions.

234. Practical Histopathology and Mouse Models of Human Diseases (2)
This course is designed to introduce students to the use of immunohistochemistry, magnetic resonance imaging, and ultrasound for nondestructively imaging molecular and cellular biological events inside living animals and eventually human patients. Emphasis will be placed on the innate and adaptive immune responses of humans to microbial infection. In parallel, we will explore the immune mechanisms through which certain medically important viruses, bacteria, fungi, and parasites subvert host defense to produce infectious disease. Emphasis will be placed on the basic mechanisms and cellular approaches to understanding microbial pathogenesis and host susceptibility, including progress toward novel antibiotic and immune stimulatory therapies.

235. Pharmacogenomics (3)
The pharmacogenetics course is designed to introduce graduate students, medical students, and pharmacy students to the emerging area of interest, indicating how hereditary mechanisms influence drug responses in humans. The course will include lectures, discussions, and journal presentations. The course will provide students with a working knowledge of the domains of pharmacology, heredity influenced any response traits, and the ways that advances in genetics support our understanding of how polymorphic genetic variants determine inter-individual differences.

236. Molecular and Cellular Basis of Disease (2)
Lectures on the molecular and cellular mechanisms of pathogenesis. Topics will include Alzheimer’s disease, cell surface and nuclear receptors in disease, signal transduction by oncogenes in cancer cells, AIDS, human diseases affecting glycosylation pathways, rheumatoid arthritis, and atherosclerosis.

262. Neurophysiology (4)
An overview of neurophysiological systems, emphasizing mammalian neurophysiology and related model vertebrate systems and concepts.

264. Molecular and Cellular Basis of Disease (2)
This course will cover most of today’s key aspects in the presented findings and scientific approaches in a small group setting. Students are expected to present research findings and scientific approaches in a small group setting. Prerequisite: limited to BMS graduate students except by consent of instructor.

265. Environmental and Molecular Toxicology (4)
This course will focus on critical reading and understanding current topics in cell and molecular biology. The exact topics will vary, but will include such topics as protein trafficking, cell division, intracellular movement, cell interaction, and cell cycle.

266. Environmental and Molecular Toxicology (4)
This course will focus on critical reading and understanding current topics in cell and molecular biology. The exact topics will vary, but will include such topics as protein trafficking, cell division, intracellular movement, cell interaction, and cell cycle.

272. Genetics and Genomics (3)
This course will examine the basic principles of genetics and genomics. We will focus on the role of genetics in classical experiments and examples of approaches to current experimental problems. Emphasis areas will vary but general topics include Mendelian inheritance, imprinting, cytogenetics, genome structure, genetic variation, linkage and recombination, complex traits, statistical genetics, population genetics, genomic tools and methodology, medical genetics, model organisms. Prerequisites: BIOM 200, 201. Limited to BMS graduate students except by consent of instructor.

273. Genetics and Genomics (3)
This course will examine the basic principles of genetics and genomics. We will focus on the role of genetics in classical experiments and examples of approaches to current experimental problems. Emphasis areas will vary but general topics include Mendelian inheritance, imprinting, cytogenetics, genome structure, genetic variation, linkage and recombination, complex traits, statistical genetics, population genetics, genomic tools and methodology, medical genetics, model organisms. Prerequisites: BIOM 200, 201. Limited to BMS graduate students except by consent of instructor.

275. Genetics and Genomics (3)
This course will focus on critical reading and understanding current topics in cell and molecular biology. The exact topics will vary, but will include such topics as protein trafficking, cell division, intracellular movement, cell interaction, and cell cycle.

276. Seminars in Physiology (2)
This course includes attendance at seminars in physiology and is designed to provoke critical discussion of the presented findings and scientific approaches in a small group setting. Prerequisite: limited to BMS graduate students except by consent of instructor.

287. Tissue Engineering Laboratory (4)
A laboratory course combining hands-on mass spectrometry and bioinformatics tools to explore the relationship between structure and function in macromolecules. Tools for peptide sequencing, analysis of post-translational modification, and fragmentation analysis by mass spectrometry are examples of experiments students will run.

294. Pharmacology and Molecular Pharamaceutical Sciences.
Prerequisites: admit one to UCSD graduate program, School of Medicine, or School of Pharmacy.

295. Pharmacology Research Discussions (0-1)
Current literature in molecular pharmacology and molecular biology is reviewed. Two papers are chosen each week for oral presentation and discussion. Faculty critiques the student presentations. Prerequisite: enrollment in PH program at year two and above.

296. Directed Reading (1-4)
Current literature in molecular pharmacology and molecular biology is reviewed. Two papers are chosen each week for oral presentation and discussion. Faculty critiques the student presentations. Prerequisite: enrollment in PH program at year two and above.

297. Progress in Signal Transduction (1)
Papers describing recent progress in signal transduction from the cell-surface to the nucleus will be chosen from recent research literature two papers will be discussed and critiqued in detail each week for one hour. Prerequisites: graduate-level biochemistry, cell biology, and molecular biology; registered as second-year and above graduate student in biomedical sciences, biology, or chemistry.

298. Directed Study (1-12)
Current literature in molecular pharmacology and molecular biology is reviewed. Two papers are chosen each week for oral presentation and discussion. Faculty critiques the student presentations. Prerequisite: completion of minor proposition examination and two years of graduate work.
THE MINOR

The California cultures in comparative perspective minor allows students to better understand California’s place in the global community and in history. Students can learn about the impact of language, immigration, market forces, the arts, politics and culture, music, and globalization in the past, present, and future of California.

The California cultures minor will be a core component in a broader, cutting-edge interdisciplinary program that encourages research, teaching, and collaboration among faculty, students, and the public to explore the broad implications of the history and current growth of the state of California’s immigrant and ethnic populations. This minor is a universitywide interdisciplinary initiative integrating faculty across a range of departments who all share a common focus on the people, economies, and cultures of California.

The minor in California cultures in comparative perspective is administered by the program director. The minor helps students prepare for careers in the legal, governmental, corporate, and nonprofit sectors that service socially, culturally, and economically diverse populations. The minor concentration in California cultures would also allow undergraduate students to enroll in courses focusing on racial/ethnic populations in the United States and the border region, from departments across the social sciences and humanities.

MINOR REQUIREMENTS

California cultures minor requirements include lower- and upper-division courses from departments in the social sciences and the arts and humanities. Alternatively, minor requirements may be fulfilled with course work in conjunction with internships at local and community-based organizations.

Requirements are as follows:

Students will be required to take one lower-division course from the following list. These courses will provide them with background on California cultures and race/ethnicity in the U.S.

Anthropology 23: Debatting Multiculturalism: Race, Ethnicity, and Class in American Societies (4)
Ethnic Studies 1A: Introduction to Ethnic Studies: Population Histories of the United States (4)
Ethnic Studies 1B: Introduction to Ethnic Studies: Immigration and Assimilation in American Life (4)
Ethnic Studies 1C: Introduction to Ethnic Studies: Race and Ethnic Relations in the United States (4)
History LD 7A: Race and Ethnicity in the United States (4)
History LD 7B: Race and Ethnicity in the United States (4)
History LD 7C: Race and Ethnicity in the United States (4)
Urban Studies and Planning 3: The City and Social Theory (4)

Students will be required to take one upper-division course (HIUS 114. California History or ETHN 118. Contemporary Immigration Issues). These courses will provide students with broad coverage of the various social, economic, cultural, and political aspects of California’s changing population dynamics and how these relate to transnational trends as well.

Students will be allowed to complete the minor (twenty more required units) by pursuing one of two separate tracks:

Track 1: Additional Course Work

Students can choose to take five additional courses from the following list, four of which must be upper-division. These courses generally provide students with in-depth coverage of specialized topics in California cultures and/or race, immigration, urban studies. They may not take more than three courses from any one department.

- Communication 114. Bilingual Communication (4)
- Communication 115. Education and Global Citizenship (4)
- Critical Gender Studies 2A. Introduction to Critical Gender Studies. Social Movements (4)
- Economics 135/USP 102. Urban Economics (4)
- Ethnic Studies 1A. Introduction to Ethnic Studies. Population Histories of the United States (4) (if not taken as a required course above)
- Ethnic Studies 1B. Introduction to Ethnic Studies. Immigration and the Transformation of American Life (4) (if not taken as a required course above)
- Ethnic Studies 1C. Introduction to Ethnic Studies. Race and Ethnic Relations in the United States (4) (if not taken as a required course above)
- Ethnic Studies 109. Race and Social Movements (4)
- Ethnic Studies 111. Native American Literature (4)
- Ethnic Studies 116. The United States-Mexico Border in Comparative Perspective. (4)
- Ethnic Studies 118. Contemporary Immigration Issues (4)
- Ethnic Studies 121. Contemporary Asian-American History (4)
- Ethnic Studies 123. Asian-American Politics (4)
- Ethnic Studies 129. Asian and Latina Immigrant Workers in the Global Economy (4)
- Ethnic Studies 130. Social and Economic History of the Southwest I (4)
- Ethnic Studies 132. Chicano Dramatic Literature (4)
- Ethnic Studies 136. Topics in Chicano/a-Latino/a Cultures (4)
- Ethnic Studies 148. Latino/a and Chicano/a Literature (4)
- Ethnic Studies 144. Bilingual Communities in the USA (4)
- Ethnic Studies 149. African American History in the 20th Century (4)
- Ethnic Studies 161. Black Politics and Protest since 1941 (4)
- Ethnic Studies 164. African Americans and the Mass Media (4)
- Ethnic Studies 168. Comparative Ethnic Literature (4)
- History 108/ETHN 112A. History of Native Americans in the United States (4)
- History 114. California History (4)
- History 117. History of Los Angeles (4)
- History 124. Asian-American History (4)
Track 2: Internship Opportunities

Students who choose Track 2 will be able to gain a greater depth of knowledge and appreciation for the California cultures curriculum by applying themselves in an academic or community-based setting. The California cultures in comparative perspective staff has established relationships with several institutions and organizations on and off campus in the San Diego area and other parts of the state, to provide undergraduates firsthand experience at applying themselves and engaging in collaborative efforts and service with a network of practitioners. Internships are to be arranged by the Academic Internship Program for up to eight units. The remaining units needed to complete the internship track will consist of upper-division courses from the list under Track 1.
Chemistry and Biochemistry

PROFESSORS

William S. Allison, Ph.D., Emeritus
James R. Arnold, Ph.D., Emeritus
Timothy S. Baker, Ph.D.
F. Thomas Bond, Ph.D., Emeritus
Marjorie C. Caserio, Ph.D., Emerita
Leigh B. Clark, Ph.D., Emeritus
Robert E. Continetti, Ph.D., Chair
John E. Crowell, Ph.D.
Edward A. Dennis, Ph.D.
Jack E. Dixon, Ph.D., Pharmacology
Daniel J. Donoghue, Ph.D., Vice Chair
Russell F. Doolittle, Ph.D., Research Professor
Arthur B. Ellis, Ph.D., Vice Chancellor for Research
Robert C. Fahey, Ph.D., Research Professor
Marye Anne Fox, Ph.D., Chancellor
Gourisankar Ghosh, Ph.D.
Partho Ghosh, Ph.D.
Elvin Harper, Ph.D., Emeritus
Anthony D. J. Haymet, Ph.D., Vice Chancellor for Marine Sciences
David N. Hendrickson, Ph.D.
Patricia A. Jennings, Ph.D.
Simpson Joseph, Ph.D.
David R. Kearns, Ph.D., Emeritus
Elizabeth A. Komives, Ph.D.
Joseph Kraut, Ph.D., Emeritus
Clifford P. Kubiak, Ph.D.
Andrew C. Kummel, Ph.D.
Jack E. Kyte, Ph.D., Emeritus
Katja Lindenberg, Ph.D., Academic Senate Distinguished Teaching Award
Douglas Magde, Ph.D., Vice Chair
Kurt Marti, Ph.D., Research Professor
J. Andrew McCammon, Ph.D.
Trevor C. McMorris, Ph.D., Emeritus
Mario J. Molina, Ph.D.
Tadeusz F. Molinski, Ph.D.
Xuong Nguyen-Huu, Ph.D., Research Professor
K.C. Nicolaou, Ph.D.
Joseph M. O’Connor, Ph.D.
Hans K. Oesterreicher, Ph.D., Emeritus
Stanley J. Opella, Ph.D.
Charles L. Perrin, Ph.D., Academic Senate Distinguished Teaching Award
Kimberly A. Prather, Ph.D.
Michael J. Sailor, Ph.D.
Gerhard N. Schrauzer, Ph.D., Emeritus
Kurt E. Shuler, Ph.D., Emeritus
Amitabha Sinha, Ph.D.
Susan S. Taylor, Ph.D.
Emmanuel A. Theodorakis, Ph.D.
Mark H. Thiemens, Ph.D., Dean, Division of Physical Sciences
Yitzhak Tor, Ph.D.
William C. Troger, Ph.D.
Roger Y. Tsien, Ph.D.
Robert H. Tukey, Ph.D.
Joseph W. Watson, Ph.D., Emeritus
John H. Weare, Ph.D.

PROFESSOR-IN-RESIDENCE

Arnold L. Rheingold, Ph.D.

SENIOR LECTURER (SOE)

Barbara A. Sawrey, Ph.D., Associate Vice Chancellor for Undergraduate Education, Academic Senate Distinguished Teaching Award

ASSOCIATE PROFESSORS

Michael D. Burkart, Ph.D.
Seth M. Cohen, Ph.D.
Alexander Hoffmann, Ph.D.
Wei Wang, Ph.D.
Judy E. Kim, Ph.D.
Ulrich F. Müller, Ph.D.
Terunaga Nakagawa, M.D., Ph.D.
Francesco Paesani, Ph.D.
Michael Tauber, Ph.D.
F. Akif Tezcan, Ph.D.
Navtej Toor, Ph.D.
Hector Viadiu, Ph.D.
Leor S. Weinberger, Ph.D.

LECTURER (SOE)

Haim Weizman, Ph.D., Academic Senate Distinguished Teaching Award

ASSISTANT PROFESSORS

Timothy H. Bertram, Ph.D.
Pieter Dorrestein, Ph.D.
Joshua S. Figueroa, Ph.D.
Michael Galperin, Ph.D.
Nathan C. Gianneschi, Ph.D.
Thomas C. Hermann, Ph.D.
Judy E. Kim, Ph.D.
Ulrich F. Müller, Ph.D.
Terunaga Nakagawa, M.D., Ph.D.
Francesco Paesani, Ph.D.
Michael Tauber, Ph.D.
F. Akif Tezcan, Ph.D.
Navtej Toor, Ph.D.
Hector Viadiu, Ph.D.
Leor S. Weinberger, Ph.D.

LECTURERS (PSOE)

Stacey Brydges, Ph.D.
John Czworkowski, Ph.D.
Robert Pomeroy, Ph.D.

ADJUNCT PROFESSORS

John E. Johnson, Ph.D.
John M. Newsam, Ph.D.
Joseph P. Noel, Ph.D.
Lei Wang, Ph.D.
John Wooley, Ph.D., Associate Vice Chancellor for Research

Chair’s Office:
2040 Urey Hall Addition
(858) 534-3575
http://www.chem.ucsd.edu

Undergraduate Student Affairs
4010 York Hall, Revelle College
(858) 534-0220
(858) 534-6870

INTRODUCTION

The UC San Diego Department of Chemistry and Biochemistry was founded in the 1950s by the late Professor Harold Urey and a group of colleagues who strove to create a department that would stress the fundamentals of chemistry and, at the same time, embrace diverse applications of those principles at the frontiers of knowledge.

Degrees offered include

Biochemistry

- B.S. biochemistry/chemistry
- M.S. chemistry
- Ph.D. chemistry
- Ph.D. chemistry with specialization in bioinformatics

Chemistry

- B.S. biochemistry/chemistry
- B.S. bioinformatics from the Department of Chemistry and Biochemistry
- B.S. chemical education
- B.S. chemical physics
- B.S. chemistry
- B.S. environmental chemistry
- B.S. molecular synthesis
- B.S. pharmacological chemistry
- M.S. chemistry
- Ph.D. chemistry
- Ph.D. chemistry with specialization in bioinformatics
- Ph.D. chemistry with specialization in computational science
- Ph.D. chemistry with specialization in multi-scale biology

CHEMISTRY-PREMEDICAL MAJORS

Either a biochemistry/chemistry major or a chemistry major with appropriate choice of electives provides a strong background for students intending to pursue careers in the medical sciences.

Premedical students are encouraged to complete the three-quarter general chemistry series (Chem. 6A-B-C or 6AH-6BH-6CH) in their first year. Most medical schools require a full year of general chemistry, and may not accept Advanced Placement exam scores to satisfy admissions requirements. Students with Advanced Placement exam scores of 4 or 5 who plan to attend medical school should discuss their academic plan with an academic or career advisor early in their academic career. Students should complete the organic chemistry series (Chem. 140A-B-C) in their sophomore year.

Graduate Student Affairs
4010 York Hall, Revelle College
(858) 534-6871
The lower-division biology (BILD 1-2-3) series or equivalent is also required for most medical schools, along with certain upper-division biology courses, some of which may be counted toward the major requirements in chemistry. Students should meet with the department’s undergraduate advisor early in order to plan their courses and discuss their options.

GENERAL CHEMISTRY

The General Chemistry Chem. 6 sequence (6A-B-C) is intended for science and engineering majors as well as others who need a quantitative course. It satisfies all preprofessional programs. Chem. 4 is a one-quarter preparation course for 6A, which should be taken only by those whose college advisor so recommends. The Honors General Chemistry sequence (6AH-6BH-6CH) is designed for science and engineering majors with strong preparation in science and mathematics. A student intending to major in chemistry can thus begin with 4, 6A, or 6AH depending on the level of preparation. A student intending to major in a discipline other than chemistry should consult his or her advisor in the appropriate department to determine which chemistry course is recommended.

Chem. 11, 12, 13 is a terminal sequence for non-science/non-engineering majors. Chem. 15 is a one-quarter survey course suitable for non-science majors. Students should check with their college advisor to determine applicability toward general-education requirements.

GENERAL INFORMATION ON UNDERGRADUATE MAJOR PROGRAMS

The minimum passing grade is a D, though students may not graduate with more than one D grade in upper-division required course work and must maintain a minimum of a 2.0 GPA in the major. All courses for the major, except for independent research (Chem. 196 and 199) and chemistry instruction (Chem. 195), must be taken for a letter grade. Chem. 195, 196, and 199 must be taken on a P/NP basis. All chemistry majors, including transfer students, must complete forty-eight units of upper-division chemistry course work at UCSD and fulfill the campus senior residency requirement.

In addition to the requirements, Math. 20F (required for chemical physics majors) and a course in computer programming are also recommended. Any departure from the requirements outlined below must be approved by petition. This applies to lower- and upper-division requirements.

The suggested programs following each of the major descriptions are only examples. All undergraduate degree programs, unless otherwise noted, are certified by the American Chemical Society.

BIOCHEMISTRY/CHEMISTRY MAJOR

The biochemistry/chemistry major deals with the chemical processes in living organisms, including structure and function of nucleic acids and proteins. It is suitable for those planning to go to graduate school as well as medical, dental, veterinary, and other professional schools. It is also suitable at the bachelor’s level for jobs in the biotechnology or pharmaceutical field. Note the requirement for two advanced elective courses in biochemistry. If one does not wish to take so much biochemistry, one should major in chemistry and use some of the five electives to take the desired number of biochemistry courses.

The following courses must be taken for a letter grade:

LOWER-DIVISION REQUIREMENTS

1. General chemistry including laboratory (Chem. 6A-C or 6AH-CH, and 7L, or equivalent).
2. Calculus (Math. 20A-D, or equivalent).
3. Calculus-based physics including laboratory (Phys. 2A-B and 2D or equivalent, and either 2BL, 2CL or 2DL. Phys. 2CL is recommended and is accessible without Phys. 2C).

UPPER-DIVISION REQUIREMENTS

1. Three quarters of organic chemistry (Chem. 140A, B or BH, C or CH).
2. Two quarters of physical chemistry (Chem. 126-127 recommended, or the equivalent).
3. One quarter of inorganic chemistry (Chem. 120A).
4. Three quarters of biochemistry (Chem. 114A-C).
5. Six laboratory courses (Chem. 100A, 143AH or 143A, 143B, 105A, either 108 or 109 and one additional chemistry lab from the following: Chem. 100B-L, 105B, 108 or 109, 123, 143C, or 143D).
6. Two elective courses from the following list:
7. One additional elective course chosen from among all of the upper-division and graduate courses offered by the Department of Chemistry and Biochemistry (except non-letter-graded courses) or from the following list of courses offered by the Department of Biology (some biology courses will require additional course work to fulfill prerequisites): BICD 100, BICD 110, BICD 140, BIMM 114, BIMM 120, BIPN 100, BIPN 102, BIPN 140. Other electives, including Chem. 195 and Chem. 199, may be arranged by petition.

SUGGESTED PROGRAM FOR BIOCHEMISTRY/CHEMISTRY B.S. MAJOR

Many courses have enforced prerequisites or are offered once per year.

FALL WINTER SPRING

FRESHMAN YEAR
Chem. 6A Chem. 6B Chem. 6C
Math. 20A Math. 20B Math. 20C
BILD 1* BILD 1* BILD 1*

SOPHOMORE YEAR
Chem. 100A Chem. 140A Chem. 140C
Chem. 140A Chem. 143AH Chem. 143B
Math. 20D Phys. 2B Phys. 2D
Phys. 2A

JUNIOR YEAR
Chem. 114A Chem. 114B Chem. 105A
Chem. 127 Chem. 126 Chem. 114C
Phys. 2CL

SENIOR YEAR
Chem. 120A Elective Lab** Elective Lab**
Elective Elective Elective

**Recommended, but not required.

**One of these must be Chem. 108 or 109.

BIOINFORMATICS MAJOR FROM THE DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

Also see the program information listed under “Bioinformatics” in the catalog.

The Bioinformatics major offers a rigorous, interdisciplinary training in the new and rapidly evolving field of bioinformatics with a strong focus on chemistry and biochemistry. Bioinformatics is the field of advanced computational and experimental methods that model the flow of information (genetic, metabolic, and regulatory) in living systems to provide an integrated understanding of the systems properties of model organisms. This is a new and rapidly evolving field in which large volumes of both qualitative and quantitative data will accrue at an increasing pace, and the bioinformatician must have a substantial mastery of both the sciences and engineering. This interdisciplinary specialization will be offered jointly with computer science and engineering, bioengineering, and biological sciences, each with its own set of requirements and electives. The program offered by the Department of Chemistry and Biochemistry is aimed at a student interested in applying and developing tools of bioinformatics for the study of chemical processes in biological systems.

ADMISSION TO THE BIOINFORMATICS MAJOR

Freshmen and transfer students are invited to declare to the Department of Chemistry and Biochemistry for a bioinformatics major. Starting fall 2008 the Department of Chemistry and Biochemistry has removed the “Impacted/Closed Status” and admission restrictions for freshmen and transfer applicants to the bioinformatics major. This means the Department of Chemistry and Biochemistry will accept all students that apply to the B.S. Bioinformatics major and are admitted by the UC San Diego Admissions Office.

Furthermore, freshmen and transfer students that start at UC San Diego as undeclared or another major may also switch into the B.S. Bioinformatics major in the Department of Chemistry and Biochemistry (major code CH37), via the Major/Minor link under Tools at http://tritonlink.ucsd.edu to make this change.

It is strongly recommended that students meet with an advisor in the Department of Chemistry and Biochemistry to discuss requirements for the Bioinformatics Program.

LOWER-DIVISION REQUIREMENTS

2. General chemistry including laboratory (Chem. 6A-C or 6AH-CH, and 7L).
3. Physics (Phys. 2A-B)
4. Biology (BILD 1-2)
5. Computer programming (CSE 11-12)
6. Mathematics for algorithm and systems (CSE 21/ Math. 15B)
7. Bioinformatics seminar (BILD 94)

The department recommends that students complete an introductory C programming course before taking CSE 11 and CSE 12, either in their first year or during the summer between their first and second years.

UPPER-DIVISION REQUIREMENTS

1. Two quarters of organic chemistry (Chem. 140A-B)
2. Organic chemistry (Chem. 140C) or structural biochemistry (Chem. 114A)
3. Metabolic biochemistry (Chem. 114B)
4. Physical chemistry (Chem. 127 accepted, Chem. 131 and 132 recommended)
5. Molecular and cellular biochemistry (Chem. 114D)
6. Two quarters of biochemistry laboratory (Chem. 108-109)
7. Genetics (BICD 100)
8. Cell biology (BICD 110)
9. Two computer science courses (CSE 100 or Math. 176; and CSE 101 or Math. 188)
10. Two additional upper-division electives offered by the Department of Chemistry and Biochemistry (each course must be at least four units) with only one quarter of credit allowed for any given course. Recommended courses are: Chem. 100A, 118, and 143A.

The bioinformatics series comprising the following courses:
11. Molecular sequence analysis (BIMM 181 or CSE 181 or BENG 181)
12. Biological databases (Chem. 182 or BIMM 182 or CSE 182 or BENG 182)
13. Applied genomic technologies (BENG 183)
14. Computational molecular biology (BIMM 184 or CSE 184 or BENG 184 or Chem. 184)
15. Bioinformatics lab (BIMM 185)
16. Probability and statistics (Math. 186)

SUGGESTED PROGRAM FOR THE BIOINFORMATICS B.S. FROM THE DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

Many courses have enforced prerequisites or are offered once per year.

FALL
- Chem. 6A
- CSE 11

WINTER
- Chem. 6B
- Chem. 108*

SPRING
- Chem. 6C
- Chem. 109*

UPPER-DIVISION REQUIREMENTS

1. Two quarters of organic chemistry (Chem. 140A-B).
2. Two quarters of physical chemistry (Chem. 126-127 recommended, or the equivalent).
3. Three quarters of chemistry for educators (Chem. 187 and two among Chem. 188, Chem. 195 (preferably with Chem. 4), Chem. 196, or Chem. 199).
4. Advanced chemistry (either Chem. 114A or 120A).
5. Three laboratory courses (Chem. 100A, 143AH or 143A, and 105A).
6. Three additional elective course chosen from among Chem. 114A, 114B, 114C, 120A, 140C, 149A, 149B, SIO 102, SIO 103, other upper-division and graduate courses offered by the Department of Chemistry and Biochemistry, or, by petition, from other natural science departments.
7. Three courses from Education Studies (EDS 129A-B-C).

CHEMICAL EDUCATION MAJOR

The chemical education major offers an excellent preparation for teaching physical science in secondary schools, including chemistry, physics, earth science, biology, and mathematics.

Students taking the minimal chemical education program may be admissible as graduate students in chemistry and biochemistry, but are better prepared for admission to teacher education programs at most universities. The ACS-Certified option will ensure admissibility to chemistry graduate programs. This program is also excellent preparation for students interested in a career in science writing.

The program is basically a chemistry major with three courses in chemistry for educators and three courses from Education Studies. Requirements allow some work in earth science and biology or other sciences.

If you are interested in earning a California teaching credential through UCSD, contact Education Studies for information about the prerequisite and professional preparation requirements. It is recommended that you contact Education Studies as early as possible in your academic career.

The following courses must be taken for a letter grade:

LOWER-DIVISION REQUIREMENTS

1. General chemistry including laboratory (Chem. 6A-C or 6AH-CH, and 7L, or equivalent).
2. Calculus (Math. 20A-D, or equivalent).
3. Calculus-based physics including laboratory (Phys. 2A-B and 2D or equivalent, and either 2BL, 2CL or 2DL. Phys. 2CL is recommended and is accessible without Phys. 2C).
4. Biology (BILD 1).
5. Earth Science (SIO 50).
6. Introduction to Chemical Education (Chem. 96).

CHEMICAL PHYSICS MAJOR

The chemical physics major applies the concepts and quantitative methods of physics to the descriptions of atoms and molecules, analyzes matter as a statistical assembly of molecular building blocks, and develops and exploits physical (largely spectroscopic), experimental tools with which to test and refine such theories.
The chemical physics major is designed as a preparation for graduate work in chemistry, physics, or other interdisciplinary areas.

The following courses must be taken for a letter grade:

LOWER-DIVISION REQUIREMENTS

1. General chemistry including laboratory (Chem. 6A-C or 6AH-CH, and 7L, or equivalent).
2. Calculus and linear algebra (Math. 20A-F, or equivalent).
3. Calculus-based physics including laboratory (Phys. 2A-D or equivalent, and either 2BL, 2CL or 2DL. Phys. 2CL is recommended).
4. It is recommended that the above requirements be completed by the end of the sophomore year.

UPPER-DIVISION REQUIREMENTS

1. Two quarters of organic chemistry (Chem. 140A-B).
2. One year of physical chemistry (Chem. 131-133).
3. Two quarters of inorganic chemistry (Chem. 120A-B). Chem. 114A can substitute for Chem. 120B.
4. Six upper-division chemistry labs: Chem. 100A, 100B-BL, 143AH or 143A, 143B or 143C, 105A and one of the following: 105B, 108, 109, 123, 133B, 133C, or 143D.
5. Molecular spectroscopy (Chem. 135).
7. Two quarters of physics (Phys. 110A-B, or Phys. 100A-B).
8. One additional course in physical chemistry or related areas as approved by the department. Chem. 199 may be petitioned.

SUGGESTED PROGRAM FOR CHEMICAL PHYSICS B.S. MAJOR

Many courses have enforced prerequisites or are offered once per year.

FALL WINTER SPRING

FRESHMAN YEAR

- Chem. 6A
- Math. 20A
- **SOBOMORE YEAR**
 - Chem. 140A
 - Math. 20D
 - Phys. 2B
- **JUNIOR YEAR**
 - Chem. 133
 - Chem. 143C
 - Phys. 110A/100A
- **SENIOR YEAR**
 - Chem. 105A
 - Chem. 120A
 - *Chem. 114A (fall or winter quarter) may be substituted.

UPPER-DIVISION REQUIREMENTS

1. Three quarters of organic chemistry (Chem. 140A-C).
2. Three quarters of physical chemistry (Chem. 131–133).
3. Two quarters of inorganic chemistry Chem. (120A-B).
4. One quarter of biochemistry (Chem. 114A).
5. Six laboratory courses (Chem. 100A, 143AH or 143A, 143B, 105A and two of the following: Chem. 100B-BL, 105B, 108, 109, 123, 133C, or 143D).
6. Three additional four-unit upper-division or graduate courses in chemistry and biochemistry or related areas. One of Chem. 195 or 199 may be petitioned.

SUGGESTED PROGRAM FOR CHEMISTRY B.S. MAJOR

Many courses have enforced prerequisites or are offered once per year.

FALL WINTER SPRING

FRESHMAN YEAR

- Chem. 6A
- Math. 20A
- **SOBOMORE YEAR**
 - Chem. 140B
 - Math. 20D
 - Phys. 2B
- **JUNIOR YEAR**
 - Chem. 133
 - Chem. 143C
 - Phys. 110A/100A
- **SENIOR YEAR**
 - Chem. 105A
 - Chem. 120A
 - *Chem. 114A (fall or winter quarter) may be substituted.

UPPER-DIVISION REQUIREMENTS

1. Three quarters of organic chemistry (Chem. 140A-C).
2. Three quarters of physical chemistry (Chem. 131–133).
3. Two quarters of inorganic chemistry Chem. (120A-B).
4. One quarter of biochemistry (Chem. 114A).
5. Six laboratory courses (Chem. 100A, 143AH or 143A, 143B, 105A and two of the following: Chem. 100B-BL, 105B, 108, 109, 123, 133C, or 143D).
6. Three additional four-unit upper-division or graduate courses in chemistry and biochemistry or related areas. One of Chem. 195 or 199 may be petitioned.

SUGGESTED PROGRAM FOR ENVIRONMENTAL CHEMISTRY B.A. OR B.S. MAJOR (B.S. AND ACS CERTIFICATION REQUIRE ADDITIONAL COURSES)

Many courses have enforced prerequisites or are offered once per year.

FALL WINTER SPRING

FRESHMAN YEAR

- Chem. 6A
- Math. 20A
- **SOBOMORE YEAR**
 - Chem. 140B
 - Math. 20D
 - Phys. 2B
- **JUNIOR YEAR**
 - Chem. 133
 - Chem. 143C
 - Phys. 110A/100A
- **SENIOR YEAR**
 - Chem. 105A
 - Chem. 120A
 - *Chem. 114A (fall or winter quarter) may be substituted.

ENVIRONMENTAL CHEMISTRY MAJOR

Students have an option of earning a B.S. in environmental chemistry that is ACS-Certified or not. The ACS-Certified version is recommended for those who intend to apply to graduate school in chemistry. The noncertified program is designed to prepare students to enter the industrial, governmental, or legal workforce, or to continue studies in some of the environmental sciences.

The following courses must be taken for a letter grade, except where that is not permitted:

LOWER-DIVISION REQUIREMENTS

1. General chemistry including laboratory (Chem. 6A-C or 6AH-CH, and 7L, or equivalent).
2. Calculus (Math. 20A-D, or equivalent).
3. Calculus-based physics including laboratory (Phys. 2A-B and 2D or equivalent, and either 2BL, 2CL or 2DL. Phys. 2CL is recommended and is accessible without Phys. 2C).

UPPER-DIVISION REQUIREMENTS

1. Two quarters of organic chemistry (Chem. 140A-B).
2. Physical chemistry (Chem. 131-133 recommended, or Chem. 126-127).
3. Four advanced laboratory courses (Chem. 100A, 100B-BL, 105A, and 143AH or 143A).
4. Two quarters of environmental chemistry (Chem. 149A-B).
5. Atmospheric chemistry (Chem. 173) and marine chemistry (Chem. 174).
6. Electives: Any four with at least two upper-division among: Chem. 114A, 120A, 140C, 140C, 166, BILD 1, 2, 3, BIEB 121, 140, 144, 176, EYS 101, SIO 50, 101, 102, 103, 144, Math. 183, or others (including labs) by petition. One of 195 or 199 by petition.

For ACS Certification

1. Increase electives by one to a total of five.
2. For three of the electives, choose Chem. 140C, 114A, and 120A.
3. For two of the electives, choose two labs from among Chem. 143B, 143C, 143D, 108, 109, 123, 105B.

Recommended, but not Required, Electives

- Non-science elective courses used to meet general-education requirements or as free electives might be chosen from among Econ. 1, 2, 3, 131, 132, HIUS 154, Phil. 148, 164, Poli. Sci. 10, 160A, 162, Soc. 185, USP 2, 124, 144, 171.

SUGGESTED PROGRAM FOR ENVIRONMENTAL CHEMISTRY B.A. OR B.S. MAJOR (B.S. AND ACS CERTIFICATION REQUIRE ADDITIONAL COURSES)

Many courses have enforced prerequisites or are offered once per year.

FALL WINTER SPRING

FRESHMAN YEAR

- Chem. 6A
- Math. 20A
- **SOBOMORE YEAR**
 - Chem. 140B
 - Math. 20D
 - Phys. 2B
- **JUNIOR YEAR**
 - Chem. 133
 - Chem. 143C
 - Phys. 110A/100A
- **SENIOR YEAR**
 - Chem. 105A
 - Chem. 120A
 - *Chem. 114A (fall or winter quarter) may be substituted.

CHEMISTRY MAJOR

The chemistry major provides a broad introduction for the biochemical, organic, physical, or inorganic student as well as those who prefer not to specialize. This major will enable a student to pursue further studies in chemistry or in related fields of science, medicine, or engineering.

The following courses must be taken for a letter grade:

LOWER-DIVISION REQUIREMENTS

1. General chemistry including laboratory (Chem. 6A-C or 6AH-CH, and 7L, or equivalent).
2. Calculus (Math. 20A-D, or equivalent).
3. Calculus-based physics including laboratory (Phys. 2A-B and 2D or equivalent, and either 2BL, 2CL or 2DL. Phys. 2CL is recommended and is accessible without Phys. 2C).
Chem. 140A Math. 20D Phys. 2D
Chem. 143AH Phys. 2B

JUNIOR YEAR
Chem. 133 Chem. 131
Chem. 149A Chem. 132
Elective Elective
Chem. 173

SENIOR YEAR
Chem. 105A Chem. 100B-BL
Elective Chem. 174

MOLECULAR SYNTHESIS MAJOR

The molecular synthesis major offers a thorough training in all aspects of the molecular synthesis of organic, inorganic, and biological substances, and with a fundamental understanding of their structure and reactivity. This major provides an excellent preparation for employment in biotechnology, diagnostic, electronic, and pharmaceutical enterprises as well as for graduate programs in organic, bioorganic, and inorganic chemistry.

The following courses must be taken for a letter grade:

LOWER-DIVISION REQUIREMENTS

1. General chemistry including laboratory (Chem. 6A-6C or 6AH-CH and 7L, or equivalent)
2. Calculus (Math. 20A-D, or equivalent).
3. Calculus-based physics including laboratory (Phys. 2A-B and 2D or equivalent, and either 2BL, 2CL or 2DL. Phys. 2CL is recommended and is accessible without Phys. 2C).

UPPER-DIVISION REQUIREMENTS

1. Three quarters of organic chemistry (Chem. 140A-C).
2. Three quarters of physical chemistry (Chem. 126-129 or 132, or BIPN 105 or BIMM 121). Alternatively, a year of biology with laboratory at a community college may be petitioned.
3. Two quarters of inorganic chemistry (Chem. 120A-B).
4. One quarter of biochemistry (Chem. 114A).
5. Six laboratory courses (Chem. 100A, 143A or 143AH, 143B, 143C, or 143D, 105A, and 123).
7. Structural or mechanistic organic chemistry (Chem. 154 or 156).
8. Bioorganic or bioinorganic chemistry (Chem. 124 or 157).
9. One additional course from the following: Chem. 114B, 114C, 115, 185, or 199.

SUGGESTED PROGRAM FOR MOLECULAR SYNTHESIS B.S. MAJOR

Many courses have enforced prerequisites or are offered once per year.

FALL WINTER SPRING

FRESHMAN YEAR
Chem. 6A Chem. 6B Chem. 6C
Math. 20A Math. 20B Math. 20C

SOPHOMORE YEAR
Chem. 100A Chem. 140B Chem. 140C
Chem. 140A Chem. 143AH Chem. 143B
Math. 20D Phys. 2B Phys. 2CL
Phys. 2A Phys. 2D

JUNIOR YEAR
Chem. 120A Chem. 120B Chem. 105A
Chem. 133 Chem. 123 Chem. 132
Chem. 143C Chem. 131

SENIOR YEAR
Chem. 114A Chem. 154/156 Chem. 107/124/157
Chem. 152 Elective

*Chem. 143D may be substituted.

PHARMACOLOGICAL CHEMISTRY MAJOR

The pharmacological chemistry major provides a strong background in chemistry and includes most courses required by California pharmacy schools. The major is intended primarily to prepare students for pharmacy school (Pharm.D.). Students fulfilling their elective requirements with appropriate courses would be prepared for graduate school to obtain a Ph.D. in pharmacology, biochemistry, or other areas of science. Degree recipients would also be prepared for most jobs in the biotechnology and chemical industries.

Pharmacological chemistry students are strongly encouraged to complete a full year of general chemistry and a full year of lower-division biology. As with some medical programs, some pharmacy programs may require a full year of these courses and may not accept tests such as the Advanced Placement exam without Phys. 2C.

The following courses must be taken for a letter grade:

LOWER-DIVISION REQUIREMENTS

1. Biology (BILD 1, 2 and 3, and either BICD 101, 111, 131, or BIPN 105 or BIMM 121). Alternatively, a year of biology with laboratory at a community college may be petitioned.
2. General chemistry including laboratory (Chem. 6A-C or 6AH-CH, and Chem. 7L, or equivalent).
3. Calculus-based physics including laboratory. (Phys. 2A-B and 2D or equivalent, and either 2BL, 2CL or 2DL. Phys. 2CL is recommended and is usually the course required by pharmacy schools. It is accessible without Phys. 2C).
4. Calculus (Math. 20A-D, or equivalent).
5. Economics (Econ. 1 or 3 or equivalent).
6. Pharmacology seminar (Chem. 92).

Most California pharmacy schools require a course in public speaking for admission to the school. Students planning to apply to these programs should take Public Speaking, TDGE 25, or equivalent.

HONORS PROGRAM

The Department of Chemistry and Biochemistry offers an Honors Program to those students who have demonstrated excellence in any of the nine majors. Students are eligible for Departmental Honors at graduation when they have
1. Achieved a GPA of 3.2 overall and 3.4 in chemistry courses.
2. Completed a minimum of eight units of Chem. 199, distributed over at least two quarters. A student who registers for 199 and subsequently fails to complete the Honors Program may be required to do up to four units to any major that normally allows 199 as elective credit. A student who has successfully petitioned to use a Chem 199 course to fulfill elective credit may not use that course to fulfill honors requirements as well.
3. Submitted a final honors research report to three UCSD faculty members, including their research advisor, for approval.

4. Four laboratory courses (Chem. 100A, 143AH or 143A, 143B and either 108, 109, or 143C).
5. One quarter of pharmacology and toxicology (Chem. 118).
6. One chemistry elective course chosen from among the upper-division and graduate courses offered by the Department of Chemistry and Biochemistry (except non-letter graded courses).

If ACS certification is desired, Chem. 120A, plus two additional laboratory courses (Chem. 105A and a lab chosen from Chem. 100B-BL, 105B, 123, or 143C/108/109, if not already taken), are required. Any of these courses would satisfy number 6 above.

SUGGESTED PROGRAM FOR PHARMACOLOGICAL CHEMISTRY B.S. MAJOR (ACS CERTIFICATION REQUIRES ADDITIONAL COURSES)

Many courses have enforced prerequisites or are offered once per year.

FALL WINTER SPRING

FRESHMAN YEAR
Chem. 6A Chem. 6B Chem. 6C
Math. 20A Math. 20B BILD 1

SOPHOMORE YEAR
Chem. 100A Chem. 140B Chem. 140C
Chem. 140A Chem. 143AH Chem. 143B
Math. 20D Phys. 2A Phys. 2B

JUNIOR YEAR
Chem. 114A Chem. 114B Chem. 114C
Phys. 2D Econ. 1/3 BILD 3

SENIOR YEAR
Chem. 127 Chem. 126 Chem. 118
Lab* Bio. lab**

*Chem. 108 or 109 or 143C.
**BICD 101, 111, 131, or BIPN 105 or BIMM 121 (some have prerequisites that must be taken in an earlier quarter).

2010-2011 UC SAN DIEGO GENERAL CATALOG • CHEMISTRY AND BIOCHEMISTRY 5
THE GRADUATE PROGRAMS

Student Affairs Office for more information. The bioinformatics specialization should contact the computational science, and the Ph.D. with specialization.

EXAMINATION Plan students can complete the degree in three quarters. Thesis Plan students typically take eighteen to twenty-four months to graduate.

Relationship to Doctoral Program: Master’s students who wish to continue their studies as doctoral students in chemistry and biochemistry must request to transfer to that program. Application materials are due mid-January and include current letters of recommendation, current UCSD transcript, and statement of purpose. Transfer is for fall quarter only.

Plan I (Thesis)

Purpose: To prepare students for research careers or for doctoral or professional studies; the emphasis is on research.

Advancement to Candidacy: A minimum of thirty-six units with an overall GPA of 3.0 must be completed. The majority of units taken are for thesis research (Chem. 299). At least eight units of graduate level chemistry courses must be completed for a letter grade. Four units of teaching apprenticeship are required (Chem. 500; see Doctoral Program, Teaching and Language Requirement sections). Contact the Student Affairs Office for full information.

Thesis: Students must give an oral presentation and defense of their thesis project to a Thesis Committee. A student graduates after the thesis has been defended and the written dissertation approved by his or her committee, department, and OGSR, and filed with the University Archivist. The Thesis Committee consists of at least three faculty: (1) the thesis advisor, (2) a faculty member from the Department of Chemistry and Biochemistry familiar with the student’s research area, and (3) a faculty member from either this or another department whose research is in an area different from that of the thesis.

Plan II (Comprehensive Exam)

Purpose: To prepare students for doctoral or professional studies, teaching at the community college or high school level, or sometimes career work in industry; the emphasis is on course work.

Advancement to Candidacy: A minimum of thirty-six units with an overall GPA of 3.0 must be completed. The majority of units taken are in letter-graded graduate chemistry courses. Four units of teaching apprenticeship are required (Chem. 500; see Doctoral Program, Teaching and Language Requirement sections). Four units of nonthesis research (Chem. 297) are allowed. Contact the Student Affairs Office for full information.

Comprehensive Examination: The purpose of this requirement is to confirm that students have achieved an advanced understanding of, and a comprehensive training in, the chemical sciences. The tests cover a wide range of material, so that students will have a chance to show what they have learned. For master’s students, the department administers the standardized American Chemical Society exams in biochemistry and in analytical, inorganic, organic, and physical chemistry. Students must pass three of the five exams in order to graduate. For doctoral students earning the M.S. on the way to the Ph.D., the Departmental Examination fulfills this requirement.

DOCTORAL PROGRAM

The goal of the Ph.D. in chemistry is to prepare students for careers in science by expanding their knowledge of chemistry while developing their ability for critical analysis, creativity, and independent study. The program is designed to encourage initiative and to stimulate enjoyment and development of the student’s area of research expertise as well as the broader aspects of scientific inquiry and enlightenment.

RESEARCH

Students choose their research concentration from programs in biochemistry, biophysics, bioinformatics, inorganic, organic, physical, analytical, and theoretical chemistry, surface and materials chemistry, and atmospheric and environmental chemistry. Opportunities for scientific discovery are also abundant through the department’s extensive collaborations with investigative in the physical, biological, and engineering sciences. This includes on-campus collaborations with faculty in the Materials Science Program, School of Medicine, School of Pharmacy and Pharmaceutical Sciences, and Scripps Institution of Oceanography. There are also off-campus interactions with scientists at nearby research facilities such as the Salk Institute and The Scripps Research Institute. Excellent state-of-the-art facilities and equipment support all the research programs. The department’s Industrial Relations Program interfaces with national and local chemical, biotechnology, and pharmaceutical industries to encourage technology transfer and to assist postgraduates interested in industrial careers.

RESEARCH ADVISOR

A first-year faculty advisor guides students until a research advisor is chosen. Most of a student’s efforts in graduate school are directed toward research for the doctoral dissertation, and selection of a research advisor is of utmost importance. To assist students with this critical decision, all chemistry and biochemistry faculty present research seminars in the fall quarter. Students then rotate in laboratories or consult with faculty to discuss research opportunities. Although students have until the end of the first year to join a laboratory, most start their research studies by mid-year.

PLACEMENT EXAMINATIONS AND COURSE WORK

Entering students take written placement examinations in analytical, biochemistry, inorganic, organic, and physical chemistry. The purposes of these exams are to assist with advising and to assure that students have the breadth and level
of competence needed for graduate studies. Deficiencies must be remedied in the first year. Three of five exams must be passed, including the one in the student's research area.

First-year students normally take at least six of the graduate courses listed below based on the results of their placement examinations, their research programs, and their specialized interests. Chem. 250 and Chem. 500 are required. Undergraduate courses and courses offered through other departments may also be taken, depending on the student's research area. By the second year, the emphasis is on thesis research, and a lighter load of courses is taken, although participation in seminars and informal study groups continues.

DEPARTMENTAL EXAMINATION

In the winter quarter of the second year, a student's progress in research and graduate studies is evaluated through the departmental examination, which includes presentation and critical discussion of a recent research article. Students are also evaluated on their general knowledge of their particular field of study. Students may also be asked about progress on their dissertation.

QUALIFYING EXAMINATION

By the end of the third year, students defend the topic, preliminary findings, and future research plans of their dissertation. Passing this defense qualifies the student to advance to candidacy for the dissertation. A dissertation committee composed of five faculty, one of whom is the research advisor, provides consultation and evaluation for the dissertation project.

DISSERTATION

The dissertation is normally completed in the fourth or fifth year. This body of research is expected to make an innovative contribution to the field of chemistry. Ph.D. candidates present a seminar summarizing their research accomplishments and defend their thesis in an oral examination before their dissertation committee.

TEACHING

Experience in teaching is a vital and integral part of every graduate student's training, and all students participate in the instructional activities of the undergraduate curriculum. Course credit for the teaching apprenticeship is earned by enrolling in Chem. 500. Excellence in teaching is stressed, and the department provides a thorough training program covering the fundamentals of teaching as well as other useful information and techniques for effective instruction. Further training is provided by the campus's Center for Teaching Development. Faculty and the students taught evaluate the performance of teaching assistants every quarter and awards are bestowed annually for outstanding performance as a teaching assistant.

LANGUAGE REQUIREMENT

Students whose native language is not English must demonstrate a mastery of English adequate to complete the teaching requirement. Deficiencies must be remedied by the end of the first year of academic residency. For native English speakers, there is no foreign-language requirement.

TIME LIMITS

In accordance with UCSD policy, students must advance to candidacy by the end of four years. Total university support cannot exceed six and one-third years. Total registered time at UCSD cannot exceed seven and one-third years.

SEMINARS

Seminars by researchers from other universities, national laboratories, and industry are another basic and important aspect of the graduate curriculum. Seminars are presented weekly in biochemistry, inorganic, organic, and physical chemistry. Department colloquia are given on topics of general interest to the department. Seminars are also sponsored by many other departments and institutes.

FINANCIAL SUPPORT

The department supports all first-year students in good academic standing from a variety of sources, including teaching and research assistantships, training grants, fellowships, and awards. A stipend is paid in addition to fees and, if applicable, tuition. Continuing students who do not have fellowships or awards are normally supported on training grants or on research assistantships by their thesis advisors.

ADMISSIONS

The department seeks bright, motivated doctoral students and welcomes all such applications. To make admissions decisions, the department considers an applicant's statement of purpose and research interests, GRE scores on the general test plus either the advanced chemistry or advanced biochemistry test, undergraduate record, quality of the undergraduate university, letters of recommendation, and research experience and publications. Applicants whose native language is not English must also submit TOEFL scores; TWE scores are strongly recommended. Admissions to the doctoral program is for fall quarter. Applications received by mid-January receive priority consideration.

Students who have a master's degree with strong course records and with research experience are encouraged to apply. They normally pass the qualifying examination and graduate at an accelerated pace.

PH.D. IN CHEMISTRY WITH SPECIALIZATION IN COMPUTATIONAL SCIENCE

As of fall 2007, the UCSD campus is offering a new comprehensive Ph.D. specialization in Computational Science that will be available to doctoral candidates in participating programs that span four divisions: Biological Sciences, Physical Sciences, Jacobs School of Engineering, and Health Sciences at UCSD.

The Ph.D. specialization is designed to allow students to obtain standard basic training in their chosen field within the biological sciences, physical sciences, engineering, and health sciences with training in integrative and quantitative analysis across multiple scales of biological organization from molecule to organism in health and disease into their graduate studies. It trains a new cadre of Ph.D. scientists and provides a unique interdisciplinary education at the interfaces between the biological, medical, physical, and engineering sciences. (See the Department of Chemistry & Biochemistry for more information.)

JOINT DOCTORAL PROGRAM WITH SAN DIEGO STATE UNIVERSITY

The Department of Chemistry and Biochemistry at UCSD and the Department of Chemistry at San Diego State University offer a joint program of graduate study leading to the Ph.D. degree in chemistry. More information is available in the current edition of the Bulletin of the Graduate Division of San Diego State University.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LOWER-DIVISION

4. Basic Chemistry (4)
Chemistry 4 is a one-quarter course for science majors with insufficient preparation to start the Chem. 6 sequence. Emphasis is on learning how to solve quantitative problems. Topics include nomenclature, stoichiometry, and the periodic table. Cannot be taken for credit after any other chemistry course. Includes a laboratory/discussion each week. (F)

6A. General Chemistry I (4)
First quarter of a three-quarter sequence intended for science and engineering majors. Topics include: atomic theory, bonding, molecular geometry, stoichiometry, gas laws, solids and solutions, and thermochmistry. (F,W,S)

6AH. Honors General Chemistry I (4)
First quarter of a three-quarter honors sequence intended for well-prepared science and engineering majors. Topics are similar to those in 6A but are taught at a higher level and faster pace. Students completing 6AH may not subsequently take 6A for credit. (F)

6B. General Chemistry II (4)
Second quarter of a three-quarter sequence intended for science and engineering majors. Topics include: three laws of thermodynamics, physical equilibria, chemical equilibria, acids and bases, solubility. Prerequisites: Chem. 6A or 6AH, Math. 10A or 20A. (F,W,S)
6BH. Honors General Chemistry II (4)
Second quarter of a three-quarter honors sequence intended for well-prepared science and engineering majors. Topics include: chemical equilibrium, acids and bases, and thermodynamics. Three hours lecture and one hour recitation. Students completing 6BH may not subsequently take 6B for credit. **Prerequisites:** Chem. 6AH and Math. 20A. (W)

6C. General Chemistry III (4)
Third quarter of a three-quarter sequence intended for science and engineering majors. Topics include: electrochemistry, kinetics, coordination chemistry, nuclear chemistry, and an introduction to organic and biochemistry. **Prerequisites:** 6A or 6BH. (F,WS)

6CH. Honors General Chemistry III (4)
Third quarter of a three-quarter honors sequence intended for well-prepared science and engineering majors. Topics are similar to those in 6C but are taught at a higher level and faster pace. Students completing 6CH may not subsequently take 6C for credit. **Prerequisites:** Chem. 6B and Math. 20B. (S)

7L. General Chemistry Laboratory (4)
Condenses a year of introductory training in analytical, inorganic, physical, and synthetic techniques into one intensive quarter. A materials fee is required. A mandatory safety exam must be passed. **Prerequisites:** Chem. 6B or Chem. 6BH. (F,WS)

11. The Periodic Table (4)
Introduction to the periodic table of atoms and small inorganic molecules. Intended for nonscience majors. Can be skipped by students with a good knowledge of high school chemistry. Cannot be taken for credit after any other general chemistry course. (F)

12. Molecules and Reactions (4)
Introduction to molecular bonding and structure and chemical reactions, including organic molecules and synthetic polymers. Intended for nonscience majors. **Prerequisite:** Chem. 11 or good knowledge of high school chemistry. Cannot be taken for credit after any organic chemistry course. (W)

13. Chemistry of Life (4)
Introduction to biochemistry for nonscience majors. **Prerequisite:** Chem. 12. Cannot be taken for credit after any biochemistry course. (S)

15. Chemistry of the Universe (4)
This is a one-quarter, nonmathematical chemistry course for nonscience majors covering the origin of the universe, the elements, and the formation of the solar system. The evolution of the Earth’s atmosphere, hydrosphere, geosphere, and biosphere will be covered, as well as contemporary problems in environmental chemistry. Cannot be taken for credit after any other chemistry course. (S)

87. Freshman Seminar in Chemistry and Biochemistry (1)
This seminar will present topics in chemistry at a level appropriate for first-year students. (S)

90. Undergraduate Seminar (1)
The seminar will focus on a variety of issues and special areas in the field of chemistry. (S)

91. Undergraduate Honors Seminar (1)
A seminar intended for exposing undergraduate students, especially freshmen and sophomores, to exciting research programs conducted by the faculty. Enrollment is limited. (S)

92. Undergraduate Pharmacology Seminar (1)
Selected topics in pharmacology and toxicology. (S)

96. Introduction to Teaching Science (2)
(Cross-listed with EDS 31.) Explores routine challenges and exceptional difficulties students often have in learning science. Prepares students to make meaningful observations of how K–12 teachers deal with difficulties. Explores strategies that teachers may use to pose problems that stimulate students’ intellectual curiosity. (S)

99. Independent Study (2 or 4)
Independent literature or laboratory research by arrangement with and under the direction of a member of the Department of Chemistry and Biochemistry faculty. Students must register on a P/NP basis. **Prerequisites:** lower-division standing, 3.0 minimum UCSD GPA, consent of instructor and department, completion of thirty units of undergraduate study at UCSD, completed and approved Special Studies form. (S)

99R. Independent Study (1)
Independent study or research under the direction of a member of the faculty. Student must be of first year standing and a Regent’s Scholar; approved Special Studies form. (S)

UPPER-DIVISION

100A. Analytical Chemistry Laboratory (4)
Laboratory course emphasizing classical quantitative chemical analysis techniques, including separation and gravimetric methods, as well as an introduction to instrumental analysis. **Prerequisites:** Chem. 6C or 6CH or equivalent; Phys. 2C1L or 2BL recommended. A materials fee is required for this course. A mandatory safety exam must be passed within the first two weeks. (F,WS)

100B. Fundamentals of Instrumental Analysis (2)
Fundamental theoretical principles, capabilities, applications, and limitations of modern analytical instrumentation used in biological and chemical analysis. Students will learn how to define the nature of an analytical problem and how to select and appropriate analytical method. **Prerequisites:** Chem. 100A or graduate standing, and Phys. 2A-B-D or equivalent; Phys. 2CL or 2BL recommended. (Note: Students may not receive credit for both Chem. 100B and Chem. 106C.) (F,WS)

100BL. Instrumental Analysis Laboratory (3)
Hands-on laboratory course focuses on the development of correct laboratory work habits and methodologies for the operation of modern analytical instrumentation. Gas chromatography, gas chromatography-mass spectrometry, high performance liquid chromatography, ion chromatography, atomic absorption spectroscopy. Chem. 100BL is for undergraduates only. **Prerequisites:** Chem. 100A; Phys. 2A-2B-2D, or equivalent; concurrent enrollment with Chem. 100B. (Note: Students may not receive credit for both Chem. 100B and Chem. 106C.) (F,WS)

104. Introduction to X-ray Crystallography (4)
(Conjoined with Chem. 204.) Analysis of macromolecular structures by X-ray diffraction. Topics include symmetry, geometry of diffraction, detection of diffraction, intensity of diffracted waves, phase problem and its solution, heavy atom method, isomorphous replacement, anomalous dispersion phasing methods (MAD), direct methods, molecular replacement. **Prerequisites:** Phys. 2A-B. (W,FS)

105A. Physical Chemistry Laboratory (4)
Laboratory course in experimental physical chemistry. **Prerequisites:** Chem. 100A and Phys. 2CL, Chem. 126 or 127 or 131 or 133. A materials fee is required for this course. (F,WS)

105B. Physical Chemistry Laboratory (4)
Laboratory course in experimental physical chemistry. **Prerequisite:** Chem. 105A. A materials fee is required for this course. (F,WS)

108. Protein Biochemistry Laboratory (6)
The application of techniques to study protein structure and function, including electrophoresis, protein purification, column chromatography, enzyme kinetics, and immunohemochemistry. **Prerequisites:** Chem. 143A and Chem. 114A. (Note: Formerly Chem. 112A. Students may not receive credit for both Chem. 108 and BIBC 103.) A materials fee may be required for this course. (F,WS)

109. Recombinant DNA Laboratory (6)
This laboratory will introduce students to the tools of molecular biology and will involve experiments with recombinant DNA techniques. **Prerequisites:** Chem. 143A and Chem. 114A. (Note: Formerly Chem. 112B. Students may not receive credit for both Chem. 109 and BIBC 101D.) A materials fee may be required for this course. (S)

113. Physical Chemistry of Biological Macromolecules (4)
(Conjoined with Chem. 213.) A discussion of the physical principles governing biological macromolecular structure and function, and the physicochemical experiments used to probe their structure and function. Chem. 213 students will be required to complete an additional paper and/or exam beyond that expected of students in Chem. 113. **Prerequisites:** Chem. 140C or 140CH; and Chem. 127 or 131 (113); or graduate standing (213).

114A. Biochemical Structure and Function (4)
Introduction to biochemistry from a structural and functional viewpoint. **Prerequisites:** Chem. 140A. (Note: Students may not receive credit for both Chem. 114A and BIBC 100.) (F,WS)

114B. Biochemical Energetics and Metabolism (4)
This course is an introduction to the metabolic reactions in the cell which produce and utilize energy. The course material will include energy-producing pathways: glycolysis, Krebs cycle, oxidative phosphorylation, fatty-acid oxidation. Biosynthesis of amino acids, lipids, carbohydrates, purines, pyrimidines, proteins, nucleic acids. **Prerequisite:** Chem. 114A or BIBC 100. (Note: Students may not receive credit for both Chem. 114B and BIBC 100.) (F,WS)

114C. Biosynthesis of Macromolecules (4)
Mechanisms of biosynthesis—particularly proteins and nucleic acids. Emphasis is on how these processes are controlled and integrated with metabolism of the cell. **Prerequisite:** Chem. 114A or BIBC 100. (Note: Students may not receive credit for both Chem. 114C and BIBC 100.) (S)

114D. Molecular and Cellular Biochemistry (4)
(Conjoined with Chem. 214.) This course represents a continuation of 114C, or an introductory course for first- and second-year graduate students, and covers topics in molecular and cellular biochemistry. Emphasis will be placed on contemporary approaches to the isolation and characterization of mammalian genes and proteins, and molecular genetic approaches to understanding eukaryotic development and human disease. Chem. 214 students will be required to complete additional course work beyond the required undergraduate curriculum. **Prerequisites:** Chem. 114A–C or consent of instructor. (May not be offered every year.)

116. Chemistry of Enzyme Catalyzed Reactions (4)
A discussion of the chemistry of representative enzyme catalyzed reactions is presented. Enzyme reaction mechanisms and their relation to enzyme structure are emphasized. **Prerequisites:** Chem. 140C or 140CH, and Chem. 114A. (May not be offered every year.)

118. Pharmacology and Toxicology (4)
A survey of the biochemical action of drugs and toxins as well as their absorption and excretion. **Prerequisites:** Chem. 140C or 140CH; and Chem. 114A and 114B, or consent of instructor. Priority will be given to Pharmacological Chemistry majors. (S)

120A. Inorganic Chemistry I (4)
The chemistry of the main group elements in terms of atomic structure, ionic and covalent bonding, Structural theory involving s, p, and unfilled d orbitals. Thermodynamic and spectroscopic criteria for structure and stability of compounds and chemical reactions of main group elements in terms of molecular structure and reactivity. **Prerequisites:** Chem. 6C or 6CH and Chem. 140A. (S,FS)

120B. Inorganic Chemistry II (4)
A continuation of the discussion of structure, bonding, and reactivity with emphasis on transition metals and other elements using filled d orbitals to form bonds. Coordination chemistry in terms of valence bond, crystal field, and molecular orbital theory to enzyme structure and reactivities of transition metal complexes including organometallic compounds. **Prerequisite:** Chem. 120A. (W)

123. Advanced Inorganic Chemistry Laboratory (4)
Synthesis, analysis, and physical characterization of inorganic chemical compounds. A materials fee is required for this course. **Prerequisites:** Chem. 120A and 143AH or 143A. (WS)
124. Bioorganic Chemistry (4)
(Conjoined with Chem. 225.) The roles of metal ions in biological systems, with emphasis on transition metal ions in enzymes that transfer electrons, bind oxygen, and fix nitrogen. Also included are metal complexes in medicine, toxicity, and metal ion storage and transport. Chem. 225 students will be required to complete an additional paper and/or exam beyond that expected of students in Chem. 124. Prerequisite: Chem. 114A or 120A or graduate standing. (May not be offered every year.)

126. Physical Chemistry (4)
An introduction to physical chemistry with emphasis on biochemistry and environmental applications. Thermodynamics, first and second laws, thermodynamics, chemical equilibrium, solutions, kinetic theory, reaction kinetics. Prerequisite: Chem. 6C or 6CH, and Math. 20C. (F)

131. Physical Chemistry (4)
Thermodynamics, chemical equilibrium, phase equilibrium, chemistry of solutions. Prerequisites: Math. 20C or 21C, and Phys. 2B. Recommended: Math. 20D or 21D, and Phys. 2D. (W)

132. Physical Chemistry (4)
Chemical statistics, kinetic theory, reaction kinetics. Prerequisites: Math. 20D or 21D, Phys. 2B, and Chem. 131. (S)

133. Physical Chemistry (4)
Quantum mechanics, atomic and molecular spectroscopy, molecular structure. Prerequisites: Chem. 132 and Phys. 2D; or Chem. 2C, Math. 20D or 21D, Math. 20F, and Phys. 2AB; or consent of instructor. (F)

135. Molecular Spectroscopy (4)
(Conjoined with Chem. 235.) Time-dependent behavior of systems; interaction of matter with light; selection rules. Radiative and nonradiative processes, coherent phenomena, and the density matrices. Instrumentation, measurement, and interpretation. Chem. 235 students will be required to complete additional course work beyond that expected of students in Chem. 135. Prerequisites: Chem. 133 or equivalent; Math. 20D or 21D, or Chem. 190/290. (May not be offered every year.)

140A. Organic Chemistry I (4)
Introduction to organic chemistry, with applications to biochemistry. Bonding theory, isomerism, stereochemistry, chemical and physical properties. Introduction to substitution, addition, and elimination reactions. Students may not receive credit for both Chem. 140A and Chem. 141A. Prerequisite: Chem. 6C or equivalent course in general chemistry. (F,WS)

140B. Organic Chemistry II (4)
Continuation of Organic Chemistry I, 140A. Methods of analysis, chemistry of hydrocarbons, chemistry of the carbon-carbon bond. Introduction to the reactions of biologically important molecules. Students may not receive credit for both Chem. 141B and Chem. 140B. Prerequisite: Chem. 140A (a grade of C or higher in Chem. 140A is strongly recommended). (F,WS)

140CH. Honors Organic Chemistry (4)
Continuation of Organic Chemistry 140B or 140BH, at honors level. Chemistry of carboxylic acids, carbohydrates, proteins, lipids, biopolymers, natural products. Emphasis on mechanistic aspects and structure-reactivity relationships. Prerequisites: Grade of B+ or higher in Chem. 140B, or B– higher in Chem. 140BH.

143A. Organic Chemistry Laboratory (4)
Introduction to organic laboratory techniques. Separation, and purification, spectroscopy, product analysis, and effects of reaction conditions. Prerequisites: Chem. 6L and Chem. 140A or Chem. 141A. A materials fee is required. A mandatory safety exam must be passed within the first two weeks. (Note: Students may not receive credit for both Chem. 143A and Chem. 143AH. (F,WS)

143AH. Honors Organic Chemistry Laboratory (4)
Organic chemistry laboratory for chemistry majors and other honors-level students with strong background in Chem. 140A. Similar to Chem. 143A, but emphasizes instrumental methods of product identification, separation, and analysis. Prerequisites: Chem. 6L and B or better grade in Chem. 140A. A materials fee is required. A mandatory safety exam must be passed within the first two weeks. (Note: Students may not receive credit for both Chem. 143A and Chem. 143AH.) (W)

143B. Organic Chemistry Laboratory (4)
Continuation of Chem. 143AH or 143A, emphasizing synthetic methods of organic chemistry. Prerequisites: Chem. 143AH or Chem. 143A, Chem. 140B (may be taken concurrently). Enrollment is limited to majors in the Department of Chemistry and Biochemistry, unless space is available. A materials fee is required for this course. (WS)

143C. Organic Chemistry Laboratory (5)
Identification of unknown organic compounds by a combination of chemical and physical techniques. This course is intended for chemistry majors only. Prerequisites: Chem. 143A or 100A and Chem. 143AH or equivalent (may be taken concurrently); 143B recommended. A materials fee is required for this course. (F)

143D. Molecular Design and Synthesis (4)
Advanced organic synthesis. Relationships between molecular structure and reactivity using modern synthetic methods and advanced instrumentation. Stresses importance of molecular design, optimized reaction conditions for development of practically useful synthesis, and problem-solving skills. Prerequisites: Chem. 140C and Chem. 143B. A materials fee is required for this course. (S)

146. Kinetics and Mechanism of Organic Reactions (4)
(Conjoined with Chem. 246.) Methodology of mechanistic organic chemistry; integration of rate expression, determination of rate constant, transition state theory, rate and activation energy relationships; product studies, stereochemistry; reactive intermediates; rapid reactions. Chem. 246 students will be required to complete an additional term project beyond that expected of students in Chem. 146. Prerequisites: Chem. 140C or 140CH (146) or graduate standing (246). (May not be offered every year.)

149A. Environmental Chemistry (4)
The chemical basis of air and water pollution, chlorofluorocarbons and the ozone hole, the environmental impact of radioactive waste disposal, mineral resource usage, and nuclear energy. Prerequisites: Chem. 6C or 6CH or equivalent. (F)

149B. Environmental Chemistry (4)
Agricultural productivity, biological impact on the environment, deforestation, environmental disasters (fires, nuclear winter, and volcanoes), and organic waste handling. Prerequisite: Chem. 149A. (W)

151. Molecules that Changed the World (4)
A look at some of nature’s most intriguing molecules and the ability of man to discover, synthesize, modify, and use them. The role of chemistry in society, and how chemical synthesis—the art and science of constructing molecules—shapes our world. Prerequisite: Chem. 140A or equivalent.

152. Synthetic Methods in Organic Chemistry (4)
(Conjoined with Chem. 252; formerly Chem. 148.) A survey of reactions of particular utility in the organic laboratory. Emphasis is on methods of preparation of carbon-carbon bonds and oxidation reduction sequences. Chem. 252 students will be required to complete an additional paper and/or exam beyond that expected of students enrolled in Chem. 152. Prerequisite: Chem. 140C or 140CH (152); or graduate standing (252).

(Conjoined with Chem. 254; formerly Chem. 147.) A qualitative approach to the mechanisms of various organic reactions: substitutions, additions, eliminations, condensations, rearrangements, oxidations, reductions, free-radical reactions, and photochemistry. Includes considerations of molecular structure and reactivity, synthetic methods, spectroscopic tools, and stereochemistry. The topical emphasis will vary from year to year. This is the first quarter of the advanced organic chemistry sequence. Chem. 254 students will be required to complete an additional paper/exam beyond that expected of students in Chem. 154. Prerequisite: Chem. 140C or 140CH (154); or graduate standing (254).

155. Synthesis of Complex Molecules (4)
(Conjoined with Chem. 255; formerly Chem. 144.) This course discusses planning economic routes for the synthesis of complex organic molecules. The uses of specific reactions in protecting functional groups will be outlined as well as the control of stereochimistry during a synthesis. Examples will be selected from the recent literature. Chem. 255 students will be required to complete an additional paper/exam. (May not be offered every year.) Prerequisite: Chem. 152 or 252 or consent of instructor.

156. Structure and Properties of Organic Molecules (4)
(Conjoined with Chem. 256; formerly Chem. 145.) Introduction to the measurement and theoretical correlation of the physical properties of organic molecules. Topics covered include molecular geometry, molecular-orbital theory, orbital hybridization, aromaticity, chemical reactivity, stereochemistry, infrared and electronic spectra, photochemistry, and nuclear magnetic resonance. Chem. 256 students will be required to complete an additional paper and/or exam beyond that expected of students of Chem. 156. Prerequisites: Chem. 140C or 140CH (156); or graduate standing (256).

157. Biocatalysis and Biochemicals (4)
(Conjoined with Chem. 257; formerly Chem. 142.) A comprehensive survey of modern biocatalytic and natural product chemistry. Topics will include biosynthesis of natural products, molecular recognition, mechanisms of biomolecule interactions. For Chem. 257, students will be required to complete additional course work beyond that expected of students enrolled in Chem. 157. Prerequisite: Chem. 140C or 140CH (157); or graduate standing (257).

158. Applied Spectroscopy (4)
(Conjoined with Chem. 258.) Intensive coverage of modern spectroscopic techniques used to determine the structure of organic molecules. Problem solving and interpretation of spectra will be strongly emphasized. Chem. 258 students will be required to write and submit a paper that reviews a recent research publication that reports the structure determination by spectroscopic methods of natural products. Prerequisites: Chem. 120A or 120B or equivalent.

161. Supramolecular Coordination Chemistry (4)
(Conjoined with Chem. 261.) An introduction and survey of modern coordination chemistry. Topics will include structure and bonding of alkali, transition, lanthanide and actinide metals, with emphasis on the first-row transition metals; stereochemistry, coordination clusters, molecular solids and nanoparticles. Prerequisites: Chem. 120A or 120B or equivalent.

164. Structural Biology of Viruses (4)
(Cross-listed with BioMM 164.) An introduction to virus structure, how they are determined, and how they facilitate the various stages of the viral life cycle from host recognition and entry to replication, assembly, release, and transmission to uninfected host cells. (May not be offered every year.)

2010-2011 UC SAN DIEGO GENERAL CATALOG • CHEMISTRY AND BIOCHEMISTRY
185. Environmental and Molecular Toxicology (4)
(Conjoined with Chem. 266.) Molecular and cellular mecha-
nisms underlie the actions of environmental toxicants. This
course will investigate approaches to study the impact of
environmental toxicants on human health. Other modern
approaches that are being implemented to detect and
remEDIATE environmental toxicants will also be examined.
Chem. 266 students will be required to complete an addi-
tional assignment/exam beyond that expected of
students in Chem. 166. Prerequisites: Chem. 114A–B.

190. Methods of Teaching Chemistry (4)
An introduction to teaching chemistry. Students are re-
quired to attend a weekly class on methods of teaching
chemistry, and will teach a discussion section of one of the
lower-division chemistry courses. Attendance at lecture of
the in-class and a term paper as well. Prerequisite: C– or
better, or consent of instructor. (May not be offered
every year.)

196. Reading and Research in Chemical Education (2 or 4)
Independent literature or classroom research by arrange-
ment with, and under the direction of, a member of
the Department of Chemistry and Biochemistry faculty.
Students must register on a P/NP basis. Prerequisites:
upper-division standing. 2.5 minimum GPA, consent
of instructor and department. (F,W,S)

199. Reading and Research (2 or 4)
Independent literature or laboratory research by ar-
rangement with, and under the direction of, a member of
the Department of Chemistry and Biochemistry faculty.
Students must register on a P/NP basis. Prerequisites:
upper-division standing. 2.5 minimum GPA, consent
of instructor and department. (F,W,S)

204. Introduction to X-ray Crystallography (4)
(Conjoined with Chem. 104.) Analysis of macromolecular
structures by X-ray diffraction. Topics include symmetry,
geometry of diffraction, detection of diffraction, intensity
of diffracted waves, phase problem and its solution, heavy
atom method, isomorphous replacement, anomalous
dispersion phasing methods (MAD), direct methods, mo-
olecular replacement. Chem. 204 students will be required
to complete additional paper and/or exam beyond that
expected of students in Chem. 104.

207. Protein NMR (4)
A broad introduction to the uses of nuclear magnetic
resonance to characterize and understand proteins. Not
expected of students in Chem. 115. Prerequisite:
upper-division standing. 2.5 minimum GPA, consent
of instructor and department. (F,W,S)

214. Molecular and Cellular Biochemistry (4)
(Conjoined with Chem. 114D.) This course represents a
continuation of 114C, an introductory course for first-
and second-year graduate students, and covers topics
in molecular and cellular biochemistry. Emphasis will be
placed on contemporary approaches to the isolation and
characterization of cellular protein and RNA and proteins,
and molecular genetic approaches to understanding eukaryotic
development and human disease. Chem. 214 students will
be required to complete additional course work beyond
that expected of students in Chem. 114D. Prerequisite:
Chem. 114A–C or consent of instructor. (May not be of-
ered every year.)

217. Atmospheric Chemistry (4)
(Conjoined with Chem. 173.) Chemical principles applied
to the study of atmospheres. Atmospheric photochemistry,
radical reactions, chemical lifetime determinations, acid
rain, greenhouse effects, ozone cycle, and evolution are dis-
cussed. Chem. 273 students will be required to complete an
additional assignment/exam beyond that expected of
students in Chem. 173. Prerequisites: Chem. 149A and
Chem. 127 or 132 (173); or graduate standing (273). (S)

173. Atmospheric Chemistry (4)
(Conjoined with Chem. 173.) Chemical principles applied
to the study of atmospheres. Atmospheric photochemistry,
radical reactions, chemical lifetime determinations, acid
rain, greenhouse effects, ozone cycle, and evolution are dis-
cussed. Chem. 273 students will be required to complete an
additional assignment/exam beyond that expected of
students in Chem. 173. Prerequisites: Chem. 149A and
Chem. 127 or 132 (173); or graduate standing (273). (S)

(Conjoined with SIO 141.) Introduction to the chemistry
and distribution of the elements in seawater, emphasizing
basic chemical principles such as electron structure,
chemical bonding, and group and periodic properties
and showing how these act basic aqueous chemistry
in marine systems. Prerequisite: Chem. 6C with a grade of
C– or better, or consent of instructor. (May not be offered
every year.)

182. Biological Databases (4)
(Conjoined with BIMG 182/BENG 182/CSE 182.) This
course provides an introduction to the features of bio-
ological data, how those data are organized efficiently in
databases, and how existing data resources can be utilized to
solve a variety of biological problems. Object oriented
databases, data modeling, and description. Survey of cur-
rent biological database with respect to above, implemen-
tation of database on a biological topic. Prerequisite:
CSE 100 or Math. 176. Bioinformatics majors only.

184. Computational Molecular Biology (4)
(Conjoined with BIMG 184/BENG 184/CSE 184.) This
advanced course covers the application of machine
learning and modeling techniques to biological systems.
Topics include gene structure, recognition of DNA and
protein sequence patterns, classification, and protein
structure prediction. Pattern discovery, Hidden Markov
models/support vector machines/neural network/profiles,
protein structure prediction, functional characterization
or proteins, functional genomics/proteomics, metabolic
pathways/gene networks. Prerequisites: BIMG 181 or
BENG 181 or BENG 182 or CSE 182 or CHEM 182.
Bioinformatics majors only.

185. Introduction to Computational Chemistry (4)
(Conjoined with Chem. 285.) Course in computational
methods building on a background in mathematics and
physical chemistry. Brief introduction and background in
computational theory, molecular mechanics, semi-empir-
cal methods, and ab initio-based methods of increasing
elaboration. Emphasis on applications and reliability. Chem.
285 students will be required to complete an additional
assignment/exam beyond that expected of students in
Chem. 185. Prerequisites: Chem. 126 or 133 and Math.
20C or 21C. (May not be offered every year.)

187. Foundations of Teaching
and Learning Science (4)
(Cross-listed with EDS 122.) Examine theories of learning
and how they are important in the science classroom.
Conceptual development in the individual student, as well as
the development of knowledge in the history of science.
Key conceptual obstacles in science will be explored.
Prerequisites: Chem. 6C and Chem. 96.

188. Capstone Seminar in Science Education (4)
(Cross-listed with EDS 123.) In the lecture and observation
format, students continue to explore the theories of learn-
ing in the science classroom. Conceptual development is
fostered, as well as continued development of knowledge of
science history. Students are exposed to the science of
teaching in science in actual practice. Prerequisites:
Chem. 6C and Chem. 187/EDS 122.

192. Senior Seminar in Chemistry
and Biochemistry (1)
The Senior Seminar Program is designed to allow senior
undergraduates to meet with faculty members in a small
setting group to explore an intellectual topic in chemistry
or biochemistry. May be taken for credit up to four times,
with a change in topic, and permission of the department.
Prerequisites: department stamp and/or consent of the
instructor.

220. Regulatory Circuits in Cells (4)
Modulation cellular activity and influencing viral fate
involve regulatory circuits. Emergent properties include
dose response, cross-regulation, dynamic, and stochastic
behaviors. This course covers underlying mechanisms
and involves mathematical modeling using personal
computer tools.

221. Signal Transduction (4)
The aim of this course is to develop an appreciation for
a variety of topics in signal transduction. We will discuss
several historical developments while the focus will be on
current issues. Both experimental approaches and results
will be included in our discussions. Topics may vary from
year to year. Prerequisites: biochemistry and molecular
biology. (May not be offered every year.)

222. Structure and Analysis of Solids (4)
(Cross-listed with MATS 227.) Key concepts in the atomic
structure and bonding of solids such as metals, ceramics,
and semiconductors. Symmetry operations, point groups,
lattice types, space groups, simple and complex inorganic
compounds, structure/property comparisons, structure
determination with X-ray diffraction. Ionic, covalent, metal-
lic bonding compared with physical properties. Atomic
and molecular orbitals, bands versus bonds, free electron
theory.
224. Spectroscopic Techniques (4)
Application of physical techniques to the elucidation of the structure of inorganic complex ions and organometallic compounds. Topics covered include group theory, and its application to vibrational, magnetic resonance and Raman spectroscopy. (May not be offered every year.)

225. Bioinorganic Chemistry (4)
Conjoined with Chem. 140C or 140CH (157). The role of metal ions in biological systems, with emphasis on transition metal ions in enzymes that transfer electrons, bind oxygen, and fix nitrogen. Also included are metal complexes in medicine, toxicity, and metal ion storage and transport. Chem. 225 students will be required to complete an additional paper or exam beyond that expected of students in Chem. 125. Prerequisite: Chem. 114A or 120A, or graduate standing. (May not be offered every year.)

226. Transition Metal Chemistry (4)
Advanced aspects of structure and bonding in transition metal complexes with major emphasis on Molecular Orbital Theory. Electronic structure descriptions are used to rationalize structure/reactivity relationships. Other topics include computational chemistry, relativistic effects, metal-metal bonding, and reaction mechanisms. Prerequisite: Graduate standing or consent of instructor.

227. Seminar in Inorganic Chemistry (2)
Seminars presented by faculty and students on topics of current interest in inorganic chemistry, including areas such as bioinorganic, organometallic and physical-inorganic chemistry. The course is designed to promote a critical evaluation of the available data in specialized areas of inorganic chemistry. Students are expected to give a short oral presentation on three or four different topics.

228. Statistical Mechanics II (4)
Interacting systems at equilibrium, both classical (liquids) and quantum (spins). Phase transitions. Non-equilibrium systems: glasses, transport, time correlation functions. Onsager relations, fluctuation-dissipation theorem, random walks. Brownian dynamics. Prerequisites: Chem. 232A or consent of instructor.

230. Quantum Mechanics I (4)
Theoretical basis of quantum mechanics: postulates; wave packets; matrix representations; ladder operators; exact solutions for bound states in 1, 2, or 3 dimensions; angular momentum; spin; variational approximations; description of real and one and two electron systems. Recommended background: Chem. 133 and Math. 20D or their equivalents.

230B. Quantum Mechanics II (4)
Continuation of theoretical quantum mechanics: evolution operators and time dependent representations, second quantization, Born-Oppenheimer approximation, electronic structure methods, selected topics from among density operators, quantized radiation fields, path integral methods, scattering theory. Prerequisite: Chem. 230A or consent of instructor.

231. Chemical Kinetics and Molecular Reaction Dynamics (4)
Classic kinetics, transition state theory, unimolecular decomposition, potential energy surfaces; scattering processes and photodissociation processes. (May not be offered every year.)

232A. Statistical Mechanics I (4)
Derivation of thermodynamics from atomic descriptions. Ensembles, fluctuations, classical (Boltzmann) and quantum (Fermi-Dirac and Bose-Einstein) statistics, partition functions, phase space, Liouville equation, chemical equilibrium, applications to weakly interacting systems, such as ideal gases, van der Waals, rotation fields. Recommended background: Chem. 132 or its equivalent. Classical and quantum mechanics, thermodynamics, and mathematical methods will be reviewed as needed, but some background will be necessary.

232B. Statistical Mechanics II (4)
Interacting systems at equilibrium, both classical (liquids) and quantum (spins). Phase transitions. Non-equilibrium systems: glasses, transport, time correlation functions. Onsager relations, fluctuation-dissipation theorem, random walks. Brownian dynamics. Prerequisites: Chem. 232A or consent of instructor.

235. Molecular Spectroscopy (4)
(Conjoined with Chem. 135.) Time-dependent behavior of systems; interaction of matter with light; selection rules. Radiative and nonradiative processes, coherent phenomena and the density matrices. Instrumentation, techniques of data collection and interpretation. Chem. 235 students will be required to complete additional course work beyond that expected of students in Chem. 135. Prerequisites: Chem. 133 or equivalent; Math. 20D or 210; or Chem. 190/290. (May not be offered every year.)

239. Special Topics in Chemical Physics (2 or 4)
Topics of special interest will be presented. Examples include NMR, solid-state chemistry, phase transitions, stochastic processes, scattering theory, nonequilibrium processes, tensor transformations, and advanced topics in statistical mechanics, thermodynamics, and chemical kinetics. (May not be offered every year.)

240. Electrochemistry (6)
(Cross-listed with MATH 230.) Application of electrochemical techniques to chemistry research. Basic electrochemical theory and instrumentation: the diffusion equations, controlled potential and current methods. Electro-chemical kinetics, Butler-Volmer, Marcus-Hush theories, preparative electrolysis, analytical electrochemistry, solid and polymer electrolytes, semiconductor photoelectrochemistry. (May not be offered every year.)

246. Kinetics and Mechanism (4)
Methodology of mechanistic organic chemistry: integration of rate expressions, determination of rate constants, transition state theory, catalysis, kinetic orders, isootope effects, substituent effects, solvent effects, linear free energy relationship; product studies, stereochemistry; reactive intermediates; rapid reactions. (May not be offered every year.)

250. Seminar in Chemistry (2)
Regularly scheduled seminars by first-year graduate students providing opportunities for practice in seminar delivery, and for the exploration of topics of general interest. (S/U grades only.) (S)

251. Research Conference (2)
Group discussion of research activities and progress of the group members. Prerequisite: consent of instructor. (S/U grades only.) (F/W/S)

252. Synthetic Methods in Organic Chemistry (4)
(Conjoined with Chem. 152; formerly Chem. 248.) A survey of modern organic laboratory methodology. Emphasis is on methods of preparation of carbon-carbon bonds and oxidation reduction sequences. For Chem. 252, students would be required to complete an additional paper and/or exam beyond that expected of students enrolled in Chem. 152. Prerequisite: Chem. 140C or 140CH (154), or graduate standing (252).

(Conjoined with Chem. 154; formerly Chem. 247.) A qualitative approach to the mechanisms of various organic reactions; substitutions, additions, eliminations, condensations, rearrangements, oxidations, reductions, free-radical reactions, and photochemistry. Includes considerations of molecular structure and reactivity. synthetic methods, spectroscopic tools, and stereochemistry. The topics emphasized will vary from year to year. This is the first quarter of the advanced organic chemistry sequence. Chem. 254 students will be required to complete an additional paper and/or exam beyond that expected of students in Chem. 154. Prerequisite: Chem. 140C or 140CH (154), or graduate standing (254).

255. Synthesis of Complex Molecules (4)
(Conjoined with Chem. 155; formerly Chem. 244.) This course discusses planning economic routes for the synthesis of complex organic molecules. The uses of specific reagents and protecting groups will be outlined as well as the control of stereochemistry during a synthesis. Examples will be selected from the recent literature. Chem. 255 students will be required to complete an additional paper and/or exam beyond that expected of students in Chem. 155. (May not be offered every year.) Prerequisite: Chem. 152 or 252 or consent of instructor.

256. Structure and Properties of Organic Molecules (4)
(Conjoined with Chem. 156; formerly Chem. 245.) Introduction to the measurement and theoretical correlation of the physical properties of organic molecules. Topics covered include molecular geometry, molecular-orbital theory, orbital hybridization, the chemical reactivity, stereochemistry, infrared and electronic spectra, photochemistry, and nuclear magnetic resonance. Chem. 256 students will be required to complete an additional paper and/or exam beyond that expected of students in Chem. 156. Prerequisite: Chem. 140C or 140CH (156), or graduate standing (256).

257. Biorganic and Natural Products Chemistry (4)
(Conjoined with Chem. 157; formerly Chem. 242.) A comprehensive survey of modern biorganic and natural products chemistry. Topics include biosynthesis of natural products, molecular recognition, and small molecule-bio-molecule interactions. Chem. 257 students will be required to complete additional course work beyond that expected of students in Chem. 157. Prerequisite: Chem. 140C or 140CH (157), or graduate standing (257).

258. Applied Spectroscopy (4)
(Conjoined with Chem. 158.) An introduction to modern spectroscopic techniques used to determine the structure of organic molecules. Problem solving and interpretation of spectra will be strongly emphasized. Chem. 258 students will be required to write and submit a paper that reviews a recent research publication that reports the structure determination by spectroscopic methods of natural products. Prerequisite: Chem. 154 or 254 or consent of instructor.

259. Special Topics in Organic Chemistry (2–4)
(Formerly Chem. 249.) Various advanced topics in organic chemistry. Includes but is not limited to: advanced kinetics, advanced spectroscopy, computational chemistry, heterocyclic chemistry, medicinal chemistry, organotransition metal chemistry, polymers, solid-phase synthesis/combinatorial chemistry, stereochemistry, and total synthesis classics.

260. Light and Electron Microscopy of Cells and Tissue (4)
Students will review basic principles of light and electron microscopy and learn a variety of basic and advanced microscopy methods through lecture and hands-on training. Each student will have his or her own project. Additional supervised instrument time is available. Prerequisite: consent of instructor.

261. Supramolecular Coordination Chemistry (4)
(Conjoined with Chem. 161.) An introduction and survey of modern coordination chemistry. Topics will include structure and bonding of alkali, transition, lanthanide, and actinide metals, with emphasis on the first row transition metals; stereochemistry, coordination clusters, molecular solids and nanoparticle. Chem. 261 students will be required to complete additional course work beyond that expected of students in Chem. 161. Prerequisites: Chem. 120A, 120B or equivalent; or graduate standing.

262. Inorganic Chemistry and NMR (4)
A survey of inorganic chemistry and nuclear magnetic resonance (NMR), followed by applications of NMR to structural and mechanistic problems in inorganic chemistry.

264. Structural Biology of Viruses (4)
(Cross-listed with BGGN 264.) An introduction of virus structure and assembly, including an overview of viral recognition and entry to replication, assembly, release, and transmission to uninfected host cells. Students will be required to complete a term paper. (May not be offered every year.) Recommended: Elementary biochemistry as treated in
265. 3D Electron Microscopy of Macromolecules (4)
(Cross-listed with BGGN 262.) Biological macromolecules and supramolecular complexes as well as organelles, and small cells are being examined in three-dimensions by modern electron cryomicroscopy and image reconstruction techniques. The basic principles of transmission electron microscopy and 3D image reconstruction are discussed. Chem. 265/BGGN 262 students will be required to complete an additional oral presentation or paper beyond that of expected in Chem. 165/BGGN 162. (May not be offered every year.) Recommended: Elementary biochemistry as treated in Chem. 114A or BIBC 100 and a basic course in cell biology or consent of instructor.

266. Environmental and Molecular Toxicology (4)
(Conjoined with Chem. 166; cross-listed with BIMM 166/BGGN 266.) Molecular and cellular mechanisms underlying the actions of environmental toxicants. This course will investigate approaches to study the impact of environmental toxicants on human health. Other modern approaches that are being implemented to detect and remediate environmental toxicants will also be examined. Chem. 266 students will be required to complete an additional paper and/or exam beyond that of expected in Chem. 166. (W)

270A-B-C. Current Topics in Environmental Chemistry (2-2-2)
Seminar series on the current topics in the field of environmental chemistry. Emphasis is on current research topics in atmospheric, oceanic, and geological environments. Prerequisite: consent of instructor. (S/U grades only.) (May not be offered every year.)

271. Special Topics in Analytical Chemistry (4)
Topics of special interest in analytical chemistry. May include, but is not limited to, chemical separation, sample introductions, mass analyzers, ionization schemes, and current state-of-the-art applications in environmental and biological chemical analysis.

273. Atmospheric Chemistry (4)
(Conjoined with Chem. 173.) Chemical principles applied to the study of atmospheres. Atmospheric photochemistry, radical reactions, chemical lifetime determinations, acid rain, greenhouse effects, ozone cycle, and evolution are discussed. Chem. 273 students will be required to complete additional assignment/exam beyond that expected of students in Chem. 173. Prerequisites: Chem. 149A and Chem. 127 or 132 (173), or graduate standing (273). (S)

276. Numerical Analysis in Multiscale Biology (4)
Introduces mathematical tools to simulate biological processes at multiple scales. Numerical methods for ordinary and partial differential equations (deterministic and stochastic), and methods for parallel computing and visualization. Hands-on use of computers emphasized; students will apply numerical methods in individual projects. Prerequisite: consent of instructor. (S)

280. Applied Bioinformatics (4)
Publicly available databases and bioinformatics tools are now an indispensable component of biomedical research. This course offers an introductory survey of selected tools and databases; the underlying concepts, the software, and advice on using them. Practical exercises will be included.

283. Supramolecular Structure Determination Laboratory (4)
A laboratory course combining hands-on mass spectrometry and bioinformatics tools to explore the relationship between structure and function in macromolecules. Tools for peptide sequencing, analysis of post-translational modification, and fragmentation analysis by mass spectrometry are examples of experiments students will run. Prerequisite: consent of instructor.

285. Introduction to Computational Chemistry (4)
(Conjoined with Chem. 185.) Course in computational methods building on a background in mathematics and physical chemistry. Brief introduction and background in computational theory, molecular mechanics, semi-empirical methods, and ab initio-based methods of increasing elaboration. Emphasis on applications and reliability. Chem. 285 students will be required to complete an additional paper and/or exam beyond that of expected in Chem. 185. Prerequisites: Chem. 126 or 133 and Math. 20C. (May not be offered every year.)

288. Algorithms in Contemporary Computational Biology (4)
Course will focus on several topics in contemporary computational biology, including inference of gene modules, reconstituting gene regulatory network, and predicting signal transduction network. Algorithms that will be discussed include Bayesian network, hidden Markov model, and Markov chain Monte Carlo. Recommended preparation: Chem. 184 and basic concepts of probability, statistics, and molecular biology.

294. Organic Chemistry Seminar (2)
Formal seminars or informal puzzle sessions on topics of current interest in organic chemistry, as presented by visiting lecturers, local researchers, or students. Prerequisite: advanced graduate-student standing. (S/U grades only.)

295. Biochemistry Seminar (2)
Formal seminars or informal puzzle sessions on topics of current interest in biochemistry, as presented by visiting lecturers, local researchers, or students. Prerequisite: advanced graduate-student standing. (S/U grades only.)

296. Chemical Physics Seminar (2)
Formal seminars or informal sessions on topics of current interest in chemical physics, as presented by visiting lecturers, local researchers, or students. Prerequisite: advanced graduate-student standing. (S/U grades only.)

297. Experimental Methods in Chemistry (4)
Experimental methods and techniques involved in chemical research are introduced. Hands-on experience provides training for careers in industrial research and for future thesis research. Prerequisite: graduate-student standing. (S/U grades only.)

298. Special Study in Chemistry (1–4)
Reading and laboratory study of special topics for first-year graduate students under the direction of a faculty member. Exact subject matter to be arranged in individual cases. (S/U grades only.) Prerequisite: first-year graduate-student standing. (F,W,S)

299. Research in Chemistry (1–12)
Prerequisites: graduate-student standing and consent of instructor. (S/U grades only.) (F,W,S)

500. Teaching in Chemistry (4)
A doctoral student in chemistry is required to assist in teaching undergraduate chemistry courses. One meeting per week with instructor, one or more meetings per week with assigned class sections or laboratories, and attendance at the lecture of the undergraduate course in which he or she is participating. Prerequisites: graduate-student standing and consent of instructor. (S/U grades only.)
The Chicano/a–Latino/a Arts and Humanities Minor (CLAH)

OFFICE: Literature Building, Room 131
(858) 822-4059
http://minors.ucsd.edu/clah/clah_portal

AFFILIATED FACULTY
Marisa Abrajano, Ph.D., Political Science
Luis Alvarez, Ph.D., History
Roberto Alvarez, Ph.D., Ethnic Studies
Robert Castro, Ph.D., Theatre and Dance
Jaime Concha, Ph.D., Literature
Ross Frank, Ph.D., Ethnic Studies
David Gutiérrez, Ph.D., History
Sara Johnson, Ph.D., Literature
Jorge Mariscal, Ph.D., Literature; CLAH Director
Natalia Molina, Ph.D., Ethnic Studies
Max Parra, Ph.D., Literature
Beatrice Pita, Ph.D., Literature
Rosaura Sánchez, Ph.D., Literature
Olga Vásquez, Ph.D., Communication
Patrick Velasquez, Ph.D., Director of OASIS
Daniel Widener, Ph.D., History
Elana Zilberg, Ph.D., Communication

THE MINOR

The Chicano/a–Latino/a Arts and Humanities minor is an interdisciplinary minor that provides a broad introduction to the histories and cultural artifacts produced by Spanish-speaking communities in the United States. Through a coordinated course of study drawing upon course offerings in the Departments of Theatre and Dance, Ethnic Studies, Communication, History, Literature, and other departments, students will gain an understanding of this important segment of the U.S. population.

REQUIREMENTS

Students will have a minimum of two years or the equivalent of Spanish language instruction (Satisfactory completion of Lit/Span 2A, B, C or Lit/Span 2D will satisfy this requirement). Students may count one lower-division language course (four units) towards the total unit requirement.

Students will complete twenty-eight total units of which at least twenty (five courses) must be upper-division. Students may take no more than three upper-division courses in any one department. The required distribution of the five upper-division courses may be selected from among the following courses. Students may petition to receive credit for courses not listed below.

COURSES

(Partial List)

ETHNIC STUDIES

Note: Many ETHN courses are cross-listed courses from other departments.
ETHN 101. Ethnic Images in Film
ETHN 105. Ethnic Diversity and the City
ETHN 140. Language and American Ethnicity
ETHN 141. Language, Culture, and Inequality
ETHN 189. Special Topics in Ethnic Studies

HISTORY

HILD 7C. History of Race and Ethnicity in the U.S.
HIUS 167. Topics in Mexican American History
HIUS 180. Colloquium on the Recent History of Immigration, Ethnicity, and Citizenship in the Twentieth-Century U.S.
HILA 158. Social and Economic History of the Southwest I
HILA 159. Social and Economic History of the Southwest II
HILA 131. History of Mexico
HILA 132. Contemporary Mexico
HILA 122. Cuba

LITERATURE

The following courses are taught in Spanish–Literature Spanish (LTSP):
LTSP 130B. Introduction to Latin American Literature
LTSP 135B. Modern Mexican Literature
LTSP 136. Andean Literature
LTSP 137. Caribbean Literature
LTSP 150A. Early Latino/a and Chicano/a Cultural Production 1848-1960
LTSP 150B. Contemporary Latino/a and Chicano/a Cultural Production 1960 to present
LTSP 151. Topics in Chicano/a and Latino/a Cultures
LTSP 153. Chicano/a and Latino/a Poetry
LTSP 154. Chicano/a and Latino/a Literatures
LTSP 162. Spanish Language in the U.S.

The following courses are taught in English–Literature English (LTEN) and Literature of the Americas (LTAM):
LTEN 180. Chicano Literature in English
LTAM 100. Latino/a Cultures in the United States
LTAM 101. Early Latino/a and Chicano/a Cultures: 1848-1960
LTAM 102. Contemporary Latino/a and Chicano/a Cultural Production 1960 to present
LTAM 105. Gender and Sexuality in Chicano/a and Latino/a Cultural Production
LTAM 106. Modern Chicana and Mexican Women Writers
LTAM 107. Comparative Latino/a and U.S. Ethnic Cultures

MUSIC
MUS 13AM. World Music/Multicultural America

THEATRE AND DANCE
TDHT 108. Luis Valdez
TDHT 110. Chicano Dramatic Literature
TDHT 111. Hispanic-American Dramatic Literature
TDHT 112. Gay and Lesbian Themes in U.S. Latino Theater

VISUAL ARTS
VIS 126AN. Pre-Columbian Art of Ancient Mexico and Central America
VIS 126BN. The Art and Civilization of the Ancient Maya
VIS 126G. Problems in Mesoamerican Art History
VIS 126H. Problems in Ancient Maya Iconography and Inscriptions
Chinese Studies

PROFESSORS
Joseph C.Y. Chen, Ph.D., Physics, Emeritus
Matthew Chen, Ph.D., Linguistics, Emeritus
Joseph W. Esherick, Ph.D., History
Germaine A. Hoston, Ph.D., Political Science
David K. Jordan, Ph.D., Anthropology, Emeritus
Ping-hui Liao, Ph.D., Literature
Richard P. Madsen, Ph.D., Sociology
Barry J. Naughton, Ph.D., Graduate School of International Relations and Pacific Studies
Paul G. Pickowicz, Ph.D., History
Kuiyi Shen, Ph.D., Visual Arts
Susan L. Shirk, Ph.D., Graduate School of International Relations and Pacific Studies
Wai-Lim Yip, Ph.D., Literature
Ye Wa, Ph.D., History; Chinese Language
Xiao Wang, M.A., History; Chinese Language
Huai Li, M.F.A., Visual Arts
Pei-Chia Chen, M.A., History; Chinese Language
Qin Hong Anderson, M.A., History; Chinese Language
Suzanne Cahill, Ph.D., History
Larissa Heinrich, Ph.D., Literature
Nancy Guy, Ph.D., Music
Larissa Heinrich, Ph.D., Literature
Matthew Chen, Ph.D., Physics
Richard P. Madsen, Ph.D., Sociology
David K. Jordan, Ph.D., Anthropology, Emeritus
Joseph W. Esherick, Ph.D., History
Joseph C.Y. Chen, Ph.D., Physics, Emeritus

ASSOCIATE PROFESSORS
Nancy Guy, Ph.D., Music
Larissa Heinrich, Ph.D., Literature
Weijing Lu, Ph.D., History
Sarah Schneewind, Ph.D., History

ADJUNCT PROFESSOR
Suzanne Cahill, Ph.D., History

ASSISTANT PROFESSOR
Lei Liang, Ph.D., Music

LECTURER WITH POTENTIAL FOR SECURITY OF EMPLOYMENT
Jane Kuo, Ph.D., History; Chinese Language

LECTURERS
Qin Hong Anderson, M.A., History; Chinese Language
Samuel Cha, M.A., History; Chinese Language
Pei-Chia Chen, M.A., History; Chinese Language
Qian He, History; Chinese Language
Huai Li, M.F.A., Visual Arts
Xiao Wang, M.A., History; Chinese Language
Ye Wa, Ph.D., History; Chinese Language

ADMINISTRATIVE OFFICE:
3084 Humanities and Social Sciences Building
Muir College
(858) 534-6477
chinesestudies@ucsd.edu
http://chinesestudies.ucsd.edu

Chinese Studies is an interdisciplinary program that allows the student interested in China to utilize the university’s offerings in various departments to build a major leading to a B.A. degree. In addition to coordinating courses in the various departments, the Program in Chinese Studies offers courses directly under its own auspices to round out the available offerings.

The Chinese Studies Program combines historical understanding with an emphasis on modern and contemporary China. The Department of History has a strong specialization in late imperial and modern China. A full spectrum of courses on the politics, economics, society, and culture of today’s China are offered via other departments at UC San Diego. Another focal point of research interest is visual culture and cultural history in modern and premodern China. The interdisciplinary nature of the program (see departmental affiliation of the participating faculty) can accommodate students of a wide range of interests. In addition to our local resources, the University of California Education Abroad Program (EAP) and Opportunities Abroad Program (OAP) are affiliated with various universities and language institutes in China, Taiwan, Hong Kong, and Singapore. This, together with other academic exchange programs with a number of Chinese universities, provides the possibility of a junior year abroad, to take both Mandarin Chinese courses and non-language courses dealing with various aspects of Chinese studies. Such courses are subject to final approval via Student Petition by the program chair. Please note that at least six of the upper-division courses for the major must be taken at UCSD.

THE MAJOR PROGRAM

The student choosing a major in Chinese studies must meet the following requirements:
1. Two years of Mandarin Chinese (CHIN 10 A-B-C and 20 A-B-C or equivalent) or equivalent Chinese knowledge.
2. History 10-11-12 (a one year sequence in East Asian History or equivalent)
3. Twelve upper-division four unit courses in Chinese studies topics.
 - Courses must be taken from at least three departments or programs.
 - One of those courses should be a four-unit seminar or colloquium in which students are expected to write a substantial term paper. Typically the Department of History offers at least one colloquium per academic year, which are usually numbered HIEA 161–171. The student will need to request and receive permission from the professor and the Department of History before enrolling in such a course.
 - No more than six of those upper-division may be language acquisition courses.
 - A minimum of six upper-division courses must be taken at UCSD.
4. As a rule, all courses must be taken and completed for a letter grade for both the major and minor. Exceptions are granted for CHIN 198 and CHIN 199.

In principle, the courses that the Chinese Studies Program accepts are lower- and upper-division courses that study China or Mandarin Chinese. Only six upper-division courses may be taken abroad (or at another institution) and only three of those may be language acquisition courses. All courses not taken at UCSD must be reviewed and approved as compatible with the Program in Chinese Studies guidelines via a Student Petition upon returning from EAP, OAP, or from another U.S. academic institution. Due to the interdisciplinary nature of the Chinese Studies Program, a majority of the courses listed below are planned by participating departments or programs for the current academic year.

HONORS PROGRAM

Requirements for admission to the program are
1. Junior standing
2. A GPA of 3.5 or better in the major
3. Overall GPA of 3.2 or better
4. Recommendation of a faculty sponsor familiar with the student’s work
5. Completion of at least four upper-division courses approved by the Chinese Studies Program
6. Completion of at least one year of Chinese language study

Students who qualify for honors must consult with a faculty mentor, submit a proposal, complete the appropriate form(s), take a two-semester sequence of directed study during which they define a research project, carry out the research, and complete a senior thesis. The completed thesis will be evaluated by a committee consisting of the student’s thesis advisor and one other faculty member appointed by the Chinese Studies Program chair.

THE MINOR PROGRAM

A minor in Chinese studies consists of at least three lower-division courses (a minimum of twelve units) and four upper-division courses (a minimum of sixteen units) taken for a letter grade. These courses must be selected from three departments or programs. No more than three language courses may apply toward the minor. For students wishing to apply courses taken abroad to the minor, please see the program coordinator for more information and guidance with the petition process.

COURSES APPLICABLE FOR THE CHINESE STUDIES MAJOR AND/ OR MINOR OFFERED BY VARIOUS DEPARTMENTS AND PROGRAMS

For description of courses listed below, see appropriate departmental listing. All graduate-level courses require consent of the instructor for undergraduate students. Some departmental offerings have content that varies from year to year. In those cases, Chinese Studies approval is given only when content relates primarily to China.

LOWER-DIVISION

History
HILD 10. East Asia: The Great Tradition (staff)
HILD 11. East Asia and the West (staff)
HILD 12. Twentieth-Century East Asia (staff)
Literature
LTWL 4C. Fiction and Film in Twentieth-Century Societies: Asian Societies (Zhang)
Music
MUS 13AS. World Music: Asia and Oceania (Guy)
UPPER-DIVISION

I. CHINESE CULTURE AND SOCIETY

Anthropology
ANSC 136. Traditional Chinese Society (Jordan)

History
HIEA 119. Religion and Popular Culture in East Asia (Cahill)
HIEA 128. History of Material Culture in China (Cahill)
HIEA 134. History of Thought and Religion in China: Confucianism (Cahill)
HIEA 135. History of Thought and Religion in China: Buddhism (Cahill)
HIEA 136. History of Thought and Religion in China: Daoism (Cahill)
HIEA 137. Women and Family in Chinese History (staff)
HIRE 115. Women in Chinese Religious Traditions (Cahill)
HITO 102. Religious Traditions: East Asian Religious Traditions (Cahill)

Music
MUS 111. Topics/World Music Traditions (Guy) (Topic must be music of China)

Sociology
SOC/ 162R. Religion and Popular Culture in East Asia (staff)
SOC/D 158J. Religion and Ethics in China and Japan (staff)
SOC/D 189. Special Topics in Comparative-Historical Sociology (Madsen)

Visual Arts
VIS 105D. The Aesthetics of Chinese Calligraphy (staff)
VIS 127B. Arts of China (Shen)
VIS 127C. Arts of Modern China (Shen)
VIS 127D. Early Chinese Painting (Shen)
VIS 127E. Later Chinese Painting (Shen)
VIS 127G. Twentieth-Century Chinese Art (Shen)

II. CONTEMPORARY CHINA

History
HIEA 120. The History of Chinese Culture and Society: The Ancient Imperial Period (staff)
HIEA 121. The History of Chinese Culture and Society: The Middle Imperial Period (staff)
HIEA 122. The History of Chinese Culture and Society: The Late Imperial Period (staff)
HIEA 124/HISC 110. Science in China and the West from Ancient Times to the Seventeenth Century (staff)
HIEA 126. The Silk Road in Chinese and Japanese History (Cahill)
HIEA 130. History of the Modern Chinese Revolution: 1800–1911 (Esherick)
HIEA 131 (IP/GEN 408). History of the Modern Chinese Revolution: 1911–1949 (Pickowicz)
HIEA 132. History of the People's Republic of China (Pickowicz)
HIEA 133. Cultural History of Twentieth-Century China (Pickowicz)
HIEA 162. History of Women in China (staff)
HIEA 164. Seminar in Late Imperial Chinese History (staff)
HIEA 165. History of Material Culture in China (Cahill)
HIEA 167. Special Topics on Modern Chinese History (Esherick)
HIEA 168. Special Topics in Classical and Medieval Chinese History (Cahill)
HIEA 170. Colloquium on Science, Technology, and Medicine in China (staff)

POLI 113B. Chinese and Japanese Political Thought I (staff)
POLI 113C. Chinese and Japanese Political Thought II (staff)
POLI 130B. Politics in the People's Republic of China (Shirk)
POLI 131C. The Chinese Revolution (Hoston)
POLI 232. The Chinese Political System (staff)

Sociology
SOC/D 188B. Chinese Society (Madsen)

III. LANGUAGE AND LITERATURE

Linguistics
LIGN 141. Language Structures (staff)

Literature
LTCH 101. Readings in Contemporary Chinese Literature (staff)
LTEX 100A. Classical Chinese Poetry (Yip)
LTEX 100B. Modern Chinese Poetry (Yip)
LTEX 100C. Contemporary Chinese Poetry (Yip)
LTEX 110A. Classical Chinese Fiction (staff)
LTEX 110B. Modern Chinese Fiction (staff)
LTEX 110C. Contemporary Chinese Fiction (staff)
LTEX 120A. Chinese Films (staff)
LTEX 120B. Taiwan Films (staff)
LTEX 120C. Hong Kong Films (staff)
LTEX 120D. Filming Chinese Literature (staff)
LTEN 159B. Chinese Poetry and American Imagination (Yip)

LTCO 274. Genre Studies—Intercultural Poetics (Yip)
LTWL 176. Literature and Ideas: Taoism (Yip)
LTWR 113. Intercultural Writing: Chinese (Yip)

IV. CHINESE HISTORY

Chinese Studies
CHIN 170: History of Science in China (Chen)

History
HIEA 120. The History of Chinese Culture and Society: The Ancient Imperial Period (staff)
HIEA 121. The History of Chinese Culture and Society: The Middle Imperial Period (staff)
HIEA 122. The History of Chinese Culture and Society: The Late Imperial Period (staff)
HIEA 124/HISC 110. Science in China and the West from Ancient Times to the Seventeenth Century (staff)
HIEA 126. The Silk Road in Chinese and Japanese History (Cahill)
HIEA 130. History of the Modern Chinese Revolution: 1800–1911 (Esherick)
HIEA 131 (IP/GEN 408). History of the Modern Chinese Revolution: 1911–1949 (Pickowicz)
HIEA 132. History of the People’s Republic of China (Pickowicz)
HIEA 133. Cultural History of Twentieth-Century China (Pickowicz)
HIEA 162. History of Women in China (staff)
HIEA 164. Seminar in Late Imperial Chinese History (staff)
HIEA 165. History of Material Culture in China (Cahill)
HIEA 167. Special Topics on Modern Chinese History (Esherick)
HIEA 168. Special Topics in Classical and Medieval Chinese History (Cahill)
HIEA 170. Colloquium on Science, Technology, and Medicine in China (staff)

VIS 105D. The Aesthetics of Chinese Calligraphy (staff)
VIS 127B. Arts of China (Shen)
VIS 127C. Arts of Modern China (Shen)
VIS 127D. Early Chinese Painting (Shen)
VIS 127E. Later Chinese Painting (Shen)
VIS 127G. Twentieth-Century Chinese Art (Shen)

CHINESE LANGUAGE ACQUISITION COURSES

The Chinese language program offers Mandarin Chinese language acquisition courses in year-long sequences that begin in the fall quarter. Students interested in enrolling in Chinese courses must be evaluated via a Placement Interview and authorized at the Chinese Studies Program prior to enrollment. Contact the program at chinesestudies@ucsd.edu for more information.

Chinese language courses are divided into three tracks based on students’ familiarity with the language. N track is for students with no Chinese language background; M track is for students with some Mandarin Chinese language background; and D track is for students with Chinese language background other than Mandarin. By the third year of Chinese language acquisition courses the M and D tracks converge.

FIRST YEAR CHINESE COURSES (LOWER-DIVISION)

CHIN 10AN. First Year Chinese—Non-native speakers I (5)
Introductory course of basic Chinese for students with no background in Chinese. First quarter of a one-year curriculum for entry-level Chinese in communicative skills. Covers pronunciation, fundamentals of Chinese grammar, and vocabulary. Topics include greetings, family affairs, numbers, and daily exchanges. Students may not receive duplicate credit for CHIN 11 and CHIN 10AN. Prerequisite: department approval.

CHIN 10AM. First Year Chinese—Mandarin speakers I (5)
Introductory course of basic Chinese for students with background in Mandarin Chinese. First quarter of one-year curriculum for entry-level Chinese in communicative skills. Covers pronunciation, fundamentals of Chinese grammar, and vocabulary. Topics include greetings, family affairs, numbers, and daily exchanges. Students may not receive duplicate credit for CHIN 11 and CHIN 10AM. Prerequisite: department approval.

CHIN 10AD. First Year Chinese—Dialect speakers I (5)
Introductory course of basic Chinese for students with background in a dialect of Chinese. First quarter of one-year curriculum for entry-level Chinese in communicative skills. Covers pronunciation, fundamentals of Chinese grammar, and vocabulary. Topics include greetings, family affairs, numbers, and daily exchanges. Students may not receive duplicate credit for CHIN 11 and CHIN 10AD. Prerequisite: department approval.

CHIN 10BN. First Year Chinese—Non-native speakers II (5)
Continuation of basic Chinese for students with no background in Chinese. Second quarter of a one-year curriculum for entry-level Chinese in communicative skills. Covers pronunciation, more elaborate grammar, and vocabulary. Focus on goal-oriented tasks: school life, shopping, and transportation. Students may not receive duplicate credit for CHIN 12 and CHIN 10BN. Prerequisite: CHIN 11, CHIN 10AN, or department stamp.
CHIN 10BM. First Year Chinese—
Mandarin speakers II (5)
Continuation introduction of basic Chinese for students with background in Mandarin Chinese. Second course of one-year curriculum for entry-level Chinese communicative skills. Covers sentence structure and idiomatic expression, development of listening, speaking, reading, and written competence. Topics include sports, travel, and special events. Students may not receive duplicate credit for CHIN 12 and CHIN 10CD. Prerequisite: CHIN 11, CHIN 10AM, or department stamp.

CHIN 10BD. First Year Chinese—
Dialect speakers II (5)
Continuation introduction of basic Chinese for students with background in a dialect of Chinese. Second course of one-year curriculum for entry-level Chinese communicative skills. Covers sentence structure and idiomatic expression, development of listening, speaking, reading, and written competence in Chinese. Topics include sports, travel, and special events. Students may not receive duplicate credit for both CHIN 21 and CHIN 20BD. Prerequisite: CHIN 13, CHIN 10CD, score of 3 on AP Chinese Language and Culture Exam, or department stamp.

CHIN 20BN. Second Year Chinese—
Non-native speakers II (4)
Continuation of second year of basic Chinese for students with no background. Second course of one-year curriculum for Chinese intermediate communicative skills. Covers sentence structure and idiomatic expressions, development of listening, speaking, reading, and written competence in Chinese. Topics focus on China, population, and other nationalities. Students may not receive duplicate credit for both CHIN 22 and CHIN 20BN. Prerequisite: CHIN 21, CHIN 20AN, score of 4 on AP Chinese Language and Culture Exam, or department stamp.

CHIN 20BM. Second Year Chinese—
Mandarin speakers II (4)
Continuation of second year of basic Chinese for students with background in Mandarin. Second course of one-year curriculum for Chinese intermediate communicative skills. Covers sentence structure and idiomatic expressions, development of listening, speaking, reading, and written competence. Topics focus on China, population, and other nationalities. Students may not receive duplicate credit for both CHIN 22 and CHIN 20BM. Prerequisite: CHIN 21, CHIN 20AM, score of 4 on AP Chinese Language and Culture Exam, or department stamp.

CHIN 20BD. Second Year Chinese—
Dialect speakers II (4)
Continuation of second year of basic Chinese for students with background in a dialect of Chinese. First course of second year of one-year curriculum for Chinese intermediate communicative skills. Covers sentence structure and idiomatic expression, development of listening, speaking, reading, and written competence in Chinese. Topics include sports, travel, and special events. Students may not receive duplicate credit for both CHIN 22 and CHIN 20BD. Prerequisite: CHIN 21, CHIN 10CD, score of 3 on AP Chinese Language and Culture Exam, or department stamp.

CHIN 20AD. Second Year Chinese—
Dialect speakers I (4)
Second course of second year of one-year curriculum for Chinese intermediate communicative skills. Covers sentence structure and idiomatic expression, development of listening, speaking, reading, and written competence. Topics include sports, travel, and special events. Students may not receive duplicate credit for both CHIN 21 and CHIN 20AD. Prerequisite: CHIN 13, CHIN 10CM, score of 3 on AP Chinese Language and Culture Exam, or department stamp.

CHIN 20CD. Second Year Chinese—
Dialect speakers III (4)
Final course of second year Chinese for students with background in a dialect of Chinese. Second course of one-year curriculum for Chinese intermediate communicative skills. Expansion on pronunciation and more elaborate Chinese grammar and increasing vocabulary. Topics include food, physical actions, and culture. Students may not receive duplicate credit for both CHIN 23 and CHIN 20CD. Prerequisite: CHIN 22, CHIN 20BD, score of 5 on AP Chinese Language and Culture Exam, or department stamp.

THIRD YEAR CHINESE COURSES
(UPPER-DIVISION)

CHIN 100AN. Third Year Chinese—
Non-native speakers I (4)
Intermediate course of Chinese for students with no background. First course of third year of one-year curriculum for Chinese intermediate communicative skills. Covers sentence structure and idiomatic expression, development of listening, speaking, reading, and written competence in Chinese. Topics include sports, travel, and special events. Emphasizing the development of advanced oral, written competence, and aural skills in Mandarin. Topics include education, literature, history of Chinese language and society. Students may not receive duplicate credit for both CHIN 111 and CHIN 100AN. Prerequisite: CHIN 23, CHIN 20CN, or department stamp.

CHIN 100AM. Third Year Chinese—
Mandarin speakers I (4)
Intermediate course of Chinese for students with background in Mandarin and other dialects. First course of third year of one-year curriculum that focuses on listening, reading, and speaking. Topics include education, literature, history of Chinese language and society. Students may not receive duplicate credit for both CHIN 111 and CHIN 100AN. Prerequisite: CHIN 23, CHIN 20CM or CHIN 20CD, or department stamp.

CHIN 100BN. Third Year Chinese—
Non-native speakers II (4)
Intermediate course of Chinese for students with no background. Second course of third year of Chinese that emphasizes the development of advanced oral, written competence, and aural skills in Mandarin. Topics include various cultural aspects of the Chinese language, additional family issues and society. Students may not receive duplicate credit for both CHIN 112 and CHIN 100BN. Prerequisite: CHIN 111, CHIN 100AM, or department stamp.

CHIN 100BM. Third Year Chinese—
Mandarin speakers II (4)
Intermediate course of Chinese for students with background in Mandarin and other dialects. Second course of third year of Chinese that emphasizes the development of advanced oral, written competence, and aural skills in Mandarin. Topics include cultural aspects of the Chinese language, additional family issues and society. Students may not receive duplicate credit for both CHIN 112 and CHIN 100BM. Prerequisite: CHIN 111, CHIN 100AM, or department stamp.

CHIN 100CN. Third Year Chinese—
Non-native speakers III (4)
Intermediate course of Chinese for students with no background. Third course of third year of one-year curriculum in Chinese language acquisition. Continue to develop proficiency at intermediate level. Improves students' Chinese language skills and knowledge of the culture with an emphasis of reading and writing. Topics include economic development in China. Students may not receive duplicate credit for both CHIN 113 and CHIN 100CN. Prerequisite: CHIN 112, CHIN 100BN or department stamp.

CHIN 100CM. Third Year Chinese—
Mandarin speakers III (4)
Intermediate course of Chinese for students with background in Mandarin and other dialects. Third course of third year of one-year curriculum in Chinese language acquisition. Continue to develop proficiency at intermediate level. Improves students' Chinese language skills and knowledge of the culture with an emphasis of reading and writing. Topics include economic development in China. Students may not receive duplicate credit for both CHIN 113 and CHIN 100CN. Prerequisite: CHIN 112, CHIN 100BN, or department stamp.

Students wishing to take more than one Chinese language class in the same quarter must obtain approval from the director of the Chinese language program prior to enrolling in a second CHIN course.
UPPER-DIVISION CHINESE COURSES

CHIN 160/260. Late Imperial and Twentieth-Century Chinese Historical Texts (4)
This course introduces the primary sources used by historians of Late Imperial and Twentieth-Century Chinese history. Reading material includes diaries, newspaper articles, Qing documents, gazetteers, essays, speeches, popular fiction, journal articles, scholarly prose, and field surveys. May be repeated for credit. (P/NP grades only) Prerequisite: advanced knowledge of Chinese language and consent of instructor.

CHIN 165A. Business Chinese (4)
Basic training in oral and written communication skills for business, including introduction to modern business terminology and social conventions. Prerequisite: CHIN 113, CHIN 100CM, CHIN 100CN or department stamp.

CHIN 165B. Business Chinese (4)
Continuation of CHIN 165A. Basic training in oral and written communication skills for business, including introduction to modern business terminology and social conventions. Prerequisite: CHIN 165A or equivalent.

CHIN 165C. Business Chinese (4)
Continuation of CHIN 165B. Basic training in oral and written communication skills for business, including introduction to modern business terminology and social conventions. Prerequisite: CHIN 165B or equivalent.

CHIN 181A. Introduction to Classical Chinese (4)
Introduction to the classical language through Confucius, Mencius, and the other Great Books. The emphasis will be on comprehension and reading ability. Prerequisite: CHIN 23 or equivalent.

CHIN 181B. Introduction to Classical Chinese (4)
Continuation of CHIN 181A. Prerequisite: CHIN 181A or equivalent.

CHIN 181C. Introduction to Classical Chinese (4)
This course is a continuation of 181A and B. Short passages from major historical, literary, and philosophical works are introduced. Prerequisite: CHIN 181B or equivalent.

CHIN 182A. Introduction to Classical Chinese—Advanced I (4)
An introduction to classical Chinese for students with advanced Chinese background. Basic structures and function words are taught through fables of the pre-Qing period. Prerequisite: CHIN 113, CHIN 100C, or department approval.

CHIN 182B. Introduction to Classical Chinese—Advanced II (4)
Continuation of CHIN 182A. Selections from Kongzi, Mengzi, and other philosophers' work will be taught. Focus is on structures, function words, and overall comprehension of a text. Prerequisite: CHIN 182A or departmental approval.

CHIN 182C. Introduction to Classical Chinese—Advanced III (4)
Continuation of CHIN 182B. Selections from later periods like Shi Ji and poetry will be introduced. Upon completion of this year-long curriculum, students should be able to read classical Chinese texts on their own with the help of a dictionary. Prerequisite: CHIN 182B or department approval.

CHIN 185A-B-C. Readings in Chinese Culture and Society (4-4-4)
Designed for students who want advanced language skills, this course will enlarge students' vocabulary and improve students' reading skills through studies of original writings and other media on Chinese culture and society, past and present. Prerequisite: CHIN 113, CHIN 100CM, CHIN 100CN, or department stamp.

CHIN 186A-B-C. Readings in Chinese Economics, Politics, and Trade (4-4-4)
Introduction to the specialized vocabulary and verbal forms relating to Chinese politics, trade, development and society. Designed for students in the social sciences or with career interests in international trade, the course will stress rapid vocabulary development, reading and translating. Prerequisite: CHIN 113, CHIN 100CN, CHIN 100CM, or department stamp.

CHIN 196. Directed Thesis Research (4)
Bachelor's thesis, under the direction of a faculty member in Chinese studies. Prerequisite: consent of instructor. (F,W,S)

CHIN 198. Directed Group Study in Chinese Studies (2 or 4)
Study of specific aspects in Chinese civilization not covered in regular course work, under the direction of faculty members in Chinese studies. (P/NP grades only) Prerequisite: consent of instructor.

CHIN 199. Independent Study in Chinese Studies (2 or 4)
The student will undertake a program of research or advanced reading in selected areas in Chinese studies under the supervision of a faculty member of the Program in Chinese Studies. (P/NP grades only) Prerequisite: consent of instructor.

CHIN 260. Late Imperial and Twentieth-Century Chinese Historical Texts (4)
This course introduces the primary sources used by historians of the Late Imperial and twentieth-century Chinese history. Reading material includes diaries, newspaper articles, Qing documents, gazetteers, essays, speeches, popular fiction, journal articles, scholarly prose, and field surveys. May be repeated for credit. (P/NP grades only) Prerequisites: department stamp, advanced knowledge of Chinese language, and consent of instructor.

CHIN 269. Conversational Mandarin for Medical Students—Beginning (2)
(Cross-listed with MED 269.) This introductory course is designed to develop a working knowledge of medical Mandarin that will enable the student to communicate with Mandarin-speaking patients. There will be instruction in basic medical vocabulary and grammar, with a focus on taking a medical history. This is only a conversational course and no previous knowledge of Mandarin is required. (S/U only.)

CHIN 296. Directed Thesis Research (2-12)
Graduate thesis research under the guidance of a faculty member affiliated with the Program in Chinese Studies.

CHIN 299. Independent Study in Chinese Studies (2-12)
Independent graduate research under the guidance of a faculty member affiliated with the Program in Chinese Studies. Prerequisites: graduate standing and consent of instructor.

CHIN 500. Apprentice Teaching (2-4)
A course in which graduate teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty, handling of discussions, assistance in the preparation and grading of exams and other written exercises, and student relations. Prerequisite: graduate standing.
Classical Studies

PROFESSORS

Georgios H. Anagnostopoulos, Ph.D., Philosophy
Page Ann duBois, Ph.D., Classical and Comparative Literature
Anthony T. Edwards, Ph.D., Classical Literature and Languages
Edward N. Lee, Ph.D., Philosophy, Emeritus
Marianne McDonald, Ph.D., Theatre and Dance
Alden A.Mosshammer, Ph.D., History, Emeritus
Sheldon A. Nodelman, Ph.D., Visual Arts

Maria C. Pantelia, Ph.D., Ohio State University, Professor
B. P. Reardon, D.U. Université de Nantes, Professor
Andrew Zissos, Ph.D., Princeton University, Assistant
Anastasios Argyrou, Professor of Classics and Comparative Literature, UCI

ASSISTANT PROFESSORS

Monte Johnson, Ph.D., Philosophy
Dayna Kalleres, Ph.D., Literature

UC TRI-CAMPUS CLASSICS PROGRAM FACULTY

Georgios Anagnostopoulos, Ph.D., Brandeis University, Professor of Philosophy, UCSD (ancient Greek philosophy, ethics, metaphysics)
Luci Berkowitz, Ph.D., Ohio State University, Professor Emerita of Classics, UC (Greek literary history, computer applications to literature)
Cynthia L. Claxton, Ph.D., University of Washington, Lecturer in Classics, Graduate and Undergraduate Advisor, UC (Greek prose, historiography)
Page duBois, Ph.D., University of California, Berkeley, Professor of Classics and Comparative Literature, UCSD (Greek literature, rhetoric, critical theory, cultural studies)
Anthony Edwards, Ph.D., Cornell University, Professor of Classics and Comparative Literature, UCSD (epic, Greek comedy, critical theory)
Richard I. Frank, Ph.D., University of California, Berkeley, Associate Professor Emeritus of History and Classics, UCI (Roman history, Latin elegy and satire, classical tradition)
Zina Giannopoulou, Ph.D., University of Illinois, Assistant Professor of Classics, UCI (literary theory and Platonic hermeneutics, classical and Hellenistic philosophy, Greek tragedy and epic)
David Gildden, Ph.D., Princeton University, Professor of Philosophy, UCR (Greek and Roman philosophy)
Anna Gonosová, Ph.D., Harvard University, Associate Professor of Art History, UCI (Byzantine and Medieval art)
Dayna Kalleres, Ph.D., Brown University, Assistant Professor, UCSD (Late antiquity, religious studies, critical theories of religion)
Andromache Karanika, Ph.D., Princeton University, Assistant Professor of Classics, UCI (Greek epic poetry, Greek lyric, folklore)
Edward N. Lee, Ph.D., Princeton University, Professor Emeritus of Philosophy, UCSD (Greek philosophy, Plato)
Marianne McDonald, Ph.D., University of California, Irvine, Professor of Theatre and Classics, UCSD (Greek and Roman theatre, ancient drama in modern plays, film, and opera)
Margaret M. Miles, Ph.D., Princeton University, Professor of Art History and Classics, UCI (Greek and Roman art and archaeology, ancient Sicily, Greek religion)
Alden A. Mosshammer, Ph.D., Brown University, Professor Emeritus of History, UCSD (early Christian thought, Greek chronography, early Greek history)
Sheldon Nodelman, Ph.D., Yale University, Professor of Visual Arts, UCSD (classical art and architecture, Roman portraiture, critical theory)
Maria C. Pantelia, Ph.D., Ohio State University, Associate Professor of Classics and Director Thesaurus Linguae Graecae, UCI (Greek epic poetry, Hellenistic poetry, computer applications to classics)
James Porter, Ph.D. University of California, Berkeley, Professor of Classics and Comparative Literature, UCI (philosophy, literary and cultural criticism and aesthetics, history of the classical disciplines, reception of Homer)
Lisa Raphals, Ph.D. University of Chicago, Professor of Chinese and Comparative Ancient Civilizations, UCR (comparative philosophy, religion, history of science, gender)
Wendy Raschke, Ph.D., State University of New York, Buffalo, Lecturer in Classics, UCR (Roman satire, Greek art and archaeology)
B. P. Reardon, D.U. Université de Nantes, Professor Emeritus of Classics, UCI (late Greek literature, ancient novel)
Michele Saltzman, Ph.D., Bryn Mawr College, Professor of History, UCR. Chair of the Joint Executive Committee of the Tri-Campus Program (late antiquity; Roman history and literature, religion, women's studies)
Gerassimos Santas, Ph.D., Cornell University, Professor Emeritus of Philosophy, UCI (ancient philosophy, history of philosophy, ethics)
Thomas F. Scanlon, Ph.D. Ohio State University, Professor of Classics and Chair, Department of Literature and Foreign Languages, UCR. (Greek and Roman historiography, ancient athletics)
Thomas Szegö, Ph.D. UC Santa Barbara, Assistant Professor of History, UCI (Early Latin epic, early Islamic history)
Dana F. Sutton, Ph.D., University of Wisconsin, Professor Emeritus of Classics, UCI (Greek and Roman drama, Greek poetry, Anglo-Latin literature)
Andrew Zissos, Ph.D., Princeton University, Associate Professor of Classics and Chair, Department of Classics, UCI (Latin epic, medieval Latin, Roman culture)

OFFICE: History Department Undergraduate Advising Humanities and Social Sciences Building, Fifth Floor Muir College

http://history.ucsd.edu/programs/caesar-programs/classical-study/

Classical studies is concerned with the cultures of ancient Greece and Rome—roughly from the time of Homer through the time of St. Augustine—in all of their aspects. This program thus offers undergraduates an opportunity to study the cultures of Greece and Rome through the combined resources of the Departments of History, Literature, Visual Arts, Theatre and Dance, and Philosophy. The study of the ancient Greek and Latin languages themselves serves as the starting point for the broader consideration of specific texts in their literary, intellectual, and historical context. Moreover, in cooperation with the Judaic Studies Program, students are provided the opportunity to link the study of ancient Greece and Rome to that of the ancient Near East.

THE MAJOR PROGRAMS

The Classical Studies Program offers four different degree paths, three within classical studies and one in cooperation with Judaic studies. The majors are Greek, Latin, classics, and Greek and Hebrew. Each consists of a choice of twelve upper-division courses (forty-eight units) approved for the program and listed below. All courses used to meet requirements for a major in classical studies must be taken for a letter grade and be passed with a grade of C– or better.

Graduate courses may be taken by undergraduates with consent of the instructor. The faculty of the program welcome qualified undergraduates in graduate courses.

Additional courses counting toward a major in classical studies are offered on a year-to-year basis, both at the undergraduate and graduate levels. As these often cannot be listed in advance, interested students should consult the program faculty for an up-to-date list.

GREEK

LTWL 19A-B-C are prerequisites to the Greek major. Six of the twelve upper-division courses must be LTGK courses numbered 101 and above, but exclusive of LTGK 101. The remaining six courses may be in classical civilization (in English translation), selected from the list of approved courses from history, Lit/World, philosophy, political science, and visual arts, though additional LTGK courses numbered 100 and above (including LTGK 101) are acceptable here. These must be from at least two departments and selected in consultation with the advisor; courses dealing with Greek civilization are strongly preferred.

LATIN

LTWL 19A-B-C are prerequisites to the Latin major. Six of the twelve upper-division courses must be LTLA courses numbered 100 and above, but exclusive of LTLA 101 and 102. The remaining six courses may be in classical civilization (in English translation), selected from the list of approved courses from history, Lit/World, philosophy, political science, and visual arts, though additional LTLA courses numbered 100 and above (including LTLA 101 and 102) are acceptable here. These must be from at least two departments and selected in...
consultation with the advisor; courses dealing with Roman civilization are strongly preferred.

CLASSICS

LTWL 19A-B-C are prerequisites to the classics major. Nine of the twelve upper-division courses must be distributed between LTLA and LTGK courses numbered 100 and above (but exclusive of LTLA 101 and 102 and LTGK 101), six in one literature and three in the other according to the student’s emphasis. The remaining three courses may be in classical civilization (in English translation), selected from the list of approved courses from history, Lit/World, philosophy, political science, and visual arts, though additional LTLA or LTGK courses numbered 100 and above (including LTLA 101 and 102 and LTGK 101) are acceptable here. These must be from at least two departments and selected in consultation with the advisor to reflect the relative emphasis upon the Greek and Latin literatures, but with at least one focusing upon each culture.

GREEK AND HEBREW

Three courses from LTWL 19A-B-C and Cultural Traditions, Judaic 1A-B, to be selected in consultation with the advisor, are prerequisites to the Greek and Hebrew major. Nine of the twelve upper-division courses must be distributed between LTGK courses numbered 100 and above (but exclusive of LTGK 101) and Judaic Studies 101-102-103 or LTNE courses numbered 100 through 112, six in one literature and three in the other according to the student’s emphasis. The remaining three courses may be in ancient Greek and Judaic civilization (in English translation), selected from the list of courses approved for classical studies and from the list of courses approved for Judaic studies, though additional LTGK courses numbered 100 and above (including LTGK 101) or Judaic Studies 101-102-103 or LTNE courses numbered 100 through 112 are acceptable here. These must be from at least two departments and selected in consultation with the advisor (who is selected in accordance with thestudent’s emphasis) to reflect the relative emphasis upon the Greek and Hebrew literatures, but with at least one course from each program.

THE MINOR PROGRAMS

CLASSICAL STUDIES

A minor in classical studies consists of seven courses (twenty-eight units) from those listed below, of which at least four must be upper-division. A knowledge of the ancient languages is not required. The minor will normally include LTWL 19A-B-C. The Greco-Roman World, and four other courses from the participating departments. All courses used to meet requirements for the minor in Classical Studies must be taken for a letter grade and passed with a grade of C– or better.

Greek

See Literature: “The Minor in Literature”

Latin

See Literature: “The Minor in Literature”

WARREN COLLEGE

A Warren College program of concentration in classical studies normally consists of LTWL 19A-B-C and three of the upper-division courses listed below.

HONORS IN GREEK, LATIN, AND CLASSICS

Honors is intended for the most talented and motivated students majoring in Greek, Latin, classics, or Greek and Hebrew. Requirements for admission to the honors program are

• Junior standing
• An overall GPA of 3.5
• A GPA in the major of 3.7

Qualified students majoring in Greek, Latin, or classics may apply at the end of their junior year to the program faculty on the basis of 1) a thesis proposal (three to four pages) worked out in advance with a classical studies faculty member and 2) a recommendation from that faculty member. It is strongly advised that the proposal be based upon a class paper or project from a course taken toward completion of the major.

The core of the honors program is an honors thesis. The research and writing of the thesis will be conducted over the winter or fall and winter terms of the senior year. Up to four units of 196 course credit to this end may be counted toward the major in place of one of the courses in English translation. A thesis completed by the end of the winter quarter of the senior year will be read and evaluated by the thesis advisor and another member of the program faculty. If the thesis is accepted and the student maintains a 3.7 GPA, departmental honors will be awarded. The level of honors—distinction, high distinction, or highest distinction—will be determined by the program faculty.

Students choosing a major in Greek and Hebrew may complete an honors major as follows: Those with an emphasis on Greek must meet the requirements for honors in the Classical Studies Program and work with a thesis advisor from classical studies, but select a second advisor for the thesis from Judaic studies. Those with an emphasis on Hebrew must meet the requirements for honors in the Judaic Studies Program and work with a thesis advisor from Judaic studies, but select a second advisor for the thesis from classical studies.

TRANSFER STUDENTS

UC San Diego’s Program in Classical Studies welcomes transfer students. Students planning to transfer from two-year colleges should try to complete as many of the lower-division prerequisites for the major as possible; specifically, a course equivalent in duration and content to UCSD’s Literatures of the World 19A-B-C and, if possible, elementary Greek and/or Latin, as appropriate for the planned classical studies major. Students with questions about transferring into UCSD’s Program in Classical Studies should review the “Admission Information for Transfer Students” on the UCSD Web site (go to http://www.ucsd.edu and choose Prospective Students, then Admissions, then For Transfer Students) and feel free to contact the faculty advisor for the program with any questions.

THE UNIVERSITY OF CALIFORNIA TRI-CAMPUS PROGRAM IN CLASSICS

UC Irvine, UC Riverside, and UC San Diego

What is the UC Tri-Campus Program? This graduate program joins together into a single faculty more than twenty experts in classics and related disciplines from the three southernmost University of California campuses (Irvine, Riverside, and San Diego). It features an innovative curriculum and program of study that address the practical and theoretical questions confronting the humanities and classics in particular as both enter the twenty-first century.

What are the program’s goals? The aim of the Tri-Campus Program is to provide an educational environment for pursuing a graduate career in classics that is closely integrated into the main currents of humanistic and social scientific scholarship. The program’s faculty recognizes that today and in the future, teachers of the classics must possess and develop expertise beyond the standard specialties of the traditional classics Ph.D. degree. Classics programs, in both large research universities and small liberal arts colleges, increasingly feel the pressure to break down the boundaries between disciplines.

To achieve these goals, the program and curriculum are designed around five principles:

• Study the ancient texts and objects in their wider social, cultural, and historical contexts.
• Bring the culture of the ancient Greeks and Romans into the purview of contemporary literary and sociological theory.
• Examine the reception of ancient literature and culture by later cultures and the appropriation of the ancient world by the modern world.
• Pay particular attention to the intersections of Greek and Roman society and culture with each other and with the other cultures of the ancient world.
• Utilize, to the fullest the potential, new computing technologies as tools for research and teaching.

These five interdisciplinary principles are embodied in the four Core Courses (Classics 200A, 200B, 200C, and 201), Graduate seminars (Classics 220) and reading courses in Greek and Latin authors (Classics 205) round out the program of studies. This curriculum has been in effect at UC Irvine since 1995, taught by faculty members from all three campuses.

Where do I apply? The Tri-Campus Program uniquely does not belong to a particular campus but to the University of California. Students who are accepted into the program may enroll at any of the three campuses. Because instruction and administrative functions take place on the Irvine campus, students will normally enroll at UC Irvine. Applications to the Tri-Campus Graduate Program will be reviewed by an admissions committee composed of members from all three campuses.
The Role of the Graduate Advisor

The graduate advisor is a faculty member responsible for supervising graduate study in the department and monitoring the academic progress of graduate students. The graduate advisor coordinates the various elements of the academic program and advises students and other faculty members about program requirements and university policies. The graduate advisor keeps records for each student and for the whole program, ensures that each student meets all requirements and makes satisfactory progress toward attainment of the degree, and is instrumental in the nomination of students for fellowship support and assistantship appointments. The graduate advisor also provides general help to students as they attempt to negotiate the academic and administrative hurdles on their way to completion of their degrees. The graduate advisor is an ex-officio member of the Tri-Campus JEC for the duration of his or her tenure, normally two years.

Election of Student Representative

Graduate students elect a representative who attends JEC meetings as a regular voting member. Graduate students are also invited to attend meetings as observers and to participate where appropriate. The voting rights and attendance of the graduate student representative are circumscribed by the requirements of confidentiality.

The Ph.D. and the M.A. Program's student career may be thought of as covering three stages: course work, preparation for qualifying exams, and candidacy (dissertation). For Ph.D. students, the normative limits for completion of the program are four years to advancement to candidacy, two years to final approval of the dissertation, and a maximum of seven years in total. Students are only admitted into the Ph.D. program. Entering students who do not already hold a master's degree in classics from another institution will be required to complete M.A. requirements while pursuing the Ph.D.

COURSE WORK FOR THE M.A.

The M.A. degree in classics may be awarded either upon completing the Ph.D. course requirements and passing the written Ph.D. examinations or upon completing the M.A. course requirements and master's paper and passing the M.A. translation examinations and general exam. The latter path to the M.A. is intended for Ph.D. students who decide to leave the program before completing the requirements for a Ph.D.

M.A. students must successfully complete a minimum of twelve approved seminar-level courses. The twelve courses must be distributed as follows:

- Nine quarters of Classics 220.
- At least three quarters of Classics 200A-B-C and 201; a fourth quarter may be substituted for a Classics 220.
- Up to one quarter of Classics 290 for research and writing of the master's paper may be substituted for a Classics 220.
- If remedial work is required in Greek or Latin, with the graduate advisor's approval, one enhanced upper-division Greek or Latin course enrolled as a Classics 280 may be substituted for a Classics 220.
- With the graduate advisor's approval, M.A. students may substitute one external graduate seminar in a relevant area outside of classics (at any of the three participating campuses) for a Classics 220.

A SAMPLE M.A. PROGRAM

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200A (200C)</td>
<td>Classics 220</td>
<td>2008 (201)</td>
</tr>
<tr>
<td>Classics 220</td>
<td>Classics 220</td>
<td>Classics 220</td>
</tr>
<tr>
<td>Classics 399</td>
<td>Classics 399</td>
<td>Classics 399</td>
</tr>
<tr>
<td>YEAR 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200C (200A)</td>
<td>Classics 220</td>
<td>201 (2008)</td>
</tr>
<tr>
<td>Classics 220</td>
<td>Classics 220</td>
<td>Classics 290</td>
</tr>
<tr>
<td>Classics 399</td>
<td>Classics 399</td>
<td>M.A. Exams</td>
</tr>
</tbody>
</table>

COURSE WORK FOR THE PH.D.

Ph.D. students must successfully complete a minimum of eighteen approved seminar-level courses. The eighteen courses must be distributed as follows:

- Four quarters of Classics 200A-B-C, and 201.
- Twelve quarters of Classics 220.
- Two external graduate seminars, from departments or programs outside of classics. These may be taken from the offerings of any of the three campuses.
- Students may take up to two quarters of enhanced upper-division Greek or Latin courses (enrolled as 280s) in place of Classics 220s, with permission of the graduate advisor if remedial work is required in Greek or Latin.
- Where appropriate, in the third year of course work, a second Classics 200A, B, or C, may be substituted for a 220.
- Classics 280, Independent Study (supervised research) may be substituted for Classics 220s only with the permission of the graduate advisor.
- Up to twelve equivalent graduate-level courses completed elsewhere may be substituted for Tri-Campus Program courses with approval of the JEC.

Classics 280 may be used, normally in the fourth year, to provide time to work on the Greek and Latin reading lists and to prepare for qualifying exams, but these courses do not count towards the required eighteen courses. Ph.D. students must meet with the graduate advisor early every fall quarter to discuss their progress through the curriculum and their plans for the coming academic year. A student who accumulates more than one outstanding grade of incomplete is considered to be at risk.

For student files, faculty teaching graduate courses will submit to the graduate advisor a brief written evaluation for each student, commenting on the student's performance and noting whether the student wrote a seminar paper for the course. The graduate advisor will lead the JEC in an annual review of all active graduate students in the program at the JEC's spring meeting.

A SAMPLE PH.D. PROGRAM

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200A (200C)</td>
<td>Classics 220</td>
<td>2008 (201)</td>
</tr>
<tr>
<td>Classics 220</td>
<td>Classics 220</td>
<td>Classics 220</td>
</tr>
<tr>
<td>Classics 399</td>
<td>Classics 399</td>
<td>Classics 399</td>
</tr>
<tr>
<td>YEAR 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200C (200A)</td>
<td>Classics 220</td>
<td>201 (2008)</td>
</tr>
<tr>
<td>Classics 220</td>
<td>Classics 220</td>
<td>Classics 290</td>
</tr>
<tr>
<td>Classics 399</td>
<td>Classics 399</td>
<td>M.A. Exams</td>
</tr>
</tbody>
</table>

2010-2011 UC SAN DIEGO GENERAL CATALOG • CLASSICAL STUDIES 3
Exams for the M.A.

Foreign Language Requirement: Students must demonstrate reading knowledge of German, French, or Italian, or an equivalent research language through course work or by examination.

Translation Exams: Each student must pass a set of translation examinations in Greek and in Latin administered by the master’s committee (two hours each).

The JEC, in consultation with the graduate advisor and the student, recommends to the graduate dean a three-member master’s committee composed of program faculty from at least two campuses to set and evaluate the translation examinations and to evaluate the master’s paper. Normally this committee is established in the quarter preceding completion of the master’s paper.

Exams for the Ph.D.

1. Foreign Language Requirements: Ph.D. students must demonstrate reading proficiency in one modern research language (nominally German, French, or Italian) by the end of their second year either through appropriate course work or by examination. Proficiency in a second modern research language is expected by the end of the third year.

2. Ph.D. Qualifying Exams: In order to advance to candidacy for the Ph.D. and to enter the dissertation stage, a student must pass a set of seven qualifying exams. The translation exams, history exams, and history of the literatures exams are administered and evaluated on a regular schedule over the academic year by examination boards composed of one faculty member from each campus and appointed for that purpose by the JEC at the graduate advisor’s recommendation. The JEC, in consultation with the graduate advisor and the student, recommends to the graduate dean a five-member candidacy committee composed of four program faculty (from at least two campuses) and one outside member holding tenure on one of the participating campuses (i.e., not a member of the program faculty) to organize and administer the special-area exam and the oral exam taken by the candidate after successful completion of the other exams. All committee members for both candidacy and doctoral committees should normally be voting members of the Academic Senate of the Irvine, Riverside, or San Diego divisions. Any exceptions must hold a Ph.D., be qualified for a UC faculty appointment, and be supported by a memo of justification and a CV submitted by the graduate advisor to the graduate dean for approval at least two weeks prior to an exam. The qualifying examinations include written examinations and a oral examination:
 a. Greek and Latin translation (three hours each)
 b. Greek and Roman history (two hours each)
 c. History of Greek and Roman literature (three hours)
 d. A “special area” that can be fulfilled by either an extensive research paper or a three-hour written exam
 e. Oral examination to be administered by the candidacy committee and taken only after the other exams have been passed (two hours: one hour general knowledge and one hour special-area exam paper or research paper)

These exams are based on the Tri-Campus Reading Lists and should be completed by the end of the fourth year. The exams on Greek and Roman history are based on up to six books each, three prescribed on the reading list for this exam and up to three agreed to by the student and graduate advisor. The exam on the history of Greek and Roman literature is based on the Greek and Latin Reading Lists and the books prescribed on the reading list for this exam. Students are expected to read, in the original, all works on the Greek and Latin Reading Lists, whether or not they have appeared in courses. Students may negotiate with the graduate advisor substitutions on the Greek and Latin Reading Lists and other substitutions on the course work requirements. Students failing segments of the qualifying exams may normally retake those sections only once after the interval of one quarter or the summer break, as the case may be. Students may retake segments of the qualifying exams more than once only at the discretion of the JEC. A grade of Pass in all examinations is required for admission to candidacy.

Thesis and Defense for the M.A.

The master’s paper comprises a substantial piece of original research. It should exceed the breadth and depth expected for a seminar paper, which can provide a good foundation for the master’s paper. The master’s paper must be submitted to members of the master’s committee three weeks in advance of the general exam.

If the master’s paper is found to be of passing quality by the committee, the student may take the general exam, a one-hour oral exam covering the broader implications of the master’s paper and the classical world generally.

Thesis and Defense for the Ph.D.

When the student has advanced to candidacy, the JEC—in consultation with the candidate, the graduate advisor, and the proposed chair of the doctoral committee—will recommend to the dean of the Graduate Division a doctoral committee composed of at least three program faculty (from at least two of the three campuses) and one outside member who holds tenure at one of the participating campuses. The doctoral committee will serve as the examination committee for the thesis defense. Within the first quarter after completion of the qualifying exams and all other prerequisites, the candidate will submit a dissertation proposal for discussion and evaluation to the doctoral committee.

A public oral defense of the dissertation will be scheduled upon its submission to the doctoral committee. Members of the committee must be supplied with a copy of the dissertation at least three weeks before the exam date.

The Emphasis in Comparative Literature

Course Work

For the emphasis in comparative literature, students must take at least five graduate courses in the Department of English and Comparative Literature. One course should be Criticism 222A or C, or Comparative Literature 200. At least three of the courses should have a Comparative Literature designation. One of the courses could be Humanities 270 (Critical Theory). Classics students can devote the required outside seminars to this emphasis and may, with the graduate advisor’s approval, make appropriate substitutions of courses.

Qualifying Exams

One topic on the Ph.D. qualifying examination must be on a comparative literature topic and should be prepared with a professor from the Comparative Literature Program who would serve as a member of the student’s exam committee. The student should be able to demonstrate some expertise in comparative critical methodologies as well as knowledge of a literature and tradition other than classics. Normally classics students will fulfill this requirement by selecting the research-paper option for the oral-exam stage of the qualifying examinations.

Dissertation

One member of the student’s doctoral committee must be from the Program in Comparative Literature. Students must include an application for the emphasis in their dissertation proposal to Classics, and the department will track the students’ progress and fulfillment of the emphasis requirements. Upon graduation, students will receive a letter from the graduate advisor certifying completion of the emphasis.

Attendance at Colloquia and Other Departmental Activities

Seminars, colloquia, and other activities of interest to classics graduate students are organized regularly by the Tri-Campus Graduate Program. Since these activities are considered part of the student’s professional training, all students are required to
attend them. Students are also urged to acquaint themselves with colloquia offered in other fields.

SUPPORT FOR GRADUATE STUDENTS

A variety of fellowships and teaching assistantships is available to classics graduate students on a competitive basis. They include Chancellor’s Fellowships, Regents’ Fellowships, and Dissertation Fellowships, as well as the Thesaurus Linguae Graecae Fellowship. Several teaching and research assistantships are also available and provide a stipend in addition to tuition and fees. Some fourth- and fifth-year teaching assistantships are held at UC Riverside and UC San Diego. Continuation of support is contingent upon satisfactory academic progress. Support from various sources is normally extended to students in good standing for up to six years.

RESOURCES OF THE TRI-CAMPUS PROGRAM

The Department of Classics at UC Irvine, which is the administrative center of the Tri-Campus Program, is housed in pleasant quarters in Humanities Office Building 2. Tri-Campus graduate students avail themselves of

- Superior library holdings in classics and related fields in the combined collections of all nine University of California research libraries, access to the holdings of the California Digital Library, and expedient Interlibrary Loan Services with other U.S. and international libraries.
- The facilities of the Thesaurus Linguae Graecae Project (TLG) at UC Irvine, including the complete TLG data bank, the Classics/TLG Computing Lab, and the large collection of primary texts, commentaries, and reference materials housed in the TLG’s Marianne Eirene McDonald Library. Formal (Classics 201) and informal instruction in computer-related methodologies for research and teaching are conducted at the Classics/TLG Computing Lab.
- The Consortium for Latin Lexicography (CLL) at UC Irvine, a collaborative research group whose primary goal is to create a computerized Latin dictionary based on the Thesaurus Linguae Latinae (TLL) in Munich.
- The faculty and program in comparative ancient civilizations at UC Riverside, which are dedicated to a cross-cultural and cross-disciplinary approach to the study of ancient cultures.
- Combined UCI-UCSD Ph.D. Program in theatre, which has a strong classics component, and the nationally renowned regional theatre in La Jolla.
- Seminars, colloquia, and lectures regularly offered by the Critical Theory Committee at UC Irvine and by the University of California Humanities Research Institute that is housed on the UC Irvine campus. Tri-Campus doctoral students may add an emphasis in critical theory under the supervision of the Committee on Critical Theory. The Tri-Campus Program also has its own colloquia series of lectures by visiting scholars on the three campuses.
- The Southern California Graduate Resource-Sharing Consortium, a cooperative association of the Tri-Campus Program and the graduate classics programs of UCLA and the University of Southern California. Every year a faculty member from each of these units offers a graduate seminar in his or her area of expertise at one of the other units. In the spring of every year faculty and graduate students conjoin at an annual consortium luncheon and lecture by a distinguished visiting scholar.

For further information and an online application to the program, please see the Tri-Campus Program’s Web site at http://www.humanities.uci.edu/classics/Tricampus/index.php.

Cynthia Claxton
Program Graduate Advisor
Department of Classics
University of California, Irvine
Irvine, CA 92697-2000
(949) 824-6735
E-mail: tricampus-classics@uci.edu
Fax: (949) 824-1966

LINKS

Following is a list of Web sites for professional organizations that may be of interest to Classical Studies students:

- The American Philological Association: the national professional association for classics http://www.apaclassics.org/
- The California Classical Association: the West Coast regional professional association for classics
 - Northern Section: http://www.cccanorth.org/
 - Southern Section: http://www.csulb.edu/colleges/cia/departments/complitclassics/programs/cca-south/

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

UNDERGRADUATE

Classical Studies 196A-B. Honors Thesis (2-4)

Cultural Traditions. Judaic IA-B (4-4)

Humanities 1. The Foundations of Western Civilization: Israel and Greece (6)

Humanities 2. Rome, Christianity, and the Medieval World (6)

Humanities 3. Renaissance, Reformation, and Early Modern Europe (4)

HIEU 101. Greece in the Classical Age (4)

HIEU 102. The Roman Republic (4)

HIEU 103. The Roman Empire (4)

HIEU 131. Gender in Antiquity and the Early Medieval Mediterranean (4)

HIEU 160. Topics in the History of Greece (4)

HIEU 162. Topics in Roman History (4)

HIEU 199. Independent Study in European History (4)

HISC 101A. Science in the Greek and Roman World (4)

LTGK 1-2-3. Beginning and Intermediate Greek (4-4-4)

LTGK 110. Archaic Period (4)

LTGK 112. Homer (4)

LTGK 113. Classical Period (4)

LTGK 120. New Testament Greek (4)

LTGK 130. Tragedy (4)

LTGK 131. Comedy (4)

LTGK 132. History (4)

LTGK 133. Prose (4)

LTGK 135. Lyric Poetry (4)

LTGK 198. Directed Group Study (4)

LTGK 199. Special Studies (2 or 4)

LTLA 1-2-3. Beginning and Intermediate Latin (4-4-4)

LTLA 4. Intensive Elementary Latin (12)

LTLA 100. Introduction to Latin Literature (4)

LTLA 111. Pre-Augustan (4)

LTLA 114. Vergil (4)

LTLA 116. Silver Latin (4)

LTLA 131. Prose (4)

LTLA 132. Lyric and Elegiac Poetry (4)

LTLA 133. Epic (4)

LTLA 134. History (4)

LTLA 135. Drama (4)

LTLA 198. Directed Group Study (4)

LTLA 199. Special Studies (2 or 4)

LTWL 19A-B-C. The Greco-Roman World (4-4-4)

LTWL 100. Mythology (4)

LTWL 102. Women in Antiquity (4)

LTWL 106. Classical Tradition (4)

Previously LGTN 100, LTEU 100 (may be repeated as topics vary).

LTWL 131B. Topics in Early Christian Literature: Paul and the Invention of Christianity (4)

LTWL 131C. Topics in Early Christian Literature: Reinventing Jesus (4)

LTWL 131D. Topics in Early Christian Literature: The Fourth Gospel (4)

LTWL 131E. Topics in Early Christian Literature: The History of Heresy (4)

LTWL 131F. Topics in Early Christian Literature: Christianity and the Roman Empire (4)

LTWL 131G. Topics in Early Christian Literature: Against the Christians (4)

Philosophy 100. Plato (4)

Philosophy 101. Aristotle (4)

Philosophy 102. Hellenistic Philosophy (4)

Philosophy 199. Directed Individual Study (4)

Pol. Sci. 110A. Citizens and Saints: Political Thought from Plato to Augustine (4)

TDHT 116. Old Myths in New Films (4)

Visual Arts 120A. Greek Art (4)
Visual Arts 120B. Roman Art (4)
Visual Arts 120C. Late Antique Art (4)

GRADUATE
HIEU 260. Topics in the History of Greece (4)
HIEU 261. Topics in the History of Rome (4)
LTGK 210. Classical Studies (4)
LTGK 297. Directed Studies (1–12)
LTGK 298. Special Projects (4)
LTLA 297. Directed Studies (1–12)
LTLA 298. Special Projects (4)
Philosophy 210. Greek Philosophy (4)
Philosophy 290. Directed Independent Study (1–4)

UC TRI-CAMPUS GRADUATE PROGRAM IN CLASSICS COURSES
Classics 200A. Contemporary Literary Theory and the Classics (4)
An introduction to contemporary literary theory, focusing on important critical approaches to the literary texts. May be repeated for credit as topics vary.

Classics 200B. Historical Perspectives on Classical Antiquity (4)
Examines ways in which classical texts and ideas have been received and appropriated for the diverse purposes of ancient and subsequent cultures. May be repeated for credit as topics vary.

Classics 200C. Greece and Rome in Their Contemporary Cultural Contexts (4)
An introduction to the methods and perspectives of social scientific theory that can be used to study the material and social dimensions of the cultures of ancient Greece and Rome. May be repeated for credit as topics vary.

Classics 201. Research and Pedagogical Tools for Classicists (4)
Covers various technical skills essential for research and pedagogy in classics, including use of digital resources (e.g., bibliographical databases). Provides an introduction to important disciplinary subfields, such as textual criticism and epigraphy. Selection of topics will be at instructor’s discretion.

Classics 205. Concurrent Readings (2)
Concurrent enrollment with advanced undergraduate courses (either Greek 105 or Latin 105) with enhanced readings and separate examinations. May be repeated for credit as topics vary.

Classics 220. Classics Graduate Seminar (4)
Subject matter variable; mainly but not exclusively major literary topics. May be repeated for credit as topics vary. Same as Art History 295 when topic is appropriate.

Classics 280. Independent Study (4)
Supervised independent research. Subject varies.

Classics 290. Research in Classics (4-4-4)
F,W,S.

Classics 299. Dissertation Research (4–12)
F,W,S. May be repeated for credit. Satisfactory/Unsatisfactory only.

Classics 399. University Teaching (4–4–4)
F,W,S. Required of and limited to teaching assistants.
ASSOCIATE PROFESSORS
Angela M. Ballantyne, Ph.D., Project Scientist/Neurosciences
Kerri Bouteille, Ph.D., Clinical Pediatrics
Kristin S. Cadenehead, M.D., In-Residence/Psychiatry
David Feifel, M.D., In-Residence/Psychiatry
J. Vincent Filoteo, Ph.D., In-Residence/Psychiatry
Ariel J. Lang, Ph.D., In-Residence/Psychiatry
Thomas D. Marcotte, Ph.D., In-Residence/Psychiatry
John R. McQuaid, Ph.D., Clinical Psychology
Sharon Nichols, Ph.D., Project Scientist/Neurosciences
Marc A. Norman, Ph.D., H.S. Clinical Psychiatry
Bart Onal Palmer, Ph.D., In-Residence/Psychiatry
William J. Sieber, Ph.D., H.S. Clinical Family and Preventive Medicine
Susan F. Tapert, Ph.D., In-Residence/Psychiatry
Julie Wetherell, Ph.D., In-Residence/Psychiatry

ASSISTANT PROFESSORS
Niloofar Afari, Ph.D., Adjunct/Psychiatry
Natacha Akshoomoff, Ph.D., Adjunct/Psychiatry
Lauren J. Brookman-Frazee, Ph.D., Adjunct/Psychiatry
Leslie J. Carver, Ph.D., Psychology
Mariana Cherner, Ph.D., In-Residence/Psychiatry
Sean Drummond, Ph.D., In-Residence/Psychiatry
Lisa T. Eyler, Ph.D., Adjunct/Psychiatry
Tamar Golan, Ph.D., Adjunct/Psychiatry
Frank Haist, Ph.D., Project Scientist/Psychiatry
Gregory A. Light, Ph.D., Adjunct/Psychiatry
Brent T. Mausbach, Ph.D., Adjunct/Psychiatry
Kristen McCabe, Ph.D., Adjunct/Psychiatry
David J. Moore, Ph.D., Adjunct/Psychiatry
Gregory J. Norman, Ph.D., Assistant Adjunct, Family and Preventive Medicine
Sonja B. Norman, Ph.D., Adjunct/Psychiatry
Thomas Rutledge, Ph.D., In-Residence/Psychiatry
Michael J. Taylor, Ph.D., Adjunct/Psychiatry
Elizabeth W. Twamley, Ph.D., Adjunct/Psychiatry
Steven P. Woods, Psy.D., In-Residence/Psychiatry
Maria Luisa Zuluaga, Ph.D., Adjunct/Family and Preventive Medicine

PROFESSIONAL RESEARCHER
Jeanne Townsend, Ph.D., Associate Research Scientist/Neurosciences

OFFICE: Biomedical Sciences Building, Room 2056
(858) 534-4044

THE JOINT DOCTORAL PROGRAM
The interdisciplinary partnership of the Department of Psychiatry at the UCSD School of Medicine and the Department of Psychology at San Diego State University greatly extends the range of perspectives and furnishes unusual opportunities for graduate study leading to the Ph.D. degree in clinical psychology. The Joint Doctoral Group in Clinical Psychology currently consists of faculty from the UCSD Department of Psychiatry, School of Medicine, and the Departments of Neurosciences, Cognitive Science, Family and Preventive Medicine, and Psychology, and the SDSU Department of Psychology and School of Public Health.

Information regarding admission is found in the current edition of the Bulletin of the Graduate Division of San Diego State University and at our Web site: http://www.psychology.sdsu.edu/doctord.

The program goal is to train clinical psychologists who are accomplished both as clinicians and as research scientists. The curricula and training provide a strong foundation in clinical psychological concepts, methods, theories, and data, together with intensive concentrations in specialized areas of clinical psychology. Currently our program has three areas of specialization: behavioral medicine, neuropsychology, and experimental psychopathology.

The scientist-practitioner model on which this program is based requires that students receive ongoing supervised research experience, including planning, design, implementation, analysis, and communication of findings. Equally important is extensive supervised experience aimed at developing sound general and specialized clinical skills. Students are expected to be actively involved in all these activities throughout their tenure in the program.

The program is designed as a five-year curriculum, including a one-year clinical internship. The curriculum is based on a twelve-month academic year. The program is accredited by the American Psychological Association.

Specific courses currently required as part of the core at UCSD include: Clinical Psychology 294A,B,C, (required for neuropsychology track majors only); Clinical Psychology 296 (independent study, lab practicum); Clinical Psychology 299 (independent study project); School of Medicine 202E (Psychopathology).

PH.D. TIME LIMIT POLICIES
Students must be advanced to candidacy by the end of five years. Total University support cannot exceed six years. Total registered time at UCSD cannot exceed seven years.

COURSES
For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

CLINICAL PSYCHOLOGY COURSES
Clinical Psychology 205. Neuroanatomy (6)
Fundamental anatomy/physiology of human nervous system, emphasizing higher cortical functions. Methods of clinical problem solving in neurology; background in basic neuropsychological skills.

Clinical Psychology 209. Child Development and Neuropsychology (3)
Basic aspects of behavioral and neuropsychological development, including guest lectures from program faculty on developmental disorders and clinical assessment issues specific to children. Some emphasis on practical techniques relevant to assessments of minor patients. Prerequisites: completion of two-year core curriculum in the Joint Doctoral Program in Clinical Psychology.

Clinical Psychology 294. Pro-Seminar in Neuropsychology (3)
Year-long course (294A,B,C), each for three credits, offered sequentially fall, winter, spring. Provides a fundamental knowledge of brain-behavior relationships as well as strategies and methods of neuropsychological assessment and rehabilitation.

School of Medicine 202E. Social and Behavioral Sciences—Psychopathology (3)
This sequence will acquaint students with techniques of interviewing, concepts of mental illness and normality, basic research in causality of behavioral disorders, and
approaches to treatment, all in the context of a bio-psycho-
social frame of reference. Format combines a lecture fol-
lowed by smaller group sessions with a faculty leader. The
groups enable students to meet patients with behavioral
disorders, to practice interviewing, to develop observa-
tional skills, and to discuss material presented in lectures
and assigned readings. (S/U grades only.) Prerequisite:
SOM 202A,C,D or consent of instructor.

Clinical Psychology 296. Independent Study (1–12)
Independent survey of basic concepts in clinical psychol-
ogy using various sources of material, including scientific
papers in clinical psychology and behavioral science and
other sources as seem indicated.

Clinical Psychology 299. Graduate Research (1–12)
Individual study course under one or more of the joint
doctoral program faculty to develop certain research ques-
tions, design a methodology to answer the questions, and
then carry out actual research, data reduction, and analysis.
Clinical Research

PROGRAM DIRECTOR
Ravindra L. Mehta, M.D., Professor of Clinical Medicine

ASSOCIATE PROGRAM DIRECTORS
Gerry R. Boss, M.D., Professor of Medicine
J. Allen McCutchan, M.D., Professor of Medicine in Residence

ASSOCIATED FACULTY
Gloria E. Bader, Ed.D., President, The Bader Group
Stephan Bera, Ph.D., Clinical Instructor, Family and Preventive Medicine
Theodore Ganats, M.D., Professor, Family and Preventive Medicine
W. Christopher Mathews, M.D., Professor of Clinical Medicine
Angela Fornataro McMahill, J.D., Director, Research Compliance and Clinical Trials Administrative Services Office
Joe W. Rasmussen, M.D., Professor of Clinical Medicine
Florin Vaida, Ph.D., Associate Adjunct Professor, Division of Biostatistics and Bioinformatics
Deborah L. Wingard, M.D., Professor, Family and Preventive Medicine
Michael G. Ziegler, M.D., Professor of Medicine

OFFICE: La Jolla Village Professional Center
8950 Villa La Jolla Drive, Suite A-212
(858) 534-9164
E-mail: cle@ucsd.edu
http://www.cle.ucsd.edu

PROGRAM DESCRIPTION
The Master of Advanced Studies (MAS) in Clinical Research offers a broad-based curriculum in clinical research methodology and integrates classroom instruction with practical training to provide students with the knowledge and skills necessary to produce valid, credible research. Linking the academic and professional scientific communities, the program is appropriate for physicians, pharmacists, nurses with advanced training, psychologists, and biomedical scientists employed in biomedical firms, hospitals, and pharmacies. The program aims to accommodate the varying needs of the students through its modular approach to instruction, a part-time year-round schedule, and a choice of general electives organized by tracks.

The MAS in Clinical Research is a part-time, self-supporting degree program with a flexible course schedule designed for working professionals and academics. The UC San Diego graduate division confers the MAS degree and the Department of Medicine in the UCSD School of Medicine is responsible for the academic management of the curriculum. UCSD Extension administers the program and provides student advising and career counseling services.

ADMISSION
New students are admitted in the winter and summer quarter of each academic year. Prospective candidates should submit and complete the official UCSD online graduate application for admission, the application fee, one set of official transcripts from each institution attended after high school, three letters of professional letters of recommendation, and a current resume or c.v. The GRE/GMAT is not required; however, it is strongly recommended that candidates possess, or currently be pursuing, a graduate degree in a scientific or healthcare related field and also have some level of experience in scientific or clinical research. In some instances candidates without an advanced degree may be admitted to the program if they have demonstrated substantial professional experience in the field at increasing levels of responsibility. The application deadlines are September 17 (winter) and April 15 (summer).

PROGRAM OF STUDY
The part-time master’s degree program is designed to be completed in eighteen to thirty months, depending upon a participant’s time to devote to the program. Classes are typically scheduled in the late afternoons and evenings. The thirty-six-unit degree is comprised of eighteen units of core clinical modules, four units of seminar courses, four units of directed studies, four units of advanced statistics electives, and six units of an independent study project.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

CLRE 250. Patient-Oriented Research I (2)
This course will develop and apply the theory of clinical trials design and analysis, discuss the practical issues of financing and implementing clinical trials, and describe issues of monitoring trials and working in cooperative groups. The scholar will design and present to a group of peers a concept sheet for a phase I/II and phase II/III clinical trial.

CLRE 251. Epidemiology I (2)
Scholars will recognize and understand different types of study designs, the relative strengths and limitations of each, and the proper choice of study design in conducting their own research. They will also be able to identify and calculate the correct measure of risk for each study design. Participants will recognize major sources of bias, confounding and misclassification, and understand design and analysis methods of dealing with each. They will also be familiar with criteria to differentiate association from causation.

CLRE 252. Health Services Research (2)
Scholars will evaluate relevant outcomes in patient-oriented research from the patient (quality of life) and societal (economic) perspectives and locate potential resources for assessing the relevant outcomes in a wide variety of study designs. They will also be able to describe the relative strengths of different health services research approaches to a clinical problem. Finally, they will understand the components of clinical practice guidelines, including patient preferences, and how these guidelines both depend upon as well as inform patient-oriented research.

CLRE 253. Biostatistics I (2)
Scholars will understand principles of measurement of clinical data, recognize data types, and correctly identify statistical methods appropriate for analysis of a given clinical data set. They will gain experience in assembling a clinical dataset in formats suitable for analysis by STATA or other comparable statistical packages. They will learn skills to conduct graphical and numerical exploratory data analysis, comparative tests of categorical, ordinal, and continuous data, linear and logistic regression analysis, and survival analysis by life table and Kaplan-Meier techniques.

CLRE 254. Biostatistics II (2)
This course will develop and conduct advanced biostatistical analyses including: multiple linear and logistic regression, survival analysis, and Cox and extended Cox regression. The scholar will also be familiar with person-time rate analysis with Poisson regression and longitudinal data analysis in the presence of missing values and varying measurement times. Prerequisites: Biostatistics I, CLRE 253.

CLRE 255. Data Management and Informatics (2)
This course provides an orientation to database design and management and covers key issues regarding data handling for clinical research and clinical trials. Scholars will also become familiar with technology assessment and decision-making methods and analysis.

CLRE 256. Patient-Oriented Research II (2)
This course will review the ethics and basic regulatory issues for research involving human subjects; the principles of data management for clinical research, including architecture, access and confidentiality, and integrity of databases; and skills in graphic and verbal presentation of research data. Scholars will prepare a mock submission to an IRB for peer review and practice presenting graphic and tabular data. Prerequisites: Patient-Oriented Research I, CLRE 250.

CLRE 257. Epidemiology II (2)
Scholars will select the appropriate sampling method and determine the sample size necessary for specific projects and adjust for confounding. Participants will be familiar with several specialized analytic techniques, including matched, cluster, and meta-analyses. They will also be familiar with methodological issues, unique to ecological, behavioral, and genetic studies. Prerequisites: Epidemiology I, CLRE 251.

CLRE 258. Professional Development in Clinical Research (2)
Students participate in a series of seminars on professional development topics that will focus on skills and knowledge to enhance the ability of clinical researchers to be successful. Seminar topics may include research management, team building and collaboration, leadership skills, career development in the clinical research field, negotiation skills, research project management, and research budgeting/financial management. Prerequisite: MAS Program or permission of department.

CLRE 259. Scientific Communication Skills (2)
This course covers the key elements of scientific communication skills that are designed to enhance the clinical research’s ability to be successful. Topics include secrets of making good oral presentations and engaging the audience, how to write and prepare abstracts, basics of grant writing and submission, and how grants are reviewed. Course includes mock grant study section. Prerequisite: MAS Program or permission of department.

CLRE 260. Directed Studies in Clinical Research (2)
Faculty member will direct a student’s study in selected professional development topics in clinical research. Specific content will be tailored to the student’s particular needs and interests. Students must make arrangements with the program and individual faculty member prior to enrolling in the course. Prerequisite: MAS Program or permission of department.

CLRE 261. Applied Quantitative Analysis (4)
Students will understand and conduct advanced statistical analyses for clinical research. The course will develop the students’ technical and conceptual skills in cost-effectiveness analysis and decision analysis, including the creation and evaluation of decision trees, use of sensitivity analysis and the incorporation of patient preferences through utility analysis. Prerequisites: CLRE 253, CLRE 254.
CLRE 296. Independent Study Project (6)
The Independent Study Project (ISP) is the cornerstone of the MAS program. Students will be involved in a high-level clinical research project that integrates what they have learned in their formal course work. The ISP will be an independent and creative scholarly activity in an area related to one or more of the topics covered in the formal curriculum. Students’ work will be evaluated by a committee of faculty, and, in some cases, industry advisors.
Cognitive Science

PROFESSORS
Richard C. Atkinson, Ph.D., Emeritus
Richard K. Belew, Ph.D.
Aaron V. Cicourel, Ph.D., Emeritus
Jeffrey L. Elman, Ph.D.
Gilles R. Fauconnier, Ph.D., Emeritus
James D. Hallan, Ph.D.
Edwin Hutchins, Ph.D.
Terry L. Jernigan, Ph.D.
David J. Kirsh, Ph.D.
Marta Kutas, Ph.D., Chair
Jean M. Mandler, Ph.D., Emerita
Donald A. Norman, Ph.D., Emeritus
Joan Stiles, Ph.D.
David Zipser, Ph.D., Emeritus

ASSOCIATE PROFESSORS
Benjamin Bergen, Ph.D.
Andrea A. Chiba, Ph.D.
Seana Coulson, Ph.D.
Virginia de Sa, Ph.D.
Gedeon O. Deák, Ph.D.
Virginia de Sa, Ph.D.

ASSISTANT PROFESSORS
Sarah Creel, Ph.D.
Douglas A. Nitz, Ph.D.
Ayse Saygin, Ph.D.
Angela J.Yu, Ph.D.

ADJUNCT PROFESSORS
Anders Dale, Ph.D., Professor, Neurosciences and Radiology
Howard Poizner, Ph.D.
Terence J. Sejnowski, Ph.D., Biological Sciences—Neurobiology, Computer Science and Engineering, and Neurosciences
Mark Martin, Ph.D.

Associate Adjunct Professor
Jeanne Townsend, Ph.D.

THE INTERDISCIPLINARY PH.D. PROGRAM

PROFESSORS
Farrell Ackerman, Ph.D., Linguistics
Stuart Anstis, Ph.D., Psychology
Richard C. Atkinson, Ph.D., UC President, Emeritus, Cognitive Science and Psychology
William Bechtel, Ph.D., Philosophy
Richard K. Belew, Ph.D., Cognitive Science
Ursula Bellugi, Ph.D., Adjunct/Psychology
Gregory Brown, Ph.D., In-Residence, Psychiatry
Gert Cauwenberghs, Ph.D., Bioengineering

Robert Kluender, Ph.D., Linguistics
James J. Moore, Ph.D., Anthropology
Rafael Nuñez, Ph.D., Cognitive Science
Jaime A. Pineda, Ph.D., Cognitive Science
Akos Rona-Tas, Ph.D., Sociology

ASSISTANT PROFESSORS
Stephan Anagnostaras, Ph.D., Psychology
Timothy Gentner, Ph.D., Psychology
Gert Lanckriet, Ph.D., Electrical and Computer Engineering
Roger Levy, Ph.D., Linguistics

LECTURER
Christine M. Johnson, Ph.D., Cognitive Science

OFFICE: 140 Cognitive Science Building

http://www.cognicsc.ucsd.edu

INTRODUCTION

Cognitive science is a diverse field which is unified and motivated by a single basic inquiry: What is cognition? How do people, animals, or computers "think," act, and learn? In order to understand the mind/brain, cognitive science brings together methods and discoveries from neuroscience, psychology, linguistics, philosophy, and computer science. UC San Diego has been at the forefront of this exciting field and our Department of Cognitive Science was the first of its kind in the world. It is part of an exceptional scientific community and remains a dominant influence in the field it helped create.

In addition to preparing undergraduates for careers in a variety of sciences, the major also provides an excellent background for many professional fields, including medicine, clinical psychology, and information technology.

The concerns of cognitive science fall into three broad categories: the brain—the neurological anatomy and processes underlying cognitive phenomena; behavior—the cognitive activity of individuals and their interaction with each other and their sociocultural environment, including the use of language, information, and media; and computation—the capacity of mathematical and computer systems to model cognitive and neural phenomena and represent information, and the role of computers as cognitive tools.

The department collaborates closely with other academic departments and research communities, including the Center for Research in Language, the Center for Human Development, the Salk Institute for Biological Studies, the UCSD Medical Center, the San Diego Supercomputer Center, the Center for Functional Magnetic Resonance Imaging Center, and the new Kavli Institute for Brain and Mind, providing many outstanding resources and opportunities.

Students are encouraged to participate actively in the department by sharing their ideas about curriculum, research, and other topics with faculty and staff. Undergraduate students may join the Students in Cognitive and Neurosciences (SCANS) organization, which provides opportunities for undergraduates to meet students and faculty from UCSD and other institutes, visit research laboratories, and make job.
contacts. Graduate students take an especially active role in shaping the department, both academically and administratively, while they gain experience in research, teaching, and managing both labs and department affairs.

THE UNDERGRADUATE PROGRAMS

The department offers both a B.A. and a B.S. degree. The B.S. requires completion of more rigorous lower-division course work and three additional courses at the upper-division level. The B.S. Degree may be taken optionally with a specified area of specialization. There is also an honors program for exceptional students in both degree programs.

Major Code: CG25.

Please note: Students who officially declared the major before fall 2001 may choose to follow the old major requirements or the new major requirements, but not a combination of both. See department advisor for more information.

GRADE REQUIREMENTS FOR THE MAJOR

A minimum grade-point average of 2.0 is required for admittance to and graduation from the B.A. or B.S. Degree program. Students must receive a grade of C– or better in any course to be counted toward fulfillment of the major requirements. All courses must be taken for a letter grade, with the exception of Cognitive Science 195, 198, and 199, which are taken Pass/Not Pass.

FOUR-YEAR PLAN OF STUDY

The four-year plan of study below assures that all prerequisites and requirements for the cognitive science major are completed. The department does enforce course prerequisites and several courses are offered only once a year, so careful planning is important. It is recommended that lower-division courses be taken in the first two years, core courses in the third year, and electives in the final year. Check with a departmental advisor about which quarter cognitive science courses will be offered each academic year. Check with a college advisor about course planning to meet college requirements.

Freshman Year

Twelve units of math (B.A.) Or sixteen units of math (B.S.)
Students intending to take Cognitive Science 118A and/or 118B should take Mathematics 20-A-B-C.

Sophomore Year

Junior Year

Nine core courses, chosen from a list of twelve (see “Core Sequences”).

Senior Year

Electives for the major

LOWER-DIVISION REQUIREMENTS

All majors must complete lower-division courses in introductory cognitive science, mathematics, statistics, and computer programming.

Mathematics Requirement

The cognitive science major requires twelve units of mathematics courses (for the B.A. degree), or sixteen units of mathematics courses (for the B.S. degree), chosen from the following list:

- Mathematics 10A-B-C
- Mathematics 11
- Mathematics 20A-B-C-D-E-F
- Mathematics 15A or CSE 20
- Mathematics 15B or CSE 21

(Students should check with the Department of Mathematics for rules governing duplication of credit between the 10 and 20 series.)

Lower-Division Requirements for the B.A. Degree

Twelve units of mathematics courses chosen from the list above, in addition to the lower-division cognitive science course requirements.

Lower-Division Requirements for the B.S. Degree

Sixteen units of mathematics courses chosen from the list above, in addition to the lower-division cognitive science course requirements.

Lower-Division Cognitive Science Course Requirements

The following lower-division courses in Cognitive Science are required for all majors:

- Cognitive Science 1
- Cognitive Science 14
- Cognitive Science 18

Students intending to take Cognitive Science 118A and/or 118B are advised to take Mathematics 20-A-B-C-E-F and Mathematics 180A before their junior year.

UPPER-DIVISION REQUIREMENTS

The cognitive science major requires the completion of nine core sequence courses, plus three elective courses (for the B.A. degree), or six elective courses (for the B.S. degree). Students are advised to complete these core courses in their junior year, especially if they intend to apply to the honors program. The remainder of the upper-division requirement is fulfilled by completing electives.

CORE SEQUENCES

The core sequences courses in the Department of Cognitive Science are

- Cognitive Science 101A-B-C (Cognitive Theory and Phenomena)
- Cognitive Science 102A-B-C (Distributed Cognition, Everyday Cognition, Cognitive Engineering)
- Cognitive Science 107A-B-C (Cognitive Neuroscience)
- Cognitive Science 109, 118A-B (Computational Models of Cognition)

The cognitive science major requires the completion of nine courses from the core sequences, which must include two courses in the Cognitive Science 101 series, two in the Cognitive Science 102 series, two in the Cognitive Science 107 series, Cognitive Science 109, and two additional courses from any of the core sequences.

ELECTIVES

At least half of the electives for the major must be taken in the department. Courses in the Cognitive Science 19X series (190A, 190B, 190C, 198, 199) may not be used as an elective to satisfy the major requirements for the B.A. degree. One course in the Cognitive Science 19X series may be used as an elective to satisfy the requirements for the B.S. degree, but only with the approval of both the instructor who supervised the course and the undergraduate advisor. A course taken outside the department must meet the following criteria:

1. The course must deal with topics and issues that are clearly part of cognitive science.
2. The material must not be available in a course offered inside the department.

This policy permits students and their advisors to be responsive to changes in course offerings. Majors must obtain departmental approval for electives taken outside of the department.

AREAS OF SPECIALIZATION

A major may elect to receive a B.A. in cognitive science with a specified area of specialization. The areas of specialization are intended to provide majors with guidance in choosing elective courses and to make the specific interests and training of a major clear to prospective employers and graduate schools. Specifying an area of specialization is optional; however, students should take into consideration when planning for their specialization that approved courses are not necessarily offered every year.

To major in cognitive science with an area of specialization, the student must fulfill the requirements for the B.S. Degree and must choose four of the required six elective courses from a list of approved electives for that area of specialization. (The lists of approved electives for each area of specialization are available in the department office.)

The following areas of specialization are currently offered by the department:

Specialization in Clinical Aspects of Cognition

This area of specialization is intended for majors interested in cognitive neuropsychology, psychiatry, cognitive disorders, and the effects of drugs and brain-damage on cognitive functions. Allowed electives include courses in those topics, as well as organic chemistry, biochemistry, and physiology. Major code: CG31

Specialization in Computation

This area of specialization is intended for majors interested in software engineering or research in computational modeling of cognition. Allowed electives include advanced courses in neural networks, artificial intelligence, and computer science. Students interested in this specialization will most likely select courses from the computer science and engineering course offerings, as courses offered within the cognitive science department are limited. Major code: CG27
Specialization in Human Cognition

This area of specialization is intended for majors whose primary interests include human psychology and applications of cognitive science in design and engineering. Allowed electives include courses in cognitive development, language, laboratory research of cognition, anthropology, and sociology. Major code: CG28

Specialization in Human Computer Interaction

This area of specialization is intended for majors interested in human-computer interaction; Web; visualization; and applications of cognitive science in design and engineering. Additional electives may be petitioned from communication, computer science, computer engineering, and visual arts. Major code: CG30

Specialization in Neuroscience

This area of specialization is intended for majors interested in neuroscience research or medicine. Allowed electives include courses in cognitive neuroscience, organic chemistry, biochemistry, and physiology. Major code: CG29

COGNITIVE SCIENCE HONORS PROGRAM

The Department of Cognitive Science offers an honors program for a limited number of majors who have demonstrated excellence, talent, and high motivation.

Eligibility Requirements

Students are eligible for admission to the program when they
1. Complete all core courses
2. Have at least junior level standing
3. Have at least a 3.5 GPA in upper-division major courses and at least a 3.0 overall GPA

Eligible students will enroll in four units of 190A (Pre-Honors Project in Cognitive Science) under a faculty member who has agreed to advise them on a potential honors project. Students may apply the COGS 190A course as an elective toward major requirements whether or not they enter the Honors Program. At the end of the 190A course, students will submit to their faculty mentor a written project proposal. The proposal will define the question to be investigated, survey existing literature, describe the approach and methods that will be used, explain how data will be collected if it is an empirical study, and detail how the subjects will be selected and what procedures will be used.

Acceptance in Honors Program

To formally enter the Honors Program, students must meet the eligibility requirements above, receive a grade of A— or better in COGS 190A, establish an honors committee of at least two faculty and one graduate student to review the proposal and advise them during the process of completing the honors project, and have their project proposal approved by their honors committee.

The honors committee must be kept informed of any deviations from the original approved project proposal and timeline. Students who fail to make satisfactory progress may be asked to withdraw from the program at any point the advisor or the department chair deems necessary.

Successful completion of the Honors Program requires
1. Maintenance of a 3.5 GPA in upper-division major courses, and a 3.0 overall GPA
2. Completion of one cognitive science (or related) graduate level course (may be taken P/NP)
3. Students may use the required graduate course as one of their electives for the major whether or not they complete the honors project
4. Completion of COGS 190B, 190C and 160 with letter grades of A- or better
5. Completion of COGS 190D (Preparation for Thesis Presentation), a 1-unit seminar given each spring (P/NP)
6. Approval of the thesis by the honors committee and the department chair
7. Satisfactory presentation of the honors thesis to the cognitive science community at the Honors Thesis Presentation Conference, spring quarter

Students who successfully complete all of the requirements for the Honors Program will graduate with Distinction in Cognitive Science recorded on their transcripts.

MINORS AND PROGRAMS OF CONCENTRATION

Each college has specific requirements, and students should consult with an academic advisor in their provost's office as well as a cognitive science advisor to be sure they fulfill requirements of the college and of the department.

To receive a minor from the Department of Cognitive Science, a student must complete a total of seven (four unit) courses; five of which must be upper-division. Lower-division requirements are normally fulfilled by completing (one of) Cognitive Science 1, 3, 10 or 11 and (one of) Cognitive Science 14, 17 or 18. Upper-division requirements are normally fulfilled by completing two cognitive science electives and one of the following sequences:

Cognitive Science 101A-B-C
Cognitive Science 102A-B-C
Cognitive Science 107A-B-C
Cognitive Science 109, 118A-B

All courses must be taken for a letter grade. No grade below C— is acceptable.

TRANSFER CREDIT

Students who wish to transfer from another institution to UCSD as cognitive science majors should work closely with university advisors to ensure that all lower-division requirements have been completed and are equivalent to those offered at UCSD. It is extremely important for students to have completed lower-division requirements by the end of their sophomore year so they are prepared for core courses in their junior year. Advanced UCSD students who wish to transfer to the department should consult with the departmental advisors about credit for courses already completed.

ADMISSIONS

The admissions committee reviews each applicant's statement of purpose, letters of recommendation, GRE scores, previous education and work experience, and grade-point averages, then recommends candidates for admission to the entire faculty, who make the final decision.

ADVISING

An interim advisor is appointed to serve as general advisor and counselor for each entering student. The advisor helps chart a set of courses that fulfill the content area requirements, taking into account the student's prior training and interests. Students may change the interim advisor at any time (as long as the new interim advisor is willing). At the time of advancement to candidacy, students choose...
a permanent advisor who also functions as the chair of the dissertation committee. All entering students are assumed to have basic prerequisite knowledge, and a list of basic readings will be provided to incoming students. Students who do not have this background can acquire it through self-study in the summer preceding arrival at UCSD or by taking self-paced study courses or relevant undergraduate courses at UCSD.

Summary of Requirements

1. Foundations courses
2. Approved study plan, which includes issues courses, methods courses, and laboratory rotations
3. Second-year project
4. Language requirement
5. Advancement to candidacy
6. Teaching
7. Cognitive Science 200 seminar
8. Participation in departmental events and committees

DESCRIPTION OF REQUIREMENTS

1. **Foundations Courses (Cognitive Science 201, 202, 203).** Students complete foundations courses in the areas of brain, behavior, and computation by the end of the second year. The department may waive some or all courses for students who already have the required knowledge.

2. **Study Plan.** Students complete a study plan recommended by their advisor. The normal plan includes

 a. **Issues Courses.** A minimum of six issues courses are required, at least one in each of the areas of brain, behavior, and computation. At least four of the issues courses should be taken within the department. Department recommends completion by the end of the second year. Issues courses taken outside the department require the approval of the advisor in conjunction with the Graduate Committee. Five of the six issues courses must be taken for a letter grade.

 b. **Methods Courses.** Three methods courses are required, one of which must be an approved statistics course. Students should obtain approval for all three courses from their advisor. An approved list of courses is on file with the department to assist students in selecting courses. Students may petition courses not on the approval list. Such petitions must be approved by the student's advisor and graduate committee. All three courses must be taken for a letter grade.

 c. **Laboratory Rotations (Cognitive Science 290).** A total of three quarters of laboratory rotations in at least two different faculty laboratories are required. Each rotation is for one to two full quarters as required by the faculty laboratory. All rotations should be completed by the end of fall quarter of the second year.

 Students can meet this requirement in the following ways:

 - Three one-quarter rotations in three different laboratories, or
 - One one-quarter rotation and one two-quarter rotation in two different laboratories, or
 - Two two-quarter rotations in two different laboratories for a total of four quarters enrolled in COGS 290.

 Department recommends that student and advisor negotiate a topic and activity, then put the agreement in writing, sign, and give to the graduate coordinator.

3. **Second-Year Research Project (Cognitive Science 210A-B-C and 211A-B-C).** In the summer between the first and second year, students work with their advisor and a faculty committee to develop a prospectus for a research project. The yearlong project culminates with written and oral presentations to the faculty at the end of spring quarter. During the second year, concurrent enrollment in Cognitive Science 210A-B-C and Cognitive Science 211A-B-C is required as part of the Second Year Project.

4. **Language Requirement.** The main goal of the language requirement is to give all students firsthand experience with some of the differences in structure and usage of languages and the several issues involved in the learning of second languages. This requirement can be satisfied by demonstrating satisfactory proficiency, by prior study in a language (e.g., two years of high school study), or by satisfactory completion of one quarter of study in a language course approved by the department.

5. **Advancement to Candidacy/Qualifying Paper and Oral Exam.** There are three components to advancement to candidacy:

 a. **Competency.** This requirement is met by satisfactorily completing items 1–4 above.

 b. **Depth.** This requirement is met by satisfactorily completing a talk to the entire department on their thesis topic by the end of the third year. A first draft of the thesis proposal must be submitted to the student's advisor by the end of the third year. Students enroll in COGS 205 during winter and spring quarter of the third year.

 c. **Dissertation Topic/Advancement Exam.** The student prepares a proposal of the dissertation topic that must be approved by the student's doctoral committee. A final written proposal is submitted to the committee at least two weeks prior to an oral defense of the proposal. The doctoral committee consists of at least five faculty members: three from the department and two from outside the department; one of the outside members must be tenured.

6. **Teaching (Cognitive Science 500).** All graduate students must serve as a teaching assistant at least one quarter of each academic year in residence. The undergraduate program offers a special challenge to instructor and student alike, and experience with the teaching of that program can provide a valuable part of the education of a cognitive scientist. Teaching assistantships performed in other departments must be approved by formal petition to the graduate committee to count toward the requirement. The department works closely with the Center for Teaching Development to design effective training and development programs for its teaching assistants. At the end of each quarter, instructors prepare written evaluations of all teaching assistants.

7. **Cognitive Science 200 Seminar.** Students must enroll in this seminar for at least three quarters while in residence; frequent participation is encouraged.

8. **Participation in Departmental Events and Committees.** Students participate in departmental special events and committees and serve as student representatives for faculty meetings and the Campus Undergraduate Student Association. Students present their research in the graduate SCANS series.

9. **Completion of the Ph.D. Dissertation and Defense.** Candidates prepare a written dissertation demonstrating a substantive contribution to our understanding of cognition. An oral defense follows.

MASTER'S DEGREE

The Department of Cognitive Science does not offer admissions to a master's program. However, candidates for the Ph.D. who do not hold a master's degree from another institution may be granted the M.S. degree after fulfilling the first three requirements listed above. This is usually at the end of the second year.Duplication of advanced academic degrees, e.g., one at the same level, is not permitted at UCSD. Likewise, a professional degree at the master's or doctoral level, e.g., M.Ed., M.P.I.A., M.D., or Pharm.D., is not regarded as a duplicate of an academic degree.

EVALUATION OF PERFORMANCE AND PROGRESS

A formal evaluation of performance and progress for all students takes place at the end of spring quarter every year, with special attention given to the first and second years of study and at the time of qualification. The first-year evaluation is based in large part on the performance in foundations and issues courses. The second-year evaluation is based on the student's total performance, with emphasis given to the student's second-year research project. The third-year evaluation focuses on the competency and depth requirements, and the following years measure the progress made toward completion of the dissertation.

SPECIAL EVENTS

The department intends to enhance student-faculty interaction and current awareness of active research issues by special “events”:

- Lectures by invited speakers or faculty members
- A full day of faculty/student overview and information at the start of each year, with emphasis...
on ongoing research activity

- Presentations of second-year research projects and third-year thesis topics to the entire faculty at the end of each year

- Final defense of the dissertation accompanied by a public lecture and celebration

TIME LIMITS TO PH.D.

Students must be advanced to candidacy by the end of spring quarter of their fourth year. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

FINANCIAL AID

Financial support is available to qualified students in the form of fellowships, loans, and assistantships. Students are encouraged to seek fellowships and research awards from outside the university. Please refer to the Graduate Studies section for more information.

THE INTERDISCIPLINARY PH.D. PROGRAM

The interdisciplinary Ph.D. program is distinct from the departmental Ph.D. Program (see previous section) both in admissions and graduation requirements. There are four aspects to graduate study in the interdisciplinary program: (a) a primary specialization in one of the established disciplines of cognitive science; (b) a secondary specialization in a second field of study; (c) familiarity with general issues in the field and the various approaches taken to these issues by scholars in different disciplines; and (d) an original dissertation project of an interdisciplinary character. The degree itself reflects the interdisciplinarity of the program, being awarded jointly to the student for studies in cognitive science and the home department. Thus, students in linguistics or psychology will have degrees that read "Ph.D. in Linguistics and Cognitive Science" or "Ph.D. in Psychology and Cognitive Science."

ADMISSION TO THE PROGRAM

Students enter UCSD through admission to one of the affiliated departments, which then serves as their home department, and which specifies their primary specialization. The affiliated departments are anthropology, communication, computer science and engineering, linguistics, neurosciences, philosophy, psychology, and sociology. Students may apply for admission to the interdisciplinary program anytime after entering UCSD, typically in the second or third year. Students must have an advisor from their home department who is a member of the interdisciplinary program faculty. If a student does not have such an advisor, a member of the Instructional Advisory Committee will be appointed as interim advisor. The Instructional Advisory Committee is made up of one interdisciplinary program faculty person from each of the home departments. The committee member that will serve as interim advisor for a student will come from the same home department as the student.

Note: Admission to the interdisciplinary Ph.D. Program is contingent upon applying to and being accepted in a home department.

PRIMARY SPECIALIZATION

Primary specialization is accomplished through the home department. Students are expected to maintain good standing within their home departments and to complete all requirements of their home departments through qualification for candidacy for the Ph.D. degree.

SECONDARY SPECIALIZATION

The power of an interdisciplinary graduate training program lies in large measure in its ability to provide the student the tools of inquiry of more than one discipline. Students in the cognitive science interdisciplinary program are expected to gain significant expertise in areas of study outside of those covered by their home departments. Such expertise can be defined in several ways. The second area might coincide with that of an established discipline, and study within that discipline would be appropriate. Alternatively, the area could be based upon a substantive issue of cognitive science that spans several of the existing disciplines, and study within several departments would be involved. In either case, students work with their advisor and the Instructional Advisory Committee to develop an individual study plan designed to give them this secondary specialization. A list of courses in cognitive studies at UCSD is available. This requirement takes the equivalent of a full year of study, possibly spread out over several years. Often it is valuable to perform an individual research project sponsored by a faculty member in a department other than the student’s home department.

The following list demonstrates some ways to fulfill the secondary specialization requirement. It should be emphasized that these programs are only examples. Students will devise individual plans by working with their advisors and the advisory committee. Ideally, students who elect to do research in their areas of secondary interest will be able to accomplish a substantive piece of work, either one of publishable quality or one that will be of significant assistance in their dissertation projects.

Cognitive Psychology. Get a basic introduction to cognitive psychology through the Cognitive Psychology Seminar (Psychology 218A-B) and acquire or demonstrate knowledge of statistical tools and experimental design (this can be done either by taking the graduate sequence in statistics, Psychology 210A-B, or through the standard "testing out" option offered to all psychology graduate students). Finally, and, perhaps of most importance, the student should do a yearlong project of empirical research in psychology with the guidance of a member of the Department of Psychology.

Cognitive Social Sciences. A course sequence from sociology and anthropology, including one or two courses in field methods and a research project under the direction of a cognitive social sciences faculty member. The course sequence and project should be worked out with the advisory committee to reflect the interests and background of the student. Examples of courses include Distributed Cognition (Cognitive Science 234), Text and Discourse Analysis (Sociology 204), and the Anthropology of Language and Discourse (Anthropology 263). In addition, courses on field methods are offered by both anthropology and sociology.

Computer Science and Artificial Language. This specialization requires a thorough background in computer science. For those who enter the program without much formal training in this area, the secondary specialization in computer science includes some upper-division undergraduate courses (CSE 100, 102, 105) and a minimum of two graduate courses (CSE 250AB). (Note that these courses require basic knowledge of programming and discrete mathematics areas that may require some additional undergraduate courses for those who lack these skills.) Students with stronger backgrounds in computer science may go straight to graduate courses. For all students interested in this specialization, the course sequences and any projects should be worked out on an individual basis with the student’s advisor.

Discourse Structure and Processing. This specialization is highly interdisciplinary, spanning linguistics, computer science, psychology, sociology, philosophy, and anthropology. Research within this specialization depends upon which discipline is given emphasis. Therefore, the specialization will have to be developed according to the interests of the student. All students will have to demonstrate awareness and knowledge of relevant studies and the approaches of the various disciplines.

Linguistics. Students who elect a secondary specialization in linguistics should specialize either in the general area of syntax/semantics or in the general area of phonetics/phonology. Those who specialize in syntax/semantics should plan to take three courses in this area and one course in phonetics/phonology. Conversely, those who specialize in phonetics/phonology should plan to take three courses in this area and one course in syntax/semantics. The specific courses recommended will depend on the individual student’s interests and should be arranged in conjunction with the Department of Linguistics faculty liaison to the Cognitive Science Interdisciplinary Program.

In addition, students will prepare a research paper (preferably originating in one of the above courses) that demonstrates control of the methodology and knowledge of important issues in their area of specialization.

Neurosciences. A student specializing in neurosciences would take a program of courses emphasizing brain-behavior relationships, including Behavioral Neuroscience (Neurosciences 264) and the Physiological Basis of Human Information (Neurosciences 243). In addition, depending upon the student’s individual interests, one or more of the neurosciences core courses would be taken in the areas of Mammalian Neuroanatomy (Neurosciences 256), Neuro-psychoendocrinology (Neurosciences 277), and/or Neurochemistry (Neurosciences 234). In most cases, the student would also take a research rotation in the laboratory of a member of the neurosciences faculty.

Philosophy. Students who elect a secondary specialization in philosophy will focus on philosophy of science, philosophy of mind, philosophy of psychology, philosophy of neuroscience, or philosophy of language, depending on their area of primary specialization. Courses suitable for this program
include Philosophy of Language (Philosophy 234), Philosophy of Mind (Philosophy 236), Philosophy of the Cognitive Sciences (Philosophy 250A), and Seminar on Special Topics (Philosophy 285), which will frequently focus on issues relevant to cognitive science. The course sequence should be worked out with the student's advisor.

ACQUISITION OF PERSPECTIVE ON THE FIELD

The cognitive science faculty offers a special seminar, Cognitive Science 200, that emphasizes the interdisciplinary approach to the field and that covers a variety of different problems, each from the perspective of several disciplines. All students are required to enroll in this seminar a total of six quarters while in residence; most students regularly attend the seminar even after fulfilling the requirement. Students may substitute a Cognitive Science Foundations course for a Cognitive Science 200. A maximum of two quarters may be substituted.

PREQUALIFYING EXAMINATIONS

Students must complete any prequalifying and field requirements of their home department.

QUALIFYING EXAMINATIONS

The Dissertation Advisory Committee. As soon as possible, students form a dissertation committee consisting of

- At least three members from the student's home department, including the student’s advisor; and
- at least three members of the Cognitive Science Program, at least two of whom are not members of the student’s home department.

- University regulations require that at least one of the faculty members of the committee from outside the home department must be tenured.

- The committee must be approved by the interdisciplinary program, the home department, and by the dean of Graduate Studies. The dissertation committee is expected to play an active role in supervising the student and to meet with the student at regular intervals to review progress and plans.

- In the qualifying examination, the student must demonstrate familiarity with the approaches and findings from several disciplines relevant to the proposed dissertation research and must satisfy the committee of the quality, soundness, originality, and interdisciplinary character of the proposed research.

INTERDISCIPLINARY DISSERTATION

It is expected that the dissertation will draw on both the primary and secondary areas of expertise, combining methodologies and viewpoints from two or more perspectives, and that the dissertation will make a substantive contribution to the field of cognitive science.

OVERVIEW

The program can be summarized in this way: In the first years, basic training within the student's primary specialization, provided by the home departments.

In the middle years, acquisition of secondary specialization and participation in the Cognitive Science Seminar.

In the final years, dissertation research on a topic in cognitive science, supervised by faculty from the program.

Time Limits: Time limits for precandidacy, financial support, and registration are those established for the home department. Normative time is six years.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LOWER-DIVISION

1. Introduction to Cognitive Science (4)
A team-taught course highlighting development of the field and the broad range of topics covered in the major. Example topics include addiction, analogy, animal cognition, human-computer interaction, language, neuromaging, neural networks, reasoning, robots, and real-world applications.

3. Introduction to Computing (4)
A practical introduction to computers. Designed for undergraduates in the social sciences. Topics include: basic operations of personal computers (MAC, PC), UNIX, word processing, e-mail, spreadsheets, and creating web pages using the World Wide Web. No previous background in computing required.

8. Hands-on Computing (4)
Introductory-level course that will give students insight into the fundamental concepts of algorithmic thinking and design. The course will provide the students with first-person, hands-on experience programming a Web crawler and simple physical robots.

10. Cognitive Consequences of Technology (4)
The role of cognition and computation in the development of state-of-the-art technologies such as human computational interaction in aviation, air traffic control, medical diagnostics, robotics and telerobots, and the design and engineering of cognitive artifacts.

11. Minds and Brains (4)
How damaged and normal brains influence the way humans solve problems, remember or forget, pay attention to things; how they affect our emotions, and the way we use language in daily life.

14. Design and Analysis of Experiments (4)
Design, statistical analysis, and interpretation of experiments in the main areas of cognitive science: brain, behavior, and computation. Introduction to mathematical foundations of probability and statistical decision theory. Decision theory is applied to the problem of designing and analyzing experiments. Students will participate in a group project in which they design scientific experiments, collect data and analyze results. May fulfill general education requirement. Ask a faculty advisor. Prerequisite: Mathematics 10A or equivalent.

17. Neurobiology of Cognition (4)
Introduction to the organization and functions of the nervous system. Topics include molecular, cellular, developmental, systems, and behavioral neurobiology. Specifically, structure and function of neurons, peripheral and central nervous systems, sensory, motor, and control systems, learning and memory mechanisms. (Students may not receive credit for both Biology 12 and Cognitive Science 17. This course fulfills general-education requirements for Marshall and Roosevelt Colleges as well as Warren by petition.)

18. Introduction to Programming for Cognitive Science (4)
Fundamentals of computer programming are introduced. Topics include: fundamentals of computer architecture, variables, functions, and control structures; writing, testing, and debugging programs; programming style and basic software design. Examples and exercises focus on cognitive science applications. Prerequisite: Mathematics 10A or 20A.

25. Introduction to Web Programming (4)
Introduction to Web programming languages and their real-world applications. Concepts and languages covered include document structure (XHTML). A basic background in computing is required, but no prior programming experience.

87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

91. SCANS Presents (1)
The department faculty and the Students for Cognitive and Neurosciences (SCANS) offer this seminar exploring issues in cognitive science. It includes informal faculty research presentations, investigations of topics not covered in the curriculum, and discussions on graduate school and careers. (May be repeated when topics vary.)

99. Independent Study (2 or 4)
Independent literature or laboratory research by arrangement with and under direction of a Department of Cognitive Science faculty member. Prerequisites: lower-division standing, completion of thirty units of UCSD undergraduate study, a minimum UCSD GPA of 3.0, and a completed and approved “Special Studies” form.

UPPER-DIVISION

101A. Sensation and Perception (4)
An introduction to the experimental study of cognition with a focus on sensation and perception. Prerequisite: Cognitive Science 1.

101B. Learning, Memory, and Attention (4)
A survey of the experimental study of learning, memory, and attention. Topics include conditioning, automaticity, divided attention, memory systems, and the nature of mental representation. Prerequisite: Cognitive Science 1. Recommended: Cognitive Science 101A.

101C. Language (4)
An introduction to structure of natural language, and to the cognitive processes that underlie its acquisition, comprehension, and production. This course covers findings from linguistics, computer science, psychology, and cognitive neuroscience to provide an integrated perspective on human language abilities. Recommended: Cognitive Science 101A.

102A. Distributed Cognition (4)
Distributed cognition extends beyond the boundaries of the person to include the environment, artifacts, social interactions, and culture. Major themes are the study of socially distributed cognition and the role of artifacts in human cognition. Prerequisite: upper-division standing. Recommended: Cognitive Science 1 or Cognitive Science 10A.

102B. Cognitive Ethnography (4)
This course examines memory, reasoning, language understanding, learning, and planning activity in everyday, real-world settings. The course work will include discussions of both the findings and the methodology of naturalistic studies of cognition. Prerequisite: Cognitive Science 102A.

102C. Cognitive Design Studio (6)
This is a project-based course focused on the process of cognitive design. Students work in teams to design and evaluate a prototype application or redesign an existing system. Three hours of lecture and two hours of design.
laboratory. Prerequisite: Cognitive Science 102B or consent of instructor.

107A. Neuroanatomy and Physiology (4)
This first course in the sequence focuses on principles of brain organization, from neurons to circuits to functional networks. It explores developmental plasticity, neuronal connectivity, cellular communication, complex signaling, and how these various dimensions form functional brain systems. Prerequisite: Cognitive Science 1 or Cognitive Science 17.

107B. Systems Neuroscience (4)
A rigorous introduction to the neurophysiological and neuroanatomical basis of human and animal cognition, covering cellular neurophysiology and circuit modeling; development, visual, somatosensory, auditory, motor, and limbic systems; neuroimaging and language. Prerequisite: Cognitive Science 107A.

107C. Cognitive Neuroscience (4)
This course studies brain systems implicated in attention, language, object recognition, and memory. Neurobiological evidence for functional subsystems within these processes and the way specialized systems develop are considered using findings from animal studies, human development, and behavioral and brain imaging. Prerequisites: Cognitive Science 107B and its prerequisites.

(Course previously offered as COGS 108A, fall 2001) The design, implementation, and analysis of algorithms, and programming methodologies. Applications include: symbolic artificial intelligence, neural networks, genetic algorithms, computer graphics, and human computer interaction. Prerequisites: Cognitive Science 1 and Cognitive Science 18 or CSE 9A or CSE 10, or permission of instructor. (Not offered in 2010–11.)

108E. Neural Network Models of Cognition I (4)
(Course previously offered as COGS 108B, winter 2002) This course is an elementary introduction to neural networks and their use in cognitive science. Students will learn how to construct and train neural networks to solve problems at both the psychological and neurological levels of cognition. Prerequisite: Cognitive Science 108D. (Not offered in 2010–11.)

(Course previously offered as COGS 108C, spring 2002.) This course focuses on providing students with additional programming experience in the design of cognitive science applications and modeling. Each time is offered a specific programming area will be covered. Prerequisites: Cognitive Science 108E and Mathematics 20F. (Not offered in 2010–11.)

109. Modeling and Data Analysis (4)
Exposure to the basic computational methods useful throughout cognitive science. Computing basic statistics, modeling learning individuals, evolving populations, communicating agents, and corpus-based linguistics will be considered. Prerequisite: Cognitive Science 18 or equivalent programming course or consent of instructor.

110. The Developing Mind (4)
(Cross-listed with HDP 121.) This course examines changes in thinking and perceiving the physical and social world from birth through childhood. Evidence of significant changes in encoding information, forming mental representations, and solving problems is culled from psychological research, cross-cultural studies, and cognitive science. Prerequisite: HDP 1 or Cognitive Science 1.

113. Cognitive Development (4)
(Cross-listed with Psychology 136) This course examines the foundational and emergent stages of development, discussing the development of perception, imagery, concept formation, memory, and thinking. Emphasis is placed on the representation of knowledge in infancy and early childhood. (Credit may not be received for both Psychology 136 and Cognitive Science 113.) Prerequisite: Cognitive Science 101B or Psychology 105 or Psychology 101. (Not offered in 2010–11.)

115. Neurological Development and Cognitive Change (4)
This course provides an overview of neurological development and explores the relations between physiological change and the experience for the child from the prenatal period through late adulthood. Prerequisite: BLD 10, or Cognitive Science 17, or HDP 110.

118A. Natural Computation I (4)
This course is an introduction to computational modeling of biological intelligence, focusing on neural networks and related approaches to supervised learning. Topics include estimation, filtering, optimization, multilayer perception, recurrent networks, backpropagation, Bayesian networks. Prerequisites: Cognitive Science 109, Mathematics 20E, Mathematics 20F, and Mathematics 180A or consent of instructor.

118B. Natural Computation II (4)
This course is an introduction to computational modeling of biological intelligence, focusing on neural networks and related approaches to unsupervised learning. Topics include density estimation, clustering, self-organizing maps, principal component analysis, information theoretic models, and evolutionary approaches. Prerequisites: Cognitive Science 109, Mathematics 20E, Mathematics 20F, and Mathematics 180A or consent of instructor.

120. Human Computer Interaction (4)
This course is an introduction to the field of human computer interaction (HCI). It provides an overview of HCI from the perspective of cognitive science. Recommended: Cognitive Science 10 and an introductory programming course.

121. Human Computer Interaction Programming Studio (4)
This course covers fundamentals of user interface design and implementation of Web-based systems. A major component is completion of a substantial programming project in which students work together in small teams. Three hours of lecture and one hour of laboratory. Prerequisites: Cognitive Science 120, Cognitive Science 18 or Cognitive Science 3 or Computer Science and Engineering 5A or Computer Science and Engineering 8A or Computer Science and Engineering 8B or Computer Science and Engineering 11 or Computer Science and Engineering 12 or Mechanical and Aerospace Engineering 9, or consent of instructor.

143. Animal Cognition (4)

151. Analogy and Conceptual Systems (4)
Human thought and meaning are deeply tied to the capacity for mapping conceptual domains onto each other, inducing common schemas and performing mental simulation. This course examines major aspects of this cognitive activity including metaphors, conceptual blending and embodied cognition. Prerequisite: upper-division standing.

152. Cognitive Foundations of Mathematics (4)
How the human mind/brain creates mathematics: embodiment, innovation, and creativity. The emergence and power of abstract concepts, such as infinity, infinitesimals, imaginary numbers, or zero. Cognitive approaches that connect mathematics to human thought in general. Prerequisite: upper-division standing.

154. Communication Disorders in Children and Adults (4)
Neural bases of language use in normal adults, and neural bases of language and communicative development in normal children. Evidence on the language and communicative abilities present in brain-damaged patients in terms of damage to one or more components of a model of normal cognitive functioning. (Cognitive science majors may not receive elective credit for both Psychology 139 and Cognitive Science 172.) Prerequisite: Cognitive Science 107A.

172. Brain Disorders and Cognition (4)
A review of the patterns of impaired and intact cognitive abilities present in brain-damaged patients in terms of damage to one or more components of a model of normal cognitive functioning. (Cognitive science majors may not receive elective credit for both Psychology 139 and Cognitive Science 172.) Prerequisite: Cognitive Science 107A.

177. Drugs: Brain, Mind and Culture (4)
This course explores how drugs interact with the brain/mind and culture. It covers evolutionary and historical perspectives, brain chemistry, pharmacology, expectancies and placebo effects, and models of addiction. It also provides a biopsychosocial survey of commonly used and abused substances. Prerequisite: upper-division standing.

175. The Neuropsychological Basis of Alternate States of Consciousness (4)
This course will review the literature that correlates brain rhythms in the human EEG with aspects of cognition, behavioral states, neuropsychopharmacology, and psychopathology in order to understand the psychological and neuropsychological motivations of these experiences. Prerequisite: Cognitive Science 101A or Cognitive Science 107A.

179. Electrophysiology of Cognition (4)
Survey the theory and practice of using electrical recordings (event-related brain potentials) to study cognition and behavior including attention, language, mental chronometry, memory, and plasticity. Prerequisites: Cognitive Science 107A or Psychology 106; Cognitive Science 101A or Psychology 105.

184. Modeling the Evolution of Cognition (4)
Mathematical and computational modeling of the evolution and mechanisms of simple cognitive functions. Thorough background, including topics in population genetics, behavioral ecology, evolutionary game theory, dynamical systems theory, genetic algorithms, and neural networks are applied to questions concerning the evolution of behavioral strategies, the relation between evolution and learning, and the evolution of cooperation, communication and other aspects of social behavior. Prerequisites: programming ability, calculus, and consent of instructor.

187A. Cognitive Aspects of Multimedia Design (4)
Examines the cognitive basis of successful Web and multimedia design. Topics: information architecture, navigation, usability, graphic layout, transaction design, and how to understand user interaction. Prerequisites: Cognitive Science 3 or Cognitive Science 25; open to cognitive science majors with upper-division standing only.
187B. Cognitive Aspects of Multimedia Design II (4) This course follows up on the basics of multimedia design taught in Cognitive Science 187A. Students will probe more deeply into selective topics, such as animation, navigation, graphical display of information, and narrative coherence. A large fraction of time will be spent on group projects. Prerequisites: COGS 187A; open to cognitive science majors with upper-division standing only.

188. Representation, Search, and the Web (4) Computational methods for finding and exploiting structure across vast data corpora, from personal e-mail collections to the entire WWW. Students will implement and evaluate algorithms used as part of modern search engines, and connect these to models of shared cognition. Prerequisites: Cognitive Science 109 or Computer Science and Engineering 12. Recommended: Cognitive Science 102A or Cognitive Science 118B.

190A. Pre-Honors Project in Cognitive Science (4) This course prepares students for the Cognitive Science Honors Program. The aim is to refine the research project and to teach students what a successfully written proposal entails. Students may be admitted to the Honors Program contingent upon completion and progress in the course. (See "Cognitive Science Honors Program" section for more information.) Course should be taken for a letter grade. Prerequisites: upper-division standing; instructor and department approval.

190B. Honors Studies in Cognitive Science (4) This course will allow cognitive science honors students to explore advanced issues in the field of cognitive science research. Students will have the opportunity to develop a thesis on the topic of their choice and begin work under faculty supervision. Prerequisites: Cognitive Science 190A and formal admittance to the Cognitive Science Honors Program; department stamp. (See "Cognitive Science Honors Program" section for more information.)

190C. Honors Thesis in Cognitive Science (4) This course will provide honors candidates an opportunity to complete the research on and preparation of an honors thesis under close faculty supervision. Oral presentation of student's thesis is required to receive honors; additionally, students must receive grade of A- or better in 190B and 190C to receive honors. Prerequisites: Cognitive Science 190B with grade of A- or better and formal admittance to the Cognitive Science Honors Program. (See "Cognitive Science Honors Program" section for more information.)

190D. Preparation for Thesis Presentation (1–2) This course is affiliated with the honors program (190A–B–C) and is required of honors students during spring quarter. Its aim is to prepare students to present research results to an audience. Emphasis will be on the oral presentation (organization, wording, graphics), but there will be also some discussion about written research reports. Seminar style format with occasional short lectures wherein students will practice oral presentations and provide constructive criticism to each other. Prerequisite: must be concurrently enrolled in 190B or 190C.

191. Laboratory Research (1–4) Students engage in discussions of reading of recent research in an area designated and directed by the instructor and also participate in design and execution of original research. Assignments include both oral and written presentations and demonstrating the ability to pursue research objectives. Prerequisites: consent of the instructor and department approval. (May be repeated for credit, but not to exceed eight units.)

195. Instructional Apprenticeship in Cognitive Science (4) Students, under the direction of the instructor, lead laboratory or discussion sections, attend lectures, and meet regularly to help prepare course material. Applications must be submitted to and approved by the department. Prerequisites: upper-division standing; 3.0 GPA; instructor and department approval. P/NP only.

197. Cognitive Science Internship (2 or 4) The student will undertake a program of practical research in a supervised work environment. Topics to be researched may vary, but in each case the course will provide skills for carrying out these studies. Prerequisite: consent of instructor.

198. Directed Group Study (4) This independent study course is for small groups of advanced students who wish to complete a one-quarter reading or research project under the mentorship of a faculty member. Students should contact faculty whose research interests them to discuss possible projects. Prerequisites: upper-division standing. 2.5 GPA; consent of instructor and department approval.

199. Special Project (2 or 4) This independent study course is for individual, advanced students who wish to complete a one-quarter reading or research project under the mentorship of a faculty member. Students should contact faculty whose research interests them to discuss possible projects. Prerequisites: upper-division standing. 2.5 GPA; consent of instructor and department approval.

GRADUATE

200. Cognitive Science Seminar (4) This seminar emphasizes the conceptual basis of cognitive science, including representation, processing mechanisms, language, and the role of interaction among individuals, culture, and the environment. Current developments in each field are considered as they relate to issues in cognitive science. (May be repeated for credit.)

201. Systems Neuroscience (4) Examination of the neurophysiological and neuroanatomical basis of human and animal cognition, covering cellular neurophysiology and circuit modeling; development; visual, somatosensory, auditory, motor, and limbic systems; neuroimaging and language. Students in Cognitive Science 107B will have a textbook and will be given short-answer tests; students in Cognitive Science 201 will have a reader and written take-home assignments, in addition to a short final paper.

202. Cognitive Science Foundations: Computational Modeling of Cognition (4) This course surveys the development of symbolic and connectionist models of cognition. Selected readings from the late 1940s to the present are covered. Topics include Turing machines, information theory, computational complexity, search, learning, symbolic artificial intelligence, and neural networks.

203. Cognitive Science Foundations: Theories and Methods in the Study of Cognitive Phenomena (4) Surveys a variety of theoretical and methodological approaches to the study of human cognition. Topics include language structure, language processing, concepts and categories, knowledge representation, analogy and metaphor, reasoning, planning and action, problem solving, learning and expertise, and emotion.

205. Introduction to Thesis Research (4) This course is taken to focus the students' development of a thesis topic and research proposal. Students prepare an outline of thesis proposal and make an oral public presentation of the proposed topic prior to the end of the third year. S/U only.

210A–B–C. Introduction to Research (4–4–4) This sequence is an intensive research project. Students under faculty mentorship perform a thorough analysis of the problem and the literature, carry out original studies, and prepare oral and written presentations. Students should aim for a report of publishable quality. Letter grade required.

211A–B–C. Research Methods in Cognitive Science (2–2–2) Issues in design, implementation, and evaluation of research in cognitive science are discussed. Students will present and comment on their own research projects in progress. Discussions also include presentations of research to various audiences, abstracts, reviews, grant process, and scientific ethics. Letter grade required.

213. Issues in Cognitive Development (4) This course examines current issues in human development of interest to cognitive scientists. An emphasis is placed on the foundations of mind and how information is represented at various stages of learning and development. (May be repeated once, when topics vary.)

215. Neurological and Cognitive Development (4) This course is presented in consultation with the third year. The second part addresses questions concerned with the relations between cognitive brain development, and linguistic and affective development.

220. Information Visualization (4) This seminar surveys current research in information visualization with the goal of preparing students to do original research. The focus is on the cognitive aspects of information design, dynamic representations, and computational techniques. Topics vary each time course is offered.

234. Distributed Cognition (4) This course focuses on aspects of individual and socially distributed cognition. Empirical examples are drawn from natural and experimental settings which presuppose, tacitly or explicitly, socially distributed knowledge among participants. The class examines the ways locally managed, pragmatic conditions influence how decisions are framed.

238. Topics in Cognitive Linguistics (1–4) (Same as Linguistics 238) Basic concepts, empirical findings, and recent developments in cognitive and functional linguistics. Language viewed dynamically in relation to conceptualization, discourse, meaning construction, and cognitive processing. (As topics vary, may be repeated for credit.)

241. Ethics and Survival Skills in Academia (3) (Same as Neurosciences 241) This course will cover ethical issues which arise in academia, including: dishonesty, plagiarism, attribution, sexual misconduct, etc. We will also discuss 'survival' issues, including job hunting, grant preparation, journal reviews, writing letters of recommendation, mentoring, etc. S/U only.

243. Statistical Inference and Data Analysis (2 or 4) This course provides a rigorous treatment of hypothesis testing, statistical inference, model fitting, and exploratory data analysis techniques used in the cognitive and neural sciences. Students will acquire an understanding of mathematical foundations and hands-on experience in applying these methods using Matlab.

253. Semantics and Cognition (4) This course explores current issues in the study of meaning and its interaction with other areas of cognitive science. The focus is on cognitive semantics, pragmatics, and meaning construction in general.

254. Pragmatics and Common Sense Reasoning (4) A study of the pragmatic principles involved in language comprehension and the logic of everyday life. Cognitive, linguistic, cultural, and sociological aspects will be covered.

260. Seminar on Special Topics (1–4) Specific topics in cognitive science are discussed. (May be repeated when topics vary.)

272. Topics in Theoretical Neurobiology (4) The main focus of this course is the relationship between nervous system function and cognition. It covers broad theoretical issues and specific topics. Material comes from lectures, papers, and the text. Topic varies each time the course is offered. (May be repeated for credit.)

275. Visual Modeling (4) Visual system neurophysiology and neuroanatomy, and neurally realistic and artificial intelligence modeling approaches are covered. Topics are: dendrites, orientation and edges, motion, stereo, shape, shading, color, eye movements, and pattern recognition. Students prepare computer modeling projects or research papers.
276. Foundations of Neuroimaging (4)
Foundations of neuroimaging: (1) MRI/fMRI: RF excitation, relaxation, echos, image formation, BOLD and flow, DTI, EPI, time and series analysis, (2) cortical surface reconstruction, morphing, mapping, and data display, (3) physiological basis of MEG and EEG, forward and inverse solutions.

279. Electrophysiology of Cognition (4)
(Conjoined with Cognitive Science 179; cross-listed with NEU 279) This course surveys the theory and practice of using recordings of electrical and magnetic activity of the brain to study cognition and behavior. It explores what brain waves reveal about normal and abnormal perception, processing, decision making, memory, preparation, and comprehension. Graduate students will be required to do additional readings for the material each week (different for each grad) and to present orally (as well as in a written page) a critical analysis of the readings. Prerequisites: Cognitive Science 107A or Psychology 106; Cognitive Science 101A or Psychology 105.

290. Cognitive Science Laboratory Rotation (2)
Laboratory rotations provide students with experience in the various experimental methods used in cognitive science. Prerequisite: consent of instructor. S/U only.

291. Laboratory Research (1–4)
Students engage in discussions of reading of recent research in an area designated and directed by the instructor and also participate in the design and execution of original research. Students are expected to demonstrate oral and written competence in presenting original research. Prerequisites: consent of the instructor and departmental approval. (May be repeated for credit.)

298. Directed Independent Study (1–12)
Students study and research selected topics under the direction of a member of the faculty.

299. Thesis Research (1–12)
Students are provided directed research on their dissertation topic by faculty advisors.

500. Teaching Apprenticeship (1–4)
This practicum for graduate students provides experience in teaching undergraduate cognitive science courses. S/U only.
Communication

PROFESSORS
Lisa Cartwright, Ph.D.
Michael Cole, Ph.D., University Professor and Sanford I. Berman Professor of Language and Human Communication
Zeinabu Davis, M.F.A.
Yrjo Engstrom, Emeritus
Dee Dee Halleck, Emerita
Daniel C. Hallin, Ph.D., Chair
Robert B. Horwitz, Ph.D.
Chandra Mukerji, Ph.D.
Carol A. Padden, Ph.D.
Michael S. Schudson, Ph.D.

ASSOCIATE PROFESSORS
Barry Brown, Ph.D.
Gary Fields, Ph.D.
Brian Goldfarb, Ph.D.
Valerie A. Hartouni, Ph.D., Academic Senate Distinguished Teaching Award
Tom Humphries, Ph.D.
David Serlin, Ph.D.
Olga A. Vasquez, Ph.D.

ASSISTANT PROFESSORS
Morana Alac, Ph.D.
Patrick Anderson, Ph.D.
Akosua Boatema Boateng, Ph.D.
Kelly Gates, Ph.D.
Nitin Govil, Ph.D.
Michael Hanson, Ph.D.
Ariana Hernandez-Reguant, Ph.D.
John McMurria, Ph.D.
Natalia Roudakova, Ph.D.
Elana Zilberg, Ph.D.

LECTURER WITH SECURITY OF EMPLOYMENT
Claudio Fenner-Lopez, M.A., Emeritus

OFFICE: 127 Media Center Communication Building, Marshall College
(858) 534-4410 http://communication.ucsd.edu

Communication at UC San Diego is a field of study which emphasizes the role of technologies and institutions of communication, from language, to television, to the Internet and beyond, in mediating human experience. It draws from such social science disciplines as anthropology, psychology, sociology, and political science, and from the humanities and fine arts, including theatre, literature, and visual arts. Communication students will develop a critical awareness of the communicative forces that affect their everyday lives.

The communication major is not designed as a training program in advertising, journalism, production, or public relations. It provides students with a solid liberal arts background necessary for graduate studies in communication and other disciplines, and for professional work in a number of communication-related fields, including primary and secondary education.

Though the emphasis of the major is not a technical one, the faculty in the Department of Communication believe that students will develop a deeper understanding of how communication works by exploring firsthand the capabilities and limitations of a variety of media; students, therefore, will have the opportunity to conduct part of their studies in video, computer communication or other forms of media practice.

Within the Department of Communication curriculum are three broadly defined areas of study: Communication as a Social Force, Communication and Culture, and Communication and Human Information Processing. Students take courses in each of these areas.

COMMUNICATION AS A SOCIAL FORCE

How are social systems affected by communication technology? What is the social organization of the communication industries? How is the information presented by the media related to the characteristics of the intended audience? How do media fit into the power structure of societies? Courses in this area address such questions. Students analyze mass communications, the development of telecommunications and information technologies, and the political economy of communication institutions both at home and abroad.

COMMUNICATION AND CULTURE

Film, music, advertising, art, theater, ritual, literature, and language are forms of communication which embody cultural beliefs of the societies from which they come. These media can influence and bring about changes in social behavior, styles, and traditions. At the same time, individuals and groups can reshape the media. Students will study the social production of cultural objects, the cultural traditions that shape their form and content, and various approaches to interpreting or “reading” television, film, newspapers, language, rituals, and other forms.

COMMUNICATION AND HUMAN INFORMATION PROCESSING

How do people turn concepts and ideas into messages? What is the process by which people receive and respond to those messages? Each medium—whether it is language, writing, or electronic media—has different properties that change the way people create and comprehend messages. The impact of television on the individual, the effect of literacy on individuals and on cultures, the ways that concepts are transmitted in film, and the means by which computers expand communication potentials are examples of topics investigated in this area.

THE COMMUNICATION MAJOR

Degree offered: Bachelor of Arts

The major consists of two lower-division courses and fourteen upper-division courses. None of the major courses may be taken on a Pass/Not Pass basis.

LOWER-DIVISION

*COGN 20: Introduction to Communication
*COGN 21: Methods of Media Production

UPPER-DIVISION

*COSF 100: Introduction to Communication as a Social Force
*COCU 100: Introduction to Communication and Culture
*COHI 100: Introduction to Communication and Human Information Processing
*COGN 150: Senior Seminar in Communication

One media methods course

Three courses beyond the introductory courses: (one must be chosen from each of the categories: COSF, COCU, and COHI)

Six upper-division communication electives

* These courses must be taken at UCSD.

Note: If students choose to do a 198, 199, or 197 note the following. COGN 198, 199, 197 grading option is Pass/Not Pass and only ONE may be applied to the major to satisfy an upper-division elective. AIP 197 must be petitioned for approval for the major.

RESIDENCY REQUIREMENT

Students are required to complete at least ten classes of their overall major at UCSD. Following are the communication classes required to be taken at UCSD. See your college advisor for further residency requirements.

COGN 20: Introduction to Communication
COSF 100: Introduction to Communication as a Social Force
COCU 100: Introduction to Communication and Culture
COHI 100: Introduction to Communication and Human Information Processing
COGN 150: Senior Seminar
One COCU elective
One COHI elective
One COSF elective
One COMT elective

REQUIREMENTS FOR THE COMMUNICATION MINOR

(Effective fall 1998)

The communication minor at UCSD is a social science minor. None of the courses may be taken on a Pass/Not Pass basis. Students are required to take seven courses in communication as follows:

*COGN 20 (Introduction to Communication)
Two courses of your choice from the following 100’s:
*COSF 100 (Introduction to Communication as a Social Force)
*COCU 100 (Introduction to Communication and Culture)
*COHI 100 (Introduction to Communication and Human Information Processing)
*Four upper-division communication electives within the areas of the chosen 100 classes.

*These courses must be taken at UCSD within the communication department.

Note: COGN 150, 197, 198, and 199 Media Methods, and courses outside of the department may not be used as electives within the minor.

THE HONORS PROGRAM

The Department of Communication offers an honors program to those students who have
demonstrated excellence in the communication major. Successful completion of the honors program enables the student to graduate "With Highest Distinction," "With High Distinction," or "With Distinction," depending on performance in the program. The honors program requires an application. Students wishing to be considered need to include the following in their application: one faculty advisor who supports their admission to the program, a verified overall GPA of 3.0 and a major GPA of 3.5, and a brief but detailed description of the proposed research or creative project.

Applications will be reviewed by a faculty committee, accepting students who meet these criteria. Once accepted into the Honors Program, students are required to complete a two-quarter course sequence, COGN 191A/191B in the fall and winter quarters of their senior year. At the end of the fall quarter, students will receive an IP grade report. This grade will change to the final letter grade at the completion of the course sequence in the winter quarter. This grade is based on attendance in the seminars and successful completion of the research paper or creative production.

OFFICE: 127 Media Center Communication Building, Marshall College (858) 534-4410 http://communication.ucsd.edu

THE GRADUATE PROGRAM

The Department of Communication offers a program of study leading to the Doctor of Philosophy degree. Communication at UC San Diego seeks to combine modes of analysis from the humanities and social sciences to explore the history, structure, and process of communication. The graduate program is conceived as a blending of the tradition of critical communication research with the empirical tradition of American scholarship. The program does not closely resemble any other communication department in this country. It is related by sympathy and interest to mass communication programs, but not by kinship. Historically, this department grew out of an interdisciplinary program jointly sponsored by the Departments of Drama (currently, Theatre and Dance), Political Science, Psychology, and Sociology. The department retains strong ties to the departments and disciplines from which it developed.

The study of communication at UCSD places major emphasis on historical, comparative, and ethnographic approaches to symbolically mediated human communication. Study is organized around the following three analytic perspectives: communication as a social force, communication and culture, and communication and human information processing. In addition, the department believes that investigation into communication requires a blending of theory and practice, hence, our attention to the media practices.

Communication as a Social Force examines the relation of communication institutions to structures of power in society. In this part of the curriculum, we examine institutional arrangements and structural characteristics regarding:

- Communication and political systems: state, law, regulation, social movements and political parties, democracy
- Communication and economic systems: markets, ownership, access; "demographics" and class/gender/racial and national stratification
- The production of content within media industries

Faculty research includes the following topics:

- The study of news as public information and political ideology
- Telecommunications and the information economy
- Intellectual property and the flow of culture between global North and South
- The relationships among law, communication technologies, ownership, democracy, and the public sphere.
- Comparative analysis of media systems
- Communication, globalization, and economic development

Communication and Culture examines the cultural artifacts and discourses through which we experience our everyday lives, including popular music, films and television shows, advertisements, museum displays, landscape and urban design, and health and identity documentation systems. How can we understand the histories and changing practices associated with these forms of representation?

What is the role of media (print, visual, electronic, material) in forming ideas about social identity and in shaping subjectivity? This part of the curriculum draws on the humanities, anthropology, history, political theory, cultural studies, and the sociology of culture to offer students a range of methods and theoretical frameworks for interpreting the production and circulation of artifacts, discourses, and meanings in a range of local, national, transnational, and diasporic cultural contexts.

Faculty research includes the following topics:

- Collective memory and the struggles over the meaning of the past
- The politics of representation of women, children, abortion, and childbearing
- Political violence as performance
- Popular music and African-American political movements

Communication and Human Information Processing examines the ways in which our experience as human beings is created by the communicative practices of the societies in which we live and the cultural practices of our families and communities with which we interact from the earliest days of life. With a sociocultural lens, we study the role of communication through language and other organized symbolic media. Because both individuals and their environments are constantly changing, the study of culture and the person pays special attention to the cultural and historical contexts of personal experience and the practices that constitute the proximal environments of individual development. This part of the curriculum draws particularly on the fields of anthropology, sociology, psychology, linguistics, cognitive science, and education to examine such processes as learning and cognition, language structure and language use, the construction and negotiation of meaning, and the organization of mental worlds.

Faculty research includes the following topics:

- The evolution of language and communication in human beings
- The role of new communicative practices in human development
- The study of human cognition as distributed among people and coordinated in communicative practices
- The development of reading and writing in young children
- The use of technology to study human thought
- Bilingual and bicultural development in a globalized world
- The use of information technology in work and leisure

Communication and Media Practices faculty work in video, film, and interactive media production as well as in research scholarship. Graduate students as well as undergraduates are offered the opportunity to integrate creative practice in media production into their program of study.

Some communication faculty production interests include:

- Hybrid documentary and narrative forms
- Alternative representation of gender, race, and ethnicity in film and electronic media
- Distributed and networked media production
- Digital media based on game-like forms
- Development and use of media technology in and for educational contexts
- Global media networks
- Experimental approaches to cinematography and sound design
- Media as a tool for social and political activism

PH.D. REQUIREMENTS

2. 294, The History of Communication Research.
3. At least three methods courses from the 201 methodology sequence (see course listings).
4. Four courses in communication history and theory (see course listings).
5. 280, Advanced Workshop in Communication Media.
6. 296, Communication Research as an Interdisciplinary Activity.
7. First-Year Exam and Evaluation: At the end of the spring quarter of the student’s first year, the student must pass a comprehensive written examination based on course work completed during the first year.
8. Language Requirement: All students are required to demonstrate proficiency in one language other than their native language.

9. Qualifying Examinations: Before the end of the fourth year the student must take and pass an oral qualifying examination. The exam will be based on two papers concerning two of the subfields covered in the program. The student will also present a separate dissertation proposal at the examination. At this time, the faculty will examine the proposal for appropriateness and feasibility.

10. Teaching Requirement: In order to acquire teaching experience, all students are required to participate in the teaching activities of the department in two courses from the Department of Communication curriculum prior to completion of their Ph.D. as follows:

- One quarter of COGN 20—Introduction to Communication
- One quarter of any of the following three courses:
 - COCU 100—Introduction to Communication and Culture
 - COHI 100—Introduction to Communication and Human Information Processing
 - OSF 100—Introduction to Communication as a Social Force

11. Dissertation: Acceptance of the dissertation by the university librarian represents the final step in completing all requirements for a Ph.D. The dissertation committee must be approved by the department chair and the dean of Graduate Studies.

DEPARTMENTAL PH.D. TIME LIMIT POLICIES

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

STUDENT ADVISING

Faculty Graduate Advisor
David Serlin, Ph.D.

Faculty Undergraduate Advisor
Valerie Hartouni, Ph.D.

Undergraduate Student Affairs Advisor
Jamie Lloyd

Graduate Program Coordinator
Gayle Aruta

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LOWER-DIVISION

GENERAL COMMUNICATION

COGN 20. Introduction to Communication (4)
An historical introduction to the development of the means of human communication, from language and early symbols through the introduction of writing, printing, and electronic media, to today's digital and multimedia revolution. Examines the effect of communications media on human activity, and the historical forces that shape their development and use. Offered fall and spring quarters.

COGN 21. Methods of Media Production (4)
This course explores fundamental technical and social constraints shaping media production. We read film and television as texts by considering history, theory, genre and practical technique. COGN 22 and COGN 21 taken concurrently strongly recommended. COGN 22 is required for students interested in advanced communication production in media courses. Majors must enroll for a letter grade.

COGN 22. Methods of Media Production Lab (2)
In groups in lab students work hands-on with video and new media equipment, exploring fundamental technical constraints shaping media production. COGN 21 and COGN 22 strongly recommended concurrently. COGN 22 is required for students interested in advanced communication production courses. Majors must enroll for a letter grade. Prerequisite: COGN 21 (may be taken concurrently).

COGN 87: Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen. Prerequisites: none.

UPPER-DIVISION

COMMUNICATION AS A SOCIAL FORCE

COSF 100. Introduction to Communication as a Social Force (4)
A critical overview of areas of macro communication and analysis, with special emphasis on the development of communication institutions, including broadcasting, common carriers, and information industries. Questions regarding power, ideology, and the public interest are addressed. Prerequisite: COGN 20. Offered fall quarter.

COSF 123. Communication, Dissent, and Social Movements (4)
Emergence of dissent in different societies, and the relationship of dissent to movements of protest and social change. Movements studied include media concentration, antitrust, antiglobalization, death penalty, national liberation, and labor. Survey of dissenting voices from Tolstoy and Naomi Klein seeking to explain the relationship of ideas to collective action and its outcomes. Prerequisite: COSF 100 or consent of instructor.

COSF 124. Black Women, Feminism, and the Media (4)
This course examines the challenges that arise in using feminist theory to understand black women's experience in Africa and the United States. It also looks at the mass media and popular culture as arenas of black feminist struggle. Prerequisite: COSF 100 or consent of instructor.

COSF 126. The Information Age: In Fact and Fiction (4)
Analysis of the forces propelling the "Information Age." An examination of the differential benefits and costs, and a discussion of the presentation in the general media of the "Information Age." Prerequisite: COSF 100 or consent of instructor.

COSF 127. The Internet Industry (4)
The political economy of the emergent Internet industry, charted through analysis of its hardware, software, and services components. The course specifies leading trends and changing institutional outcomes by relating the Internet industry to the adjoining media, telecommunications, and computer industries. Prerequisite: COSF 100 or consent of instructor.

COSF 128. Cultural Industries (4)
We examine how people interact with products of popular culture, production of cultural goods by looking at conditions in cultural industries. We examine film, music, publishing, focusing on how production is organized, what kind of working conditions arise, how products are distributed. Prerequisites: COSF 100 or consent of instructor.

COSF 129. Television and Citizenship (4)
Television is a contested site for negotiating the rationales of inclusion and exclusion associated with citizenship and national belonging. Historical and contemporary case studies within international comparative contexts consider regulation, civil rights, cultural difference, social movements, new technologies, and globalization. Prerequisite: COSF 100 or consent of instructor.

COSF 130. History of Electronic Media (4)
This course considers the social, cultural, economic, and technological contexts that have shaped electronic media, from the emergence of radio and television to their convergence through the internet, and how these pervasive forms of audiovisual culture have impacted American society. Prerequisite: COSF 100 or consent of instructor.

COSF 132. History of U.S. Political Communication (4)
Survey of the history of political communication in the United States from the colonial period to the present. Students will work on term papers in which they will undertake original historical research. Prerequisites: COSF 100, communication major.

COSF 133. Science Fiction (4)
Focuses on science fiction's critical investigation of history, identity, and society across a range of media forms, including film, television, and literature. Prerequisite: COSF 100 or consent of instructor.

COSF 134. Communication, Politics, and Citizenship in America (4)
(Formerly COCU 134.) Selected topics, both historical and contemporary, on the public sphere, political participation, and the meaning of citizenship. Topics may include: voting practices, the role of political parties, social and cultural dimensions of citizenship, and shifts in public understanding of what counts as "political." The course may require five to ten hours of internship work, arranged through the AIP office. See instructor for further information. Prerequisite: COSF 100 or consent of instructor.

COSF 135. Communication and Religion (4)
The secularization thesis—that as society becomes more modern and standards of living rise, the importance of religion will diminish and be confined to the private sphere—may be wrong. We address religion, communication, culture, and politics in the United States. Prerequisite: COSF 100 or consent of instructor.

COSF 139A-B. Law, Communication, and Freedom of Expression (4-4)
An examination of the legal framework of the freedom of expression in the United States. 139A covers the fundamentals of First Amendment law through the consideration of key cases in historical context. Prior restraint, incitement, obscenity, libel, fighting words, public forum, commercial speech, and hate speech are some of the topics covered. 139B focuses on the law of mass communication, examining the different legal treatments accorded print, broadcasting, cable, and common carriers. The decline of broadcast regulation, the breakup of AT&T, the rise of new forms of mass communication, and the question of the public interest are also central concerns. Prerequisites: 139A-COSF 100 or PS 40 or consent of instructor. 139B-COSF 100 or PS 40, COSF 139A preferred.

COSF 140A. Comparative Media Systems: Asia (4)
The development of media systems in Asia; focusing on India and China. Debates over nationalism, regionalism, globalization, new technologies, identity politics, censorship, and media production and media piracy. Alignments and differences with North American and European media systems will also be considered. Prerequisite: COSF 100 or consent of instructor.

2010-2011 UC SAN DIEGO GENERAL CATALOG • COMMUNICATION 3
Establishing the social meanings of sport, we address: Examine sport as play, performance, competition, an arena television news, and with methods of news media research, and ideology of the American news media. SF 171A surveys set of practices focusing on free movement of commodities. COSF 161. Global Economy and National Identity (4) The development of media systems and policies in Latin America and the Caribbean. Debates over dependency and cultural imperialism. The media and the process of democratization. Development of the regional television industries. Prerequisite: COSF 100 or consent of instructor. COSF 141. History of U.S. Telecommunications (4) This course provides a sustained historical focus on the developing social form and industry structure of U.S. telecommunications, beginning with the Post Office. Policy issues are regularly incorporated into readings and discussions. Emphasis is placed on the emergence, around the turn of the century, of the regulated, national telephone network system dominated by AT&T and its extension. Prerequisite: COSF 100 or consent of instructor. COSF 142. The Internet in Social and Historical Perspective (4) This course explores the social, cultural, legal, and political-economic dimensions of the Internet from the 1960s to the present. Students also are introduced to theories and methods developed in communications and related fields for studying online media and their uses. Prerequisite: COSF 100 or consent of instructor. COSF 159. Work and Industry in the New Information Economy (4) This course, a research seminar, examines the evolution of the so-called new information economy and analyzes the transformation of patterns of work and industrial organization. Students will be expected to write a research paper, typically on some aspect of the new economy in the San Diego-Tijuana region. Prerequisite: upper-division standing or consent of instructor. COSF 160. Political Economy/Global Consumer Culture (4) This course critically examines social and economic forces that shape the making of the new global consumer culture by following the flows of consumption and production between the ‘developed’ and ‘developing’ worlds in the 1990s. We will consider how consumers, workers, and citizens participate in a new globalized consumer culture that challenges the traditional categories of the ‘first’ and the ‘third world.’ We will focus on the flows between the U.S., Asia, Latin America. Prerequisite: COSF 100 or consent of instructor. COSF 161. Global Economy and National Identity (4) Examine the interplay of globalization as a discourse and set of practices focusing on free movement of commodities and ideas. An examination of the representation marked by ethnic rivalry and identity conflict, seeks to examine those places where dualism is most pronounced. Prerequisite: COSF 100 or consent of instructor. COSF 171A. American News Media (4) (Same as Soc. 165A.) History, politics, social organization, and ideology of the American news media. SF 171A surveys the development of the news media as an institution, from earliest newsmen to mainstream modern mass news media. SF 171B deals with special topics, including the nature of television news, and with methods of news media research, and requires a research paper. Prerequisite: COSF 100 for COSF 171A. COSF 172. The Cultural Politics of Sport (4) Examine sport as play, performance, competition, an arena where there are politics, culture, power, identity struggles. Establishing the social meanings of sport, we address: ethics, race, class, nation, gender, body, science, technology, entertainment industries, commerce, spectatorship, consumption, amateurism, professionalism. Prerequisite: COSF 100 or consent of instructor. COSF 173. Transparent Society (4) How have politics, media, and society made visible features of life that were once hidden? From the women’s health movement to gay liberation to laws requiring public disclosure, frankness challenges civility, privacy, and taste. How can this be understood? Prerequisite: COSF 100 or consent of instructor. COSF 175. Advanced Topics in Communication: Social Force (4) Specialized study in communication as a social force with topics to be determined by the instructor for any given quarter. Past topics include information as a commodity and book publishing. May be repeated for credit three times. Prerequisite: COSF 100 or consent of instructor. COSF 180. Political Economy of Mass Communications (4) The social, legal, and economic forces affecting the evolution of mass communications institutions and structure in the industrialized world. The character and the dynamics of mass communications in the United States today. Prerequisite: COSF 100 or consent of instructor. COSF 181. Political Economy of International Communications (4) The character and forms of international communications. Emerging structures of international communications. The United States as the foremost international communicator. Differential impacts of the free flow of information and the unequal roles and needs of developed and developing economies in international communications. Prerequisite: COSF 100 or consent of instructor. COSF 182. Surveillance, the Media, and the Risk Society (4) Contributions of the field of communication to the study of surveillance and risk. Critical and legal perspectives on consumer research, copyright enforcement, the surveillance capacity of ICTs, closed-circuit television, interactive media, and the “rhetorics of surveillance” in television and film. Prerequisite: COSF 100 or consent of instructor. COSF 183. The Politics of World Music (4) What is “world music?” How, where, and why did it come into being? Is it a naturally occurring category of music? What makes it distinct from other music? We critically examine history of world music, analyzing how it is produced, circulated, and consumed. Prerequisite: COSF 100 or consent of instructor. COSF 184. The Mass Media and Politics in Africa (4) This course will critically examine the role of the mass media in Sub-Saharan Africa in the areas of colonial rule, nationalist struggles, authoritarianism, and popular movements. It will examine general trends regionally and internationally, as well as individual national cases, from the early twentieth century to the International news services of the information age. COSF 185. Gender, Labor, and Culture in the Global Economy (4) This course examines the ways in which women participate in the global economy as the producers of consumer products and of cultural goods like entertainment and information. It also examines power as it relates to women’s labor in producing such material and cultural goods. Prerequisite: COSF 100 or consent of instructor. COSF 186. Film Industry (4) A study of the social organization of the film industry throughout its history, addressing such questions as who makes films, by what criteria, and for what audience. The changing relationships between studios, producers, directors, writers, actors, agents, censors, distributors, audience, and subject matter of the films will be explored. Prerequisite: COSF 100 or consent of instructor. COSF 187. Culture Wars: Creationism vs. Evolutionism (4) Explore current debate from a variety of perspectives, rhetorical styles, political views, academic disciplines, media, popular culture, different interest, political, religious, cultural groups, and constituencies. Prerequisite: COSF 100 or consent of instructor. COMMUNICATION AND CULTURE COCU 100. Introduction to Communication and Culture (4) Processes of communication shape and are shaped by the cultures within which they occur. This course emphasizes the ways in which cultural understandings are constructed and transmitted via the variety of communication media available to members. A wide range of cultural contexts are sampled, and the different ways that available communication technologies (language, writing, electronic media) influence the cultural organization of people’s lives are analyzed. Prerequisite: COGN 20, or HDP 1, or consent of instructor. OFFERED WINTER QUARTER. COCU 108. Visual Culture (4) How visual images contribute to our understanding of the world and ourselves. Theoretical approaches from media studies, art history, gender studies, and social theory will be used to analyze cultures of science, art, mass media, and everyday life. Prerequisite: COCU 100 or consent of instructor. COCU 110. Cinema in Latin America (4) Analysis of the changing content and sociopolitical role in Latin America of contemporary media, including the “new cinema” movement, recent developments in film, and popular television programming, including the telenovela. Examples drawn from Mexico, Brazil, Cuba, and other countries. Prerequisite: COCU 100 or consent of instructor. COCU 120. The Problem of Voice (4) This course will explore the problem of self-expression for members of various ethnic and cultural groups. Of special interest is how writers find ways of describing themselves in the face of others’ sometimes overwhelming predilection to describe them. Prerequisite: COCU 100 or consent of instructor. COCU 123. Black Women Filmmakers (4) Students examine film and video media produced by black women filmmakers worldwide. This course will use readings from the writings of the filmmakers themselves as well as from film studies, women’s studies, literature, sociology, and history. Prerequisite: COCU 100 or consent of instructor. COCU 124. Documentary History and Theory (4) Lecture and discussion course in the history of nonfiction film and video. Through film and written texts we survey the nonfiction film genre, considering technological innovations, ethical issues, and formal movements related to these representations of the “real.” Students write a research paper in lieu of a final. Prerequisite: COCU 100 or consent of instructor. COCU 125. How to Read a Film (4) The purpose of this course is to increase our awareness of the ways we commonly interpret or make understandings from movies and to enrich and increase the means by which one can enjoy and comprehend movies. We will talk about movies and we will explore a range of methods and approaches to film interpretation. Readings will emphasize major and diverse theorists, including: Bazin, Eisenstein, Cavell, and Mulvey. Prerequisite: COCU 100 or consent of instructor. COCU 126. African Cinema (4) History, theory, and aesthetics of African cinema developed by selected filmmakers from the continent. Through film screenings and a wide range of readings, students will discuss such topics as cinema and national identity, cinema and social change, and Hollywood dominance. Prerequisite: COCU 100 or consent of instructor. COCU 127. Folklore and Communication (4) Folklore is characterized by particular styles, forms, and settings. Course introduces a range of folklore genres from different cultures, historical periods, oral narrative, material folk arts, drama, rituals. Study of the relationship between expressive form and social context. Prerequisite: COCU 100 or consent of instructor.
COCU 129. Public History and Museum Studies (4)
This course will explore the role that “public history”—history as created for general audiences—plays in communicating cultural and national identities by examining museum exhibitions, their controversies, and how material objects may represent or reinterpret the past. Prerequisite: COCU 100 or consent of instructor.

COCU 130. Tourism: Global Industry and Cultural Form (4)
The largest industry in the world has far-reaching cultural ramifications. We will explore tourism’s history and its contemporary cultural effects, taking the perspective of the “tourist” as well as that of the tourist. Prerequisite: COCU 100 or consent of the instructor.

COCU 131. Cinema of the Cuban Revolution (4)
Overview of the Cuban Revolution (1959–2000) and cultural policies through the study of its film production, as a cultural industry and representation style. Cuban film in context of domestic and international events, particularly treatment of race and gender dynamics. Prerequisite: COCU 100 or consent of instructor.

COCU 132. Gender and Media (4)
This course examines the work of women artists and the history of the representation of women in the media, from the beginnings of cinema to the present, and offers a basic introduction to feminist theory. It focuses on the representation of gender, and narrative and experimental strategies used by women media makers, and the role of the female spectator. Prerequisite: COCU 100 or consent of the instructor.

COCU 136. Concepts of Freedom (4)
This course examines some of the changing cultural, social, technological, and political meanings, practices, and aspirations that together constitute what is, and has been, called Freedom. Prerequisite: COCU 100 or consent of the instructor.

COCU 137. The Politics of Bodies (4)
This course will explore the construction of gendered bodies and gendered sexuality in postindustrial culture(s) through political, historical, and media analysis. Topics may include abortion, eating disorders, body modification, work and consumption, AIDS, and genetic engineering. Prerequisite: COCU 100 or consent of instructor.

COCU 139. Reproductive Discourse and Gender (4)
In this course we will examine as a problem of discourse and culture the controversies surrounding the development and use of the new technologies of human genetics and reproduction. Of particular interest will be the way in which these new technological practices and processes test, erode, or make possible new understandings of “human nature” and relationship while enforcing traditional understanding of gender. Prerequisite: COCU 100 or CGS 2A or 2B or consent of instructor.

COCU 140. Television, Culture, and the Public (4)
How and what does television communicate? Emphasis will be on contemporary U.S. television programming, placed in comparative and historical context. Special topics may include: TV genres; TV and politics; TV and other media. Frequent in-class screenings. Prerequisite: COGN 20 or consent of the instructor.

COCU 141A. Media and Technology: Global Nature, Global Culture (4)
Considers globalization’s impact on concepts of nature in and through the media, and the circulation of goods, services, and the emergent of global brands, science, health initiatives, environmental media activism, energy transfer in the twentieth and early twenty-first centuries. Prerequisite: COSF 100 or COCU 100 or COHI 100 or consent of instructor.

COCU 141B. Media and Technology: Gender and Biomedicine (4)
From historical and cultural aspects of media, information, imaging technology used in biomedical research, clinical care, health communication to constructions of gender, and identity, we approach the subject through audiovisual texts and writings from fields including science and technology studies and cultural studies. Prerequisite: COSF 100 or COCU 100 or COHI 100 or consent of instructor.

COCU 141C. Media and Technology: Disability (4)
Cultural and historical ways of defining and understanding disability relative to communication and assistive technologies, including the impact of digital technologies and the Americans with Disabilities Act. Use of audiovisual texts and writing from fields including science and technology studies, and cultural studies. Prerequisite: COSF 100 or COCU 100 or COHI 100 or consent of instructor.

COCU 142. Holocaust Discourse (4)
Legal, visual, historical, cultural discourses and debates that contribute to represent the Holocaust as a coherent and cohesive event, and as a touchstone of moral and political authority. Focuses on the long and ongoing stories about pluralism, tolerance, democracy, human rights, and justice. Prerequisite: COCU 100 or consent of instructor.

COCU 143. Culture and Media: Theories and Methods (4)
Considers in greater depth the theories and methods introduced in COCU 100. Advanced approaches to the analysis of media texts in everyday life and the study of concepts such as representation, culture, reality, and the virtual. Prerequisite: COCU 100.

COCU 144. The Globalization of Culture and Communication (4)
We live in a world of transnational flows of media, money, culture and meanings. This course examines the global and local ramifications of the technological challenges does globalization pose for the study of culture and communication? We will explore such questions from a cross-cultural and global perspective. Prerequisite: COCU 100 or consent of instructor.

COCU 145. Cultures of Consumption (4)
This course examines the cultural politics of consumption across time and culture through several concepts: commodity fetishism; conspicuous consumption; taste, class, and identity formation; consumption’s psychological, phenomenological, and poetic dimensions; and contemporary manifestations of globalization and consumer activism. Prerequisite: COCU 100 or consent of instructor.

COCU 148. Communication and the Environment (4)
Survey of the communication practices found in environmental controversies. The sociological aspects of environmental issues will provide background for the investigation of environmental disputes in particular contested areas, such as scientific institutions, communities, work-places, governments, popular culture, and the media. Prerequisite: COCU 100 or consent of instructor.

COCU 160. Performance and Cultural Studies (4)
Explores performance as a range of aesthetic conventions (theater, film, performance art) and as a mode of experiencing the world, both at a cultural and an individual level. This includes: critical writing from anthropology, psychology, linguistics, media studies as well as film/video, play scripts, live performance. Prerequisite: COCU 100 or consent of instructor.

COCU 162. Popular Culture (4)
An overview of the historical development of popular culture from the early modern period to the present. Also a review of major theories explaining how popular culture reflects and/or affects patterns of social behavior. Prerequisites: COGNN 20 and COCU 100 or consent of instructor.

COCU 163. Popular Culture in Contemporary Life (4)
Treats products of modern culture industries, and theories of social political importance. Study cultural forms: including television and movies, electronic music, and digital media. How popular culture is consumed, what it means to audiences, gender and racial/ethnic differences among producers and consumers. Prerequisite: upper-division standing or consent of instructor.

COCU 164. Representing Race, Nation, and Violence in Multicultural California (4)
How does media represent race, nation, and violence work? Taking multicultural California as our site, we will explore how social power is embedded in a variety of visual texts, and how media not only represents but also reproduc es conflict. Prerequisite: COCU 100 or consent of instructor.

COCU 165. History, Memory and Popular Culture (4)
What role does popular culture play in shaping and creating our shared memory of the past? This course examines diverse sources such as school textbooks, monuments, holidays and commemorations, museums, films, music, and other media institutions. Prerequisite: COCU 100 or consent of the instructor.

COCU 166. Cartoons (4)
This class relates cartoon programming for children to the history of western childhood and the contemporary American culture of the child. While other classes may deal with the effects of television on children, this one is designed to encourage students to review the long-standing western traditions of hope and fear associated with children that shape these concerns. Prerequisites: COGN 20 and COCU 100 or consent of the instructor.

COCU 168. Latino Space, Place, and Culture (4)
Develop a critical understanding of the history, politics, and poetics of the Latino barrio as a distinct urban form. Course covers key concepts such as the production of space, landscapes of power, spatial apartheid, everyday urbanism, urban renewal and gentrification. Prerequisite: COCU 100 or consent of instructor.

COCU 169. Cultural Domination and Resistance (4)
Explores theories and narratives of cultural power, contemp orary practices of resistance. Texts from a wide range of disciplines consider how domination is enacted, enforced, and what modes of resistance are employed to contend with uses and abuses of political power. Prerequisite: COCU 100 or consent of instructor.

COCU 170. Advertising and Society (4)
Advertising in historical and cross-cultural perspectives. Topics include the ideology of the organization of the advertising industry; the meaning of material goods and gifts in capitalist, socialist, and nonindustrial societies; the meanings of sport, we address: ethics, race, class, nation, gender, body, science, technology, entertainment industries, commerce, spectatorship, consumption, amateurism, professionalism. Students may not receive credit for both COCU 170 and COSF 172. Prerequisite: COCU 100 or consent of instructor.

COCU 172. The Cultural Politics of Sport (4)
(Previously COSF 172.) Examines sports as play, performance, competition, an arena where there are politics, culture, power, identity struggles. Establishing the social meanings of sport, we address: ethics, race, class, nation, gender, body, science, technology, entertainment industries, commerce, spectatorship, consumption, amateurism, professionalism. Students may not receive credit for both COCU 172 and COSF 172. Prerequisite: COCU 100 or consent of instructor.

COCU 175. Advanced Topics in Communication: Culture (4)
Specialized study in communication and culture with topics to be determined by the instructor for any given quarter. Past topics include critical theory, rituals and spectacles. May be repeated for credit three times. Prerequisite: COCU 100 or consent of instructor.

COCU 177. Computer Game Studies (4)
Course considers computer games both as media and as sites of communication. Games are studied through hands-on play and texts from a variety of disciplinary perspectives. Course encompasses commercial, academic, and independent games. Writing requirements: games required. Prerequisite: COCU 100 or consent of instructor.

COCU 178. American Television in the 1970s (4)
Course will explore the politics and culture of the 1970s through the lens of network television programming and the decade’s most provocative sitcoms, dramas, variety shows, and news features. Students will analyze television episodes and read relevant media studies scholarship. Prerequisite: COCU 100 or consent of instructor.

COCU 179. Colonialism and Culture (4)
This course explores colonial narratives, slave accounts, essays, and stories by both colonizers and colonized. It also explores the issue of nationalism in determining the limits of colonialism among minority groups in the United States and in the Third World. Prerequisite: upper-division standing.
COMMUNICATION AND HUMAN INFORMATION PROCESSING

COHI 100. Introduction to Communication and the Individual (4)
An introduction to theories of human mental processes which emphasizes the central role of mediation. The course covers methods of research that permit the study of mind in relation to different media and contexts of use. The traditional notion of media effects is critically examined in a number of important domains, including television, film, writing, and oral language. Prerequisite: COGN 20 or HDP 1, or consent of instructor. Offered spring quarter.

COHI 112. Interaction with Technology (4)
In this class we will look closely at the everyday ways in which we interact with technology to discuss: sociocultural character of objects and built environments; situated, distributed, and embodied character of knowledge; the use of multimodal semiotic resources (i.e., talk, gesture, body orientation, gaze, etc.) in interaction with technology. Prerequisite: COHI 100 or consent of instructor.

COHI 113. Communication and Social Machines (4)
An examination of the questions that developments in robotics pose to the scholars of communication: How do we communicate when our interlocutors are nonhumans? How do we study objects that are claimed to be endowed with social and affective character? Prerequisite: COHI 100 or consent of instructor.

COHI 114. Bilingual Communication (4)
This course is designed to introduce students to the multiple settings in which bilingualism is the mode of communication. Students will examine how such settings are socially constructed and culturally-based. Readings on language policy, bilingual education, and linguistic minorities, as well as field activities will constitute the bulk of the course. Prerequisite: COHI 100 or consent of instructor.

COHI 115. Education and Global Citizenship (4)
The course introduces students to concepts, possibilities, and dilemmas inherent in the notion of global citizenship. Students will be introduced to theoretical frameworks and instructional strategies for global education and the expected competence of an individual within a global society—able to function simultaneously upon many diverse elements, issues, and contexts. It will examine the role that communication and curriculum can play in the formation of identity, language use, and civic responsibility of a global citizen. Prerequisite: COHI 100 or consent of instructor.

COHI 117. Language, Thought, and the Media (4)
This course examines the ways in which varied communicative channels mediate human action and thought. A basic premise of the course is that human thought is shaped in important ways by the communicative devices used to communicate. There is a particular emphasis on how thought develops, both historically and in the individual. Prerequisite: COHI 100 or consent of instructor.

COHI 119. Learning to Read (4)
This course explores learning to read as a process involving individual, cultural, and social resources. Reading difficulty is understood as induced by lack of resources, such as access to books or access to strategies for decoding, comprehending, and using a text. Activities of reading are taken as a basic context for understanding patterns of chronic and pervasive reading difficulty in their populations. Prerequisite: COHI 100 or consent of instructor.

COHI 120. Reading the Web (4)
This course explores how networked computing has helped transform our lives. From how we live, work, and engage in media, to how we manage illness to how we see ourselves culturally. The focus of the class is the online venue—how has the Web become part of daily life? What is different about goods, services, and events that transpire online? What theories of communication and social interaction are useful in understanding online behavior? Prerequisite: COHI 100 or consent of instructor.

COHI 121. Literacy, Social Organization, and the Individual (4)
This course will examine the historical growth of literacy from its earliest precursors in the Near East. The interaction between literate technology and social organization and the impact of literacy on the individual will be twin foci of the course. Arriving at the modern era, the course will examine such questions as the impediments to teaching reading and writing to children in technological societies and the relation between literacy and national development in the Third World. Prerequisite: COHI 100 or COCU 100 or HDP 1 or consent of instructor.

COHI 122. Communication and the Community (4)
This course examines forms of communication that affect people’s everyday lives. Focusing on ways that people seek to bestow meaning and transmit meaning and social relationships through communication, this course examines the social, cultural, and personal contexts of communication. Prerequisite: COHI 100 or consent of instructor.

COHI 123. Children and Media (4)
A course which analyzes the influence of media on children’s lives. The course adopts an historical as well as social perspective on childhood within which media plays a role. Among media studied are books, films for children, video games, computer games, and television. Prerequisite: COGN 20 or HDP 1 or consent of instructor.

COHI 124. Voice: Deaf People in America (4)
The relationship between small groups and dominant culture is studied by exploring the work of deaf people who have for the past twenty years begun to speak as a cultural group. Issues of language, communication, self-representation, and social structure are examined. Prerequisite: COHI 100 or consent of instructor.

COHI 125. Communication in Organizations (4)
Organizations are analyzed as historically-evolving discursive systems of activity mediated by talk, text, and artifacts. The course covers sense making, coordinating, symbolizing, talking, negotiating, reading and writing, story-telling, joking, and classifying artifacts. Exemplary case studies, employing several complementary theoretical frameworks, are used to analyze these communicative processes. Prerequisite: COHI 100 or consent of instructor.

COHI 127. Biography and Life Stories (4)
Course examines several different ways of telling stories as a form of communication: our own life and about the lives of others. There are also the occasions that the life stories of ordinary people are told and celebrated: for example, funerals, festivals, retirement dinners, fiftieth-anniversary parties, and retrospective art shows. Prerequisite: COHI 100 or consent of instructor.

COHI 128. Mobile Communications (4)
Movement is the key to mobile communications. This course draws on the latest research into how we travel, trade, and move. Diverse topics will be covered including kids in cars, the New York subway, and theories of mobility. Prerequisites: COHI 100 or consent of instructor.

COHI 129. Borderlands (4)
Communicative and identity aspects of “marginality”—belonging to more than one race, community, or nationality, and on the literature about insiders and outsiders. Considers contemporary race-critical and feminist theory, including cyberanthropology and the historical concept of race in America, and the problematic of multiple memberships of various sorts. Prerequisite: COHI 100 or consent of instructor.

COHI 130. Cross-Cultural Communication (4)
Explores psychological and communicative processes that create and sustain culture and shape intercultural interaction. Prerequisites: COHN 120 and consent of instructor. Course readings focus on microgeneses of culture, idiocultures, culture as an evolutionary strategy, relationships between cultural groups. Prerequisite: COHI 100 or consent of instructor.

COHI 134. Language and Human Communication (4)
This course examines the interaction of language and culture in human communication. Beginning with language evolution, the course then discusses a broad range of human languages including indigenous languages, sign languages, and hybrid languages spoken in urban centers. Prerequisite: COHI 100 or consent of instructor.

COHI 135. Language and Globalization (4)
The interaction of language and globalization is a central issue in communicative human interaction. New and old languages, standard and dialect, dominant and endangered, are the special focus. Selected languages as examples of how languages exist in contemporary contexts. Prerequisite: COHI 100 or consent of instructor.

COHI 136. Gender and Science (4)
This course will focus on arguments about cognitive differences between men and women in science. We will review current arguments about essential differences, historical beliefs about gender attributes and cognitive ability, and gender socialization into science. Prerequisite: COHI 100 or consent of instructor.

COHI 175. Advanced Topics in Communication: Human Information Processing (4)
Specialized study in communication: human information processing with topics to be determined by the instructor for any given quarter. May be repeated for credit three times. Prerequisite: COHI 100 or consent of the instructor.

COMMUNICATION MEDIA METHODS

COMT 100. Nonlinear/Digital Editing (4)
Prepare students to edit on nonlinear editing facilities and introduce aesthetic theories of editing: time code editing, time line editing on the Media 100, digital storage and digitization of audio and video, compression, resolution, and draft mode editing. Prerequisite: communication majors, COGN 21 and COGN 22, or consent of instructor.

COMT 101. Television Analysis and Production (6)
An introduction to the techniques and conventions common to the production of news, discussion, and variety-format television programs. Particular emphasis will be placed on the choice of camera “point of view” and its influence on program content. Laboratory sessions provide students the opportunity to experiment with production elements influencing the interpretation of program content. Concentration on lighting, camera movement, composition, and audio support. Prerequisites: COGN 21 and COGN 22, or consent of instructor.

COMT 102. Introduction to Media Use in Communication (4)
Students will engage in projects, using media, to address theories of communication. Students can use film, video, computers, pen and paper, photography, posters, or performances for their projects. Prerequisite: COGN 20 and COGN 21 and COGN 22.

COMT 103. Television Documentary (6)
An advanced television course which examines the history, form, and function of the television documentary in American society. Experimentation with documentary
techniques and styles requires prior knowledge of televi-
sion or film production. Laboratory sessions apply theory
and methods in the documentary genre via technological
process. Integrates research, studio and field experience
of various media components. Prerequisite: COMT 101 or
consent of instructor.

COMT 104. Studio/TV (4)
This course offers students the opportunity to produce and
engage in critical discussions around various television
production formats. We will study and produce a variety
of projects including public service announcements, panel
programs, scripted drama, and performance productions.
Prerequisites: COGN 21 and COGN 22, or consent of
instructor.

COMT 105. Media Stereotypes (4)
An examination of how the media present society’s mem-
bers and activities in stereotypical formats. Reasons for and
consequences of this presentation are examined. Student
responsibilities will be: (a) participation in measurement and
analysis of stereotype presentations; (b) investigating
parameters for assessing both cognitive and behavioral
effects of such scripted presentations on the users of media.
Course can be taken to meet COCU major requirement.
Prerequisite: COCU 100 or consent of instructor.

COMT 106. Writing for Digital Media (4)
Practice, history, and theory of writing for digital media.
Text combines with images, sound, movement, and in-
teraction. New network technologies (email, blogs, wikis,
and virtual worlds): create new audience relationships.
Computational processes enable texts that are dynami-
cally configured and more. Prerequisites: COGN 21 and
COGN 22.

COMT 109. Digital Media Pedagogy (4)
This course teaches techniques for teaching digital media:
such as Word, Photoshop, PageMaker, digital cameras,
digital video, non-linear editing. What are the special chal-
 lenges digital media present to teachers and students? How
do digital media compare to older technologies such as
typewriters, film cameras, and analog video? How do
gender, class, and age affect the way students and teachers
respond to digital media? At least six hours of fieldwork at a
computer lab or for a course in the Adams Elementary.
Experience with computers and/or digital imaging required.
Prerequisite: com-
munication majors only.

COMT 110. News Media Workshop (4)
Designed for students working in student news organiza-
tions or on college newspapers or jobs in news, public
relations, or public information. A workshop in writing
and news analysis. Prerequisite: COCU 100 and COSF 171
(may be taken concurrently) or consent of instructor.

COMT 111A. Communicating and Computers (4)
This course introduces students to computers as media of
communication. Each quarter students participate in a
variety of networking activities designed to show the
interplay between the various media systems, network and
fieldwork designed to teach basic methods is combined with readings
designed to build a deeper theoretical understanding of
computer-based communication. Courses can be taken to
meet COHI major requirement. Prerequisite: COHI 100 and
communication major or consent of instructor.

COMT 111B. Ethnographic Methods for Media Research (4)
This is a practical course on ethnographic fieldwork—
obtaining informed consent interviewing, negotiating,
formulating a research topic, finding relevant literature,
writing a research paper, and assisting others with their
research. Course can be taken to meet COHI major require-
ment. Prerequisite: COHI 100 or consent of instructor.

COMT 115. Media and Design of
Social Learning Contexts (6)
(Same as HDP 115). A combined lecture/lab course cross
class listed in Communication and Human Development.
Students attend lecture, write fieldnotes, and spend 3
hours per week in specially designed after-school settings
working with children and designing new educational
media and producing special projects. Prerequisite: COHI
100 or HDP 1.
COGR 201D. Historical Methods for Communication Research (4)
Different approaches to conducting historical research in communication. Such approaches may include the social history of communication technology; structuralist and poststructuralist accounts of language, media, and collective memory; and new historicist treatments of cultural history. Sources, documentation, and the nature of argument from historical evidence are emphasized.

COGR 201J. Comparative Analysis (4)
The logic of comparative analysis and its role in communication research. Scientific inference in qualitative research. Selection of cases. Problems of translation across cultures.

COGR 201L. Qualitative Analysis of Information Systems (4)
Historical and ethnographic studies of information systems—the design and use of information and communication technologies in their social, ethical, political, and organizational dimensions. Objects of study range from the invention of file folders to e-mail use and distributed databases as communication systems. Prerequisite: graduate standing or consent of instructor.

COGR 210. Information and Society (4)
The social, legal, and economic forces affecting the evolution of mass communication institutions and structure in the industrialized world. Differential impacts of the free flow of information and unequal roles and needs of developed and developing economies.

COGR 211. Memory Practices (4)
Examines theories of social and distributed memory—Maurice Halwachs to Ed Hutchins, John Sutton, and nature of the Archive (Foucault and Derrida), reading databases (as memory prostheses), beginning with Manovich’s work. Enquiry into mediated nature of memory practices. Prerequisite: graduate standing.

COGR 215. Regulation of Telecommunications (4)
The course will look at the history of, and rationale for, the regulation of mass communications in the United States. The course will cover both broadcasting and common carrier regulation. We will analyze telecommunications regulatory structures as they were constituted historically with the 1934 Communications Act and examine their breakdown in the late 1970s. In a larger vein, the course will examine the rise and functions of regulatory agencies in modern American history.

COGR 220. The News Media (4)
History, politics, social organization, and ideology of the American news media. Special attention will be paid to: historical origins of journalism as a profession and “objective reporting” as ideology; historical studies of print and TV journalism as social institutions; and news coverage of Vietnam and its implications for theories of the news media.

COGR 221. The State (4)
What is that “thing” we call the State? What is its relationship to government, citizenship, and power? Will consider different approaches to the study and theorization of the State, from European Enlightenment to post-9/11 reflections on sovereignty, rights, future. Prerequisite: graduate standing or consent of instructor.

COGR 222. Communication Law and Policy (4)
This course examines the legal and policy framework for free speech in the United States. We cover First Amendment case law, free speech theory, copyright, and the different legal and regulatory treatment historically accorded print, broadcasting, cable television, telephone, and Internet. Prerequisite: graduate standing or consent of instructor.

COGR 224. Geographies of Difference, Exclusion, and Conflict (4)
This course is a critical geography of how territorial environments shape entanglements of power and conflict between dominant and subordinate groups, and how, in turn, such conflict between these actors reshapes spatial landscapes. Prerequisite: graduate standing or consent of instructor.

COGR 225A. Introduction to Science Studies: Part I (4)
Study and discussion of classic themes and texts in history of science, sociology of science, and philosophy of science, and of work that attempts to develop an interdisciplinary science studies approach. Prerequisite: enrollment in the Science Studies Program or consent of instructor.

COGR 225B. Seminar in Science Studies (4)
Study and discussion of a selected topic in the science studies field with an emphasis on the development of research and writing skills. The topic varies from year to year. Prerequisite: enrollment in the Science Studies Program or consent of instructor.

COGR 225C. Colloquium in Science Studies (4)
A forum for the presentation and discussion of research in progress in science studies by graduate students, faculty, and visitors. Students must attend the colloquium series for their entire first and second years. They receive course credit in one quarter each year. Prerequisite: enrollment in the Science Studies Program.

COGR 225D. Introduction to Science Studies Part II (4)
Continuing the introduction developed in Part 1, this course examines recent key topics and problem situations in science studies. Emphasis is on recent theoretical perspectives and empirical studies in communication, history, philosophy, and sociology of science and technology, and the interplay between them. Prerequisite: Completion of COGR 225A, HIGR 238, PHIL 209A, or SOCG 255A or consent of instructor.

COGR 238. The Frankfurt School on Mass Culture Social Theory (4)
This reading seminar will consider works by Frankfurt School theorists (Horkheimer, Adorno, Pollock, Lovewenthal, Marcuse, Benjamin, Habermas) on mass media, mass culture, ideology, art, authority and the individual, and their relevance in the analysis of contemporary capitalism. Prerequisite: graduate standing or consent of instructor.

COGR 240. The Culture of Consumption (4)
(Cross-listed with HIGR 273) This course will explore the development and cultural manifestations of consumerism in the nineteenth and twentieth centuries. Topics will include the rise of museums, the development of mass market journalism and literature, advertising, and the growth of commercial amusements. Readings will focus primarily, but not exclusively, on the United States. Students will be encouraged to think comparatively.

COGR 250. Third World Cinema Screening (4)
Course examines the historical impetus, development, and construction of “Third Cinema”—a particular style of media making in Africa, Latin America, and Asia. An interdisciplinary approach interrogates how Third Cinema influences world cinema of today. Additional screening session required. Prerequisite: graduate standing.

COGR 261. Mediation Approaches to Culture/Mind (4)
This course will examine theories of mind in which cultural mediation is given a leading role. The work of anthropologists, psychologists, and communication scholars will be studied in depth. Emphasis will be placed on the methodological implications of cultural theories of mind for empirical research.

COGR 275. Topics in Communication (4)
Specialized study in communication, with topics to be determined by the instructor for any given quarter.

COGR 278. Talking Culture, Culture Talking: Voices of Diversity (4)
(Cross listed with EDVS 278) This course explores the discourse of culture in American society and the problem of “silenced” or unheard voices. The interaction of individual and collective voice, language, and identity are discussed as they bear on the ways that culture moves through important social institutions such as schools. Of particular interest are issues of teaching, learning, displacement, inclusion, marginality, and the “speaking center.” Prerequisite: Graduate standing or consent of instructor.

COGR 280. Advanced Workshop in Communication Media (4)
This course is a project course in which students prepare a production or experiment using one of the forms of media. The course is designed to allow students to experiment in a communication form other than the usual oral presentation in class or a term paper. Students can do a video production, a coordinated photographic essay or exhibit, a computer instructional game, a published newspaper or magazine article directed at a special audience, a theatrical presentation, or some form other than those listed. Prerequisite: graduate standing or consent of instructor.

COGR 294. The History of Communication Research (4)
Intellectual history of the field of communication studies from Robert Park to the present. Explication and assessment of major research approaches and classic studies representing both empirical and critical traditions.

COGR 296. Communication Research as an Interdisciplinary Activity (4)
A course that introduces students to the interdisciplinary nature of the field of communication research as represented by the work of faculty in the Department of Communication. Through faculty research, students are presented with concrete examples of communication research theory and practice that can provide them with insights for conducting their own research projects. Prerequisite: graduate standing or consent of instructor.

COGR 298. Directed Group Study (1-12)
The study and analysis of specific topics to be developed by a small group of graduate students under the guidance of an interested faculty member. COGR 500. Practice Teaching in Communication (4)

COGR 299. Graduate Research (1-12)
Advanced independent study in communication under the guidance of Department of Communication faculty. COGR 500. Practice Teaching in Communication (4)

This doctoral student in communication is required to assist in teaching and undergraduate Department of Communication courses for a total of six quarters. One meeting per week with the instructor, one meeting per week with the assigned sections, and attendance at the lecture of the undergraduate course in which he or she is participating are part of this requirement.
Comparative Studies in Language, Society, and Culture

Department of Music
OFFICE: 111 Mandeville Center for the Arts
(858) 534-6722/(858) 534-3279
http://music.ucsd.edu

PROGRAM FACULTY
Nancy Caciola, Ph.D., Department of History
Jann C. Pasler, Ph.D., Department of Music, Chair
Don E. Wayne, Ph.D., Department of Literature, Co-Chair
Kathryn A. Woolard, Ph.D., Department of Anthropology

Graduate students in the humanities, social sciences, and arts in this program are provided the opportunity to design curricula, conduct research, and write dissertations under the guidance of interdepartmental and/or intercampus Ph.D. committees. The student who participates in the program must be admitted, satisfy all requirements for advancement to candidacy, and pass the qualifying examination in one department. The student must also undertake advanced study in an integrally related area of research specialization. The student advances to candidacy in the program upon successfully defending a written dissertation proposal before the interdepartmental and/or intercampus Ph.D. committee. In the instance of some departments and programs, the defense will be identical with completion of the departmental qualifying examination.

Application to the program in Comparative Studies may be made at the earliest during the student’s third quarter of residency in his or her primary department. From the point of acceptance into the program, the student’s preparation for dissertation research will be under the supervision of the interdepartmental or intercampus Ph.D. committee. The degree granted may indicate in its title the precise nature of the student’s studies and research when appropriate and desirable—e.g., Ph.D. in comparative literature and ethnopoetics, in linguistics and literary studies, in economics and Chinese studies, in philosophy and the history of ideas. When an additional degree title is contemplated, the student’s Ph.D. committee must forward a program of study and research, as well as the dissertation proposal, to the supervising committee for initial approval and to the Graduate Council for final approval.

Students applying for admission to UCSD and interested in applying for admission to the program should direct their inquiries to a primary department. Students already admitted to a primary department should, after the required quarters of residence and with the advice of a department advisor, direct inquiries to the chairperson of the program.

FACULTY RESEARCH GROUPS

Beginning with the academic year 1997–1998, the program sponsors a series of faculty research groups. These groups consist of faculty who have announced their intention to supervise graduate students wishing to work on topics involving the comparative study of language, society, and culture. Each faculty research group is expected to be composed of faculty in the humanities, social sciences, and arts from different departments and/or campuses. For a list of current faculty research groups and the topics which they support, contact the chairperson of the program.

THE ANTHROPOLOGY OF MODERN SOCIETY

The Anthropology of Modern Society is a project of graduate training and research dedicated to the study of modernity and its counterpoints in the late twentieth century. The group sees the social life of cities as making manifest this problem in issues of citizenship and democracy, social formations in tension with the nation-state, modern subjectivities, social and religious movements, transnational markets and migrations, and relations of local to global processes. Participants are committed to reorienting anthropological theory and ethnographic practice towards such contemporary social and political problems.

Director: James Holston, Department of Anthropology, (858) 534-0111
Co-Director: Martha Lampland, Department of Sociology, (858) 534-5640

PH.D. TIME LIMIT POLICIES

A student admitted to this interdisciplinary program is subject to the same time limit policies as those of the student’s primary department.
Contemporary Issues

OFFICE: 2073 Humanities and Social Sciences Building, Muir College
(858) 534-3589

DIRECTOR
Susan Smith, Ph.D.

COURSES
For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LOWER-DIVISION

22. Human Sexuality (4)
A survey of the nature and problems of human sexuality in the development of the individual, in cultural traditions and values, and in social roles and organizations, particularly with regard to contemporary America.

40. Contemporary Issues: The AIDS Epidemic (4)
Using current information, this course will deal with the worldwide spread of AIDS, particularly into communities, colleges, and universities. Discussion topics: origin, infection, biology, clinical expression, risks, vaccines, epidemiology, and the social, ethical, economic, and legal aspects of this epidemic.

50. Information and Academic Libraries (2)
An introduction to research strategies directed at satisfying the information needs of the student using the academic library, with emphasis on the UCSD library system. Library techniques will be acquired through lectures and discussion, problem sets, and a term project. Students will learn to extend these techniques to independent research.

UPPER-DIVISION

136. The Anthropology of Medicine (4)
Theoretical approaches to and cross-cultural analyses of the role of the medical profession, the sick and the healers, and culture as communication in the medical event. The theoretical anthropological aspects of medical practice and medical research will include a consideration of the “Great Traditions” of medicine as well as primitive and peasant systems. Western medicine will be considered in the foregoing framework, with issues of contemporary concern by way of introduction. Prerequisite: upper-division standing.

195. Discussion Leading in Contemporary Issues (4)
Students will lead groups of ten to twenty students in discussions of contemporary concern. Students will meet with the professor to plan and prepare for their discussions to be held weekly. Students will also consult with another faculty member specializing in their topics for further check on reading materials and course of discussion. (P/NP grades only). Prerequisites: Contemporary Issues 196 and consent of the director of Interdisciplinary Sequences.

196. Contemporary Issues Workshop (2)
A workshop for potential discussion leaders in the Contemporary Issues Program. Students will investigate topics for discussion and methods of presentation and inquiry. Participating in the workshop does not guarantee selection as discussion leader. (P/NP grades only.)

500. Apprentice Teaching in Contemporary Issues (4)
A course in which teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty: handling of discussions, preparation and grading of examinations and other written exercises, and student relations. Prerequisite: graduate standing.
Critical Gender Studies

DIRECTOR
Lisa Yoneyama, Ph.D., Literature

ASSOCIATE PROFESSORS
Mary Blair-Lo, Ph.D., Sociology
John Blanco, Ph.D., Literature
Suzanne Brenner, Ph.D., Anthropology
Nancy Caciola, Ph.D., History
Ann Craig, Ph.D., Political Science
Nadine George-Groves, Ph.D., Theatre and Dance
Rosemary George, Ph.D., Literature
Christine R. Harris, Ph.D., Psychology
Valerie Hartouni, Ph.D., Communication
Larissa Heinrich, Ph.D., Literature
Stephanie Jed, Ph.D., Literature
Rachel Klein, Ph.D., History
Martha Lampland, Ph.D., Sociology
Jin-Kyung Lee, Ph.D., Literature
Weijing Lu, Ph.D., History
Curtis Marez, Ph.D., Ethnic Studies
Natalia M. Molina, Ph.D., Ethnic Studies
Esra G. Ozyurek, Ph.D., Anthropology
Rebecca Plant, Ph.D., History
Pamela Radcliffe, Ph.D., History
David Serlin, Ph.D., Communication
Nayan Shah, Ph.D., History
Kathryn Shevelow, Ph.D., Literature
Denise Ferreira da Silva, Ph.D., Ethnic Studies
Susan Smith, Ph.D., Visual Arts
Shelley Streeby, Ph.D., Literature
Nicole Tonkovich, Ph.D., Literature
Cynthia Truant, Ph.D., History
Cynthia Walker, Ph.D., Emerita, Literature

Daniel Widener, Ph.D., History
Winifred Woodhill, Ph.D., Literature
Lisa Yoneyama, Ph.D., Literature
Elana Zilberg, Ph.D., Communication

ASSISTANT PROFESSORS
Patrick Anderson, Ph.D., Communication
Akosua Boateama Boastrong, Ph.D., Communication
Kirstie Dorr, Ph.D., Ethnic Studies
Fatima El-Tayeb, Ph.D., Literature
Camille Forbes, Ph.D., Literature
Kelly Gates, Ph.D., Communication
Cathy Geer, Ph.D., History
Joe Hankins, Ph.D., Anthropology
Todd Henry, Ph.D., In Residence, History
Adria Imada, Ph.D., Ethnic Studies
Tara Javid, Ph.D., Electrical and Computer Engineering
Sara Johnson, Ph.D., Literature
Eun Young Jung, Ph.D., Music
Sara C. Kaplan, Ph.D., Critical Gender Studies and Ethnic Studies
Roshanak Kheisht, Ph.D., Ethnic Studies
Kalindi Vora, Ph.D., Ethnic Studies
Megan E. Wylde, Ph.D., Literature

ADJUNCT PROFESSORS
Suzanne Cahill, Ph.D., History
Mary Walshok, Ph.D., Sociology

OFFICE: 2113 Humanities & Social Sciences Building Muir College
(858) 534-3589
http://cgss.ucsd.edu/

CRITICAL GENDER STUDIES

The UC San Diego Critical Gender Studies Program (CGS) is an interdisciplinary academic program offering students the opportunity to study gender, race, class, sexuality, and nationalism as intersecting categories of analysis and experience. Some basic questions that anchor the program’s core curriculum include asking how these categories become institutionalized yet change over time; how they work together to shape individual identity; contribute to the organization of social life, and become essential to the production of many different kinds of knowledge about that life. The program’s core curriculum builds upon feminist scholarship of the last decade, incorporating the new interdisciplinary agendas, intellectual debates, changing methodological practices, and major scholarly shifts that have reshaped the field of women’s studies. Informed by the insights of critical race feminism, feminist critiques of conventional domains of knowledge, and gay and lesbian inquiries challenging traditional understandings and assumptions about sexuality, this core curriculum is designed to move students beyond simple binary descriptions and contemporary, popularized accounts of gender. Instead, gender is analyzed in the full complexity of its construction over time and in a variety of cultural, scholarly, and global arenas.

Students can expect to encounter a rich spectrum of approaches in studying these complex constructions—the majority of a student’s advanced work in the program consists of upper-division courses from the Departments of History, Communication, Literature, Ethnic Studies, Sociology, Anthropology, Philosophy, and Political Science. However, despite their important differences, what these approaches share is a critical stance with respect to the subject of gender. This stance, reflected in the program’s name Critical Gender Studies, refuses easy answers when exploring the social relations of gender and reaches, instead, for detailed accounts of the intricacies and paradoxes of power through which these relations are and have been made and maintained.

Critical Gender Studies prepares undergraduates for a variety of careers through the study of social, political, economic, historical, and cultural contexts. For example, the interdisciplinary and multidisciplinary course work that students complete part of a major in Critical Gender Studies provides an excellent foundation for those students with career aspirations in law, medicine and health sciences, public administration, and social services. Students wishing to pursue doctoral work will also find that interdisciplinary training in Critical Gender Studies equips them with theoretical and methodological strengths in most disciplines and applied research fields. Specialists in gender studies are increasingly being used as consultants in industry, higher education, insurance companies, and personnel firms. State and federal government agencies require people who have special training in analyzing gender relations. Finally, educational institutions need specialists to develop and administer women's centers and gay and lesbian centers as well as other institutional structures and programs.

The Critical Gender Studies Program offers two options of study: an undergraduate major and an undergraduate minor (or program of concentration). Because Critical Gender Studies is an interdisciplinary major, it is important to work closely with a faculty advisor in planning your program.

PREPARATION FOR THE MAJOR AND MINOR

All Critical Gender Studies majors and minors are required to take the Introduction to Critical Gender Studies sequence: Critical Gender Studies 2A-B, 100, and 101.

MAJOR PROGRAM

To complete a major, students are required to take sixteen courses, comprising four courses in the introductory sequence (2A, 2B, 100, 101), and twelve upper-division courses. Six of the upper-division courses must be taken in the CGS program; the other half (six) will be drawn from among the advanced electives taught within departments. Three of the advanced elective courses must be in the Humanities Division, the other three in Social Sciences. (See information on quarterly course list below.) All CGS majors will be assigned a faculty mentor, who will supervise the student’s progress through the program.

QUARTERLY COURSE LIST

When the UCSD Schedule of Classes for an upcoming quarter goes online, the Critical Gender Studies Program makes available a list of that quarter’s proposed CGS courses in addition to any departmental electives being offered. The quarterly list may be found at the CGS Web site.
HONORS PROGRAM

The Critical Gender Studies Honors Program allows advanced Critical Gender Studies majors to pursue individual projects in the context of collective intellectual exchange with their peers and advising faculty. Students are eligible if they a) have senior standing at the time they begin the program, and b) are approved by the Critical Gender Studies faculty director and steering committee. Normally, students eligible for honors will have a 3.5 grade point average in upper-division courses taken for the major, but highly motivated students who do not meet this criterion may be admitted to the program at the discretion of the director and the Critical Gender Studies steering committee.

In the fall quarter of their senior year, students take the Honors Seminar (CGS 190), taught by a member of the Critical Gender Studies faculty. The first half of the quarter is devoted to intensive analysis and discussion of recent publications in the fields of gender and sexuality. During the second half of the quarter, each student develops a short thesis proposal and presents it for group discussion. While taking the Honors Seminar, each student also registers for CGS 196A: Honors Research, four units of independent study with a faculty member associated with Critical Gender Studies. With the guidance of this advisor, the student carries out background research for the thesis prospectus and selects a thesis director. In the winter quarter, students complete the thesis under the supervision of their thesis director in the Honors Thesis course, CGS 196B.

Students who complete the thesis with a grade of B+ or above and make an oral presentation have the words with distinction added to the notation of the major on their diplomas and transcripts.

DOUBLE MAJOR IN CRITICAL GENDER STUDIES AND ANOTHER DEPARTMENT OR PROGRAM

Students who wish to major both in Critical Gender Studies and in another department or program must fulfill all requirements for the Critical Gender Studies major as described above. A student must submit a double major petition for approval to the participating departments and the student’s college advising office. Critical Gender Studies will accept up to two upper-division courses that overlap requirements for the two majors.

Critical Gender Studies Major Course Checklist

During advising sessions with the CGS faculty director or staff, Critical Gender Studies majors make use of a checklist to determine how courses already taken fulfill the major’s requirements. An example of the checklist may be found at the CGS Web site.

MINOR PROGRAM (AND PROGRAM OF CONCENTRATION)

Critical Gender Studies minors are required to complete Critical Gender Studies 2A-B, 100, and 101. In addition, minors are required to take three upper-division courses, two of which must be upper-division CGS courses, and one upper-division elective. Students who declare the Critical Gender Studies minor (or program of concentration) with junior or senior standing may petition to substitute an upper-division CGS course or a departmental elective course of comparable content for Critical Gender Studies 2A or 2B. Critical Gender Studies permits one lower-division course and one upper-division course to be taken P/NP. College grading options vary. Please consult with college academic advisors and Critical Gender Studies advisor.

SPECIAL STUDIES, INTERNSHIPS, AND GRADE OPTIONS

Many Critical Gender Studies majors and minors elect to do gender research under the rubrics of Directed Group Study (198), Independent Study (199), internships, and mentor programs. Because these courses can be taken only with a P/NP grade option, the number of such courses to be applied to the major should be carefully discussed with a Critical Gender Studies advisor. Some graduate and professional schools will consider it easier to evaluate a student’s transcript if there are more letter grades. College guidelines and requirements for grade options also vary. Please see college academic advisors and Critical Gender Studies advisor.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LOWER-DIVISION

CGS 2A. Introduction to Critical Gender Studies: Social Movements (4)

The role of social movements in contesting rights and representation in comparative and historical contexts. Historical examples in the U.S. and other locations, including civil rights, men’s movements, antiracist feminism, women’s movements, AIDS activism, transgenderism, immigrant rights, and the labor movement in the U.S.

CGS 2B. Introduction to Critical Gender Studies: Gender and Institutions (4)

This course examines how gender organizes and is organized by institutions. Domains of inquiry may include family, education, medicine, technology, law, media, the workplace, immigration, and citizenship.

CGS 87. Critical Gender Studies Freshman Seminar (1)

The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

UPPER-DIVISION

CGS 100. Conceptualizing Gender: Theories and Methods (4)

This course will compare the uses of gender as a category of analysis across academic disciplines in the humanities, social sciences, and natural sciences with particular attention to research methodologies.

CGS 101. Gender, Modernity, and Globalization (4)

The global effects of modernity, modernization, and globalization on men and women. Topics: international consumer culture; international divisions of labor; construction of sexuality and gender within global movements; the migrations of people, capital, and culture. Prerequisite: upper-division standing or consent of instructor.

CGS 102. Selected Topics in Critical Gender Studies (4)

An interdisciplinary course focusing on one of a variety of topics in gender studies, such as gender and science, the body, reproductive technologies, public policy. May be taken for credit three times when topics vary. Prerequisite: upper-division standing or consent of instructor.

CGS 103. Feminist Theory (4)

An interdisciplinary course in feminist theory. Topics may range from a general survey of feminist theory in a variety of disciplines to a more focused interdisciplinary theoretical topic such as postmodernism and feminism. May be taken for credit three times when topics vary. Prerequisite: upper-division standing or consent of instructor.

CGS 104. Advanced Topics in Comparative Perspectives (4)

Focuses on the relationship between gender and culture from a multiplicity of perspectives. Possible topics could include gender and ethnicity, gender across class, and other topics to be examined in a cross-cultural framework. May be taken for credit two times when topics vary. Prerequisite: upper-division standing or consent of instructor.

CGS 105. Queer Theory (4)

Examines the different methodologies and disciplinary histories that together constitute the interdisciplinary project called queer studies. Of particular interest will be how these different methodologies and history construe and construct the relations between gender, race, class, and nation. Prerequisite: upper-division standing or consent of instructor.

CGS 106. Gender Equality and the Law (4)

Explores the legal treatment of discrimination on the basis of gender, including equal protection doctrine, and some statutory law such as Title VII. Topics include the meaning of gender equality in such areas as single-sex education, military service, sexual harassment, discrimination on the basis of pregnancy, and other current issues. Prerequisite: upper-division standing or consent of instructor.

CGS 107. Gender and Reproductive Rights (4)

Legal treatment of gender, reproductive rights, and the family, particularly as evolving law, primarily in the U.S., has created conflicting rights, roles, and responsibilities. Topics include abortion, fetal rights, surrogacy, marriage, and child custody issues. Prerequisite: upper-division standing or consent of instructor.

CGS 108. Gender and Information Technology (4)

Explores how gender and racialized gender affect and are affected by information technology. Through the use of feminist and race/critical approaches, the course examines the impact of information technology on workplaces and households, the family, gender identity, and the environment. Prerequisite: upper-division standing or consent of instructor.

CGS 110. Gender and Sexuality in Sports (4)

Examines gender and sexuality in the world of sports. Topics may include Title IX and sports; sports, gender and race; sports in school; masculinity and sports; femininity and sports; sports through international comparison. Prerequisite: upper-division standing or consent of instructor.

CGS 111. Gender and the Body (4)

Various approaches to the study of gendered bodies. Possible topics to include masculinities/feminities; life cycles; biology, culture, and identity; medical discourses; and health issues. May be taken for credit three times when topics vary. Prerequisite: upper-division standing or consent of instructor.

CGS 112. Sexuality and Nation (4)

(Cross-listed with ETHN 127.) This course explores the nexus of sex, race, ethnicity, gender, and nation and considers their influence on identity, sexuality, migration movement and borders; and other social, cultural, and political issues that these constructs affect. Prerequisite: upper-division standing or consent of instructor.

CGS 113. Gender and Sexuality in the Arts (4)

Examines gender and sexuality in artistic practices: music, theater, dance, performance, visual arts, and new media. Topics may include study of specific artists,
historical moments, genres, cross-cultural analyses, and multiculturalism. May be taken three times when topics vary. **Prerequisite:** upper-division standing or consent of instructor.

CGS 190. Honors Seminar (4)
Interdisciplinary readings in feminist theory and research methodology to prepare students for writing an honors thesis. Open to Critical gender studies majors who have been admitted to Critical Gender Studies Honors Program. May be applied toward primary concentration in critical gender studies major. **Prerequisites:** admission to Critical Gender Studies Honors Program and department stamp required.

CGS 192: Senior Seminar in Critical Gender Studies (1)
The senior seminar is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in critical gender studies (at the upper-division level). Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times with a change in topic and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. **Prerequisites:** upper-division standing; department stamp and/or consent of instructor.

CGS 196A. Critical Gender Studies Honors Research (4)
A program of independent study providing candidates for critical gender studies honors to develop, in consultation with an advisor, a preliminary proposal for the honors thesis. An IP grade will be awarded at the end of this quarter. If the final grade for both quarters is a final grade C, the grade will be given upon completion of Critical Gender Studies 196B. **Prerequisites:** consent of instructor and department stamp required.

CGS 196B. Honors Thesis (4)
Honors thesis research and writing for students who have completed Critical Gender Studies 190 and 196A. A letter grade for both Critical Gender Studies 196A and 196B will be given at the completion of this quarter. **Prerequisites:** consent of instructor and department stamp required.

CGS 198. Directed Group Study (4)
Directed group study on a topic not generally included in the Critical Gender Studies curriculum. **Prerequisites:** consent of instructor and director of Critical Gender Studies Program and department stamp required.

CGS 199. Independent Study (4)
Tutorial; independent study on a topic not generally included in the curriculum. **Prerequisites:** consent of instructor and director of Critical Gender Studies Program and department stamp required.

CGS 500. Apprentice Teaching in Critical Gender Studies (4)
Consideration of pedagogical methods appropriate to undergraduate teaching in Critical Gender Studies courses under supervision of instructor of course. Instructor will define apprentice's responsibilities in preparing class presentations, directing student discussions, evaluating and grading students' work, and maintaining productive association with students.

APPLICABLE AND PETITIONABLE COURSES
Departmental courses available to CGS majors and minors fall into two categories. Applicable courses are those approved as always applying to the CGS major and minor. Petitionable courses are either new and therefore not yet approved as applicable or are "topics" courses that focus on gender only in particular quarters. Petitionable courses may be approved by petition to the major/minor during the quarters in which they appear in the CGS quarterly lists.

QUARTERLY LISTS
Each quarter, when the upcoming quarter's Schedule of Classes is published, the Critical Gender Studies quarterly list is available in the CGS office and on the Web site. It is an important, comprehensive source of information about CGS course offerings as well as those from departments throughout the campus. It identifies by cluster areas both applicable as well as petitionable courses for a given quarter. For reference, the office and the Web site maintain archives of quarterly lists.

CRITICAL GENDER STUDIES APPLICABLE COURSES
(Note: Only applicable courses are listed here. For petitionable courses, please see the quarterly lists)

SOCIAL SCIENCE COURSES

- ANSC 125. Gender, Sexuality, and Society
- COCU 123. Black Women Filmmakers
- COCU 132. Gender and Media
- COCU 137. Politics of Bodies
- COCU 138. Feminist Theory
- COCU 139. Reproductive Discourse and Gender
- COCU 141B. Media and Technology: Gender and Biomedicine
- COCU 160. Performance and Cultural Studies
- COCU 163. Popular Culture in Contemporary Life
- COHI 136. Gender and Science
- COSF 124. Black Women, Feminism, and the Media
- COSF 185. Gender, Labor, and Culture in the Global Economy
- ETHN 129. Asian and Latina Immigrant Workers in the Global Economy
- ETHN 128. Hip Hop: The Politics of Culture
- ETHN 165. Sex and Gender in African American Communities
- ETHN 183. Gender, Race, Ethnicity, and Class
- LIGN 174. Gender and Language in Society
- POLI 104M. Law and Sex
- POLI 115A. Gender and Politics
- POLI 116A. Feminist Theory
- PSYCH 134. Eating Disorders
- PSYCH 172. The Psychology of Human Sexuality
- SOC/B 113. Sociology of the AIDS Epidemic
- SOC/B 118. Sociology of Gender and Roles
- SOC/B 118A. Gender and Language in Society
- SOC/B 119. Sociology of Sexuality and Sexual Identities
- SOC/C 129. The Family
- SOC/C 132. Gender and Work
- SOC/C 139. Social Inequality: Class, Race, and Gender
- SOC/C 184. Gender and Film

ARTS AND HUMANITIES COURSES

- HIEA 125. Women and Gender in East Asia
- HIEA 137. Women and Family in Chinese History
- HIEA 162/262. History of Women in China
- HIEU 133. Gender in Antiquity and the Early Medieval Mediterranean
- HIEU 147. The History of Women in Europe: Middle Ages to the Early Modern Era
- HIEU 147A. Women in the Middle Ages
- HIEU 148. European Women: The Enlightenment to the Victorian Era
- HIEU 149. History of Women in Europe: 1870 to Present
- HIEU 180. Topics in European Women's History
- HILA 124A. History of Women and Gender in Latin America
- HILA 161. History of Women in Latin America
- HILA 164/264. Women's Work and Family Life in Latin America
- HISC 103. Gender and Science in Historical Perspective
- HISC 118. History of Sexology
- HISC 167/267. Gender and Science
- HITO 106. Love and Family in the Jewish Past
- HIUS 115. History of Sexuality in the United States
- HIUS 130. Cultural History from 1607 to the Civil War
- HIUS 131. Cultural History from the Civil War to the Present
- HIUS 156. American Women, American Womanhood
- HIUS 157. American Women, American Womanhood 1870 to Present
- HIUS 173. Topics in American Women's History
- HIUS 176. Race and Sexual Politics
- LTAM 105. Gender and Sexuality in Latino/a Cultural Production
- LTAM 106. Modern Chicana and Mexican Women Writings
- LTCS 130. Gender, Race/Ethnicity, Class, and Culture
- LTCS 135. Interdisciplinary Approaches to Lesbian, Gay, Bisexual, and Transgendered Studies
- LTCS 115. Performance Culture
- LTCS 131. Topics in Queer Cultures/Queer Subcultures
- LTCS 132. Special Topics in Social Identities and the Media
- LTCS 172. Special Topics in Screening Race/Ethnicity, Gender, and Sexuality
- LTEA 143. Gender and Sexuality in Korean Literature and Culture
- LTN 120E. Women in the Eighteenth Century
- LTN 146. Women and English/American Literature
- LTN 150. Gender, Text, and Culture
- LTN 185. Themes in African American Literature
- LTEU 147. Women in Italy
- LTSP 175. Gender, Sexuality, and Culture
- LTWL 102. Women in Antiquity
- LTWL 155. Gender Studies
- LTWL 160. Women and Literature
- MUSIC 115. Women in Music
- TDHT 112. Gay and Lesbian Themes in U.S. Latino Theatre
- VIS 117B. Theories of Representation
- VIS 117H. Constructing Gender in Fifth–Century B.C. Athens and Eighteenth-Century France
Culture, Art, and Technology

OFFICE: Pepper Canyon Hall, Second Floor
http://sixth.ucsd.edu/

The Sixth College core sequence in Culture, Art, and Technology offers an opportunity for students to explore the ways in which human beings have come to express and shape themselves and their world through their own creations. The core sequence takes an interdisciplinary, integrated approach to the college theme, with students examining a series of problems and issues from multiple perspectives. These issues center on how culture, art, and technology have developed over time in different societies, how they interact with each other, how human beings have used them to address challenges and how their uses have generated fresh challenges by reshaping peoples’ relationships to each other and to their environment. The sequence spans the whole range of human experience, from the prehistoric through the present, ending with a consideration of future possibilities.

The college writing program is imbedded in the core sequence, with writing-intensive quarters in CAT 2 and CAT 3. Students learn to use writing to probe and experiment with new ideas as well as to express themselves clearly and effectively to others in their own voices. The core sequence provides students with instruction and multiple opportunities for practice so they may develop a repertoire of strategies and tools for communication.

Students in CAT learn through a combination of lectures, discussions, questions, readings, guest speakers, hands-on activities, writing assignments, and multimedia projects. Sixth College offers a learning environment that extends beyond the classroom and emphasizes teamwork, critical thinking, close reading, pattern recognition, and creative approaches to problems, drawing on models and methods from a variety of fields.

The core sequence prepares Sixth College students to become self-motivated, lifelong learners. They will have broadened and deepened their visions of themselves and the world and will have developed an appreciation of the diversity and powers both of ideas and of the social body. Through inquiry into problems and issues of Culture, Art, and Technology, our students will know how to ask and answer. Good questions lead not just to answers but to more penetrating, more fruitful questions and approaches to problems, which can then lead in many cases to more effective solutions.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LOWER-DIVISION

CAT 1, Culture, Art, and Technology 1 (4)
A global historical overview of principles and patterns of human development, with emphasis on technology and the arts. Traces causes and consequences of cultural variation. Explores interactions of regional environments (geographic, climatic, biological) with social and cultural forces. Prerequisites: Sixth College students only; may be taken concurrently with SDCC 1.

CAT 2, Culture, Art, and Technology 2 (6)
Fundamental shifts in one area of endeavor can have a profound impact on whole cultures. Examines select events, technologies, and works of art that revolutionized ways of inhabiting the world. Intensive instructions in university-level writing: featured sections on information literacy. Prerequisites: completion of UC Entry Level Writing requirement and CAT 1; Sixth College students only.

CAT 3, Culture, Art, and Technology 3 (6)
Students engage with various interdisciplinary modes of apprehending the nearfuture. Working in teams on community projects, they are challenged to listen and communicate across cultures and develop cogent technological and artistic responses to local problems. Writing and information literacy instruction. Prerequisites: CAT 1, CAT 2; Sixth College students only.

CAT 24, Introduction to Special Projects/Topics (2 or 4)
Lower-division students are introduced to projects/topics exploring the interplay of culture, art, and technology. Topics and projects will vary. Prerequisite: consent of instructor.

CAT 87, Freshman Seminar (1)
The freshman seminar program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students with preference given to entering freshmen. Prerequisites: none.

CAT 97, Culture, Art, and Technology Lower-Division Interns (2 or 4)
Course designated for lower-division Sixth College students to have the opportunity to work on a community-based or industry-based project supervised by a faculty member and community or industry mentor. Prerequisites: lower-division standing and cumulative GPA of 3.0.

CAT 98, Culture, Art, and Technology Lower-Division Group (2 or 4)
Course designed for lower-division Sixth College students to have the opportunity to work together as a group on a project supervised by a faculty member in a specific department, not included in a regular curriculum, where group emphasis would be more beneficial and constructive than individual special studies. Prerequisites: lower-division standing and cumulative GPA of 3.0.

CAT 99, Culture, Art, and Technology Lower-Division Independent Research (2 or 4)
Course designed for lower-division Sixth College students to have the opportunity to work on a project supervised by a faculty member in a specific department, where the subject of content of the project cannot be represented by the academic department or faculty member. Prerequisites: lower-division standing and cumulative GPA of 3.0.

UPPER-DIVISION

CAT 124, Sixth College Practicum (4)
Students initiate, plan, and carry out community-based and/or research-based projects that connect classroom-based experiences and knowledge to the outlying community, and that explicitly explore the interplay of culture, art, and technology. Prerequisites: upper-division standing and consent of instructor.

CAT 124P, Sixth College Practicum (2, 4)
Students initiate, plan, and carry out community-based and/or research-based projects that connect classroom-based experiences and knowledge to the outlying community, and that explicitly explore the interplay of culture, art, and technology. Topics and projects will vary. Some projects may last more than one quarter. Prerequisites: upper-division standing and consent of instructor. P/NP grading option only.

CAT 125, Sixth Practicum Writing (4)
Writing to report and reflect on the practicum experience. Students will link general education to practicum projects, practice communicating with people of various constituencies; use writing as a tool for penetrating culture and for understanding self in relation to community. Prerequisites: upper-division standing, completion of CAT 1, 2, and 3 or (for transfer students) completion of general-education requirements, including lower-division writing requirement. Completion of the Practicum course/project. CAT 125 should be taken within one quarter of completion of the practicum project (CAT 124).

CAT 192, Senior Seminar in Culture, Art, and Technology (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in Culture, Art, and Technology (at the upper-division level). Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times with a change in topic and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: upper-division standing; 3.0 cumulative GPA; consent of instructor.

CAT 195, Apprentice Teaching (4)
Undergraduate instructional assistance. Responsibilities in areas of learning and instruction. May collect course material and assist with course projects, digital workshops, and collection, organization and analysis of formative assessment data. Prerequisites: upper-division standing; 3.0 cumulative GPA; consent of instructor.

CAT 197, Culture, Art, and Technology Field Studies (4)
Supervised community-based or industry-based field work. Designated for Sixth College students to have the opportunity to work on a community-based or industry-based project supervised by a faculty member and community or industry mentor, where the subject/content of the project cannot be represented by a specific academic department. Students will submit written evaluations each week of their ongoing field study. Prerequisites: upper-division standing, completion of CAT 1, 2, and 3 or (for transfer students) completion of general-education requirements, including lower-division writing requirement.

CAT 198, Culture, Art, and Technology Directed Group Studies (4)
Directed group studies or, in group, field studies of a creative project. Designated for Sixth College students to have the opportunity to work together as a group on a project supervised by a faculty member in a specific department, not included in a regular curriculum, where group emphasis would be more beneficial and constructive than individual special studies. Prerequisites: upper-division standing, completion of CAT 1, 2, and 3 or (for transfer students) completion of general-education requirements, including lower-division writing requirement.

CAT 199, Culture, Art, and Technology Independent Studies (4)
Individual independent research or creative project. Designated for Sixth College students to have the opportunity to work on a project supervised by a faculty member in a specific department, where the subject or content of the project cannot be represented by the academic department of the faculty member. Prerequisites: upper-division standing, completion of CAT 1, 2, and 3 or (for transfer students) completion of general-education requirements, including lower-division writing requirement.

2010-2011 UC SAN DIEGO GENERAL CATALOG • CULTURE, ART, AND TECHNOLOGY
The Dimensions of Culture program (DOC) is a multidisciplinary, issues-oriented, writing-intensive three-quarter social science and humanities sequence required of all first-year students at Thurgood Marshall College. Successful completion of the DOC sequence satisfies the University of California writing requirement.

DOC’s course content closely identifies with the educational philosophy and goals of Thurgood Marshall College, in particular its concerns for social justice, the history and cultural experience of minorities and otherwise underrepresented groups, and the development of intelligent citizenship. Central to the course objective is the question of how scholars move from knowledge to action.

Offered each fall, DOC 1, “Diversity,” introduces students to basic distinctions in academic inquiry about systematic social differences among human individuals and groups. The aim is to convey a range of stratifications that shape our human attachments to self, work, community, and nation; in short, a descriptive sociology of our differences as they intersect along lines of race, ethnicity, class, gender, religion, and ability—themes that DOC 2 and DOC 3 will revisit from different academic perspectives.

DOC 2, “Justice,” offered each winter quarter, introduces students to fundamental concepts in political and social theory and moral philosophy, presenting them in concrete historical and contemporary social contexts. The course provides special focus on political and constitutional implications of American diversity and pluralistic society. Course readings include numerous original sources, especially Supreme Court opinions, as well as pieces drawn from the rich field of American history.

DOC 3, “Imagination,” presented each spring, investigates the ways in which these same publicly significant social differences examined in DOC 1 and DOC 2 have been imagined and re-imagined in a wide variety of cultural productions. In particular, they will examine how primary texts such as films, television, short stories, poetry, music, technology, journalism, and advertisements imaginatively represent public tensions in the U.S. as they have emerged and changed over time.

Satisfaction of the UC Entry Level Writing requirement (formerly called the Subject A requirement) is a prerequisite for both DOC 2 and DOC 3. Transfer students should see their college academic advisor regarding which DOC courses are required of them.

For further details on Marshall College requirements, see “Marshall College, General-Education Requirements.”

Lower-Division

1. Dimensions of Culture: Diversity (4)
 - This course focuses on sociocultural diversity in examining class, ethnicity, race, gender, and sexuality as significant markers of differences among persons. Emphasizing American society, it explores the cultural understandings of diversity and its economic, moral, and political consequences. Three hours of lecture, one hour of discussion. Open to Marshall College students only. (Letter grade only.) (F)

2. Dimensions of Culture: Justice (6)
 - This course considers the nature of justice in philosophical, historical, and legal terms. Topics include racial justice, political representation, economic justice, gender and justice, the rights of cultural minorities, and crime and punishment. The course offers intensive instruction in writing university-level expository prose. Three hours of lecture, two hours of discussion and writing instruction. Open to Marshall College students only. (Letter grade only.) Prerequisite: completion of UC Entry Level Writing requirement. (W)

3. Dimensions of Culture: Imagination (6)
 - Using the arts, this course examines the evolution of pluralistic culture to the modern period. There is a special emphasis on the interdisciplinary study of twentieth-century American culture, including music, literature, art, film, and photography. The course offers intensive instruction in writing university-level expository prose. Three hours of lecture, two hours of discussion and writing instruction. Open to Marshall College students only. (Letter grade only.) Prerequisite: completion of UC Entry Level Writing requirement. (S)
Economics

PROFESSORS
James Andreoni, Ph.D.
Richard E. Attiyeh, Ph.D., Emeritus
Donald V.T. Bear, Ph.D., Emeritus
Eli Berman, Ph.D.
Julian Betts, Ph.D., Chair
Richard T. Carson, Ph.D.
John Conlisk, Ph.D., Emeritus
Graham Elliott, Ph.D.
Roger H. Gordon, Ph.D.
Theodore Groves, Ph.D.
James D. Hamilton, Ph.D.
Gordon Hanson, Ph.D.
Mark J. Machina, Ph.D.
Ramachandra Ramanathan, Ph.D., Emeritus
Garey Ramey, Ph.D.
Valerie A. Ramey, Ph.D.
James E. Rauch, Ph.D.
Joel Sobel, Ph.D.
Ross M. Starr, Ph.D.
Allan Timmermann, Ph.D.
Joel Watson, Ph.D.
Halbert L. White, Ph.D.
Michelle J. White, Ph.D.

ASSOCIATE PROFESSORS
Julie Berry Cullen, Ph.D.
Gordon Dahl, Ph.D., Vice Chair, Graduate Studies
Marjorie Flavin, Ph.D.
Patrik Guggenberger, Ph.D.
Ivana Komunjer, Ph.D.
Marc A. Muenelder, Ph.D.
Dennis E. Smallwood, Ph.D., Emeritus
Yixiao Sun, Ph.D.

ASSISTANT PROFESSORS
S. Nageeb Ali, Ph.D.
Brendan Beare, Ph.D.
Prashant Bharadwaj, Ph.D.
Davide Debortoli, Ph.D.
Silke Januszewski Forbes, Ph.D.
Mark R. Jacobsen, Ph.D.
David A. Miller, Ph.D.
Karthik Muralidharan, Ph.D.
Paul Niehaus, Ph.D.
Michael D. Noel, Ph.D.
Giacomo Rondina, Ph.D.
Andres Santos, Ph.D.
Irina Telyukova, Ph.D.

ADJUNCT PROFESSOR
Dale Squires, Ph.D. (NMFS)

ASSOCIATED FACULTY
Josh Graff Zivin, Ph.D. (Professor, IR/PS)
Takeo Hoshi, Ph.D. (Professor, IR/PS)

Alex Kane, Ph.D. (Professor, IR/PS)
Bruce Lehmann, Ph.D. (Professor, IR/PS)
Lawrence McKinstry, Ph.D. (Professor, IR/PS)
Dimitris Politis, Ph.D. (Professor, Mathematics)
Krislert Sampangan, Ph.D. (Professor, IR/PS)
Christopher Woodruff, Ph.D. (Professor, IR/PS)

LECTURERS WITH SECURITY OF EMPLOYMENT
Kate Antonovics, Ph.D., Vice Chair, Instruction
Melissa Famulari, Ph.D., Vice Chair, Undergraduate Studies

ECONOMICS STUDENT SERVICES:
245 Sequoyah Hall
http://economics.ucsd.edu

INTRODUCTION

Economics is the study of how individuals, organizations, and societies deal with scarcity—the fact that resources are not sufficient to satisfy everyone's wants. Because scarcity requires choice among alternative uses of resources, economists study both the technology by which resources are turned into the products people want and the preferences through which people choose among alternatives. Further, since society is composed of many individuals and groups, economists study markets, governments, and other institutions through which a society might gain the advantages of cooperation and resolve the conflicts due to competing goals. The economics curriculum develops tools and uses them to analyze a wide range of societal problems, and also to study the role of the government in solving these problems.

Economics is a different discipline from business administration. However, there are substantial overlaps. Both disciplines study the behavior of people and firms within the context of market, legal, and other institutions. In evaluating economic institutions, economists tend to emphasize the viewpoint of the larger society, and business scholars tend to emphasize the viewpoint of firms.

Information on the undergraduate program can be found on the undergraduate program's Web site at http://economics.ucsd.edu/ugrad/index.php. The Web site contains answers to frequently asked questions, gives practical tips for avoiding problems, and provides a more detailed discussion of the department's majors than is possible in the general catalog. It is important for students contemplating a major in the department to be familiar with the Web site and the prerequisite requirements listed therein. The role of government in markets. ECON 3 introduces competitive markets, market imperfections, and the distribution of income in perfectly competitive markets, market imperfections, and the role of government in markets. ECON 2 introduces microeconomics with a focus on the allocation of resources in monopoly and other imperfectly competitive markets, market imperfections, and the role of government in markets. ECON 3 introduces macroeconomics: unemployment, inflation, business cycles, and monetary and fiscal policy. ECON 1 is a prerequisite for both ECON 2 and ECON 3. ECON 2 and ECON 3 can be taken in any order and may be taken concurrently.

ACCOUNTING COURSE

The department offers an accounting course, ECON 4. ECON 4 is a lower-division requirement for the B.S. in management science and the management science minor. ECON 4 is open to students who take no other courses from the department.

UPPER-DIVISION ECONOMICS CORE COURSES

The upper-division economics and management science core courses are expected to be offered according to the following academic schedule:

Fall—100A-B-C, 110A, 120A-B-C, 171, 172A, and 173A
Spring—100A-B-C, 110B, 120A-B-C, 171, 172B, and 173B

The 100, 110, 120, 172, and 173 core courses are sequential. That is, A must be taken before B and when applicable B before C.

ENTRY TO THE MAJORS

Any student in good standing may declare a major in the department. The major codes are as follows: Economics, EN 25; Management Science, EN 26; and Joint Mathematics-Economics, EN 28.

THE ECONOMICS MAJOR (B.A.)

The economics B.A. program is designed to provide a broad understanding of resource-allocation and income-determination mechanisms. Both the development of the tools of economic analysis and their application to contemporary problems and public policy are stressed.

When choosing which mathematics series to take, Math. 10A-B-C or Math. 20A-B-C, it is important to remember that only Math. 20A-B-C allows students access to Math. 20F and several upper-division Math. courses that are recommended as preparation for Ph.D. study in economics and business administration, as well as for graduate studies for professional management degrees, including the MBA. Therefore, while we require economics...
majors to take Math. 10A-B-C, we recommend that economics students take Math. 20A-B-C. A student majoring in economics must meet the following requirements:
1. Lower-division mathematics courses. Math. 10A-B-C (required) or Math. 20A-B-C (recommended).
2. Lower-division economics courses. ECON 1 and ECON 3.
3. Upper-division economics core courses. ECON 100A-B-C (microeconomics), ECON 110A-B (macroeconomics), and ECON 120A-B-C (econometrics).
4. Upper-division economics electives. Five more economics courses at the upper-division level. At least two of these elective courses must be “advanced electives.” The economics advanced electives are
 - ECON 103. International Monetary Relations
 - ECON 104. Economics of Network Industries
 - ECON 105. Industrial Organization and Firm Strategy
 - ECON 109. Game Theory
 - ECON 113. Mathematical Economics
 - ECON 119. Law and Economics: Contracts and Corporations
 - ECON 121. Applied Econometrics
 - ECON 125. Demographic Analysis and Forecasting
 - ECON 141. Economics of Health Consumers
 - ECON 143. Experimental Economics
 - ECON 147. Economics of Education
 - ECON 150. Public Economics: Taxation
 - ECON 151. Public Economics: Expenditures I
 - ECON 152. Public Economics: Expenditures II
 - ECON 155. Political Economics
 - ECON 170. Economic and Business Forecasting
 - ECON 171. Decisions Under Uncertainty
 - ECON 172A. Operations Research A
 - ECON 172B. Operations Research B
 - ECON 173A. Financial Markets
 - ECON 173B. Corporate Finance
 - ECON 176. Marketing

FRESHMAN YEAR
- ECON 1 and ECON 3
- Math. 10A-B-C (required) or Math. 20A-B-C (recommended)

SOPHOMORE YEAR
- ECON 100A-B-C
- ECON 120A-B-C
- ECON 110A-B
- Economics Electives

JUNIOR YEAR
- ECON 100A-B-C
- ECON 120A-B-C

SENIOR YEAR
- Economics Electives
A detailed description of the economics major is available in the Undergraduate Program section of the department Web site at http://economics.ucsd.edu/ugrad/index.php.

THE MANAGEMENT SCIENCE MAJOR (B.S.C.)
Management science builds on a set of related quantitative methods commonly used to solve problems arising in the private (business and finance) and public (government) sectors. While students will gain some familiarity with the traditional functional fields of business management, this program is more tightly focused and more quantitative than a traditional business administration major. It is not, however, a program in applied mathematics or operational research, since the economic interpretation and application of the tools are continually stressed. Rather, it is a quantitative major in applied economics with a management focus.
A student majoring in management science must meet the following requirements:
1. Lower-division mathematics courses. Math. 20A-B-C and Math. 20F.
2. Lower-division economics courses. ECON 1, ECON 3, and ECON 4.
3. Upper-division economics core courses. ECON 100A-B-C (microeconomics), ECON 120A-B-C (econometrics), ECON 171 (decisions under uncertainty), ECON 172A-B (operations research) and ECON 173A-B (finance).
4. Upper-division economics electives. Four more economics courses at the upper-division level. At least two of these elective courses must be “advanced electives.” The management science advanced electives are
 - ECON 103. International Monetary Relations
 - ECON 104. Economics of Network Industries
 - ECON 105. Industrial Organization and Firm Strategy
 - ECON 109. Game Theory
 - ECON 113. Mathematical Economics
 - ECON 119. Law and Economics: Contracts and Corporations
 - ECON 121. Applied Econometrics
 - ECON 125. Demographic Analysis and Forecasting
 - ECON 150. Public Economics: Taxation

JOINT MAJOR IN MATHEMATICS AND ECONOMICS (B.S.C.)
This major is considered to be excellent preparation for the Ph.D. study in economics and business administration, as well as for graduate studies for professional management degrees, including the M.B.A.
Majors in economics generally recognize the importance of mathematics to their discipline. Undergraduate students who plan to pursue doctoral study in economics or business need the more advanced mathematics training prescribed in this major. Majors in mathematics often feel the need for a more formal introduction to issues involving business applications of science and mathematics. Extending their studies into economics provides this application and can provide a bridge to successful careers or advanced study. This major provides a formal framework making it easier to combine study in economics and mathematics.
Course requirements of the joint major in mathematics and economics consist principally of the required courses of the mathematics major and the economics/world science majors:
Lower-Division Requirements

1. One of the following sequences:
 a. Calculus and Linear Algebra. Math. 20A-B-C-D and 20F
 b. Honors Calculus. Math. 31AH-BH, Math 20D
2. Introductory economics. ECON 1 and ECON 3.

Upper-Division Requirements

Fifteen upper-division courses in mathematics and economics, with a minimum of seven courses from one department and eight from the other department, chosen from the courses listed below (prerequisites are strictly enforced):

1. Mathematical Reasoning, Math. 109 (Note: Students completing Math. 31CH may substitute a four-unit upper-division math. elective for Math. 109.)
2. One of the following:
 a. Applied Linear Algebra. Math. 102
 b. Numerical Linear Algebra. Math. 170A
 c. Modern Algebra. Math. 100A-B
3. One of the following:
 a. Foundations of Analysis. Math. 140A
 b. Advanced Calculus. Math. 142A
4. One of the following:
 a. Ordinary Differential Equations. Math. 130A
 b. Foundations of Analysis. Math. 140B
 c. Advanced Calculus. Math. 142B
5. Microeconomics. ECON 100A-B-C
6. Econometrics/Statistics. One of the following:
 a. ECON 120A-B-C
 b. Math. 180A and ECON 120B-C
 c. Math. 180A and 181A and ECON 120C
7. One of the following:
 a. Macroeconomics. ECON 110A-B
 c. Introduction to Operations Research. ECON 172A-B
 d. Decisions Under Uncertainty. ECON 171 and Introduction to Operations Research. ECON 172A

When choosing across the Math. 140 or the Math. 142 series, it is recommended that students take Math. 142. Other courses which are strongly recommended are Math. 130B, 131, 181B, 190, and 193A-B and ECON 109, 113, 173-A-B, 174, and 178.

Further information may be obtained in the mathematics and economics undergraduate advising offices.

HONORS

Economics Majors

To graduate with the phrase “with highest distinction” on your diploma, you must complete two additional advanced electives (for a total of seven electives, four of which are advanced). You must also have an upper-division GPA in your major greater than or equal to 3.5. The upper-division major GPA will only include grades for courses taken at universities in the UC system and through EAP.

To graduate with the phrase “with highest distinction” on your diploma, you must complete two additional advanced electives (for a total of seven electives, four of which are advanced); take the honors sections of at least two upper-division courses (ECON 100AH-BH-CH, ECON 110AH-BH, and ECON 120AH-BH-CH), and take the Senior Essay Seminar (ECON 191A-B). You must also have an upper-division GPA in your major greater than or equal to 3.5. The major GPA in your honors sections and ECON 191A-B must be 3.5 or above. Admission to honors sections and ECON 191A-B is by special permission; check with the undergraduate advisors in the Economics Student Services Office. Note that we generally offer A honors sections in the fall, B honors sections in the winter, and the C honors sections in the spring.

Management Science Majors

To graduate with the phrase “with highest distinction” on your diploma, you must have an upper-division GPA in your major greater than or equal to 3.5. The upper-division major GPA will only include grades for courses taken at universities in the UC system and through EAP.

To graduate with the phrase “with highest distinction” on your diploma, you must complete the honors sections of at least two upper-division courses (ECON 100AH-BH-CH or ECON 120AH-BH-CH), and take the Senior Essay Seminar (ECON 191A-B). You must also have an upper-division GPA in your major greater than or equal to 3.5. The major GPA in your honors sections and ECON 191A-B must be 3.5 or above. Admission to honors sections and ECON 191A-B is by special permission; check with the undergraduate advisors in the Economics Student Services Office. Note that we generally offer A honors sections in the fall, B honors sections in the winter, and the C honors sections in the spring.

Joint Mathematics/Economics Majors

To graduate with honors requires the following:

1. At least one quarter of the Student Colloquium, Math. 196. (Note: Math. 196 is only offered in the fall quarter.)
2. At least one Economics honors course: ECON 100AH, 100BH, 100CH, 110AH, 110BH, 120AH, 120BH, 120CH. (Note: enrollment in these honors classes is by special permission; check with the undergraduate advisors in the Economics Student Services Office, (SH 245).)
3. An Honors Thesis. The research and writing of the thesis will be conducted over two quarters of the senior year under the supervision of a faculty advisor. The completed thesis must be approved by the Joint Mathematics and Economics Honors Committee, which comprises the Mathematics Honors Committee and the Economics Honors Committee, and presented orally at the Undergraduate Research Conference or another appropriate occasion.
 a. If the student is a declared major in the mathematics department (MA33), this thesis will be credited as eight units of Math. 199H. Enrollment in Math. 199H is by special permission; check with the advisors in the mathematics department Undergraduate Affairs Office (AP&M 7018) or the Mathematics Advising Office (AP&M 6016).
 b. If the student is a declared major in the economics department (EN28), the student must enroll in ECON 191A-B. Enrollment in ECON 191 is by special permission; check with the undergraduate advisors in the Economics Student Services Office (SH 245).
4. A minimum GPA of 3.0 overall, 3.5 in the upper-division courses required for the major and a 3.5 in the following four classes: Math. 196, Economics Honors class, and either ECON 191A-B or two quarters of Math. 199H.

The Joint Mathematics and Economics Honors Committee will determine the level of honors to be awarded, based on the student’s GPA in the major and the quality of the honors work.

GRADE RULES FOR MAJORS

All courses used in meeting requirements for a departmental major must be taken on a letter-grade basis, and must be passed with a grade of C– (C minus) or better. These rules apply to lower-division courses, upper-division courses, and to required courses taken from other departments (such as required mathematics courses). Exceptions are ECON 195, ECON 198, and ECON 199, for which P/NP grading is mandatory. No more than twelve units of ECON 195, ECON 198, and ECON 199 taken P/NP may be counted toward a major. Further, no more than eight units of ECON 195 may be counted toward a major.

ECONOMICS DEPARTMENT RESIDENCY REQUIREMENT

To receive a bachelor of arts or bachelor of science degree from the economics department, all students must pass with a grade of C– (C minus) or better at least nine of the required upper-division courses (at least four units each) for the major, taken through the UCSD economics department, while officially enrolled at UCSD, to satisfy the residency requirement.

ADVANCED PLACEMENT CREDITS

Because no high school economics course provides the kind of background needed for upper-division economics and management science courses, the department is strict on allowance of credits. The policy is as follows: If the AP score is 5, accept AP Micro (AP Macro) as equivalent to ECON 1 (ECON 3) in meeting major or minor requirements. If the score is 3 or 4, the student is required to take ECON 1 (ECON 3) for the major or minor. There is not an advanced placement exam equivalent to ECON 2.

Minors and Programs of Concentration The economics minor or program of concentration consists of eight courses: introductory microeconomics (ECON 1); microeconomic applications (ECON 2) or ECON 100A; introductory macroeconomics (ECON 3) or ECON 110A; and five additional upper-division economics courses, which are otherwise not restricted.

The management science minor, parallel to the economics minor, consists of nine courses: introductory microeconomics (ECON 1); microeconomic applications (ECON 2) or ECON 100A; introductory...
LOWER-DIVISION

1. Principles of Microeconomics (4)
Introduction to the study of the economic system. Course will introduce the standard economic models used to examine how individuals and firms make decisions in perfectly competitive markets. Credit not allowed for both ECON 1 and ECON 1A.

2. Market Imperfections and Policy (4)
Analysis of monopoly and imperfectly competitive markets, market imperfections and the role of government. Prerequisite: ECON 1 or 1A.

3. Principles of Macroeconomics (4)
Introductory macroeconomics: unemployment, inflation, business cycles, monetary and fiscal policy. Credit not allowed for both ECON 1B and ECON 3. Prerequisite: ECON 1 or 1A.

4. Financial Accounting (4)
(Cross-listed with MGT 4.) Recording, organizing, and communicating financial information relating to business entities. No prerequisites.

5. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen. May be repeated when course topics vary. (P/NP grades only.)

UPPER-DIVISION

100A. Microeconomics A (4)
Economic analysis of household determination of the demand for goods and services, consumption/saving decisions, and the supply of labor. Credit not allowed for both ECON 100A and ECON 170A. Prerequisites: ECON 1A or 1; and Math. 10C or 20C.

100B. Microeconomics B (4)
Analysis of firms’ production and costs, the supply of output and demand factors of production. Analysis of perfectly competitive markets. Credit not allowed for both ECON 100B and ECON 170B. Prerequisite: ECON 100A or 170A.

100C. Microeconomics C (4)
Analysis of the effects of imperfect market structure, strategy, and imperfect information. Prerequisite: ECON 100B or 170B.

100AH. Honors Microeconomics A (1)
Honors sequence expanding on the material taught in ECON 100A. ECON 100A must be taken with ECON 100AH. Credit not allowed for both ECON 100AH and ECON 170AH. GPA of 3.5 or better. Prerequisite: department stamp required.

100BH. Honors Microeconomics B (1)
Honors sequence expanding on the material taught in ECON 100B. ECON 100B must be taken with ECON 100BH. Credit not allowed for both ECON 100BH and ECON 170BH. GPA of 3.5 or better. Prerequisite: department stamp required.

100CH. Honors Microeconomics C (1)
Honors sequence expanding on the material taught in ECON 100C. ECON 100C must be taken with ECON 100CH. GPA of 3.5 or better. Prerequisite: department stamp required.

101. International Trade (4)
Examines theories of international trade in goods and services as well as international migration and capital flows. The course discusses comparative advantage, motives for trade policies, and the effects of trade barriers and trading blocs on income distribution and welfare. Prerequisites: ECON 1A-B or 2 or 100B or 170B.

103. International Monetary Relations (4)
Analyzes exchange rates and the current account, and relates their joint determination to financial markets and the domestic macroeconomy. Discusses macroeconomic policies under different exchange rate regimes and implications for financial stability and current account sustainability. Prerequisite: ECON 110B or 173A or 175.

104. Economics of Network Industries (4)
Economics of industries with network effects such as telecommunications, internet, software, and airlines. Analysis of standards, complementarities, switching costs, economies of scale, and optimal price setting in the presence of network effects. ECON 100C is recommended. Prerequisite: ECON 100B or 170B.

105. Industrial Organization and Firm Strategy (4)
Theory of monopoly and oligopoly pricing, price discrimination, durable goods pricing, cartel behavior, price wars, strategic entry barriers, mergers, pro- and anti-competitive restraints on business. ECON 100C is recommended. Prerequisite: ECON 100B or 170B.

107. Economic Regulation and Antitrust Policy (4)
Detailed treatment of antitrust policy: Sherman Act, price fixing, collusive practices, predatory pricing, price discrimination, double marginalization, exclusive territories, resale price maintenance, refusal to deal, and foreclosure. Theory of regulation and regulatory experience in electrical utilities, oil, telecommunications, broadcasting, etc. Prerequisites: ECON 1A-B or 2 or 100B or 170B; and Math. 10C or 20C.

109. Game Theory (4)
Introduction to game theory. Analysis of people’s decisions when the consequences of the decisions depend on what other people do. This course features applications in economics, political science, and law. ECON 100C is recommended. Prerequisite: ECON 100B or 170B or Math. 109.

110A. Macroeconomics A (4)
Analysis of the determination of long run growth and models of the determination of output, interest rates, and the price level. Analysis of inflation, unemployment, and monetary policy and fiscal policy. Prerequisites: ECON 1A-B or 3; and Math. 10C or 20C.

110B. Macroeconomics B (4)
Analysis of the determination of consumption spending at the aggregate level; extension of the basic macro model to include exchange rates and international trade; the aggregate money supply, and the business cycle. Prerequisite: ECON 110A.

110AH. Honors Macroeconomics A (1)
Honors sequence expanding on the material taught in ECON 110A. ECON 110A must be taken with ECON 110AH. GPA of 3.5 or better. Prerequisite: department stamp required.

110BH. Honors Macroeconomics B (1)
Honors sequence expanding on the material taught in ECON 110B. ECON 110B must be taken with ECON 110BH. GPA of 3.5 or better. Prerequisite: department stamp required.

111. Monetary Economics (4)
Financial structure of the U.S. economy. Bank behavior. Monetary control. Prerequisites: ECON 1A-B or 3; and Math. 10A or 20A.

113. Mathematical Economics (4)
Mathematical concepts and techniques used in advanced economic analysis; applications to selected aspects of economic theory. ECON 100C is recommended. Prerequisite: ECON 100B or ECON 170B; or Math. 140A or Math. 142A.

114. Economics of Immigration (4)
Impact of immigration on the U.S. economy. Empirical evidence on the labor market and fiscal impacts of immigration. Consequences of U.S. immigration policies on the economy. Prerequisites: ECON 1A-B or ECON 1 and 3.

116. Economic Development (4)
Introduction to the economics of less developed countries, covering their international trade, human resources, urbanization, agriculture, income distribution, political economy, and environment. Prerequisites: ECON 1A-B or 2 or 100B.

117. Economic Growth (4)
Models of the economic growth of developed economies. Prerequisite: ECON 100A or 170A.
118. Law and Economics: Torts, Property, and Crime (4) Uses economic theory to evaluate the economic effects of U.S. law in several legal fields, including tort law (accidents), products liability law, property law, criminal law (law enforcement and deterrence), and litigation. Also considers risk bearing and why people buy insurance. Renumbered from ECON 118A. Credit not allowed for both ECON 118 and ECON 118A. Prerequisites: ECON 1A-B or 2 or 100A; and Math. 10A or 20A.

119. Law and Economics: Contracts and Corporations (4) Uses economic theory to evaluate the economic effects of U.S. law in contract law, corporate law (how large firms are organized and governed), debtor-creditor law, and bankruptcy law. ECON 100C and 118 are recommended. Prerequisite: ECON 100B or 170B.

120A. Econometrics A (4) Probability and statistics used in economics. Probability and sampling theory, statistical inference, and use of spreadsheets. Credit not allowed for ECON 120A and any of the following: ECE 109; Math. 180A; Math. 183B; Math. 186. Prerequisites: ECON 1A or 1; and Math. 10C or 20C.

120B. Econometrics B (4) Basic econometric methods, including the linear regression model, hypothesis testing, quantifying uncertainty using confidence intervals, and distinguishing correlation from causality. Credit not allowed for both ECON 120B and Math. 181A. Prerequisite: ECON 120A or ECE 109 or Math. 180A or Math. 183 or Math. 186.

120C. Econometrics C (4) Advanced econometric methods: estimation of linear regression models, autoregressive econometric models designed for panel data sets, estimation of discrete choice models, time series analysis, and estimation in the presence of autocorrelated and heteroskedastic errors. Prerequisite: ECON 120B or Math. 181A.

120AH. Honors Econometrics A (1) Honors section teaching on the material taught in ECON 120A. ECON 120A must be taken with ECON 120AH. GPA of 3.5 or better. Prerequisite: department stack required.

120BH. Honors Econometrics B (1) Honors section expanding on the material taught in ECON 120B. ECON 120B must be taken with ECON 120BH. GPA of 3.5 or better. Prerequisite: department stack required.

120CH. Honors Econometrics C (1) Honors section expanding on the material taught in ECON 120C. ECON 120C must be taken with ECON 120CH. GPA of 3.5 or better. Prerequisite: department stack required.

121. Applied Econometrics (4) Application of econometric methods to such areas as labor supply, human capital, and financial time series. Concurrent enrollment in ECON 120C is permitted. Prerequisite: ECON 120C.

125. Demographic Analysis and Forecasting (4) Interaction between economic forces and demographic changes are considered, as are demographic composition and analysis; fertility, mortality, and migration processes and trends. Course emphasizes the creation, evaluation, and interpretation of forecasts for states, regions and sub-county areas. ECON 178 is recommended. Prerequisite: ECON 120B or Math. 181A.

130. Public Policy (4) Course uses basic microeconomic tools to discuss a wide variety of public issues, including the war on drugs, global warming, natural resources, health care and safety regulation. Appropriate for majors who have not completed ECON 100A-B or ECON 170A-B and students from other departments. Prerequisites: ECON 1A-B or 2 or 100A.

131. Economics of the Environment (4) Environmental issues from an economic perspective. Relation of the environment to economic growth. Management of natural resources, such as forest and fresh water. Policies on air, water, and toxic waste pollution. International issues such as ozone depletion and sustainable development. Prerequisites: ECON 1A-B or 2 or 100A.

132. Energy Economics (4) Energy from an economic perspective. Fuel cycles for coal, hydro, nuclear, oil, and solar energy. Emphasis on efficiency, and control of pollution. Comparison of energy use across sectors and across countries. Determination of energy in the international economy. Prerequisites: ECON 1A-B or 2 or 100A; and Math. 10C or 20C.

133. International Environmental Agreements (4) Addresses environmental issues that transcend national boundaries, such as climate change, biodiversity loss, over-fishing. Examines why international agreements are required, their effectiveness, and whether new models improve their effectiveness. Explores whether more effective environmental treaties could be designed. Prerequisites: ECON 1A-B or 2 or 100A.

135. Urban Economics (4) (Cross-listed with USP 102.) Economic analysis of why and where cities develop, problems they cause, and public policies to deal with these problems. Determination of urban land rent/use, reasons for suburbanization. Transportation and congestion in cities, zoning, poverty and housing, urban local government. Credit not allowed for both ECON 135 and USP 102. Prerequisites: ECON 1A-B or 2 or 100A; and Math. 10A or 20A.

136. Human Resources (4) A practical yet theory-based study of the firm’s role in managing workers, including issues related to hiring, education and training, promotions, layoffs and buyouts, and the overarching role that worker compensation plays in all of these. Prerequisites: ECON 100A or 170B.

139. Labor Economics (4) Theoretical and empirical analysis of labor markets. Topics include: labor supply, labor demand, human capital investment, wage inequality, labor mobility, immigration, labor market discrimination, labor unions and unemployment. Prerequisites: ECON 1A-B or 2 or 100B.

140. Economics of Health Producers (4) Physician and nurse supply, medical malpractice, incentives to avoid patient injury, patents and pricing in the pharmaceutical industry, not-for-profit firms, and government regulation of healthcare producers. Renumbered from ECON 138A. Credit not allowed for both ECON 140 and ECON 138A. Prerequisites: ECON 1A-B or 2 or 100B.

141. Economics of Health Consumers (4) Demand for health care and health insurance, employer-provision of health insurance and impact on wages and job changes. Cross-country comparisons of health systems. ECON 100C is recommended. Renumbered from ECON 138B. Credit not allowed for both ECON 141 and ECON 138B. Prerequisite: ECON 100B or 170B.

142. Behavioral Economics (4) Course will study economic models in which standard economic rationality assumptions are combined with psychologically plausible assumptions on behavior. We consider whether the new models improve ability to predict and understand phenomena including altruism, trust and reciprocity, procrastination, and self-control. ECON 100C is recommended. Prerequisite: ECON 100B or 170B.

143. Experimental Economics (4) Explore use of experiments to study individual and interactive (strategic) decision-making. Topics may include choice over risky alternatives, altruism and reciprocity, allocation and information generation in competitive markets, cooperation and collusive bidding in auctions, strategy in coordination and “outguessing” games. ECON 100C is recommended. Prerequisite: ECON 100B or 170B.

144. Economics of Conservation (4) Examines conservation of biodiversity from an economic perspective. Topics include valuing biodiversity, defining successful conservation strategies, and evaluating the effectiveness of policies such as conservation payments, ecotourism, and privatization. Emphasis on forests, coral reefs, elephants, tigers, and sea turtles. Prerequisites: ECON 1A-B or 2 or 100A.

145. Economics of Ocean Resources (4) Economic issues associated with oceans. Economics of managing renewable resources in the oceans, with an emphasis on fisheries, economics of conservation and biodiversity preservation for living marine resources, with an emphasis on whales, dolphins, sea-turtles, and coral reefs. Prerequisites: ECON 1A-B or 2 or 100A.

146. Economic Stabilization (4) Theory of business cycles and techniques used by governments to stabilize an economy. Discussion of recent economic experience. Prerequisite: ECON 110B.

147. Economics of Education (4) Examination of issues in education using theoretical and empirical approaches from economics. Analysis of decisions people make in education and how they affect various market structures in education, including school choice and school finance programs. Prerequisites: ECON 1A-B or 2 or 100A; and ECON 120B or Math. 181A.

150. Public Economics: Taxation (4) Overview of the public sector in the U.S. and the scope of government intervention in economic life. Basic principles of taxation, tax incidence, and tax efficiency. Analysis of the U.S. tax system before and after the Tax Reform Act of 1986. ECON 100C is recommended. Prerequisite: ECON 100B or 170B.

151. Public Economics: Expenditures I (4) Overview of the public sector in the U.S. and the justifications for government intervention in economic life. Theory of some redistribution and social insurance. Applications to current policy in such areas as welfare, unemployment insurance, and Social Security. ECON 100C is recommended. Renumbered from ECON 153. Credit not allowed for both ECON 152 and ECON 153. Prerequisite: ECON 100B or 170B.

152. Public Economics: Expenditures II (4) Overview of the public sector in the U.S. and the justifications for government intervention in economic life. Theory of some redistribution and social insurance. Applications to current policy in such areas as welfare, unemployment insurance, and Social Security. ECON 100C is recommended. Renumbered from ECON 153. Credit not allowed for both ECON 152 and ECON 153. Prerequisite: ECON 100B or 170B.

155. Political Economics (4) An economic analysis of social decision making, including such topics as the desirable scope and size of the public sector, the efficiency of collective decision-making procedures, voting theory and collective vs. market resource allocation. Prerequisite: ECON 109.

158. Economic History of the United States I (4) (Cross-listed with HUS 140.) The United States as a raw materials producer, as an agrarian society, and as an industrial nation. Emphasis on the logic of the growth process, the social and political tensions accompanying expansion, and nineteenth- and early twentieth-century transformations of American capitalism. Renumbered from 158A. Credit not allowed for ECON 158 and any of the following: ECON 158A; HUS 140. Prerequisite: upper-division standing. ECON 159. Economic History of the United States II (4) (Cross-listed with HUS 141.) The United States as a modern industrial nation. Emphasis on the logic of the growth process, the social and political tensions accompanying expansion, and twentieth-century transformations of American capitalism. Renumbered from 158B. Credit not allowed for ECON 159 and any of the following: ECON 158B; HUS 141. Prerequisite: upper-division standing.

161. Global Integration of Latin America (4) Examines the integration of Latin American and Caribbean countries into the global economy. Topics include trade in agricultural and manufactured goods, regional trade agreements, international capital flows to Latin America, financial vulnerabilities, and policy responses. Prerequisites: ECON 1A-B or ECON 1 and 3.

162. Economics of Mexico (4) Survey of the Mexican economy. Topics such as economic growth, business cycles, saving-investment balance, financial markets, fiscal and monetary policy, labor markets, industrial structure, international trade, and agricultural policy. Prerequisites: ECON 1A-B or ECON 1 and 3.
163. Japanese Economy (4)
Survey of the Japanese economy. Economic growth, business cycles, saving-investment balance, financial markets, fiscal and monetary policy, labor markets, industrial structure, international trade, and agricultural policy. Prerequisites: ECON 1A-B or ECON 1 and 3.

165. Middle East Economies (4)
Internal economies of radical religious groups and terror-ist organizations. Ottoman economic history, economic development and migration, Islamic banking, economic development and peace in Palestine, and oil economics. Prerequisites: ECON 1A-B or ECON 1 and 3.

171. Decisions Under Uncertainty (4)
Decision-making when the consequences are uncertain. Decision trees, payoff tables, decision criteria, expected utility theory, risk aversion, sample information. Prerequisites: ECON 100A or 170A; and ECON 120A or ECE 109 or Math. 180A or Math. 183 or Math. 186.

172A. Operations Research A (4)
Linear and integer programming, elements of zero-sum, two-person game theory, and specific combinatorial algorithms. Credit not allowed for both ECON 172A and Math. 171A. Prerequisites: ECON 100A or 170A; and ECON 120A or ECE 109 or Math. 180A or Math. 183 or Math. 186; and Math. 20F.

172B. Operations Research B (4)
Non-linear programming, deterministic and stochastic dy-namic programming, game theory, search models, and inventory models. Credit not allowed for both ECON 172B and Math. 171B. Prerequisites: ECON 172A or Math. 171A.

173A. Financial Markets (4)
Financial market functions, institutions and instruments: stocks, bonds, cash instruments, derivatives (options), etc. Discussion of no-arbitrage arguments, as well as investors' portfolio decisions and the basic risk-return trade-off established in market equilibrium. Renumbered from ECON 175. Credit not allowed for both ECON 173A and ECON 175. Prerequisites: ECON 100A or 170A; and ECON 120B or Math. 181A.

173B. Corporate Finance (4)
Introduces the firm's capital budgeting decision, includ-ing methods for evaluation and ranking of investment projects, the firm's choice of capital structure, dividend policy decisions, corporate taxes, mergers and acquisitions. Renumbered from ECON 173. Credit not allowed for both ECON 173B and ECON 173. Prerequisites: ECON 4; and ECON 173A or 175.

174. Financial Risk Management (4)
Risk measures, hedging techniques, value of risk to firms, estimation of optimal hedge ratio, risk management with options and futures. ECON 171 is recommended. Prerequisite: ECON 173A or 175.

176. Marketing (4)
Role of marketing in the economy. Topics such as buyer behavior, marketing mix, promotion, product selection, pricing, and distribution. Concurrent enrollment in ECON 120C is permitted. Prerequisite: ECON 120C.

178. Economic and Business Forecasting (4)
Survey of theoretical and practical aspects of statistical and economic forecasting. Such topics as long-run and short-run horizons, leading indicator analysis, econometric models, technological and population forecasts, forecast evaluation, and the use of forecasts for public policy. Concurrent enrollment in ECON 120C is permitted. Prerequisite: ECON 120C.

180. Topics in Econometrics (4)
Selected topics in econometrics. May be repeated for credit, as topics vary. Prerequisites: ECON 120C, consent of department is required.

181. Topics in Finance (4)
Selected topics in finance. May be repeated for credit as topics vary. Prerequisites: ECON 173A or 175; consent of department is required.

182. Topics in Microeconomics (4)
Selected topics in microeconomics. ECON 100C is recommended. Prerequisite: ECON 100B or 170B, consent of department is required.

191A. Senior Essay Seminar A (4)
Senior essay seminar for students with superior records in department majors. Students must complete ECON 191A and ECON 191B in consecutive quarters. Prerequisite: department stamp required.

191B. Senior Essay Seminar B (4)
Senior essay seminar for students with superior records in department majors. Students must complete ECON 191A and ECON 191B in consecutive quarters. Prerequisite: department stamp required.

192. Senior Seminar in Economics (1)
The senior seminar is designed to allow senior under-graduates to meet with faculty members in a small group setting to explore an intellectual topic in economics at the upper-division level. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisite: department stamp and/or consent of instructor.

195. Introduction to Teaching Economics (4)
Introduction to teaching economics. Each student will be responsible for a class section in one of the lower-division economics courses. Limited to advanced economics majors, with at least a 3.5 GPA in upper-division economics work. (P/NP grades only.) Students may not earn more than eight units credit in 195 courses. Prerequisite: consent of the department.

198. Directed Group Study (2 or 4)
Directed study on a topic in or a group field not included in regular department curriculum by special arrangement with a faculty member. Prerequisites: upper-division standing and consent of instructor. May be repeated up to three times when course topics vary. (P/NP grades only.)

199. Independent Study (2 or 4)
Independent reading or research under the direction of and by special arrangement with a Department of Economics faculty member. (P/NP grades only.) Prerequisites: consent of instructor and departmental approval.

GRADUATE
200A-B-C. Microeconomics (4-4-4)
Background in mathematical techniques, static and intertem- poral consumer and producer theory, partial and general equilibrium, modern producer and consumer theory, risk, time, and interdependence, modern welfare economics.

201. Advanced Economic Theory (4)
An intensive examination of selected topics in economic theory. Course topic nonrepetitive in a three-year cycle. Prerequisites: ECON 207 and 213.

202A-B. Workshop in Economic Theory (0-4/0-4/0-4)
An examination of recent research in economic theory, including topics in general equilibrium, welfare economics, duality, and social choice; development of related research topics by both graduate students and faculty. Course may be repeated up to a number of times. (S/U grade only.) Prerequisites: ECON 207 or consent of instructor.

205. Mathematics for Economists (4)
Advanced calculus review for new graduate students.

206. Decisions (4)
Further topics in consumer and producer theory, inter- temporal optimization, and decision-making under uncer-tainty. (Previously numbered ECON 200D.) Prerequisites: ECON 200A-B-C or consent of instructor.

208. Games and Information (4)
Further topics in game theory and the economics of infor-mation. (Previously numbered ECON 200F.) Prerequisites: ECON 200A-B-C or consent of instructor.

210A-B-C. Macroeconomics (4-4-4)
Neoclassical and Keynesian theories of employment, income, interest rate, price level, and other aggregate variables; macroeconomic policy; balance of payments and exchange rates; conflicts between external and internal balance; disequilibrium theory; growth theory.

211. Advanced Macroeconomics (4-4-4)
Covers various topics in macroeconomics at the frontiers of research, including theory, computation, and empirical work. Emphasis depends on the instructor. Students will read the latest working papers and publications in the covered areas. Prerequisites: graduate standing and ECON 210A-B-C or consent of instructor.

212A-B. Workshop in Macroeconomics (0-4/0-4/0-4)
Examination of recent research in macroeconomics; develop-ment of own research by graduate students and faculty. Course may be repeated an unlimited number of times. (S/U grades only.) Prerequisites: ECON 210C.

213. Advanced Macroeconomic Theory (4)
This course develops purely theoretical foundations for macroeconomics. Topics include dynamic general equilibrium, asset market equilibrium, and economic growth and distribution. Prerequisites: ECON 210A-B-C or consent of instructor.

215. Macroeconomic Policy (4)
This course focuses on theoretical models and empirical ana-lysis aimed at understanding and directing macroeco-nomic policy, including monetary, fiscal, and structural policies. Prerequisites: ECON 210A-B-C or consent of instructor.

216. Computation for Macroeconomics (4)
This course covers advanced computation techniques that are widely used in macroeconomics, finance, and other fields. Students will learn a range of numerical methods for handling systems of equations, integration, optimization, and other problems. Prerequisites: ECON 210A-B-C or consent of instructor.

219. Readings in Macroeconomics (4)
This course will cover numerical analysis of dynamic mac-roeconomic models. Topics include numerical techniques, dynamic programming, linear systems, solution algo-rithms, and applications to dynamic general equilibrium. Prerequisite: graduate standing or consent of instructor.

220A-B-C-D-E-F. Econometrics (4-4-4-4-4-4)
The construction and application of stochastic models in economics. This includes both single and simultaneous equations models. Matrix algebra and basic statistics are covered. Also covered (in 220F) are empirical applications to micro and macroeconomics. These require the completion of an empirical project.

221. Advanced Econometrics (4)
Advanced Topics in Econometrics. Topics may vary from year to year, covering areas such as cross-section, time-series, panel, limited dependent variables, conditional quantile estimation, bootstrapping, and large- and small-sample distribution theory. Prerequisites: graduate standing and ECON 220A, 220B, 220C, 220D, and 220E or consent of instructor.

222A-B. Workshop in Econometrics (4-4-4-4)
Examination of recent econometric research; development of own research by students and faculty. Course may be repeated an unlimited number of times. (S/U grades only.)

224. Readings in Econometrics (1)
Examination of recent research in econometrics to facilitate the development of the thesis research by graduate students. (S/U grades only.)

225. Forecasting (4)
Topics include testing for rationality of forecasts, Mincer-Zarnowitz regressions, asymmetric loss functions, tests for equal (superior) predictive ability, multivariate forecasting. Prerequisites: graduate standing and ECON 220A, 220B, 220C, 220D, and 220E or consent of instructor.

226. Bayesian and Numerical Methods (4)
Topics include Bayesian inference and decision theory, loss functions, estimation of dynamic stochastic general
equilibrium models, nonlinear time series, state-space models, spatial-temporal models, and high-frequency data. Prerequisites: graduate standing and ECON 220A, 220B, 220C, 220D, and 220E or consent of instructor.

2.27. Nonparametric and Semi-Parametric Models (4) Topics include neural networks, kernels, series, splines, estimation of densities and spectra, smoothing parameters, kernel-based models, efficiency and adaptation, forecasting with nonlinear models, overfitting, computation, and interpretation. Prerequisites: graduate standing and ECON 220A, 220B, 220C, 220D, and 220E or consent of instructor.

2.28. Nonstandard Inference (4) Topics include weak instruments, unit roots, break tests, switching models, set-based inference, maximum likelihood estimation and meaning of misspecified models, consistency, asymptotic normality, consistent covariance matrix estimation, and tests of model misspecification. Prerequisites: graduate standing and ECON 220A, 220B, 220C, 220D, and 220E or consent of instructor.

2.29. Estimating Causal Effects (4) Topics include the definition, identification, and estimation of causal effects. Topics include White and Chalak’s settable systems, Granger causality, treatment effects, parametric and non-parametric estimation methods, extensions of IV methods, tests for structural identification. Prerequisites: graduate standing and ECON 220A, 220B, 220C, 220D, and 220E or instructor approval.

2.32. Public Economics: Redistribution and Social Insurance (4) Justifications for government involvement in redistribution and insurance markets. Optimal design of transfer and social insurance programs. Overview of program evaluation methods. Theoretical and empirical analyses of specific programs, such as welfare, unemployment insurance, and social security. Prerequisites: ECON 200A-B-C and ECON 220A-B-C.

2.33A-2-B C. Workshop in Applied Economics (0-4/0-4/0-4) Examination of recent research in applied economics; development of own research by graduate students and faculty. Course may be repeated an unlimited number of times. (S/U grades only.)

2.37. Political Economy: Microeconomic Perspectives (4) The course will examine recent research investigating the behavior of key actors in the political arena: voters, candidates, legislatures, interest groups, political parties, and the media, and then assessing the resulting political and economic outcomes. Prerequisite: graduate standing.

2.40. Economic Development (4) Theoretical and empirical issues in economic development. Prerequisite: consent of instructor.

2.41. Microeconomics of Development (4) Course introduces the household as a decision-making unit, and the contracts and institutions that emerge to compensate for imperfect markets. Emphasis is placed on data and identification strategies that can be used to measure the impact of policy interventions. Prerequisites: graduate standing or consent of instructor.

2.42. Macroeconomics of Development (4) Course begins with measurement of development and continues to history of division of world into industrial and agricultural countries. Roles of trade, finance, and investment in aggregate growth are then studied. Course concludes by covering income distribution and political economy. Prerequisite: graduate standing or consent of instructor.

2.45. International Trade (4) This course covers the determinants of the pattern and volume of trade in goods and services, the interaction of international trade with income distribution and economic growth, and commercial policy. The emphasis is on theory, with some empirical illustration and motivation. Prerequisite: consent of instructor.

2.46. International Macroeconomics (4) This course presents open-economy macroeconomics and international finance. Topics include theories of the exchange rate, foreign-exchange regimes, current account adjustments, and international portfolio investments. The course examines real and monetary explanations, and implications of international capital market integration. Prerequisite: consent of instructor.

2.47. Empirical Topics in International Economics (4) This course examines the empirical work in international trade and international macroeconomics. International trade topics include empirical tests of theories of international trade and international capital movements. International macroeconomic topics include empirical studies of exchange rate and relative price adjustments. Prerequisite: consent of instructor.

2.49A. International Development Workshop I (1–4) Presentation of recent research in international and development economics by faculty and graduate students, covering micro and macroeconomic aspect of both areas. Regular attendance is required. Prerequisite: graduate standing or consent of instructor.

2.49B. International Development Workshop II (1–4) Presentation of recent research in international and development economics by faculty and graduate students, covering micro and macroeconomic aspect of both areas. Regular attendance is required. Prerequisite: graduate standing or consent of instructor.

2.49C. International Development Workshop III (1–4) Presentation of recent research in international and development economics by faculty and graduate students, covering micro and macroeconomic aspect of both areas. Regular attendance is required. Prerequisite: graduate standing or consent of instructor.

2.50. Labor Economics (4) Theoretical and empirical issues in labor economics. (Previously numbered ECON 236A-B.) Prerequisite: consent of instructor.

2.60. Industrial Organization (4) Theoretical and empirical issues in industrial organization. (Previously numbered ECON 234.) Prerequisites: ECON 220F or consent of instructor.

2.61. Industrial Organization II (4) This course covers theory and empirical applications in the following areas of industrial organization: mergers, vertical integration, and innovation. Optional topics include network effects, technology adoption, and regulation. Prerequisite: ECON 220F or consent of instructor.

2.64. Experimental Economics (4) Design and interpretation of controlled experiments using human subjects. (Previously numbered ECON 207.) Prerequisite: consent of instructor.

2.66. Economics of Natural Resources (4) Theoretical and empirical issues in natural resource economics. (Previously numbered ECON 242.) Prerequisite: consent of instructor.

2.67. Topics in Environmental and Resource Economics (4) The course will cover any of a variety of topics in environmental and resource economics, including climate change, exhaustible and renewable resources, international environmental agreements, nonmarket valuation, energy economics, and water allocation. Prerequisite: graduate standing.

2.70. Finance—Core Asset Pricing (4) Theoretical and empirical issues in finance. (Previously numbered ECON 214A.)

2.80. Computation (2) Introduction to econometric computing. (S/U grades only.)

2.81. Special Topics in Economics (4) Lecture course at an advanced level on a special topic. May be repeated for credit if topic differs. (Previously numbered ECON 267.) Prerequisite: consent of instructor.

2.82. Introduction to Research and Literature Review (4) Introduction to research methods and the literature, including overviews of active research areas, formulation of research ideas, critical reviewing, and data sources. Students will write a critical review of a body of literature including a proposal for an original research paper. Prerequisite: graduate standing.

2.85. Pre-Candidacy Presentation (2) This course is a workshop in which students make formal presentations on the literature and on their own projects and receive input from other students and the instructor. Prerequisite: graduate standing.

2.86. Graduate Research Presentation Workshop (3) The aim of the course is to train students to present their research effectively to a broad audience. Students are required to prepare a formal presentation, and then to provide feedback on the presentations made by other students. Depending on student demand, meetings may be divided into multiple sections, based on field interests. Prerequisites: graduate standing, ECON 285.

2.89. Advanced Field Advising (4) Controlled reading and discussion with advisor; literature survey. May be repeated for credit. (S/U grades only.)

2.96. Original Research Paper (1–12) In this course, students are guided toward the formulation of an original research idea and the writing of an original paper. Students receive support and input through group discussion and also through interaction with the instructor. Prerequisite: graduate standing.

2.97. Independent Study (1–5) (S/U grades only.)

2.99. Research in Economics for Dissertation (1–9) (S/U grades only.)

500A-B-C. Teaching Methods in Economics (4-4-4) The study and development of effective pedagogical materials and techniques in economics. Students who hold appointments as teaching assistants must enroll in this course, but it is open to other students as well. (S/U grades only.)
The program stimulates the intellectual development of the participants, broadening their general education, and giving a new depth to their particular academic interests. Many gain fluency in a language other than their own, and all grow in their ability to engage in independent study. Perhaps most valuable of all are increased self-understanding, clarified life purpose, and a broadening and deepening of personal values.

The University of California also hosts reciprocity students from more than one hundred institutions in approximately thirty countries. Reciprocal exchange students attend the University of California for up to one academic year on a no-fee-exchange, nondegree basis. Students on the Education Abroad Program earn degrees at their home university though they are enrolled at a university abroad. Undergraduate and graduate reciprocity students are nominated by partner institutions under the provisions of specific contractual agreements.

The Education Abroad Program places students at the finest universities abroad. In most cases students take courses side by side with local students in a wide range of academic fields. In some programs EAP students pursue language study and take special courses designed for foreign students. In others, they pursue specialized studies in their major, take courses to add breadth to their general education, concentrate on language or area studies, and conduct research.

Each student is concurrently enrolled on the home campus of the University of California and at the host university. Full academic credit is received for courses satisfactorily completed. With advance planning and wise choice of courses abroad, most students can make normal progress toward completion of major, minor, and/or general-education requirements for their UCSD degree.

ACADEMIC PLANNING AND ADVISING

In order to make normal progress toward graduation, students should counsel in advance with departmental advisors and an academic advisor in their college provost’s office in order to ascertain how participation will affect their academic program. Descriptions of individual courses currently approved for UC credit may be found on the EAP Web site (http://eap.ucop.edu) for the most up-to-date information about all aspects of the program. Students may use the EAP Program Search (https://myeap.ucop.edu/galileo/service/programsearch/ProgramSearch.aspx) to search for programs by country, specific areas of study, language of instruction, etc. EAP participants are eligible for financial aid and many scholarships.

The Education Abroad Program offers undergraduate (sophomores, juniors, and seniors) and graduate students opportunities to integrate into the academic and social life of select foreign universities while continuing to work in major fields of study or otherwise fulfilling UC requirements. EAP provides students access to distinguished academic programs that complement those of the UC campuses and where students can make normal progress toward their degrees at a cost as close as possible to that of education on a UC campus. EAP helps students acquire the knowledge, sensibilities, and skills necessary to function confidently and compete successfully in our global environment.

The regents endeavor to bring the program within the reach of all students, regardless of their financial resources. The cost of studying abroad is often comparable to the cost of studying on a UC campus. Additional program costs may include a program fee, round-trip transportation, on-site orientation, and personal expenses beyond what normally would be spent at home. Programs in some countries actually cost less than a comparable period of study at a UC campus.

Many forms of financial assistance are available to EAP students. Those already receiving UC financial aid maintain their eligibility for grants, loans, and scholarships while studying on EAP. Financial aid is based on the cost of studying at each EAP location and on individual need. Students who might not normally be eligible for financial aid may qualify for the period they are on EAP. In addition to UC financial aid, scholarships are also available from EAP, the Friends of the International Center, various campus offices and departments, and outside organizations. Annually, UCSD students access about $500,000 in special scholarships available only for study abroad. Information about these scholarships is available in the Programs Abroad Office and on the UCSD Financial Aid Web site (http://fao.ucsd.edu). Prospective participants who require financial assistance should counsel early with the Student Financial Services Office.

APPLICATIONS

Students receive access to Education Abroad Program online application instructions following group and individual advising at the Programs Abroad Office. Information on deadlines and related matters such as course offerings, selection, schedules of departures, and payment of fees may be obtained from the Programs Abroad Office, and online at http://eap.ucop.edu and http://programs-abroad.ucsd.edu.

It is not too early to begin planning for an experience abroad prior to or during one’s freshman year. Students are then able to take the language classes needed for certain programs, as well as plan which degree requirements to fulfill at UCSD and which to take abroad. Early planning also allows students to apply for the many programs now open to sophomores. General group information sessions about the programs are held during Welcome Week and in October and January. First Steps workshops are held throughout the year.

SELECTION

Undergraduate selection is generally open to students with the following qualifications: 2.85/3.0 cumulative grade-point average at the time of application, depending on the program (some programs are available to students with at least a 2.0 GPA); at least sophomore or junior standing by time of departure, depending on the specific program; support of the UCSD EAP Selection Committee; and completion of university-level language courses.
when required (one, two, or three years, depending on the host institution) with a 3.0 grade-point average in language. Exceptions to these requirements may be made on a case-by-case basis, in consultation with the EAP advisor.

In addition to academic criteria for selection, the faculty committee looks for indications of the student's seriousness of purpose, maturity, and capacity to adapt to the experience of study abroad. As part of the planning process, students are required to consult with their college academic and department advisors.

GRADUATE STUDENTS

Graduate students can be accommodated at most EAP-affiliated host universities. Graduate students may take courses, conduct research, and participate in short-term language programs for a semester or year. Students must meet EAP minimum requirements, including language prerequisites; have completed at least one year of graduate work; and have the support of their academic department and graduate dean.

TRANSFER STUDENTS

Transfer students from other colleges and universities are eligible for EAP. Applications may be submitted prior to their first quarter at UCSD if appropriate for the specific program. Please contact the Programs Abroad Office for further information.

SAFETY, STUDENT CONDUCT, AND PARENTAL APPROVAL

EAP considers student health and safety while abroad one of its top priorities. All participants in EAP are covered by a mandatory health insurance policy while abroad. While no one can guarantee student security either in the U.S. or abroad, the program makes every reasonable effort to assure a safe environment in its programs abroad, and to counsel students on potential risks and necessary precautions. In return, participants have a responsibility to pay careful attention to safety and health information provided in predeparture materials and at orientations in the U.S. and abroad.

It is anticipated that the students selected for the Education Abroad Program will be of high caliber, committed to profiting from both the intellectual and social aspects of the experience. Since they will be guests in another country and at another university, their conduct will reflect on both the University of California and the United States.

Participation in the program by students who are minors must be approved by their parents or guardians. In approving such participation, parents and guardians should be aware that a greater degree of personal freedom is afforded to students in the foreign university and that the University of California cannot take responsibility for closely supervising the activities of individual students. The directors and staff of the centers will be available to students with problems and will maintain contact with the student group as a whole. The university provides for comprehensive medical and hospitalization coverage for all participants.

RELATED PROGRAMS

For other study abroad opportunities, see "Opportunities Abroad Program (OAP)" and "UC San Diego Global Seminars (GSS)."
Education Studies

DIRECTOR
Amanda Datnow

ASSOCIATE DIRECTOR
Tom L. Humphries

COORDINATOR OF TEACHER EDUCATION
Cheryl Forbes

PROFESSORS
Mark I. Appelbaum, Ph.D., Psychology
Julian Betts, Ph.D., Economics
Linda Brodkey, Ph.D., Literature
Janet Chrispeels, Ed.D., Education Studies
Michael Cole, Ph.D., Communications
Amanda Datnow, Ph.D., Director, Education Studies Program
Grant Goodall, Ph.D., Linguistics
Guershon Harel, Ph.D., Mathematics
James D. Hollar, Ph.D., Cognitive Science
James Levin, Ph.D., Education Studies
Hugh B. Mehan, Ph.D., Sociology
Carol A. Padden, Ph.D., Communication
Sally Ride, Ph.D., Emerita, Physics
Stefan A. Tanaka, Ph.D., History
Kathryn A. Woolard, Ph.D., Anthropology
Ana Celia Zentella, Ph.D., Emerita, Ethnic Studies

ASSOCIATE PROFESSORS
Gerald J. Balzano, Ph.D., Music
Amy Binder, Ph.D., Sociology
Gedeon O. Deak, Ph.D., Cognitive Science
Brian Goldfarb, Ph.D., Communication
Tom L. Humphries, Ph.D., Education Studies and Communication
Claire L. Ramsey, Ph.D., Education Studies
Olga V. Vasquez, Ph.D., Communication

ASSISTANT PROFESSORS
Alan Daly, Ph.D., Education Studies
Nora E. Gordon, Ph.D., Economics
Alison Wishart-Guerra, Ph.D., Education Studies

SENIOR LECTURERS WITH SECURITY OF EMPLOYMENT
Paula F. Levin, Ph.D., Education Studies, Graduate advisor
Barbara Sawrey, Ph.D., Chemistry and Biochemistry, AVC Undergraduate Education
Randall Souviney, Ph.D., Emeritus
Gabrielle Weinhausen, Ph.D., Biological Sciences—Molecular Biology, Associate Dean, Education (Biology)

LECTURERS WITH SECURITY OF EMPLOYMENT
Chris Halter, M.A., Ed.D.
Carolyn Huie-Hofstetter, Ph.D.

LECTURERS
Bobbie Allen, Ph.D.
Bernard (Rusty) Bresser, M.A.
Elizabeth Butler, M.A., Secondary Math/ Educational Technology
Luz Chung, M.A., Ed.D.
Cheryl Forbes, M.A., Ed.D., Coordinator of Teacher Education
Caren Holtzman, M.A.
Rachel Millstone, M.A.
Susan Scharton, M.A., Ed.D.
Marcia Sewall, M.A., Ed.D.
Patrick Velasquez, Ph.D.

DISTINGUISHED TEACHER IN RESIDENCE
Kathy Melanese, M.A.

PART-TIME LECTURER
Pamela Long, Lecturer/Striving Readers/Artsbridge

OFFICE: Pepper Canyon Hall, Third Floor
University Center
http://eds.ucsd.edu

Education Studies (EDS) at UC San Diego offers the Master of Education Degree/California Preliminary Multiple Subject Teaching Credential for elementary school teachers; the Master of Education Degree/California Preliminary Single Subject Teaching Credential in English, mathematics, biology, chemistry, geosciences, and physics for secondary school teachers; the Master of Arts in Teaching and Learning with an emphasis in curriculum design; the Master of Arts in Deaf Education; the Doctor of Education (Ed.D.) in Teaching and Learning, a joint Doctor of Education with Cal State University, San Marcos in Educational Leadership; and three undergraduate minors in Education Studies.

A primary focus of Education Studies is to provide equity of educational access for all students in public schools. We require candidates to master the subject matter that they will teach and develop a repertoire of effective teaching practices that utilize their students’ cultural knowledge and language diversity as educational resources.

UNDERGRADUATE PROGRAMS

MINORS IN EDUCATION STUDIES

The Education Studies program offers three specific minor programs. These minors are designed for students considering K–12 teaching as a career; those interested in teaching at the college level; and students who are interested in becoming better, more reflective learners. The minor in Education Studies provides course work and field experience for students interested in elementary teaching, or for English, mathematics, science, or engineering students who decide to pursue teaching during their junior or senior years. The Mathematics and Science Education minors explore teaching and learning practices specific to these disciplines along with the components of the knowledge base necessary to teach K–12 science and mathematics successfully. All courses for these minors must be taken for a letter grade except for EDS 39 and EDS 139. Depending on students’ majors and career plans, they may select from the following minor options:

- Minor in Education Studies
- Minor in Mathematics Education
- Minor in Science Education

Minor in Education Studies

Students must complete a minimum of one practicum course in Teaching and Learning (EDS 130, 134, 136, 138, 128AB, or 129ABC) and a minimum of one course from two of the remaining three categories of Learning Environments (EDS 114, 115, 118, 119), Language and Culture (EDS 117 or 125), or School and Society (EDS 126 or 125).

Students planning to apply for the UC San Diego graduate credential program must take specific courses in all four categories above (except for the minor in Mathematics Education, and the minor in Science Education). These two minors have their own specific courses, described below. Please contact EDS for specific minor courses that meet the prerequisite requirements for admission to the graduate credential program. The EDS minor requires a minimum of twelve units in EDS courses. A maximum of eight units of practicum (EDS 139) may be applied to this minor (total of twenty-eight quarter units).

Minor in Mathematics Education

- MATH 95. Introduction to Teaching Mathematics
- EDS 39. Practicum in Science and Mathematics Teaching/Learning
- EDS 117. Language, Culture and Education
- MATH 121A. Foundations of Teaching and Learning Mathematics I
- MATH 121B. Foundations of Teaching and Learning Mathematics II
- EDS 129A. Introduction to Teaching and Learning
- EDS 139. Practicum in Teaching/Learning
- EDS 129B. Introduction to Teaching and Learning
- EDS 139. Practicum in Teaching/Learning
- EDS 129C. Introduction to Teaching and Learning
- EDS 139. Practicum in Teaching/Learning (total of thirty-four quarter units)

Minor in Science Education

- CHEM 96. Introduction to Teaching Science
- EDS 39. Practicum in Science and Mathematics Teaching/Learning
- EDS 117. Language, Culture and Education
- CHEM 187. Teaching and Learning Science
- CHEM 188. Capstone Seminar in Science
- EDS 129A. Introduction to Teaching and Learning
- EDS 139. Practicum in Teaching/Learning
Students interested in pursuing a graduate teaching credential program at UCSD should contact EDS for the specific prerequisite requirements for admission to the UCSD graduate credential program.

GRADUATE PROGRAMS

MASTER OF EDUCATION (M.ED.)/CREDENTIAL PROGRAM

The M.Ed. articulates with the Preliminary Multiple Subject and Preliminary Single Subject credential programs. It is a rigorous fifteen- to twenty-four-month professional degree program designed specifically to prepare preservice elementary and secondary teachers earning their initial teaching credential at UC San Diego. This course of study allows candidates to earn a Preliminary California Teaching Credential and the M.Ed. degree from UCSD prior to entering the teaching profession. The program seeks applicants with strong subject matter preparation and clear career intentions.

M.Ed./Credential Admissions Process

The application deadline for the M.Ed./Credential programs is February 1. All applicants must apply online at http://eds.ucsd.edu.

Applicants interested in financial aid should complete the FAFSA application by March 2, and may contact Graduate Student Financial Services at (858) 534-3807.

Each applicant is carefully reviewed for admission by a committee. The selection committee ensures that applicants have completed the prerequisite course requirements for admission and evaluates each applicant on the basis of the following criteria:

1. A strong interest in multicultural approaches to education; a strong desire to improve the quality of American education; a strong desire to develop self-activated learners;

2. Experience working with children in educational environments, especially with students from diverse backgrounds;

3. Participation in public service activities;

4. Academic excellence in their undergraduate and graduate studies.

More information about the entire application process is available on the EDS Web site at http://eds.ucsd.edu.

M.ED./PRELIMINARY MULTIPLE SUBJECT (ELEMENTARY) CREDENTIAL

Students working toward any major at UCSD may complete the prerequisite admission requirements and educational foundations courses while they are undergraduates for the M.Ed./Multiple Subject Credential Program.

Candidates who have already received a bachelor of arts or science from any University of California campus, or an equivalent degree from another institution, must apply for graduate status as an M.Ed. Preliminary Multiple Subject Credential student.

Students applying for admission to the UCSD graduate credential program must contact EDS for information on the required prerequisite course requirements.

Examples of majors from other universities not eligible for application to the M.Ed./Multiple Subject Credential program include business, education, liberal studies, marketing, and recreation.

Prerequisite Requirements for the Multiple Subject Preliminary Credential

1. A 3.0 cumulative GPA is required from the institution awarding the bachelor's degree.

2. Subject Matter Competence: This requirement is satisfied by providing evidence of satisfactory completion of the California Subject Examinations for Teachers (CSET).

3. The California Basic Educational Skills Test (CBEST): Evidence of passing the CBEST (or CSET Writing Skills exam) satisfies this requirement. Satisfactory scores on the CSU EAP Placement Tests or the ELM and EPT Placement Tests will also satisfy this requirement.

4. U.S. Constitution requirement: This requirement is satisfied by either

 - Completion of a course covering the provisions and principles of the U.S. Constitution, or
 - Passage of an appropriate exam offered through the County Office of Education (Contact the EDS office for information.)

5. Sensitivity to second language learning: Applicants must demonstrate, through course work or equivalent experience, an informed sensitivity to the challenges of second language learning and acquisition. This can be fulfilled in one of three ways:

 - Completion of nine quarter units of college course work in a single language that is not the applicant's native language, or
 - Completion of three years of secondary school course work in a language other than English. The course work must be taken in grades 7 through 12, with at least a B average, or
 - Demonstration of an "equivalent experience" in a second language situation. Applicants who wish to satisfy this requirement by one of the three options listed below must submit an essay that describes the length and circumstances of the experience, including at least three specific examples of situations that helped you gain personal knowledge and appreciation of issues surrounding second language acquisition in a diverse cultural setting. The three equivalent experience options are

 - The applicant has lived for prolonged period of time in a country where the language spoken was not native to the applicant, and where the applicant was continuously required to speak that second language (e.g., Peace Corps).
 - The applicant has had an extended experience immersed in a multilingual community in his/her native country.
 - The applicant was raised in a multilingual community.

6. Satisfactory scores on the Graduate Record Exam (GRE) General Test

7. Satisfactory completion of the education foundations prerequisites for the Multiple Subject Credential (contact EDS for the current prerequisite requirements).

8. Prerequisites for Bilingual Authorization in Spanish or American Sign Language options: These authorizations are designed for students who have sufficient bilingual skills to effectively teach in English and either Spanish or American Sign Language. Students interested in applying for admission to the Bilingual Authorization program must demonstrate

 - Spanish or American Sign Language fluency: Spanish: Completion of two Spanish literature courses (Spanish/English Bilingual Authorization only), at least one of which must be upper-division in either Latin American or Chicano literature, and completion of the EDS Spanish Language Assessment, with an FSI score of at least 3 (scores of 3– will be accepted, but students must receive a score of 3 prior to being recommended for the Bilingual Authorization). EDS coordinates these exams; please contact the program in January prior to your application to the credential program.

 - American Sign Language: Completion of the EDS American Sign Language assessment with a rating of "acceptable" by a panel of assessors

 - Cultural knowledge:

 - Spanish: One history course and one culture course covering Chicano or Latin American-related topics

 - American Sign Language: At least one course on the language or culture of deaf people in the U.S. or intensive experience living among deaf people in the U.S.

 - History, Politics, and Theory of Bilingual Education: EDS 125 or ETHN 140.

9. A desire to teach in a bilingual setting.

Multiple Subject Professional Preparation

The professional preparation component of the Preliminary Multiple Subject credential consists of twelve courses and fifteen weeks of student teaching in elementary school classrooms.

A typical student schedule for the Multiple Subject Professional Preparation Program is shown in Table 1:

Table 1: Schedule of Professional Preparation Activities for the M.Ed./Preliminary Multiple Subject Credential
Table 1: The Professional Preparation Program for the M.Ed./Preliminary Single Subject Credential

<table>
<thead>
<tr>
<th>SUMMER</th>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
<th>SUMMER</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDS 373 (4) or (374 or 375)</td>
<td>EDS 370A (8)</td>
<td>EDS 370B (8)</td>
<td>EDS 370B (8)</td>
<td>EDS 204 (4)</td>
</tr>
<tr>
<td>EDS 376 (4)</td>
<td>EDS 351 (4)</td>
<td>EDS 380 (8)</td>
<td>EDS 381 (4)</td>
<td>EDS 382 (4)</td>
</tr>
<tr>
<td>EDS 201 (4)</td>
<td>EDS 205A (2)</td>
<td>EDS 205B (4)</td>
<td>EDS 205B (4)</td>
<td>EDS 205B (4)</td>
</tr>
<tr>
<td>EDS 203 (4)</td>
<td>EDS 205A (2)</td>
<td>EDS 205B (4)</td>
<td>EDS 205B (4)</td>
<td>EDS 205B (4)</td>
</tr>
<tr>
<td>EDS 250 (4)</td>
<td>EDS 205A (2)</td>
<td>EDS 205B (4)</td>
<td>EDS 205B (4)</td>
<td>EDS 205B (4)</td>
</tr>
</tbody>
</table>

For Bilingual Authorization Candidates:

- EDS 352A (2) EDS 352B (2)

M.ED./PRELIMINARY SINGLE SUBJECT (SECONDARY) CREDENTIAL

UCSD students working towards a literature, linguistics, mathematics, engineering or any science major may complete the prerequisite single subject credential requirements if they take specified courses for one of the EDS Minors while they are undergraduates. Contact EDS for the prerequisite requirements for admission to the UCSD graduate credential program.

Prerequisite Requirements for the Single Subject Preliminary Credential

1. Undergraduates working toward selected majors at UCSD may complete the foundation requirements for the Preliminary Single Subject Credential prior to completing their degree. Students must be working toward a major in the discipline corresponding to that of the desired credential:
 - English: any UCSD literature or linguistics major, or equivalent
 - Mathematics: any UCSD mathematics, engineering, or computer science major, or equivalent,
 - Biology, chemistry, geosciences, or physics: any UCSD natural science major, or equivalent.
2. Candidates, who have already received a literature, linguistics, mathematics, or science Bachelor of Arts or Science degree from any University of California campus, or an equivalent degree from another institution, must apply for graduate status as an M.Ed./Preliminary Single Subject credential student.
3. A 3.0 cumulative GPA is required from the institution awarding the bachelor's degree.
4. Subject Matter Competence: This requirement is satisfied by either
 - Providing evidence of satisfactory completion of the appropriate sections of the California Subject Examinations for Teachers (CSET) or
 - Having completed the entire subject matter preparation program (for Math SS credential candidates only).
5. The California Basic Educational Skills Test (CBEST): Evidence of passing the CBEST satisfies this requirement. Satisfactory scores on the CSU EAP Placement Tests or the ELM and EPT Placement Tests will also satisfy this requirement.
6. U.S. Constitution requirement
 - Completion of a course covering the provisions and principles of the U.S. Constitution or
 - Passage of an appropriate exam offered through the County Office of Education (Contact the EDS office for information.)
7. Sensitivity to second language learning. Applicants must demonstrate, through course work or equivalent experience, an informed sensitivity to the challenges of second language learning and acquisition. This can be fulfilled in one of three ways:
 - Completion of nine quarter units of college course work in a language that is not the applicant's native language or
 - Completion of three years of secondary school course work in a language other than English. The course work must be taken in grades 7 through 12, with at least a B average or
 - Demonstration of an "equivalent experience" in a second language situation. Applicants who wish to satisfy this requirement by one of the three options listed below must submit an essay that describes the length and circumstances of the experience, including at least three specific examples of situations that helped you gain personal knowledge and appreciation of issues surrounding second language acquisition in a diverse cultural setting. The three equivalent experience options are:
 - The applicant has lived for a prolonged period of time in a country where the language spoken was not native to the applicant, and where the applicant was continuously required to speak that second language (e.g., Peace Corps).
 - The applicant has had an extended experience immersed in a multilingual community in his/her native country.
 - The applicant was raised in a multilingual community.
8. Satisfactory scores on the Graduate Record Exam (GRE) General Test.
9. Satisfactory completion of the education foundations prerequisites for the Single Subject Credential (contact EDS for the current prerequisite requirements).
10. Prerequisites for for Bilingual Authorization in Spanish: This authorization is designed for students who have sufficient bilingual skills to effectively teach in English and Spanish. Students interested in applying for admission to the Bilingual Authorization program must demonstrate
 - Spanish Language Fluency: Completion of two Spanish literature courses, at least one of which must be upper-division in either Latin American or Chicano literature, and
 - Completion of the EDS Spanish Assessment, with an FSI score of at least 3 (Scores of 3– will be accepted, but student must receive a score of 3 prior to being recommended for the Bilingual Authorization.) EDS coordinates these exams; please contact the program in January prior to application to the credential program.
 - Cultural Knowledge: One history course and one culture course covering Chicano or Latin American-related topics.
 - History, Politics, and Theory of Bilingual Education: EDS 125 or ETHN 140.
11. A desire to teach in a bilingual setting.

Note: A grade of B– or higher is required for all Bilingual Authorization courses.

Single Subject Professional Preparation

Students engage in an intensive program of professional preparation, including five teaching methods courses in the summer prior to the internship, and seminars offered throughout the academic year that address classroom management techniques and strategies for dealing with individual teaching situations.

Students admitted to the M.Ed./Preliminary Single Subject Credential Program are eligible to be interviewed in the summer for a paid internship in a local middle or high school for the following school year. Availability of internship positions is not guaranteed, though EDS attempts to facilitate internship positions for all Single Subject students. Students who do not receive an internship position will do their practicum as student teachers instead. Interns are responsible for teaching classes in their subject area under the guidance of an EDS supervisor and an on-site support-provider. Interns are typically hired as part-time teachers and receive a salary from the school district commensurate with the number of sections taught.

A typical student schedule for the Preliminary Single Subject Professional Preparation Program is shown in Table 2.

Table 2: The Professional Preparation Program for the M.Ed./Preliminary Single Subject Credential

<table>
<thead>
<tr>
<th>SUMMER</th>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
<th>SUMMER</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDS 373 (4)</td>
<td>EDS 370A (8)</td>
<td>EDS 370B (8)</td>
<td>EDS 370B (8)</td>
<td>EDS 204 (4)</td>
</tr>
<tr>
<td>EDS 376 (4)</td>
<td>EDS 351 (4)</td>
<td>EDS 380 (8)</td>
<td>EDS 381 (4)</td>
<td>EDS 382 (4)</td>
</tr>
<tr>
<td>EDS 201 (4)</td>
<td>EDS 205A (2)</td>
<td>EDS 205B (4)</td>
<td>EDS 205B (4)</td>
<td>EDS 205B (4)</td>
</tr>
<tr>
<td>EDS 203 (4)</td>
<td>EDS 205A (2)</td>
<td>EDS 205B (4)</td>
<td>EDS 205B (4)</td>
<td>EDS 205B (4)</td>
</tr>
<tr>
<td>EDS 250 (4)</td>
<td>EDS 205A (2)</td>
<td>EDS 205B (4)</td>
<td>EDS 205B (4)</td>
<td>EDS 205B (4)</td>
</tr>
</tbody>
</table>

For Bilingual Authorization Candidates:

- EDS 352A (2) EDS 352B (2)

THE MASTER OF ARTS IN TEACHING AND LEARNING: CURRICULUM DESIGN

The M.A. in Teaching and Learning (Curriculum Design) offers professional educators in elementary and secondary schools an extensive overview of principles of educational research and curriculum design. A key feature of the M.A. program is the integration of research and practice. M.A. students remain
full-time teachers for the duration of the program. They design, implement, and evaluate curricular innovations in their own classrooms. The culmination of the M.A. work is a thesis describing the rationale, development, and effectiveness of these innovations.

Examples of M.A. Research Projects

The topics of the M.A. theses in past years are varied, and have included: multimedia approaches to secondary biology and chemistry instruction; writing revision among emergent writers; building partnerships between families and schools; activities which link home and school experiences in the content areas of reading and writing, mathematics, science, and social studies; improved integration of curriculum and assessment; motivation and art; using technology for mathematics and geography teaching; and embedding ESL in native-language instruction.

The M.A. Course of Study (Teaching and Learning: Emphasis in Curriculum Design)

The M.A. program requirements consist of forty quarter units of course work, including the master’s thesis. Courses are usually offered for four quarter units of credit, and are typically offered one night per week, from 5:00–8:00 p.m. Core course work comprises twenty-eight units, with the remaining twelve units consisting of elective course work. A typical program consists of

Core M.A. Course Work

First Summer (mid-June to late August)
- EDS 231. Advanced Instructional Practices or EDS 232. Special Topics in Education (offered alternating summers)
- EDS 229. Introduction to Educational Resources

Fall, Winter, and Spring
- EDS 230A-B-C. Research in Curriculum Design
- EDS 233A-B. Topics in Education Research and Design
- EDS 290. Research Practicum

Second Summer (mid-June to late August)
- EDS 231. Advanced Instructional Practices or EDS 232. Special Topics in Education (offered alternating summers)
- EDS 295. M.A. Thesis
- Completion of M.A. thesis writing

Admission Requirements

Admission to the M.A. program in teaching and learning at UCSD is competitive. Factors considered by the selection committee include
- Teaching experience
- Professional development activities
- Experience and interest in curriculum design
- Academic record

Admission to graduate standing at UCSD requires a minimum cumulative GPA of 3.0 for any prior graduate work, and for the bachelor's degree. Official scores from the GRE verbal, analytic, and quantitative sections are also required. The application deadline is February 1.

THE MASTER OF ARTS IN TEACHING AND LEARNING: BILINGUAL EDUCATION (ASL-ENGLISH)

Education Studies (EDS) at UCSD offers a master of arts in Teaching and Learning: Bilingual Education (ASL-English) and the California Deaf and Hard-of-Hearing Specialist Teaching Credential and the Preliminary Multiple Subject Teaching Credential with Bilingual Authorization for elementary school teachers. This program of study includes extensive practicum experience combined with the latest research and innovation in bilingual education and deaf education. Students in the program participate in research and development on the leading edge of bilingual, multicultural education for deaf and hard-of-hearing children.

In keeping with its aim of training teachers who will be able to meet the needs of deaf and hard-of-hearing children from various language and cultural backgrounds, EDS requires fluency in ASL for acceptance into the program. EDS's teacher training program is designed to prepare teachers to work in various types of school settings from residential school classrooms to local public school classrooms for deaf and hard-of-hearing children. EDS recognizes that deaf and hard-of-hearing children need teachers who are bilingual and knowledgeable about the role of culture in human development.

Prerequisite Course Requirements

Prior to admittance to the credential and master's study, foundation students (or UCSD undergraduates pursuing the minor in education studies) complete the following five courses offered during the first summer. UCSD students can complete these prerequisites as part of the Minor in Education Studies. Contact EDS for more information on the graduate credential prerequisite requirements:
- EDS 128B. Introduction to Teaching and Learning (Elementary)
- EDS 115. Cognitive Development and Education
- EDS 117. Language, Culture and Education
- EDS 125. History, Politics, and Theory of Bilingual Education

Program of Study for the Deaf and Hard-of-Hearing Specialist Credential, the Preliminary Multiple Subject Teaching Credential with Bilingual Authorization, and the Master of Arts in Teaching and Learning

After completion of the prerequisite component, students complete a program of study resulting in the California Deaf and Hard-of-Hearing Specialist Credential at the elementary level. Students also qualify for the Preliminary Multiple Subject Credential with Bilingual Authorization.

This program of study consists of courses in bilingual education theory, methods, and applications to deaf education in addition to intensive classroom practice. During the second year of study the focus is on designing, implementing and evaluating a research-based project. This integration of research and practice is central to the goal of the M.A. program to develop teachers as researchers.

A typical program of study includes the following:

Year 1

Fall
- COHI 124. Voice. Deaf People in America
- EDS 342A. ASL-English Bilingual Education Practices
- EDS 361A. Innovative Instructional Practices
- EDS 390. Research Practicum (four units)
- EDS 203. Technology, Teaching, and Learning
- EDS 201. Introduction to Resources for Teaching and Learning, and
- EDS 250. Equitable Educational Research and Practice

Winter
- EDS 342B. ASL-English Bilingual Education Practices
- EDS 361B. Innovative Instructional Practices
- EDS 369A. Practicum in Student Teaching

Spring
- EDS 342C. ASL-English Bilingual Education Practices
- EDS 361C. Innovative Instructional Practices
- EDS 369B. Practicum in Student Teaching, and
- EDS 382. Inclusive Educational Practices

Year 2

Fall
- EDS 351. Teaching the English Language Learner
- EDS 240A. Research in ASL-English Bilingual Education, and
- EDS 241. Advanced Topics in Deaf Education

Winter
- EDS 233A. Topics in Education Research and Design
- EDS 240B. Research in ASL-English Bilingual Education, and
- EDS 290. Research Practicum

Spring
- EDS 349. Education Specialist Student Teaching
Admission Requirements

Candidates will apply for graduate admission to the foundation component of this program. Upon satisfactory completion of the prerequisite component, students will advance to the professional/master’s component, which requires two years of study. The following are the minimum eligibility requirements for admission to the graduate prerequisite component. Applications are available beginning in January. The application deadline is March 1.

1. A bachelor’s degree with a 3.0 cumulative GPA
2. Official Graduate Record Exam (GRE) scores
3. Subject matter competence (CSET)
4. The California Basic Educational Skills Test (CBEST). Evidence of passing the CBEST (or CSET Writing Skills exam) satisfies this requirement. Satisfactory scores on the CSU EAP Placement Tests or the ELM and EPT Placement Tests will also satisfy this requirement.
5. Completion of a course including the provisions and principles of the U.S. Constitution, or passage of the appropriate exam
6. Official Graduate Application and fee
7. Statement of Purpose and reference letters
8. Fluency in American Sign Language
9. Knowledge and experience of the social and cultural life of deaf people
10. A desire to teach deaf children of varying language and cultural backgrounds
11. Admission to graduate standing at UCSD requires a minimum cumulative GPA of 3.0 for any prior graduate work, and for the bachelor’s degree. Official scores from the GRE verbal, analytic, and quantitative sections are also required.

DOCTOR OF EDUCATION (ED.D.) IN TEACHING AND LEARNING

Education Studies at UCSD offers a doctor of education (Ed.D.) degree in Teaching and Learning. This cohort-based four-year doctorate is designed to enable professional educators to participate in a research-based program while working in an educational setting. The Ed.D. course of study provides a research perspective on educational reform, with the expectation of developing regional leadership for K–12 and postsecondary teaching and learning. With its rich tradition of research and technological innovation, UCSD is uniquely positioned in the region to provide the research expertise for this program.

The doctor of education in Teaching and Learning program provides professional educators with the knowledge and skills to serve as faculty of pre-service teacher education and leaders of professional development for practicing teachers. Students take courses which address the topics of school reform and educational equity; learning and educational technology; curriculum research and theory; qualitative and quantitative research methods; cognition and learning theory; the social organization of schooling; language and culture; and research on teaching and learning.

The following is a typical course of study:

Year 1

Summer
- EDS 229. Introduction to Educational Resources
- EDS 231. Advanced Instructional Practices, or EDS 232. Special Topics in Education (offered alternating summers)

Fall-Winter-Spring
- EDS 230A-B-C. Research in Curriculum Design

Year 2

Fall
- EDS 260A. Educational Research and Evaluation Design
- EDS 270. Leadership and Equity in Educational Reform

Winter
- EDS 260B. Educational Research and Evaluation Design
- Elective Graduate Seminar

Spring
- EDS 260C. Educational Research and Evaluation Design
- Elective Graduate Seminar

Year 3

Fall-Winter-Spring
- EDS 261A-B-C. Advanced Research and Evaluation Methods
- Elective Graduate Seminar

Year 4

Fall-Winter-Spring
- EDS 262A-B-C. Dissertation Writing Seminar
- EDS 299. Dissertation Research

Admission Requirements

See the EDS Web site for current admission requirements. The application deadline is February 1.

DOCTOR OF EDUCATION (ED.D.) IN EDUCATIONAL LEADERSHIP

The doctor of education in Educational Leadership is offered through a partnership between UCSD and California State University, San Marcos (CSUSM). The program is designed as a professional degree for P-12 and postsecondary educators who will develop advanced leadership and research skills related to their own institutional settings. Students are typically mid-career working professional educators who attend classes on weeknights and weekends over a thirty-six-month period. Students take courses designed to develop four specific leadership capacities: (1) leadership for learning; (2) leadership for a diverse society; (3) leadership for organizational change; and (4) leadership for organizational development. This program prepares leaders for culturally, linguistically, and economically diverse educational settings. Students will conduct research on professional practice within their own institutions, addressing specific local problems that have national implications for teaching and learning, school reform, and professional development. Students completing the program will receive a joint degree from UCSD and CSUSM.

The following is a typical course of study taught by UCSD and CSUSM faculty:

Year 1

Winter
- EDS 280. Re-Thinking Leadership
- EDS 287A. Educational Research and Evaluation Design
- EDS 291A. Leadership Research Practicum

Spring
- EDS 281. Leadership for Learning
- EDS 287B. Educational Research and Evaluation Design
- EDS 291B. Leadership Research Practicum

Summer
- EDS 282. Leadership for a Diverse Society
- EDS 287C. Educational Research and Evaluation Design
- EDS 291C. Leadership Research Practicum

Fall
- EDS 286. Advanced Topics in Leadership
- EDS 292. Qualifying Paper Preparation
COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

The Education Studies Program offers the following courses. Students are encouraged to consult with an EDS advisor to determine which courses satisfy credential requirements. Undergraduate students may enroll in graduate seminars with the consent of instructor.

LOWER-DIVISION

EDS 20. Introduction to Principles of Learning (4) Students will study discipline-specific principles of effective learning, including critical thinking, problem solving, collaboration and group communication, laboratory and hypothesis testing, library research and writing skills, and self-assessment. Students will explore concepts and procedures in mathematics, science, and economics as the context for making explicit these often-tacit principles of learning. Prerequisite: Summer Bridge participation. Available to undergraduate students on a space-available basis.

EDS 30/Math. 95. Introduction to Math Teaching (2) Revisit students’ learning difficulties in mathematics in more depth to prepare students to make meaningful observations of how K-12 teachers deal with these difficulties. Explore how instruction can use students’ knowledge to pose problems that stimulate students’ intellectual curiosity. Prerequisite: Math. 87. Teaching Math and Science: The Challenge. Available to undergraduate students on a space-available basis.

EDS 31/Chem. 96. Introduction to Teaching Science (2) Revisit students’ learning difficulties in science in more depth to prepare students to make meaningful observations of how K-12 teachers deal with these difficulties. Explore how instruction can use students’ knowledge to pose problems that stimulate students’ intellectual curiosity. Prerequisite: Math. 87. Teaching Math and Science: The Challenge. Available to undergraduate students on a space-available basis.

EDS 39. Practicum in Science and Math Teaching/Learning (2) Undergraduate students are placed in local schools and work with children in classrooms and the community. Students work on educational activities with K-12 students a minimum of 20 hours/quarter. Prerequisites: department stamp; concurrent enrollment in either Math 87: Teaching Math; The Challenge, or Chem. 87: Teaching Science; The Challenge.

EDS 87. Freshman Seminar (1) The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen. Seminars are open to sophomores, juniors, and seniors on a space-available basis.

EDS 105. Teaching and Learning Physics (4) [Same as PHYS 180.] A course on how people learn and understand key concepts in Newtonian mechanics. Reading in physics and cognitive science plus fieldwork teaching and evaluating K-12 students. Useful for students interested in teaching. Prerequisites: three quarters of lower-division physics.

UPPER-DIVISION

EDS 114. Cognitive Development and Interactive Computing Environments (4) Learning and development considered as an evolving interplay between “internal representations” and “external representations” of the world, with special attention devoted to the design, history, and educational implications of computer-based tools and learning environments. Prerequisite: upper-division standing.

EDS 115. Cognitive Development and Education (4) This course examines the development of thinking and language in preschool and elementary school children, with implications for education. Themes include facilitating children’s learning, and individual differences in cognition. Examples of topics covered are word learning, mathematical knowledge, and scientific thinking. Letter grade only.

EDS 116. The Psychology of Teaching and Structures of Information for Human Learning (4) College students tutoring college students. Curriculum: basic applied learning principles, specifying objectives, planning and designing instruction, testing, evaluation, interpersonal communication skills, study skills. Objectives will be specified for each area. Competency will be assessed by project completion and practicum feedback. This course is not creditable toward professional preparation requirements for the multiple subject credential. Prerequisite: departmental approval (consent of instructor)—department stamp restriction.

EDS 117. Language, Culture, and Education (4) (Same as Soci/B 117) The mutual influence of language, culture, and education. Explanations of students’ school success and failure that employ linguistic and cultural variables, bilingualism, and cultural transmission through education are explored. Prerequisite: upper-division standing.

EDS 118. Adolescent Development and Education (4) This course introduces prospective secondary teachers to the cognitive, social, and emotional development of adolescents, including developmental learning theory, the teaching/learning process, effective learning environments, and cross-cultural variation in development. Implications for classroom practice are drawn.

EDS/LIGN 119. First and Second Language Learning: From Childhood through Adolescence (4) An examination of how human language learning ability develops and changes over the first two decades of life, including discussion of factors that may affect this ability. Prerequisite: upper-division standing or consent of instructor.

EDS 121A/Math. 121A. Foundations of Teaching and Learning Mathematics I (4) Develop teachers’ knowledge base (knowledge of mathematics content, pedagogy, and student learning) in the context of advanced mathematics. This course builds on the previous courses where these components of knowledge were addressed exclusively in the context of high-school mathematics. Prerequisites: EDS 30/Math. 95, and Calculus 10C or 20C.

EDS 121B/Math. 121B. Foundations of Teaching and Learning Math II (4) Examine how learning theories can consolidate observations about conceptual development with the individual student as well as the development of knowledge in the history of mathematics. Examine how teaching theories explain the effect of teaching approaches addressed in the previous courses. Prerequisite: EDS 121A/Math. 121A.

EDS 122/Chem. 187. Foundations of Teaching and Learning Science (4) Examine theories of learning and how they are important in the science classroom. Conceptual development in the individual student, as well as the development of knowledge in the history of science. Key conceptual obstacles in science will be explored. Prerequisites: EDS 31/Chem. 87: Introduction to Teaching Science, Chemistry 6C.

EDS 123/Chem. 188. Capstone Seminar in Science Education (4) In the lecture and observation format, students continue to explore the theories of learning in the science classroom. Conceptual development is fostered, as well as continued
and socio-emotional development in early childhood

EDS 125. History, Politics, and Theory of Bilingual Education (4)
This course provides a historical overview and models of bilingual education in the United States. Students will examine the role of language, class, race, ethnicity, and policy issues associated with native language and second-language instruction, and legal requirements for public bilingual program.

EDS 126. Social Organization of Education (4)
(Same as Soc/C 126) The social organization of education in the U.S. and the functions of curricula for individuals and society; the structure of schools; education decision-making; educational testing; socialization and education; formal and informal education; cultural transmission. Prerequisite: upper-division standing.

EDS 127A-B-C. Practicum in Interactive Computing (4-4-4)
The course focuses on individual computing in teaching/learning. Course work concentrates on interactive computing, application to teaching, learning, bilingualism, and communication. Concurrent with course work, students are assigned to a school or community field site implementing interactive computing. Students will write research reports integrating course work and field experience. (F,WS)

EDS 128 A-B. Introduction to Teaching and Learning (Elementary) (4-4)
This course series is for undergraduates who are exploring a career in elementary school teaching. Topics addressed include: theories of teaching and learning; research on cognition and motivation; and the cultural context of classroom teaching and learning. EDS 128A focuses on the learner in the teaching-learning interaction and EDS 128B focuses on the teacher in the teaching-learning interaction. Prerequisites: department stamp required; EDS 139 must be taken as a corequisite. EDS 130 or 134 must be completed before EDS 128A, and EDS 128A and EDS 128B are restricted for students applying to the EDS M.Ed./Multiple Subject Credential Program.

EDS 129 A-B-C. Introduction to Teaching and Learning (Secondary) (4-4-4)
This course series is for undergraduates who are exploring a career in teaching secondary school. Topics addressed include: theories of teaching and learning processes and motivation for science, mathematics, and English instruction. EDS 129A focuses on the analysis of the needs of individual learners and small group instruction techniques; EDS 129B emphasizes the various roles of the classroom teacher and planning individual lessons; and EDS 129C emphasizes the assessment of student work and longer-range curriculum planning. Prerequisites: department stamp required; EDS 139 must be taken as a corequisite. Must have successfully completed EDS 136, 138, or 129A for 129B, and 129B for 129C. EDS 129A and 129C are restricted for students applying to the EDS M.Ed./Single Subject Credential Program.

EDS 130. Introduction to Academic Mentoring of Elementary/School Students (4)
This course focuses on the role of undergraduate mentors in raising academic expectations for students and families traditionally underrepresented at the university. The relationship between the school and community, the social and political organization of elementary schools, and the academic achievement of elementary children are examined. Prerequisites: department stamp required; EDS 139 must be taken as a corequisite.

EDS 131. Introduction to Early Childhood Education (4)
Course examines effective practices for literacy, numeracy, and socio-emotional development in early childhood education. Field experience and seminar focus on social relationships between the UCSD student, the teacher and children, developmentally appropriate teaching and learning practices in literacy and numeracy, and community service. Prerequisite: department stamp; EDS 139 must be taken as a corequisite.

EDS 134. Introduction to Literacy and Numeracy (4)
This course examines effective practices for language, arts and mathematics learning for elementary school children. The field experience and seminar focus on the tutor/student relationship, teaching and learning processes for literacy and numeracy, and community service. Prerequisites: department stamp required; EDS 139 must be taken as a corequisite.

EDS 136. Introduction to Academic Tutoring of Secondary School Students (4)
This course focuses on the role of undergraduate tutors in building academic resiliency in secondary students traditionally underrepresented at the university. The relationship between the school and community, the social and political organization of secondary schools, the philosophical, sociological, and political issues which relate to the U.S. secondary educational system, and the academic achievement of secondary children are examined. Prerequisites: department stamp required; EDS 139 must be taken as a corequisite.

EDS 137. Introduction to Discipline-Specific Teaching and Learning (4)
This course examines effective practices for teaching and learning in specific disciplines in PreK-12 school or community settings. The field experience and seminar focus on relationship building between mentors and learners, discipline-relevant teaching and learning processes, and community service. Prerequisite: EDS 139 must be taken as a corequisite.

EDS 138. Introduction to Academic Tutoring at the Preuss School (4)
This course focuses on effects of the Charter School movement on public education in the U.S., the role of the research universities in K–12 education, the social and political organization of the schools, the philosophical, sociological, and political issues which relate to the U.S. secondary educational system, and the academic achievement of secondary children. Students investigate the role of undergraduate tutors in building academic resiliency in secondary students traditionally underrepresented at the university. Prerequisites: department stamp required; EDS 139 must be taken as a corequisite.

EDS 139. Practicum in Teaching/Learning/2)
Students are placed in local schools and work with students in classrooms and the community. Students work on educational activities within the school for at least 10 hours/week. Prerequisites: department stamp required; one of the following courses may be taken concurrently: EDS 109, or EDS 127A-B-C, or EDS 128A-B, or 129A-B-C, or 130, or 134, or 136, or 138.

EDS 190. Research Practicum (1–6)
Supervised research studies with individual topics selected according to students’ special interests. Students will develop a research proposal and begin to gather and analyze data. Prerequisite: consent of instructor. (F,WS)

EDS 195. Apprentice Teaching (2–4)
Advanced EDS students are prepared in effective methods of supervising the preparation of UCSD students serving as paraprofessionals in K-12 classrooms. Topics covered include: classroom management, interpersonal relations, supervision techniques, multi-cultural and multi-lingual education, politics in the school, and curriculum development. Each student serves as a discussion leader and conducts at least two practicums. Prerequisites: department stamp required and TE79 or TE80 major code.

EDS 198. Directed Group Study (4–2)
Directed group study, guided reading, and study involving research and analysis of activities and services in multicultural education, bilingual education, the teaching-learning process, and other areas that are not covered by the present curriculum. Prerequisite: consent of instructor.

EDS 199. Special Studies (4)
Individual guided reading and study involving research and analysis of activities and services in multicultural education, bilingual education, the teaching-learning process, and other areas that are not covered by the present curriculum. Prerequisite: consent of instructor.

EDS 342A. ASL-English Bilingual Education Practices (4)
Students will examine the history, current theory, philosophy, legislation, and trends in deaf education. Methods of first- and second-language development, communication, and literacy skills for deaf and hard-of-hearing children will be introduced. Prerequisites: EDS 115, EDS 117, EDS 126, EDS 128A, EDS 128B. Must be an E76 major. (F)

EDS 342B. ASL-English Bilingual Education Practices (2)
Students will investigate formal and informal assessment techniques used for deaf and hard-of-hearing children, bilingual/multicultural education practices across the curriculum, effective learning environments and approaches for educating and interacting with families and communities. Prerequisites: EDS 342A, EDS 361A. Must be an E76 major. Concurrent enrollment in EDS 361B and 369A. (W)

EDS 342C. ASL-English Bilingual Education Practices (2)
Students will continue to investigate formal and informal assessment techniques used for deaf and hard-of-hearing children, bilingual/multicultural education practices across the curriculum, effective learning environments and approaches for educating and interacting with families and communities. Prerequisites: EDS 342A, EDS 342B, EDS 342C, EDS 361A. Must be an E76 major.

EDS 349. Deaf Education Specialist Student Teaching Practicum (9)
Education specialist credential candidate performs student teaching in participating schools for a minimum of seven weeks full-time under the supervision of a cooperating teacher and university supervisor. The field experience provides professional preparation and diversified teaching responsibilities for post-baccalaureate students pursuing the California Deaf and Hard of Hearing Specialist and BCLAD Credential. Prerequisites: EDS 342A, EDS 342B, EDS 361A. Must be an E76 major.

EDS 351. Teaching the English Language Learner (4)
Students will examine the principles of second language acquisition and approaches to bilingual education. They will develop a repertoire of strategies for teaching in elementary or secondary content areas. Prerequisites: EDS 76 or EDS 78; Elementary Multiple Subject or Single Subject candidates at UCSD who have advanced to student teaching or internship. (F)

EDS 352A. Bilingual Instructional Practices I (2)
First course in a two-course sequence. Provides a theoretical and practical grounding in various pedagogical techniques for teaching Spanish as a native language. Students will study native language methods, strategies and approaches, assessment materials, and techniques of transition for implementing curricula across disciplines in a bilingual classroom. Prerequisite: EDS 78 major.

EDS 352B. Bilingual Instructional Practices II (2)
Second course in the sequence. Provides a theoretical and practical grounding in various pedagogical techniques for teaching Spanish as a native language. Students will study native language methods, strategies and approaches, assessment materials, and techniques of transition for implementing curricula across disciplines in the bilingual classroom. Prerequisites: EDS 352A, and student must be an E78 major.

EDS 355A. Advanced Mathematics Teaching Practices for Grades K-6 (2)
First course in a three-course sequence. Provides a theoretical and practical grounding in pedagogy and professional facets of influencing high-quality elementary mathematics education. Students will review research literature and various content standards, assessment materials, and curriculum materials in preparation for specialized mathematic instruction in elementary classrooms. Prerequisites: admission into the E78T: Multiple Subject (MS-2 program),
EDS 355B. Advanced Mathematics Teaching Practices for Grades K–6 (2)
Second course in the sequence. Provides a theoretical and practical grounding in pedagogy and professional factors influencing high-quality elementary mathematics education. Students will review research literature and various content standards, assessment materials, and curriculum materials in preparation for specialized mathematics instruction in elementary classrooms. Prerequisites: EDS 355A, admission into the ED85 Multiple Subject (MS-2 program), and concurrent enrollment in EDS 361B or consent of instructor.

EDS 355C. Advanced Mathematics Teaching Practices for Grades K–6 (2)
Third course in the series, which provides a theoretical and practical grounding in pedagogy and professional factors influencing high-quality elementary mathematics education. Students will review research literature and various content standards, assessment materials, and curriculum materials in preparation for specialized mathematics instruction in elementary classrooms. Prerequisites: EDS 355B, admission into the ED85 Multiple Subject (MS-2 program), and concurrent enrollment in EDS 361B or consent of instructor.

EDS 361A. Innovative Instructional Practices I (6)
First course in a three-course sequence. It provides pedagogical methods for multiple-subject teaching. Diverse subject areas (math, science, fine arts, P.E., and social studies) are integrated into a single instructional course of study by emphasizing activity/inquiry techniques of instruction. Prerequisite: must be an EDS 367 major: Teaching and Learning Bilingual Education (ASL-English) or ED78 major only for Elementary Multiple Subject candidate who has advanced to student teaching. (F)

EDS 361B. Innovative Instructional Practices II (6)
Second course in three course sequence. It provides pedagogical methods for multiple subject teaching. Diverse subject areas (language arts, English language development, health education, mathematics, sciences, social studies, fine arts, and physical education) are integrated into a single intercurricular course of study by emphasizing activity/inquiry techniques of instruction. Prerequisites: EDS 361A, ED76 major: Teaching and Learning Bilingual Education (ASL-English) or ED78 major only for Elementary Multiple Subject candidate who has advanced to student teaching.

EDS 361C. Innovative Instructional Practices III (4)
Last course in a three course sequence. It provides pedagogical methods for multiple subject teaching. General teaching methods are integrated into a single intercurricular course of study by emphasizing activity/inquiry techniques of instruction. Prerequisites: EDS 361B, ED76 major: Teaching and Learning Bilingual Education (ASL-English) or ED78 major only for Elementary Multiple Subject candidate who has advanced to student teaching.

EDS 369A. Multiple Subject (Elementary) Student Teaching Practicum I (9)
First course in the series. The elementary credential candidate performs student teaching in participating schools for seven to eight weeks full-time for each course (fifteen weeks total) under the supervision of a cooperating teacher and university supervisor. The student teaching experience offers professional preparation and diversified teaching responsibilities for post-baccalaureate students pursuing the California Single Subject Teaching Credential. Prerequisites: ED 269A, ED78 major for Elementary Multiple Subjects only. Affirmed Multiple Subject Credential candidate at UCSD who has advanced to student teaching.

EDS 373. Secondary English Teaching Practices (4)
The course introduces prospective secondary teachers to principles and strategies of teaching English language arts. Topics include: writing processes, reading processes, integrated language arts, assessment, the second language learner, the classroom community, the California English Language Arts Framework. Prerequisite: ED78 Single Subject major only. Affirmed Single Subject candidate at UCSD who has advanced to internship or consent of instructor.

EDS 374. Secondary Mathematics Teaching Practices (4)
Mathematics teaching techniques including, curriculum design, California Model Curriculum Standards, instruction, activities, selection and use of textbooks, student assessment, lesson planning, and classroom organization. Professional matters including curriculum planning, professional organizations, para-professionals, professional ethics, education law, and parent involvement are addressed. Prerequisite: ED78 Single Subject major only. Affirmed Single Subject candidate at UCSD who has advanced to internship or consent of instructor.

Science teaching techniques, including science curriculum design, California Model Curriculum Standards, instruction activities, selection and use of textbooks, student assessment, lesson planning, and classroom organization. Professional matters including curriculum planning, professional organizations, para-professionals, professional ethics, education law, and parent involvement are addressed. Prerequisite: ED78 Single Subject major only. Affirmed Single Subject candidate at UCSD who has advanced to internship or consent of instructor.

EDS 376. Language and Learning Instruction (4)
This course satisfies the California Commission on Teacher Credentialing requirement for preparation in reading and writing in the content areas, teaching methods, and literature. Prerequisites: EDS 361A, ED76 major: Teaching and Learning Bilingual Education (ASL-English) or ED78 major only for Elementary Multiple Subject candidate who has advanced to student teaching or internship. (F)

EDS 379A. Single Subject (Secondary) Internship Practicum I (8)
The secondary credential candidate teaches approximately one academic quarter for each course in this series (one public school academic year) under the guidance of a university supervisor with additional support provided by an on-site teacher. The internship offers extensive professional preparation and diversified teaching experience under actual classroom conditions for post-baccalaureate students pursuing the California Single Subject Teaching Credential. Prerequisites: ED78 Single Subject major only. Affirmed Single Subject candidate at UCSD who has advanced to internship.

EDS 379B. Single Subject (Secondary) Internship Practicum II (8)
Second course in the series. The secondary credential candidate teaches approximately one academic quarter for each course in this series (one public school academic year) under the guidance of a university supervisor with additional support provided by an on-site teacher. The internship offers extensive professional preparation and diversified teaching experience under actual classroom conditions for post-baccalaureate students pursuing the California Single Subject Teaching Credential. Prerequisites: EDS 379A, ED78 Single Subject major only. Affirmed Single Subject candidate at UCSD who has advanced to internship.

EDS 379C. Single Subject (Secondary) Internship Practicum III (8)
Third course in the series. The secondary credential candidate teaches approximately one academic quarter for each course in this series (one public school academic year) under the guidance of a university supervisor with additional support provided by an on-site teacher. The internship offers extensive professional preparation and diversified teaching experience under actual classroom conditions for post-baccalaureate students pursuing the California Single Subject Teaching Credential. Prerequisites: EDS 379B. ED78 Single Subject major only. Affirmed Single Subject candidate at UCSD who has advanced to internship.

EDS 381. Health Education (4)
This course satisfies the Commission on Teacher Credentialing requirement for Health Education. Topics include: physical education, substance abuse, sex education, cardio-pulmonary resuscitation, nutrition, and first aid. Prerequisite: ED78 major: Elementary Multiple Subject or Single Subject candidates at UCSD who have advanced to student teaching or internship.

EDS 382. Inclusive Educational Practices (4)
This course satisfies the Commission on Teacher Credentialing requirements for Special Education. Topics include: teaching methods for accommodating special-needs students in the regular classroom, developing an Individual Education Plan, characteristics of special-needs students, lesson planning to accommodate individual differences, and legislated mandates. Prerequisite: ED78 or ED81 major: Elementary Multiple Subject or Single Subject candidates at UCSD who have advanced to student teaching or internship and department stamp required.

EDS 385. Elementary School Mathematics Content and Pedagogy (4)
Examines the underlying mathematical concepts of the elementary school mathematics curriculum and related pedagogical implications for teaching. Topics include number concepts, algebraic thinking, geometry, and data collection and analysis. Prerequisite: students must be ED78 majors: M.Ed./Elementary-Multiple Subject Credential candidates who have advanced to student teaching or internship. (MS-2).

EDS 390. Graduate Research Practicum I–6 Supervised research study with individual topics selected according to student’s special interests. Students will develop a research proposal, gather and analyze data. Prerequisite: Consent of instructor.

EDS 398. Directed Group Study I–6 Study and analysis of teaching and learning topics for credential students under the guidance of a faculty member. Offered for repeated registration. Prerequisite: Consent of instructor.

EDS 399. Independent Study I–6 Individual guided study or research in an area not covered by present curriculum course offerings for credential graduate students. Offered for repeated registration. Prerequisite: Consent of instructor.

GRADUATE

Soc. 270. The Sociology of Education (4)
A consideration of the major theories of schooling and society, including functionalist, conflict, critical, and interactional; selected topics in the sociology of education will be addressed in a given quarter, including: the debate over inequality, social selection, cultural reproduction and the transition of knowledge, the cognitive and economic consequences of education. Major research methods will be discussed and critiqued.

EDS 201. Introduction to Resources for Teaching and Learning (4)
This course introduces students to educational resources, educational technology, and research methods that educators use to compile and evaluate research studies, curricular materials, and instructional approaches in preparation for future projects in developing and evaluating various approaches to teaching and learning. Prerequisite: students must be registered EDS graduate students (ED 76, 77, 78, 79, 80).

EDS 203. Technology, Teaching, and Learning (4)
This course will review current literature on effective applications of technology in the classroom. Students will also become fluent in the use of productivity tools, presentation
software, and Web development for teaching and learning: critique software relevant to their area of teaching; and develop an educational activity based on their review of the literature that harnesses the power of technology. Prerequisite: students must be registered EDS graduate students (ED 76, 77, 78, 79, 80).

EDS 204. Technology and Professional Assessment (4)
Advanced techniques for using network-based resources for teaching and learning will be introduced. Students will review relevant research on advanced technologies related to assessment of professional performance and student achievement. Students will present a Web-based professional Teaching Performance Assessment Portfolio that reflects teaching performance during their student teaching or internship field experience. Prerequisite: students must be registered EDS graduate students.

EDS 205A. Reflective Teaching Practice (2)
This course introduces principles and practices of reflective teaching. Student teachers and interns will systematically document their practice teaching and analyze observation data to improve performance. Students will collaborate with supervisors and expert teachers throughout the yearlong preservice teaching experience. Prerequisite: students must be registered EDS graduate students.

EDS 205B. Reflective Teaching Practice (2)
This course introduces principles and practices of reflective teaching. Student teachers and interns will systematically document their practice teaching and analyze observation data to improve performance. Students will collaborate with supervisors and expert teachers throughout the yearlong preservice teaching experience. Prerequisite: EDS 205A, and students must be registered EDS graduate students.

EDS 206. Teaching Performance Assessment Portfolio (4)
This course introduces the use of a Teaching Performance Assessment Portfolio for assessment of teaching performance. Student teachers and interns will design an electronic portfolio that demonstrates acceptable performance on essential credential standards. National Board of Professional Teaching Standards will also be introduced. Prerequisite: students must be registered EDS graduate students.

EDS 229. Introduction to Educational Resources (4)
This course prepares K–12 teacher-researchers to design, implement, and evaluate classroom research. Students learn how to access and evaluate research studies, curricular materials, and instructional approaches both on-line and in print. Prerequisite: students must be registered TE 76 majors.

EDS 230A-B-C. Research in Curriculum Design (4-4-4)
A year-long course sequence which provides an extensive overview of research and design and evaluate a curriculum project in their own classrooms. Prerequisite: TE 81 major: Teaching and Learning Bilingual Education (ASL-English) or consent of instructor.

EDS 240A. Research in ASL-English Bilingual Education (4)
A three-course sequence in which participants conduct an overview of research and design and conduct a study related to bilingual, bicultural education for deaf children. Prerequisite: TE 81 major: Teaching and Learning Bilingual Education (ASL-English) or consent of instructor.

EDS 240B. Research in ASL-English Bilingual Education (4)
A three-course sequence in which participants conduct an overview of research and design and conduct a study related to bilingual, bicultural education for deaf children. Prerequisites: EDS 240A, and TE 81 major: Teaching and Learning Bilingual Education (ASL-English) or consent of instructor.

EDS 240C. Research in ASL-English Bilingual Education (4)
A three-course sequence in which participants conduct an overview of research and design and conduct a study related to bilingual, bicultural education for deaf children. Prerequisites: EDS 240A/EDS 240B, and TE 81 major: Teaching and Learning Bilingual Education (ASL-English) or consent of instructor.

EDS 241. Advanced Topics in Deaf Education (2)
This course is a study of human development and education that relate to deaf and hard-of-hearing children and the relationship between home, community/culture, and classroom. Prerequisite: TE 81 major or consent of instructor.

EDS 250. Equitable Educational Research and Practice (4)
This course introduces students to research studies and educational practices of educational equity, both in general and within specific content areas. Research studies relevant to educational equity will be examined, as will practices that have attempted to enable all students to achieve to the best of their ability. Prerequisite: students must be registered EDS graduate students.

EDS 260A. Educational Research and Evaluation Design (4)
This course integrates a variety of social and behavioral science perspectives and research methodologies in examining topics of central relevance to education. Students have opportunities to design and apply to educational research questions a variety of methodologies, including survey, interview, ethnographic, case study, video data analysis, and discourse analysis methods. This is the first of a three-course series. Prerequisite: admission into the EDS program or consent of instructor.

EDS 260B. Educational Research and Evaluation Design (4)
This course integrates a variety of social and behavioral science perspectives and research methodologies in examining topics of central relevance to education. Students have opportunities to design and apply to educational research questions a variety of methodologies, including survey, interview, ethnographic, case study, video data analysis, and discourse analysis methods. This is the second of a three-course series. Prerequisite: EDS 260A, and admission into the Ed.D. program or consent of instructor.

EDS 260C. Educational Research and Evaluation Design (4)
This course integrates a variety of social and behavioral science perspectives and research methodologies in examining topics of central relevance to education. Students have opportunities to design and apply to educational research questions a variety of methodologies, including survey, interview, ethnographic, case study, video data analysis, and discourse analysis methods. This is the third of a three-course series. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 261A. Advanced Research and Evaluation Methods (4)
This course addresses more advanced topics in research design and methodology. Students hone the requisite research skills to conduct dissertation research. Students gain varied hands-on experiences in collecting and analyzing data relevant to schooling, as well as learn how to develop, manage, and analyze large data files. Students create a research agenda and develop skills needed in proposal writing: development, organization and coherence, conceptualization of research design, and attention to audience and writing style. This is the first of a three-course series. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 261B. Advanced Research and Evaluation Methods (4)
This course addresses more advanced topics in research design and methodology. Students hone the requisite research skills to conduct dissertation research. Students gain varied hands-on experiences in collecting and analyzing data relevant to schooling, as well as learn how to develop, manage, and analyze large data files. Students create a research agenda and develop skills needed in proposal writing: development, organization and coherence, conceptualization of research design, and attention to audience and writing style. This is the second of a three-course series. Prerequisite: EDS 261A, and admission into the Ed.D. program or consent of instructor.

EDS 261C. Advanced Research and Evaluation Methods (4)
This course addresses more advanced topics in research design and methodology. Students hone the requisite research skills to conduct dissertation research. Students gain varied hands-on experiences in collecting and analyzing data relevant to schooling, as well as learn how to develop, manage, and analyze large data files. Students create a research agenda and develop skills needed in proposal writing: development, organization and coherence, conceptualization of research design, and attention to audience and writing style. This is the third of a three-course series. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 262A. Dissertation Writing Seminar (4)
This seminar provides an opportunity for doctoral candidates to present and critique in-progress dissertation research and writing. Topics addressed will also include writing for professional publications and presenting research findings to varied audiences. This is the first of a three-course series. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 262B. Dissertation Writing Seminar (4)
This seminar provides an opportunity for doctoral candidates to present and critique in-progress dissertation research and writing. Topics addressed will also include writing for professional publications and presenting research findings to varied audiences. This is the second of a three-course series. Prerequisites: EDS 262A, and admission into the Ed.D. program or consent of instructor.

EDS 262C. Dissertation Writing Seminar (4)
This seminar provides an opportunity for doctoral candidates to present and critique in-progress dissertation research and writing. Topics addressed will also include writing for professional publications and presenting research findings to varied audiences. This is the third of a three-course series. Prerequisites: EDS 262B, and admission into the Ed.D. program or consent of instructor.

EDS 270. Leadership and Equity in Educational Reform (4)
This course provides a framework for understanding school reform movements that integrates relevant theory and research from a number of academic disciplines. Prerequisite: admission into the Ed.D. program or consent of instructor.
EDS 271. Language and Diversity in the Schooling Process (4)
This course examines current research and theory which relate language and diversity to educational outcomes. Topics addressed include the development of language and literacy in school and out-of-school settings, socio-cultural perspectives on language learning, and implications for educational policy and practice. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 272. Education and Culture (4)
This course examines schooling from an anthropological perspective, focusing on the impact of social and cultural forces on student learning in U.S. public schools using comparative materials from other societies and settings. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 273. Research in Teaching and Learning: Reading and Writing (4)
This seminar will address current theories and research on the teaching and learning of reading and writing, as well as how research can be used to analyze and foster effective teaching practices. Prerequisite: admission into the Ed.D. Program or consent of instructor.

EDS 274. Research in Teaching and Learning: Mathematics (4)
This seminar will address current theories and research on the teaching and learning of mathematics, as well as how research can be used to analyze and foster effective teaching practices. Prerequisite: admission into the Ed.D. Program or consent of instructor.

EDS 275. Research in Teaching and Learning: Science (4)
This seminar will address current theories and research on the teaching and learning of science, as well as how research can be used to analyze and foster effective teaching practices. Prerequisite: admission into the Ed.D. Program or consent of instructor.

EDS 276. Research in Teaching and Learning: English Language/English Language Learners (4)
This seminar will address current theories and research on the teaching and learning of second-language learning, as well as how research can be used to analyze and foster effective teaching practices. Prerequisite: admission into the Ed.D. Program or consent of instructor.

EDS 277. Research in Teaching and Learning: History and Social Sciences (4)
This seminar will address current theories and research on the teaching and learning of social sciences, as well as how research can be used to analyze and foster effective teaching practices. Prerequisite: admission into the Ed.D. Program or consent of instructor.

EDS 278/CORGR 278. Talking Culture, Culture Talking: Voices of Diversity (4)
This course explores the discourse of culture in American society and the problem of “silenced” or unheard voices. The interaction of individual and collective voice, language, and identity are discussed as they bear on the ways that culture moves through important social institutions such as schools. Of particular interest are issues of teaching, learning, displacement, inclusion, marginality, and the “speaking center.” Prerequisite: graduate status or consent of instructor.

EDS 280. Re-Thinking Leadership (4)
This course will present the evolution of leadership thought and theory, with an emphasis on the distinction between, and interrelatedness of, effective management and leadership. The ethics of leadership practice and epistemological perspectives of emerging leadership styles will be explored, and students will have opportunities to reflect on the nature of leadership as it is practiced in educational settings. Applying critical, self-reflective leadership practice through structured activities is also an element of this course.

EDS 281. Leadership for Learning (4)
This course will explore various models of curriculum and instruction in response to students’ learning needs. It also will examine models of school organization and the leader’s role and responsibility in developing a school culture that promotes student achievement, using evidence-based decision-making. A major emphasis will be on examining research on which theories and practice are based. Prerequisite: Joint Ed.D. in Educational Leadership student status.

EDS 282. Leadership for a Diverse Society (4)
This course will address theories and practices for achieving schools and classrooms that are informed by and built around the participation of diverse communities and cultures. The emphasis is on how leadership intersects with socio-historical and socio-cultural theories that suggest that the organization of schools and instruction is critical to student inclusion and outcomes. A basic premise of this course is that a socially just learning theory begins with using all of the resources and knowledge of families, communities, and cultures in formulating policy and practice. Prerequisite: Joint Ed.D. in Educational Leadership student status.

EDS 283. Leadership for Organizational Change (4)
This course will present multiple theories of organizational change, explore group processes and identify models of decision-making, and analyze human motivation theories. Establishing and nurturing a purpose-driven organization, while dealing with competing demands, will be discussed. A major emphasis in this course is on people as agents of change and on the creation of high-quality ethical and productive workplaces where employees can achieve success and satisfaction, while advancing the mission of the educational organization. Prerequisite: Joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 284. Leadership for Organizational Development (4)
This course will investigate the skills and dispositions needed for students to lead the development of learning organizations. Faculty will teach and model concepts of working with people within educational organizations and programs. Emphasis will be placed on individual’s team development and facilitation, organizational communication, adult learning, and professional development. Prerequisite: Joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 285. Leadership for the Future (4)
This course addresses interdisciplinary influences on leadership practice within learning organizations. Contributions from scholars in futures’ studies, including those influenced by modernism and postmodernism, will be used to explore topics such as long-range planning, demographic trends, technology, and brain theory. Prerequisite: Joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 286. Advanced Topics in Leadership (4)
This course explores topical issues in the field of leadership. It focuses on recent developments that have broad implications for research and practice in educational leadership. Course topics will vary each time the course is offered. Prerequisite: Joint Ed.D. in Educational Leadership student status.

EDS 287A. Educational Research and Evaluation Design (4)
This course integrates a variety of social and behavioral science perspectives and research methodologies in examining topics of central relevance to education. Students have opportunities to design and apply to educational research questions a variety of methodologies, including experimental and quasi-experimental survey, interview, ethnographic, case study, video data analysis, and discourse analysis methods. Prerequisites: EDS 287A, and EDS Education Doctorate student or consent of instructor.

EDS 287C. Dissertation Writing Seminar II (4)
This seminar provides an opportunity for doctoral candidates to present and critique in-progress dissertation research and writing. Topics addressed will also include writing for professional publications and presenting research findings to various audiences. This is the third in a four-course series. Prerequisites: EDS 287B, and Joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 288A. Advanced Research and Evaluation Methods—Data and Introduction to Inferential Statistics (4)
This first course in a three-course series focuses on the importance of data interpretation. Students hone the requisite research skills to conduct dissertation research as it pertains to gathering, collecting, analyzing, and reporting data in a meaningful way. This course provides an overview of data use in educational systems as well as an introduction to survey design and inferential statistics. Students create a research agenda to develop skills needed in proposal writing. Prerequisite: Joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 288B. Advanced Research and Evaluation Methods (4)
Second course in a three-course series. Focuses on student’s skill development in qualitative research with emphasis on designing qualitative studies with a strong focus on case study method and second level statistics. Students will learn and practice a variety of qualitative data collection approaches such as observing, interviewing, and documenting analysis. In addition, students will develop competence in evaluation using Appreciative Inquiry and active research tools that can assist organizations (schools, districts) in evaluating programs. Prerequisite: Joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 288C. Advanced Research and Evaluation Methods (4)
A continuation of 288B, this course focuses on analyzing data. Students will deepen knowledge and skill on data collection and analysis and using data to prepare and report findings. Students will have an opportunity to use the qualitative data software program N-View to code and sort data. In collaborative groups, students will also explore other research methods of their choosing and will develop and conduct a small pilot study relevant to dissertation topics. Prerequisite: Joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 289A. Dissertation Writing Seminar (4)
This seminar provides an opportunity for doctoral candidates to present and critique in-progress dissertation research and writing. Topics addressed will also include writing for professional publications and presenting research findings to varied audiences. This is the first in a four-course series. Prerequisite: Joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 289B. Dissertation Writing Seminar (4)
This seminar provides an opportunity for doctoral candidates to present and critique in-progress dissertation research and writing. Topics addressed will also include writing for professional publications and presenting research findings to varied audiences. This is the second in a four-course series. Prerequisites: EDS 289A, and Joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 289C. Dissertation Writing Seminar (4)
This seminar provides an opportunity for doctoral candidates to present and critique in-progress dissertation research and writing. Topics addressed will also include writing for professional publications and presenting research findings to varied audiences. This is the third in a four-course series. Prerequisites: EDS 289B, and Joint Ed.D. in Educational Leadership student status or consent of instructor.
EDS 289D. Dissertation Writing Seminar (4)
This seminar provides an opportunity for doctoral candidates to present and critique in-progress dissertation research and writing. Topics addressed will also include writing for professional publications and presenting research findings to varied audiences. This is the fourth course in a four-course series. Prerequisites: EDS 289C, and Joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 290. Research Practicum (1–12)
Supervised research studies with individual topics selected according to students’ special interests. Students will develop a research proposal appropriate for M.A. thesis, begin to gather and analyze data. Prerequisites: M.A. candidate and consent of instructor. (S/U grades only)

EDS 291A. Leadership Research Practicum (2)
Students use their placements in local schools and educational settings to examine leadership research and practice topics raised in the Leadership core courses and Research and Evaluation Design/Methods courses. This is the first in a three-course series. Prerequisite: Joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 291B. Leadership Research Practicum (2)
Students use their placements in local schools and educational settings to examine leadership research and practice topics raised in the Leadership core courses and Research and Evaluation Design/Methods courses. This is the second course in a three-course series. Prerequisites: EDS 291A, and Joint Ed.D. in Educational Leadership student status.

EDS 291C. Leadership Research Practicum (2)
Students use their placements in local schools and educational settings to examine leadership research and practice topics raised in the Leadership core courses and Research and Evaluation Design/Methods courses. This is the third course in a three-course series. Prerequisites: EDS 291B, and Joint Ed.D. in Educational Leadership student status.

EDS 292. Qualifying Paper Preparation (2)
This course will provide students with time, resources, and guidance for the purpose of developing a review of literature on a student-related topic, which typically becomes the focus of the dissertation research project. Students will be expected to use a variety of research tools in order to discover and identify relevant information. Prerequisite: Joint Ed.D. in Educational Leadership student status. (S/U grade permitted)

EDS 293A. Advanced Leadership Research Practicum (2)
Students use their placements in local schools and educational settings to examine leadership research and practice topics raised in the Leadership core courses and Research and Evaluation Design/Methods courses. This is the first course in a three-course series. Prerequisite: Joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 293B. Advanced Leadership Research Practicum (2)
Students use their placements in local schools and educational settings to examine leadership research and practice topics raised in the Leadership core courses and Research and Evaluation Design/Methods courses. This is the second course in a three-course series. Prerequisites: EDS 293A, and Joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 293C. Advanced Leadership Research Practicum (2)
Students use their placements in local schools and educational settings to examine leadership research and practice topics raised in the Leadership core courses and Research and Evaluation Design/Methods courses. This is the third course in a three-course series. Prerequisites: EDS 293B, and Joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 294A. Colloquium on Educational Leadership (2)
Program faculty and visiting lecturers present leadership research in progress. Serves as a forum to discuss current research in educational leadership. This is the first course of a two-course series. Prerequisite: graduate student status or consent of instructor.

EDS 294B. Colloquium on Educational Leadership (2)
Program faculty and visiting lecturers present leadership research in progress. Serves as a forum to discuss current research in educational leadership. This is the second course in a two-course series. Prerequisites: EDS 294A, and graduate student status or consent of instructor.

EDS 295. MA Thesis (1–8)
Research for the Master's thesis (Educational Research) or Curriculum Design Portfolio thesis (Curriculum Design). Open for repeated registration up to eight units (S/U grade only). Prerequisites: consent of instructor.

EDS 297. Directed Group Study (1–6)
Study and analysis of specific topics under the guidance of a faculty member. Offered for repeated registration. Prerequisite: consent of instructor.

EDS 298. Independent Study (1–6)
Individual guided study and/or independent research in an area not covered by present course offerings. Offered for repeated registration. Prerequisite: consent of instructor.

EDS 299. Dissertation Research (1–12)
Directed research on dissertation topic for students who have been admitted to candidacy for the Ed.D. degree. May be repeated for credit. Prerequisite: admission into the Ed.D. program.
Eleanor Roosevelt College

OFFICE: Provost, Eleanor Roosevelt College
ERC Administration Building
http://roosevelt.ucsd.edu

THE MAKING OF THE MODERN WORLD/Writing Program

OFFICE: Eleanor Roosevelt College MMW Program
ERC Administration Building

ELEANOR ROOSEVELT COLLEGE HONORS PROGRAM

OFFICE: Provost, Eleanor Roosevelt College
ERC Administration Building

Honors programs at Eleanor Roosevelt College have been established to provide exceptionally motivated and capable students with enhanced educational experiences through close interaction with faculty and other honors students. There are two main components to the program: the Freshman Honors Program and the Sophomore Honors Research Project. Participation in either is by invitation.

In the fall quarter of their freshman year, selected students are invited to enroll in the Freshman Honors Seminar, a two- to three-quarter course. During the fall quarter, students meet with a variety of faculty members to learn more about their research, and about academic enrichment opportunities at UC San Diego. The seminar continues during the winter quarter, focusing on an international theme with faculty speakers. Honors students may receive opportunities for particular cultural and social events. Second-year students with GPAs of 3.5 or higher have the opportunity to pursue independent study with individual faculty.

Additional honors opportunities are offered in the Making of the Modern World (MMW) sequence. Students with excellent grades in MMW 1, 2, and 3 and high cumulative grade-point averages are eligible to take MMW 4H, 5H, and 6H. Students attend regular course lectures but meet in separate honors sections. They may also be invited to special guest lectures and enrichment activities connected with MMW.

There are also opportunities for university-wide honors, including provost’s honors. Students who maintain a GPA of 3.5 for a full academic year are awarded certificates of merit by the college.

UCSD’s reputation for excellence is also reflected in the numbers of students who enroll in departmental senior honors programs and who earn college or university honors or election to Phi Beta Kappa.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

10. ERC Freshman Honors Seminar (0)
Weekly seminar with faculty members from a variety of disciplines. This seminar provides students with the opportunity to learn more about research and scholarly activities available to them, and acquaints them with UCSD faculty members. Prerequisite: by invitation only. Pass/Not Pass grades only.

20. Freshman Honors Seminar: International Themes (1)
This weekly seminar focuses on a chosen international theme with faculty speakers. The structure of the seminar is informal, giving students the opportunity to participate in interactive discussions. Prerequisite: by invitation only. Pass/Not Pass only. May be taken for credit two times.

92. Honors Project (2)
Individual project on a topic chosen by the student, done under direction of a faculty member. Prerequisite: by invitation only. Pass/Not Pass only. May be taken for credit two times, up to a total of six units over three quarters.

196. Honors Project (4)
Senior thesis research project for students who have been accepted into the Eleanor Roosevelt College Individual Studies major. Project will be carried out under supervision of one or more faculty members. Depending on scope of the project, may be taken for four or eight units of credit in a single quarter, or eight units distributed over two quarters. Prerequisite: admission to Eleanor Roosevelt Individual Studies major.

199. ERC Independent Studies (4)
The content of this independent study course, which may not duplicate any existing course on campus, will be determined by a supervising faculty member and tailored to fit specific content needs of students pursuing the Eleanor Roosevelt College Individual Studies major. Prerequisite: admission to ERC Individual Studies major.

ELEANOR ROOSEVELT SEMINAR

OFFICE: Provost, Eleanor Roosevelt College
ERC Administration Building

90. Undergraduate Seminar (1)
A seminar intended for exposing undergraduate students, especially freshmen and sophomores, to exciting research programs conducted by the faculty. Prerequisite: none. Pass/Not Pass only.
Engineering, Jacobs School of

OFFICE: 7310 Engineering Building Unit 1, Warren Mall
http://www.jacobsschool.ucsd.edu

The Irwin and Joan Jacobs School of Engineering at UC San Diego comprises the Departments of Bioengineering (BE), Computer Science and Engineering (CSE), Electrical and Computer Engineering (ECE), Mechanical and Aerospace Engineering (MAE), NanoEngineering (NE), and Structural Engineering (SE). The Jacobs School is directed by the dean of engineering. The department offers eighteen undergraduate programs that fall into three categories: impacted, pre-major, and open major programs as well as many graduate degree programs. For a complete list of engineering undergraduate and graduate programs, please visit our Web site at http://www.jacobsschool.ucsd.edu.

Students interested in engineering should consult the Web site and the individual department listings which follow this section of the catalog.

UCSD's six undergraduate colleges differ in their general-education requirements. Prospective students should review the general-education requirements and take them into account when planning their college curriculum.

ACCEPTANCE TO DEPARTMENTAL MAJORS IN THE JACOBS SCHOOL OF ENGINEERING

Student demand exceeds program capacity in some of the undergraduate majors. Owing to limited departmental resources, major programs to which more students apply than can be accepted have been declared impacted majors. Acceptance into an impacted engineering major is based on academic excellence demonstrated in high school or at a community college. Acceptance will be granted to the maximum number of students in each of these impacted major programs consistent with maintaining acceptable program quality and in compliance with admissions procedures and criteria approved by the Academic Senate's Committee on Educational Policy.

Remember that admission to the university and to a college does not guarantee acceptance to an impacted major.

FRESHMEN

Freshmen are admitted to engineering majors in one of three ways: open majors, pre-majors and impacted majors.

Open Majors

The following majors are open to all admitted UCSD students: bioengineering: bioinformatics (offered through the BENG department), chemical engineering (offered through the NE department), computer engineering (offered through the CSE department), computer engineering (offered through the ECE department), computer science, electrical engineering, electrical engineering and society, engineering science (offered through the MAE department), engineering sciences (offered through the SE department), environmental engineering, and structural engineering. All applicants who have been accepted to UCSD and indicated a pre-major or open engineering major on their application are placed directly into that major.

Pre-major Programs

There is one engineering pre-major program offered: (1) engineering physics. Incoming freshmen who identify this pre-major as their first choice on their UCSD admissions application are accepted directly into the pre-major upon admission to UCSD. Subsequent acceptance to the major is dependent on performance in selected mathematics, science, and engineering screening courses as well as competitive grade-point average in the pre-major screening courses.

Pre-major engineering students are expected to apply for acceptance to the major during the spring quarter of their freshman year. Acceptance to the major is based on the grade-point average in the screening courses only. The grade-point average required for acceptance to the major by pre-majors is set individually by each engineering program. Pre-majors should consult their departments concerning the appropriate screening courses and the current grade-point average standards for acceptance. In addition to the courses required by the departments, it is expected that all pre-major students will take twelve to eighteen units of general-education college requirements during their first year.

Pre-major engineering students who are not able to apply before the end of their third quarter, or who wish to reapply following an unsuccessful application, must contact their department as soon as possible for further advising as acceptance to any engineering major that has a pre-major will not be considered after six quarters of enrollment.

Impacted Majors

The following engineering majors are impacted: aerospace engineering, bioengineering, bioengineering: biotechnology and mechanical engineering. Applicants must indicate one of these impacted majors as their first choice on their UC application in order to be considered for acceptance to the major by the UC San Diego Office of Admissions.

Effective fall 2001, this selection is based on the freshman review criteria (Comprehensive Review) administered by the UCSD Office of Admissions and Relations with Schools.

It is strongly suggested that all students accepted into engineering programs consult their department's academic advisor at an early stage to plan their lower-division engineering courses, and that they consult with a college academic counselor to arrange general-education courses around the required screening courses. Students admitted fall quarter should attend the engineering department's orientation meetings during Welcome Week.

Bioinformatics Programs

Students interested in applying to either the bioengineering: bioinformatics major (offered by the Department of Bioengineering), or the computer science major with a specialization in bioinformatics (offered by the Department of Computer Science and Engineering) should consult individual department listings which follow this section of the catalog.

TRANSFERS

Transfer students are admitted to engineering majors in one of three ways: open majors, pre-majors, and impacted majors. For major-specific advising, please contact the relevant departmental undergraduate academic advising office.

Effective fall 2009, these courses are strongly recommended for all engineering transfer students for success in their major.

- Calculus I—for Science and Engineering (Math. 20A)
- Calculus II—for Science and Engineering (Math. 20B)
- Calculus and Analytic Geometry (Math. 20C)
- Differential Equations (Math. 20D)
- Linear Algebra (Math. 20F)
- Complete calculus-based physics series with lab experience (Physics 2A-B-C)
- Chemistry 6A (except computer science and computer engineering majors)

Note: A total of ten quarter-units of general chemistry (including laboratory) will be recommended for students applying to all majors offered by the Department of Bioengineering.

Highest level of introductory computer programming language course offerings at the community college

Community college equivalent courses can be found at: http://www.cset.org

* Refer to the UC San Diego General Catalog to select major prerequisite recommendations for computer language courses.

Open Majors

The following majors are open to all admitted UCSD transfer students: aerospace engineering (offered through MAE through spring 2011), bioengineering: bioinformatics (offered through the BENG department), chemical engineering (offered through NE), computer engineering (offered through CSE), computer engineering (offered through ECE), computer science, electrical engineering, electrical engineering and society, engineering science (offered through MAE), engineering sciences (offered through SE), environmental engineering, mechanical engineering (offered through MAE through spring 2011), and structural engineering.
Pre-major Programs

There is one engineering pre-major program offered: (1) engineering physics. Subsequent acceptance to the major is dependent on performance in selected mathematics, science, and engineering screening courses as well as competitive grade-point average in the pre-major screening courses.

Pre-major transfer engineering students are expected to apply for acceptance to the major during their third quarter of their first year at UCSD. Acceptance to the major is based on the grade-point average in the screening courses only. The grade-point average required for acceptance to the major by pre-majors is set individually by each engineering program. Pre-majors should consult their departments concerning the appropriate screening courses and the current grade-point average standards for acceptance. In addition to the courses required by the departments, it is expected that all pre-major students will take twelve to eighteen units of general-education college requirements during their first year.

Pre-major transfer engineering students must apply to the major before the end of their third quarter as acceptance to any engineering major that has a pre-major by a transfer student will not be considered after the end of the third quarter of enrollment.

Impacted Majors

Since acceptance to impacted engineering majors is quite competitive for freshman and transfer applicants alike, academic standards are high.

Transfer students who choose impacted engineering major programs (bioengineering, biotechnology) as their first-choice major on their UC application are strongly encouraged to complete the major preparation classes listed previously.

Acceptance to impacted majors may be limited to the best transfer applicants, e.g., those who have been admitted to UCSD with the most complete lower-division preparation and the highest college grade-point averages. Since acceptance is restricted to these majors, transfer students are encouraged to apply to more than one major degree program.

It is strongly suggested that all students accepted into engineering programs consult their department’s academic advisor at an early stage to plan their lower-division engineering courses, and that they consult with a college academic counselor to arrange general-education courses around the required screening courses. Students admitted fall quarter should attend the engineering department’s orientation meetings during Welcome Week.

For specific program requirements for transfer students, please refer to the appropriate department’s listing which follow this section of the catalog.

Bioinformatics Programs

Students interested in applying to either the bioengineering: bioinformatics major (offered by the Department of Bioengineering), or the computer science major with a specialization in bioinformatics (offered by the Department of Computer Science and Engineering) should consult individual department listings which follow this section of the catalog.

CONTINUING UCSD STUDENTS

Continuing UCSD undergraduate students who wish to change into impacted majors must submit an application to the department on or before the target dates and must meet minimum requirements. Interested students should make an appointment to speak with the departmental undergraduate advisor for more details.

ACCESS OF NON-ENGINEERING MAJORS TO THE JACOBS SCHOOL OF ENGINEERING COURSES

The number of students enrolled in some courses offered by departments in the Jacobs School of Engineering must be restricted to meet the resources available. Students who have successfully completed all prerequisite courses will be enrolled in these restricted courses in the following order:

1. students accepted by the department to a major curriculum
2. students accepted by the department to a minor curriculum
3. students fulfilling a requirement for another major
4. all others, with permission of the department and instructor

Students should check with the departments concerning the limitations on specific courses and the requirements needed prior to attempting to enroll.

DOUBLE MAJORS AND MINORS

It is the policy of the UC San Diego Academic Senate not to approve double majors within engineering. Students who qualify for admission to graduate school and who have the extra time are encouraged to consider co-terminal B.S./Master’s degrees in one or two engineering disciplines.

For more information visit http://www.jacobsschool.ucsd.edu/academic/academic_undergrad/bs-ms.shtml.

ORIENTATION TO ENGINEERING

ECE 1A-B-C. This course series has no prerequisites and students will be given an introduction to the engineering profession and our undergraduate program. Exercises and practicums will develop the problem-solving skills needed to succeed in engineering. It is offered fall, winter, and spring.

INTEGRATIVE ENGINEERING EDUCATION

Engineering Student Services: Engineering Student Services (ESS) facilitates and encourages the professional, academic, and personal success of engineering students. The services available through Engineering Student Services are designed to assist students as they pursue their chosen degrees and to prepare them for life outside of the university as engineering professionals and responsible citizens.

The staff serve as a resource for those interested in applying to engineering majors; getting involved in student organizations; seeking internships; accessing tutoring, scholarship, and involvement information; or for those needing a referral to on-campus and community resources. In addition, support is provided to the Teams in Engineering Service (TIES) Program, Team Internship Program, and the California State Summer School for Mathematics and Science (COSMOS). For more information, visit the office in Engineering Building Unit 1, Room 1400, email the staff at ess@soe.ucsd.edu, or visit http://ess.ucsd.edu.

Teams in Engineering Service (TIES): Engineering undergraduates can place their technical and creative skills to work for San Diego nonprofit organizations through the Teams in Engineering Service (TIES) Program. Through TIES, multidisciplinary teams of UCSD students design, build, and deploy projects that solve technology-based problems for local community organizations, and receive technical elective (or academic) credit. For details, visit http://ties.ucsd.edu.

Team Internship Program (TIP): Under the direction of the Corporate Affiliates Program, this corporate-sponsored program gives students the opportunity to develop their engineering skills in a multidisciplinary team environment that provides real-world engineering experience in preparation for entering the workforce. In these full-time, competitive summer paid internships, students work on-site with industry partners as a systems-oriented solution team focused on a clearly defined and significant project. For details, visit http://www.jacobsschool.ucsd.edu/TIP.

The California State Summer School for Mathematics and Science (COSMOS) is a four-week residential pre-college academic experience in math, science, and engineering for top high school students. Students participate in one of the following eight academic courses (or clusters): 1. Computers in Everyday Life; 2. Engineering Design and Control of Kinetic Sculptures; 3. Living Oceans and Global Climate Change; 4. Earthquakes in Action; 5. Bright Ideas: Light at Work; 6. Exploring the Cosmos; 7. Biological Motivations for Tensegrity Structures; and 8. The Molecular Biology Revolution. In summer 2008, one-third of the admitted students were awarded full financial aid. For more information, visit http://www.jacobsschool.ucsd.edu/cosmos.

Bernard and Sophia Gordon Engineering Leadership Center: The mission of the Gordon Center is to train effective engineering leaders who create new products and jobs that benefit society. The Gordon Center offers an engineering leadership and awards program for undergraduate, graduate, and professional students with leadership potential. The Gordon Scholars participate in a comprehensive engineering leadership training program, which includes leadership workshops and forums, and summer programs that integrate theory and case studies with hands-on practice and mentoring. For details, visit http://www.jacobsschool.ucsd.edu/GordonCenter/.

2010-2011 UC SAN DIEGO GENERAL CATALOG • ENGINEERING: JACOBS SCHOOL OF
100A. Team Engineering (2)
Introduction to theory and practice of team engineering, including temperament and work styles; stages of team development; project management; communication, problem-solving, and conflict resolution skills; creativity; leadership; social entrepreneurship; and ethics. Students may not receive credit for both ENG 100 and ENG 100A.
Prerequisites: concurrent enrollment in or completion of one of the following: DOC 2, CAT 2, HUM 2, MMW 2, MCWP 50, or WCWP 10B, or consent of instructor.

100L. Team Engineering Laboratory (2)
Faculty-directed, multi-disciplinary, long-term engineering projects. Students use their technical knowledge to design and develop solutions to real problems in consultation with customers such as community organizations. Prerequisite: ENG 100 (required prior to or in concurrent enrollment with ENG 100).

ENG 100B. Engineering Leadership (2)
Engineering leadership attitudes, styles, principles, and approaches; stages of product development and evolution; strategic and critical thinking and problem solving for engineering projects; resource management; quality control; risk-analysis and risk-taking; engineering business economics, law, leadership and corporate ethics. Prerequisite: ENG 100A or ENG 100 or consent of the instructor.

201. Venture Mechanics (4)
Examines the engineering/entrepreneurship interface. Discovery, development, and implementation of new product ideas. Understanding markets, competitors, and selling innovations. Cultivating effective working relationships between research, engineering, manufacturing, and marketing elements of an organization. Priority enrollment given to engineering majors.

202. Enterprise Dynamics (4)
Case studies of start-ups, strategic technology management, practice in use of industrial decision-making tools, and speakers from successful firms combined with experience in making management decisions dynamically in a competitive computer-simulated enterprise. Field study of ongoing processes in a local high technology company. Priority enrollment given to engineering majors.

203. Applied Innovations (4)
Course includes the examination of business plans developed by early stage technology businesses. Students expected to work on the development of business plans for real, innovative business organizations. Will explore all of the business research and analysis that needs to be undertaken in order to develop a complete business plan. Completion of ENG 201 or ENG 202 preferred.

207. Corporate Entrepreneurship for Global Competitiveness (4)
Explore corporate entrepreneurship and innovation process using the medical device industry as a case example. This highly dynamic industry segment provides an approachable model to analyze corporate strategies and behaviors that affect overall competitiveness. Prerequisites: ENG 201, ENG 202, ENG 203 or consent of instructor.
Bioengineering

PROFESSORS
G. Cauwenberghs, Ph.D.
S. Chien, M.D., Ph.D., Director, The Institute of Engineering in Medicine
Y. C. Fung, Ph.D., Professor Emeritus
D. A. Gough, Ph.D.
M. J. Heller, Ph.D.
M. Intaglietta, Ph.D., Associate Professor, Radiology
M. J. H pylori, Ph.D.
M. K. Micou, Ph.D.
M. W. Berns, Ph.D.
M. W. Bjursten, Ph.D.
C. R. Cantor, Ph.D.
P. Citron
J. S. Lee, Ph.D.
K. Ley, M.D.
G. Paternostro, Ph.D.
P. Tong, Ph.D.

ASSOCIATE PROFESSORS
P. J. Arevalo Cabrales, Ph.D.
K. L. Christman, Ph.D.
A. J. Engler, Ph.D.
X. Huang, Ph.D.
S. Varghese, Ph.D.
K. Zhang, Ph.D.

LECTURER WITH POTENTIAL FOR SECURITY OF EMPLOYMENT
M. K. Micou, Ph.D.

ADJUNCT PROFESSORS
M. W. Berns, Ph.D.
L. M. Bjursten, Ph.D.
C. R. Cantor, Ph.D.
P. Citron
J. S. Lee, Ph.D.
K. Ley, M.D.
G. Paternostro, Ph.D.
P. Tong, Ph.D.

AFFILIATED FACULTY
R. B. Buxton, Ph.D., Professor, Radiology
P. C. Chau, Ph.D., Professor, Mechanical and Aerospace Engineering
J. W. Covell, M.D., Professor Emeritus, Medicine
M. H. Ellisman, Ph.D., Professor, Neurosciences
D. J. Hall, Ph.D., Assistant Adjunct Professor, Radiology
A. C. Kummel, Ph.D., Professor, Radiology
J. Lasheras, Ph.D., Distinguished Professor, Mechanical and Aerospace Engineering
R. L. Lieber, Ph.D., Professor, Orthopaedics
T. Liu, Ph.D., Associate Professor, Radiology
T. Nelson, Ph.D., Professor, Radiology
S. Nigam, M.D., Professor, Department of Pediatrics
J. H. Omens, Ph.D., Adjunct Professor, Medicine
M. Sailor, Ph.D., Professor, Chemistry and Biochemistry

S. Thomson, M.D., Ph.D., Professor in Research, Medicine
P. D. Wagner, M.D., Professor, Medicine
S. Ward, Ph.D., Assistant Professor, Radiology and Orthopaedic Surgery
J. B. West, M.D., Ph.D., Professor, Medicine

PROFESSIONAL RESEARCH STAFF
C. Barrett, Ph.D., Assistant Project Scientist
A. C. Chen, Ph.D., Associate Project Scientist
P. C. Chen, Ph.D., Project Scientist
B. K. Cho, Ph.D., Assistant Project Scientist
J. H. Harga, Ph.D., Assistant Project Scientist
Y. L. Hu, Ph.D., Associate Project Scientist
R. C. Kerckhoffs, Ph.D., Assistant Project Scientist
Y. S. Li, Ph.D., Project Scientist
M. R. Maurya, Ph.D., Assistant Project Scientist
A. P. Mihaylova, Ph.D., Associate Project Scientist
Z. Shi, Ph.D., Assistant Project Scientist
M. Temple-Wong, Ph.D., Assistant Project Scientist
A. G. Tsai, Ph.D., Research Scientist
C. Vera, Ph.D., Assistant Project Scientist
K. Zengler, Ph.D., Assistant Project Scientist

STUDENT AFFAIRS:
141 Powell-Focht Bioengineering Hall
Warren College
http://www.be.ucsd.edu

DEPARTMENTAL FOCUS

Bioengineering

is an interdisciplinary major in which the principles and tools of traditional engineering fields, such as mechanical, materials, electrical, and chemical engineering, are applied to biomedical and biological problems. Engineering plays an increasingly important role in medicine in projects that range from basic research in physiology to advances in biotechnology and the improvement of health-care delivery. By its very nature, bioengineering is broad and requires a foundation in the engineering sciences as well as in physiology and other biological sciences.

The overall mission of the Department of Bioengineering is to improve health and quality of life by applying engineering principles to scientific discovery and technology innovation and to train future leaders in bioengineering through inspiring education and dedicated mentorship.

The educational objectives of the Bioengineering program at UC San Diego are to produce graduates with a modern bioengineering education who will:

• apply the central areas of bioengineering, its underlying sciences, and related technologies in a broad range of careers
• use strong communication, learning, and teamwork skills to facilitate bioengineering practice and continued professional advancement
• act professionally, ethically, and in a socially responsible manner

At the undergraduate level, the department offers several four-year engineering majors. One leads to a B.S. degree in Bioengineering. This major prepares students for careers in the biomedical device industry and for further education in graduate school. Students completing the B.S. degree in Bioengineering have a broad preparation in traditional topics in engineering, allowing for a variety of career pathways. This program addresses the bioengineering topics of biomechanics, biotransport, bioinstrumentation, bioelectricity, biosystems, and biomaterials, and the complementary fields of systems and integrative physiology. Education in these areas allows application of bioengineering and other scientific principles to benefit human health by advancing methods for effective diagnosis and treatment of disease, e.g., through development of medical devices and technologies.

The department also offers a B.S. degree in Bioengineering: Biotechnology. This major prepares students for careers in the biotechnology industry and for further education in graduate school. The curriculum has a strong engineering foundation with emphasis on biochemical process applications. This program addresses the bioengineering topics of biochemistry, metabolism, kinetics, biotransport, biosystems, bioreactors, bioseparations, tissue engineering, and the complementary fields of cellular physiology. Education in these areas allows application of bioengineering and physicochemical principles to cellular and molecular biology, with the applications that benefit human health.

Although the Pre-Bioengineering: Premedical pre-major has been discontinued and the process has been initiated for the discontinuation and phase-out of the four-year major leading to a B.S. degree in Bioengineering: Premedical, all required courses will continue to be offered until students in the Pre-Bioengineering: Premedical pre-major who satisfy the requirements and transition into the Bioengineering: Premedical major and current students in the Bioengineering: Premedical major have graduated.

The department also offers a major leading to a B.S. degree in Bioengineering: Bioinformatics. Bioinformatics is the study of the flow of information (genetic, metabolic, and regulatory) in living systems to provide an understanding of the properties of cells and organisms. This major has been developed by the Departments of Bioengineering, Chemistry and Biochemistry, Computer Science and Engineering, and Division of Biological Sciences. Students wishing to major in bioinformatics may apply through any of these departments or the division. The Bioinformatics major in Bioengineering emphasizes systems engineering and model-based approaches to interpreting and integrating bioinformatics data. The Bioinformatics major prepares students for careers in the pharmaceutical, biotechnology, and biomedical software industries, and for further studies in graduate school.

The programs and curricula of Bioengineering emphasize education in the fundamentals of engineering sciences that form the common basis of all engineering subspecialties. Education with this emphasis is intended to provide students with an interdisciplinary engineering foundation for a career in which engineering practice may expand rapidly. In addition, elements of bioengineering design are incorporated at every level in the curricula. This is accomplished by integration of laboratory experimentation, computer applications, and exposure to real bioengineering problems throughout the program. In the Bioengineering and Bioengineering: Biotechnology majors, students also work in teams on a senior design project to design a solution to
a multidisciplinary bioengineering problem suggested by professionals in bioengineering industry, academia, or medicine.

The Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (EAC/ABET) is an organization with a mission of serving the public through promotion and advancement of education in fields including engineering, and ABET's strategic plans include accreditation of educational programs and promotion of quality and innovation in education (http://www.abet.org). At UC San Diego, Bioengineering and Bioengineering: Biotechnology have a relatively heavy emphasis on engineering, whereas Bioengineering: Bioinformatics and Bioengineering: Premedical have a relatively heavy emphasis on biological, chemical, and physical sciences. The Bioengineering and Bioengineering: Biotechnology programs are accredited by EAC/ABET. The Bioengineering: Bioinformatics and Bioengineering: Premedical programs are not accredited by a Commission of ABET.

At the graduate level, specialized curricula lead to the M.S., M.Eng. (Master of Engineering), and Ph.D. degrees, as well as an integrated B.S./M.S. degree. In addition to the Ph.D. degree, the department offers a Ph.D. degree with a specialization in Bioinformatics. It is intended for students who have an interdisciplinary persuasion to work across computers, biology, medicine, and engineering. For further information on the specialization, please consult with the Student Affairs Office. The M.Eng. degree is a terminal professional degree whereas the M.S. and Ph.D. degrees are research programs. (See section on master's degree programs.) The graduate programs are characterized by strong interdisciplinary relationships with the other engineering departments and Departments of Physics, Mathematics, Biology, Chemistry and Biochemistry, Medicine, and others, as well as with campus organizations such as the Institute of Engineering in Medicine, Institute for Mechanics and Materials, and the School of Medicine.

THE UNDERGRADUATE PROGRAM

MAJOR REQUIREMENTS

Specific course requirements for each of the majors are outlined in tables below. In addition to the required technical courses specifically indicated, a suggested scheduling of humanities and social science courses (HSS) is included in the curricula for students to use to meet college general-education requirements. To graduate, students must maintain an overall GPA of at least 2.0, and obtain at least a C– grade in each course required for the major. All courses required for the major must be taken for a letter grade.

Deviations from the required programs of study must be approved by the Undergraduate Studies Committee prior to students taking alternative courses. In addition, students must obtain departmental approval of technical elective (TE) course selections prior to students taking the course. In the ABET-accredited programs, TE courses are restricted to those that meet ABET standards. Courses such as BENG 196, 197, and 198 are encouraged, but do not count as upper-division technical electives. BENG 195 and 199 can be used as technical electives under certain conditions. Policy information may be obtained from the Student Affairs Office.

Students with accelerated academic preparation at admission to the university may vary the scheduling of lower-division courses such as mathematics, physics, and chemistry, but must first consult the department. Most lower-division courses are offered more than once each year to permit students some flexibility in their program scheduling. However, most upper-division bioengineering courses are taught only once each year. Deviations in the scheduling of upper-division Bioengineering courses are strongly discouraged, as such changes usually lead to a delay in graduation. The curricula shown in the tables below are consistent with the current scheduling of classes.

Minors are not offered in Bioengineering, and double major options are restricted. Students interested in double majors should consult the Student Affairs Office as early as possible.

GENERAL-EDUCATION/COLLEGE REQUIREMENTS

For graduation, each student must satisfy general-education course requirements determined by the student's college, as well as the major requirements determined by the department. The six colleges at UCSD require different general-education courses, and the number of such courses differs from one college to another. Each student should choose his or her college carefully, considering the special nature of the curriculum and the breadth of general education.

The bioengineering programs allow for general and social sciences (HSS) courses so that students can fulfill their college requirements. In the bioengineering ABET-accredited programs, students must develop a program that includes a total of at least forty units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. It should be noted, however, that some colleges require more than the ten HSS courses indicated in the Bioengineering, Bioengineering: Premedical, Bioengineering: Biotechnology, and Bioengineering: Bioinformatics curriculum tables. Accordingly, students in these colleges may take longer to graduate than the four years indicated in the schedule. Students must consult with their colleges to determine which HSS courses to take.

BIOENGINEERING

(ABET-Accredited Program)

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 20A</td>
<td>Math. 20B</td>
<td>Math. 20C</td>
</tr>
<tr>
<td>Chem. 6A</td>
<td>Chem. 6B</td>
<td>BILD 1</td>
</tr>
<tr>
<td>MAE 9 or 10</td>
<td>Phys. A</td>
<td>Phys. 2B/2BL</td>
</tr>
<tr>
<td>HSS4</td>
<td>HSS4</td>
<td>HSS4</td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 20D</td>
<td>Math. 20F/7</td>
<td>Math. 20E</td>
</tr>
<tr>
<td>Chem. 6BL1</td>
<td>MAE 1407</td>
<td>MAE 3</td>
</tr>
<tr>
<td>Phys. 2C/2CL</td>
<td>BENG 109</td>
<td>BENG 100</td>
</tr>
<tr>
<td>HSS4</td>
<td>HSS4</td>
<td>HSS4</td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENG 101</td>
<td>BENG 112A</td>
<td>BENG 112B</td>
</tr>
<tr>
<td>BENG 110</td>
<td>BENG 186B</td>
<td>BENG 172</td>
</tr>
<tr>
<td>MAE 9 or 10+</td>
<td>BENG 140A</td>
<td>BENG 140B</td>
</tr>
<tr>
<td>HSS4</td>
<td>BENG 103B</td>
<td>BENG 187A</td>
</tr>
</tbody>
</table>

1. Math. 6BL may be taken in any quarter within the first two years after completion of Chem. 6B.
2. BENG 1 may be taken in sophomore year.
3. Technical elective (TE) courses must be selected from a departmental approved list. Consult the Student Affairs Office.
4. Ten HSS courses are listed here; individual college requirements may be higher.
5. Recommended course, not required. For graduating seniors only.

BIOENGINEERING: BIOTECHNOLOGY

(ABET-Accredited Program)

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 20A</td>
<td>Math. 20B</td>
<td>Math. 20C</td>
</tr>
<tr>
<td>Chem. 6A</td>
<td>Chem. 6B</td>
<td>Chem. 6BL1/6C</td>
</tr>
<tr>
<td>MAE 9 or 10</td>
<td>Phys. A</td>
<td>Phys. 2B</td>
</tr>
<tr>
<td>HSS4</td>
<td>BENG 12</td>
<td>HSS4</td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 20D</td>
<td>Math. 20F</td>
<td>Math. 20E</td>
</tr>
<tr>
<td>Chem. 140A</td>
<td>Phys. 2C/2CL</td>
<td>Chem. 140B</td>
</tr>
<tr>
<td>BILD 1</td>
<td>BENG 130</td>
<td>BENG 100</td>
</tr>
<tr>
<td>HSS4</td>
<td>HSS4</td>
<td>HSS4</td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIBC 100</td>
<td>BENG 123</td>
<td>BENG 103B</td>
</tr>
<tr>
<td>CENG 101A</td>
<td>BIBC 102</td>
<td>BENG 160</td>
</tr>
<tr>
<td>MAE 170</td>
<td>BIDC 100</td>
<td>BENG 168</td>
</tr>
<tr>
<td>HSS4</td>
<td>HSS4</td>
<td>HSS4</td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENG 161A</td>
<td>BENG 161B</td>
<td>BENG 125</td>
</tr>
<tr>
<td>BENG 187B</td>
<td>BENG 187C</td>
<td>BENG 187D</td>
</tr>
<tr>
<td>BENG 166A</td>
<td>DE6</td>
<td>BENG 186A</td>
</tr>
<tr>
<td>DE6</td>
<td>TE3</td>
<td>TE3</td>
</tr>
</tbody>
</table>

1. Math. 20F and MAE 140 may be taken concurrently.
2. BENG 1 may be taken in senior year.
3. Technical elective (TE) courses must be selected from a departmental approved list. Consult the Student Affairs Office.
4. Ten HSS courses are listed here; individual college requirements may be higher.
5. Recommended course, not required. For graduating seniors only.

BIOENGINEERING: PREMEDICAL

(Not accredited by a Commission of ABET.)

This major is being discontinued. Current students should follow the table of courses below.

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 20A*</td>
<td>Math. 20B*</td>
<td>Math. 20C*</td>
</tr>
<tr>
<td>Chem. 6A*</td>
<td>Chem. 6B</td>
<td>Chem. 6BL1/6C</td>
</tr>
<tr>
<td>MAE 9 or 10*</td>
<td>Phys. A*</td>
<td>Phys. 2B*</td>
</tr>
<tr>
<td>HSS4</td>
<td>BENG 12</td>
<td>HSS4</td>
</tr>
</tbody>
</table>
SOPHOMORE YEAR
- Math. 20D
- Chem. 140A
- Phys. 2C/2CL
- BENG 109
- HSS4

JUNIOR YEAR
- BENG 110
- Chem. 140C
- Chem. 143A
- BILD 2

SENIOR YEAR
- BIPN 140
- BIPN 100
- BIBC 1023
- HSS4

* Seven of the eight courses used to compute the performance index upon which Pre-Bioengineering: Premedical majors are admitted to the major at the end of the freshman year. The other course must be in engineering, science, or mathematics.

1. Chem. 6B may be taken concurrently with Chem. 6C or in any quarter within the first two years after completion of Chem. 6B.
2. BENG 1 may be taken in sophomore year.
3. Technical elective (TE) courses must be selected from a departmental approved list. Consult the Student Affairs Office.
4. Ten HSS courses are listed here; individual college requirements may be higher.
5. Chem. 140C is not required for the major and can be used as a technical elective. Chem. 140C is a requirement for application to most medical schools.

BIOENGINEERING: BIOINFORMATICS

<table>
<thead>
<tr>
<th>(Not accredited by a Commission of ABET.)</th>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 112</td>
<td>CSE 12</td>
<td>BILD 94</td>
<td></td>
</tr>
<tr>
<td>Chem. 6A</td>
<td>Chem. 6B</td>
<td>Chem. 6B1/6C</td>
<td></td>
</tr>
<tr>
<td>Math. 20A</td>
<td>Math. 20B</td>
<td>Math. 20C</td>
<td></td>
</tr>
<tr>
<td>HSS4</td>
<td>HSS4</td>
<td>HSS4</td>
<td></td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR
- BILD 1
- Math. 20D
- Phys. 2A
- HSS4

JUNIOR YEAR
- BIBC 102/Chem. 114B
- BICD 100
- CSE 100/107
- HSS4

SENIOR YEAR
- BENG 182
- BENG 183
- BIBC 103
- HSS4

One course may be taken with Chem. 6C or in any quarter within the first two years after completion. The other course must be in engineering, science, or mathematics.

1. Chem. 6B may be taken concurrently with Chem. 6C or in any quarter within the first two years after completion of Chem. 6B.
2. Students may take the slower paced version, CSE 8A-8, instead of CSE 11.
3. Technical elective (TE) courses must be selected from a departmental approved list. Consult the Student Affairs Office.
4. Ten HSS courses are listed here; individual college requirements may be higher.

POLICIES AND PROCEDURES

Transfer Student Admission into Bioengineering or Bioengineering: Biotechnology

General advice: Transfer students are advised to complete the following courses for their major before enrolling at UC San Diego. Preparing well for the major helps students move efficiently toward graduation.

- Calculus I—for Science and Engineering (Math. 20A)
- Calculus II—for Science and Engineering (Math. 20B)
- Calculus and Analytic Geometry (Math. 20C)
- Differential Equations (Math. 20D)
- Linear Algebra (Math. 20F)
- Complete calculus-based physics series with lab experience (Physics 2A-B-C)
- Chemistry 6A except Computer Science and Computer Engineering majors

Note: A total of ten quarter-units of general chemistry (including laboratory) are strongly recommended for students applying to all majors offered by the Department of Bioengineering.

- Highest level of introductory computer programming language course offerings at the community college

Admission to Bioengineering or Bioengineering: Biotechnology

Because of heavy student interest in the Bioengineering and Biotechnology programs, and the limited resources available to accommodate this demand, maintenance of a high quality program makes it necessary to limit enrollments to the most qualified students.

Students admitted into an impacted major who transfer out of the impacted major may transfer back into it one time without meeting the full requirements for continuing student admission, provided they are in good academic standing.

Freshman Students

Freshman students who have excelled in high school and have declared Bioengineering or Biotechnology on their UCSD application for admission are eligible for direct admission into those majors.

Effective fall 2010 the UCSD Office of Admissions and Relations with Schools will calculate an admissions target number and admit the appropriate number of incoming freshmen into each impacted major using the “UCSD Comprehensive Review” score as a ranking method. (Visit “Undergraduate Admissions, Policies, and Procedures” and http://gort.ucsd.edu/admissions/ for detailed information concerning the “UCSD Comprehensive Review” score.) Students who meet the UCSD admission criteria will be admitted into their chosen impacted major, starting with the student having the highest “comprehensive review score,” until the admission target number is reached. These students will be notified directly by the Office of Admissions and Relations with Schools whether they have been admitted into their chosen impacted major.

Freshman students who applied but were not admitted directly from high school into the impacted Bioengineering or Biotechnology majors will be admitted into the major indicated as their “second choice” on the UC application (providing it is an “open” major).

Transfer Students

Effective fall 2010, the UCSD Office of Admissions and Relations with Schools will calculate an admissions target number and admit the appropriate number of incoming transfer students into each impacted major, based on the community college GPA. Additionally, transfer students should have completed courses equivalent to UCSD’s Math. 20A–B-C; Physics 2A–B; and Chem. 6A–B. Students who meet the UCSD admission criteria will be admitted into their chosen impacted major, starting with the student having the highest community college GPA, until the admission target number is reached.

(At least a 3.2 GPA in the community college transfer courses, and a 3.4 GPA in math., physics, and computer science courses, are likely to be needed to gain admission.) These students will be notified directly by the Office of Admissions and Relations with Schools whether they have been admitted into their chosen impacted major.

Transfer students who applied but were not admitted directly from community college into the impacted Bioengineering or Biotechnology majors will be admitted into the major indicated as their “second choice” on the UC application (providing it is an “open” major).

Continuing Students

For the 2010–11 academic year, ten “open” slots will be available in each of the impacted Bioengineering and Biotechnology majors for UCSD continuing students interested in applying.

Interested continuing students must not be past sophomore standing, as time to graduation would be delayed since departmental upper-division courses are currently offered only once a year.

Continuing students will be required to complete the following nine courses prior to applying: BILD 1; Chem. 6AB; MAE 9; Math. 20A–C; Physics 2AB. Upon completion of these courses, students will obtain an application from the Bioengineering Student Affairs Office. Applications must be submitted to the Bioengineering Student Affairs Office by Friday of the first week of instruction.

Continuing students’ applications will be ranked according to the GPA obtained in the nine required courses. Applications to an impacted major will be approved, starting with the student having the highest GPA in the nine required courses, until the predetermined target number is reached. The Bioengineering Student Affairs Office will notify students who are successful in transitioning into an impacted major to “officially” declare the appropriate major online via the Major/Minor link under Tools at http://tritonlink.ucsd.edu.
Continuing students who apply and are unable to transition into an impacted major will also be notified of their status in a timely manner by the Bioengineering Student Affairs Office.

Academic Advising

Upon admission to a major, students are encouraged to seek advice from departmental staff in the Bioengineering Student Affairs Office, Room 141, Powell-Focht Bioengineering Hall, to plan a program of study. Students are expected to chart their progress within their major. As the department may make a small number of course and/or curricular changes every year, it is imperative that students check their email for updates and consult a bioengineering undergraduate advisor on an annual basis.

To enroll in any courses required for a bioengineering major, a student must have satisfied prerequisite courses with a C- or better. (The department does not consider D or F grades as adequate preparation for subsequent material.) Also, the majority of bioengineering courses have enrollment restrictions and are open only to students who have been admitted to a bioengineering pre-major or major. Where these restrictions apply, the registrar will not enroll other students except by department approval. The department expects students to adhere to these policies and enroll in courses accordingly. Students are advised that they may be dropped from course rosters if prerequisites have not been met.

Bioengineering courses are typically offered only once a year and therefore should be taken in the recommended sequence. If courses are taken out of sequence, it may not always be possible to enroll in courses as desired or needed for timely graduation. If this occurs, students should seek immediate departmental advice.

Programmatic advice may be obtained from the Student Affairs Office. In addition, technical advice may be obtained from a specific bioengineering faculty advisor assigned to each student upon admission to the major.

Program Alterations, Exceptions to Requirements, and Special Programs

Exception to any program or course requirements are possible if approved by the Undergraduate Studies Committee before the courses in question are taken. Petitions may be obtained from the Bioengineering Student Affairs Office.

Capstone Design Course Sequence for Bioengineering and Bioengineering: Biotechnology

A capstone design course sequence is required for senior level students in the Bioengineering and Bioengineering: Biotechnology majors. The capstone design course sequence consists of a multiquarter upper-division sequence of courses that totals ten quarter-units and includes (1) a series of four one-unit courses on selection (BENG 187A), design (BENG 187B), implementation (BENG 187C), and presentation (BENG 187D) of design projects, with consideration of professional issues, and (2) a sequence of two- or three-unit laboratory design projects, offered in many of the primary areas of bioengineering, including biomechanics (BENG 119AB), systems bioengineering (BENG 127AB, 128AB, 129AB), nanoscale and molecular bioengineering (BENG 139AB), organ system bioengineering (BENG 147AB, 148AB, 149AB), tissue engineering and regenerative medicine (BENG 169AB), and bioinstrumentation (BENG 179AB). The design projects and presentations will be performed by student teams in the course sequence.

Independent Study for Undergraduates

Under the guidance of a bioengineering faculty member, lower- and upper-division level bioengineering students have opportunities to participate in independent study and research.

Upper-division bioengineering students may take BENG 199, Independent Study for Undergraduates. Lower-division bioengineering students may enroll in BENG 99, which is similar to BENG 199 except that less background in the curriculum is needed. These courses are taken as electives on a P/NP basis. Under certain conditions, a BENG 199 course may be used to satisfy upper-division technical elective course requirements for the major. Students interested in this alternative must identify a faculty member with whom they wish to work and propose a two-quarter research or study topic for Bioengineering and Bioengineering: Biotechnology majors, a one- or two-quarter research topic for Bioengineering: Premedical majors, and a one-quarter research topic for Bioengineering: Bioinformatics majors. Completion of two consecutive quarters of BENG 199 will satisfy both technical elective requirements in the Bioengineering and Bioengineering: Biotechnology majors. A Bioengineering: Premedical major may satisfy up to two of the three technical elective requirements in that major by completion of BENG 199 courses. Additionally, Bioengineering: Bioinformatics majors may also use a BENG 199 course to satisfy the major’s one technical elective course requirement. After obtaining the faculty advisor’s concurrence on the topic and scope of the study, the student must submit a Special Studies Course Form (each quarter) and a BENG 199 as Technical Elective Contract to the Undergraduate Studies Committee. These forms must be completed, approved, and processed prior to the beginning of the quarter in which the course is to be taken.

Teaching

Students interested in participating in the instructional activities of the department may take BENG 195, Undergraduate Teaching as an elective on a P/NP basis. Under certain conditions, it may be used to satisfy an upper-division technical elective in the Bioengineering: Premedical major. Policy in this regard may be obtained from the Student Affairs Office.

INDUSTRIAL INTERNSHIP PROGRAM AND GRADUATE INDUSTRIAL TRAINING PROGRAM

The Department of Bioengineering offers two industry-related programs: the Industrial Internship Program for undergraduates and the Graduate Industrial Training Program for graduate students. Both industrial programs are designed to complement the department’s academic curriculum with practical industry experience. The Bioengineering Industrial Internship Office is located in 125 Powell-Focht Bioengineering Hall. Students interested in these programs should contact the office at bioengineering@ucsd.edu well in advance of the quarter in which they would like to start their internship.

The Industrial Internship Program is available to undergraduate students who have completed all lower-division course requirements. Academic credit under BENG 196, Bioengineering Industrial Internship, can be earned by spending ten weeks or more as interns in an industrial setting. The intern may be involved in a range of activities, including design, analysis, manufacturing, testing, regulatory affairs, etc., under the direction of a mentor in the workplace. At the completion of the internship experience, students are required to submit a brief report to the mentor and faculty advisor describing their activities.

The Graduate Industrial Training Program is designed for students in the Master of Engineering Degree Program. This program serves to significantly enhance the professional development of M.Eng. students in preparation for leadership in the bioengineering industry. Students will complete an independent industrial bioengineering project in a company setting under the direction of an industrial and faculty advisor.

THE GRADUATE PROGRAM

Admission to the M.Eng., M.S., and Ph.D., as well as to the Ph.D. with a specialization in bioinformatics programs, is in accordance with the general requirements of the graduate division. Applicants are required to have completed a B.S. and/or M.S. degree by time of admission in a branch of engineering, natural sciences, mathematics, or quantitative life sciences. M.S. and Ph.D. applicants must have a GPA of 3.4 or better in technical courses. M.Eng. applicants should have competitive grades (greater than a 3.02 GPA). All applicants must submit GRE General Test scores, as well as three letters of recommendation from individuals who can attest to their academic or professional competence and to the depth of their interest in pursuing graduate study. Attention will be paid to the background and statement of purpose to ensure that they are consistent with the goals of the program. For example, whereas undergraduate research experience and the intention to pursue a research career or advanced studies are qualifications and interests typically well suited to the M.S. program, industrial experience and the intention to pursue a professional career are better suited to the M.Eng. program.

A minimum score of 550 (paper based), 213 (computer based), or 80 (Internet based) on the Test of English as a Foreign Language (TOEFL) is required of all international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English. Students who score below 600 on the TOEFL examination are strongly encouraged to enroll in an English as a Second Language program before beginning graduate work. (UC San Diego Extension offers an English language program during the summer as well as the academic year.) Admission to the M.S. or Ph.D. degree program is designated when
the applicants are judged to be appropriately qualified to pursue the degree requested at the time of application. Applicants are considered for admission for the fall quarter only.

A new graduate student who does not meet the prerequisites of required courses in the M.Eng., M.S., or Ph.D. curricula may have to take some basic courses to make up the deficiency. Thus, a student deficient in mathematics and mechanics may have to take Math. 110, CENG 101C or BENG 103B, and BENG 110, 122A in the first year and BENG 250A–B, 253 in the second year. A student deficient in biology and chemistry may have to take CHEM. 131 or BENG 130 and BIPN 100, 102 in the first year and BENG 230A-B-C in the second year.

Nonmatriculated students are welcome to seek enrollment in bioengineering courses via UC San Diego Extension’s Concurrent Enrollment program. However, such enrollment in a bioengineering graduate course must be approved by the instructor.

INTEGRATED BACHELOR’S/MASTER’S DEGREE PROGRAM

An integrated program leading to a bachelor of science and a master of science degree in bioengineering is offered to undergraduate students who are enrolled in any of the major programs offered by the Department of Bioengineering. Students interested in obtaining the M.S. degree within one year following completion of the B.S. degree may apply to the department for admission to the program during the fourth quarter prior to the receipt of the B.S. degree. The program is open only to UCSD undergraduates.

To be eligible, students must have completed the first two quarters of their junior year in residence at UCSD and have an upper-division GPA of 3.5 or better and a 3.0 overall UC GPA. Twelve units of bioengineering graduate-level courses must be completed during the student’s senior undergraduate year, in addition to the requirements for the bachelor’s degree; these twelve units will count toward the requirements for the master’s degree only and must be taken for a letter grade. It is the responsibility of the prospective B.S./M.S. student to select a bioengineering faculty member who is willing to serve as the student’s advisor. The student will also arrange (with their faculty advisor’s approval) a schedule of courses for the senior year that will fulfill the requirements for the B.S. degree while also serving the program planned for the M.S. degree. Students are expected to meet the requirements for the M.S. degree in one year (three consecutive academic quarters) from the date of the receipt of the B.S. degree.

MASTER OF SCIENCE DEGREE PROGRAMS

The Master of Science (M.S.) Program is intended to extend and broaden an undergraduate background and equip the graduates with fundamental knowledge in bioengineering. It is intended for those students wishing to gain experience in academic research, especially those considering continuing graduate studies at the doctoral level. The M.S. degree may be terminal or may be obtained while pursuing a doctorate. Doctoral degree students wishing to obtain the M.S. degree should refer to “Obtaining an M.S. Degree” under the section, “Doctoral Degree Program.”

An individualized program is agreed upon by the student and a faculty advisor. The plan of study must involve both course work and research, culminating in the preparation of a thesis.

A total of forty-eight units of credit is required:

- **Thirty-six units in course work.** Nine courses, of which six are core courses in Engineering Physics and Life Science and three are elective courses to be selected from course offerings in Bioengineering, other engineering/science departments, and the School of Medicine as described below. The faculty advisor must approve the three elective courses.

- **Twelve units in research (S/U grading only).** Bioengineering Research (BENG 299) under the direction of the chosen faculty research advisor.

A thesis based on the research is written and subsequently reviewed by the thesis advisor and two other faculty members appointed by the dean of Graduate Studies. The oral defense of the thesis constitutes the departmental master’s exam.

Required Core Courses for M.S. Degree Program

CORE COURSES (six required)

Engineering Physics

- BENG 221. Mathematical Methods for Bioengineering
- BENG 222. Continuum Mechanics and Transport Phenomena in Living Systems
- BENG 223. Thermodynamics, Statistical Mechanics, Interfacial Phenomena in Living Systems
- Life Science
- BENG 230A. Biochemistry
- BENG 230B. Cell and Molecular Biology
- BENG 231. Foundations of Physiology for Bioengineering

ELECTIVE COURSES (three required from any of the four categories)

Systems Biology

- BENG 203/CSE 283. Genomics, Proteomics, and Network Biology BENG 211. Systems Biology & Bioengineering I: Biological Components
- BENG 212. Systems Biology & Bioengineering II: Network Reconstruction
- BENG 213. Systems Biology & Bioengineering III: Building & Simulating Large-Scale In Silico Models

Regenerative Medicine and Imaging

- BENG 230C. Cardiovascular Physiology
- BENG 230D. Respiratory and Renal Physiology
- BENG 241A. Foundations of Tissue Engineering
- BENG 280A. Principles of Biomedical Imaging
- BENG 280B. Comparative Biomedical Imaging

Multiscale Bioengineering

- BENG 238/MED 238. Molecular Biology of the Cardiovascular System
- BENG 247A/ECE 247A. Advanced BioPhotonics
- BENG 247B/ECE 247B. BioElectronics
- BENG 247C/ECE 247C. BioNanotechnology
- BENG 250A. Biomechanics
- BENG 276/Chem. 276/Math. 276. Numerical Analysis in Multi-Scale Biology

Other Courses That Can Serve as Electives

BENG 207. Topics in Bioengineering

Course given at the discretion of the faculty on current topics in bioengineering. (The specific topics course must be approved by the Student Affairs Office.) Graduate level courses must be approved by the assigned advisor (or thesis advisor if determined).

SEMINARS (required)

- BENG 281. Seminar in Bioengineering
- BENG 282. Seminar: Faculty Research

Restrictions to core course work requirements are as follows:

1. Units obtained in BENG 281, 299, or 501 may not be applied toward the course work requirement.
2. No more than a total of eight units of BENG 296 and 298 may be applied toward the course work requirement.
3. No more than twelve units of upper-division 100-level bioengineering courses may be applied toward the course work requirement.

Students must maintain at least a B average in the courses taken to fulfill the degree requirements.

Master’s Time Limit Policy

Full-time M.S. students are permitted seven years of part-time study in which to complete all requirements. While there are no written time limits for part-time students, the department has the right to set individual deadlines if necessary.

A strong effort is made to schedule M.S.-level course offerings so that students may obtain their M.S. degree in one year of full-time study or two years of part-time study (see regulations on part-time study under “Graduate Studies”). Entering students who do not meet the prerequisites of these core
courses may have to take some basic courses to make up the deficiency.

A candidate admitted for the M.S. degree who wishes to transfer to the Ph.D. program must consult the Student Affairs Office concerning the transfer before completion of the M.S. program.

Change of Degree Aim

Upon completion of the requirements for the M.S. degree, students are not automatically eligible for admission to the Ph.D. program. M.S. candidates who wish to pursue a doctorate must submit an application for a change in status to the Graduate Studies Committee. The application must be approved and signed by a bioengineering faculty member who expects to serve as the student’s Ph.D. advisor. Applications will be reviewed by an ad hoc faculty committee. If the committee recommends that the student has good potential for success in the doctoral program, the student will be given the opportunity to take an oral examination equivalent to the Ph.D. Departmental Qualifying Examination. At the time of that exam, an assessment will be made concerning admission to the Ph.D. program.

A change of status from a master’s program to the doctoral program requires that the student meet the minimal grade-point average required by the department of doctoral candidates.

MASTER OF ENGINEERING DEGREE PROGRAM

The department offers a master of engineering (M.Eng.) degree. The purpose of this degree is to prepare design and project engineers for careers in the medical and biological engineering industries within the framework of the graduate program of the Department of Bioengineering. It is a terminal professional degree in engineering, which includes recognition of the importance of breadth in technical knowledge and sufficient electives to address job-specific interests and professional skills such as economics, management, and business. It is intended for students who are primarily interested in engineering design, development, manufacturing, and management within an industrial setting.

Students who may be interested in continuing to the Ph.D. program must apply to the M.S. program and not the terminal M.Eng. program.

The M.Eng. program is a flexible, course-intensive terminal professional degree, designed to be completed in one academic year of full-time study. It does not require a comprehensive exam. However, students must enroll for technical elective credit in BENG 295, Bioengineering Design Project and Industrial Training, under the direction of a faculty instructor. This is done by participating in the Graduate Industrial Training Program, which allows students to work in an industrial setting on bioengineering projects in order to gain practical experience. (See “Industrial Internship Program” and “Graduate Industrial Training Program” sections of this catalog.) BENG 295 course requirements include a written technical report.

In addition to enrolling in one to two quarters (four to eight units) of BENG 295, Bioengineering Design Project and Industrial Training, students must select six courses from the approved core areas, one to two courses from the approved technical elective course list, and three courses from the approved general elective course list. Such core courses and technical and general electives are described below.

In selecting breadth courses, students must be mindful of the prerequisite requirements for some of the courses listed. The lists below are based on the current graduate course offerings of the bioengineering and other engineering departments. The Graduate Studies Committee will review the M.Eng. course lists annually and update them as course offerings change. M.Eng. students are required to complete course requirements with a grade of B or better.

Students must also enroll in BENG 291, Senior Seminar I: Professional Issues in Bioengineering. This course instills skills for personal and organizational development during lifelong learning. Students prepare portfolios and a model NIH small business research grant.

Required Core Courses for M.Eng. Degree Program

CORE COURSES (six required)

Engineering Physics
- BENG 221. Mathematical Methods for Bioengineering
- BENG 222. Continuum Mechanics and Transport Phenomena in Living Systems
- BENG 223. Thermodynamics, Statistical Mechanics, and Interfacial Phenomena in Living Systems

Life Science
- BENG 230A. Biochemistry
- BENG 230B. Cell and Molecular Biology
- BENG 230C. Cardiovascular Physiology
- BENG 230D. Respiratory and Renal Physiology
- BENG 231. Foundations of Physiology for Bioengineering
- Tissue Engineering
- BENG 241A. Foundations of Tissue Engineering Science
- BENG 241B. Methods in Tissue Engineering Science
- BENG 242/MATS 257. Polymer Science and Engineering

Imaging
- BENG 247A. Advanced Biophotonics
- BENG 280A. Principles of Biomedical Imaging
- BENG 280B. Comparative Biomedical Imaging

Other approved core graduate courses taught by bioengineering faculty that satisfy the depth requirement of the M.Eng. degree as approved by the Graduate Studies Committee.

TECHNICAL ELECTIVE COURSES FOR M.ENG. DEGREE (three required, one of which must be BENG 295)
- BENG 203/CSE 283. Genomics, Proteomics, and Network Biology
- BENG 207. Neuromuscular Physiology and Biomechanics
- BENG 208. Topics in Bioengineering with Lab
- BENG 211. Systems Biology and Bioengineering I. Biological Components
- BENG 212. Systems Biology and Bioengineering II. Network Reconstruction
- BENG 213. Systems Biology and Bioengineering III. Building and Simulating Large-Scale in Silico Models
- BENG 238/MED 238. Molecular Biology of the Cardiovascular System
- BENG 247B/ECE 247B. Bioelectronics
- BENG 247C/ECE 247C. Bionanotechnology
- BENG 250A. Biomechanics
- BENG 250B. Advanced Biomechanics
- BENG 253. Biomedical and Transport Phenomena
- BENG 260/BGGN 260. Neurodynamics
- BENG 267. Microcirculation in Health and Disease
- BENG 276/Chem. 276/Math. 276. Numerical Analysis in Multiscale Biology
- BENG 295. Bioengineering Design Project - required
- MAE 210A/CENG 210A. Fluid Mechanics I
- MAE 210B. Fluid Mechanics II
- MAE 210C. Fluid Mechanics III
- MAE 221/CENG 221A. Heat and Mass Transfer
- MAE 229A/MATS 211A. Mechanical Properties
- MAE 231A. Solid Mechanics
- MAE 231B. Elasticity
- MAE 231C. Anelasticity
- MAE 280A. Linear Systems Theory
- MAE 293. Advanced Computer Graphics for Engineers and Scientists
- MATS 252/MAE 266. Biomaterials and Medical Devices
- MATS 253/MAE 267. Nanomaterials and Properties
- CSE 202. Algorithm Design and Analysis
- CSE 210. Principles of Software Engineering
- CSE 250A. Artificial Intelligence: Search and Reasoning
Ph.D. in Bioengineering with Specialization in Multiscale Biology

As of winter 2009, the UCSD campus is offering a new Ph.D. specialization in Multiscale Biology that will be available to doctoral candidates in participating programs that span four divisions: Biological Sciences, Physical Sciences, Jacobs School of Engineering, and Health Sciences at UCSD. The Ph.D. specialization is designed to allow students to obtain standard basic training in their chosen field within the Biological Sciences, Physical Sciences, Engineering and Health Sciences with training in integrative and quantitative analysis across multiple scales of biological organization from molecule to organism in health and disease into their graduate studies. It trains a new cadre of Ph.D. scientists and provides a unique interdisciplinary education at the interfaces between the biological, medical, physical, and engineering sciences.

The specific objectives of this program are:
1. Focused collaboration across nine graduate degree programs train a new generation of cross-disciplinary scientist.
2. State-of-the-art interdisciplinary training through a new technology-centered hands-on graduate laboratory course curriculum.
3. Novel emphasis on research aimed at integrative and quantitative analysis across multiple scales of biological organization from molecule to organism in health and disease.

Prospective students must apply and be admitted into the Ph.D. program in bioengineering described previously. (For more information, see the Department of Bioengineering and/or the Graduate Interfaces Training Program administered within the Department of Chemistry and Biochemistry (4010 York Hall, Revelle College).

DOCORAL DEGREE PROGRAM

The bioengineering Ph.D. program is intended to prepare students for a variety of careers in research and teaching. Therefore, depending on the student’s background and ability, research is initiated as soon as possible. Bioengineering students have specific course requirements and must maintain a minimum grade-point average of 3.4 in these courses. Students, in consultation with their advisors, develop course programs that will prepare them for the Departmental Qualifying Examination and for their dissertation research. These programs of study and research must be planned to meet the time limits established to advance to candidacy and to complete the requirements for the degree. Doctoral students who have passed the Departmental Qualifying Examination may take any course for an S/U grade with the exception of courses required by the Departmental or Senate Qualifying Examination Committee. It is recommended that all bioengineering graduate students take a minimum of two courses (other than research) per academic year after passing the Departmental Qualifying Examination. Details can be obtained from the Student Affairs Office.

Curriculum for First-Year Ph.D. Students

All bioengineering students are expected to enroll for letter grade credit in the core courses in Engineering Physics and Life Sciences tracks listed below. In addition they are required to take three electives for a letter grade from among the courses listed based on advice from the graduate advisor. Each incoming student will be assigned a bioengineering faculty advisor who will serve as a graduate advisor until the student chooses a thesis advisor. First-year students are also required to enroll in two one-credit seminars.

CORE COURSES (all six required)

Engineering Physics
- BENG 221. Mathematical Methods for Bioengineering
- BENG 222. Continuum Mechanics and Transport Phenomena in Living Systems
- BENG 223. Thermodynamics, Statistical Mechanics, Interfacial Phenomena in Living Systems

Life Science
- BENG 230A. Biochemistry
- BENG 230B. Cell and Molecular Biology
- BENG 231. Foundations of Physiology for Bioengineering

ELECTIVE COURSES (three required, from any of the four categories)

Systems Biology
- BENG 203/CSE 283. Genomics, Proteomics, and Network Biology
- BENG 211. Systems Biology and Bioengineering I: Biological Components
- BENG 212. Systems Biology and Bioengineering II: Network Reconstruction
- BENG 213. Systems Biology and Bioengineering III: Building and Simulating Large-Scale In Silico Models

Regenerative Medicine and Imaging
- BENG 230C. Cardiovascular Physiology
- BENG 230D. Respiratory and Renal Physiology
- BENG 241A. Foundations of Tissue Engineering
- BENG 280A. Principles of Biomedical Imaging
- BENG 280B. Comparative Biomedical Imaging

Multiscale Bioengineering
- BENG 238/MED 238. Molecular Biology of the Cardiovascular System
- BENG 247A/ECE 247A. Advanced Biophotonics
- BENG 247B/ECE 247B. Bioelectronics
SEMINARS (required)
Graduate level courses approved by the assigned Student Affairs Office.)

Other Courses That Can Serve as Electives

BENG 207. Topics in Bioengineering
Course is given at the discretion of the faculty on current topics of interest in bioengineering. (The specific topics course must be approved by the Student Affairs Office.)

Graduate level courses approved by the assigned advisor (or thesis advisor if determined).

SEMINARS (required)

- BENG 281. Seminar in Bioengineering
- BENG 282. Seminar: Faculty Research

In addition to the above mentioned breadth requirements, students must complete the following courses in their second and subsequent years of study:

- At least two four-unit courses from an approved list that includes the bioengineering graduate course sequences, other engineering/science course offerings, and School of Medicine courses. Students often take SOM courses to fulfill the second-year course requirements. The faculty advisor must approve the courses. Approved courses include BENG 203/CSE 283, BENG 207, BENG 230D, BENG 238/MED 238, BENG 247A–B–C, BENG 250B, MAE 207, MAE 210A–B–C, MAE 221A, MAE 231A–B–C, MAE 267/MATS 253, ECE 251A–B, and Chem. 211.

- One quarter of BENG 501. Teaching Experience
 Courses comprising subject areas as well as subsequent requirements and composition of the examination committee, must be approved by the Graduate Studies Committee. Students are advised to seek such approval well in advance of their expected examination date, preferably while planning graduate studies.

Teaching experience is required of all bioengineering Ph.D. students prior to taking the Senate Qualifying Exam described below. Teaching experience is defined as service as a graduate student instructor in a course designated by the department. The total teaching requirement for new Ph.D. students is four quarters at 25 percent effort (ten hours per week). At least one quarter of teaching experience is required during the first year (prior to the departmental qualifying examination) and at least one quarter in the second year. Teaching experience can be fulfilled as a requirement for student support or taken as a course for academic credit (BENG 501). Students must contact the Student Affairs Office to plan for completion of this requirement.

The **Senate Qualifying Examination** is the second examination required of bioengineering Ph.D. students. In preparation for this examination, students must have completed the Departmental Qualifying Examination and the departmental teaching experience requirement, obtained a faculty research advisor, and identified a topic for their dissertation research and made initial progress. At the time of application for advancement to candidacy, a doctoral committee responsible for the remainder of the student’s graduate program is appointed by the Graduate Council. The committee conducts the Senate Qualifying Examination, during which students must demonstrate the ability to engage in thesis research. This involves the presentation and defense of a plan for the thesis research project. Upon successful completion of this examination, students are advanced to candidacy and are awarded the Candidate in Philosophy degree (see “Graduate Studies” section in this catalog).

The **Dissertation Defense** is the final Ph.D. examination. Upon completion of the dissertation research project, the student writes a dissertation that must be successfully defended in a public presentation and oral examination conducted by the doctoral committee. A complete copy of the student’s dissertation must be submitted to each member of the doctoral committee approximately four weeks before the defense. It is understood that this copy of the dissertation given to committee members will not be the final copy, and that the committee members may suggest changes in the text at the time of the defense. This examination must be conducted after completion of at least three quarters from the date of advancement to doctoral candidacy. Acceptance of the dissertation by the Office of Graduate Studies and the university librarian represents the final step in completion of all requirements for the Ph.D.

There is no formal foreign language requirement for doctoral candidates. Students are expected to master whatever language is needed for the pursuit of their own research.

Obtaining an M.S. Degree
Ph.D. students may obtain the M.S. degree by completing the course work requirements and by passing the Ph.D. departmental qualifying examination. Course work requirements include successful completion of a total of forty-eight units of credit comprising Engineering Physics and Life Science and two four-unit courses from an approved list taken during the second year of the Ph.D. degree (see details on course work requirements in the section “Doctoral Degree Program”). Students should consult with the Student Affairs Office in advance of their second year of study concerning required paperwork and deadlines for conferral of the M.S. degree.

Ph.D. Time Limit Policy
Precandidacy status is limited to three years. Doctoral students are eligible for university support for six years. The defense and submission of the doctoral dissertation must be within seven years.

Evaluations
In the spring of each year, the faculty evaluate each doctoral student’s overall performance in course work, research, and prospects for financial support for future years. A written assessment is given to the student after the evaluation. If a student’s work is found to be inadequate, the faculty may determine that the student cannot continue in the graduate program.

Industrial Internship Program and Graduate Industrial Training Program
The Department of Bioengineering offers two industry-related programs: the **Industrial Internship Program** for undergraduates and the **Graduate Industrial Training Program** for graduate students. Both industrial programs are designed to complement the department’s academic curriculum with practical industry experience. The Bioengineering Industrial Internship Office is located in 125 Powell-Focht Bioengineering Hall. Students interested in these programs should contact the office at bioengineering@ucsd.edu well in advance of the quarter in which they would like to start their internship.

The **Industrial Internship Program** is available to undergraduate students who have completed all lower-division course requirements. Academic credit under BENG 196, Bioengineering Industrial Internship, can be earned by spending ten weeks or more as interns in an industrial setting. The internship may be involved in a range of activities, including design, analysis, manufacturing, testing, regulatory affairs, etc., under the direction of a mentor in the workplace. At the completion of the internships experience, students are required to submit a brief report to the mentor and faculty advisor describing their activities.

The **Graduate Industrial Training Program** is designed for students in the Master of Engineering Degree Program. This program serves to significantly enhance the professional development of M.Eng. students in preparation for leadership in the bioengineering industry. Students will complete an independent industrial bioengineering project in a company setting under the direction of an industrial and faculty advisor.

COURSES
For course descriptions not found in the UC San Diego General Catalog, 2010–1, please contact the department for more information.

Note: The department will endeavor to offer the courses as outlined below; however, unforeseen circumstances sometimes mandate a change of scheduled offerings. Students are strongly advised to check with the department’s Student Affairs Office. This is of particular importance in planning schedules to satisfy graduation requirements.

The following schedule is tentative for the academic year 2010–11 only. The quarter in which a course is scheduled may differ in subsequent academic years. Students should consult TritonLink and the Student Affairs Office to obtain current information.

Prerequisites are enforced when students register for courses. Students who have satisfied prerequisites at another institution or by AP credit need to be pre-authorized to register in these courses. If pre-authorization is necessary, students should contact the Student Affairs Office before the scheduled registration period.

- BENG 247C/ECE 247C. Bionanotechnology
- BENG 250A. Biomechanics
- BENG 276/Chem. 276/Math. 276. Numerical Analysis in Multiscale Biology
LOWER-DIVISION

BENG 1. Introduction to Bioengineering (4)
An introduction to the central topics of bioengineering in a seminar format. The principles of problem definition, team design, engineering inventiveness, information access, communication, and professional responsibility will be emphasized. P/NP grading only. Prerequisite: none. (W)

BENG 87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and under the direction of individual faculty, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen. (F,W,S)

BENG 97. Internship/Field Studies (1–4)
An enrichment program available to a limited number of lower-division undergraduate students, which provides work experience with industry, government offices, and hospitals. The internship is coordinated through UCSD’s Academic Internship Program under the supervision of a faculty member and an industrial, government, or hospital employee. Prerequisites: lower-division standing, completion of thirty units of UCSD undergraduate study, a minimum UCSD GPA of 3.0, and a completed and approved Special Studies form. (F,W,S)

BENG 98. Directed Group Study (1–4)
Directed group study on a topic or in a field not included in the regular department curriculum. (P/NP grades only.) Prerequisites: lower-division standing, completion of thirty units of undergraduate study at UCSD with a UCSD GPA of at least 3.0 and consent of a Bioengineering faculty member; completed and approved Special Studies form.

BENG 99. Independent Study for Undergraduates (4)
Independent reading or research by arrangement with a Bioengineering faculty member. (P/NP grades only.) Prerequisites: lower-division standing, completion of thirty units of undergraduate study at UCSD with a UCSD GPA of at least 3.0 and consent of a Bioengineering faculty member; completed and approved Special Studies form.

BENG 99R. Independent Study (1)
Independent study or research under direction of a member of the faculty. Prerequisites: student must be of first-year standing and a Regent’s Scholar; approved Special Studies form.

UPPER-DIVISION

BENG 100. Introduction to Bioengineering Design (4)
A general introduction to bioengineering design, including examples of engineering analysis and design applied to representative topics in biomechanics, bioinstrumentation, biomaterials, biotechnology, and related areas. A review of technological needs, design methodology, testing procedures, statistical analysis, governmental regulation, evaluation of costs and benefits, quality of life, and ethical issues. Prerequisites: BENG 1; grade of C– or better in Math. 21C or Math. 20C and Math. 21D or Math. 20D, and Phys. 2C; majors only. (S)

BENG 101. Foundations of Biomedical Imaging (4)
An introduction to the principles and applications of biomedical imaging, with emphasis on the acquisition, processing, display of imagery, and design of imaging systems. Filtering, convolution, and Fourier methods. Microscopy, radiography, computed tomography, magnetic resonance, ultrasound, and nuclear imaging. Prerequisites: Grade of C– or better in BENG 100; majors only or consent of department. (F)

BENG 103B. Bioengineering Mass Transfer (4)
Mass transfer in solids, liquids, and gases with application to biological systems. Free and facilitated diffusion. Convective mass transfer, Diffusion-reaction phenomena. Active transport, passive transport. Mass transfer coefficients. Steady and unsteady state. Flux-force relationships. (Credit not allowed for both CENG 101C and BENG 103B.) Prerequisites: grade of C– or better in CENG 101A or BENG 112A; majors only or consent of instructor. (S)

BENG 109. Bioengineering Statics and Dynamics (4)
Newton’s Laws. Static resultant forces and moments. Conservation laws of dynamics. Muscle and joint loads. Human body dynamics, locomotion, and clinical applications. Bodies in contact friction, momentum, and impulse impact and injury. Work, power, and energy relationships. Bioengineering design problems. Prerequisites: grade of C– or better in Math. 21D or Math. 20D and Phys. 2C; majors only or consent of instructor. (W)

BENG 110. Continuum Mechanics (4)
An introduction to continuum mechanics of both living and nonliving bodies. The areas of motion and free-body diagrams. Stresses. Deformation. Compatibility conditions. Constitutive equations. Properties of common solids and fluids. Derivation of field equations and boundary conditions. Applications to bioengineering design. Prerequisites: grades of C– or better in Physics 2A, 2B, 2C, and BENG 109; majors only or consent of instructor. (F)

BENG 112A. Biomechanics (4)
Introduction to physiological systems, with emphasis on structure and function of major tissues and organs. Application of mechanics to understand the behavior of these tissues and organs at microscopic and macroscopic levels. Bioelastic solids. Rigid body biomechanics. Biofluids. Bioengineering and medical design. Prerequisites: grade of C– or better in BENG 110; majors only or consent of instructor. (W)

BENG 112B. Biomechanics (4)
Biomechanics of living tissues with emphasis on continuum analysis of problems in biofluid and cell mechanics. Engineering design and problem solving in the biomechanics of mammalian tissues, especially those of the cardiovascular system. Prerequisites: grade of C– or better in BENG 112A; majors only or consent of instructor. (S)

BENG 119A. Design Development in Biomechanics (3)
Development of design project in biomechanics. Prerequisites: concurrent enrollment in BENG 187B; Bioengineering or Biotechnology majors only or consent of instructor. (W)

BENG 119B. Design Implementation in Biomechanics (3)
Implementation of design project in biomechanics. Prerequisites: grade of C– or better in BENG 119A; concurrent enrollment in BENG 187C; Bioengineering or Biotechnology majors only or consent of instructor. (W)

BENG 120A. Design Development in Cellular Systems Bioengineering (3)
Development of design project in cellular systems bioengineering. Prerequisites: grade of C– or above in BENG 120A; concurrent enrollment in BENG 187C; Bioengineering or Biotechnology majors only or consent of instructor. (W)

BENG 120B. Design Implementation in Cellular Systems Bioengineering (3)
Implementation of design project in cellular systems bioengineering. Prerequisites: grade of C– or above in BENG 120A; concurrent enrollment in BENG 187C; Bioengineering or Biotechnology majors only or consent of instructor. (W)

BENG 120C. Design Development in Molecular Systems Bioengineering (3)
Development of design project in molecular systems bioengineering. Prerequisites: grade of C– or above in BENG 120C; concurrent enrollment in BENG 187C; Bioengineering or Biotechnology majors only or consent of instructor. (W)

BENG 129A. Design Development in Molecular Systems Bioengineering (3)
Development of design project in molecular systems bioengineering. Prerequisites: grade of C– or above in BENG 129A; concurrent enrollment in BENG 187C; Bioengineering or Biotechnology majors only or consent of instructor. (W)

BENG 129B. Design Implementation in Molecular Systems Bioengineering (3)
Implementation of design project in molecular systems bioengineering. Prerequisites: grade of C– or above in BENG 129B; concurrent enrollment in BENG 187C; Bioengineering or Biotechnology majors only or consent of instructor. (W)

BENG 129C. Design Development in Bioinformatics Bioengineering (3)
Development of design project in bioinformatics bioengineering. Prerequisites: concurrent enrollment in BENG 129C; Bioengineering or Biotechnology majors only or consent of instructor. (F)

BENG 129D. Design Implementation in Bioinformatics Bioengineering (3)
Implementation of design project in bioinformatics bioengineering. Prerequisites: concurrent enrollment in BENG 129D; Bioengineering or Biotechnology majors only or consent of instructor. (F)

BENG 130. Molecular Physical Chemistry (4)
An introduction to physical principles that govern biophysical matter and processes. Thermodynamic principles and their molecular origin, structural basis of life and physical and conceptual models to illustrate life phenomena. Prerequisites: grade of C– or better in Chem. 6B, Math. 20A, 20B, Physics 2A, 2B, 2C; majors only or consent of instructor. (W)

BENG 139A. Design Development in Molecular Biotechnology (3)
Development of design project in molecular biotechnology. Prerequisites: grade of C– or above in BENG 139A; concurrent enrollment in BENG 187C; Bioengineering or Biotechnology majors only or consent of instructor. (W)

BENG 140A. Bioengineering Physiology (4)
Introductory mammalian physiology for bioengineering students, with emphasis on control mechanisms and systems. Credit not allowed for both CENG 101C and BENG 140A.
BENG 140B. Bioengineering Physiology (4)
Introductory mammalian physiology for bioengineering students, with emphasis on control mechanisms and engineering principles. Digestive, respiratory, renal, and reproductive systems; regulation of metabolism, and defense mechanisms. (Credit not allowed for both BIPN 102 and BENG 140B.) Prerequisites: grade of C– or better in Chem. 6A, 6B, Physics 2A, 2B, 2C, BILD 1; majors only or consent of instructor. (W)

BENG 147A. Design Development in Neural Engineering (3)
Development of design project in neural engineering. Prerequisites: concurrent enrollment in BENG 187B; Bioengineering or Bioengineering: Biotechnology majors only or consent of instructor. (F)

BENG 147B. Design Implementation in Neural Engineering (3)
Implementation of design project in neural engineering. Prerequisites: grade of C– or above in BENG 147A; concurrent enrollment in BENG 187C; Bioengineering or Bioengineering: Biotechnology majors only or consent of instructor. (W)

BENG 148A. Design Development in Cardio Bioengineering (3)
Development of design project in cardiac bioengineering. Prerequisites: concurrent enrollment in BENG 187B; Bioengineering or Biotechnology: Biotechnology majors only or consent of instructor. (F)

BENG 148B. Design Implementation in Cardio Bioengineering (3)
Implementation of design project in cardiac bioengineering. Prerequisites: grade of C– or above in BENG 148A; concurrent enrollment in BENG 187C; Bioengineering or Biotechnology: Biotechnology majors only or consent of instructor. (W)

BENG 149A. Design Development in Vascular Bioengineering (3)
Development of design project in vascular bioengineering. Prerequisites: concurrent enrollment in BENG 187B; Bioengineering or Biotechnology: Biotechnology majors only or consent of instructor. (F)

BENG 149B. Design Implementation in Vascular Bioengineering (3)
Implementation of design project in vascular bioengineering. Prerequisites: grade of C– or above in BENG 149A; concurrent enrollment in BENG 187C; Bioengineering or Biotechnology: Biotechnology majors only or consent of instructor. (W)

BENG 160. Chemical and Molecular Bioengineering Techniques (4)
Introductory laboratory course in current principles and techniques of chemistry and molecular biology applicable to bioengineering. Quantitation of proteins and nucleic acids by spectrophotometric, immunological, and enzymatic methods. Separations and purification by centrifugation, chromatographic, and electrophoretic methods. Course material fee may apply. Prerequisites: grade of C– or better in BIBC 2A, 2B, BILD 100, MAE 172; majors only or consent of instructor. (S)

BENG 161A. Bioreactor Engineering (4)
Engineering, biochemical, and physiological considerations in the design of bioreactor processes: enzyme kinetics, mass transfer limitations, microbial growth, and product formation kinetics. Fermentation reactor selection, design, scale-up, controls. Quantitative bioengineering analysis and design of biochemical processes and experiments on biomolecules. Prerequisites: grade of C– or better in Chem. 114B or BIBC 102 (may be taken concurrently), BENG 122A or BENG 123, and BIBC 103 or BENG 160; majors only or consent of instructor. (F)

BENG 161B. Biochemical Engineering (4)
Commercial production of biochemical commodity products. Application of genetic control systems and mutant populations. Recombinant DNA and eucaryotic proteins in E. coli and other host organisms. Product recovery operations, including design of bioprocessing systems of filtration, adsorption, chromatography, and crystallization. Bioprocess economics. Human recombinant erythropoietin as an example, from genomic cloning to CHO cell expression to biological, quality control, and purification of medical products for clinical application. Prerequisites: grade of C– or better in BENG 161A; majors only or consent of instructor. (W)

BENG 161C. Molecular Engineering (4)
Engineering systems analysis of metabolic and regulatory processes. Use of high-throughput data for network reconstruction. Use of the stoichiometric matrix and its uses to determine steady state flux distributions. Kinetics of individual enzymatic reactions. Computer simulations of metabolic networks, systemic sensitivity coefficients, bifurcations to study dynamic network functions. Temporal decomposition of metabolic processes into multiple time scales and the physiologic roles of metabolic events in each scale. Prerequisites: grade of C– or better in BENG 160B or BENG 161B; majors only or consent of instructor. (S)

BENG 162. Biotechnology Laboratory (4)
Laboratory practices and design principles for biotechnology. Cultures of microorganisms and mammalian cells, recombinant DNA bioreactor design and operation. Design and implementation of biosensors. A team design-based term project and oral presentation required. Course material fee(s) may apply. Prerequisites: grade of C– or above in MAE 170; BIBC 102, BIBC 103 or BENG 160; majors only or consent of instructor. (F)

BENG 166A. Cell and Tissue Engineering (4)
Engineering analysis of physico-chemical rate processes that affect, limit, and govern the function of cells and tissues. Cell migration, mitosis, apoptosis, and differentiation. Dynamic and structural interactions between mesenchyme and parenchyma. Extracellular matrix microenvironment, including cell-cell interactions, extracellular matrix, and growth factor communication. The design of functional tissue substitutes including cell and material sourcing, scale-up and manufacturability, efficacy and safety, and ethical and technical considerations. Clinical Applications. Prerequisites: grade of C– or better in BENG 103B or BENG 112B; senior standing; majors only or consent of department. (F)

BENG 166B. Tissue Engineering (4)
An introduction to contemporary methods and applications. Students will formulate and test hypotheses related to the design and implementation of functional tissue substitutes. Topics to be explored include tissue characterization, biomaterial scaffolds, cell migration, adhesion, and growth. Prerequisite: BENG 166A; majors only or consent of instructor. (S)

BENG 168. Biomedical Engineering (4)
Basic molecular biology; recombinant DNA technologies; design and manufacture of recombinant proteins and genetically engineered cells; architecture and mechanism of molecular nano-machines that perform gene regulation, energy conversion, enzymatic catalysis, and active transport. Prerequisites: grade of C– or better in BILD 1 and BENG 100; majors only or consent of instructor. (S)

BENG 169A. Design Development in Tissue Engineering (3)
Development of design project in tissue bioengineering. Prerequisites: concurrent enrollment in BENG 187B; Bioengineering or Bioengineering: Biotechnology majors only or consent of instructor. (F)

BENG 169B. Design Implementation in Tissue Engineering (3)
Implementation of design project in tissue engineering. Prerequisites: grade of C– or above in BENG 169A; concurrent enrollment in BENG 187C; Bioengineering or Bioengineering: Biotechnology majors only or consent of instructor. (W)

BENG 172. Bioengineering Laboratory (4)
A laboratory course demonstrating basic concepts of biomechanics, bioengineering design, and experimental procedures involving animal tissue. Sources of error and experimental limitations. Computer data acquisition, modeling, and analysis. Experimental on artery, muscle and heart mechanics, action potentials, viscoelasticity, electrocardiography, hemorhology. Course material fee may apply. Prerequisites: grade of C– or better in MAE 170; BICD 110; senior standing in the major or consent of instructor. (S)

BENG 173. Bioengineering Project Laboratory (4)
Applications of bioengineering concepts to the solution of practical and research problems. Planning, design, and testing of prototype devices. Term project and oral presentation are required. Prerequisites: majors only; consent of instructor; BENG 112B, BENG 172. (Not offered in 2010–11.) (S)

BENG 179A. Design Development in Bioinstrumentation (3)
Development of design project in bioinstrumentation. Prerequisites: concurrent enrollment in BENG 187B; Bioengineering or Bioengineering: Biotechnology majors only or consent of instructor. (F)

BENG 179B. Design Implementation in Bioinstrumentation (3)
Implementation of design project in bioinstrumentation. Prerequisites: grade of C– or above in BENG 179A; concurrent enrollment in BENG 187C; Bioengineering or Bioengineering: Biotechnology majors only or consent of instructor. (W)

BENG/BIMM/CSE 181. Molecular Sequence Analysis (4)
(Cross-listed as BIMM 181 and CSE 181.) This course covers the analysis of nucleic acid and protein sequences, with an emphasis on the application of algorithms to biological problems. Topics include sequence alignments, database searching, comparative genomics, and phylogenetic and clustering analyses. Pairwise alignment, multiple alignment, DNA sequencing, scoring functions, fast database search, comparative genomics, clustering, phylogenetic trees, gene finding/DNA statistics. Prerequisites: CSE 100 or Math. 176, CSE 101 or Math. 188, BIMM 100 or Chem. 114C; Bioinformatics majors only. (S)

BENG/BIMM/CSE/Chem. 182. Biological Databases (4)
(Cross-listed as BIMM 182, CSE 182, and Chem. 182.) This course provides an introduction to the features of biological data, how those data are organized efficiently in databases, and how existing data resources can be utilized to solve a variety of biological problems. Object oriented databases, data modeling and description. Survey of current biological databases with respect to both above, implementation of database focused on a biological topic. Prerequisites: CSE 100 or Math. 176; Bioinformatics majors only. (F)

BENG 183. Applied Genomic Technologies (4)
Principles and technologies for using genomic information for biomedical applications. Technologies will be introduced progressively, from DNA to RNA to protein to whole cell systems. The integration of biology, chemistry, engineering, and computation will be stressed. Topics include: Technology for the Genome, DNA Chips, RNA Technologies, Proteomic Technologies, Physiomic and Phenomic Technologies. Analysis of Cell Function. Prerequisites: grade of C– or better in BIMM 100 or Chem. 114C; BICD 110; Bioinformatics majors only. (F)

BENG/BIMM/CSE/Chem. 184. Computational Molecular Biology (4)
(Cross-listed as BIMM 184, CSE 184, and Chem. 184.) This advanced course covers the application of machine learning and modeling techniques to biological systems. Topics include gene structure, recognition of DNA and protein sequence patterns, classification, and protein structure prediction. Pattern discovery, hidden Markov models/support vector machines/neural network/profiles, protein structure prediction to functional characterization of proteins, functional genomics/proteomics, metabolic pathways/gene networks. Prerequisites: BENG 181 or
BENG 187A. Bioengineering Design Project: Planning (1)

General engineering design topics, including project planning and design objectives, background research, engineering needs assessment, and technical design specifications and requirements. Introduction to biomedical and biotechnological design projects. Majors must enroll in the course for a letter grade in order to count the sequence toward the major. No exceptions will be approved. Prerequisites: grade of C– or better in BENG 112B or senior standing in Bioengineering: Biotechnology major; majors only or consent of instructor. (W)

BENG 187B. Bioengineering Design Project: Development (1)

Development of original bioengineering design to solution of problem in biology or medicine. Analysis of economic issues, mechanical and structural integrity, environmental, manufacturability, ethical, health and safety, social issues, and application of governmental regulations. Prerequisites: grade of C– or better in BENG 103B, BENG 106B, BENG 112B, BENG 168B, and MAE 130A; majors only or consent of instructor. (Not offered in 2010–11) (W)

BENG 187D. Bioengineering Design Project: Presentation (1)

Oral presentations of design projects, including design, development, and implementation strategies and results of prototype testing. Majors must enroll in the course for a letter grade in order to count the sequence toward the major. No exceptions will be approved. Prerequisites: grade of C– or better in BENG 187C, Bioengineering or Biotechnology majors only or consent of instructor. (S)

BENG 191/291. Senior Seminar I: Professional Issues in Bioengineering (2)

(Conjoined with BENG 291.) Instills skills for personal and organizational development during lifelong learning. Student prepares portfolio of personal attributes and experiences, prepares for career interviews plus oral report of interviewing organizations. Graduate students will prepare a NIH small business research grant. Prerequisite: consent of instructor. (W)

BENG 192. Senior Seminar in Bioengineering (1)

The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in bioengineering (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times with a change in topic and permission of the course director. Enrollment is limited to twenty students, with preference given to seniors. (W)

BENG 195. Teaching (2–4)

Teaching and tutorial assistance in a bioengineering course under supervision of instructor. Not more than four units may be used to satisfy graduation requirements. (P/NP grades only.) Prerequisites: BENG 101 or BICD 110A; senior standing, completion of ninety units with a 2.5 GPA and consent of a bioengineering faculty coordinator. (F,W,S)

BENG 196. Bioengineering Industrial Internship (1–4)

Under the joint supervision of a faculty advisor and industry mentor, the student will work at a bioengineering industrial site to gain practical bioengineering experience. No more than twelve units may be used to satisfy graduation unit requirements. (P/NP grades only.) Prerequisites: consent of department and completion of all lower-division course requirements, including general-science requirements; some laboratory experience; completion of ninety units with a 2.5 GPA; and consent of a bioengineering faculty coordinator. (F,W,S,Su)

BENG 197. Engineering Internship (1–4)

An enrichment program, available to a limited number of undergraduate students, which provides work experience with industry, government offices, hospitals, and their practices. Subject to the availability of positions, students will work in a local industry or hospital (on a salaried or voluntary basis) or in a faculty member’s research lab or industrial company or government, or hospital employee. Coordination of the Engineering Internship is conducted through UCSD’s Academic Internship Program. Time and effort to be arranged. Units may not be applied towards major graduation requirements unless prior approval of a faculty advisor is obtained and internship is an unsalaried position. Prerequisites: completion of ninety units with a 2.5 GPA and consent of a bioengineering faculty coordinator. (F,W,S,Su)

BENG 198. Directed Group Study (1–4)

Directed group study, on a topic or in a field not included in the regular department curriculum, by arrangement with a bioengineering faculty member. (P/NP grades only.) Prerequisites: upper-division standing, completion of ninety units of UCSD undergraduate study, a minimum UCSD GPA of 2.5, consent of instructor, and a completed and approved Special Studies form. (F,W,S)

BENG 199. Independent Study for Undergraduates (4)

Independent reading or research by arrangement with a bioengineering faculty member. May be taken for credit three times. (P/NP grades only.) Prerequisites: upper-division standing, completion of ninety units of UCSD undergraduate study, a minimum UCSD GPA of 2.5, consent of instructor, and a completed and approved Special Studies form. (F,W,S,Su)
BENG 222. Continuum Mechanics and Transport Phenomena in Living Systems (4)
Introduction to engineering problems from a physics and a problem-solving perspective. Important bioengineering problems in mechanics and transport will be discussed with case studies. Prerequisite: graduate standing in bioengineering or consent of instructor. (S)

BENG 223. Thermodynamics, Statistical Mechanics, Interfacial Phenomena in Living Systems (4)
Thermodynamics, statistical mechanics, and interfacial phenomena that emphasize the chemical natures of living systems. Topics include intermolecular and surface forces, calculation of energetic processes, computation of electrostatic forces and fields, and principles of physics in multiscale engineering and design. Prerequisite: graduate standing in bioengineering or consent of instructor. (W)

Biotech is a special breed of business, especially in the start-up and early phases. Whether you are considering joining a biotech start-up or want to be successful in a life science organization, it pays to understand this unique business model. In this course, you will study and analyze (1) start-up proposals (2) the genesis of the biotech industry (3) biotech categories and growth strategies (4) the process of spinning out viable product concepts from academia (5) financing techniques (6) business development (7) acquisition/Buy-out (8) and (9) potentially disruptive technologies. The format is highly interactive and leaning is enhanced by means of exercises, team presentations, and case studies. Prerequisite: bioengineering M.Eng. degree student or consent of instructor. (S)

BENG 230A. Biomechanics (4)
A graduate course in biochemistry especially tailored to the requirements and background of bioengineering graduate students. It will cover the important macro- and small molecules in cells that are the major constituents, or that function as signaling molecules or molecular machineries. The structures, pathways, interactions, methodologies, and molecular designs using recombinant DNA technology will be covered. Prerequisites: BIPN 100 and 102 or consent of instructor. (F)

BENG 230B. Cell and Molecular Biology (4)
A general survey of structure-function relationships at the molecular and cellular levels. Emphasis on basic genetic mechanisms; control of gene expression; membrane structure, transport and traffic; cell signaling; cell adhesion; mechanics of cell division; and cytoskeleton. Prerequisites: BIPN 100, 102, and BENG 230A or consent of instructor. (W)

BENG 230C. Cardiovascular Physiology (4)
Physical concepts of behavior of heart, large blood vessels, vascular beds in major organs and the microcirculation. Physical and physiological principles of blood flow, blood pressure, cardiac work, electrophysiology of the heart. Special vascular beds, including their biological and hemodynamic importance. Integration through nervous and humoral controls. Prerequisites: BIPN 100, 102, and BENG 230B or consent of instructor. (S)

BENG 230D. Respiratory and Renal Physiology (4)

BENG 231. Foundations of Physiology for Bioengineering (4)
Introduction to human physiology emphasizing quantita-
tive physiological principles and engineering applications to the development and understanding of physiological systems. The study of principal organ systems will be integrated with cell and molecular biology, biological control systems, and the physical sciences. Prerequisite: graduate standing in bioengineering or consent of instructor. (S)

BENG 238/MED 238. Molecular Biology of the Cardiovascular System (4)
An overview of heart, vascular development and associated diseases from a molecular biological perspective. Current approaches for generating mouse models of cardiovascular disease and recently developed technologies for physiological assessment in small animal models will be presented. (S)

BENG 241A. Foundations of Tissue Engineering Science (4)
Molecular and cell biological basis of tissue engineering science. Paracrine control of tissue growth and differentiation. Biomechanics and the molecular basis of cell-cell and cell-matrix interactions. Cell motility, mechanics of tissue growth and assembly, tissue repair. Mass transfer in tissues. Microcirculation of blood and lymph. Prerequisite: BENG 230A or consent of instructor. (F)

BENG 241B. Methods in Tissue Engineering Science (4)
Isolation of cells, cell and tissue culture systems. Fluorescence and confocal microscopy, Intracellular imaging, Mechanical testing of tissues. Micromechanical measurement and analysis of cell deformability and cell interaction. Methods in microcirculation and angiogenesis. Prerequisite: BENG 241A or consent of instructor. (S)

BENG 242/MATS 257. Polymer Science and Engineering (4)
Quantitative basic understanding of different branches of polymer science varying from polymer chemistry, character- ization, thermodynamics, rheological properties, smart materials, self-assembly in biopolymers (natural) and synthetic polymers, and applications of polymers ranging from medicine to structure. Prerequisite: graduate standing in bioengineering or materials science or consent of instructor. (W)

BENG 247A/ECY 247. Advanced Biophotonics (4)
Basic physics and interaction of photons with matter, including both biological and synthetic materials; use of photonic radiation pressure for manipulation of objects and materials; advanced opto-electronic detection systems, devices and methods, including time resolved fluorescence and chemiluminescent methods, fluorescence energy transfer (FRET) techniques, quantum dots, and near-field optical techniques; underlying mechanisms of the light sensitive biological systems, including chloroplasts for photosynthetic energy conversion and the basis of vision processes. Prerequisite: graduate standing. (F)

BENG 247B/ECY 247B. Bioelectronics (4)
Topics to be covered will include photolithographic techniques for high-density DNA microarray production, incorporation of CMOS control into electronic DNA microarrays, direct electronic detection technology used in micromolecular biosensor devices, and focus on problems related to making highly integrated devices (lab-on-a-chip, in vivo biosensors, etc.) form heterogeneous materials and components. Prerequisite: graduate standing. (W)

BENG 247C/ECY 247C. Bionanotechnology (4)
Topics include: nanosensors and nanodevices for both clinical diagnostics and biowarfare (biobot) agent detection; nanostructures for drug delivery; nanorays and nanodevices; use of nanobiophysical and electronic devices and systems; methods and techniques for modification or functionaliza-
tion of nanoparticles and nanostructures with biological molecules; manipulation of fuel cells and biofuel cells; potential use of DNA and other biomolecules for com-
puting and ultra high-density data storage. Prerequisite: graduate standing. (S)

BENG 250A. Biomechanics (4)
An introduction to biomechanics and transport phenomen-a in biological systems at the graduate level. Biomechanics, physiological modeling, mechanobiology, mass transfer, mo-
tum transfer, energy transfer. Prerequisites: CENG 101C, BENG 1128, and BENG 222 or consent of instructor. (W)

BENG 250B. Advanced Biomechanics (4)
Modern development of biomechanics at an advanced mathematical level. Selected topics in the dynamics of heart, pulsatile, blood flow, microcirculation, and muscle mechanics. Prerequisite: BENG 253 or consent of instruc-
tor. (S)

BENG 253. Biomedical Transport Phenomena (4)
Numerical and semi-analytical techniques for transport and heat transfer in biological media such as fluid motion in microfluidic channels, heat transfer in biological tissues, and acoustic wave propagation in biological media. Prerequisite: BENG 222 or consent of instructor. (W)

BENG 260/BGGN 260. Neurodynamics (4)
Introduction to the nonlinear dynamics of neurons and neural systems using bifurcation theory and chaotic mo-
tions, at different levels of abstraction, e.g., biophysical and “reduced” models for analysis of regularly spiking and bursting cells. Laboratory exercises will accompany the lectures. Prerequisite: graduate standing or consent of instructor. (W)

BENG 267. Microcirculation in Health and Disease (4)
Structural and functional aspects of transport and blood
tissue exchange in key organs during circulatory shock, bacterial toxemia, hypertension. Physical and ultrasonic techniques used to analyze small-vessel dynamics. Prerequisite: consent of instructor. (S)

BENG 276/Chem. 276/Math. 276. Numerical Analysis in Multi-scale Biology (4)
Introduces mathematical tools to simulate biological processes at multiple scales. Numerical methods for or-
dinary and partial differential equations (deterministic and stochastic), and methods for parallel computing and visualization. Hands-on use of high-performance computing environments. Prerequisites: consent of instructor. (F,W,S)

BENG 277/BIOM 277. Tissue Engineering Laboratory (4)
Students will learn to conduct tissue engineering and developmental biology experiments, microfabricate cell culture systems, engineer biopolymer materials, and develop and analyze quantitative models of transport, cell fate, and growth mechanics. The understanding and manipulation of multicellular processes that comprise development and growth involves specialized areas of biomechanics, developmental biology, biomaterials, and the tools of molecular biology, as well as the integration of theory and experiment. To facilitate functional tissues, it is important to establish underlying molecular and physical mechanisms and then control and integrate these. Prerequisite: consent of instructor. (S)

BENG 280A. Principles of Biomedical Imaging (4)
Fundamentals of Fourier transform and linear systems theory including convolution, sampling, noise, filtering, im-
age reconstruction and visualization with an emphasis on applications to biomedical imaging. Examples in optical imaging, CT, MR, ultrasound imaging, PET, and radiography. Prerequisite: graduate standing. (F)

BENG 280B. Comparative Biomedical Imaging (4)
Application of biomedical imaging to the measurement of structure, function, and dynamics of organ systems from the microscopic to the organ level. Emphasis on detailed evaluation and comparison of specific imaging modalities. Prerequisite: consent of instructor. (W,S)

BENG 281. Seminar in Bioengineering (1)
Weekly seminars by faculty, visitors, postdoctoral research fellows, and graduate students concerning research topics in bioengineering and related subjects. May be repeated for credit. Course does not apply toward M.S. graduation requirements. (S/U grades only.) (F,W,S)

BENG 282. Seminar: Faculty Research (1)
Weekly seminars by bioengineering faculty presenting their research. May be repeated for credit. (S/U grades only.) (F,W,S)

BENG 283/Chem. 283/BIOM 283. Supramolecular Structure Determination Laboratory (4)
A laboratory course combining hands-on mass spectrom-
etry and bioinformatics tools to explore the relationship between structure and function in macromolecules. Tools for peptide sequencing, analysis of post-translational modification, and fragmentation analysis by mass spec-
 trometry are examples of experiments students will run. Prerequisite: consent of instructor.
BENG 290. Bioengineering Special
Graduate Seminar (1–2)
Seminars by faculty, visitors, postdoctoral research fellows, and/or graduate students in selected topic(s) in bioengineering and/or related subjects. This course does not apply toward M.S. graduation requirements.

BENG 291/191. Senior Seminar I: Professional Issues in Bioengineering (2)
(Conjoined with BENG 191.) Instills skills for personal and organizational development during lifelong learning. Student prepares portfolio of personal attributes and experiences, prepares for career interviews plus oral report of interviewing organizational CEO. Graduate students will prepare a NIH small business research grant. Prerequisites: none. (W)

BENG 295. Bioengineering Design Project and Industrial Training (4)
Independent work by graduate students focused on design, applied research, and professional experience. Prerequisites: consent of instructor and departmental approval. (F,W,S)

BENG 296. Independent Study (4)
Prerequisite: consent of instructor. (F,W,S)

BENG 298. Directed Group Study (1–4)
Directed group study on a topic or in a field not included in regular department curriculum, by special arrangement with a faculty member. (S/U grades only.) Prerequisite: consent of instructor. (F,W,S)

BENG 299. Graduate Research (1–12)
Independent work by graduate students engaged in research and writing theses. (S/U grades only.) Prerequisite: consent of instructor. (F,W,S)

BENG 501. Teaching Experience (2 or 4)
Teaching experience in an appropriate bioengineering undergraduate course under direction of the faculty member in charge of the course. Lecturing one to two hours per week in either a problem-solving section or regular lecture. (S/U grades only.) Prerequisites: consent of instructor and departmental approval. (F,W,S)
ASSISTANT PROFESSORS
Ranjit Jhala, Ph.D.
Sorin Lerner, Ph.D.
Tajana S. Rosing, Ph.D.
Hovav Shacham, Ph.D.
Steven J. Swanson, Ph.D.
Michael Taylor, Ph.D.

ADJUNCT FACULTY
Samuel R. Buss, Ph.D., Mathematics
Bradley G. Calder, Ph.D., Computer Science and Engineering
Andrew Chien, Ph.D., Computer Science and Engineering
Kimberly Claffy, Ph.D., San Diego Supercomputer Center
Jim Hollan, Ph.D., Cognitive Science
Falko Kuester, Ph.D., Structural Engineering
Jeffrey B. Remmel, Ph.D., Mathematics
J. Benjamin Rosen, Ph.D., Computer Science and Engineering
Terence Sejnowski, Ph.D., Biology
Allan Snavely, Ph.D., San Diego Supercomputer Center
Matthias Zwicker, Ph.D., Computer Science and Engineering

AFFILIATED FACULTY
Barry Brown, Ph.D., Communication
Trey Ideker, Ph.D., Bioengineering
Glenn Tesler, Ph.D., Mathematics

RESEARCH FACULTY
Philip Papadopoulos, Ph.D., Associate Research Professor

LECTURERS WITH SECURITY OF EMPLOYMENT
Paul Kube, Ph.D.
Elizabeth Simon, Ph.D.

CONTINUING LECTURERS
Gary Gillespie, Ph.D.
Susan Marx, Ph.D.
Richard Ord, M.S.

ACADEMIC COORDINATOR
Paul Kube, Ph.D., Lecturer with Security of Employment

OFFICES:
Undergraduate Affairs Room 1200D
Graduate Affairs Room 1200D
Engineering Building Unit 3B, Warren College
http://www.cse.ucsd.edu

THE UNDERGRADUATE PROGRAM

Degree and Program Options
The Department of Computer Science and Engineering (CSE) offers four degree programs: the B.S. degree in computer science, the B.A. degree in computer science, the B.S. degree in computer engineering, and the B.S. degree in computer science with a specialization in bioinformatics.

The B.A. degree in computer science is a flexible program that allows comprehensive studies beyond computer science and engineering.

All CSE programs of study provide a broad and rigorous curriculum and are designed to provide students with the strong technical education necessary for placement in the competitive high-tech job market as well as for advanced studies in graduate school.

CSE offers courses in the following areas:
• Theory
• Artificial intelligence
• Software
• Hardware
• Computer security and cryptography
• Computer vision and graphics
• Databases and XML
• Systems and networking
• Bioinformatics
• Software engineering

In addition, CSE seniors can participate in challenging project-courses in: software systems, where teams create multiplayer games; Internet systems, where students create sophisticated Web transaction systems; and mobile wireless computing, where teams create applications for handheld devices.

The CSE department supports and encourages students to explore opportunities outside the classroom. Students assist in many CSE courses as paid lab tutors and readers, getting an excellent opportunity to interact more closely with faculty and other students. In addition, CSE students participate in research projects with graduate students and faculty in CSE, the San Diego Supercomputer Center, and the California Institute for Telecommunications and Information Technology (Calit2). Under the direction of our faculty, CSE students may also earn credit by participating in independent research projects. The CSE department has strong ties with local and national high-tech industry, where students can earn course credit while applying their academic knowledge toward exciting commercial technologies in paid internships.

B.S. COMPUTER SCIENCE PROGRAM

The lower-division B.S. computer science program is designed to provide a strong foundation in mathematics, physics, electrical engineering, programming methodology and skills, and computer organization. Upper-division core courses deal with the theory and design of algorithms, hardware, and software. Students can gain additional breadth and/or depth in computer science and engineering by an appropriate selection of upper-division technical electives.

Students should have sufficient background in high school mathematics so that they can take freshman calculus in their first quarter. Courses in high school physics and computer programming, although helpful, are not required for the program.

The department requires a total of 128 units for the B.S. computer science program (not including the general-education requirements). There are
three varieties of requirements: lower-division, upper-division, and technical electives.

Advisory placement exam for CSE 3, CSE 8A/8AL and CSE 11: An advisory placement test is encouraged of all CSE majors to help accurately place students into the right starting point in the CSE undergraduate curriculum. This information is found at the following Web site: http://www-cse.ucsd.edu/undergraduate-education.html. Contact the CSE student affairs advising office at ugradinfo@cs.ucsd.edu if further assistance is needed.

1. Lower-Division Requirements

Students are expected to complete the following fifty-two units by the end of their sophomore year.

Computer Science and Engineering

CSE 88 or CSE 11, CSE 12, CSE 15L, CSE 20 or Math. 15A, CSE 21 or Math. 15B, CSE 30, , and CSE 91; twenty-four units.

Note: Students with little computer experience are encouraged to take CSE 3. Students without prior programming experience are advised to take CSE 8A, CSE 8AL, and then CSE 8B, instead of CSE 11. CSE 11 is a faster paced version of CSE 8A, CSE 8AL, and CSE 8B, and requires experience in programming with a compiled language.

Mathematics

General Science

Phys 2A. and Phys. 2B, or Chem. 6A and Chem. 6B, or Chem. 6AH and Chem. BH, or BILD 1 and BILD 2, or BILD 3 and BICD 100; eight units.

Students who received high grades in both calculus and physics in high school may substitute the major's sequence, Phys. 4A-B-C for Phys. 2A-B-C.

Probability and Statistics

Math. 183 or CSE 103; four units.

2. Upper-Division Requirements

All B.S. computer science students are required to take CSE 100 or Math. 176, CSE 101 or Math. 188, CSE 105 or Math. 166, CSE 110, CSE 120, 130, 131, 140, 140L, 141 and 141L; forty units.

Students are expected to complete almost all of these courses by the end of their junior year. If students want to accelerate their program, they should consider taking CSE 100 or Math. 176, CSE 105, and/or CSE 140 and 140L in the sophomore year.

3. Technical Electives

B.S. computer science students are required to complete one upper-division cluster of three to five CSE courses. The three to five CSE courses are part of the nine technical electives required for a total of thirty-six units. The purpose of the clusters is to help students identify groups of complementary courses, thus improving their education. Clusters are designed by the CSE faculty by grouping existing courses. Students who wish can also design their own clusters, with approval by the CSE Undergraduate Committee. For a complete list of clusters, visit www.ucsd.edu or see an advisor in the CSE advising offices.

- **1.** Choose one upper-division cluster consisting of three to five CSE courses. A three-course cluster is permitted when the cluster is a natural extension of one of the core upper-division requirements.
- **2.** A five-course cluster will be permitted when an additional foundational course may be required by other courses in the cluster.
- **3.** Within a cluster there can be choices, such as “take four of the five” or a choice between two course alternatives.
- **4.** May use up to eight units of CSE 198, CSE 199, or CSE 199H to meet the CSE upper-division technical requirement.
- **5.** Twelve credits of non-198, CSE 199, or CSE 199H must be completed.

Two technical electives (of the required nine technical electives) can be chosen from the wider set of courses that includes computer science and engineering upper-division courses, graduate courses, and other electives as listed under the section titled “Electives.” Other restrictions in the selection of technical electives are also given in the section “Electives.”

4. B.S. Computer Science, Sample Program starting with CSE 3

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 3</td>
<td>CSE 8A and 8AL</td>
<td>CSE 8B</td>
</tr>
<tr>
<td>Math. 20A</td>
<td>Math. 20B</td>
<td>Math. 20A</td>
</tr>
<tr>
<td>GE</td>
<td>Math. 20B</td>
<td>Math. 15A</td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td>CSE 12</td>
<td>CSE 100</td>
</tr>
<tr>
<td>CSE 15L (2 units)</td>
<td>CSE 15L (2 units)</td>
<td>CSE 140</td>
</tr>
<tr>
<td>Math. 15B</td>
<td>Math. 176</td>
<td>CSE 140L (2 units)</td>
</tr>
<tr>
<td>Major General Science</td>
<td>Major General Science</td>
<td>Major General Science</td>
</tr>
<tr>
<td>GE</td>
<td>GE</td>
<td>GE</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

CSE 101 or Math. 188
CSE 141
CSE 141L (2 units)
GE

SENIOR YEAR

CSE 130
CSE Tech. Elec.
CSE Tech. Elec.
GE

Notes for Selecting and Scheduling Classes for B.S. Computer Science

(All courses must be taken for a letter grade.)

1. Advisory placement exam: Students may self-select which course they wish to take and are encouraged to take the advisory placement exam to help decide. Students with little computer experience are encouraged to take CSE 3. Students without experience in programming in a compiled language are advised to take CSE 8A and CSE 8AL, and then CSE 8B, instead of CSE 11. CSE 11 is a faster paced version of CSE 8A, CSE 8AL, and CSE 8B. CSE 8B or CSE 11 must be taken before CSE 12.

2. Computer Science Advanced Placement Credit: A Exam (Java Programming) two units

- Score of 4 exempts CSE 8A and CSE 8AL. Student should take CSE 11.
• Score of 5 exempts CSE 11. Student should take CSE 12.
3. CSE 8A/8AL, or CSE 8B, or CSE 11 may be taken concurrently with CSE 20/Math. 15A. Please obtain department approval for enrollment permission for CSE 20/Math. 15A at ugradinfo@cs.ucsd.edu.
4. CSE 15L and CSE 70 are new courses starting fall 2007.
5. Effective fall 2010, CSE 70 is renumbered to CSE 110.
6. CSE 15L must be taken prior to or concurrently with CSE 12.
7. The CSE Undergraduate Committee would like students to start taking technical electives as soon as possible after completing CSE 30. Effective fall 2010, students must complete nine technical electives. Students must complete one cluster consisting of three to five courses. Students may use a CSE graduate course for technical elective credit with approval. Once a graduate course is used for an undergraduate degree, that course may not be reused for a graduate degree. In addition, only four units of CSE 197 may be used toward technical elective credit.
8. Students may take use up to eight units of CSE 198, CSE 199, or CSE 199H to meet the CSE upper-division technical requirement.
9. 12 credits of non-198, CSE 199, or CSE 199H must be completed. Two of the technical electives may be chosen from a list of approved electives. This list is at http://www.cse.ucsd.edu/undergrad/degreeprograms/electives.html. If you want to deviate from this list of approved electives, you must petition the CSE student advisor at ugradinfo@cs.ucsd.edu.

B.S. COMPUTER ENGINEERING PROGRAM
(Curriculum is the same in both the CSE and ECE departments.)
The B.S. computer engineering program is jointly administered by the Departments of Computer Science and Engineering and Electrical and Computer Engineering. Students wishing to take the computer engineering program must be admitted to one of the departments.
The lower-division computer engineering program is designed to provide a strong foundation in mathematics, physics, electrical engineering, programming methodology and skills, and computer organization. Upper-division core courses deal with the theory and design of algorithms, hardware and software, as well as electronic systems. Students can gain additional breadth and/or depth in computer science and engineering by an appropriate selection of technical electives.
Students should have sufficient background in high school mathematics so that they can take freshman calculus in their first quarter. Courses in high school physics and computer programming, although helpful, are not required for the program.
B.S. computer engineering program requires a total of 152 units (not including the general-education requirements). There are three varieties of requirements: lower-division, upper-division, and technical electives.
Advisory placement exam for CSE 3, CSE 8A/8AL, and CSE 11: An advisory placement test is encouraged of all CSE majors to help accurately place students into the right starting point in the CSE undergraduate curriculum. This information is found at the following Web site: http://www.cse.ucsd.edu/undergraduate-education.html. Contact the CSE student affairs advising office at ugradinfo@cs.ucsd.edu if further assistance is needed.

1. Lower-Division Requirements
Students are expected to complete the following seventy-six units by the end of their sophomore year.

Computer Science and Engineering
CSE 8B or CSE 11, CSE 12, CSE 15L, CSE 20 or Math. 15A, CSE 21 or Math. 15B, CSE 30, and CSE 91; twenty-four units.
Note: Students with little computer experience are encouraged to take CSE 3. Students without prior programming experience are advised to take CSE 8A, CSE 8AL, and then CSE 8B, CSE 8AL, instead of CSE 11. CSE 11 is a faster paced version of CSE 8A and CSE 8B, and requires experience in programming with a compiled language.

Mathematics

Physics
Phys. 2A, Phys. 2B, Phys. 2C, Phys. 2D; sixteen units. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the Department of Mathematics placement test permits them to start with Math. 20B or a higher course may take Phys. 2A in the fall quarter of the freshman year; all others will take Phys. 2A in the winter quarter of the freshman year. Students who received high grades in both calculus and physics in high school may substitute the major’s sequence, Phys. 4A-B-C-D for Phys. 2A-B-C-D.

Introduction to Electrical Engineering
ECE 35, 45, 65; twelve units. These courses give a comprehensive introduction to electrical engineering.

Probability and Statistics
ECE 109; four units. This course can be taken in the sophomore year.

2. Upper-Division Requirements
All B.S. Computer engineering students are required to take CSE 100 or Math. 176, CSE 101 or Math. 188, CSE 105 or Math. 166, CSE 110, CSE 120, 130, 131, 140L, 141, and 141L; forty units. In addition, all B.S. Computer engineering students have to fulfill the following upper-division ECE requirements.

Linear Systems
ECE 101; four units. The department recommends that this course be taken in the junior year.

Electronic Circuits and Systems
ECE 102, ECE 108; eight units. The department recommends that these courses be taken in the junior year.
If students want to accelerate their program, they should consider taking CSE 100 or Math. 176, CSE 105 or Math. 166, and/or CSE 140 and 140L in the sophomore year.

3. Technical Electives
All B.S. Computer engineering students are required to take six technical electives for a total of twenty-four units. One of these courses must be either ECE 111 or ECE 118. Of the remaining five courses, four must be computer science and engineering or electrical and computer engineering upper-division or graduate courses. The remaining course can be any computer science and engineering or electrical and computer engineering upper-division or graduate course, or any other course listed under the section titled Electives. Other restrictions in the selection of technical electives are also given in the section Electives.

4. B.S. Computer Engineering, Sample Program

FALL WINTER SPRING
CSE 8A, CSE 8AL, or CSE 11 CSE 15L CSE 21 or Math. 15B
Math. 20A CSE 12 GE Math. 20C
CSE 91 CSE 20 or Math. 15A GE

Sophomore Year
CSE 30 Math. 20D Math. 100 or Math. 176
Phys. 2A ECE 45 Phys. 2B
ECE 35 ECE 65 Phys. 2C

Junior Year
CSE 101 or Math. 188 CSE 120 CSE 105 or Math. 166
CSE 141 Phys. 2D (Req. Tech. Elec.-ECE 111 or ECE 118)

Senior Year
CSE 130 CSE 131 CSE/ECE Tech. Elec.
Ge. CSE/ECE Tech. Elec. Ge.

Notes for Selecting and Scheduling Classes for B.S. Computer Engineering
(All courses must be taken for a letter grade.)
1. Advisory placement exam: Students may self-select which course they wish to take and are encouraged to take the advisory placement exam to help decide. Students with little computer experience are encouraged to take CSE 3.
2. Students without prior computer experience are advised to take CSE 8A.
3. Students without prior programming experience are advised to take CSE 3.
4. Students without prior computer experience are advised to take CSE 8A.
5. Students who received high grades in both Math. 20B and Phys. 2A may take Phys. 2A in the winter quarter of the freshman year; all others will take Phys. 2A in the winter quarter of the freshman year. Students who received high grades in both calculus and physics in high school may substitute the major’s sequence, Phys. 4A-B-C-D for Phys. 2A-B-C-D.
6. Students whose performance on the Department of Mathematics placement test permits them to start with Math. 20B or a higher course may take Phys. 2A in the fall quarter of the freshman year; all others will take Phys. 2A in the winter quarter of the freshman year. Students who received high grades in both calculus and physics in high school may substitute the major’s sequence, Phys. 4A-B-C-D for Phys. 2A-B-C-D.
7. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the Department of Mathematics placement test permits them to start with Math. 20B or a higher course may take Phys. 2A in the fall quarter of the freshman year; all others will take Phys. 2A in the winter quarter of the freshman year. Students who received high grades in both calculus and physics in high school may substitute the major’s sequence, Phys. 4A-B-C-D for Phys. 2A-B-C-D.
8. Students who received high grades in both calculus and physics in high school may substitute the major’s sequence, Phys. 4A-B-C-D for Phys. 2A-B-C-D.
9. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the Department of Mathematics placement test permits them to start with Math. 20B or a higher course may take Phys. 2A in the fall quarter of the freshman year; all others will take Phys. 2A in the winter quarter of the freshman year. Students who received high grades in both calculus and physics in high school may substitute the major’s sequence, Phys. 4A-B-C-D for Phys. 2A-B-C-D.
10. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the Department of Mathematics placement test permits them to start with Math. 20B or a higher course may take Phys. 2A in the fall quarter of the freshman year; all others will take Phys. 2A in the winter quarter of the freshman year. Students who received high grades in both calculus and physics in high school may substitute the major’s sequence, Phys. 4A-B-C-D for Phys. 2A-B-C-D.

2010-2011 UC SAN DIEGO GENERAL CATALOG • ENGINEERING: COMPUTER SCIENCE AND ENGINEERING (CSE) 3
in a compiled language are advised to take CSE 8A and CSE 8AL, and then CSE 8B, instead of CSE 11. CSE 11 is faster paced version of CSE 8A, CSE 8AL, and CSE 8B. CSE 8B or CSE 11 must be taken before CSE 12.

2. Computer Science Advanced Placement Credit: A Exam (Java Programming) two units:
 - Score of 4 exempts CSE 8A and CSE 8AL. Student should take CSE 11.
 - Score of 5 exempts CSE 11. Students should take CSE 12, CSE 8A/8AL, or CSE 8B, or CSE 11 may be taken concurrently with and CSE 20/ Math. 15A. Please obtain department approval for enrollment permission in CSE 20/Math. 15A at ugradinfo@cs.ucsd.edu. CSE 15L and CSE 70 are new courses starting fall 2007.
 - CSE 15L must be taken prior to or concurrently with CSE 12.
 - Effective fall 2006, ECE 35 and ECE 4S are new courses in computer engineering. These courses replace ECE 35A and 35B, respectively.
 - Students must complete six technical electives. Four of the six technical electives must be CSE or ECE upper-division courses.
 - Students must complete ECE 111 or ECE 118 to meet the design requirement.
 - Students must obtain approval to use a CSE graduate course for technical elective credit. Once a graduate course is used for an undergraduate degree that course may not be reused for a graduate degree. In addition, only four units of either a CSE 197, 198, or 199 may be used toward technical elective credit.
 - One of the technical electives may be chosen from a list of approved electives. This list is at http://www-cse.ucsd.edu/undergrad/degreeprograms/electives.html. If you want to deviate from this list of approved electives, you must petition the CSE student advisor at: ugradinfo@cs.ucsd.edu.

B.S. COMPUTER SCIENCE WITH A SPECIALIZATION IN BIOINFORMATICS

The explosion in biological knowledge spawned by the various genome projects has created entirely new fields and industries, and a need for trained computational biologists who are familiar with biology, mathematics, and computer sciences. The computer science and engineering department offers rigorous, interdisciplinary training in the new and rapidly evolving field of bioinformatics.

Bioinformatics refers to advanced computational and experimental methods that model the flow of information (genetic, metabolic, and regulatory) in living systems to provide an integrated understanding of the system properties of organisms.

This interdisciplinary major is offered by three programs (Division of Biological Sciences, Department of Chemistry and Biochemistry, and Department of Bioengineering). The computer science and engineering requirements comprise of 152 units to be taken from the divisions of physical sciences, biology, and engineering.

1. Lower-Division Requirements

 Lower-division requirements, sixty-four units:
 - Students are expected to complete all lower-division requirements by the end of their sophomore year.
 - Chem. 6A, Chem. 6B, Chem. 6C, and one Chem. lab (15 units)
 - BILD 1, BILD 2, and BILD 94 (9 units)
 - CSE 11, CSE 12, and CSE 21 or Math. 15B (12 units)
 - Phys. 2A, Phys. 2B, and Phys. 2C (12 units)

2. Upper-Division Requirements

 Upper-division requirements, eighty-eight units
 - CSE 100 or Math. 176 (Data Structures), (4 units)
 - CSE 101 or Math. 188 (Algorithms), (4 units)
 - Chem. 140A–140B (Organic Chemistry), (8 units)
 - Chem. 114B (Biochemical Energetics and Metabolism) or BIBC 102 (Structural and Metabolic Biochemistry), (4 units)
 - BIBC 103 (Biochemical Techniques), (4 units)
 - BICD 100 (Genetics), (4 units)
 - BIMM 100 (Molecular Biology) or Chem. 114D (Molecular and Cellular Biochemistry), (4 units)
 - BIMM 101 (Recombinant DNA Lab), (4 units)
 - BICD 110 (Cell Biology), (4 units)
 - BIBC 110 (Physical Biochemistry) or Chem. 127 (Physical Chemistry), (4 units)
 - Five additional CSE upper-division electives (electives 1, 2, 3, 4, and 5).

At least one course from each of the three groups for a total of five electives:
 - Group I: CSE 30, 111, 131A, 131B, 134A
 - Group II: CSE 105, 150, 151, Math. 184A
 - Group III: CSE 132A, 132B, 133

The bioinformatics series comprises the following six courses, twenty-four units:

- CSE 181 or BIMM 181 or BENG 181 (Molecular Sequence Analysis), (4 units)
- CSE 182 or BIMM 182 or BENG 182 or Chem. 182 (Biological Databases), (4 units)
- BENG 183 (Applied Genomic Technologies), (4 units)
- Chem. 184 or BIMM 184 or BENG 184 (Computational Molecular Biology), (4 units)
- BIMM 185 (Bioinformatics lab), (4 units)
- Math. 186 (Probability and Statistics), (4 units)

3. B.S. Computer science with a specialization in bioinformatics, sample program

FALL WINTER SPRING

FRESHMAN YEAR

CSE 8A/8AL +	CSE 12	BILD 942
8B or 111	Math. 20B	Math. 20C
Math. 20A	Math. 6B	Chem. 6C
Math. 6A	BILD 1	Chem. 6BL
GE 1	GE 2	GE 3

SOPHOMORE YEAR

CSE 21 or Math. 15B	Phys. 28	BIBC 103
Phys. 2A	Chem. 140A	Phys. 2C
GE 4	GE 5	GE 6

JUNIOR YEAR

CSE 100 or Math. 1763	CSE 101 or Math. 188	CSE 1814
BICD 100	Math. 186	Math. 187
GE 7	BIMM 101 or Chem. 112B	BICD 110
GE 8	BIMM 100 or Chem. 114D	

SENIOR YEAR

CSE 182	CSE 184	BIMM 185
BENG 183	Elec. 2	Elec. 4
Elec. 15	Elec. 3	Elec. 5
GE 9	GE 10	GE 11

1 Students may take the slower paced version, CSE 8A + CSE 8AL + CSE 8B, instead of CSE 11.
2 BILD 94 (1 unit seminar) is recommended in students first spring quarter of study at UCSD. This course gives an overview of issues and topics in bioinformatics.
3 CSE 30 prerequisite will be waived.
4 New courses for the bioinformatics program: CSE 181 is cross-listed with BIMM 181 and BENG 181; CSE 182 is cross-listed with BIMM 182, Chem. 182, and BENG 182; CSE 184 is cross-listed with BIMM 184 and BENG 184; and (BENG 183, BIMM 185, and Math. 186 are not cross-listed with any other courses).
5 Students must complete five CSE technical electives from the approved list.

B.A. COMPUTER SCIENCE PROGRAM

The B.A. computer science program gives students more latitude in designing their course of study. The lower-division program is designed to provide a strong foundation in mathematics, physics, programming methodology and skills, and computer organization. Upper-division core courses deal with the theory and design of algorithms, hardware, and software. Students can gain additional breadth and/or depth in computer science and engineering by an appropriate selection of technical electives. By requiring fewer technical electives, the B.A. computer science program serves those students desiring more time for undergraduate studies outside their major subject.

The department requires a total of 116 units for the B.A. computer science program (not including the general-education requirements). There are three varieties of requirements: lower-division, upper-division, and technical electives.

Advisory placement exam for CSE 3, CSE 8A/8AL, and CSE 11: An advisory placement test is encouraged of all CSE majors to help accurately place students into the right starting point in the course level of starting study in the CSE undergraduate curriculum. This information is found at the following Web site: http://www-cse.ucsd.edu/undergraduate-education.html. Contact the CSE student affairs office advising office at ugradinfo@cs.ucsd.edu if further assistance is needed.
1. Lower-Division Requirements

Students are expected to complete the following forty-eight units by the end of their sophomore year.

Computer Science and Engineering

- CSE 8B or CSE 11, CSE 12, CSE 15L, CSE 20 or Math. 15A, CSE 21 or Math. 15B, CSE 30, and CSE 91; twenty-four units.

Note: Students with little computer experience are encouraged to take CSE 3. Students without prior programming experience are advised to take CSE 8A, CSE 8B, and then CSE 8B, instead of CSE 11. CSE 11 is a faster paced version of CSE 8A, CSE 8AL, and CSE 8B, and requires experience in programming with a compiled language.

Mathematics

General Science

- Phys. 2A and Phys. 2B, or Chem. 6B and Chem. 6B, or Chem. 6AH and Chem. 6H, or BILD 1 and BILD 2, or BILD 3 and BICD 100; eight units.

Students who received high grades in both calculus and physics in high school may substitute the major's sequence, Phys. 4A-B-C for Phys. 2A-B-C.

2. Upper-Division Requirements

All B.A. computer science students are required to take CSE 100 or Math. 176, CSE 101 or Math. 188, CSE 105 or Math. 166, CSE 110, CSE 120, 131, 140, 140L, 141, and 141L; forty units.

Students are expected to complete almost all of these courses by the end of their junior year. If students want to accelerate their program, they should consider taking CSE 100 or Math. 176, CSE 105 or Math. 166, and/or CSE 140 and 140L in the sophomore year.

3. Technical Electives

B.A. computer science students are required to take seven technical electives for a total of twenty-eight units. Five technical electives must be computer science and engineering upper-division or graduate courses.

Two technical electives (of the required seven technical electives) can be chosen from a wider set of courses that includes computer science and engineering upper-division courses, graduate courses, and other electives as listed under the section titled "Electives." Other restrictions in the selection of technical electives are also given in the section "Electives.”

4. B.A. Computer Science, Sample Program starting with CSE 3

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 3</td>
<td>CSE 8A and 8AL</td>
<td>CSE 12</td>
</tr>
<tr>
<td>Math. 20A</td>
<td>CSE 8B</td>
<td>CSE 20 or Math. 15A</td>
</tr>
<tr>
<td>GE</td>
<td>Math. 20B GE</td>
<td>Math. 20C GE</td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 12</td>
<td>CSE 30</td>
<td>CSE 140L (2 units)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSE Tech. Elec. GE</td>
</tr>
</tbody>
</table>

B.A. Computer Science, Sample Program starting with CSE 8A/8AL

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 8A</td>
<td>CSE 20 or Math. 15A</td>
<td>CSE 12</td>
</tr>
<tr>
<td>Math. 20A</td>
<td>Math. 20B GE</td>
<td>CSE 15L (2 units)</td>
</tr>
<tr>
<td>GE</td>
<td>Math. 20C GE</td>
<td>Math. 20C GE</td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 105</td>
<td>CSE 100 or Math. 176</td>
<td>CSE 101 or Math. 188</td>
</tr>
<tr>
<td>Math. 15B</td>
<td>CSE 110</td>
<td>CSE 140L (2 units)</td>
</tr>
<tr>
<td>GE</td>
<td>Major General Science</td>
<td>CSE Tech. Elec. GE</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

| CSE 130 | CSE 131 | CSE 131 |

B.A. Computer Science, Sample Program starting with CSE 11

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 11</td>
<td>CSE 12</td>
<td>CSE 20 or Math. 15A</td>
</tr>
<tr>
<td>Math. 20A</td>
<td>CSE 15L (2 units)</td>
<td>CSE 30</td>
</tr>
<tr>
<td>GE</td>
<td>Math. 20B GE</td>
<td>Math. 20C GE</td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 91</td>
<td>CSE 100 or Math. 176</td>
<td>CSE 141</td>
</tr>
<tr>
<td>Math. 20F</td>
<td>CSE 110</td>
<td>CSE 141L (2 units)</td>
</tr>
<tr>
<td>GE</td>
<td>Major General Science</td>
<td>CSE Tech. Elec. GE</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

| CSE 105 | CSE 130 | CSE 130 |
| CSE 120 | CSE Tech. Elec. GE | CSE Tech. Elec. GE |

Notes for Selecting and Scheduling Classes for B.A. Computer Science

- Students must complete all of the required courses by the end of their junior year.

Effective fall 2010, students must complete seven technical electives. Four of the seven technical electives must be CSE upper-division courses. Students can use a CSE graduate course for technical elective credit with approval. Once a graduate course is used for an undergraduate degree, it may not be reused for a graduate degree. In addition, only four units of CSE 197 may be used toward technical elective credit.

- Students may choose up to eight units of CSE 198, CSE 199, or CSE 199H to meet the CSE upper-division technical requirement.

- Two of the technical electives may be chosen from a list of approved electives. This list is at http://www.cse.ucsd.edu/undergrad/degreeprograms/electives.html. If you want to deviate from this list of approved electives, you must petition the CSE student advisor at ugradinfo@cs.ucsd.edu.

Electives

The discipline of computer science and engineering interacts with a number of other disciplines in a mutually beneficial way. These disciplines include mathematics, electrical engineering, and cognitive science. The following is a list of upper-division courses from these and other disciplines that can be counted as technical electives.

SENIOR YEAR

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GE</td>
<td>GE</td>
<td>GE</td>
</tr>
</tbody>
</table>

Notes for Selecting and Scheduling Classes for B.A. Computer Science

1. Advisory placement exam: Students may self-select which course they wish to take and are encouraged to take the advisory placement exam to help decide. Students with little computer experience are encouraged to take CSE 3. Students without experience in programming in a compiled language are advised to take CSE 8A, CSE 8AL, and then CSE 8B, instead of CSE 11. CSE 11 is a faster paced version of CSE 8A, CSE 8AL, and CSE 8B. CSE 8B or CSE 11 must be taken before CSE 12.

2. Computer Science Advanced Placement Credit: A Exam (Java Programming) two units

- Score of 4 exempts CSE 8A and CSE 8AL.
- Student should take CSE 11.
- Score of 5 exempts CSE 8B. Student should take CSE 12.

3. CSE 8A/8AL, or CSE 8B, or CSE 11 may be taken concurrently with CSE 20/Math. 15A. Please obtain department approval for enrollment permission in CSE 20/Math. 15A at ugradinfo@cs.ucsd.edu.

4. CSE 15L and CSE 70 are new courses starting fall 2007.

5. CSE 15L must taken prior to or concurrently with CSE 12.

6. Effective fall 2010, CSE 70 is renumbered to CSE 110.

7. Effective fall 2010, students must complete seven technical electives. Four of the seven technical electives must be CSE upper-division courses. Students can use a CSE graduate course for technical elective credit with approval. Once a graduate course is used for an undergraduate degree, it may not be reused for a graduate degree. In addition, only four units of CSE 197 may be used toward technical elective credit.

8. Students may take up to eight units of CSE 198, CSE 199, or CSE 199H to meet the CSE upper-division technical requirement.

9. Two of the technical electives may be chosen from a list of approved electives. This list is at http://www.cse.ucsd.edu/undergrad/degreeprograms/electives.html. If you want to deviate from this list of approved electives, you must petition the CSE student advisor at ugradinfo@cs.ucsd.edu.

Electives

The discipline of computer science and engineering interacts with a number of other disciplines in a mutually beneficial way. These disciplines include mathematics, electrical engineering, and cognitive science. The following is a list of upper-division courses from these and other disciplines that can be counted as technical electives.
Restrictions

1. At most four units of CSE 197 may be used towards technical elective requirements.
2. CSE 195 cannot be used towards course requirements.
3. Undergraduate students must get instructor’s permission and departmental stamp to enroll in a graduate course.
4. Students may not get duplicate credit for equivalent courses.
5. The UC San Diego General Catalog should be consulted for equivalency information and any restrictions placed on the courses.
6. Additional restrictions are noted below. Any deviation from this list must be petitioned.

Computer Science with a Specialization in Bioinformatics

Students must petition department for technical elective credit not on approved list.

Mathematics

All upper-division courses except Math. 168A (Math. 183 — Computer Engineering majors only), 184A, and 195—199.

If a student has completed CSE 167, then he or she cannot get elective credit for Math. 155A. Students may receive elective credit for only one of the following courses: CSE 164A, Math. 174, Math. 173, Phys. 105A-B, CENG 100, MAE 107. No credit for any of these courses will be given if Math. 170A-B-C is taken. Students may receive credit for either one of the following: Math. 166 or CSE 105 (but not both), Math. 188 or CSE 101 (but not both), Math. 176 or CSE 100 (but not both). Credit will be given for only one of the following: ECE 109 or Math. 183 or Econ. 120A.

Electrical and Computer Engineering

All ECE upper-division courses except 195—199. Students may not get credit for both CSE 123A and ECE 158A or CSE 143 and ECE 165. Credit will be given for only one of the following: ECE 109 or Math. 183 or Econ. 120A.

Cognitive Science

Mechanical and Aerospace Engineering

All upper-division MAE courses except MAE 140 (ONLY Computer Science majors may take MAE 140) and 195—199.

Students may receive elective credit for only one of the following courses: CSE 164A, Math. 174, Math. 173, Phys. 105A-B, CENG 100, MAE 107. Students may only get credit for one of the two courses, CSE 167 or MAE 152.

Economics

Microeconomics 100A-B-C, Game Theory 109, Macroeconomics 110A-B-C, Mathematical Economics 113, Econometrics 120A-B-C, Applied Econometrics 121, Decisions Under Uncertainty 171, Introduction to Operations Research 172A-B-C, Economic and Business Forecasting 178. Credit will be given for only one of the following: ECE 109 or Math. 183 or Econ. 120A.

Linguistics

Engineering

Principles of Team Engineering 100, Team Engineering Laboratory 100L, Team Engineering 101.

Computer Science and Computer Engineering

Students are eligible to receive six units of technical elective credit for completing a combination of ENG 100 (two units) and ENG 100L (two units). Students must complete one quarter of ENG 100 for two units, and two quarters of ENG 100L for a total of four units. With this combination, students will get credit for one technical elective. To receive credit for two technical electives, students must complete one more quarter of ENG 100L. This credit can be applied to fulfill the technical elective requirements.

Music

Computer Music II 172, Audio Production: Mixing and Editing 173.

Psychology

Introduction to Engineering Psychology 161.

CSE HONORS PROGRAM

The CSE Honors Program encourages eligible undergraduate students to perform advanced study in their major. Students in the honors program work closely with faculty on an undergraduate research project, typically completed over two quarters. As a result, the honors program is excellent preparation for further study in a graduate program. Students who complete the honors program also have an honors distinction officially bestowed upon them upon graduation.

Eligibility for Admission

In accordance with university Honors Program guidelines, to apply for the CSE honors program students must meet the following prerequisites:

- Junior-level standing in a CSE major
- 3.5 GPA in CSE major courses, 3.25 GPA overall
- Completion of CSE 101, CSE 105, and CSE 110
- Completion of at least twelve units of upper-division CSE courses at UCSD

Application Procedure

To apply for admission to the CSE Honors Program, students must submit a formal application that includes the following information:

- Name of CSE faculty advisor sponsoring the project
- Project proposal (one page)
- Signature from the faculty advisor acknowledging that the faculty member has agreed to advise the student in the honors program, and corroborates the specific of the project
- Submit the application no later than the end of fall quarter of senior year. Submission during spring quarter of the junior year is strongly encouraged.

The application form is available online from the CSE department Web site and from the CSE undergraduate advising office. Admission to the honors program will be formally approved by the CSE honors committee based upon the materials provided in the application.

Completion Requirements

In accordance with university Honors Program guidelines, to complete the CSE Honors Program students must meet the following requirements upon graduation:

- 3.25 GPA in a CSE major
- Eight units of CSE 199H with a GPA of 3.0 (letter grade of B) or higher
- Written honors thesis
- Presentation of honors project
- Signature from faculty advisor on an honors completion form
- Completion of requirements by the end of the spring quarter of graduation

Depending on students’ performance on their honors project, students are eligible to receive the following honors designations on their diploma:

- “With distinction”: Complete the eight units of CSE 199H with a GPA of 3.0 or higher
- “With high distinction”: Complete the eight units of CSE 199H with a GPA of 3.5 or higher
- “With highest distinction”: Complete the eight units of CSE 199H with a GPA of 3.8 or higher

Students must write a thesis describing their honors research project. The thesis must have the content, rigor, and format of scholarly publications in computer science and engineering. The faculty advisor must review and approve the honors thesis prior to submission by the student.

Students must orally present their project as a requirement for the honors program. Students have many opportunities for fulfilling this requirement:
partment of concentration.

Office concerning the rules for the minor or program

is a faster paced version of CSE 8A, CSE 8AL, and

start with CSE 11, but they should be aware that CSE

required in CSE 8A and CSE 8AL. Students may also

are advised to take CSE 3 and CSE 5A before taking

participating in the Honors Program may apply eight

elective courses for their major. Students may also

apply unit credit in CSE 199H towards the cluster

requirement in the undergraduate program.

MINOR AND PROGRAM OF

CONCENTRATION

The CSE minor requires successful completion of a
total of nine CSE courses. Lower-division courses
are CSE 8B or CSE 11, CSE 12, CSE 20, CSE 21, and CSE
30. The remaining four CSE courses are CSE 100, CSE
101, and two additional CSE upper-division courses
subject to enforcement of prerequisites.

CS Minor

Three-year plan for students starting with CSE 8A

FALL WINTER SPRING

1st Year
CSE 8A and CSE 8AL

2nd Year
CSE 20 CSE 21 CSE 30

3rd Year
CSE 100 CSE 101 CSE Elective

CS Minor

Three-year plan for students starting with CSE 11

FALL WINTER SPRING

1st Year
CSE 11 CSE 20 CSE 12

2nd Year
CSE 21 CSE 30 CSE 100

3rd Year
CSE 101 CSE Elective CSE Elective

Scheduling Notes

Students without any programming experience are advised to take CSE 3 and CSE 5A before taking
CSE 8A and CSE 8AL. Concurrent enrollment is
required in CSE 8A and CSE 8AL. Students may also
start with CSE 11, but they should be aware that CSE
11 is a faster paced version of CSE 8A, CSE 8AL, and
CSE 8B, and requires experience in programming with
a compiled language.

Students should consult their college provost's
office concerning the rules for the minor or program
of concentration.

Restriction

Effective fall 2000, mathematics/computer science majors will not be allowed the minor in
computer science.

COMPUTING COURSES FOR NON-MAJORS

The department offers a slow-pace course providing a practical introduction to computers,
computation, and programming; CSE 5A—an introduction to structured programming using the
C/Java programming language. We also offer an introduction in fluency in information technol-
ogy; CSE 3—an introduction to basic information students need to deal with information technology.
It is more of a concepts course than a programming course, but some simple programming will be done
as part of the teaching of concepts.

ADMISSION TO MAJOR

Freshmen Students

Freshmen students are invited to declare the CSE
computer science, computer engineering, or com-
puter science with a specialization in bioinformatics
major. Starting fall 2008 the Department of CSE
removed the “Impacted/Closed Status” and admis-
sion restrictions for freshmen applicants. This means
the Department of CSE will accept all students that
apply to the Department of CSE and are admitted by
the UC San Diego Admissions Office.

Furthermore, freshmen students that start at UC
San Diego as undeclared or in another major may
also switch into a computer science or computer
engineering major. Students may use the Major/
Minor link under Tools at http://tritonlink.ucsd.edu
to make this change.

Major choices for your selection

B.A. Computer Science (CS28)
B.S. Computer Science (CS26)
B.S. Computer Science with a Specialization in
Bioinformatics (CS27)
B.S. Computer Engineering (CS25)

Preparation for Success

To reduce the amount of time needed to
complete degree requirements, transfer students
should try to complete as many prerequisite courses
they can take at a community college before starting
at UC San Diego.

Recommended courses and recommended 3.0 GPA

• Calculus I—for Science and Engineering (Math.
 20A)
• Calculus II—for Science and Engineering (Math.
 20B)
• Calculus and Analytic Geometry (Math. 20C)
• Differential Equations (Math. 20D)
• Linear Algebra (Math. 20F)
• Complete calculus-based physics series (Phys.
 2A–B–C) [For computer engineering majors]
• Highest level of introductory computer program-
 ming language (i.e. Java, C or C++) course
 offerings at the community college

B.S. in Computer Science with a
Specialization in Bioinformatics

Freshmen and transfer students are invited
to declare the CSE bioinformatics major. Starting
fall 2008 the Department of CSE has removed the
“Impacted/Closed Status” and admission restrictions
for freshmen and transfer applicants. This means
the Department of CSE will accept all students that
apply to the Department of CSE and are admitted by
the UC San Diego Admissions Office.

Furthermore, freshmen and transfer students that
start at UC San Diego as undeclared or in another
major may also switch into the B.S. in Computer
Science with a Specialization in Bioinformatics major
(major code CS27). Students may use the Major/
Minor link under Tools at http://tritonlink.ucsd.edu
to make this change.

It is strongly recommended that students meet
with an advisor in the Department of CSE to discuss
requirements for the bioinformatics program.

Advanced Placement Credit: Application
to Major Requirements

Effective January 14, 2005, the following CSE
advanced placement equivalencies have been
approved (a four-unit maximum for both tests).

• Computer Science A Exam (Java Programming),
two units:
 • Score of 4 = exempt CSE 8A and 8AL; student
 should take CSE 11
 • Score of 5 = exempt CSE 11
• Computer Science AB Exam (Java Programming,
 and Data Structures and Object-Oriented
 Programming), four units:
 • Score of 4 or 5 = exempt CSE 11
 • Score of 5 = exempt CSE 12 with department
 approval

2010-2011 UC SAN DIEGO GENERAL CATALOG • ENGINEERING: COMPUTER SCIENCE AND ENGINEERING (CSE)
ENROLLMENT IN CSE COURSES

All CSE and non-CSE majors may enroll in lower- and upper-division CSE courses. Students must meet course prerequisites.

Please note: Student demands exceed capacity in many CSE graduate courses. Accordingly, many CSE graduate courses may have enrollment restrictions, which give priority to students in the following order:

1. CSE M.S. and CSE Ph.D. students.
2. All others, with permission of the Department of Computer Science and Engineering.

Enrolling in Upper-Division Courses

The Department of Computer Science and Engineering will attempt to provide sufficient sections of all lower-division courses. Students will, however, be screened to ensure that they meet all course enrollment restrictions.

Admission to upper-division courses will be restricted to students having completed all prerequisites with a C– or better (or consent of the instructor). You may also contact ugadinfo@cse.ucsd.edu for more information.

UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP)

CSE majors are encouraged to participate in the UC Education Abroad Program (EAP) or UCSD’s Opportunities Abroad Program (OAP). Subject to approval by the faculty director of the major, courses taken through EAP/OAP will be accepted for credit toward the major. Students interested in studying abroad should see a CSE undergraduate program advisor to discuss appropriate courses and programs for their plan of study. The advising office is located in Engineering Building Unit #3 (EBU 3B), Room 1231.

Information on EAP/OAP is given in the "Education Abroad Program" section of the UC San Diego General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit its Web site at http://programsabroad.ucsd.edu. Financial aid can be used for EAP/OAP study, and special study-abroad scholarships are also available.

GRADUATION REQUIREMENTS

All major requirements and technical electives except CSE 197, 198, or 199 must be taken for a letter grade. To graduate, a grade-point average of 2.0 will be required in upper-division courses in the major, including technical electives. In addition, each student must satisfy general-education course requirements determined by the student’s college, as well as major requirements determined by the department. The five colleges at UCSD require widely different numbers of general-education courses. Each student should choose his or her college carefully, considering the special nature of the college and breadth of education, realizing that some colleges require considerably more courses than others.

THE GRADUATE PROGRAM

The graduate program offers master of science and doctor of philosophy degrees in computer science and computer engineering. To be accepted into either course of study, a student should have a B.A./B.S. degree in computer science, computer engineering, or a related area, or be able to demonstrate an equivalent competency.

The graduate program is concerned with fundamental aspects of computation. The computer science specialization is divided among the following areas:

- Algorithms and complexity
- Artificial intelligence
- Bioinformatics
- Computer architecture and compilers
- Computer graphics and computer vision
- Databases and information management
- Embedded systems and software
- High-performance computing
- Programming systems
- Security and cryptography
- Software engineering
- Systems and networking
- Ubiquitous Computing
- VLSI/CAD (computer-aided design)

The computer engineering specialization places a greater emphasis on hardware and the design of computer systems.

Admission to the graduate program is done through the Office of Graduate Admissions, Department of CSE. The application deadline is in December. Admissions are always effective the following fall quarter. For admission deadline and requirements, please refer to the departmental Web page: http://www.cse.ucsd.edu/gradedu/admissions/graduateadmissions.html.

Admission decisions for the M.S. and Ph.D. programs are made separately. A current M.S. student who wishes to enter the Ph.D. program must submit a petition, including a new statement of purpose and three new letters of recommendation, to the CSE Admissions Committee.

FIVE-YEAR BACHELOR’S-MASTER’S PROGRAM

Undergraduate students in the Department of Computer Science and Engineering who are enrolled in the B.S. or B.A. Computer Science or B.S. Computer Engineering degree programs, and who have a cumulative GPA of 3.4 and also a GPA of 3.4 in at least seven core courses, are eligible to apply for the Five-Year Bachelor’s-Master’s Degree Program. Students must apply four quarters before graduation. Acceptance into this program is an honor that carries with it practical benefits—the graduate application process is simplified (no GREs required), and students accepted into this program can be admitted fall, winter, and spring quarter, based upon availability of openings in the program. Advanced students are given access to graduate level courses and have the opportunity to do graduate level research earlier under the direct supervision of UC San Diego’s faculty, and students are able to complete the B.A., B.S., and M.S. degree within a five-year time period. Courses taken can be used toward either the B.A., B.S., or M.S. degree, but not counted toward both degrees. Additional information and applications can be obtained by contacting the CSE Student Affairs Office, EBU 3B, Room 1234. For an application, visit http://www.cse.ucsd.edu/gradedu/degreeprograms/bachelormasterscombined.html.

COMPUTER SCIENCE PROGRAM

MASTER OF SCIENCE PROGRAM

Thesis or Comprehensive Exam

The department offers the master of science degree in computer science. The degree can be pursued under either the Thesis Plan I or the Comprehensive Examination Plan II. There are two options for the Comprehensive Exam Plan II: the Standard Comprehensive Option or Interdisciplinary Comprehensive Option. Each plan requires forty-nine units of work. For full-time students, all the requirements can be completed within two years.

Required Courses

- Students entering the M.S. Program in Computer Science will choose an area of concentration. Each concentration is an area in which the faculty has significant research expertise. A typical concentration is a collection of three courses that are designed to give the student in-depth training in the chosen field. Additionally, to ensure breadth, all students are required to take four core courses.
- Core courses must be completed with an average grade of B. The four core courses required of all students are as follows:
 - CSE 202. Algorithms Design and Analysis
 - CSE 221. Operating Systems
 - CSE 240A. Principles of Computer Architecture
 - CSE 292. Faculty Research Seminar

The department expects to offer concentrations in the following areas:

- Artificial Intelligence
- Bioinformatics
- Communication Networks
- Computer Architecture and Compilers
- Computer Graphics and Vision
- Cryptography and Security
- Databases
- Design Automation for Microelectronic Designs
- Distributed and Fault-Tolerant Computing
- Embedded Systems and Software
- Human–Computer Interaction
- Parallel and Scientific Computing
- Software Engineering
- Storage Systems
- Ph.D. Preparation

The specific courses involved in each of the concentrations are detailed in a separate bulletin which is available in the Graduate Student Affairs Office, EBU 3B 1234 or on the Web at http://www.cse.ucsd.edu/gradedu/advising/newstudentinfo/mastersconcentration.html.
Electives
In addition to completing the required core courses and fulfilling either the thesis or comprehensive examination requirements described above, the student must also complete additional approved courses to bring the total number of units to forty-nine. The number of units of electives depends upon whether the student chooses Plan I or Plan II. The electives consist of other CSE graduate courses or courses from a list of approved electives. Units obtained in the courses CSE 293, 298, 299, 500, 501, 599, and any of the seminar courses CSE 209, 229, 259, 269, 290, and 294 do not count toward the elective requirement.

Plan I: Thesis Option
This plan involves both course work and research, culminating in the preparation of a thesis. The student must take twelve units of CSE 298 (Independent Study) to fulfill the research requirement, and a thesis based on research must be written and subsequently reviewed by the thesis committee. This committee, which is appointed by the dean of Graduate Studies, consists of three faculty members, with at least two members from within the CSE department.

Computer Science—Thesis, Plan I
Forty-nine units
Core: CSE 202, CSE 221, CSE 240A, CSE 292
Concentration: twelve units in one of the concentration areas designated by the department. Concentration courses must be taken for a letter grade.
Technical electives: twenty units (minimum of three courses in CSE, minimum of three graduate level courses)
Project: four units of CSE 293
Capstone: comprehensive exam

Interdisciplinary option:
Core: CSE 202, CSE 221, CSE 240A, CSE 292
Primary concentration: twelve units in one of the concentration areas designated by the department. Concentration courses must be taken for a letter grade.
Secondary concentration: twelve units in one of the approved areas outside of CSE. The twelve units of the secondary concentration must be taken from only one area and approved by the M.S. Committee: the Departments of Cognitive Science, Electrical and Computer Engineering, Mechanical and Aerospace Engineering, Structural Engineering, or the Rady School of Management. Technical electives: eight units (within CSE, graduate level)
Project: four units of CSE 293
Capstone: comprehensive exam

COMPUTER ENGINEERING PROGRAM
The CSE computer engineering program offers master of science and doctoral degrees with the degree title computer science and engineering (computer engineering). Computer engineering explores the engineering analysis and design aspects of algorithms and technology. Specific research areas include computer systems, signal processing systems, architecture, networks, computer-aided design, fault tolerance, and data storage systems.

MASTER OF SCIENCE PROGRAM
The degree can be pursued under either the Thesis Plan I or the Comprehensive Examination Plan II. There are two options for the Comprehensive Exam Plan II: the Standard Comprehensive Option or Interdisciplinary Comprehensive Option. Each plan requires forty-nine units of work. For full-time students, all the requirements must be completed within two years. Students with an adequate background in computer engineering can complete the M.S. program within four to five quarters of full-time study.

Plan I: Thesis Option
This plan of study involves both course work and research, culminating in the preparation of a thesis. A thesis based on research must be written and subsequently reviewed by a committee consisting of three faculty members, with at least two members from within the CSE department. The committee is appointed by the dean of Graduate Studies. Twelve units of CSE 298 must be taken with a faculty member in CSE who agrees to act as advisor for the thesis to fulfill the research requirement. A total of forty-nine units of credit is required, as follows:

Computer Engineering—Thesis, Plan I
Forty-nine units
Core: Core courses must be completed with an average grade of B. The four core courses required of all students are as follows:
CSE 292
Three of the following courses: CSE 202, CSE 221, CSE 237A, CSE 240A, CSE 241A
Concentration courses: twelve units from a list of computer engineering courses maintained by the department.
Electives: twelve units (minimum of eight units taken within CSE, minimum of eight units graduate level)
Research: twelve units of CSE 298
Capstone: thesis

Plan II: Comprehensive Examination
There are two options for the Computer Engineering, Comprehensive Exam Plan II: the Standard Comprehensive Option or Interdisciplinary Comprehensive Option.
In order to receive the M.S. degree in computer engineering under this plan, a student must complete the course requirements listed below and pass the comprehensive examination. The comprehensive examination is designed to test the student's knowledge in basic computer science and engineering material. The examination can normally be passed with a thorough knowledge of topics covered in the undergraduate and first-year graduate computer science or computer engineering programs. Each student is allowed three attempts to pass the examination. The student must secure at least a master's-level pass in the comprehensive examination. This examination is the same for both the computer science and the computer engineering graduate programs. More information about the comprehensive examination can be obtained in a separate document from the CSE graduate office.

Computer Engineering—Comprehensive, Plan II
Forty-nine units
Core: core courses must be completed with an average grade of B. The four core courses required of all students are as follows:
CSE 292
Three of the following courses: CSE 202, CSE 221, CSE 237A, CSE 240A, CSE 241A
Standard option:
Primary concentration: twelve units from a list of computer engineering courses maintained by the department. Concentration courses must be taken for a letter grade.
Technical electives: twenty units (minimum of twelve units in CSE, minimum of twelve units at graduate level)
Project: four units of CSE 293
Capstone: comprehensive exam
Interdisciplinary option:
Primary concentration: twelve units from a list of computer engineering courses maintained by the department. Concentration courses must be
taken for a letter grade.

- Secondary concentration: twelve units within one of the approved areas outside of CSE. The twelve units of the secondary concentration must all be taken from only one area and approved by the M.S. Committee; the Departments of Cognitive Science, Electrical and Computer Engineering, Mechanical and Aerospace Engineering, Structural Engineering, and the Rady School of Management.
- Technical electives: eight units (within CSE, graduate level)
- Project: four units of CSE 293
- Capstone: comprehensive exam

DOCTORAL PROGRAMS

PH.D. DEGREE PROGRAMS IN COMPUTER SCIENCE AND COMPUTER ENGINEERING

CSE offers doctor of philosophy degrees in computer science and in computer engineering, providing a research-oriented education in preparation for a research, industrial, or entrepreneurial career. These programs explore both the fundamental aspects and application of computation, spanning theory, software, hardware, and applications. Our particular areas of research expertise include

- algorithms
- artificial intelligence
- bioinformatics
- complexity theory
- computer architecture/compilers
- VLSI/CAD and embedded systems
- databases and information management
- distributed systems and networking
- graphics and vision
- high performance computing
- mobile computing
- security and cryptography
- software engineering

Competency Requirement

The competency requirement ensures that Ph.D. students already have or will acquire the necessary undergraduate background for Ph.D. studies. Competency at the advanced undergraduate level may be demonstrated by any of the following methods:

1. providing evidence of previous undergraduate or graduate course work; or
2. taking an undergraduate course at UCSD; or
3. taking the corresponding graduate course with consent of instructor; or
4. passing the final exam of an undergraduate course at UCSD.

Ph.D. students must demonstrate competency with respect to the following six undergraduate courses at UCSD. The corresponding graduate courses are listed in parentheses.

- **CSE 101. Design and Analysis of Algorithms**
 (CSE 202 Algorithm Design and Analysis)
- **CSE 105. Theory of Computability**
 (no corresponding graduate course)
- **CSE 120. Principles of Computer Operating Systems**
 (CSE 221 Operating Systems)
- **CSE 130. Programming Languages: Principles and Paradigms**
 (CSE 230. Principles of Programming Languages)
- **CSE 131. Compiler Construction**
 (CSE 231. Advanced Compiler Design)
- **CSE 141. Introduction to Computer Architecture**
 (CSE 240A. Principles of Computer Architecture)

A graduate course taken to satisfy the competency requirement may also be used to satisfy the breadth, depth, or elective course requirement.

Course Requirements

The course requirement is intended to ensure that students are exposed to (1) fundamental concepts and tools, (2) advanced, up-to-date views in topics outside their area (the breadth requirement), and (3) a deep, up-to-date view of their research area (the depth requirement). Ph.D. students are expected to complete the breadth and depth requirements within the first three years of the program. All required course work must be taken for a letter grade, with the exception of CSE 291 (Topics in CSE), CSE 292 (Faculty Research Seminar), CSE 299 (Research), and CSE 500 (Teaching Assistantship), for which only S/U grades are allowed.

Units obtained from a single course cannot count more than once towards satisfying the requirement in each of the breadth, depth, or elective areas. Ph.D. students who have taken similar courses elsewhere may petition for a waiver of the required courses or for substitution by alternative courses.

Breadth Requirement

The breadth requirement ensures that Ph.D. students share knowledge of fundamental concepts and tools from across broad areas of computer science and computer engineering. Each Ph.D. student must take each of these courses for a letter grade and maintain an overall breadth course GPA of 3.3 (except for CSE 292, for which a letter grade is not assigned). A student will typically complete all breadth courses within the first two years of graduate study.

Breadth courses are categorized into three areas: Theory, Systems, and Applications.

Students in **Computer Science** must take six courses in the areas of Theory, Systems, and Applications: two in Theory, two in Systems, and two in Applications.

Students in **Computer Engineering** must take six courses in the areas of Theory, Systems, and Applications following one of two plans:

- **Plan A:** one in Theory, three in Systems, and two in Applications
- **Plan B:** two in Theory, three in Systems, and one in Applications

Depth Requirements

The depth requirement ensures that a Ph.D. student acquires some depth of knowledge in a general research area early in his or her career. Each Ph.D. student must select one of the following areas as his or her depth area. The student must take three courses (twelve units) from this depth area. The student must take each of these courses for a letter grade and maintain an overall depth course GPA of 3.4. However, one of these three courses can be a CSE Topics course (CSE 291) or an Independent Study (CSE 299), which are not taken for a letter grade. The department will maintain a list of appropriate courses for each depth area.

- The depth areas are
 - Theoretical Computer Science
 - Programming Languages, Compilers, and Software Engineering
 - Computer Systems
 - Database Systems
 - Computer Engineering
 - Artificial Intelligence
 - Graphics and Vision
 - Bioinformatics

Electives

In addition to the above, each student must take three additional courses (twelve units) including at most eight units of 299, with no grade lower than C–. Upper-division undergraduate courses satisfying the competency requirement may be used as electives. Undergraduate upper-division courses CSE 291 and CSE 299 may also be used to fulfill this requirement. Units obtained in the CSE 209 series, 229 series, 239 series, 249 series, 259 series, 269 series, 279 series, 289 series, 290, 292, 293, 294, 298, and 500, and 599 do not count toward the elective requirement.

Research Exam Requirement

The research exam is intended to verify three components of the student’s preparation for Ph.D. research: (1) breadth of comprehension sufficient to enable computer science research in areas beyond the topic(s) of the research exam and thesis; (2) ability to perform critical study, analysis, and writing in a focused area; and (3) research experience.

The research exam has both an oral part and a written part. The oral part of the research exam is distinct from, and cannot be combined with the University Qualifying Exam. Grading criteria for each part, and standards for passing, are available from the CSE department graduate office.

The research exam is conducted by a committee of three faculty members approved by the Graduate Committee and the chair of the department. At least two committee members must be CSE senate faculty. The student’s advisor is not a member of the committee, but is free to attend the research exam. The normative time for passing the research exam is by the end of the second year of study. A petition to the CSE Graduate Committee is required.
COURSE DESCRIPTIONS

CSE 8A. Introduction to Computer Science: Java (3)
Introductory computer science course designed for students interested in computing. No prior programming experience is assumed. Learn fundamental concepts of applied computer science using media computation. Must be taken concurrently with CSE 8AL. CSE 8A is part of a three-track course (CSE 8A, CSE 8AL, and CSE 8B) that is equivalent to CSE 11. Students must take CSE 8B to complete this track. Students who have taken CSE 8B or CSE 11 may not take CSE 8A. Recommended prep: High school algebra and familiarity with computing concepts. Prerequisite: co-requisite of CSE 8AL.

CSE 8AL. Introduction to Computer Science: JAVA Lab (1)
Exercises in the theory and practice of computer science under the supervision of an instructor. Hands-on experience with designing, editing, compiling, and executing programming constructs and applications. Must be taken concurrently with CSE 8A. CSE 8AL is part of a three-track course (CSE 8A, CSE 8AL, and CSE 8B) that is equivalent to CSE 11. Students must take CSE 8B to complete this track. Students who have taken CSE 8B or CSE 11 may not take CSE 8AL. Recommended prep: High school algebra and familiarity with computing concepts. Prerequisite: co-requisite of CSE 8A.

CSE 8B. Introduction to Computer Science: Java B (4)
Continuation of the Java language. Continuation of programming techniques. More on inheritance. Exception handling. CSE 8A is part of a three-track course (CSE 8A, CSE 8AL, and CSE 8B) that is equivalent to CSE 11. Students who have taken CSE 11 may not take CSE 8A. Recommended prep: High school algebra and familiarity with computing concepts or CSE 8A and CSE 8AL.

CSE 8E. Tools and Technique Laboratory (2)
Hands-on exploration of software development tools and techniques. Introduction to the scientific process as applied to software development and debugging. Emphasis is on weekly hands-on laboratory experiences, development of laboratory note-taking techniques as applied to software design. Prerequisites: CSE 8B or CSE 11. Concurrent enrollment with CSE 12.

CSE 10. Introduction to Discrete Mathematics (4)
Basic discrete mathematical structures, sets, relations, functions, sequences, equivalence relations, partial orders, and number systems. Methods of reasoning and proofs: propositional logic, predicate logic, induction, recursion, and pigeonhole principle. Infinite sets and diagonalization. Basic counting techniques; permutation and combinations. Applications will be given to digital logic design, elementary number theory, design of programs, and proofs of program correctness. Credit not offered for both Math. 15A and CSE 10. Equivalent to Math 15B. Prerequisites: CSE 8A or CSE 8B or CSE 11. CSE 8B or CSE 11 may be taken concurrently with CSE 20. Math. 15A.

CSE 11. Mathematics for Algorithms and Systems (4)
This course will provide an introduction to the discrete mathematical tools needed to analyze algorithms and systems. Enumerative combinatorics: basic counting principles, inclusion-exclusion, and generating functions. Matrix notation. Applied discrete probability. Finite automata. Credit not offered for both Math. 15B and CSE 21. Equivalent to Math 15B. Prerequisite: CSE 20 or Math. 15A.

CSE 20. Introduction to Modern Digital Computers (3)
Introductory course to the architecture of modern digital computers—understanding the various components of a computer and their interrelationships. Study of a specific architecture/machine with emphasis on systems programming in C and Assembly languages in a UNIX environment. Prerequisite: CSE 12, CSE 15L, or consent of instructor.

Basic discrete mathematical structures, sets, relations, functions, sequences, equivalence relations, partial orders, and number systems. Methods of reasoning and proofs: propositional logic, predicate logic, induction, recursion, and pigeonhole principle. Infinite sets and diagonalization. Basic counting techniques; permutation and combinations. Applications will be given to digital logic design, elementary number theory, design of programs, and proofs of program correctness. Credit not offered for both Math. 15A and CSE 20. Equivalent to Math 15B. Prerequisites: CSE 8A or CSE 8B or CSE 11. CSE 8B or CSE 11 may be taken concurrently with CSE 20. Math. 15A.

CSE 30. Computer Organization and Systems Programming (4)
Introduction to organization of modern digital computers—understanding the various components of a computer and their interrelationships. Study of a specific architecture/machine with emphasis on systems programming in C and Assembly languages in a UNIX environment. Prerequisite: CSE 12, CSE 15L, or consent of instructor.

CSE 12. Basic Data Structures and Object-Oriented Design (4)
Basic data structures including stacks, queues, lists, binary trees, hash tables. Basic object-oriented design including encapsulation, polymorphism, classes as the implementation of abstract data types. Memory management, pointers, recursion, and big-o notation. Uses the C/C++ and Java programming language. Prerequisites: CSE 8B or CSE 11, and CSE 15L.

CSE 35. Fluency in Information Technology (4)
Introduces the concepts and skills necessary to effectively use information technology. Includes basic concepts and some practical skills with computer and networks. Prerequisite: none.

CSE 4GS. Mathematical Beauty in Rome (4)
Exercises in the theory and practice of computer science using media computation. Must be taken concurrently with CSE 8AL. CSE 4GS is part of a three-track course (CSE 4GS, CSE 6GS, and CSE 8G) that is equivalent to CSE 6GS. Prerequisites: Math. 10A or Math. 20A; departmental approval, and co-requisite of CSE 6GS.

CSE 5A. Introduction to Programming I (4)
(Formerly CSE 62A) Introduction to algorithms and top-down problem solving. Introduction to the C language including functions, arrays, and standard libraries. Basic skills for using a PC graphical user interface operating system environment. File maintenance utilities are covered. (A student may not receive credit for CSE 5A after receiving credit for CSE 10 or CSE 11 or CSE 8B or CSE 9B or CSE 62B or CSE 65.) Prerequisites: Math. 10A or Math. 20A; departmental approval, and co-requisite of CSE 4GS.

CSE 5AL. Companion course to CSE 4GS where theory is applied and lab experiments are carried out “in the field” in Rome, Italy. For final projects, students will select a complex structure (e.g., the Colosseum, the Pantheon, St. Peter’s, etc.) to analyze and model, in detail, using computer-based tools. Prerequisites: Math. 10A or Math. 20A; departmental approval, and co-requisite of CSE 4GS.

CSE 5B. Introduction to Programming II (4)
Introduction to algorithms and top-down problem solving. Introduction to the C language including functions, arrays, and standard libraries. Basic skills for using a PC graphical user interface operating system environment. File maintenance utilities are covered. (A student may not receive credit for CSE 5A after receiving credit for CSE 10 or CSE 11 or CSE 8B or CSE 9B or CSE 62B or CSE 65.) Prerequisites: Math. 10A or Math. 20A; departmental approval, and co-requisite of CSE 4GS.

CSE 8A. Introduction to Computer Science: Java (3)
Introductory computer science course designed for students interested in computing. No prior programming experience is assumed. Learn fundamental concepts of applied computer science using media computation. Must be taken concurrently with CSE 8AL. CSE 8A is part of a three-track course (CSE 8A, CSE 8AL, and CSE 8B) that is equivalent to CSE 11. Students should take CSE 8B to complete this track. Students who have taken CSE 8B or CSE 11 may not take CSE 8A. Recommended prep: High school algebra and familiarity with computing concepts. Prerequisite: co-requisite of CSE 8AL.

CSE 8AL. Introduction to Computer Science: JAVA Lab (1)
Exercises in the theory and practice of computer science under the supervision of an instructor. Hands-on experience with designing, editing, compiling, and executing programming constructs and applications. Must be taken concurrently with CSE 8A. CSE 8AL is part of a three-track course (CSE 8A, CSE 8AL, and CSE 8B) that is equivalent to CSE 11. Students should take CSE 8B to complete this track. Students who have taken CSE 8B or CSE 11 may not take CSE 8AL. Recommended prep: High school algebra and familiarity with computing concepts. Prerequisite: co-requisite of CSE 8A.

CSE 8B. Introduction to Computer Science: Java B (4)
Continuation of the Java language. Continuation of programming techniques. More on inheritance. Exception handling. CSE 8A is part of a three-track course (CSE 8A, CSE 8AL, and CSE 8B) that is equivalent to CSE 11. Students who have taken CSE 11 may not take CSE 8A. Recommended prep: High school algebra and familiarity with computing concepts. Prerequisite: co-requisite of CSE 8A.
CSE 86. C++ for Java Programmers (2) Helps the Java programmer to be productive in the C++ programming environment. Topics include the similarities and differences between Java and C++ with special attention to pointers, operator overloading, templates, the STL, the preprocessor, and the C++ Runtime Environment. Prerequisite: CSE 12 or consent of instructor.

CSE 91. Perspectives in Computer Science and Engineering (2) A seminar format discussion led by CSE faculty on topics in central areas of computer science, concentrating on the relation among them, recent developments, and future directions. Prerequisite: majors only.

CSE 92. Reading and Writing in Computer Science (2) This course helps students to read and write technical English better, and to read and write software better. They write short papers responding to a CSE-related book, learn the basics of functional programming, and do a project using a functional language. Prerequisites: CSE 12. Majors only.

CSE 87. Freshman Seminar (1) The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to 15 to 20 students, with preference given to entering freshmen. Prerequisite: none.

CSE 99. Independent Study in Computer Science and Engineering (4) Independent reading or research by special arrangement with a faculty member. Prerequisites: lower-division standing. Completion of 30 units at UCSD with a UCSD GPA of 3.0. Special Studies form required. Department stamp required. Consent of instructor and approval of the department. Majors only.

UPPER-DIVISION

CSE 100. Advanced Data Structures (4) High-performance data structures and supporting algorithms. Use and implementation of data structures like (un) balanced trees, graphs, priority queues, and hash tables. Also memory management, pointers, recursion, theoretical and practical performance analysis, both average case and amortized. Uses C++ and STL. Credit not offered for both Math. 176 and CSE 100. Equivalent to Math. 176. Prerequisite: CSE 21 or Math. 15B or consent of instructor.

CSE 101. Design and Analysis of Algorithms (4) Design and analysis of efficient algorithms with emphasis of non-numeric algorithms such as sorting, searching, pattern matching, and graph and network algorithms. Measuring complexity of algorithms, time and storage. NP-complete problems. Credit not offered for both Math. 188 and CSE 101. Equivalent to Math. 188. Prerequisites: CSE 12, CSE 21 or Math. 15B or Math. 100A or Math. 103A and CSE 100 or Math. 176. Majors only.

CSE 102. Storage System Architectures (4) Descriptive and analytic introduction to storage system architectures. Disk drive storage media organization and file systems. Design and implementation of large, complex software systems. Emphasis is on software system design applied to a single, large group project with close interaction with instructor. Prerequisites: senior standing with substantial programming experience, and consent of instructor. Department stamp required. Majors only.

CSE 107. Introduction to Modern Cryptography (4) Topics include private and public-key cryptography, block ciphers, data encryption, authentication, key distribution and certification, pseudorandom number generators, design and analysis of protocols, zero-knowledge proofs, and advanced protocols. Emphasizes rigorous mathematical approach to computer security and safety, and proofs of protocol security. Prerequisites: CSE 21 or Math. 15B, CSE 101 or Math. 188, CSE 105 or Math. 166. Majors only.

CSE 110. Software Engineering (4) Introduction to software development and engineering methods, including specification, design, implementation, testing, and process. An emphasis on team development, agile methods, and use of tools such as IDE’s, version control, and test harnesses. CSE 70 is renumbered to CSE 110: students may not receive credit for both CSE 70 and CSE 110. Prerequisites: CSE 12, CSE 21, or Math. 15B.

CSE 111. Object Oriented Software Design (4) Introduction to object orientation and analysis and design. Object-oriented modeling methods for analysis and design, object-oriented general design paradigms, object-oriented design techniques. Cyclic development of object-oriented systems. Prerequisites: CSE 88 or CSE 98 or CSE 10 or CSE 111, CSE 12, and Math. 176. Majors only.

CSE 112. Advanced Software Engineering (4) This course will cover software engineering topics associated with large systems development such as requirements and specifications, testing and maintenance, and design. Specific attention will be given to development tools and automated support environments. Prerequisite: CSE 111.

CSE 118. Ubiquitous Computing (4) Explores emerging opportunities enabled by cheap sensors and networked computing devices. Small research projects will be conducted in teams, culminating in project presentations at the end of the term. Section will cover material relevant to the project, such as research methods, software engineering, teamwork, and project management. Prerequisite: any course from the following: CSE 131, CSE 132B, Cog Sci 102C, Cog Sci 121, Cog Sci 184, ECE 111, ECE 118, ECE 191, ECE 192, COMT 111B, COMT 115, or ICAM; or consent of instructor.

CSE 120. Principles of Computer Operating Systems (4) Basic functions of operating systems; basic kernel structure, concurrency, memory management, virtual memory, file systems, process scheduling, security and protection. Prerequisites: CSE 100 or Math. 176 and CSE 101 or Math. 188. Majors only.

CSE 121. Operating Systems: Architecture and Implementation (4) Formerly CSE 171B. Case study of architecture and implementation of a selected modern operating system. In-depth analysis through a detailed study of source code. Topics include process creation, context-switching, memory allocation, synchronization mechanisms, interprocess communication, I/O buffering, device drivers, and file systems. Prerequisite: CSE 120.

CSE 123. Computer Networks (4) (Renumbered from CSE 123A.) Introduction to concepts, principles, and practice of computer communication networks with examples from existing architectures, protocols, and standards used in telecommunication, the Internet protocols. Layering and the OSI model; physical and data link layers; local and wide area networks; datagrams and virtual circuits; routing and congestion control; internet networking. Transport protocols and issues covered for both CSE 123A and 158A or CSE 123B and 158B. Prerequisites: CSE 120 or consent of instructor. Majors only.

CSE 124. Networked Services (4) (Renumbered from CSE 123B.) The architecture of modern networked services, including data center design, enterprise storage, fault tolerance, and load balancing. Protocol software structuring, the Transmission Control Protocol (TCP), remote procedure calls, protocols for digital audio and video communication, overlay and peer-to-peer systems, secure communication. Credit may not be received for both CSE 124 and ECE 158B. Students may not receive credit for both CSE 123B and CSE 124. Prerequisites: CSE 120 or consent of instructor. Majors only.

CSE 125. Software System Design and Implementation (4) Design and implementation of large, complex software systems involving multiple aspects of CSE curriculum. Emphasis is on software system design applied to a single, large group project with close interaction with instructor. Prerequisites: senior standing with substantial programming experience, and consent of instructor. Department stamp required. Majors only.

CSE 127. Introduction to Computer Security (4) Topics include basic cryptography, security/threat analysis, access control, auditing, security models, distributed systems security, and theory behind common attack and defense techniques. The class will go over formal models as well as the bits and bytes of security exploits. Prerequisites: CSE 21 or Math. 15B, and CSE 120. Majors only.

CSE 128. Concurrent Programming (4) Special emphasis on concurrent programs safety, liveness, and fairness; producer-consumer; mutual exclusion; atomic read/writes; semaphores; monitors; distributed algorithms and memory coherency; programming with threads; concurrency in popular programming languages and operating systems. Prerequisites: CSE 120. Majors only.

CSE 130. Programming Languages: Principles and Paradigms (4) Formerly CSE 173.) Introduction to programming languages and paradigms, the components that comprise them, and the principles of language design, all through the analysis and comparison of a variety of languages (e.g., Pascal, Ada, C++, PROLOG, ML.) Will involve programming in most languages studied. Prerequisites: CSE 12 and CSE 100 or Math. 176. Majors only.

CSE 131. Compiler Construction (4) Formerly CSE 131B.) Introduction to the compilation of programming languages, practice of lexical and syntactic analysis, symbol tables, syntax-directed translation, type checking, code generation, optimization, interpretation, and compiler structure. (Students may receive repeat credit for CSE 131A and CSE 131B by completing CSE 131.) Prerequisites: CSE 100 or Math. 176, CSE 105 or Math. 166, CSE 110, and CSE 130.

CSE 132A. Database System Principles (4) Basic concepts of databases, including data modeling, relational databases, query languages, optimization, dependencies, schema design, and concurrency control. Exposure to one or several commercial database systems. Advanced topics such as conjunctive and object-oriented databases, time allowing. Prerequisites: CSE 100 or Math. 176. Majors only.

CSE 132B. Database Systems Applications (4) Design of databases, transactions, use of trigger facilities and databases. Performance measurement, organization of index structures. Prerequisite: CSE 132 or CSE 133A or equivalent.

CSE 134A. Web Server Languages (4) Design and implementation of interactive World Wide Web document using server-side programs. Languages covered include HTML, Perl, and JavaScript. Other languages as time allows. Prerequisites: CSE 100 or Math. 176. Majors only.

CSE 134B. Web Client Languages (4) Design and implementation of interactive World Wide Web applications. Multi-tier architecture, scripting languages, SQL, XML, session handling, non-browser clients, Web services,
and scalability, security, and usability in the Web context.

Prerequisites: CSE 100 or Math. 176. Majors only.

CSE 136. Enterprise-class Web Applications (4)
Design and implementation of large scale Web-based applications. Modeling organizational needs, design and revision management, J2EE or similar software platforms, Web and application server functionality, reuse of object-oriented code, design of high-level systems and their components, model-view-controller and other design patterns, clustering, load-balancing, fault-tolerance, authentication, usage accounting. Prerequisites: CSE 135. Majors only.

CSE 140. Components and Design Techniques for Digital Systems (4)
(Formerly CSE 170A) Design of Boolean logic and finite state machines. Digital design, design verification, software-driven digital design, combinational logic design, combinational modules and modular networks, Mealy and Moore machines, analysis and synthesis of combinational logic, sequential and concurrent circuits. Prerequisites: CSE 20 or Math. 135. Majors only. CSE 140L must be taken concurrently. Majors only.

CSE 141. Introduction to Computer Architecture (4)
Introduction to computer architecture. Computer system design. Processor design. Control design. Memory systems. Prerequisites: CSE 140, CSE 140L, or consent of the instructor. CSE 141L should be taken concurrently. Majors only.

CSE 141L. Project in Computer Architecture (2)
Hands-on computer architecture project aiming to familiarize students with instruction set architecture, and design of processor, control and memory systems. Prerequisites: CSE 140, CSE 140L, or consent of the instructor. CSE 141 should be taken concurrently. Majors only.

CSE 142. Advanced Digital Logic Design (4)
(Formerly CSE 170C) Digital logic optimization; functional decomposition and symmetric functions; reliable design and fault diagnosis; design of sequential machines; asynchronous circuit design. Assignments using logic synthesis tools. Prerequisites: CSE 140, CSE 140L.

CSE 143. Microelectronic System Design (4)
VLSI process technologies; circuit characterization; logic design styles; clocking strategies; computer-aided design tools; subsystem design; design case studies. System design project from circuit description, logic synthesis, physical layout to design verification. Students may not receive credit for both CSE 143 and ECE 1618. Prerequisites: CSE 140 and CSE 141. Majors only.

CSE 145. Embedded System Design Project (4)
Project class building an embedded computing system. Learn fundamental knowledge of microcontrollers, sensors, and actuators. Introduction to the hardware and software tools to build projects in a team environment and end-to-end system building. Prerequisite: CSE 30.

CSE 146. Introduction to Reliable Hardware (4)
Fault models and tests, combinational circuit test generation, fault collapsing, fault simulation, synchronous sequential circuit testing, functional testing, memory testing. Prerequisites: CSE 140 and CSE 140L, or consent of instructor. Majors only.

CSE 148. Advanced Processor Architecture Design Project (4)
Students will use hardware description language tools to add architectural features to a basic processor design. These features may include pipelining, superscalar execution, branch prediction, and advanced cache features. Designs will be implemented in programmable logic devices. Prerequisites: CSE 141, CSE 141L, or consent of instructor. Majors only.

CSE 150. Introduction to Artificial Intelligence: Search and Reasoning (4)
Search algorithms including BFS, DFS, iterative deepening and A*-searched simulation algorithms including Walksat, syntax and semantics of first-order logic (FOL), knowledge representation in FOL including reasoning, basic reasoning with probabilities, basic Bayesian learning. Prerequisites: CSE 100 or Math. 176 or consent of instructors. Majors only.

CSE 151. Introduction to Artificial Intelligence: Statistical Approaches (4)
Reasoning with probabilities, reasoning and learning with Bayes networks, decision theory, sequential decision-making, statistical learning methods, and reinforcement learning. Prerequisites: CSE 100 or Math. 176 or consent of instructor. Majors only.

CSE 152. Introduction to Computer Vision (4)
The goal of computer vision is to compute scene and object properties from images and video. This introductory course includes feature detection, image segmentation, object estimation, object recognition, and 3-D shape reconstruction through stereo, photometric stereo, and structure from motion. Prerequisites: Math. 20F, CSE 100 or Math. 176, CSE 101 or Math. 188. Knowledge of C, C++ or Matlab programming. Majors only.

CSE 156. Introduction to Parallel Computing (4)
Introduction to high performance parallel computing. Parallel architecture, algorithms, software, and problem-solving techniques. Areas covered: Flynn’s taxonomy, processor-memory organizations, shared and non-shared memory models: message passing and multithreading, data parallelism; speedup, efficiency and Amdahl’s law, communication and synchronization, isoefficiency and scalability. Assignments given to provide practical experience. Prerequisites: CSE 100 or Math. 176. Majors only.

CSE 166. Image Processing (4)
Principles of image formation, analysis, and representation. Image enhancement, restoration, and segmentation. Stochastic image models. Filter design, sampling, Fourier and wavelet transforms. Selected applications in computer graphics and machine vision. Prerequisites: Math. 20F, CSE 100 or Math. 176. Majors only.

Prerequisites: CSE 100 or Math. 176. Credit not given for both CSE 167 and CSE 177. Representations and manipulation of pictorial data. Two-dimensional and three-dimensional transformations, curves, surfaces. Projection, illumination, and shading models. Raster and vector graphic I/O devices; retained-mode and immediate-mode graphics software systems and applications. Prerequisites: Math. 2EA/20F and CSE 100 or Math. 176. Majors only.

CSE 168. Computer Graphics II: Rendering (4)
Weekly programming assignments that will cover graphics rendering algorithms. During the course the students will learn about ray tracing, geometry, tessellation, acceleration structures, clipping, culling, shading models, and advanced topics such as global illumination and programmable graphics hardware. Prerequisites: CSE 167 or concurrent enrollment. Majors only.

CSE 169. Computer Animation (4)
Advanced graphics focusing on the programming techniques involved in computer animation. Algorithm and approaches for both character animation and physically based animation. Particular subjects may include skeletons, skinning, key framing, facial animation, inverse kinematics, locomotion, motion capture, video game animation, particle systems, rigid bodies, clothing, and hair. Prerequisites: a good understanding of linear algebra. CSE 167 or consent of instructor. Majors only.

CSE 171. User Interface Design (4)
Explores usability, representation and coordination issues in user interface design with some focus on distributed cooperative work, semiotics, and the interplay between socio-cognitive and technical issues. Most examples and homework involve the Web. Prerequisites: CSE 88 or 11, CSE 20 or Math. 15A, and CSE 100 or Math. 176. Majors only.

CSE 175. Social and Ethical Issues in Information Technology (4)
Social aspects of information technology, with an emphasis on ethical issues. Topics include ethical theories, privacy and security, spam, digital divides, open source software, medical informatics, actor-network theory, and some neo-classical economics. Prerequisites: CSE 100 or Math. 176. Majors only.

CSE 181. Molecular Sequence Analysis (4)
This course covers the analysis of nucleic acid and protein sequences, with an emphasis on the application of algorithms to biological problems. Topics include sequence alignments, database searching, comparative genomics, and phylogenetic and clustering analyses. Pairwise alignment, multiple alignment, DNA sequencing, scoring functions, fast database search, comparative genomics, clustering, phylogenetic trees, gene finding/DNA statistics. Prerequisites: CSE 100 or Math. 176, CSE 101 or Math. 188, BIMM 100 or Chem. 114D. Bioinformatics majors only. CSE 181 is crosslisted with BIMM 181 and BENG 181.

CSE 182. Biological Databases (4)
This course provides an introduction to the features of biological data, how that data are organized efficiently in databases, and how existing data resources can be utilized to solve a variety of biological problems. Relational databases, object-oriented databases, ontologies, data modeling and description, survey of current biological database with respect to above, implementation of a database focused on a biological topic. Prerequisites: CSE 100 or Math. 176. Bioinformatics majors only. CSE 182 is crosslisted with BIMM 182, Chem. 182, and BENG 182.

CSE 184. Computational Molecular Biology (4)
This advanced course covers the application of machine learning and modeling techniques to biological systems. Topics include gene structure, recognition of DNA and protein sequence patterns, classification, and protein structure prediction. Pattern discovery, Hidden Markov models/support vector machines/neural network/profiles. Protein structure prediction, functional characterization or proteins, functional genomics/proteomics, metabolic pathways/gene networks. Prerequisites: BIMM 181 or BENG 181 or CSE 181, BIMM 182 or CSE 182 or CHEM 182. Bioinformatics majors only. CSE 184 is crosslisted with BIMM 184, BENG 184, and Chem. 184.

CSE 190. Topics in Computer Science and Engineering (4)
Topics of special interest in computer science and engineering. Topics may vary from quarter to quarter. May be repeated for credit with the consent of instructor. Prerequisites: consent of instructor. Department stamp required. Majors only.

CSE 191. Seminar in CSE (1–4)
A seminar course on topics of current interest. Students, as well as the instructor, will be actively involved in running the course/class. This course cannot be counted toward a technical elective. Prerequisites: consent of instructor. Department stamp required. Majors only.

CSE 195. Teaching (4)
Teaching and tutorial assistance in a CSE course under the supervision of the instructor. (P/NP grades only.) Prerequisites: consent of the department chair. Department stamp required.

CSE 197. Field Study in Computer Science and Engineering (4, 8, 12, or 16)
Directed study and research at laboratories away from the campus. (P/NP grades only.) Prerequisites: consent of instructor and approval of the department. Department stamp required.

CSE 199. Independent Study for Undergraduates (2 or 4)
Independent reading or research by special arrangement with a faculty member. (P/NP grades only.) Prerequisites: consent of the instructor. Department stamp required.

GRADUATE

CSE 200. Computability and Complexity (4)
Computability review, including halting problem, decidable sets, r.e. sets, many-one reductions; TIME(t(n)), SPACE(s(n)) and general relations between these classes;
CSE 201A. Advanced Complexity (4)
Polynomial-time hierarchy (PH); BPP in second level of PH; Savitch's theorem; NL=coNL; non-uniform and circuit complexity; some circuit lower bounds. Prerequisite: CSE 208D. Polynomial-time hierarchy (PH); BPP in second level of PH; Savitch's theorem; NL=coNL; non-uniform and circuit complexity; some circuit lower bounds. Prerequisite: CSE 208D.

CSE 202. Algorithm Design and Analysis (4)
The basic techniques for the design and analysis of algorithms. Divide-and-conquer, dynamic programming, data structures, graph search, algebraic problems, randomized algorithms, linear programming, lower bounds, probabilistic analysis, parallel algorithms. Prerequisite: CSE 101 or equivalent.

CSE 203A. Advanced Algorithms (4)
Modern advances in design and analysis of algorithms. Exact syllabus varies. Topics include approximation, randomized algorithms, probabilistic analysis, heuristics, online algorithms, competitive analysis, models of memory hierarchy, parallel algorithms, number-theoretic algorithms, cryptanalysis, computational geometry, computational biology, network algorithms, VLSI CAD algorithms. Prerequisite: CSE 202.

CSE 204A. Combinatorial Optimization (4)
Linear programming, simplex method, duality, and column generation techniques. Integer programming introduced via the Knapsack problem. The periodic nature of all integer programs. Why the round-off technique cannot work in general. The solution of the Knapsack problem in polynomial time since nonbasic columns form a group. Prerequisite: CSE 202 or linear algebra or consent of instructor.

CSE 205A. Logic in Computer Science (4)
(Formally CSE 208D) Mathematical logic as a tool in computer science. Propositional logic, resolution, first-order logic, completeness and incompleteness theorems with computational viewpoint, finite model theory, descriptive complexity, logic programming, non-monotonic reasoning, temporal logic. Applications to databases, automatic theorem proving, program verification, and distributed systems. Prerequisite: CSE 200 or consent of instructor.

CSE 206A. Lattice Algorithms and Applications (4)
(Formerly CSE 207C) Introduction to the algorithmic theory of point lattices (A.K.A. algorithmic geometry of numbers), and some of its most important applications in cryptography and cryptanalysis. Topics usually include: LLL basis reduction algorithm, cryptanalysis of broadcast RSA, hardness of approximating lattice problems. Prerequisites: CSE 202, CSE 200, or consent of instructor.

CSE 207. Modern Cryptography (4)
Private and public key cryptography, introduction to reduction based proofs of security, concrete security, block ciphers, pseudorandom functions and generators, symmetric encryption, asymmetric encryption, computational number theory, RSA and discrete log systems, message authentication, digital signatures, key distribution and key management. Prerequisite: CSE 202 or consent of instructor.

CSE 207C. Lattices and Cryptography (4)
Renumbered to CSE 206A (see above).

CSE 208. Advanced Cryptography (4)
Zero-knowledge, secure computation, session-key distribution, protocols, electronic payment, one-way functions, trapdoor permutations, pseudorandom bit generators, hard core bits. Prerequisites: CSE 202, CSE 200, and CSE 207 or consent of instructor.

CSE 208D. Logic in Computer Science (4)
Renumbered to CSE 205A (see above).

CSE 209A. Topics/Seminar in Algorithms, Complexity, and Logic (1–4)
Topics of special interest in algorithms, complexity, and logic to be presented by faculty and students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. Prerequisite: consent of instructor.

CSE 209B. Topics/Seminar in Cryptography (1–4)
Topics of special interest in cryptography to be presented by faculty and students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. Prerequisite: consent of instructor.

CSE 210. Principles of Software Engineering (4)
(Formerly CSE 264A) General principles in modern software engineering and pragmatic topics are covered. Theoretical topics include proofs of correctness, programming language semantics, and theory of testing. Practical topics include structured programming, modularization techniques, design of languages for reliable programming, and program tools. Prerequisites: CSE 100, 131A, 120, or consent of instructor.

CSE 211. Software Testing and Analysis (4)
Survey of testing and analysis methods. Introduction to advanced topics in area as well as traditional production methods. Topics include inspections and reviews, formal analysis, verification and validation standards, non-statistical testing, statistical-testing and reliability models, coverage methods, testing and analysis tools, and organization management and planning. Methods special to special development approaches such as object-oriented testing will be presented. Prerequisite: undergraduate major in computer science or extensive industrial experience.

CSE 218. Advanced Topics in Software Engineering (4)
This course will cover a current topic in software engineering in depth. Topics in the past have included software tools, impacts of programming language design, and software system structure. Prerequisite: Consent of instructor.

CSE 221. Operating Systems (4)
Operating system structures, concurrent computation models, scheduling, synchronization mechanisms, address spaces, memory management protection and security, buffering, streaming data, copy-on-write, protection, file systems, naming, caching, disk organization, mapped files, remote file systems, case studies of major operating systems. Prerequisites: CSE 120 and 121, or consent of instructor.

CSE 222. Communication Networks (4)
Renumbered to CSE 222A (see below).

CSE 222A. Computer Communication Networks (4)
(Formerly CSE 222.) Computer communication network concepts, protocols, and architectures, with an emphasis on an analysis of algorithms, protocols, and design methodologies. Topics include layering, error control, flow control, congestion control, switching and routing, quality of service, management, mobility, naming, security, and selective techniques. Prerequisites: CSE 123A or consent of instructor.

CSE 222B. Internet Algorithms (4)
(Formerly CSE 228H.) Techniques for speeding up Internet applications including system restructuring, new algorithms, and hardware innovations. Topics include: models for protocols, systems and hardware; efficiency principles; applying these principles to deriving techniques for efficient implementation of common endnode and router functions. Prerequisites: CSE 123A or CSE 222A or consent of instructor.

CSE 223. Distributed Systems (4)
Renumbered to CSE 223A (see below).

CSE 223A. Principles of Distributed Computing (4)
(Formerly CSE 223.) Logical and physical time, snapshot protocol, failure models, replication strategies, consensus and reliable broadcast, self-stabilization, atomic commit. Prerequisite: CSE 221 or consent of instructor.

CSE 223B. Distributed Computing and Systems (4)
Efficient primitives for distributed operating systems and high-performance network servers, including concurrent and event-driven server architectures, remote procedure calls, and load shedding, distributed naming, and storage services, replication for fault tolerance, and security in distributed systems. Prerequisites: CSE 221, CSE 222A, or consent of instructor.

CSE 225. High Performance Distributed Computing (and Computational Grids) (4)
Architecture of high performance distributed systems (e.g., frameworks and middleware). High performance distributed objects (DCOM, Corba, Java Beans) and networking with crosscut issues for performance, availability, and performance predictability. Scalable servers, metacomputing, and scientific computing. Prerequisites: CSE 121 and CSE 123A or consent of instructor.

CSE 226. Storage Systems (4)
(Formerly CSE 228B.) Secondary and tertiary storage systems, optical and magnetic media, performance analysis, modeling, reliability, redundant arrays of inexpensive disks, striping, log and maximum distance separable data organizations, sparing. Prerequisite: CSE 221 or consent of instructor.

CSE 227. Computer Security (4)
Security and threat models, risk analysis, authentication and access control mechanisms, protection mechanisms, distributed systems/network security, security architecture, electronic commerce security mechanisms, security evaluation. Prerequisite: CSE 221 or consent of instructor.

CSE 228B. Storage Systems (4)
Renumbered to CSE 226 (see above).

CSE 228H. Internet Algorithmics (4)
Renumbered to CSE 222B (see above).

CSE 229A. Topics/Seminar in Computer Systems (1–4)
Discussion on problems of current research interest in computer systems. Possible areas of focus include: distributed computing, computer grid, operating systems, fault-tolerant computing, storage systems, system services for the World Wide Web. Topics to be presented by faculty and students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. Prerequisite: consent of instructor.

CSE 229B. Topics/Seminar in Networks and Communication (1–4)
Discussion on problems of current research interest in computer networks and communication. Possible areas of focus include: wide-area networking, wireless, the Internet, computational grid, operating systems, fault-tolerant computing, storage systems. Topics to be presented by faculty and students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. Prerequisite: consent of instructor.

CSE 229C. Topics/Seminar in Computer Security (1–4)
Discussion on problems of current research interest in computer security. Topics to be presented by faculty and students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. Prerequisite: consent of instructor.

CSE 230. Principles of Programming Languages (4)
(Formerly CSE 273.) Functional versus imperative programming, type systems and polymorphism; the ML language. Higher order functions, lazy evaluation. Abstract versus concrete syntax, structural and well-founded induction. The lambda calculus, reduction strategies, combinators. Denotational semantics, elementary domain theory. Prerequisite: CSE 130 or equivalent, or consent of instructor.

CSE 231. Advanced Compiler Design (4)
(Formerly CSE 264C.) Advanced material in programming languages and translator systems. Topics include compilers, code optimization, and debugging interpreters. Prerequisites: CSE 100, 131A-B, or consent of instructor.

(Formerly CSE 264D.) Database models including relational, hierarchical, and network approaches. Implementation of databases including query languages and system architectures. Prerequisites: CSE 100 or consent of instructor.

CSE 232B. Database System Implementation (4)
A hands-on approach to the principles of database implementation. Algebraic rewrite systems, query optimization, query processors, triggers. Beyond centralized relational databases. Prerequisite: CSE 232.
CSE 233. Database Theory (4)
Theory of databases. Theory of query languages, de- pendency theory, deductive databases, incomplete in- formation, complex objects, object-oriented databases, and more. Connections to logic and complexity theory including relational algebra and descriptive complexity. Prerequisite: CSE 200.

CSE 237A. Introduction to Embedded Computing (4)
Embedded system technologies including processors, DSP, memory, and software. System interfacing basics, communication strategies, sensors, and actuators. Mobile and wireless technology in embedded systems. Using pre-designed hardware and software components. Design case studies in wireless, multimedia, and/or networking domains. Prerequisites: basic courses in digital hardware, algorithms and data structures, elementary calculus, and probability; or consent of instructor.

CSE 237B. Software for Embedded Systems (4)
Embracing computing elements, device interfaces, time- critical IO handling. Embedded software design under size, performance, and reliability constraints. Software timing and functional validation. Programming methods and compilation for embeddable software. Embedded run- time systems. Case studies of real-time software systems. Prerequisites: CSE 237A; or basic courses in programming, algorithms and data structures, elementary calculus, discrete math, computer architecture; or consent of instructor.

CSE 237C. Validation and Testing of Embedded Systems (4)
Embedded system building blocks including IP cores. Co-simulation and formal verification using model checking. Verification environments. Test challenges in core integration: compliance, feature, random, and collision testing. Core access and test integration. Interface-based verification and standards. Prerequisites: CSE 237A; or basic courses in algorithms and data structures, elementary calculus, discrete math, symbolic logic, computer architecture; or consent of instructor.

CSE 237D. Design Automation and Prototyping for Embedded Systems (4)
System representation and modeling. Abstract and language models. Simulation as a modeling activity. Computational and hw/sw system prototypes. System analysis using models. Constraint and interface modeling. Behavioral compilation and synthesis. Prerequisites: CSE 237A; basic courses in digital logic design, algorithms and data structures, elementary calculus, discrete math, symbolic logic, computer architecture; or consent of instructor.

CSE 239A. Topics/Seminar in Databases (1–4)
Discussion on problems of current research interest in databases. Possible areas of focus include: core database issues, data models and the Web, data integration, new database models and applications, formal methods in databases. Topics to be presented by faculty and students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. Prerequisite: consent of instructor.

CSE 240. Principles in Computer Architecture I (4)
Renumbered to CSE 240A (see below).

CSE 240A. Principles of Computer Architecture (4)
(Formerly CSE 240) This course will cover fundamental con- cepts in computer architecture. Topics include instruction set architecture, pipelining, pipeline hazards, bypassing, dynamic scheduling, branch prediction, superscalar issue, memory-hierarchy design, advanced cache architectures, and multiprocessor architecture issues. Prerequisites: CSE 141 or consent of instructor.

CSE 240B. Parallel Computer Architecture (4)
This course covers advanced topics in parallel computer architecture, including on-chip and off-chip interconnec- tion networks, cache coherence, cache consistency, hard- ware multithreading, multi-core and tiled architectures. It incorporates the latest research and development on parallel architectures and compilation techniques for those architectures. CSE 240A recommended. Prerequisite: graduate standing.

CSE 240C. Advanced Microarchitecture (4)
This course covers advanced topics in computer architec- ture. It incorporates the latest research and development on topics such as branch prediction, instruction-level parallel- ism, cache hierarchy design, speculative multithreading, and superscalar instruction set architectures. Prerequisite: CSE 240A recommended. Prerequisite: graduate standing.

CSE 240D. Application Specific Processors (4)
This course covers advanced topics in design concepts and implementation principles of application specific processors, including embedded system design principles and application specific instruction set processors, domain specific processor archi- tectures, embedded memories and dynamically customiz- able processors. CSE 240A recommended. Prerequisite: graduate standing.

CSE 241A/ECE 260B. VLSI Integration of Computing Circuitry (4)
VLSI integrated circuit building blocks of computing sys- tems, and their implementation. Computer-aided design and performance simulations, design exercises and proj- ects. Devices, standard cells and interconnects, clocking, power/ground distribution, arithmetic modules, memories. Methodologies and tradeoffs in system implementation. Prerequisites: layout (CSE 165 or ECE 260A) and logic design (CSE 140 or ECE 111), or consent of instructor.

CSE 242A. Integrated Circuit Layout Automation (4)
Coupings among timing, circuits and spatial embedding in nanometer-scale CMOS design. The role, and key problems, of physical layout in IC implementation. Example topics: RTL-to-GDSII methodology and estimation; partitioning, floor planning, placement, routing, special net routing, cell generation, compaction. Prerequisite: CSE 241A or consent of instructor.

CSE 243A. Introduction to Synthesis Methodologies in VLSI CAD (4)
Hardware software co-design, architectural level synthesis, control synthesis and optimization, scheduling, binding, register and bus sharing, interconnect design, module selection, combinatorial logic optimization, state mini- mization, state encoding, and retiming. Prerequisite: CSE 241A or consent of instructor.

CSE 244A. VLSI Test (4)
Design for test, testing economics, defects, failures and faults, fault models, fault simulation, automatic test pat- tern generation, functional testing, memory, PLA, FPGA, microprocessor test, and fault diagnosis. Prerequisite: CSE 241A or consent of instructor.

CSE 244B. Testable and Fault Tolerant Hardware (4)
Scan path design, BIST architectures, test point insertion, self-checking circuits, test and fault tolerance in architect- ural synthesis, reconfigurable fault tolerant hardware, and SOC test design. Prerequisite: CSE 244A or consent of instructor.

CSE 245. Computer Aided Circuit Simulation and Verification (4)
This course is about the computer algorithms, techniques, and theory used in the simulation and verification of electro- nic circuits. Prerequisite: CSE 241A or consent of instructor.

CSE 246. Computer Arithmetic Algorithms and Hardware Design (4)
Number representation, fixed point adders, subtractors, multipliers, dividers. Adding, recoding, high-radix mul- tiplication, (non)restoring dividers, SRT division, high-radix dividers, division by convergence, square-rooting, float- ing point arithmetic, rounding schemes, errors and error control, and floating point adders, subtractors, multipliers, dividers. Prerequisite: CSE 241A or consent of instructor.

CSE 247. Application Specific and Reconfigurable Computer Architecture (4)
This course covers architecture concepts used to tailor processors to a specific application or sets of applications. It covers Field-Programmable Gate Arrays (FPGAs), vari- ous forms of Application Specific Integrated Circuit (ASIC) designs, Application Specific Integrated Processors (ASIP), and augmenting customizable VHDL cores. Prerequisite: CSE 241A or consent of instructor.

CSE 248. Algorithmic and Optimization Foundations for VLSI CAD (4)
Algorithmic techniques and optimization frameworks for large-scale, difficult optimizations. Primal-dual multicom- modity flow approximations, approximations for geometric and VLSI design, multigrid and multilevel methods, semidefinite programming, and application to other formulations (e.g., scheduling). Prerequisites: CSE 241A or CSE 242A or consent of instructor.

CSE 249A. Topics/ Seminar in Computer Architecture I (1–4)
Topics of special interest in computer architecture to be presented by faculty and students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. Prerequisite: consent of instructor.

CSE 249B. Topics/ Seminar in VLSI I (1–4)
Topics of special interest in VLSI to be presented by faculty and students under faculty direction. Topics vary from quar- ter to quarter. May be repeated for credit. Prerequisite: consent of instructor.

CSE 249C. Topics/ Seminar in CAD I (1–4)
Topics of special interest in CAD to be presented by faculty and students under faculty direction. Topics vary from quar- ter to quarter. May be repeated for credit. Prerequisite: consent of instructor.

CSE 250A. Artificial Intelligence: Search and Reasoning (4)
Heuristic search algorithms including A*, constraint sat- isfaction algorithms including DPLL, randomized search, knowledge representation in first-order logic (FOL), resolu- tion methods for reasoning in FOL, reasoning about action and planning, reasoning with Bayesian networks. CSE 101 recommended. Prerequisite: graduate standing in CSE or consent of instructor.

CSE 250B. Artificial Intelligence: Learning (4)
Classifier learning including linear separators, decision trees, and nearest neighbors. Generalization and over- fitting: design of learning experiments: the PAC model. Possible topics include ensemble methods, boosting, ker- nel methods, online learning, and reinforcement learning. Prerequisite: graduate standing or consent of instructor.

CSE 252A. Computer Vision I (4)
Comprehensive introduction to computer vision providing broad coverage including low-level vision (image forma- tion, photometry, color, image feature detection), inferring 3-D properties from images (shape-from-shading, stereo vision, motion interpretation) and object recognition. Companion to CSE 252B covering complimentary topics. Prerequisites: Math. 100 and Math. 20A-F or equivalent.

CSE 252B. Computer Vision II (4)
Comprehensive introduction to computer vision using focused coverage of multiview geometry, structure from motion, image segmentation, motion segmentation, texture analysis and recognition, object detection, and image-based rendering. Companion to CSE 252A cover- ing complimentary topics. Prerequisites: Math. 100 and Math. 20A-F or equivalent.

CSE 252C. Selected Topics in Vision and Learning (1–4)
Selected topics in computer vision and statistical pattern recognition, with an emphasis on recent developments. Possible topics include: grouping and segmentation, object recognition and tracking, multimedia search, image processing, computer vision, machine learning, and machine learning. CSE 252B recommended. Prerequisite: graduate standing.

CSE 254. Statistical Learning (4)
Learning algorithms based on statistics. Possible topics include minimum-variance unbiased estimators, maximum

2010-2011 UC SAN DIEGO GENERAL CATALOG • ENGINEERING: COMPUTER SCIENCE AND ENGINEERING (CSE) 15
CSE 274. Selected Topics in Graphics (2–4)
Selected topics in computer graphics, with an emphasis on recent developments. Possible topics include computer animation, shape modeling and analysis, image synthesis, appearance modeling, and real-time rendering. CSE 168 or CSE 169 recommended. Prerequisite: graduate standing or consent of instructor.

CSE 280A. Algorithms in Computational Biology (4)
(Formerly CSE 206A.) The course focuses on algorithmic aspects of modern bioinformatics and covers the following topics: computational gene hunting, sequencing, DNA arrays, sequence comparison, pattern discovery in DNA, genetic variation, molecular evolution, computational proteomics, and others. Prerequisite: CSE 202 preferred or consent of instructor.

CSE 280B. Advanced Topics in Computational Biology (4)
The advanced topics include, but are not limited to: population genetics, pathways, RNA, database filtering, comparative genomics, and others. Students are expected to pick one of the topics for an intensive research project, and report on their findings at the end of the class. Prerequisites: CSE 280A preferred or consent of instructor.

CSE 282/BENG 202. Bioinformatics II: Sequence and Structure Analysis—Methods and Applications (4)
(Formerly CSE 257A/BENG 202.) Introduction to methods for sequence analysis. Applications to genome and proteome sequences. Protein structure, sequence-structure analysis. Prerequisite: Pharm. 201 or consent of instructor.

CSE 283/BENG 203. Bioinformatics III: Functional Genomics (4)
Annotating genomes, characterizing functional genes, profiling, reconstituting pathways. Prerequisites: Pharm. 201, BENG 202/CSE 282 or consent of instructor.

CSE 290. Seminar in Computer Science and Engineering (1–4)
(Formerly CSE 280A.) A seminar course in which topics of special interest in computer science and engineering will be presented by staff members and graduate students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. (S/U grades only.) Prerequisite: consent of instructor. (Offered as faculty resources permit.)

CSE 291. Topics in Computer Science and Engineering (1–8)
(Formerly CSE 281A.) Topics of interest in computer science and engineering. Topics may vary from quarter to quarter. May be repeated for credit with the consent of instructor. (S/U grades permitted.) Prerequisite: consent of instructor. (Offered as faculty resources permit.)

CSE 292. Faculty Research Seminar (1)
(Formerly CSE 282.) Computer science and engineering faculty will present one-hour seminars of the current research work in their areas of interest. Prerequisite: CSE graduate status.

CSE 293. Special Project in Computer Science and Engineering (1–12)
The student will conceive, design, and execute a project in computer science under the direction of a faculty member. The project will typically include a large programming or hardware design task, but other types of projects are possible. Prerequisites: CSE graduate student status. (CS 75, 76, 77, 78, 79, 80, 81) (S/U grades only.)

CSE 294. Research Meeting in CSE (2)
Advanced study and analysis of active research in computer science and computer engineering. Discussion of current research and literature in the research specialty of the staff member teaching the course. Prerequisite: consent of instructor.

CSE 298. Independent Study (1–16)
Open to properly qualified graduate students who wish to pursue a problem through advanced study under the direction of a member of the staff. (S/U grades only.) Prerequisite: consent of instructor.

CSE 299. Research (1–16)
Research. Prerequisite: consent of faculty.
Electrical and Computer Engineering (ECE)

PROFESSORS
Anthony S. Acampora, Ph.D., Emeritus Research Professor
Victor C. Anderson, Ph.D., Emeritus (not in-residence)
Peter M. Asbeck, Ph.D., Skyworks Endowed Chair
H. Neal Bertram, Ph.D., Emeritus Research Professor
William S. C. Chang, Ph.D., Emeritus Research Professor
William A. Coles, Ph.D.
Pamela C. Cosman, Ph.D.
Rene L. Cruz, Ph.D.
Sujit Dey, Ph.D.
Sadik C. Esener, Ph.D.
Shaya Fainman, Ph.D., Cymer Professor in Advanced Optical Technologies
Joseph Ford, Ph.D.
Eric Fullerton, Ph.D., CMRR Endowed Chair
Ian Galton, Ph.D.
Carl W. Helstrom, Ph.D., Emeritus
Ramesh C. Jain Ph.D., Emeritus
Andrew B. Kahng, Ph.D.
Kenneth Kreutz-Delgado, Ph.D.
Walter H. Ku, Ph.D., Emeritus
Lawrence E. Larson, Ph.D., Chair, CWC Industry Endowed Chair in Wireless Communications
S. S. Lau, Ph.D.
Jie Xiang, Ph.D.
Curt Schurgers, Ph.D.
Zhaowei Liu, Ph.D.
Young-Han Kim, Ph.D.
James F. Buckwalter, Ph.D.
Prab Bandaru, Ph.D., Professor
Edward T. Yu, Ph.D., Professor
Edward T. Yu, Ph.D., Associate Professor
University of Texas at Austin

ASSOCIATE PROFESSORS
Paul M. Chau, Ph.D.
Massimo Franceschetti, Ph.D.
Clark C. Guest, Ph.D.
Tara Javidi, Ph.D.
George J. Lewak, Ph.D., Emeritus
Bill Lin, Ph.D.
Vitaliy Lomakin, Ph.D.
Shayan Mookherjea, Ph.D.
Anthony V. Sebald, Ph.D., Emeritus
Nuno Vasconcelos, Ph.D.
Deli Wang, Ph.D.
Kenneth Y. Yun, Ph.D., Emeritus

ASSISTANT PROFESSORS
James F. Buckwalter, Ph.D.
Young-Han Kim, Ph.D.
Gert Lanckriet, Ph.D.
Zhaowei Liu, Ph.D.
Curt Schurgers, Ph.D.
Jie Xiang, Ph.D.

ADJUNCT PROFESSORS
C. K. Cheng, Ph.D., Professor, Computer Science and Engineering
Pankaj K. Das, Ph.D., Emeritus, Rensselaer Polytechnic Institute
Madhu Gupta, Ph.D., Professor, San Diego State University
Rajesh Gupta, Ph.D., Professor, Computer Science and Engineering
Robert Hecht-Nielsen, Ph.D., Hecht-Nielsen Confabulation Inc.
John A. Hildebrand, Ph.D., Professor, Marine Physical Laboratory, Scripps Institution of Oceanography
William S. Hodgkiss, Ph.D., Professor, Marine Physical Laboratory, Scripps Institution of Oceanography
James U. Lemke, Ph.D., Center for Magnetic Recording Research
Roberto Padovani, Ph.D., Qualcomm
Nasser Peyghambarian, Ph.D., Professor, University of Arizona
John Proakis, Ph.D., Professor, Northeastern University
Lueju Sham, Ph.D., Professor, Physics
Jin-Joo Song, Ph.D., ZN Technology
Edward T. Yu, Ph.D., Professor, University of Texas at Austin

ASSOCIATED FACULTY
Gustaf O. S. Arhennius, Ph.D., Professor, Marine Research Division, Scripps Institution of Oceanography
George Tynan, Ph.D., Associate Professor, Mechanical and Aerospace Engineering

AFFILIATED FACULTY
Ramesh C. Jain Ph.D., Carl W. Helstrom, Ph.D., Emeritus

PROGRAM MISSION STATEMENT
To educate tomorrow’s technology leaders.

PROGRAM EDUCATIONAL OBJECTIVES

1. To provide our students with training in the fundamental science and mathematics that underlie engineering, and with a general breadth and depth in engineering and in engineering design so that they are prepared for graduate school and for engineering careers. Students should have both proficiency in a specific technical area, and the flexibility and broad knowledge base needed for life-long engineering careers in a changing technical environment.

2. To ensure that our students are educated in the classical sense. In particular, that they are broadly aware of social and environmental issues and of the impact of their profession on these issues.

3. To assist our students in preparing themselves to work effectively in their profession. Specifically, to develop communications, teamwork, and leadership skills.

PROGRAM OUTCOMES AND ASSESSMENT
Program outcomes have been established based on the Program Educational Objectives. Graduates of the ECE Program in Electrical Engineering are expected to have
1. An understanding of the underlying principles of, and an ability to apply knowledge of mathematics, science, and engineering to electrical engineering problems
2. An ability to design and conduct experiments, as well as to analyze and interpret data
3. A knowledge of electrical engineering safety issues
4. An ability to design a system, component, or process to meet desired needs
5. A. An ability to collaborate effectively with others
 B. An ability to function on multidisciplinary teams
6. An ability to identify, formulate, and solve engineering problems
7. An ability to use the techniques, skills, and modern engineering tools necessary for engineering
THE UNDERGRADUATE PROGRAMS

The Department of Electrical and Computer Engineering offers undergraduate programs leading to the B.S. degree in electrical engineering, engineering physics, and computer engineering, and the B.A. degree in electrical engineering and society. Each of these programs can be tailored to provide preparation for graduate study or employment in a wide range of fields. The Electrical Engineering Program is accredited by the Accreditation Board for Engineering and Technology (ABET).

The Electrical Engineering Program has a common lower-division and a very flexible structure in the upper-division. After the lower-division core, all students take six breadth courses during the junior year. They must then satisfy a depth requirement which can be met with five courses focused on some specialty, and a design requirement of at least one project course. The remainder of the program consists of seven electives, which may range as widely or as narrowly as needed.

The Engineering Physics Program is conducted in cooperation with the Department of Physics. Its structure is very similar to that of electrical engineering except the depth requirement includes seven courses and there are only five electives.

The Computer Engineering Program is conducted jointly with the Department of Computer Science and Engineering. It has a more prescribed structure. The program encompasses the study of hardware design, data storage, computer architecture, assembly languages, and the design of computers for engineering, information retrieval, and scientific research.

The B.A.-Electrical Engineering and Society Program intends to better prepare engineering students in the areas of social sciences and the humanities, as a response to the globalization of engineering and technology. We recognize that “engineering only” training may not be sufficient when students seek alternate career paths besides engineering upon graduation, such as in the law, finance, and public policy sectors.

For information about the program and about academic advising, students are referred to the section on ECE departmental regulations. In order to complete the programs in a timely fashion, students must plan their courses carefully, starting in their freshman year. Students should have sufficient background in high school mathematics so that they can take freshman calculus in the first quarter.

For graduation, each student must also satisfy general-education requirements determined by the student’s college. The six colleges at UC San Diego require widely different numbers of general-education courses. Students should choose their college carefully, considering the special nature of the college and the breadth of education required. They should realize that some colleges require considerably more courses than others. Students wishing to transfer to another college should see their college advisor.

Graduates of community colleges may enter ECE programs in the junior year. However, transfer students should be particularly mindful of the freshman and sophomore course requirements when planning their programs.

These programs have strong components in laboratory experiments and in the use of computers throughout the curricula. In addition, the department is committed to exposing students to the nature of engineering design. This is accomplished throughout the curricula by use of design-oriented homework problems, by exposure to engineering problems in lectures, by courses which emphasize student-initiated projects in both laboratory and computer courses, and finally by senior design-project courses in which teams of students work to solve an engineering design problem, often brought in from industry.

IT IS IMPERATIVE THAT STUDENTS DISCUSS THEIR CURRICULUM WITH THE APPROPRIATE DEPARTMENTAL ADVISOR IMMEDIATELY UPON ENTRANCE TO UCSD, AND THEN AT LEAST ONCE A YEAR UNTIL GRADUATION.

B.S. ELECTRICAL ENGINEERING PROGRAM

Students must complete 180 units for graduation, including the general-education requirements (GER). Note that 144 units (excluding GER) are required.

Lower-Division Requirements (total of seventy-two units)

Mathematics (twenty-four units)
Math. 20A-B-C-D-E-F

Physics (sixteen units)
Phys. 2A-B-C-D or Phys. 4A-B-C-D-E. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the mathematics placement test permits them to start with Math. 20B or higher may take Phys. 2A in the fall quarter of the freshman year.

Chemistry (four units)
Chem. 6A.

Programming Course (four units)
ECE 15.

Electrical engineering (twenty-four units)
ECE 25, 30, 35, 45, 65, and 75.

Additional Notes
1. Students with AP math credit are strongly advised to take Math. 20B in the fall quarter, leaving room for a GER in the winter quarter.
2. The ECE undergraduate Web site shows several scheduling options. Please refer to the Web site and consult with the staff advisors in the undergraduate offices, rooms 2705 and 2707 in EBU1.

Upper-Division Requirements (total of seventy-two units)

a. Electrical Engineering BREADTH Courses (twenty-four units)

Courses required of all electrical engineering majors:
The six courses, ECE 101, 102, 103, 107, 108, and 109 are required of all electrical engineering majors and they are an assumed prerequisite for senior-level courses, even if they are not explicitly required. Although the courses are largely independent, there are some prerequisites. ECE 102 is a prerequisite for ECE 108. Students who delay some of the breadth courses into the spring should be careful that it does not delay their depth sequence. For the ECE 109 requirement, credit will not be allowed for ECON 120A, Math. 180A-B, Math. 183, or Math. 186.

b. Electrical Engineering DESIGN Course (4 units)

Note: In order to fulfill the design requirement, students must complete one of the following courses with a grade C– or better. Graduation will not be approved until a written copy of the design project is submitted to the ECE undergraduate office. ECE 111, 118, 191 cannot be used to satisfy both the Design and Depth requirements.

The electrical engineering design requirement can be fulfilled in any of the following three ways:
1. Take ECE 191: Engineering Group Design Project
2. Take ECE 190: Engineering Design This course requires the department stamp. Specifications and enrollment forms are available in the undergraduate office.
3. Take one of the following courses:
 • ECE 111: Advanced Digital Design Project
 • ECE 118: Computer Interfacing
 • ECE 155B or 155C: Digital Recording Projects

Students who wish to take one of these courses to satisfy the design requirement must fill out an enrollment form and have departmental approval for the design credit prior to taking the course. The project must meet the same specifications as ECE 190.

c. Electrical Engineering ELECTIVES (twenty-four units)

 • Three upper-division engineering, mathematics, or physics courses.
 • Three additional electives which students may use to broaden their professional goals.

(For additional information, please refer to the section on “Elective Policy for Electrical Engineering and Engineering Physics Majors”.)
Electronics Circuits and Systems

Electronic Devices and Materials

- ECE 135A, ECE 135B, 136L, 139, and 183.

Controls and Systems Theory

- ECE 171A, 171B, 174, 175, and 118 or 191.

Machine Intelligence

Photonics

- ECE 181, 182, 183, 184, and 185.

Communications Systems

- ECE 161A, 153, 154A-B-C.

Networks

- ECE 153, 159A, 159B, 158A-B.

Queueing Systems

- ECE 171A, 174, 159A-B, and Math. 181A.

Signal and Image Processing

- ECE 161A, 161B, 161C, 153, and ECE 172A or 174.

Computer Design

- CSE 12, 21, and 141, ECE 158A, 111 or 118, and 165.

Software Systems

- CSE 12, 21, 100, 101, 141, and 120.

B.S. ENGINEERING PHYSICS

- Students must complete a total of 180 units for graduation, including the general-education requirements. Note that 146 units (excluding GER) are required.

 - All students will initially be placed in pre-major status. Upon successful completion of the following courses (with a minimum 2.0 GPA by the end of the first three quarters if a transfer student, six quarters if an incoming freshman), students will be admitted into full Engineering-Physics major status.

 1. Math. 20A-B-C
 2. Phys. 2A-B
 3. ECE 15, 25, and 35

 To initiate the change from pre-major status to full major status, transfer students must see the ECE undergraduate advisor by the end of their third quarter at UCSD; incoming freshmen by the end of their sixth quarter.

 Please refer to the section “Undergraduate Regulations and Requirements” for important details.

Lower-Division Requirements (total of seventy-four units)

Mathematics (twenty-four units)

- Math. 20A-B-C-D-E-F

Physics (sixteen units)

- Phys. 2A-B-C-D or Phys. 4A-B-C-D-E. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the mathematics placement test permits them to start with Math. 20B or higher may take Phys. 2A in the fall quarter of the freshman year.

Physics Lab (two units)

- Phys. 2DL is required.

Chemistry (four units)

- Chem. 6A.

Programming Course (four units)

- ECE 15.

Electrical Engineering (twenty-four units)

- ECE 25, 30, 35, 45, 65, and 75.

Additional Notes

1. Students with AP math credit are strongly advised to take Math. 20B in the fall quarter, leaving room for a GER in the winter quarter.

2. The ECE undergraduate Web site shows several scheduling options. Please refer to the Web site and consult with the staff advisors in the undergraduate offices, rooms 2705 and 2707 in EBU1.

Upper-Division Requirements (seventy-two units)

a. Engineering Physics BREADTH Courses (twenty-four units)

 - The electrical engineering breadth courses ECE 101, 102, 103, 107, 108, and 109, are also required of engineering physics majors. However, because of the scheduling of Math. 110, Phys. 110A and 130A, they can only be taken in a specific order (please consult the ECE Web site). For the ECE 109 requirement, credit will not be allowed for ECON 10A, Math. 180A-B, Math. 183, or Math. 186.

b. Engineering Physics DESIGN Course (four units)

 - Note: In order to fulfill the design requirement, students must complete one of the following courses with a grade C– or better. Graduation will not be approved until a written copy of the design project is submitted to the ECE undergraduate office.

 The engineering physics design requirement can be fulfilled in any of the following three ways:

 1. Take ECE 191: Engineering Group Design Project
 2. Take ECE 190: Engineering Design. This course requires the department stamp. Specifications and enrollment forms are available in the undergraduate office.
 3. Take one of the following courses:

 - ECE 111: Advanced Digital Design Project
 - ECE 118: Computer Interfacing
 - ECE 155B or 155C: Digital Recording Projects

 Students who wish to take one of these courses to satisfy the design requirement must fill out an enrollment form and have departmental approval for the design credit prior to taking the course. The project must meet the same specifications as ECE 190.

c. Engineering Physics ELECTIVES (sixteen units)

 - One upper-division engineering, mathematics, or physics course.

 - Three additional electives which students may use to broaden their professional goals.

 (For additional information, please refer to the section on “Elective Policy for Electrical Engineering and Engineering Physics Majors.”)

d. Engineering Physics DEPTH Courses (twenty-eight units)

- All B.S. engineering physics students are required to take Phys. 110A, 130A-B, 140A, Math. 110, ECE 123 and 166; or ECE 135A and 135B; or ECE 182 and (181 or 183).

Elective Policy for Electrical Engineering and Engineering Physics Majors

1. Technical Electives

 Technical electives must be upper-division engineering, math or physics courses (except for the bioengineering track). At most one lower-division course in engineering may be used but it must receive prior approval from the ECE department. Certain courses listed below are not allowed as electives because of overlap with ECE courses.

Physics

- Students may not receive upper-division elective credit for any lower-division physics courses.

- Students may not receive credit for both Phys. 100A and ECE 107, Phys. 100B and ECE 107, Phys. 100C and ECE 123.

- MathematicMath. 180A overlaps ECE 109 and 153, and therefore will not qualify for elective credit of either type. Math. 183 or Math. 186 will not be allowed as an elective. Math. 163 will only be allowed as a professional elective. All lower-division mathematics is excluded from elective credit of either type.
Bioengineering

The following series of courses will provide “core” preparation in bioengineering and will satisfy up to five courses of the ECE elective requirements:

BILD 1, BILD 2, BE 100, BE 140A-B.

The bioengineering department will guarantee admission to these courses for ECE students on a space available basis.

CSE

The following courses are excluded as electives: CSE 1, 2, 5A-B, 8A-B, 11, 123A (duplicates ECE 158A), 140 (duplicates ECE 25), 140L (duplicates ECE 36), 143 (duplicates ECE 165), CSE 12, 20, and 21 will count toward the three professional electives ONLY.

Mechanical and Aerospace Engineering (MAE)

Credit will not be allowed for MAE 105, 139, 140, 143B, or 170.

Special Studies

Courses 195–199: At most four units of 195–199 may be used for elective credit.

2. Professional Electives

 Normally these will be upper-division courses in engineering, mathematics, or physics. Students may also choose upper-division courses from other departments provided that they fit into a coherent professional program. In such cases, a lower-division prerequisite may be included in the electives.

Courses other than upper-division engineering, mathematics, or physics must be justified in terms of such a program, and must be approved by a faculty advisor.

Biology and Chemistry

Of the three electives intended to allow for the professional diversity, one lower-division biology or chemistry course from BILD 1, 2, Chem. 6B-C may be counted for credit in combination with two upper-division biology or chemistry courses. Furthermore, this will count only if the student can demonstrate to a faculty advisor that they constitute part of a coherent plan for professional/career development.

Upper-division biology and chemistry courses will count toward the three professional electives but not the three math/physics/engineering electives.

Economics

Suitable electives would include Econ. 1 and 3 followed by the courses in one of the following tracks:

- Macroeconomics: Econ. 110A-B.
- Monetary economics: Econ. 111, and another economics upper division elective.

Economics 1 and 2 followed by two courses in one of the following tracks:

- Public and Environmental: Econ. 118, 130, 131, 132, 133, 137, 145.
- Labor and Human Resources: Econ. 137, 139, 140.

Note: Econ. 100A can be substituted for Econ. 2 Econ. 1 and 100A followed by two courses in one of the following tracks:

- Microeconomics: Econ. 100B-C.
- Financial Markets: Econ. 120B and 173A.
- Human Resources: Econ. 100B and 136.

Note: Econ. 120A, and 158A-B will not be allowed as professional electives. If Economics is chosen for professional electives, only three technical electives are required for electrical engineering majors; only one technical elective is required for engineering physics majors.

B.S. COMPUTER ENGINEERING

Students wishing to pursue the computer engineering curriculum may do so in either the ECE or CSE department. The set of required courses and allowed electives is the same in both departments; please note that the curriculum requires twenty upper-division courses. The Computer Engineering Program requires a total of 151 units (not including the general-education requirements).

The Computer Engineering Program offers a strong emphasis on engineering mathematics and other basic engineering science as well as a firm grounding in computer science. Students should have sufficient background in high school mathematics so that they can take freshman calculus in their first quarter. Courses in high school physics and computer programming, although helpful, are not required for admission to the program.

Lower-Division Requirements (total of seventy-five units)

Mathematics (twenty units)
Math. 20A-B-C-D-F.

Physics (sixteen units)
Phys. 2A-B-C-D, or Phys. 4A-B-C-D. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the mathematics placement test permits them to start with Math. 20B or higher may take Phys. 2A in the fall quarter of the freshman year.

Computer Science (twenty-seven units)
CSE 11 or 88*, 12, 15L, CSE 20 or Math. 15A, CSE 21 or Math. 15B, CSE 30, CSE 70, and CSE 91.

*CSE 8A and CSE 8B are not required if a student completes CSE 11. CSE 11 is a faster paced version of CSE 8A and CSE 8B. Students will self-select which course they wish to take. Students without programming experience in a compiled language are advised to take CSE 8A and then CSE 8B instead of CSE 11.

Electrical Engineering (twelve units)
ECE 35, ECE 45, ECE 65.

Upper-Division Requirements (total of seventy-six units)

1. All B.S. computer engineering students are required to take CSE 100 or Math. 176, CSE 101 or Math. 188, CSE 105 or Math. 166, CSE 120, 131, 139, 140, 140L (CSE 140 and 140L must be taken concurrently), 141, 141L (CSE 141 and 141L must be taken concurrently).

2. In addition, all B.S. computer engineering students must fulfill the following upper-division ECE requirements:

- Engineering Probability and Statistics ECE 109. This course can be taken in the sophomore year.
- Electronic Circuits and Systems ECE 102 and 108. The department recommends that these courses be taken in the junior year.
- Linear systems ECE 101.

3. Technical electives: All B.S. computer engineering majors are required to take six technical electives.

- One technical elective must be either ECE 111 or ECE 118.
- Of the remaining five technical electives, four must be ECE or CSE upper-division or graduate courses.
- The remaining course can be any upper-division course listed under the non-CSE/ECE electives. (See the section on electives below.)

Electives

The discipline of computer engineering interacts with a number of other disciplines in a mutually beneficial way. These disciplines include mathematics, computer science, and cognitive science. The following is a list of upper-division courses from these and other disciplines that can be counted as technical electives.

At most four units of 197, 198, or 199 may be used towards technical elective requirements. ECE/ CSE 195 cannot be used towards course requirements. Undergraduate students must get instructor’s permission and departmental stamp to enroll in a graduate course.

Students may not get duplicate credit for equivalent courses. The UC San Diego General Catalog should be consulted for equivalency information and any restrictions placed on the courses. Additional restrictions are noted below. Any deviation from this list must be petitioned.

Mathematics

All upper-division courses except Math. 168A-B, 179A-B, 183, 184A-B, 189A-B, and 195–199. If a student has completed CSE 167, then he or she cannot get elective credit for Math. 155A. Students may receive elective credit for only one of the following courses: CSE 164A, Math. 174, Math. 173, Phys. 105A-B, MAE 107, CENG 100. No credit for any of these courses will be given if Math. 170A-B is taken. Students will receive credit for either Math. 166 or CSE 105 (but not both), either Math. 188 or CSE 101 (but not both), and either Math. 176 or CSE 100 (but not both).

Computer Science and Engineering

All CSE upper-division courses except CSE 195. Students will receive credit for either CSE 123A or CSE 158A (but not both).
Cognitive Science

Students may not get credit for both CSE 150 and Advanced Programming Methods for Cognitive Science 108F or for both CSE 151 and Artificial Intelligence Modeling II 182.

Mechanical and Aerospace Engineering (MAE)

All upper-division MAE courses except MAE 140, and MAE 195-199.

Students may receive elective credit for only one of the following courses: CSE 164A, Math. 174, Math. 173, Phys. 105A-B, CENG 100, MAE 107. Students may only get credit for one of the two courses, CSE 167 or MAE 152.

Economics

- Microeconomics 100A-B, Game Theory 109.

Students cannot take Economics 120A since it duplicates ECE 109.

Linguistics

- Phonetics 110, Phonology I 111, Phonology II 115, Morphology 120, Syntax I 121, Syntax II 125, Semantics 130, Mathematical Analysis of Languages 160, Computers and Language 163, Computational Linguistics 165, Psycholinguistics 170, Language and the Brain 172, and Sociolinguistics 175.

Engineering

- Team Engineering 101 (see course description under the Jacobs School of Engineering section).

Music

- Computer Music II 172, Audio Production: Mixing and Editing 173.

Psychology

- Engineering Psychology 161.

B.A. ELECTRICAL ENGINEERING AND SOCIETY

Students must complete a total of 180 units for graduation, including the general-education requirements (GER). Note that 144 units (excluding GER) are required.

Lower-Division Requirements (total of eighty units)

Mathematics (twenty-four units)

- Math. 20A-B-C-D-E-F.

Physics (sixteen units)

- Phys. 2A-B-C-D or Phys. 4A-B-C-D-E. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the mathematics placement test permits them to start with Math. 20B or higher may take Phys. 2A in the fall quarter of the freshman year.

Chemistry (four units)

- Chem. 6A.

Programming Course (four units)

- ECE 15.

Electrical Engineering (twenty units)

- ECE 25, 30, 35, 45, 65, and 75.

Elective Courses in Social Sciences and Humanities Studies (eight units)

- These can be prerequisite courses for the upper-division depth sequence in social sciences/humanities. For instance, for history studies, this can be two history lower-division courses (HILD 2, 7, 10–12). Historically oriented HUM, MMW, and CAT courses would count as well. At least one lower-division course should have a writing component. For economics studies, this can be two lower-division courses (ECON 1, and ECON 4 for the finance track); or one lower-division course (ECON 1) plus one upper-division course for the data analysis track. For political science, the following courses may be utilized: PS10, PS11, PS12, PS13, PS30. For sociology studies, students will choose two lower-division courses from SOCL 1A, 1B, and 30, of which L30 is highly recommended.

Other courses in social sciences/humanities will be available after an agreement between ECE and the respective departments/programs are established and approved.

Additional Notes

1. Students with AP math credit are strongly advised to take Math. 20B in the fall quarter, leaving room for a GER in the winter quarter.

2. The ECE undergraduate Web site shows several scheduling options. Please refer to the Web site and consult with the staff advisors in the undergraduate offices, rooms 2705 and 2707 in EBU1.

Upper-Division Requirements (total of sixty-four units)

a. Electrical Engineering BREADTH Courses (twenty-four units)

- Courses required of all electrical engineering majors:
 - The six courses—ECE 101, 102, 103, 107, 108, and 109—are required of all electrical engineering majors and they are an assumed prerequisite for senior-level courses, even if they are not explicitly required. Although the courses are largely independent, ECE 102 is a prerequisite for ECE 108. Students who delay some of the BREADTH courses until the spring should be careful to not have delayed their depth sequence.

b. Electrical Engineering DESIGN Course (four units)

 Note: In order to fulfill the design requirement, students must complete one of the following courses with a grade C– or better. When taking this course, the student has the option of having a portion of the project related to his/her social sciences/humanities study. Graduation will not be approved until a written copy of the design project is submitted to the ECE undergraduate office.

The electrical engineering design requirement can be fulfilled in any of the following three ways:

1. Take ECE 191. Engineering Group Design Project

2. Take ECE 190. Engineering Design. This course requires the department stamp. Specifications and enrollment forms are available in the undergraduate office.

3. Take one of the following courses:
 - ECE 111. Advanced Digital Design Project
 - ECE 118. Computer Interfacing
 - ECE 155B or 155C. Digital Recording Projects Students who wish to take one of these courses to satisfy the design requirement must fill out an enrollment form and have departmental approval for the design credit prior to taking the course. The project must meet the same specifications as ECE 190.

c. Electrical Engineering ELECTIVES (twelve units)

Three upper-division engineering, mathematics, or physics courses.

d. Social Sciences/Humanities Studies Depth Requirement (twenty-four units)

Students must complete a “depth requirement” of at least six quarter courses to provide a focus for their studies. Sample depth programs for history and economics students are discussed below. Students may choose this demonstrated sequence or they may propose another with the approval of their faculty co-advisor from the respective social sciences/humanities department.

History Studies (six courses, twenty-four units)

- At least four of these should belong to the specific field the student is pursuing (e.g., History of: East Asia, United States, Europe, Science, etc.).

- At least one course should be in the field of history of science and technology.

- At least one course should be a colloquium (i.e., a small course, with an emphasis on essay writing).

HISC 105. History of Environmentalism

HISC 106. The Scientific Revolution

HISC 107. The Emergence of Modern Science

HISC 108. Science and Technology in the Twentieth Century

HISC 109. Science in Western Civilization

HISC 111. The Atomic Bomb and the Atomic Age

HISC 115. Making Modern Medicine

HISC 131. Science Technology and Law
HISC 173/273. Darwin and Darwinism
HILD 2A. United States History
HILD 7A. Race and Ethnicity
HILD 10. East Asia: The Great Tradition
HILD 11. East Asia and the West
HILD 12. Twentieth-Century East Asia
HIUS 140. Economic History of the United States
HIUS 151. American Legal History 1865 to the Present
HIUS 187. Social Movements in the United States
HIUS 148. American Cities in the Twentieth Century
HIEU 143. European Intellectual History
HIGR 222. European History
HILA 102. Latin America in the Twentieth Century

Economics Studies
- Track A: Finance (six courses, twenty-four units)
 - Intermediate Microeconomic sequence: ECON 100A-B-C
 - Finance sequence: ECON 173A-B
 - One elective course from the following: ECON 104, 105, 109, 113, 119, 120B, 141, 142, 143, 147, 150, 151, 155, 171, 172A
- Track B: Data Analysis (seven courses, twenty-eight units, one of them can be taken during lower-division years)
 - Intermediate Microeconomic sequence: ECON 100A-B-C
 - Data Analysis sequence: ECON 120B-C
 - Two elective courses from the following: ECON 104, 105, 109, 119, 121, 125, 150, 151, 152, 155, 173A, 173B, 174, 176, 178
 - Other upper-division courses for satisfying the depth sequences for other studies in social sciences/humanities will be available after an agreement is established between ECE and the respective department/program in social sciences/humanities.

Political Science Studies (six courses, twenty-four units)
- Policy Analysis
 - At least four courses from
 - PS 160AA. Introduction to Policy Analysis
 - PS 160AB. Introduction to Policy Analysis
 - PS 162. Environmental Policy
 - PS 163. Analyzing Politics
 - PS 165. Special Topic: Policy Analysis
 - PS 168. Policy Assessment
 - PS 170A. Introductory Statistics for Political Science and Public Policy

Sociology Studies (six courses, twenty-four units)
- Students may specialize in one of four departmental concentrations or complete the “general sociology” track.
- Students will choose eight courses, two lower-division and six upper-division courses from their choice of concentrations in Science and Medicine, Law and Society, Economy and Society, International Studies, or General Sociology. Note: SOCL 30 and SOCC 168T are highly recommended for all tracks.

Concentration in Science and Medicine (eight courses, thirty-two units)
- Students will choose two lower division courses from SOCL 1A, 1B, and 30, of which L30 is highly recommended; and six upper division courses from the list below, in which SOCC 168T is highly recommended.

Lower-Division
- L 1A. The Study of Society
- L 1B. The Study of Society
- L 30. Science, Technology, and Society (highly recommended)

Upper-Division
- C 168T. Sociology of Technology (highly recommended)
- B 113. Sociology of the AIDS Epidemic
- C 134A. The Making of Modern Medicine
- C 135. Medical Sociology
- C 136A. Sociology of Mental Illness: An Historical Approach
- C 136B. Sociology of Mental Illness in Contemporary Society
- C 138. Genetics and Society
- C 149. Sociology of the Environment
- C 167. Science and War
- C 168E. Sociology of Science

Concentration in Law and Society (eight courses, thirty-two units)
- Students will choose two lower-division courses from SOCL 1A, 1B, and 30, of which L30 is highly recommended; and six upper-division courses from the list below, in which SOCC 168T is highly recommended.

Lower-Division
- L 1A. The Study of Society
- L 1B. The Study of Society
- L 30. Science, Technology, and Society (highly recommended)

Upper-Division
- C 168T. Sociology of Technology (highly recommended)
- B 111. Human Rights
- B 112. Social Psychology
- B 142. Social Deviance
- B 143. Suicide
- B 146. Law Enforcement in America
- B 160L. Law and Culture
- B 173. Elite Crime
- C 140. Sociology of Law
- C 140F. Law and the Workplace
- C 141. Crime and Society

C 147. Organizations, Society, and Social Justice
C 159. Special Topics in Social Organizations and Institutions
C 163. Migration and the Law

Concentration in Economy and Society (eight courses, thirty-two units)
- Students will choose two lower-division courses from SOCL 1A, 1B, and 30, of which L30 is highly recommended; and six upper-division courses from the list below, in which SOCC 168T is highly recommended.

Lower-Division
- L 1A. The Study of Society
- L 1B. The Study of Society
- L 30. Science, Technology, and Society (highly recommended)

Upper-Division
- C 168T. Sociology of Technology (highly recommended)
- B 125. Sociology of Immigration
- B 137. Sociology of Food
- C 121. Economy and Society
- C 132. Gender and Work
- C 139. Social Inequality: Class, Race, and Gender
- C 140F. Law and the Workplace
- C 148L. Inequality and Jobs
- C 152. Social Inequality and Public Policy
- C 163. Migration and the Law
- C 167. Science and War
- D 185. Globalization and Social Development

Concentration in International Studies (eight courses, thirty-two units)
- Students will choose two lower-division courses from SOCL 1A, 1B, and 30, of which L30 is highly recommended; and six upper-division courses from the list below, in which SOCC 168T is highly recommended.

Lower-Division
- L 1A. The Study of Society
- L 1B. The Study of Society
- L 30. Science, Technology, and Society (highly recommended)

Upper-Division
- C 168T. Sociology of Technology (highly recommended)
- B 111A. Human Rights: Principles and Problems
- B 111B. Human Rights: Practices and Cases
- B 130. Population and Society
- B 145. Violence and Society
- B 151. Comparative Race and Ethnic Relations
- B 162R. Religion and Popular Culture in East Asia
- C 148. Political Sociology
- C 152. Urban Sociology
- C 157. Religion in Contemporary Society
- D 158. Islam in the Modern World
- D 169. Citizenship, Community, and Culture
- D 176. War and Society
- D 177. International Terrorism
- D 178. The Holocaust
- D 179. The Holocaust
- D 180. Social Movements and Social Protest
D 181. Modern Western Society
D 182. Ethnicity and Indigenous Peoples in Latin America
D 183. Minorities and Nation
D 185. Globalization and Social Development
D 187. African Societies Through Film
D 188A. Community and Social Change in Africa
D 188B. Chinese Society
D 188F. Modern Jewish Societies and Israeli Society
D 188D. Latin America: Society and Politics
D 188J. Change in Modern South Africa
D 189. Special Topics in Comparative-Historical Sociology

General Sociology (eight courses, thirty-two units)

Students will choose two lower-division courses from SOCL 1A, 1B, and 30, of which 30 is highly recommended; and six upper-division courses, including one from EACH of the following four concentrations:

Science and Medicine
Law and Society
Economy and Society
International Studies

Note: SOCL 30 and SOCC 168T are highly recommended as two of the eight total courses.

Sample of a four-year program for the B.A. in Engineering Majors

1. Lower-Division Requirements (total of seventy-six units excluding GERs)

FALL	**WINTER**	**SPRING**
Math. 20A | Math. 20B | Math. 20C
ECE 15 (Computer Programming) | ECE 25 (Intro to ECE 35) | ECE 35 (Intro to EE, EE, Digital)
Chem. 6A | ECE 25 (Intro to ECE 35) | Analog
GER | GER | GER

SOPHMORE YEAR

Math. 20F | Math. 20D | Math. 20E
Phys. 2C | Phys. 2D | GER
ECE 30 (Intro to CE) | ECE 45 (Circuits) | ECE 65 (Circuits and Systems)
GER | S/H Elective | S/H Elective

2. Upper-Division Requirements (total of sixty-eight units excluding GERs)

FALL	**WINTER**	**SPRING**
ECE 101 (Linear Systems) | ECE 107 (Electromagnetism) | GER
ECE 102 (Active Circuits) | ECE 108 (Digital Circuits) | Depth #1
ECE 109 (Prob. and Statistics) | ECE 103 (Devices and Materials) | Depth #2
GER | GER | GER

SENIOR YEAR

Depth #3 | Depth #5 | Depth #6
Depth #4 | E. Elective | E. Elective
E. Elective | E. Elective | E. Elective
GER | GER | GER

Notes:
- Depth = Depth sequence courses
- S/H Elective = Social sciences/humanities elective courses
- E. Elective = Electrical engineering elective courses, which can be engineering, mathematics, or physics courses. Three of these electives must be upper-division. The fourth may be either lower or upper division.
- GER = General-Education Requirements

MINOR CURRICULA

ECE offers three minors in accord with the general university policy that a minor requires five upper-division courses. Students must realize that these upper-division courses have extensive lower-division prerequisites (please consult the ECE undergraduate office). Students should also consult their college provost’s office concerning the rules governing minors and programs of concentration.

Electrical Engineering: Twenty units chosen from the breadth courses ECE 101, 102, 103, 107, 108, 109.

Computer Engineering: Twenty units chosen from the junior year courses ECE 102, 108, CSE 100, 101, 105, 120, 140, 140L, 141, 141L.

The department will consider other mixtures of upper-division ECE, CSE, physics, and mathematics courses by petition.

UNDERGRADUATE ADMISSIONS, POLICIES, AND PROCEDURES

FRESHMAN ELIGIBILITY

1. **Computer Engineering**

 Freshmen students who have declared Computer Engineering on their application will be directly admitted into the major.

2. **Electrical Engineering**

 Freshmen students who have declared Electrical Engineering on their application will be directly admitted into the major.

3. **Engineering Physics**

 Students are accepted into the pre-major and must complete the following courses in order to be accepted into the engineering physics major: Math. 20A-B-C, Phys. 2A-B, ECE 15, 25, and 33. Students who wish to enter in the engineering physics major must contact the department before the beginning of the fall quarter, submitting course descriptions and transcripts for courses used to satisfy their lower-division requirements. Normally, admission will be for the fall quarter; students entering in the winter or spring quarter should be aware that scheduling difficulties may occur because upper-division sequences normally begin in the fall quarter.

GRADE REQUIREMENT IN THE MAJOR

Courses required for the major must be taken for a letter grade. All major courses must be completed with a grade of C– or better.

A GPA of 2.0 is required in all upper-division courses in the major, including technical electives. The grade of D will not be considered an adequate prerequisite for any ECE course and will not be allowed for graduation. The engineering design requirement must be completed with a grade of C– or better.
ADVISING

Students are required to complete an academic planning form and to discuss their curriculum with the appropriate departmental advisor immediately upon entrance to UCSD, and then every year until graduation. This is intended to help students in: a) their choice of depth sequence, b) their choice of electives, c) keeping up with changes in departmental requirements. A faculty advisor will be assigned by the ECE department undergraduate office.

NEW TRANSFER STUDENTS IN ELECTRICAL ENGINEERING AND ENGINEERING PHYSICS

The entire curriculum is predicated on the idea of actively involving students in engineering from the time they enter as freshmen. The freshman courses have been carefully crafted to provide an overview of the engineering mindset with its interrelationships among physics, mathematics, problem solving, and computation. All later courses are specifically designed to build on this foundation. All transfer students should understand that the lower-division curriculum is demanding. Transfer students will be required to take all lower-division requirements or their equivalent. Transfer students are advised to consult the ECE Web site for sample recommended course schedules and for the ECE course requirement guide.

NEW TRANSFER STUDENTS IN COMPUTER ENGINEERING

Transfer students are advised to consult the ECE Web site for sample recommended course schedules and for the ECE course requirement guide.

Students who do not have any programming experience are encouraged to take the CSE 8A-B sequence instead of CSE 11. Experience has shown that most students who are not familiar with programming and take CSE 11 have to retake the class because the accelerated pace makes it difficult to learn the new material.

Note: Transfer students are encouraged to consult with the ECE undergraduate office for academic planning upon entrance to UCSD.

ECE HONORS PROGRAM

The ECE Undergraduate Honors Program is intended to give eligible students the opportunity to work closely with faculty in a project, and to honor the top graduating undergraduate students.

ELIGIBILITY FOR ADMISSION TO THE HONORS PROGRAM

1. Students with a minimum GPA of 3.5 in the major and 3.25 overall will be eligible to apply. Students may apply at the end of the winter quarter of their junior year and no later than the end of the second week of fall quarter of their senior year. No late applications will be accepted.
2. Students must submit a project proposal (sponsored by an ECE faculty member) to the honors program committee at the time of application.
3. The major GPA will include ALL lower-division required for the major and all upper-division required for the major that are completed at the time of application (a minimum of twenty-four units of upper-division course work).

REQUIREMENTS FOR AWARD OF HONORS

1. Completion of all ECE requirements with a minimum GPA of 3.5 in the major based on grades through winter quarter of the senior year.
2. Formal participation (i.e., registration and attendance) in the ECE 290 graduate seminar program in the winter quarter of their senior year.
3. Completion of an eight-unit approved honors project (ECE 193H: Honors Project) and submission of a written report by the first day of spring quarter of the senior year. This project must contain enough design to satisfy the ECE B.S. four-unit design requirement.
4. The ECE honors committee will review each project final report and certify the projects which have been successfully completed at the honors level.

PROCEDURE FOR APPLICATION TO THE HONORS PROGRAM

Between the end of the winter quarter of their junior year and the second week of the fall quarter of their senior year, interested students must advise the department of their intention to participate by submitting a proposal for the honors project sponsored by an ECE faculty member. Admission to the honors program will be formally approved by the ECE honors committee based on GPA and the proposal.

UNIT CONSIDERATIONS

Except for the two-unit graduate seminar, this honors program does not increase a participant’s total unit requirements. The honors project will satisfy the departmental design requirement and students may use four units of their honors project course as a technical elective.

THE GRADUATE PROGRAMS

FIVE-YEAR B.S./MASTER’S PROGRAM

Undergraduates in the ECE department who have maintained a good academic record in both departmental and overall course work are encouraged to participate in the five-year B.S./master’s program offered by the department. Participation in the program will permit students to complete the requirements for the M.S. or M.Eng. degree within one year following receipt of the B.S. degree. Complete details regarding admission to and participation in the program are available from the ECE Undergraduate Affairs office.

ADMISSION TO THE PROGRAM

Students should submit an application for the B.S./master’s program, including three letters of recommendation, by the program deadline during the spring quarter of their junior year. Applications are available from the ECE Undergraduate Affairs office. No GREs are required for application to the B.S./master’s program. A GPA of at least 3.0 both overall and in the major and strong letters of recommendation are required to be considered for program admission. Students should indicate at that time whether they wish to be considered for the M.S. degree program.

In the winter quarter of the senior year, applications of students admitted to the program will be forwarded by the department to the UC San Diego Office of Graduate Studies. Each student must submit the regular graduate application fee prior to the application deadline for their application to be processed. Students who have been accepted into the B.S./master’s program will automatically be admitted for graduate study beginning the following fall provided they maintain an overall GPA through the winter quarter of the senior year of at least 3.0. Upper-division (up to twelve units) or graduate courses taken during the senior year that are not used to satisfy undergraduate course requirements may be counted towards the forty-eight units required for the M.S. degree.

CONTINUATION IN THE PROGRAM

Once admitted to the B.S./master’s program, students must maintain a 3.0 cumulative GPA in all courses through the winter quarter of the senior year and in addition must at all times maintain a 3.0 cumulative GPA in their graduate course work. Students not satisfying these requirements may be re-evaluated for continuation in the program.

Admission for graduate study through the B.S./master’s program will be for the M.S. or M.Eng. degree only. Undergraduate students wishing to continue toward the Ph.D. degree must apply and be evaluated according to the usual procedures and criteria for admission to the Ph.D. program.

CURRICULUM

Students in the five-year B.S./master’s program must complete the same requirements as those in the regular M.S. program. Completion of the M.S. degree requirements within one year following receipt of the B.S. degree will generally require that students begin graduate course work in their senior year. All requirements for the B.S. degree should be completed by the end of the senior (fourth) year, and the B.S. degree awarded prior to the start of the fifth year. Courses taken in the senior year may be counted toward the B.S. degree requirements or the M.S. degree requirements, but not both. Students must have received their B.S. degree before they will be eligible to enroll as graduate students in the department.

The department offers graduate programs leading to the M.Eng., M.S., and Ph.D. degrees in electrical engineering. Students can be admitted into ECE graduate studies through either the M.Eng., M.S., or Ph.D. programs.

The Ph.D. program is strongly research oriented and is for students whose final degree objective is the Ph.D. If a student with a B.S. is admitted to this program, he or she will be expected to complete the requirements for the M.S. degree (outlined below) before beginning doctoral research. The M.S. is a technically intensive, research-oriented degree intended as preparation for advanced technical work in the engineering profession, or subsequent pursuit of a Ph.D. By contrast, the M.Eng. is intended to be a
terminal professional degree, for those not planning to pursue the Ph.D. The M. Eng. has only a course work requirement.

In addition, the department offers M.S. and Ph.D. programs in computer engineering jointly with CSE, and a Ph.D. program in applied ocean science jointly with MAE and Scripps Institution of Oceanography.

Admission to an ECE graduate program is in accordance with the general requirements of the UCSD graduate division, and requires at least a B.S. Degree in engineering, physical sciences, or mathematics with a minimum upper division GPA of 3.0. Applicants must provide three letters of recommendation and recent GRE General Test scores. TOEFL or IELTS scores are required from international applicants whose native language is not English. Applicants should be aware that the University does not permit duplication of degrees.

Support: The department makes every effort to provide financial support for Ph.D. students who are making satisfactory progress. Support may take the form of a fellowship, teaching assistantship, research assistantship, or some combination thereof. International students will not be admitted unless there is reasonable assurance that support can be provided for the duration of their Ph.D. Program

Students in the M.Eng. and M.S. programs may also obtain support through teaching or research assistantships, but this is less certain.

Advising: Students should seek advice on requirements and procedures from the departmental graduate office and/or the departmental Web site http://www.ece.ucsd.edu. All students will be assigned a faculty academic advisor upon admission and are strongly encouraged to discuss their academic program with their advisor immediately upon arrival and subsequently at least once per academic year.

MASTER OF ENGINEERING

The Master of Engineering (M. Eng.) program is intended primarily for engineers who desire master’s-level work but do not intend to continue with Ph.D.-level research. It differs from the M.S. program in that it is a terminal professional degree, whereas the M.S. may serve as an entry to a Ph.D. program. Salient features of the M. Eng. program include the following: It can be completed in four quarters at full-time or eight quarters at half-time; it does not require a thesis, a research project, or a comprehensive exam; and it has an option of three courses in business, management, and finance.

Course Requirements

The total course requirements are forty-eight units (twelve quarter courses). At least thirty-six units must be at the graduate level. The choice of courses is subject to general focus and breadth requirements. Students will be assigned a faculty advisor who will help select courses.

1. The Focus Requirement: (five courses) The M.Eng. program should reflect, among other things, a continuity and focus in one subject area. The course selection must therefore include at least twenty units (five quarter courses) in closely related courses leading to the state of the art in that area. The requirement may be met by selecting five courses from within one of the focus areas listed below. In some cases it may be appropriate to select five closely related courses from two of the areas listed below. Such cases must be approved by a faculty advisor and the ECE Graduate Affairs Committee.

2. The Breadth Requirement: (two courses) A graduate student often cannot be certain of his or her future professional career activities and may benefit from exposure to interesting opportunities in other subject areas. The breadth requirement is intended to provide protection against technical obsolescence, open up new areas of interest, and provide for future self-education and interaction with people from related and sometime disparate disciplines. The minimum breadth requirement is eight units (two quarter courses) of ECE/CSE graduate courses selected from among the courses listed below, in an area distinctly different from that of the focus requirement.

3. Technical Electives: (two courses) Two technical electives may be any graduate courses in ECE, CSE, Physics, or Mathematics. Other technical courses may be selected with the approval of the faculty advisor and the ECE Graduate Affairs Committee. Technical electives may include a maximum of four units of ECE 298 (Independent Study), or ECE 299 (Research).

4. Professional Electives: (three courses) The three professional electives may be used in several ways: for the IP/Core 401, 420, 421 series in business, management, and finance; for upper-division undergraduate technical courses specified as prerequisites for graduate-level focus, breadth, or technical elective courses taken to satisfy the M.Eng. Degree requirements; or for additional graduate technical electives. Use of other courses to satisfy the Professional Elective requirement must be approved by the faculty advisor.

Scholarship Requirement: The forty-eight units of required course work must be taken for a letter grade (A–F), except for ECE 298 or 299, for which only S/U grades are allowed. Courses for which a D or F is received may not be counted. Students must maintain a GPA of 3.0 overall.

MASTER OF ENGINEERING PROGRAM FOCUS COURSES

Please consult the ECE graduate office or the ECE Web site http://www.ece.ucsd.edu for the current list of focus areas and courses.

1. Applied Physics

ECE 222A-B-C. Electromagnetic Theory
ECE 230A-B-C. Solid State Electronics
ECE 236A-B-C-D. Semiconductors
ECE 238A-B. Materials Science
MS 201A-B-C. Materials Science
ECE 240A-B-C. Optics
ECE 241A-B-C. Optics

2. Communications and Signal Analysis

ECE 250. Random Processes
ECE 251AN-BN-CN-DN. Digital Signal Processing
ECE 252A-B. Speech Compression and Recognition
ECE 253A-B. Digital Image Analysis
ECE 254. Detection Theory
ECE 255AN. Information Theory
ECE 255BN-CN. Source Coding
ECE 256A-B. Time Series Analysis
ECE 257A-B. Wireless Communications
ECE 258A-B. Digital Communications
ECE 259AN-BN-CN. Channel Coding
ECE 275A-B. Statistical Parameter Estimation
ECE 285. Special Topic: Computer Vision: Pattern Recognition (offerings vary annually)

3. Electronic Circuits and Systems

Allied Ph.D. research areas: Computer Engineering, Electronic Circuits and Systems.

ECE 222A-B-C. Applied Electromagnetic Theory
ECE 230A-B-C. Solid State Electronics
ECE 236A-B-C. Semiconductor Hetero-structure Materials
ECE 250. Random Processes
ECE 260A-B-C. VLSI Circuits
ECE 264A-B-C-D. Analog IC Design
ECE 265A-B. Wireless Circuit Design
CSE 240A, 240B. Computer Architecture
CSE 242A, 243A. Computer Aided Design
ECE 251AN-BN-CN-DN. Digital Signal Processing

TRANSFER TO THE PH.D. PROGRAM

Although the M. Eng. is intended as a terminal degree, the department recognizes that degree goals can change, including the possibility that a student admitted to the M. Eng. may wish to pursue a Ph.D. To this end, we outline below the procedure that must be followed to effect such a change. At the outset, however, we stress that this option should not be used in an attempt to circumvent the normal Ph.D. admissions process. Students who fail to meet the standards for the Ph.D. program at the time of admission have little chance of being allowed into the Ph.D. program at a later date.

Students in the M.Eng. program wishing to be considered for admission to the Ph.D. program should consult their academic advisor as soon as possible. Transfer from M. Eng. to the Ph.D. program is possible provided that the student

• Satisfy all requirements for initial admission to the Ph.D. program, including submission of GRE General Test Scores, and be approved for consideration for transfer to the Ph.D program by the ECE Graduate Admissions Committee.

• Identify a faculty member who agrees, in writing, to serve as that student’s academic and Ph.D. research advisor.

• In consultation with the academic advisor, design and complete a program of course work that satisfies all course requirements and constraints for a Ph.D. discipline appropriate to their research. All students in the Ph.D. programs are required to
satisfy all Ph.D. degree requirements as described below. Should the student not be admitted to the Ph.D. program, this program of course work will serve, with the approval of the academic advisor and the ECE Graduate Affairs Committee, to satisfy the course work requirements for the M.S. or M.Eng. degree (see below).

- Pass the comprehensive examination at the level required for continuation in the Ph.D. program. A student failing to pass the comprehensive exam at this required level will not be admitted to the Ph.D. program, and will instead continue in the M.S. or M.Eng. degree program (see below).
- Maintain a GPA of at least 3.4 in the appropriate core graduate courses.

A student who has fulfilled all of the above requirements should, after passing the departmental comprehensive exam, submit a petition to change their degree objective from M.Eng. to Ph.D.

MASTER OF SCIENCE

The ECE department offers M.S. programs in electrical and computer engineering. The M.S. program in computer engineering is jointly administered with the Department of Computer Science and Engineering. The M.S. programs are research oriented, are intended to provide the intensive technical preparation necessary for advanced technical work in the engineering profession or subsequent pursuit of a Ph.D. The M.S. degree may be earned either with a thesis (Plan 1) or with a research project followed by a comprehensive examination (Plan 2). However, continuation in the Ph.D. program requires a comprehensive examination so most students opt for Plan 2.

Course Requirements: The total course requirements for the master of science degrees in electrical engineering and in computer engineering are forty-eight units (twelve quarter courses) and forty-nine units, respectively, of which at least thirty-six units must be in graduate courses. Note that this is greater than the minimum requirements of the university. The department maintains a list of core courses for each disciplinary area from which the thirty-six graduate course units must be selected. The current list may be obtained from the department graduate office or the official Web site of the department. Students in interdisciplinary programs may select other core courses with the approval of their academic advisor. The course requirements must be completed within two years of full-time study. Students will be assigned a faculty advisor who will help select courses and approve their overall academic curriculum.

Scholarship Requirement: The forty-eight units of required course work must be taken for a letter grade (AF), except for graduate research (e.g. ECE 298, 299) for which only S/U grades are allowed. Courses for which a D or F is received may not be counted. Students must maintain a GPA of 3.0 overall.

Thesis and Comprehensive Requirements: The department offers both M.S. Plan 1 (thesis) and M.S. Plan 2 (written comprehensive exam). Students in the M.S. program may elect either Plan 1 or Plan 2 any time. Students in the M.S. Plan 1 (thesis) must take twelve units of ECE 299 (Research) and must submit a thesis as described in the general requirements of the university. Students in the M.S. Plan 2 (written comprehensive exam) may count four units of ECE 299 (Research) toward the thirty-six graduate units required and must pass the departmental written comprehensive examination not later than the end of the fall quarter of their second year of study. Students who pass the written examination at the MS level will receive a terminal masters degree, if they do not already have one.

Students in the computer engineering discipline may elect to take examinations in the Department of Computer Science and Engineering, in accordance with the CSE guidelines, in place of the written comprehensive examination in ECE.

Transfer to the Ph.D. Program: Students in the M.S. program wishing to be considered for admission to the Ph.D. program should consult their academic advisor as soon as possible. Transfer from the M.S. to the Ph.D. program is possible provided that the student:

- Satisfy all requirements for initial admission to the Ph.D. program, including submission of GRE general test scores, and be approved for consideration for transfer to the Ph.D. program by the ECE Graduate Admissions Committee.
- Identify a faculty member who agrees, in writing, to serve as that student’s academic and Ph.D. research advisor.
- In consultation with the academic advisor, design and complete a program of course work that satisfies all course requirements and constraints for a Ph.D. discipline appropriate to the student’s research. All students in the Ph.D. program are required to satisfy all Ph.D. degree requirements as described below. Should the student not be admitted to the Ph.D. program, this program of course work will serve, with the approval of the academic advisor and the ECE Graduate Affairs Committee, to satisfy the course work requirements for the M.S. degree.
- Pass the comprehensive examination at the level required for continuation in the Ph.D. program. A student failing to pass the comprehensive exam at this required level will not be admitted to the Ph.D. program, and will instead continue in the M.S. degree program.
- Maintain a GPA of at least 3.4 in the appropriate core graduate courses.

A student who has fulfilled all of the above requirements should, after passing the departmental comprehensive exam, submit a petition to change his or her degree objective from M.S. to Ph.D.

THE DOCTORAL PROGRAMS

The ECE department offers graduate programs leading to the Ph.D. degree in ten disciplines within electrical and computer engineering, as described in detail below. The Ph.D. is a research degree requiring completion of the Ph.D. Program course requirements, satisfactory performance on the comprehensive (Ph.D. Preliminary) examination and university Qualifying Examination, and submission and defense of a doctoral thesis (as described under the “Graduate Studies” section of this catalog). Students in the Ph.D. Program must pass the comprehensive exam (Ph.D. Preliminary) before the beginning of the winter quarter of the second year of graduate study. To ensure timely progress in their research, students are strongly encouraged to identify a faculty member willing to supervise their doctoral research by the end of their first year of study.

Students should define their research interest as soon as they have passed the comprehensive exam (Ph.D. Preliminary). They should plan on taking the university Qualifying Examination about one year later. The university does not permit students to continue in graduate study for more than four years without passing this examination. At the Qualifying Examination the student will give an oral presentation on research accomplishments to date and the thesis proposal to a campus-wide committee. The committee will decide if the work and proposal has adequate content and reasonable chance for success. They may require that the student modify the proposal and may require a further review.

The final Ph.D. requirements are the submission of a dissertation and the dissertation defense (as described under the “Graduate Studies” section of this catalog).

Course Requirements: The total course requirements for the Ph.D. degree in electrical engineering are essentially the same as the M.S. degree and consists of forty-eight units (twelve quarter courses), of which at least thirty-six units must be in graduate courses. Note that this is greater than the minimum requirements of the university. The department maintains a list of core courses for each disciplinary area from which the thirty-six graduate course units must be selected. The current list may be obtained from the ECE department graduate office or the official Web site of the department. Students in the interdisciplinary programs may select other core courses with the approval of their academic advisor. The course requirements must be completed within two years of full-time study.

Students in the Ph.D. programs may count no more than eight units of ECE 299 towards their course requirements.

Students who already hold an M.S. degree in electrical engineering must nevertheless satisfy the requirements for the core courses. However, graduate courses taken elsewhere can be substituted for specific courses with the approval of the academic advisor.

Scholarship Requirement: The forty-eight units of required course work must be taken for a letter grade (AF), except for ECE 299 (Research) for which only S/U grades are allowed. Courses for which a D or F is received may not be counted. Students must maintain a GPA of 3.0 overall. In addition, a GPA of 3.4 in the core graduate courses is generally expected.

Comprehensive Exam (Ph.D. Preliminary): Ph.D. students must find a faculty member who will agree to supervise their thesis research. This should be done before the start of the second year of study. They should then devote at least half their time to research and must pass the Ph.D. Preliminary Examination by the end of their second year of study. This is an oral exam in which the student presents his or her research to a committee of three ECE faculty members, and is examined orally for proficiency in his or her area of specialization. The outcome of the
Specific time limits for the Ph.D. Program, assuming qualifying exams will also be reduced by one year. M.S. work, the time limits for the comprehensive and another institution are expected to complete their enter the Ph.D. Program with an M.S. degree from ECE course on an S/U basis. who are advanced to candidacy may register for any "Graduate Studies" section of this catalog). Students mentions are the submission of a dissertation, and the dissertation defense (as described under the "Graduate Studies" section of this catalog). Students who are advanced to candidacy may register for any ECE course on an S/U basis.

Departmental Time Limits: Students who enter the Ph.D. Program with an M.S. degree from another institution are expected to complete their Ph.D. requirements a year earlier than B.S. entrants. They must discuss their program with an academic advisor in their first quarter of residence. If their Ph.D. Program overlaps significantly with their earlier M.S. work, the time limits for the comprehensive and qualifying exams will also be reduced by one year. Specific time limits for the Ph.D. Program, assuming entry with a B.S. degree, are as follows:

1. **The Comprehensive Exam (Ph.D. Preliminary)** must be completed before the start of the winter quarter of the second year of full-time study.

2. **The University Qualifying Exam** must be completed before the start of the fifth year of full-time study.

3. **Support Limit**: Students may not receive financial support through the university for more than seven years of full-time study (six years with an M.S. degree).

4. **Registered Time Limit**: Students may not register as graduate students for more than eight years of full-time study (seven years with an M.S. degree).

Half-Time Study: Time limits are extended by one quarter for every two quarters of approved half-time status. Students on half-time status may not take more than six units each quarter.

P.H.D. RESEARCH PROGRAMS

1. Applied Ocean Sciences: This program in applied science related to the oceans is interdepartmental with the Graduate Department of the Scripps Institution of Oceanography (SIO) and the Department of Mechanical and Aerospace Engineering (MAE). It is administered by SIO. All aspects of man's purposeful and unusual intervention into the sea are included.

2. Applied Physics—Applied Optics and Photonics: These programs encompass a broad range of interdisciplinary activities involving optical science and engineering, optical and optoelectronic materials and device technology, communications, computer engineering, and photonic systems engineering. Specific topics of interest include ultrafast optical processes, nonlinear optics, quantum cryptography and communications, optical image science, multidimensional optoelectronic I/O devices, spatial light modulators and photodetectors, artificial dielectrics, multifunctional diffractive and micro-optics, volume and computer-generated holography, optoelectronic and micromechanical devices and packaging, wave modulators and detectors, semiconductor-based optoelectronics, injection lasers, and photodetectors. Current research projects are focused on applications such as optical interconnects in high-speed digital systems, optical multidimensional signal and image processing, ultrahigh-speed optical networks, 3D optical memories and memory interfaces, 3D imaging and displays, and biophotonic systems. Facilities available for research in these areas include electron-beam and optical lithography, material growth, microfabrication, assembly, and packaging facilities, cw and femtosecond pulse laser systems, detection systems, optical and electro-optic components and devices, and electronic and optical characterization and testing equipment.

3. Communication Theory and Systems: Communications theory and systems concerns the transmission, processing, and storage of information. Topics covered by the group include wireless and wireline communications, spread-spectrum communication, multi-user communication, network protocols, error-correcting codes for transmission and magnetic recording, data compression, time-series analysis, and image and voice processing.

4. Computer Engineering consists of balanced programs of studies in both hardware and software, the premise being that knowledge and skill in both areas are essential both for the modern-day computer engineer to make the proper unbiased tradeoffs in design, and for researchers to consider all paths towards the solution of research questions and problems. Toward these ends, the programs emphasize studies (course work) and competency (comprehensive examinations, and dissertations or projects) in the areas of VLSI and logic design, and reliable computer and communication systems. Specific research areas include computer systems, signal processing systems, multiprocessing and parallel and distributed computing, computer communications and networks, computer architecture, computer-aided design, fault-tolerance and reliability, and neurocomputing. The faculty is composed of interested members of the Departments of Electrical and Computer Engineering (ECE), Computer Science and Engineering (CSE), and related areas. The specialization is administered by both departments; the requirements are similar in both departments, with students taking the comprehensive exam, if necessary, given by the student's respective department.

5. Electronic Circuits and Systems: This program involves the study and design of analog, mixed-signal (combined analog and digital), and digital electronic circuits and systems. Emphasis is on the development, analysis, and implementation of integrated circuits that perform analog and digital signal processing for applications such as wireless and wireline communication systems, test and measurement systems, and interfaces between computers and sensors. Particular areas of study currently include radio frequency (RF) power amplifiers, RF low noise amplifiers, RF mixers, fractional-N phase-locked loops (PLLs) for modulated and continuous-wave frequency synthesis, pipelined analog-to-digital converters (ADCs), delta-sigma ADCs and digital-to-analog converters (DACs), PLLs for clock recovery, adaptive and fixed continuous-time, switched-capacitor, and digital filters, echo cancellation circuits, adaptive equalization circuits, wireless receiver and transmitter linearization circuits, mixed-signal baseband processing circuits for wireless transmitters and receivers, high-speed digital circuits, and high-speed clock distribution circuits.

6. Applied Physics—Electronic Devices and Materials: This program addresses the synthesis and characterization of advanced electronic materials, including semiconductors, metals, and dielectrics, and their application in novel electronic, optoelectronic, and photonic devices. Emphasis is placed on exploration of techniques for high-quality epitaxial growth of semiconductors, including both molecular-beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD); fabrication and characterization of materials and devices at the nanoscale; development of novel materials processing and integration techniques; and high-performance electronic devices based on both Group IV (Si/SiGe) and III-V compound semiconductor materials. Areas of current interest include novel materials and high-speed devices for wireless communications; electronic and optoelectronic devices for high-speed optical networks; high-power microwave-frequency devices; nanoscale CMOS devices and circuits; heterogeneous materials integration; novel device structures for biological and chemical sensing; advanced tools for nanoscale characterization and metrology; and novel nanoscale electronic, optoelectronic, and photonic devices. Extensive facilities are available for research in this area, including several MBE and MOCVD systems; a complete microfabrication facility; electron-beam lithography and associated process tools for nanoscale fabrication; a Rutherford backscattering system; x-ray diffractometers; electron microscopy facilities; extensive scanning-probe instrumentation; cryogenic systems; and comprehensive facilities for DC to RF electrical device characterization and optical characterization of materials and devices.
7. Intelligent Systems, Robotics, and Control: This information sciences-based field is concerned with the design of human-interactive intelligent systems that can sense the world (defined as some specified domain of interest); represent or model the world; detect and identify states and events in the world; reason about and make decisions about the world; and/or act on the world, perhaps all in real-time. A sense of the type of systems and applications encountered in this discipline can be gained by viewing the projects shown at the Web site http://www.ece.ucsd.edu/grad/curricula/MS-PhD/ISRC/index.php.

The development of such sophisticated systems is necessarily an interdisciplinary activity. To sense and succinctly represent events in the world requires knowledge of signal processing, computer vision, information theory, coding theory, and data-basing; to detect and reason about states of the world utilizes concepts from statistical detection theory, hypothesis testing, pattern recognition, time series analysis, and artificial intelligence; to make good decisions about highly complex systems requires knowledge of traditional mathematical optimization theory and contemporary near-optimal approaches such as evolutionary computation; and to act upon the world requires familiarity with concepts of control theory and robotics. Very often learning and adaptation are required as either critical aspects of the world are poorly known at the outset, and must be refined online, or the world is non-stationary and our system must constantly adapt to it as it evolves. In addition to the theoretical information and computer science aspects, many important hardware and software issues must be addressed in order to obtain an effective fusion of a complicated suite of sensors, computers, and problem dynamics into one integrated system.

Faculty affiliated with the ISRC subarea are involved in virtually all aspects of the field, including applications to intelligent communications systems; advanced human-computer interfacing; statistical signal- and image-processing; intelligent tracking and guidance systems; biomedical system identification and control; and control of teleoperated and autonomous multiagent robotic systems.

8. Magnetic Recording is an interdisciplinary field involving physics, material science, communications, and mechanical engineering. The physics of magnetic recording involves studying magnetic heads, recording media, and the process of transferring information between the heads and the medium. General areas of investigation include: nonlinear behavior of magnetic heads, very high frequency loss mechanisms in head systems; advanced human-computer interfacing; artificial intelligence; to make good decisions about states of the world utilizes concepts from statistical detection theory, hypothesis testing, pattern recognition, time series analysis, and artificial intelligence; to make good decisions about highly complex systems requires knowledge of traditional mathematical optimization theory and contemporary near-optimal approaches such as evolutionary computation; and to act upon the world requires familiarity with concepts of control theory and robotics.

Micromagnetic analysis of magnetic reversal in individual magnetic particles, theory of recorded transition phase noise and magnetization induced nonlinear bit shift in thin metallic films, and analysis of the thermal-thermal stability of interacting fine particles.

Research laboratories are housed in the Center for Magnetic Recording Research, a national center devoted to multidisciplinary teaching and research in the field.

9. Applied Physics—Radio and Space Science: The Radio Science Program focuses on the study of radio waves propagating through turbulent media. The primary objectives are probing of otherwise inaccessible media such as the solar wind and interstellar plasma. Techniques for removing the effects of the turbulent medium to restore the intrinsic signals are also studied.

The Space Science Program is concerned with the nature of the sun, its ionized and supersonic outer atmosphere (the solar wind), and the interaction of the solar wind with various bodies in the solar system. Theoretical studies include: the interaction of the solar wind with the earth, planets, and comets; cosmic dust-plasma waves in the ionosphere; and the physics of shocks. A major theoretical effort involves the use of supercomputers for modeling and simulation studies of both fluid and kinetic processes in space plasmas.

Students in radio science will take measurements at various radio observatories in the U.S. and elsewhere. This work involves a great deal of digital signal processing and statistical analysis. All students will need to become familiar with electromagnetic theory, plasma physics, and numerical analysis.

10. Signal and Image Processing: This program explores engineering issues related to the modeling of signals starting from the physics of the problem, developing and evaluating algorithms for extracting the necessary information from the signal, and the implementation of these algorithms on electronic and opto-electronic systems. Examples of research areas include filter design, fast transforms, adaptive filters, spectrum estimation and modeling, sensor array processing, image processing, image restoration, video processing, pattern recognition, and the implementation of signal processing algorithms using appropriate technologies. Signal and image processing techniques have found application in a number of areas such as sonar, radar, speech, geophysics, medical imaging, robotic vision, digital communications, and multimedia systems among others.

11. Nanoscale Devices and Systems: This program area will address the science and engineering of materials and device structures at length scales of ~100nm and below, at which phenomena such as quantum confinement and single-electron effects in electronics, near-field behavior in optics and electromagnetics, single-domain effects in magnetics, and a host of other effects in mechanical, fluidic, and biological systems emerge and become dominant. Engineering activities such as scaling of transistors and other circuit elements in microelectronics, design of new, artificial materials with engineered optical properties and of photonic components and systems based on these materials, engineering of high-density magnetic storage media and systems, development of new technologies for renewable energy conversion and storage, advancement of sensor technology, and others now depend upon engineering both solid-state and “soft” materials and device structures at the nanoscale. Furthermore, the integration of such technologies into complex systems, as well as consideration of system drivers and constraints as guides for the development of new materials and devices, is emerging as a critical aspect of nanotechnology.

RESEARCH FACILITIES

Most of the research laboratories of the department are associated with individual faculty members or small informal groups of faculty. Larger instruments and facilities, such as those for electron microscopy and e-beam lithography are operated jointly. In addition the department operates several research centers and participates in various university-wide organized research units.

The department-operated research centers are the Center for Wireless Communications which is a university-industry partnership; the Institute for Neural Computation, and the Center for Information Theory and Application in conjunction with Calit2.

Department research is also associated with the Center for Astronomy and Space Science, the Center for Magnetic Recording Research, the California Space Institute, the Institute for Nonlinear Science, and Calit2 (http://www.calit2.net). Departmental researchers also use various national and international laboratories, such as the National Nanofabrication Facility, the National Radio Astronomy Laboratory, and the Center for Networked Systems (CSE).

The department emphasizes computational capability and maintains numerous computer laboratories for instruction and research. One of the NSF national supercomputer centers is located on the campus. This is particularly useful for those whose work requires high data bandwidths.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

The department will endeavor to offer the courses as outlined below; however, unforeseen circumstances sometimes require a change of scheduled offerings. Students are strongly advised to check the Schedule of Classes or the department before relying on the schedule below. For the names of the instructors who will teach the course, please refer to the quarterly Schedule of Classes. The departmental Web site http://www.ece.ucsd.edu includes the present best estimate of the schedule of classes for the entire academic year.
LOWER-DIVISION

1A–B–C. Mesa Orientation Course (1–1–1)
Students will be given an introduction to the engineering profession and our undergraduate program. Exercises and practicums will develop the problem-solving skills needed to succeed in engineering. Prerequisite: none. (F, W, S)

15. Engineering Computation (4)
Students learn the C programming language with an emphasis on high-performance numerical computation. The commonality across programming languages of control structures, data structures, and I/O is also covered. Techniques for using Matlab to graph the results of C computations are developed. Prerequisites: a familiarity with basic mathematics such as trigonometry functions and graphing is expected but this course assumes no prior programming knowledge. (F, W, S)

25. Introduction to Digital Design (4)
This course emphasizes digital electronics. Principles introduced in lectures are used in laboratory assignments, which also serve to introduce experimental and design methods. Topics include Boolean algebra, combination and sequential logic, gates and their implementation in digital circuits. (Course material and/or program fees may apply.) Prerequisite: none. (F, W, S)

30. Introduction to Computer Engineering (4)
The fundamentals of both the hardware and software in a computer system. Topics include: representation of information, computer organization and design, assembly and microprogramming, and logic design in digital systems. (Students who have taken CSE 30 may not take ECE 30 for credit.) Prerequisites: ECE 15 and 25 with grades of C– or better. (F, S)

35. Introduction to Analog Design (4)
Fundamental circuit theory concepts, Kirchhoff’s voltage and current laws, Thévenin’s and Norton’s theorems, loop and node analysis, time-varying signals, transient first order circuits, steady-state sinusoidal response. (Course material and/or program fees may apply.) Prerequisites: Math. 20A–B; Math. 20C and Physics 28 must be taken concurrently. (F, W, S)

45. Circuits and Systems (4)
Introduction to linear and nonlinear components and circuits. Topics include: basic electronic devices, bipolar and FET transistors, and analog and digital circuits, and topics vary from quarter to quarter. Enrollment is limited to 15 to 20 students, with preference given to entering freshmen. Prerequisite: none. (F, W, S)

90. Undergraduate Seminar (1)
Students will be given an introduction to the engineering profession and our undergraduate program. Exercises and practicums will develop the problem-solving skills needed to succeed in engineering. Prerequisite: none. (F, W, S)

UPPER-DIVISION

100. Linear Electronic Systems (4)

102. Introduction to Active Circuit Design (4)
Design and stability of linear active circuits. Nonlinear models for diodes, bipolar and field-effect transistors. Design of analog transistor circuits, biasing, and small-signal transistor functions. Design of digital transistor circuits, logic levels, noise margins, and fanout. Circuit designs simulated by computer and tested in the laboratory. Prerequisites: ECE 65 and 101, with grades of C– or better. (F, W)

103. Fundamentals of Devices and Materials (4)
Introduction to semiconductor materials and devices. Semiconductor crystal structure, energy bands, doping, carrier statistics, drift and diffusion, p-n junctions, metal-semiconductor junctions. Bipolar junction transistor: current flow, amplification, switching, non-ideal behavior. Metal-oxide-semiconductor structures, MOSFETs, device scaling. Prerequisites: Phys. 2D or Phys. 4D and 4E with grades of C– or better. (F, W, S)

107. Electromagnetism (4)

108. Digital Circuits (4)
Digital integrated electronic circuits for processing technology. Analytical methods for static and dynamic characteristics. MOS field-effect transistors and bipolar junction transistors, circuit performance, data path, programmable logic arrays, memory elements. (Course material and/or program fees may apply.) Prerequisites: Math. 20A–B, 21C–D, 20F–E; Phys. 2A-D or 4A-E; ECE 25, 35, 45, and 65); ECE 30 or CSE 30; ECE 102 with grades of C– or better. (W, S)

109. Engineering Probability and Statistics (4)
Axioms of probability, conditional probability, theorem of total probability, random variables, density, expected values, characteristics functions, transformation of random variables, central limit theorem. Random number generation, engineering reliability, elements of estimation, random sampling, sampling distributions, tests for hypothesis, . Students who completed Math. 180A–B, Math. 183, Math. 186, Econ. 120A, or Econ. 120AH will not receive credit for ECE 109. Prerequisites: Math. 20A-B or 21C, 20D or 21D, 20F, with grades of C– or better. (ECE 101 recommended.) (W, S)

111. Advanced Digital Design Project (4)
Advanced topics in digital circuits and systems. Use of computers and design automation tools. Hazard elimination, synchronous/asynchronous FSM synthesis, synchronization and arbitration, physical design issues. Project sets and design exercises. A large-scale design project. Simulation and/or rapid prototyping. Prerequisite: ECE 108 or CSE 140 with grades of C– or better. (F, W, S)

118. Computer Interfacing (4)
Interfacing computers and embedded controllers to the real world: busses, interrupts, DMA, memory mapping, concurrency, digital I/O, standards for serial and parallel communications, A/D, D/A, sensors, signal conditioning, video, clock generators, and interprocess communication. (Course material and/or program fees may apply.) Prerequisites: ECE 30 or CSE 30 and ECE 60A-B or ECE 53A-B. (S)

120. Solar System Physics (4)
General introduction to planetary bodies, the overall structure of the solar system, and space plasma physics. Course emphasis will be on the solar atmosphere, how the solar wind is produced, and its interaction with both magnetized and unmagnetized planets (and comets). Prerequisites: Phys. 2A–C or 4A–D, Math. 20A–B, 20C or 21C with grades of C– or better. (S)

123. Antenna Systems Engineering (4)
The electromagnetic and systems engineering of radio antennas for terrestrial wireless and satellite communications. Antenna impedance, beam pattern, gain, and polarization. Dipoles, monopoles, paraboloids, phased arrays. Power and noise budgets for communication links. Atmospheric propagation and multipath. Prerequisite: ECE 107 with a grade of C– or better. (W or S)

134. Electronic Materials Science of Integrated Circuits (4)
Electronic materials science with emphasis on topics pertinent to microelectronics and VLSI technology. Concept of the course is to use components in integrated circuits to discuss structure, thermodynamics, reaction kinetics, and electrical properties of materials. Prerequisites: Phys. 2C–D with grades of C– or better. (S)

135A. Semiconductor Physics (4)
Crystal structure and quantum theory of solids; electronic band structure; review of carrier statistics, drift and diffusion, p-n junctions; nonequilibrium carriers, imfes, traps, recombination, etc; metal-semiconductor junctions and heterojunctions. Prerequisite: ECE 103 with a grade of C– or better. (F)

135B. Electronic Devices (4)
Structure and operation of bipolar junction transistors, junction field-effect transistors, metal-oxide-semiconductor diodes and transistors. Analysis of dc and ac characteristics. Charge control model of dynamic behavior. Prerequisite: ECE 135A with a grade of C– or better. (W)

136. Fundamentals of Semiconductor Device Fabrication (4)
Crystal growth, controlled diffusion, determination of junction position and impurity profiling, structure, oxide, silicon dioxide, oxidation, lithography, chemical vapor deposition, etching, process simulation and robust design for fabrication. Prerequisite: ECE 103 with a grade of C– or better. (S)

136L. Microelectronics Laboratory (4)
Laboratory fabrication of diodes and field effect transistors covering photolithography, oxidation, diffusion, thin film deposition, etching and evaluation of devices. (Course material and/or program fees may apply.) Prerequisite: ECE 103. (F, S)

138L. Microstructuring Processing Technology Laboratory (4)
A laboratory course covering the concept and practice of microstructuring science and technology in fabricating devices relevant to sensors, lab-chips and related devices. (Course material and/or program fees may apply.) Prerequisite: upper-division standing for science and engineering students. (W)

139. Semiconductor Device Design and Modeling (4)
Device physics of modern field effect transistors and bipolar transistors, including behavior of submicron structures. Relationship between structure and circuit models of transistors. CMOS and BiCMOS technologies. Emphasis on computer simulation of transistor operation and application in integrated circuits. Prerequisites: ECE 133A-B with grades of C– or better. (S)
153. Probability and Random Processes for Engineers (4)
Random processes. Stationary processes: correlation, power spectral density. Gaussian processes and linear transformation of Gaussian processes. Point processes. Random walk in continuous time. (F) Prerequisite: ECE 101 with a grade of C– or better. (F, S, W)

154A. Communications Systems I (4)
Study of analog modulation systems including AM, SSB, DSB, VSB, FM, and PM. Performance analysis of both coherent and noncoherent receivers, including threshold effects in FM. Prerequisite: ECE 101 and 153 with a grade of C– or better. (W)

154B. Communications Systems II (4)
Design and performance analysis of digital modulation techniques, including probability of error results for PSK, DPSK, and FSK. Introduction to effects of intersymbol interference and fading. Detection and estimation theory, including both linear and nonlinear methods. (Course material and/or program fees may apply.) Prerequisite: ECE 154A with a grade of C– or better. (W)

155A. Digital Recording Systems (4)
This course is reserved for students with modulation and coding techniques for digital recording channels. Prerequisites: ECE 109 and 153 with grades of C– or better and concurrent registration in ECE 154A required. Department stamp required. (F)

155B. Digital Recording Projects II (4)
Students registered in this course work one-on-one with a researcher on the design and evaluation of a digital recording system based upon material covered in ECE 155A. Prerequisites: ECE 155A with grade of C– or better. Concurrent registration in ECE 154B. Department stamp required. (W, S, W)

155C. Digital Recording Projects III (4)
Students registered in this course work one-on-one with a researcher on a project involving the design and evaluation of a digital recording system based upon material covered in ECE 155A. The project can be a continuation of a project initiated in Digital Recording Projects I or it can be an entirely new project. Prerequisites: ECE 155B with grade of C– or better. Concurrent registration in ECE 154C. Department stamp required. (W, S, W)

156. Sensor Networks (4)
Characteristics of chemical, biological, seismic, and other physical sensors; signal processing techniques supporting distributed detection of salient events; wireless communication and networking protocols supporting formation of robust sensor fabrics; current experience with low power, low cost sensor deployments. Undergraduate students must take a final exam; graduate students must write a term paper on an independent project. Cross-listed with MAE 149 and SIO 238. Prerequisite: upper-division standing and consent of instructor, or graduate student in science and engineering. (S)

157A. Communications Systems Laboratory I (4)
Experiments in the modulation and demodulation of baseband and passband signals. Statistical characterization of signals and impairments. (Course material and/or program fees may apply.) Prerequisite: ECE 154A with a grade of C– or better. (W)

157B. Communications Systems Laboratory II (4)
Advanced Projects in communication systems. Students will plan and implement design projects in the laboratory, updating progress weekly and making plan/design adjustments based upon feedback. (Course material and/or program fees may apply.) Prerequisite: ECE 154A with a grade of C– or better. (W)

158A. Data Networks I (4)
Layered network architectures, data link control protocols and multiple-access systems, performance analysis. Flow control; prevention of deadlock and throughput degradation. Routing, centralized and decentralized schemes, static dynamic algorithms. Shortest path and minimum average delay algorithms. Comparisons. Prerequisite: ECE 109 with a grade of C– or better. ECE 159A recommended. (W)

158B. Data Networks II (4)
Layered network architectures, data link control protocols and multiple-access systems, performance analysis. Flow control; prevention of deadlock and throughput degradation. Routing, centralized and decentralized schemes. Dynamic algorithms. Shortest path and minimum average delay algorithms. Comparisons. Prerequisite: ECE 158A with a grade of C– or better. (S)

159A. Queuing Systems: Fundamentals (4)
Analysis of single and multisever queuing systems; queue size and waiting times. Modeling of telephone systems, interactive computer systems and the machine repair problem. Prerequisite: ECE 109 with a grade of C– or better. (F)

159B. Queuing Systems: Computer Systems and Data Networks (4)
M/G/1 queuing systems. Computer systems applications: priority scheduling, time-sharing scheduling. Open and closed queuing networks; modeling and performance of interactive computer systems. Elements of computer-communication networks: stability and delay analysis, optimal design issues. Prerequisite: ECE 159A with a grade of C– or better. (W)

161A. Introduction to Digital Signal Processing (4)
Review of discrete-time systems and signals, Discrete-Time Fourier Transform and its properties, the Fast Fourier Transform, design of Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters, implementation of digital filters. (Course material and/or program fees may apply.) Prerequisite: ECE 101 with grades of C– or better. (F, S, W)

161B. Digital Signal Processing I (4)
Sampling and quantization of baseband signals; A/D and D/A conversion including the design and evaluation of a digital recording system based upon material covered in ECE 155A. Prerequisites: ECE 155A with grade of C– or better. Concurrent registration in ECE 154B. Department stamp required. (W, S, W)

162. Analog Integrated Circuit Design (4)
Design of linear and non-linear analog integrated circuits including operational amplifiers, voltage regulators, drivers, power stages, oscillators, and multipliers. Use of feedback and evaluation of noise performance. Parastic effects of interconnections and circuit components. Techniques of fabrication and testing of circuits. Prerequisite: ECE 102 with a grade of C– or better. ECE 163 recommended. (F)

165. Digital Integrated Circuit Design (4)
VLSI digital systems. Circuit characterization, performance estimation, and optimization. Circuits for alternative logic styles and clocking schemes. Subsystems include ALUs, memory, processor arrays, and PLAs. Techniques of fabrication and testing of circuits. Prerequisite: ECE 108 with a grade of C– or better. (S)

166. Microwave Systems and Circuits (4)
Waves, distributed circuits, and scattering matrix methods. Passive microwave elements. Impedance matching. Detection and frequency conversion using microwave diodes. Design of transistor amplifiers including noise performance. Circuits designs will be simulated by computer and tested in the laboratory. (Course material and/or program fees may apply.) Prerequisites: ECE 102 and 107 with grades of C– or better. (F)

171A. Linear Control System Theory (4)
Stability of continuous- and discrete-time single-input/single-output linear time-invariant control systems emphasizing frequency domain methods. Transient and steady-state behavior. Stability analysis of root locus, Bode, Nyquist, and Nichols plots. Compensator design. Prerequisite: ECE 608 or ECE 533–8 or MAE 140 with a grade of C– or better. (S)

171B. Linear Control System Theory (4)
Time-domain, state-variable formulation of the control problem for both discrete-time and continuous-time linear systems. State-space realizations from transfer function system description. Internal and input-output stability, controllability/observability, minimal realizations, and pole-placement by full-state feedback. Prerequisite: ECE 151A with a grade of C– or better. (F)

172A. Introduction to Intelligent Systems: Robotics and Machine Intelligence (4)
This course will introduce basic concepts in machine perception. Topics covered will include edge detection, segmentation, texture analysis, image registration, and object description. Prerequisite: ECE 101 with grade of C– or better. ECE 109 recommended. (F)

174. Introduction to Linear and Nonlinear Optimization with Applications (4)
The linear least squares problem, including constrained and unconstrained quadratic optimization and the relationship to the geometry of linear transformations. Introduction to nonlinear optimization. Applications to signal processing, system identification, robotics, and circuit design. Prerequisite: Math. 20F with a grade of C– or better. (S)

175. Elements of Machine Intelligence: Pattern Recognition and Machine Learning (4)

181. Physical Optics and Fourier Optics (4)
Ray optics, wave optics, beam optics, Fourier optics, and electromagnetic optics. Ray transfer matrix, matrices of canonical optics, microlens arrays, graded index fibers. Fresnel and Fraunhofer diffractions, interference of waves. Gaussian and Bessel beams, the ABCD law for transmissions through arbitrary optical systems. Spatial frequency, impulsive response and transfer function of optical systems. Fourier transform and imaging properties of lenses, holoogaphy. Wave propagation in various (inhomogeneous, dispersive, anisotropic or non- linear) media. (Course material and/or program fees may
182. Electromagnetic Optics, Guided-Wave, and Fiber Optics (4)
Photonics: optical crystals, birefringence, Guided-wave optics: modes, losses, dispersion, coupling, switching. Fiber optics: step and graded index, single and multimode operation, transmission, dispersion, fiber and acoustooptics, resonator optics. (Course material and/or program fees may apply.) Prerequisites: ECE 103 and 107 with grades of C– or better. (F)

183. Optical Electronics (4)
Quantum electronics, interaction of light and matter in atomic systems, semiconductors, laser amplifiers and laser systems. Prerequisites: Electromagnetics, fiber and acoustooptics, photonic switching. Fiber optic communication systems. Labs: semiconductor lasers, semiconductor photodetectors. (Course material and/or program fees may apply.) Prerequisites: ECE 103 and 107 with grades of C– or better. (W)

184. Optical Information Processing and Holography (4)
(Conjoined with ECE 241AL) Labs: optical holography, photorefractive effect, spatial filtering, computer generated holography. Students enrolled in ECE 184 will receive four units of credit; students enrolled in ECE 241AL will receive two units of credit. (Course material and/or program fees may apply.) Prerequisite: ECE 182 with a grade of C– or better. (W)

185. Lasers and Modulators (4)
(Conjoined with ECE 241BL) Labs: CO2 laser, HeNe laser, electrooptic modulation, acoustooptic modulation, spatial light modulators. Students enrolled in ECE 185 will receive four units of credit; students enrolled in ECE 241BL will receive two units of credit. (Course material and/or program fees may apply.) Prerequisite: ECE 183 with a grade of C– or better. (S)

186L. Optical Information Systems (4)
Lab covers concepts in optical data systems including free-space communications, remote sensing and wavelength-multiplexed optical fiber transmission. (Course material and/or program fees may apply.) Prerequisites: ECE 181 and 182 or 183 with grades of C– or better, or consent of instructor.

187. Introduction to Biomedical Imaging and Sensing (4)
Image processing fundamentals: imaging theory, image processing, pattern recognition; digital radiography, computerized tomography, nuclear medicine imaging, magnetic resonance imaging, ultrasound imaging, microscopy imaging. Prerequisite: Math. 20A-B-F, 20C or 21C, 20D or 21D. Math. 2A-D, ECE 101 may be taken concurrently with grades of C– or better. (F)

190. Engineering Design (4)
Students complete a project comprising at least 50 percent or more engineering design to satisfy the following features: student creativity, open-ended formulation of a problem statement/ specifications, consideration of alternative solutions/realistic constraints. Written final report required. Prerequisites: students enrolling in this course must have completed all of the breadth courses and one depth course. A one-depth course credit equivalent is required to enroll in ECE 190. (Specifications and enrollment forms are available in the undergraduate office.)

191. Engineering Group Design Project (4)
Groups of students work to design, build, demonstrate, and document an engineering project. All students give weekly progress reports of their tasks and contribute a section to the final project report. Prerequisites: completion of all of the breadth courses and one depth course. (F/W/S)

192. Senior Seminar (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small setting to explore an intellectual topic in ECE (at the upper-division level). Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. ECE 192 is no longer valid for ECE design credit, students should take ECE 190 instead. Prerequisites: department stamp and/or consent of instructor.

193H. Honors Project (4–8)
An advanced reading or research project performed under the direction of an ECE faculty member. Must contain enough design to satisfy the ECE program’s four-unit design requirement. Must be taken for a letter grade. May extend over two quarters. A grade assigned at completion for both quarters. Prerequisite: admission to the ECE departmental honors program.

195. Teaching (2 or 4)
Teaching and tutorial activities associated with courses and seminars. Not more than four units of ECE 195 may be used for satisfying graduation requirements. (P/NO grades only.) Prerequisite: consent of the department chair.

197. Field Study in Electrical and Computer Engineering (4, 8, 12, or 16)
Directed study and research at laboratories and observatories away from the campus. (P/NO grades only.) Prerequisites: consent of instructor and approval of the department.

199. Directed Group Study (2 or 4)
Topics in electrical and computer engineering whose study involves reading and discussion by a small group of students under direction of a faculty member. (P/NO grades only.) Prerequisite: consent of instructor.

199. Independent Study for Undergraduates (2 or 4)
Independent reading or research by special arrangement with a faculty member. (P/NO grades only.) Prerequisite: consent of instructor.

GRADUATE

200. Research Conference (2)
Group discussion of research activities and progress of group members. (Consent of instructor is strongly recommended.) (S/odd years) Prerequisite: graduate standing. (F/W/S)

212A. Principles of Nanoscience and Nanotechnology (4)
Introduction to and rigorous treatment of electronic, photonic, magnetic, and mechanical properties of materials at the nanoscale. Concepts from mathematical physics, quantum mechanics, quantum optics, and electromagnetism will be introduced as appropriate. Students may not receive credit for both ECE 212A and ECE 212AN. Prerequisite: graduate standing. (F)

212BN. Nanoelectronics (4)
Quantum states and quantum transport of electrons; nanostructures, carbon nanotubes, quantum dots, and photonic devices. Introduction to molecular and electronic organic. Students may not receive credit for both ECE 212BN and ECE 212CN. Prerequisites: ECE 212AN and graduate standing. (W)

212CN. Nanophotonics (4)
Photonic properties of artificially engineered homogeneous and nanoscale composite materials incorporating dielectrics, semiconductors, and/or metals. Near-field localization effects and applications. Device and component applications. Students may not receive credit for both ECE 212CN and 212B. Prerequisites: ECE 212BN; graduate standing. (W)

222A. Antennas and Their System Applications (4)
Antennas, waves, polarization. Friis transmission and Radar equations, dipole, loops, slots, ground planes, traveling wave antennas, array theory, phased arrays, impedance, frequency independent antennas, microstrip antennas, cellular antenna system, system level implications such as MIMO, multi-beam and phased array systems. (Recommended prerequisite: ECE 107 or equivalent undergraduate course in electromagnetics.) Prerequisite: graduate standing. (F)

222B. Applied Electromagnetic Theory—Electromagnetics (4)
Graduate-level introductory course on electromagnetic theory with applications. Topics covered include Maxwell’s equations, plane waves in free space and in the presence of interfaces, polarization, fields in metallic and dielectric waveguides including surface waves; fields in metallic cavities, Green's functions, electromagnetic field radiation and scattering. Prerequisites: ECE 222A; graduate standing. (W)

222C. Applied Electromagnetic Theory—Computational Methods for Electromagnetics (4)
Computing and numerical techniques, numerical analysis of electromagnetic fields, including the finite difference time domain (FDTD) method, finite difference frequency domain (FDFD) method, method of moments (MOM), and finite element method (FEM). Practice in writing numerical codes. Review of commercial electromagnetic simulators. Prerequisites: ECE 222B; graduate standing. (S/even years)

222D. Advanced Antenna Design (4)
Review of 222A–B. Fourier transform, waveguide antennas. Mutual coupling, active impedance, Floquet modes in arrays. Microstrip antennas, surface waves. Reflector and lens analysis: taper, spillover, aperture and physical optics methods. Impedance surfaces. Advanced concepts: Sub-wavelength propagation, etc. (chosen by instructor). (Recommended prerequisite(s): ECE 222A, ECE 222B, or equivalent.) Prerequisites: ECE 222C; graduate standing. (S/odd years)

230A. Solid State Electronics I (4)
This course is designed to provide a general background in solid state electronic materials and devices. Course content emphasizes the fundamental and current issues of semiconductor physics related to the ECE solid state electronics sequences. (Recommended prerequisite: ECE 139 or equivalent.) Prerequisite: graduate standing. (F)

230B. Solid State Electronics II (4)
Physics of solid-state electronic devices, including p-n diodes, Schottky diodes, field-effect transistors, bipolar transistors, pn junctions. Computer simulation of devices, scaling characteristics, high frequency performance, and circuit models. Prerequisites: ECE 230A; graduate standing. (W)

230C. Solid State Electronics III (4)
This course is designed to provide a treatise on semiconductor devices based on solid state phenomena. Band structures, carrier scattering and recombination processes and their influence on transport properties will be emphasized. (Recommended prerequisite: ECE 230A or equivalent.) Prerequisites: ECE 230B; graduate standing. (S)

235. Nanometer-Scale VLSI Devices (4)
This course covers modern research topics in sub-100 nm scale, state-of-the-art silicon VLSI devices. Starting with the fundamentals of CMOS scaling to nanometer dimensions, various device and circuit concepts, including RF CMOS, low power CMOS, silicon memory, silicon-on-insulator, SiGe bipolar, strained silicon MOSFETs, etc. will be taught. The physics of nearballistic transport in an ultimately scaled 10 nm MOSFET will be discussed in light of the recently developed scattering theory. Prerequisite: graduate standing. (F)

236A. III-V Compound Semiconductor Materials (4)
This course covers the growth, characterization, and heterojunction properties of III-V compound semiconductors and group IV heterostructures for the subsequent courses on electronic and photonic device applications. Topics include epitaxial growth technology, heterojunctions, transport and optical properties of quantum wells and superlattices. (Recommended prerequisite: ECE 230A-B-C) Prerequisite: graduate standing. (W)

236B. Optical Processes in Semiconductors (4)
Absorption and emission of radiation in semiconductors. Radiative transition and nonradiative recombination. Laser, microwave, and photodetector devices will be discussed. (Recommended prerequisite: ECE 230A and ECE 230C or equivalent.) Prerequisites: ECE 236A; graduate standing. (S)

236C. Heterojunction Field Effect Transistors (4)
Device physics and applications of isotope and anisotope heterojunctions and quantum wells, including band-edge discontinuities, band bending and space charge layers at heterojunction interfaces, charge transport normal and parallel to such interfaces, two-dimensional electron
gas structures, modulation doping, heterojunction and insulated gate field effect transistors. Prerequisites: ECE 236B; graduate standing. (S, alternating years)

236D. Heterojunction Bipolar Transistors (4)
Current flow and charge storage in bipolar transistors. Use of heterojunctions to improve bipolar structures. Transient electron velocity overshoot; Simulation of device characteristics. Bipolar models of HBTs. Requirements for high-speed circuit applications. Elements of bipolar process technology, with emphasis on III-V materials. Prerequisites: ECE 236C; graduate standing. (F, alternating years)

238A. Thermodynamics of Solids (4)
The thermodynamics and statistical mechanics of solids. Basic concepts, equilibrium properties of alloy systems, thermodynamic information from phase diagrams, surfaces and interfaces, crystalline defects. Multiple listed with Materials Science 201A. Prerequisite: consent of instructor. (F)

238B. Solid State Diffusion and Reaction Kinetics (4)
Thermally activated processes. Boltzman factor, homogeneous and heterogeneous reactions, solid state diffusion, Fick’s law, diffusion mechanisms, Kirkendall effects, Boltzmann-Manato analysis, high diffusivity paths. Multiple listed with Materials Science 201B. Prerequisite: ECE 238A. (W)

240A. Lasers and Optics (4)
Fresnel and Fraunhofer diffraction theory. Optical resonators, interferometry, Gaussian beam propagation and transformation. Laser oscillation and amplification, Q-switching and mode locking of lasers, some specific laser systems. (Recommended prerequisites: ECE 107 and ECE 182 or equivalent, introductory quantum mechanics or ECE 183.) Prerequisite: graduate standing. (F)

240B. Optical Information Processing (4)
Space-bandwidth product, superresolution, space-variant optical system, partial coherence, image processing with coherent and incoherent light, processing with feedback, real-time light modulators for hybrid processing, nonlinear processing. Optical computing and other applications. (Recommended prerequisite: ECE 182 or equivalent.) Prerequisites: ECE 240A; graduate standing. (W)

240C. Optical Modulation and Detection (4)
Propagation of waves and rays in anisotropic media. Electro-optical switching and modulation. Acoustooptical deflection and modulation. Detection theory. Heterodyne detection, incoherent and coherent detection. (Recommended prerequisites: ECE 181, ECE 183 or equivalent.) Prerequisites: ECE 240B; graduate standing. (S)

241A. Nonlinear Optics (4)
Second harmonic generation (color conversion), parametric amplification and oscillation, photorefractive effects and four-wave mixing, optical bistability; applications. (Recommended prerequisites: ECE 240A-C, C) Prerequisite: graduate standing. (F)

241B. Optical Devices for Computing (4)
Application of electro-optic, magneto-optic, acousto-optic, and electro-absorption effects to the design of photonic devices with emphasis on spatial light modulation and optical storage techniques. (Recommended prerequisites: ECE 240A-C) Prerequisites: ECE 241A; graduate standing. (F)

241C. Holographic Optical Elements (4)
Fresnel, Fraunhofer, and Fourier holography. Analysis of thin and volume holograms, reflection and transmission holograms, color and polarization holograms. Optically recorded and computer-generated holography. Applications to interferometry, optical interconnections, 2-D and 3-D display, pattern recognition, and image processing. (Recommended prerequisite: ECE 182 or equivalent.) Prerequisites: ECE 241B; graduate standing. (W)

243B. Optical Fiber Communication (4)
Optical fibers, waveguides, laser communication system, modulation and demodulation; detection processes and communication systems. (Recommended prerequisites: ECE 240A-B-C or equivalent.) Prerequisites: ECE 243A; graduate standing. (W)

244A. Statistical Optics (4)
Introduction to statistical phenomena in optics including first order properties of light waves generated from various sources. Coherence of optical waves, high-order coherence. Partial coherence and its effects on imaging systems. Imaging in presence of randomly inhomogeneous medium. Limits in photoelectric detection of light. (Recommended prerequisites: ECE 240A–B) Prerequisite: graduate standing. (F)

244B. Quantum Electronics of Femtosecond Optical Pulses (4)

247A. Advanced BioPhotonics (4)
Basic physics and chemistry for the interaction of photons with matter, including both biological and synthetic materials; use of photonic radiation pressure for manipulation of objects and materials; advanced optopolar detection systems, devices and methods, including time resolved fluorescent and chemiluminescent methods, fluorescent energy transfer (FRET) techniques, quantum dots, and near-field optical techniques; underlying mechanisms of the light sensitive systems including chloroplasts for photosynthetic energy conversion and the basis of vision processes. Cross-listed with BEN 247A. Prerequisite: graduate standing. (F)

247B. BioElectronics (4)
Topics to be covered will include photolithographic techniques for high-density DNA microarray production, incorporation of CMOS control into electronic DNA microarrays, direct electronic detection technology used in microarrays and biosensor devices, and focus on problems related to making highly integrated devices (lab-on-a-chip, in-vivo biosensors, etc.) from heterogeneous materials and components. Cross-listed with BEN 247G. Prerequisite: graduate standing. (W)

250. Random Processes (4)

251A. Digital Signal Processing I (4)
Discrete random signals, statistical signal processing (FFT based) spectral estimation. Coherence and transfer function estimation; model-based spectral estimation; linear prediction and AR modeling. Levinson-Durbin algorithm and lattice filters; linear prediction covariance estimate. Cross-listed with SIO 207B. SIO 207A is intended for graduate students who have not had an undergraduate course in DSP. (Recommended prerequisites: ECE 153 in addition to either ECE 161 or SIO 207A or equivalent background.) Prerequisite: graduate standing. (W)

251B. Digital Signal Processing II (4)
Adaptive filters; minimization of innovation errors for recursive least squares and gradient algorithms, convergence and tracking analysis of LMD, RLS, and Kalman filtering algorithms, comparative performance of Weiner and adaptive filters, transversal and lattice filter implementations, performance analysis for equalization, noise cancelling, and linear prediction applications. Cross-listed with SIO 207C. (Recommended prerequisite: ECE 251A or ECE 251AN) Prerequisites: graduate standing; ECE 251A (or ECE 251B); SIO 207B (or SIO 207C). (S)

251C. Filter Banks and Wavelets (4)
Fundamentals of multirate systems (Noile Identities, Polyphase representation, quadrature mirror filters). Bank of filters, QMF filters for 2-channels, M-channel perfect reconstruction systems, Paraurary perfect reconstruction filter banks, the wavelet transform (Multiresolution, discrete wavelet transform, filter banks and wavelet). (Recommended prerequisite: ECE 161 or equivalent.) Prerequisites: ECE 251B; graduate standing.

251D. Array Processing (4)
The coherent processing of data collected from sensors distributed in space for signal enhancement and noise rejection purposes or wavefield directionality estimation. Conventional and adaptive beamforming. Matched field processing. Sparse array design and processing techniques. Applications to acoustics, geophysics, and electromagnetics. Cross-listed with SIO 207D. (Recommended prerequisite: ECE 251A or ECE 251AN) Prerequisites: graduate standing; ECE 251C (for ECE 251D); SIO 207C (for SIO 207D). (F)

252A. Speech Compression (4)
Speech signals, production and perception, compression theory, high rate compression using waveform coding (PCM, DPCM, ADPCM, . . .), DSP tools for low rate coding, LPC vocoders, sinusoidal transform coding, multi-band coding, maximum rate coding using code excited linear prediction (CELP). (Recommended prerequisite: ECE 161A) Prerequisite: graduate standing. (W)

252B. Speech Recognition (4)
Signal analysis methods for recognition, dynamic time warping, isolated word recognition, hidden markov models, connected word, and continuous speech recognition. Prerequisites: ECE 252A; graduate standing. (S)

Image quantization and sampling, image transforms, image enhancement, image compression. (Recommended prerequisites: ECE 109, 153, ECE 161, ECE 161A) (W)

254. Detection Theory (4)
Hypothesis testing, detection of signals in white and colored Gaussian noise; estimation of signal parameters, maximum-likelihood detection; resolution of signals; detection and estimation of stochastic signals; applications to radar, sonar, and communications. (Recommended prerequisite: ECE 153) Prerequisite: graduate standing. (F)

255AN. Information Theory (4)
Introduction to basic concepts, source coding theorems, capacity, noisy-channel coding theorem. Prerequisite: ECE 154A-B-C or consent of instructor. (F)

255BN. Source Coding I (4)
Theory and practice of lossy source coding, vector quantization, predictive and differential encoding, universal coding, source-channel coding, asymptotic theory, speech and image applications. Prerequisites: ECE 250 and 259A or 259AN, or consent of instructor. (W)

256A–B. Time Series Analysis and Applications (4–4) Stationary processes; spectral representation; linear transformation. Recursive and nonrecursive prediction and filtering; Wiener-Hopf and Kalman-Bucy filters. Series expansions and applications. Time series analysis; probability density, covariance and spectral estimation. Inference from sampled data, sampling theorems; equally spaced and non-equally spaced data, applications to detection and estimation problem. Prerequisites: ECE 153. (F, W)

257A. Multilayer Communication Systems (4)
Congestion control, convex programming and dual controller, fair end-end rate allocation, max-min fair vs. proportional fairness. Markov Chains and recurrence, Lyapunov Foster theorem; buffer occupancy, stable (back-pressure) routing versus minimum delay routing versus shortest path routing. Prerequisite: graduate standing. (W)
257B. Principles of Wireless Networks (4)
This course will focus on the principles, architectures, and analytical methodologies for design of multi-user wireless networks. Topics to be covered include cellular approaches, call processing, digital modulation, MIMO technology, stochastic and networked ad-hoc networks, and wireless packet access. (Recommended prerequisites: ECE 159A and 154B, or equivalent.) Prerequisites: ECE 257A; graduate standing. (S)

257C. Stochastic Wireless Networks Models (4)
Elements of spatial point processes. Spatial stochastic models of wireless networks. Topological structure, interference, stochastic dependencies. Elements of network information theory/statistical physics models of information flow. Role of signal propagation/random fading models. Decentralized operation, route discovery, architecture, and design. (Recommended prerequisite: previous exposure to stochastic processes and information theory.) Prerequisites: ECE 257A–B. (S)

258A–B. Digital Communication (4-4)
Digital communication theory including performance of various modulation techniques, effects of inter-symbol interference, adaptive equalization, spread spectrum communication. Prerequisites: ECE 154A–B-C and ECE 254 or consent of instructor. (W,S)

259A. Algebraic Coding (4)
Fundamentals of block codes, introduction to groups, rings and finite fields, nonbinary codes, cyclic codes such as BCH and RS codes, decoding algorithms, applications. Students who have previous dynamic systems may not receive credit for ECE 259A. Prerequisite: graduate standing. (W)

259B. Probabilistic Coding (4)
Convolutional codes, maximum-likelihood (ML) decoding, maximum a-posteriori (MAP) decoding, parallel and serial concatenation architectures, turbo codes, repeat-accumulate (RA) codes, the turbo principle, turbo decoding, graph-based codes, message-passing decoding, low-density parity check codes, threshold analysis, applications. Students who have taken ECE 259BN may not receive credit for ECE 259B. (Recommended prerequisites: ECE 154A–B-C.) Prerequisites: ECE 259A or 259AN; graduate standing. (W)

259C. Advanced Topics in Coding (4)
Advanced topics in coding theory. Course contents vary by instructor. Example course topics: Coded-modulation for bandwidth-efficient data transmission; advanced algebraic and combinatorial coding theory; space-time coding for wireless coding; circuit coding. (Constrained coding for digital recording. Students who have taken ECE 259BN may not receive credit for ECE 259C. Prerequisites: ECE 259A–B or 259AN–B; graduate standing. (S)

260A. VLSI Digital System Algorithms and Architectures (4)
Custom and semi-custom VLSI design from both the circuit and system designers' perspective. Energy limitations/random failures. Elements of VLSI design. Energy considerations, testability, robustness, test circuitry, and performance estimation. MOS logic design will be emphasized. Computer-aided design (CAD) tools for transistor level simulation, layout and verification will be introduced. (Recommended prerequisites: undergraduate-level semiconductor electronics and digital system design, ECE 165 or equivalent.) Prerequisite: graduate standing. (F)

260B. VLSI Integrated Circuits and Systems Design (4)
VLSI implementation methodology across block, circuit, and layout levels of abstraction. Circuit building blocks including embedded memory and clock distribution. Computer-aided design (synthesis, place-and-route, verification) and performance analyses, and small-group block implementation projects spanning RTL to tape-out using leading-edge EDA tools. (Recommended prerequisite: ECE 165.) Prerequisites: ECE 260A; graduate standing. (W)

260C. VLSI Advanced Topics (4)
Advanced computer design practices and methodologies for modern system-on-chip design. Different design alternatives are introduced and analyzed. Advanced design tools are used to design a hardware-software system. Case discussion, participation, and presentations of projects and special topics assignments are emphasized. Prerequisites: ECE 260B; graduate standing. (S)

264A. CMOS Analog Integrated Circuits and Systems I (4)
Frequency response of the basic CMOS gain stage and current mirror configurations. Advanced feedback and stability analysis; compensation techniques. High-Performance CMOS operational amplifiers: feedback, noise, distortion. (Recommended prerequisites: ECE 164 and ECE 153, or equivalent courses.) Prerequisite: graduate standing. (W)

264B. CMOS Analog Integrated Circuits and Systems II (4)
Non-ideal effects and their mitigation in high-performance operational amplifiers. Switched-capacitor circuit techniques: CMOS circuit topologies, analysis and mitigation of non-ideal effects, and filter synthesis. Overview of CMOS samplers, data converters, and PLLs. (Recommended prerequisites: ECE 251A or ECE 251AN.) Prerequisites: ECE 264A; graduate standing. (S)

264C. CMOS Analog Integrated Circuits and Systems III (4)
Integrated CMOS analog/digital systems: Analog to digital and digital to analog converters, Nyquist versus oversampling, linearity, jitter, randomization, calibration, speed versus resolution, pipeline, folding, interpolation, averaging. (Recommended prerequisites: ECE 163 and 164.) Prerequisites: ECE 264B; graduate standing. (W)

264D. CMOS Analog Integrated Circuits and Systems IV (4)
PLL: Phase noise effect, VCO, phase detector, charge pump, integer/fractional-N frequency synthesizer, clock and data recovery, decision feedback, Filter: Continuous-time filter, I–Q complex filter, raised-cosine, Gaussian, delay, zero equalizers. (Recommended prerequisites: ECE 163 and 164.) Prerequisites: ECE 264C; graduate standing (W)

265A. Communication Circuit Design I (4)
Introduction to noise and linearity concepts. System budgeting for optimising tradeoffs. Linear circuits and signal processing. Linear circuit design, linearity analysis techniques. Down-conversion and up-conversion techniques. Modulation and demodulation. Microwave and RF system design communications. Current research topics in the field. Prerequisite: ECE 166 or consent of instructor. (W)

265B. Communication Circuit Design II (4)
Radio frequency integrated circuits: low-noise amplifiers, AGC, mixers, filters, voltage-controlled oscillators, BJT and CMOS technologies for radio frequency and microwave applications. Device modeling for radio frequency applications. Design and device-level circuits for linearity, noise, power dissipation, and dynamic range. Current research topics in the field. Prerequisites: ECE 166 and ECE 265A or consent of instructor. (S)

265C. Power Amplifiers for Wireless Communications (4)
Design of power amplifiers for mobile terminals and base-stations, with emphasis on high linearity and efficiency. After a discussion of classical designs (Class A, AB, B, C, D, E, F, and S), linearization procedures are presented and composite architectures (envelope tracking, EER, and Doherty) are covered. Familiarity with basic microwave design and circuit theory is assumed. (Recommended prerequisite: ECE 166.) Prerequisites: ECE 265A and B; consent of instructor. (F)

267. Wireless Embedded and Networked Systems (4)
Study of wireless networked systems from a system design perspective, covering the protocol stack from physical to network layer with a focus on energy topics. Topics include digital communications, networking, and programming, and a basic knowledge of these is recommended. Prerequisite: graduate standing. (F)

270A–B–C. Neurocomputing (4–4–4)
Neurocomputing is the study of biological information processing from an artificial intelligence engineering perspective. This three-quarter sequence covers neural network structures for arbitrary object (perceptual, motor, thought process, abstraction, etc.) representation, learning of pairwise object attribute descriptor antecedent support relationships, the general mechanism of thought, and situationally responsive generation of movements and thoughts. Experimental homework assignments strongly reinforce the fundamental concepts and provide exercise with myriad associated technical issues. (Recommended prerequisite: previous exposure to stochastic processes and information theory.) Prerequisites: ECE 270A; graduate standing. (W)

271A. Statistical Learning I (4)
Bayesian decision theory; parameter estimation; maximum likelihood; the bias-variance trade-off; Bayesian estimation; the predictive distribution; conjugate and noninformative priors; dimensionality and dimensionality reduction; principal component analysis; Fisher's linear discriminant analysis; density estimation; parametric vs. kernel-based methods; expectation-maximization; applications. (Recommended prerequisite: ECE 109.) Prerequisites: graduate standing. (W)

271B. Statistical Learning II (4)
Linear discriminants; the Perceptron; the margin and large margin classifiers; learning theory; empirical vs. structural risk minimization; the VC dimension; kernel functions; reproducing kernel Hilbert spaces; regularization theory; Lagrangian optimization; duality theory; the support vector machine; boosting; Gaussian processes; applications. (Recommended prerequisite: ECE 109.) Prerequisites: ECE 271A; graduate standing. (W)

272A. Stochastic Processes in Dynamic Systems (4)
Stochastic processes, focusing on detailed discussion of discrete-time Markov chains. Develop the relationship between dynamic systems and uncertainty, introducing ergodicity, diffusion, estimation, and detection. Extend to continuous-time Markov chains and optimization of stochastic dynamic systems. (Recommended prerequisite: ECE 250.) Prerequisites: graduate standing. (W)

273. Convex Optimization and Applications (4)
This course covers some convex optimization theory and algorithms. It will mainly focus on recognizing and formulating convex problems, duality, and applications in a variety of fields (system design, pattern recognition, combinatorial optimization, financial engineering, etc.). (Recommended prerequisite: basic linear algebra.) (F)

275A. Parameter Estimation I (4)
Linear least squares (batch, recursive, total, sparse, pseudo-inverse, QR, SVD); Statistical figures of merit (bias, consistency, Cramer-Rao lower-bound, efficiency); Maximum likelihood estimation (MLE); Sufficient statistics; Algorithms for computing the MLE including the expectation maximization (EM) algorithm. The problem of missing information; the problem of outliers. (Recommended prerequisites: ECE 109 and ECE 153.) Prerequisites: graduate standing. (W)

275B. Parameter Estimation II (4)
The Bayesian statistical framework; Parameter and state estimation of Hidden Markov Models, including Kalman Filtering and the Viterbi and Baum-Welch algorithms. A solid foundation is provided for follow-up courses in Bayesian machine learning theory. (Recommended prerequisite: ECE 153.) Prerequisites: ECE 275A; graduate standing. (W)

280. Special Topics in Electronic Devices and Materials/Applied Physics (4)
A course to be given at the discretion of the faculty at which topics of interest in electronic devices and materials or applied physics will be presented by visiting or resident faculty members. Subject matter will not be repeated, may earn for credit more than once. Prerequisite: graduate standing. (W)

281. Special Topics in Nanoscience/ Nanotechnology (4)
A course to be given at the discretion of the faculty at which topics of interest in nanoscience and nanotechnology will be presented by visiting or resident faculty members. Subject matter will not be repeated, may earn for credit more than once. Prerequisite: graduate standing. (W)

282. Special Topics in Photonics/Appplied Optics (4)
A course to be given at the discretion of the faculty at which topics of interest in photonics, optoelectronic materials, devices, systems, and applications will be presented by
visiting or resident faculty members. Subject matter will not be repeated, may be taken for credit more than once. **Prerequisite:** graduate standing.

283. Special Topics in Electronic Circuits and Systems (4)
A course to be given at the discretion of the faculty at which topics of interest in electronic circuits and systems will be presented by visiting or resident faculty members. Subject matter will not be repeated, may be taken for credit more than once. **Prerequisite:** graduate standing.

284. Special Topics in Computer Engineering (4)
A course to be given at the discretion of the faculty at which topics of interest in computer engineering will be presented by visiting or resident faculty members. Subject matter will not be repeated, may be taken for credit more than once. **Prerequisite:** graduate standing.

A course to be given at the discretion of the faculty at which topics of interest in signal and image processing or robotics and control systems will be presented by visiting or resident faculty members. Subject matter will not be repeated, may be taken for credit more than once. **Prerequisite:** graduate standing.

286. State-of-the-Art Topics in Computational Statistics and Machine Learning (4)
Class discusses both fundamental and state-of-the-art research topics in computational statistics and machine learning. Topics vary based upon current research, and have included: non-parametric Bayesian models; sampling methods for inference in graphical models; Markov Chain Monte Carlo (MCMC) methods. **Prerequisite:** graduate standing.

287. Special Topics in Communication Theory and Systems (4)
A course to be given at the discretion of the faculty at which topics of interest in information science will be presented by visiting or resident faculty members. It will not be repeated so it may be taken for credit more than once. **Prerequisite:** graduate standing.

288. Independent Study (1–16)
Open to properly qualified graduate students who wish to pursue a problem through advanced study under the direction of a member of the staff. (S/U grades only.) **Prerequisite:** consent of instructor.

290. Graduate Seminar on Current ECE Research (2)
Weekly discussion of current research conducted in the Department of Electrical and Computer Engineering by the faculty members involved in the research projects. (S/U grade only.) **Prerequisite:** graduate standing.

291. Industry Sponsored Engineering Design Project (4)
Design, build, and demonstrate an engineering project by groups. All students give weekly progress reports on tasks and write final report, with individual exams and presentations. Projects/sponsorships originate from the needs of local industry. May count toward M.Eng. degree. (Recommended prerequisites: ECE 230 or ECE 240 or ECE 251 or ECE 253 or ECE 258 or equivalent.) **Prerequisite:** graduate standing.

292. Graduate Seminar in Electronic Circuits and Systems (2)
Research topics in electronic circuits and systems. **Prerequisite:** graduate standing.

293. Graduate Seminar in Communication Theory and Systems (2)
Weekly discussion of current research literature.

294. Graduate Seminar in Electronic Devices and Materials/Applied Physics (2)
Research topics in electronic devices and materials or applied solid state physics and quantum electronics.

295R. Graduate Seminar in Signal and Image Processing/Robotics and Control Systems (2)
Weekly discussion of research topics in signal and image processing of robotics and control systems. **Prerequisite:** graduate standing.

296. Graduate Seminar in Photonics/ Applied Optics (2)
Research topics of current interest in photonics and applied optics, including imaging, photonic communications, sensing, energy and signal processing. **Prerequisite:** graduate standing.

298. Independent Study (1–16)
Open to properly qualified graduate students who wish to pursue a problem through advanced study under the direction of a member of the staff. (S/U grades only.) **Prerequisite:** consent of instructor.

299. Research (1–16)
(S/U grade only.)

501. Teaching (1–4)
Teaching and tutorial activities associated with courses and seminars. Number of units for credit depends on number of hours devoted to class or section assistance. (S/U grade only.) **Prerequisite:** consent of department chair.
Mechanical and Aerospace Engineering (MAE)

PROFESSORS
F. Beg, Ph.D.
T. Bewley, Ph.D.
R. Bitmead, Ph.D., Cymer Corporation Endowed Chair
R. J. Cattolica, Ph.D.
C. H. Gibson, Ph.D.
S. Gille, Ph.D.
J. D. Goddard, Ph.D.
A. Hoger, Ph.D.
S. Jin, Ph.D., Director, Materials Science Program,
Kazuo Iwama Endowed Chair
J. Kosmatka, Ph.D., Calloway Golf Endowed Chair
S. Krasheninnikov, Ph.D.
M. Krstic, Ph.D.
R. Lal, Ph.D.
J. Lascheras, Ph.D.
P. F. Linden, Ph.D., Blasker Chair in Environmental Engineering
S. G. Llewellyn Smith, Ph.D.
X. Markencoff, Ph.D.
W. M. McEnaney, Ph.D.
J. M. McKitttrick, Ph.D.
M. A. Meyers, Ph.D.
H. Murakami, Ph.D.
S. Nemat-Nasser, Ph.D., Director, Center of Excellence for Advanced Materials
V. Nesterenko, Ph.D.
K. Nomura, Ph.D.
S. Sarkar, Ph.D.
K. Seshadri, Ph.D.
F. E. Talke, Ph.D., CMRR Endowed Chair
D. Tartakovsky, Ph.D.
G. Tynan, Ph.D.
F. A. Williams, Ph.D.

PROFESSORS EMERITI
H. Bradner, Ph.D.
R. W. Conn, Ph.D.
P. A. Libby, Ph.D.
S.-C. Lin, Ph.D.
S. Middleman, Ph.D.
John W. Miles, Ph.D.
D. R. Miller, Ph.D.
D. B. Olfe, Ph.D.
S. S. Penner, Ph.D.
C. Pozrikidis, Ph.D.
A. M. Schneider, Sc.D.
R.E. Skelton, Ph.D.
H. W. Sorenson, Ph.D.

ASSOCIATE PROFESSORS
P. Bandaru, Ph.D.
J. Cortes, Ph.D.
R. deCallafon, Ph.D.
E. Lauga, Ph.D.
S. Martinez Diaz, Ph.D.

ASSISTANT PROFESSORS
J.C. del Alamo, Ph.D.
R. Chen, Ph.D.
J. Kleis, Ph.D.
A. Marsden, Ph.D.

AFFILIATED FACULTY
M. Anderson, Ph.D., Lecturer with Potential Security of Employment,
L. Armi, Ph.D., Professor, SIO
M. Baskes, Adjunct Professor, MAE
M. Buckingham, Ph.D., Professor, SIO
N. Delson, Ph.D., Lecturer with Security of Employment
A. Groisman, Ph.D., Assistant Professor, Physics
G. Hegemier, Ph.D., Professor, Structural Engineering
V. Lubarda, Ph.D., Adjunct Professor, MAE
W. K. Melville, Ph.D., Professor, SIO
F. Najmabadi, Professor, Electrical and Computer Engineering
M. De Oliveira, Ph.D., Associate Adjunct Professor, MAE
R. Pinkel, Ph.D., Professor, SIO
J. Rottman, Ph.D., Adjunct Professor, MAE
J. Whitesell, Ph.D., Chemistry/Biochemistry
K. Winters, Ph.D., Adjunct Professor, MAE

PROFESSIONAL RESEARCH STAFF
A. Amirkhizi, Ph.D., Assistant Research Scientist, MAE
G. Antar, Ph.D., Assistant Research Scientist, CER/MAE
J. Boedo, Ph.D., Research Scientist, MAE/CER
R. Capone, Ph.D., Assistant Project Scientist, MAE
G. Carnevale, Ph.D., Research Oceanographer, SIO
L. Chen, Ph.D., Research Scientist, MAE
G. Deane, Ph.D., Research Oceanographer, SIO
A. Didwania, Ph.D., Associate Research Scientist, MAE
R. Moyer, Ph.D., Research Scientist, CER/MAE
A. Pigarov, Ph.D., Research Scientist, MAE/CER
R. Raffray, Ph.D., Research Scientist, MAE/CER
S. Ramachandra Reddy, Ph.D., Assistant Project Scientist, MAE
R. Seiser, Ph.D., Assistant Research Scientist, MAE
R. Smirnov, Ph.D., Assistant Project Scientist, MAE
A. Smyslyaev, Ph.D., Assistant Project Scientist, MAE
P.F. Teran Arce, Ph.D., Assistant Project Scientist, MAE
M. Tillack, Ph.D., Research Scientist, MAE/CER

STUDENT AFFAIRS: 180 Engineering Building II,
Warren College
http://maeweb.ucsd.edu

DEPARTMENT FOCUS
The instructional and research programs are grouped into two major areas: mechanical engineering and aerospace engineering. Both the undergraduate and graduate programs are characterized by strong interdisciplinary relationships with the Departments of Physics, Mathematics, Bioengineering, Chemistry, Electrical and Computer Engineering, Computer Science and Engineering, Structural Engineering, the Materials Science Program, and associated campus institutes such as the UCSD Center for Energy Research, the Institute for Nonlinear Science, Institute of Geophysics and Planetary Physics, Institute for Pure and Applied Physical Sciences, Institute for Biomedical Engineering, Center for Magnetic Recording Research, Center of Excellence for Advanced Materials, California Space Institute, and Scripps Institution of Oceanography.

This broad mission is supported by the following specific educational objectives:
• To provide our students with a strong technical education that will enable them to have successful careers as engineers, technology leaders and innovators.
• To prepare our students for rapid technological change with the core knowledge central to assuring that they are able to further their knowledge across a range of disciplines throughout their professional careers and pursue advanced education.
• To prepare our students to communicate effectively and to deal knowledgeably and ethically with the impact of technology in our society and on global issues.

THE UNDERGRADUATE PROGRAM

DEGREE AND PROGRAM OPTIONS

The Department of Mechanical and Aerospace Engineering (MAE) offers traditional ABET accredited engineering programs leading to the B.S. degree in mechanical engineering, and aerospace engineering. MAE also offers traditional nonaccredited engineering programs leading to the B.S. degree in engineering science and environmental engineering. The B.S. programs require a minimum of 196 units. All MAE programs of study have strong components in laboratory experimentation, numerical computation, and engineering design. Design is emphasized throughout the curricula by open-ended homework problems, by laboratory and computer courses that include student-initiated projects, and finally by senior design project courses which often involve teams of students working to solve engineering design problems brought in from industry. The MAE programs are designed to prepare students receiving bachelor’s degrees for professional careers or for graduate education in their area of specialization. In addition, the programs can also be taken by students who intend to use their undergraduate engineering education as preparation for postgraduate professional training in nontechnical fields such as business administration, law, or medicine.

Mechanical engineering is a traditional four-year curriculum in mechanics, vibrations, thermodynamics, fluid flow, heat transfer, materials, control theory, and mechanical design. Graduates find employment in the mechanical and aerospace industries as well as in the electro-mechanical or biomedical industries. Mechanical engineers are involved in material processing, manufacturing, assembling, and maintenance of life-line facilities such as power plants.

Mechanical design includes conceptual design, drafting with 3D CAD programs, stress, dynamics, heat transfer or fluid dynamics analyses, and the optimization of the total system for superior performance and customer satisfaction. In manufacturing, the objective is to enhance efficiency and economy

2010-2011 UC SAN DIEGO GENERAL CATALOG • MECHANICAL AND AEROSPACE ENGINEERING (MAE) 1
by utilizing numerical control (NC) of machine tools, mechatronics, micro-machining, and rapid prototyping. Currently, engineers have available computers, process models, and sensors to improve the quality and productivity of the manufacturing lines. In preparation for this modern era, the mechanical engineering curriculum emphasizes CAD courses, computer courses, laboratory courses, and design courses in addition to providing a strong background in basic science.

Aerospace engineering is a four-year curriculum that prepares students for a career in the aeronautical and astronautical industries, related technology industries, or for graduate school.

The curriculum was developed to emphasize engineering fundamentals, aerospace topics, and the integration of these fundamentals and topics within the design of an aerospace system. Courses in engineering fundamentals include materials, solid and fluid mechanics, thermodynamics, computer modeling, computer-aided-design, numerical analysis, and controls. Courses covering the aerospace engineering topics include aerodynamics, aerospace structures, flight mechanics, dynamics and control of aerospace vehicles, and propulsion. Students complete the program by taking a two-quarter capstone design course that integrates all of their aerospace education into the design, development, and testing of an aeronautical or astronautical vehicle or component. Throughout the program, students take laboratory courses that expose them to modern testing techniques and enhance their understanding of complex engineering topics. The program’s main objectives are to provide students with a strong foundation in engineering fundamentals; in-depth knowledge of key topics in aerospace engineering including aerodynamics, propulsion, flight mechanics, orbital mechanics, aerospace structures and materials, and design and control of aerospace systems; and an awareness of the value of life-long learning.

The engineering science program resembles the Mechanical Engineering Program, except the amount of mechanical design is reduced and control theory is not required. In addition to core courses in dynamics, vibrations, structures, fluid mechanics, thermodynamics, heat transfer, and laboratory experimentation, a large number of technical electives are scheduled. This aspect of the curriculum allows flexibility by permitting specialization and in-depth study in one area of the engineering sciences or through a sequence of courses on various emerging technologies. Students must consult their advisors to develop a sound course of study to fulfill the technical elective of this program. Although a sequence in non-sciences may be permitted, the faculty advisors may insist on a substantial number of MAE or other science courses as technical electives.

Environmental engineering is a four-year curriculum with fundamental engineering courses in mechanics, thermodynamics, physics, chemistry, and mathematics. In the third and fourth year, an environmental engineering sequence is offered, as well as further specialization in fluid mechanics, and a wide choice of technical electives, both from within MAE and other departments. The environmental engineering major focuses on conveying an understanding and awareness of the fundamental processes associated with human industrial activity that have environmental implications, and on equipping the next generation of engineers with the tools to develop technologies that enable sustainable economic growth.

OTHER UNDERGRADUATE PROGRAMS OF STUDY IN MAE

The engineering mechanics minor involves successful completion of seven MAE courses, including at least five upper-division courses open to students who meet the course prerequisites: one must be MAE 130A; one must be 101A (or CENG 101A) or 131A (or both may be taken); and the balance must be selected from MAE 3, 9, 20, 110A, 130B, 160, and CENG 102. This set of courses provides a good introduction to engineering analysis and would be useful to non-engineering majors desiring a background that could be used in professional communication with engineers.

DOUBLE MAJORS AND MINORS

It is the policy of the UC San Diego Academic Senate not to approve double majors within engineering departments.

PROGRAM ACCREDITATION

The B.S. Programs in mechanical engineering and aerospace engineering are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET/EAC).

MAJOR REQUIREMENTS

Specific course requirements for each major program are outlined in tables in this section of the catalog. In addition to the required technical courses specifically indicated, a suggested scheduling of humanities and social science courses (HSS) are distributed in the curricula for students to use to meet college general-education requirements. To graduate, students must maintain an overall GPA of at least 2.0, and the department requires at least a C– grade in each course required for the major. Deviations from these programs of study must be approved by the Undergraduate Affairs Committee prior to taking alternative courses. In addition, technical elective (TE) course selections must have departmental approval prior to taking the courses. In the accredited programs, TE courses are restricted to meet ABET standards. Courses such as MAE 195, 197, and 198 are not allowed as a technical elective in meeting the upper-division major requirements. MAE 199 can be used as a technical elective only under restrictive conditions. Policy regarding these conditions may be obtained from the department’s Student Affairs Office.

Students with different academic preparation may vary the scheduling of lower-division courses such as math, physics and chemistry, but should consult the department. Deviations in scheduling MAE upper-division courses are discouraged and require prior approval. Most lower-division courses are offered more than once each year to permit students some flexibility in their program scheduling. However, many MAE upper-division courses are taught only once per year, and courses are scheduled to be consistent with the curricula as shown in the tables. When possible, MAE does offer large enrollment courses more than once each year. A tentative schedule of course offerings is available from the department each spring for the following academic year.

GENERAL-EDUCATION/COLLEGE REQUIREMENTS

For graduation each student must satisfy general-education course requirements determined by the student’s college as well as the major requirements determined by the department. The six colleges at UCSD require widely different general-education courses, and the number of such courses differs from one college to another. Each student should choose his or her college carefully, considering the special nature of the college and the breadth of general education.

Each MAE program allows for humanities and social science (HSS) courses so that students can fulfill their college requirements. In the ABET accredited programs, students must develop a program that includes a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. It should be noted, however, that some colleges require more than the nine or ten HSS courses indicated in the curriculum tables. Accordingly, students in these colleges could take longer to graduate than the indicated four-year schedule. Students must consult with their college to determine which HSS courses to take.

PROFESSIONAL LICENSING

After graduation, all students are encouraged to take the Fundamentals of Engineering (FE) examination as the first step in becoming licensed as a professional engineer (PE). Students graduating from an accredited program can take the PE examination after FE certification and two years of work experience; students graduating from a non-accredited program can take the PE examination after FE certification and four years of work experience.

For further information please contact your local Board of Registration for Professional Engineers and Land Surveyors.

MECHANICAL ENGINEERING

The Mechanical Engineering Program has a traditional ABET accredited four-year curriculum involving mechanics, vibrations, thermodynamics, fluid flow, heat transfer, materials, control theory, and mechanical design. Graduates of this program are expected to have the following skills, knowledge, and abilities:

1. An ability to apply knowledge of mathematics including multivariable calculus, differential equations, linear algebra, science, and engineering to mechanical engineering problems
2. An ability to design and conduct experiments, as well as to analyze and interpret data
3. An ability to design a system, component, or process to meet desired needs
4. An ability to function on multi-disciplinary teams
5. An ability to identify, formulate, and solve engineering problems
6. An understanding of professional and ethical responsibility
7. An ability to communicate effectively
8. The broad education necessary to understand the impact of engineering solutions in a global and societal context
9. A recognition of the need for, and an ability to engage in lifelong learning
10. A knowledge of contemporary issues
11. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
12. A familiarity with chemistry and calculus-based physics
13. A familiarity with statistics
14. Ability to work professionally in mechanical system areas including the design and realization of such areas
15. Ability to work professionally in thermal systems areas including design and realization of such systems

Recommended Course Sequence—
Mechanical Engineering

FALL WINTER SPRING

Freshman Year
Math. 20A Math. 20B Math. 20C
MAE 9 Phys. 2A Phys. 2B & 2BL
Chem. 6A Chem. 6B MAE 3
HSS HSS HSS

Sophomore Year
Math. 20D Math. 20F Math. 20E
Phys. 2C & 2CL HSS MAE 130B or SE 101B
MAE 20 MAE 130A or SE 101A
HSS HSS HSS

Junior Year
MAE 110A MAE 101A MAE 101B
MAE 105 MAE 143A MAE 143B
MAE 140 MAE 130C MAE 170
MAE 107 MAE 160 or MAE 131B

Senior Year
MAE 101C MAE 171A MAE 171B
MAE 156A MAE 156B TE
MAE 150 TE TE
TE HSS HSS

Chem. 6AH–6BH sequence may be taken in place of Chem. 6A–B.

- In fulfilling the humanities and social science requirements (HSS), students must take a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. Ten HSS courses are listed here; individual college requirements may be higher.
- Technical electives (TE) must be an upper-division or graduate course in the engineering sciences, natural sciences or mathematics.

See the MAE Student Affairs Office for a complete list of technical electives.

ENGINEERING SCIENCE

The engineering science program resembles the mechanical engineering program, except that the course load of mechanical design is reduced, and control theory is not required. In addition to core courses in dynamics, vibrations structures, fluid mechanics, thermodynamics, heat transfer, and laboratory experimentation, a large number of technical electives are scheduled. This aspect of the curriculum allows flexibility, permitting specialization and in-depth study in one area of the engineering sciences or development of a sequence of courses emerging from the current research interests of the faculty of MAE and/or other departments, e.g., sequences in the earth sciences, transportation, or energy-related studies. Students intending to pursue postgraduate professional careers in non-technical fields such as business administration, law, or medicine may develop an appropriate sequence of courses. Although a sequence in the non-sciences may be permitted, the faculty advisor may insist on a substantial number of MAE or other science courses as technical electives. Students must consult their advisors to develop a balanced course of study to fulfill the technical elective requirements of this program. This curriculum also allows the highest number of humanities and social science courses (HSS) to meet college general-education requirements.

Recommended Course Sequence—
Engineering Science

FALL WINTER SPRING

Freshman Year
Math. 20A Math. 20B Math. 20C
MAE 9 Phys. 2A Phys. 2B & 2BL
Chem. 6A Chem. 6B MAE 3
HSS HSS HSS

Sophomore Year
Math. 20D Math. 20F Math. 20E
Phys. 2C & 2CL HSS MAE 130B or SE 101B
MAE 20 MAE 130A or SE 101A
HSS HSS HSS

Junior Year
MAE 110A MAE 101A MAE 101B
MAE 105 MAE 143A MAE 143B
MAE 140 MAE 130C MAE 170
MAE 107 MAE 160 or MAE 131B

Senior Year
MAE 101C MAE 171A MAE 171B
MAE 150 TE TE
MAE 150 TE TE
HSS HSS HSS

Chem. 6AH–6BH sequence may be taken in place of Chem. 6A–B.

- Humanities and social science (HSS) courses should be selected to meet general-education requirements of the colleges. Individual college requirements may be higher or lower than what is listed here.
- Four technical elective (TE) courses must be upper-division or graduate courses in the engineering sciences, natural sciences or mathematics selected with prior approval of the department. A sequence of non-science courses may also be selected with prior approval (see program description).

See the Student Affairs Office for a complete list of technical electives.

AEROSPACE ENGINEERING

Aerospace engineering is an ABET-accredited four-year curriculum that begins with fundamental engineering courses in mechanics, thermodynamics, materials, solid mechanics, fluid mechanics, and heat transfer. Additional courses are required in aerospace structures, aerodynamics, flight mechanics, propulsion, controls, and aerospace design. Graduates of this program enter graduate school or enter the aerospace industry to develop aircraft and spacecraft, but also they find employment in other areas that use similar technologies, such as mechanical and energy-related fields. Examples include automobile, naval, and sporting equipment manufacturing.

Graduates of this program are expected to have the following skills, knowledge, and abilities:
1. an ability to apply knowledge of mathematics, science, and engineering
2. an ability to design and conduct experiments, as well as to analyze and interpret data
3. an ability to design a system, component, or process to meet desired needs
4. an ability to function on multidisciplinary teams
5. an ability to identify, formulate, and solve engineering problems
6. an understanding of professional and ethical responsibility,
7. an ability to communicate effectively with written, oral, and visual means
8. the broad education necessary to understand the impact of engineering solutions in a global and societal context
9. a recognition of the need for, and an ability to engage in lifelong learning
10. a knowledge of contemporary issues
11. an ability to use modern engineering techniques, skills, and computing tools necessary for engineering practice
12. knowledge of key topics in aeronautical engineering including aerodynamics, aerospace materials, structures, propulsion, flight mechanics, and stability and control
13. knowledge of topics in astronautical engineering including attitude determination and control, space structures, orbital mechanics, and rocket propulsion
14. an ability to integrate knowledge of the fundamental topics in the design of an aerospace system
Recommended Course Sequence—Aerospace Engineering

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 20A</td>
<td>Math. 20B</td>
<td>Math. 20C</td>
</tr>
<tr>
<td>MAE 2</td>
<td>Phys. 2A</td>
<td>Phys. 2B & 2B/L</td>
</tr>
<tr>
<td>Chem. 6A</td>
<td>HSS</td>
<td>SE 2</td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
</tr>
<tr>
<td>Sophomore Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 20D</td>
<td>Math. 20F</td>
<td>Math. 20E</td>
</tr>
<tr>
<td>Phys. 2C & 2CL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE 3</td>
<td>MAE 109 or 10</td>
<td>MAE 131A</td>
</tr>
<tr>
<td>MAE 130A or SE 101A</td>
<td>MAE 130B or SE 101B</td>
<td></td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
</tr>
<tr>
<td>Junior Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE 105</td>
<td>MAE 101A</td>
<td>MAE 101B</td>
</tr>
<tr>
<td>MAE 110A</td>
<td>MAE 130C</td>
<td>MAE 143B</td>
</tr>
<tr>
<td>MAE 140</td>
<td>MAE 143A</td>
<td>MAE 170</td>
</tr>
<tr>
<td>MAE 107</td>
<td>HSS</td>
<td>SE 160A</td>
</tr>
<tr>
<td>Senior Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE 101C</td>
<td>MAE 155A</td>
<td>MAE 155B</td>
</tr>
<tr>
<td>MAE 104</td>
<td>MAE 142</td>
<td>HSS</td>
</tr>
<tr>
<td>MAE 150</td>
<td>MAE 175A</td>
<td>HSS</td>
</tr>
<tr>
<td>SE 160B</td>
<td>MAE 113</td>
<td>TE</td>
</tr>
</tbody>
</table>

Chem. 6AH may be taken in place of Chem. 6A.

- In fulfilling the humanities and social science (HSS) requirements, students must take a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. Ten HSS courses are listed here; individual college requirements may be higher.

- Technical elective (TE) course must be upper-division or graduate courses in engineering sciences, natural sciences, or mathematics selected with prior approval of the department. See Student Affairs in MAE for a current list of approved TEs.

ENVIRONMENTAL ENGINEERING

The environmental engineering curriculum is a four-year course of fundamental engineering in courses in mechanics, thermodynamics, physics, chemistry, and math. In the third and fourth year, an environmental engineering sequence is offered, as well as further specialization in fluid mechanics, and a wide choice of technical elective (TE) courses, both from within and in other departments.

The environmental engineering curriculum is currently undergoing review for future ABET accreditation. Please see MAE Student Affairs for more information.

FALL

<table>
<thead>
<tr>
<th>Freshman Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 20A</td>
</tr>
<tr>
<td>MAE 9 or 10</td>
</tr>
<tr>
<td>Chem. 6A</td>
</tr>
</tbody>
</table>

Sophomore Year

| Math. 20D | Math. 20F | Math. 20E |
| Phys. 2C & 2CL |
MAE 3	MAE 109 or 10	MAE 131A
MAE 130A or SE 101A	MAE 130B or SE 101B	
HSS	HSS	HSS

Junior Year

MAE 105	MAE 101A	MAE 101B
CENG 120	TE	MAE 170
MAE 107	MAE 124	
HSS	HSS	HSS

Senior Year

MAE 105C	MAE 101A	MAE 101B
MAE 104	MAE 142	HSS
MAE 150	MAE 175A	HSS
SE 160B	MAE 113	TE

MAE and in other departments.

math. In the third and fourth year, an environmental curriculum with fundamental engineering courses in sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. Ten HSS courses are listed here; individual college requirements may be higher.

- Technical elective (TE) course must be upper-division or graduate courses in engineering sciences, natural sciences, or mathematics selected with prior approval of the department. See Student Affairs in MAE for a current list of approved TEs.

Policies and Procedures for MAE Undergraduate Students

Admission to the Major

The B.S. degrees in mechanical and aerospace engineering are impacted. Because of heavy student interest in these two majors, and the limited resources available to accommodate this demand, maintenance of a high-quality program makes it necessary to limit enrollments.

Environmental engineering and engineering science continue to be open majors.

Freshman Students

Freshman students who have excelled in high school and have declared mechanical, aerospace, environmental engineering, or engineering sciences on their UCSD application are eligible for direct admission into those majors. Enrollment is limited in the mechanical and aerospace majors due to its heavy demand and limited resources. Students will be notified by the UC San Diego Office of Admissions whether they have been admitted into their chosen major, based on admissions criteria and their ranking in the applicant pool.

Transfer Students

Applicants seeking admission as transfer students will be considered for admission into the mechanical, aerospace, environmental engineering, and engineering science majors. Enrollment is limited in the mechanical and aerospace majors due to its heavy demand and limited resources. Impacted status will be in effect in 2011. Transfer students who have excelled in their community college courses, especially courses in math, physics, and chemistry, will have the strongest advantage.

- Students who have taken equivalent courses elsewhere may request to have transfer credit apply toward the department’s major requirements. To receive transfer credit, complete a MAE Student Petition form and submit it to MAE Student Affairs. For mathematics, chemistry and physics, transfer equivalencies are determined by the respective departments. An Undergraduate Student Petition must be submitted to each department from which you are requesting transfer credit.

It is strongly recommended that transfers complete the following preparation for all engineering majors.

- Calculus I—for Science and Engineering (Math. 20A)
- Calculus II—for Science and Engineering (Math. 20B)
- Calculus and Analytic Geometry (Math. 20C)
- Differential Equations (Math. 20D)
- Linear Algebra (Math. 20F)
- Complete calculus-based physics series with lab experience (Physics 2A, B, and C)
- Chemistry 6A
- Highest level of introductory computer programming language course offerings at the community college

Continuing Students Changing Majors

Continuing students who wish to change into an impacted major (mechanical engineering and aerospace engineering) must submit an application to the department. Applications will be accepted twice a year. Please see the department Web site maeweb.ucsd.edu for details.

Continuing students who wish to be considered must submit an application to the MAE department on or before the date of the application. Students will be allowed into the major based on a ranking system, up to a maximum number.

Students who apply later than the final day of their sixth academic quarter at UCSD will not be considered.

Academic Advising

Upon admission to the major, students should consult the catalog or MAE Web site http://maeweb.ucsd.edu for their program of study or their undergraduate advisor if they have questions. The program plan may be revised in subsequent years, but revisions involving curricular requirements require approval by the undergraduate advisor or the Undergraduate Affairs Committee. Because some course and/or curricular changes may be made every year, it is imperative that students consult with the department’s undergraduate advisor on an annual basis.

Some MAE courses are offered only once a year and therefore should be taken in the recommended sequence. If courses are taken out of sequence, it may not always be possible to enroll in courses as desired or needed. If this occurs, students should seek immediate departmental advice. When a student deviates from the sequence of courses specified for each curriculum in this catalog, it may be impossible to complete an MAE major within the normal four-year period.

In addition to the advising available through the Student Affairs Office, programmatic or technical
advice may be obtained from MAE faculty members. A specific MAE faculty mentor is assigned to each MAE student. It is recommended that all MAE students meet with their faculty mentor at least once a quarter.

PROGRAM ALTERATIONS/EXCEPTIONS TO REQUIREMENTS

Variations from or exceptions to any program or course requirements are possible only if a petition is approved by the MAE Undergraduate Affairs Committee before the courses in question are taken. Petition forms may be obtained from the MAE Student Affairs Office and must be processed through this office.

INDEPENDENT STUDY

MAE students may take MAE 199, Independent Study for Undergraduates, under the guidance of an MAE faculty member. This course is taken as an elective on a P/NP basis. Under very restrictive conditions, however, it may be used to satisfy upper-division technical elective course requirements for the major. Students interested in this alternative must identify an MAE faculty member with whom they wish to work and propose a two-quarter research or study topic. After obtaining the faculty member’s concurrence on the topic and scope of the study, the student must submit a Special Studies Course form (each quarter) and an MAE 199 as Technical Elective Contract form to the Undergraduate Affairs Committee. These forms must be completed, approved, and processed prior to the add/drop deadline. Detailed policy in this regard and the requisite forms may be obtained from the Student Affairs Office.

TEACHING

Students interested in participating in the instructional activities of the department may take MAE 195, Undergraduate Teaching. Normally, this course is taken as an elective on a P/NP basis. Under very restrictive conditions, it may be used to satisfy upper-division technical elective course requirements for the major. Policy in this regard and the appropriate forms may be obtained from the Student Affairs Office.

THE GRADUATE PROGRAM

The Department of Mechanical and Aerospace Engineering at UC San Diego offers graduate instruction leading to the M.S. and Ph.D. degrees in engineering sciences with a designated specialization in each of the following areas: aerospace engineering, applied mechanics, applied ocean sciences, engineering physics, and mechanical engineering.

In fall 2007, a new Ph.D. specialization was introduced: computational science. Computational science seeks to gain understanding principally through the analysis of mathematical models on high performance computers. It is a blend of applications, computations, and mathematics. It is a mode of scientific investigation that supplements the traditional lab and theoretical models of acquiring knowledge. This is done by formulating mathematical models whose solutions are approximated by computer simulations.

The computational science specialization leverages the strength of the existing mathematics, science, and engineering departments. Ph.D. students must demonstrate advanced undergraduate-level proficiency in numerical analysis and in computer algorithms and data structures.

For more information, please contact the MAE Graduate Affairs Office at (858) 534-4387.

Admission to the graduate program is in accordance with the general requirements of the graduate division, which requires a B.S. and/or M.S. degree in some branch of engineering, the physical sciences, or mathematics; an overall GPA of 3.0; and three letters of recommendation from individuals who can attest to the applicant’s academic or professional competence and to the depth of their interest in pursuing graduate study. In addition, all applicants are required to submit GRE General Test scores.

A minimum score of 550 on the Test of English as a Foreign Language (TOEFL) is required of all international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English. Students who score below 600 on the TOEFL examination are strongly encouraged to enroll in an English as a second language program before beginning graduate work. (UC San Diego Extension offers an excellent English language program during the summer as well as the academic year.)

Applicants are judged competitively. Based on the candidate’s background, qualifications, and goals, admission to the program is in one of three categories: M.S. only, M.S., or Ph.D. Admission to the M.S. only category is reserved for students for whom the M.S. degree is likely to be the terminal graduate degree. The M.S. designation is reserved for students currently interested in obtaining an M.S. degree but who at a later time may wish to continue in the doctoral degree program. Admission to the Ph.D. program is reserved for qualified students whose final aim is a doctoral degree. Policies for possible changes in status are given under “Master’s Degree Program” below.

Non-matriculated students are welcome to seek enrollment in MAE courses via UC San Diego’s Extension’s Concurrent Enrollment program but an extension student’s enrollment in an MAE graduate course must be approved by the instructor.

MASTER’S DEGREE PROGRAM

The M.S. program is intended to extend and broaden an undergraduate background and/or equip practicing engineers with fundamental knowledge in their particular fields. The degree may be terminal, or obtained on the way to the Ph.D. The degree is offered under both the Thesis Plan I and the Comprehensive Examination Plan II (see “Graduate Studies: Master’s Degree”). A strong effort is made to schedule M.S. level course offerings so that students may obtain their M.S. degree in one year of full-time study or two years of part-time study.

M.S. Time Limit Policy: Full-time M.S. students are permitted seven quarters in which to complete all requirements. While there are no written time limits for part-time students, the department has the right to intervene and set individual deadlines if it becomes necessary.

Course requirements are flexible in the applied mechanics and engineering physics programs. Specific departmental requirements for the M.S. degree are as follows:

MASTER’S PLAN I—THESIS DEFENSE

This plan of study involves both course work and research, culminating in the preparation of a thesis. A total of thirty-six units of credit is required: twenty-four units (six courses) must be in course work, and twelve units must be in research. The student’s program is arranged, with prior approval of the faculty advisor, according to the following policies:

1. Course work must include at least sixteen units (four courses) of MAE 200-level courses.
2. Units obtained in MAE 205 or 299 may not be applied toward the course work requirement.
3. No more than a total of eight units of MAE 296 and 298 may be applied toward the course work requirement.
4. No more than twelve units of upper-division 100-level courses (engineering-based or technically serious) may be applied toward the course work requirement.
5. Only four units from the ENG series may be applied to the degree.
6. Twelve units of MAE 299 must be taken to fulfill the research requirement.

The thirty-six units are arranged into three areas of specialization, organized as follows:

• Specialization 1: Three courses (four units each course)
• Specialization 2: Three courses (four units each course)
• Specialization 3: Three courses (four units each course)

At least two of the three areas of specialization must be chosen from the list below of MAE research areas. The third specialization can be one of the listed MAE areas or a math/science area.

Current MAE Research Areas

Applied and Solid Mechanics
• Material Sciences
• Fluid Mechanics
• Thermal Sciences
• Engineering Physics
• Dynamics Systems and Controls
• Environmental Engineering
• Biomechanics
• Design

Students should reference the MAE Graduate Course Structure to see which courses fall into which of the research areas.

Students must maintain at least a B average in the courses taken to fulfill the degree requirements. A thesis based on the research is written and subsequently reviewed by the thesis advisor and two other faculty members appointed by the dean...
of Graduate Studies. The review is normally an oral defense of the thesis.

COMPREHENSIVE EXAMINATION PLAN II (EFFECTIVE JANUARY 2010)

This plan of study involves a written report on a topical area of current research. A total of thirty-six units of credit (nine courses) are required. The student’s program is arranged, with prior approval of the faculty advisor, according to the following policies:

1. A written report on a science/technology topic that has relevance today.
2. The topic must be interdisciplinary and cover two different core areas of MAE (for example, energy and dynamics/controls).
3. The report must be between fifteen and thirty pages in length.
4. There must be a minimum of five papers cited in the report. These five papers must be reviewed and approved by the student’s faculty advisor.
5. Two faculty members will read the report and grade it. One of the members must be the student’s faculty advisor. The other member may be chosen by the student.
6. Both faculty members will sign the report as a “pass” or a “no pass.”
7. The final report is due to the committee members during finals week but no later than the last day of finals.

Students must maintain at least a B average in the courses taken to fulfill the degree requirements. Students already in the M.S. program in MAE have the option of joining the new Written Plan II or following the previous MS Plan I or II. Beginning fall 2010, all M.S. students will be required to follow the new Written Plan II or the Thesis Defense Plan I. The thirty-six units of course work must be arranged accordingly:

1. Course work must include sixteen units (four courses) of MAE 200-level courses.
2. Units obtained in MAE 205 or 299 may not be applied toward the course work requirement.
3. No more than a total of eight units of MAE 296 and 298 may be applied toward the course work requirement.
4. No more than twelve units of upper-division 100-level courses (engineering-based or technically serious) may be applied toward the course work requirement.
5. Only four units from the ENG series may be applied to the degree.
6. Twelve units of MAE 299 must be taken to fulfill the research requirement.

The thirty-six units are arranged into three areas of specialization, organized as follows:

- **Specialization 1:** Three courses (four units each course)
- **Specialization 2:** Three courses (four units each course)
- **Specialization 3:** Three courses (four units each course)

At least two of the three areas of specialization must be chosen from the list below of MAE research areas. The third specialization can be one of the listed MAE areas or a math/science area.

Current MAE Research Areas

- Applied and Solid Mechanics
- Material Sciences
- Fluid Mechanics
- Thermal Sciences
- Engineering Physics
- Dynamics Systems and Controls
- Environmental Engineering
- Biomechanics
- Design

Students should reference the MAE Graduate Course Structure to see which courses fall into which of the research areas.

Change of Degree. Upon completion of the requirements for the M.S. degree, students admitted as M.S. only or M.S. candidates are not automatically eligible for admission to the Ph.D. Program. M.S. candidates who subsequently wish to pursue a doctorate must submit an application for a change in status to their examining committee. If the recommendation is positive and the request approved, the student must submit a general petition for graduate students to effect the change of status. In addition, the examining committee may recommend that the examination satisfy one of the three topics required in the departmental qualifying examination for the doctorate. M.S. candidates who subsequently wish to pursue a doctorate must also submit an application for a change in status to their examining committee. In this case, a special examination is not required. The application, however, must be approved and signed by an MAE faculty member who expects to serve as the student's Ph.D. advisor. When the request is approved, the student must submit a general petition for graduate students to effect the change of status. If the student elects the comprehensive written plan for the M.S. degree, this report may be used not only to fulfill the requirement for the M.S. degree but also to satisfy one of the three topics required in the departmental qualifying examination for the doctorate.

M.S. PROGRAM

To complete an M.S. degree with specialization in aerospace engineering, engineering physics, mechanical engineering, applied mechanics, or applied ocean sciences, students must complete a sequence of courses unique to their area. Students should consult with their faculty advisor, as well as the MAE Graduate Student Affairs Office, when choosing their courses.

DOCTORAL DEGREE PROGRAM

The MAE Ph.D. Program is intended to prepare students for a variety of careers in research and teaching. Therefore, depending on the student’s background and ability, research is initiated as soon as possible. In general, there are no formal course requirements for the Ph.D. All students, in consultation with their advisors, develop course programs that will prepare them for the MAE Departmental Qualifying Examination and for their dissertation research. However, these programs of study and research must be planned to meet the time limits established to advance to candidacy and to complete the requirements for the degree. Doctoral students who have passed the Departmental Examination may take any course for an S/U grade, with the exception of any course that the student's Departmental or Ph.D. Qualifying Examination Committee stipulates must be taken in order to remove a deficiency. It is strongly recommended that all MAE graduate students take a minimum of two courses (other than research) per academic year after passing the Departmental Qualifying Examination. Specific details in this regard can be obtained from the MAE Student Affairs Office.

Doctoral Examinations: An MAE Ph.D. student is required to pass three examinations. The first is a Departmental Qualifying Examination (DQE) that is intended to determine the candidate's ability to successfully pursue a research project level appropriate for the doctorate. This first exam must be taken within the first six quarters of registration as a graduate student. The DQE is an oral examination by a committee of four persons (two of which must be in the MAE department) and is based on material taught over 36 units in three areas of study: a major area (four courses), a minor area (two introductory courses), and a study in mathematics or basic science (three courses). Students must submit a plan of study, approved by their advisor, to the Graduate Affairs Committee for final approval by the end of their second quarter of graduate study.

Teaching Experience is required of all MAE Ph.D. students prior to taking the Ph.D. Qualifying Exam. The teaching experience is defined as lecturing one hour per week in either a problem-solving section or regular lecture for one quarter in a course designated by the department. The requirement can be fulfilled by teaching assistant service or taken as a course for academic credit (MAE 501). Students must contact the Student Affairs Office to plan for completion of this requirement.

Ph.D. Qualifying Examination is the second examination required of MAE Ph.D. students in preparation for the Ph.D. Qualifying Examination. The students must have completed the Departmental Qualifying Examination and the Departmental Teaching Experience requirement, obtained a faculty research advisor, and have identified a topic for their dissertation research and have made initial progress. At the time of application for advancement to candidacy, a doctoral committee responsible for the remainder of the student's graduate program is appointed by the Graduate Council. The committee conducts the Ph.D. Qualifying Examination, during which students must demonstrate the ability to engage in dissertation research. This involves the presentation of a plan for the dissertation research project. The committee may ask questions directly or indirectly related to the project and general questions that it determines to be relevant.
successful completion of this examination, students are advanced to candidacy and are awarded the candidate in philosophy degree (see “Graduate
Studies” section in this catalog). The Dissertation Defense is the final Ph.D. Examination. Upon completion of the dissertation research project, the student writes a dissertation that must be successfully defended in an oral examination and public presentation conducted by the doctoral committee. A complete copy of the student’s dissertation must be submitted to each member of the doctoral committee approximately four weeks before the defense. It is understood that the copy of the dissertation given to committee members will not be the final copy, and that the committee members may suggest changes in the text at the time of the defense. This examination may not be conducted earlier than three quarters after the date of advancement to doctoral candidacy. Acceptance of the dissertation by the Office of Graduate Studies and the university librarian represents the final step in completion of all requirements for the Ph.D. There is no formal foreign language requirement for doctoral candidates. Students are expected to master whatever language is needed for the pursuit of their own research.

Ph.D. Time Limit Policy. Pre-candidacy status is limited to four years. Doctoral students are eligible for university support for six years (engineering physics, seven years). The defense and submission of the doctoral dissertation must be within seven years (engineering physics, eight years).

Evaluations. In the spring of each year, faculty advisors evaluate each doctoral student’s overall performance in course work, research during the past academic year, and prospects for financial support for the next year. A written assessment is given to the student. If a student’s work is found to be inadequate, the faculty advisor may determine that the student cannot continue in the doctoral program and will recommend dismissal to the dean of Graduate Studies.

JOINT DOCTORAL PROGRAM WITH SAN DIEGO STATE UNIVERSITY

The Department of Mechanical and Aerospace Engineering at UC San Diego participates in a joint doctoral program with the Graduate Group in Applied Mechanics at SDSU. The program leads to the degree of doctor of philosophy in engineering sciences (applied mechanics). Participants in the program are required to spend one year enrolled at UCSD; their dissertation research is carried out under the supervision of an SDSU faculty member. Information regarding admission may be obtained from the departmental Student Affairs Office.

THE GRADUATE CURRICULUM IN CHEMICAL ENGINEERING

The chemical engineering (CENG) graduate program is an interdepartmental program and is described more completely under the Chemical Engineering Program in this catalog.

PH.D. IN MECHANICAL AND AEROSPACE ENGINEERING WITH SPECIALIZATION IN MULTI-SCALE BIOLOGY

As of fall 2010, the UCSD campus is offering a new Ph.D. specialization in multi-scale biology that will be available to doctoral candidates in participating programs that span four divisions: Biological Sciences, Physical Sciences, Jacobs School of Engineering, and Health Sciences at UCSD. The Ph.D. specialization is designed to allow students to obtain standard basic training in their chosen field within the biological sciences, physical sciences, engineering, and health sciences with training in integrative and quantitative analysis across multiple scales of biological organization from molecule to organism in health and disease into their graduate studies. It trains a new cadre of Ph.D. scientists and provides a unique interdisciplinary education at the interfaces between the biological, medical, physical and engineering sciences. The specific objectives of this program are

1. Focused Collaboration across nine graduate degree programs at UCSD to train a new generation of cross-disciplinary scientist

2. State-of-the-art interdisciplinary training through a new technology-centered hands-on graduate laboratory course curriculum

3. Novel emphasis on research aimed at integrative and quantitative analysis across multiple scales of biological organization from molecule to organism in health and disease

Students in the specialization are required to take at minimum three laboratory courses and serve as a TA one course. Courses offered are shown in the table at the top right portion of this page. Prospective students must apply and be admitted into the Ph.D. program in mechanical and aerospace engineering described previously. For more information, see the Mechanical and Aerospace Engineering Graduate program and/or the Interfaces Graduate Training Program administered within the Department of Chemistry and Biochemistry, 4010 York Hall, Revelle College.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

All undergraduate students enrolled in MAE courses or admitted to an MAE program are expected to meet prerequisite and performance standards, i.e., students may not enroll in any MAE courses or courses in another department which are required for the major prior to having satisfied prerequisite courses with a C– or better. (The department does not consider D or F grades as adequate preparation for subsequent material.) Additional details are given under the various program outlines, course descriptions, and admission procedures for the Jacobs School of Engineering in this catalog. Furthermore, the majority of MAE courses have enrollment restrictions which give priority to or are open only to students who have been admitted to an MAE major. Where these restrictions apply, the registrar will not enroll other students except by department stamp on class enrollment cards.

The department expects that students will adhere to these policies of their own volition and enroll in courses accordingly. Students are advised that they may be dropped at any time from course rosters if prerequisites have not been met. While most lower-division courses are offered more than once each year, many MAE upper-division courses are taught only once per year, and courses are scheduled to be consistent with the curricula as shown in the tables. When possible, MAE does offer selected large enrollment courses more than once each year.

LOWER-DIVISION

MAE 02. Introduction to Aerospace Engineering (4)
An introduction to topics in aeronautical and astronautical engineering including aerodynamics, propulsion, flight mechanics, structures, materials, orbital mechanics,
design, mission planning, and environments. General topics include historical background, career opportunities, engineering ethics, and professionalism. Must be taken for a letter grade. Prerequisite: none.

MAE 03. Introduction to Engineering Graphics and Design (4)
Introduction to design process through a hands-on design project performed in teams. Topics include problem identification, concept generation, project management, risk reduction. Engineering graphics and communication skills are introduced in the areas of: Computer-Aided Design (CAD), hand sketching, and technical communication. Prerequisite: grade of C- or better in Physics 2A or 2B (or concurrent enrollment); Priority enrollment given to engineering majors.

MAE 05. Quantitative Computer Skills (4)
Introductory course for non-engineering majors. Use of computers in solving problems; applications from life sciences, physical sciences, and engineering. Students run existing computer programs and complete some programming in BASIC. Prerequisite: none.

MAE 09. C/C++ Programming (4)
C/C++ computer programming under the UNIX environment with applications to numerical problems fundamental to computational mechanics. Arithmetic operations, branching, iteration, arrays, data structures, and use of pointers are introduced. Programming ethics are discussed. Priority enrollment given to pre-engineering and engineering majors.

MAE 20. Elements of Materials Science (4)
The structure of materials: metals, ceramics, glasses, semiconductors, superconductors and polymers. Control of internal structure to produce desired properties. Mechanical, rheological, electrical, optical, magnetic, and magnetic properties and classification. Prerequisites: Phys. 2A or 2B, Chem. 6A, Math. 21C or 21D (or concurrent registration).

MAE 87. Freshman Seminar (1)
The Freshman Seminar program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges. Topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen. Prerequisite: none.

MAE 92A. Design Competition—Design, Build, and Fly Aircraft (1)
(Cross-listed with SE 101A.) Student teams design, build, and fly unmanned aircraft for a national student competition. Students study aircraft design including aerodynamics, structures, propulsion, and performance. Teams engineer, fabricate the aircraft, submit a design report, and prep aircraft for competition. Prerequisites: consent of instructor.

MAE 93. Design Competition—Design, Build, and Test Race Car (1)
Student teams design, build, and test a formula-style racing car for an international student competition. Students concentrate on vehicle system analysis and design, manufacturability, and performance. Teams engineer, fabricate car, submit a design report, and prep car for competition. Prerequisite: department stamp.

MAE 99R. Independent Study (1)
Independent study under direction of a member of the faculty. Prerequisites: student must be of first-year standing and a Regent’s Scholar; approved Special Studies form.

UPPER-DIVISION

MAE 101A. Introductory Fluid Mechanics (4)
Fluid statics; fluid kinematics; integral and differential forms of the conservation laws for mass, momentum and energy; Bernoulli equation; potential flows; dimensional analysis and similarity. Prerequisites: admission to an engineering major and grades of C- or better in Phys. 2A, Math. 20D, 20E, or consent of instructor.

MAE 101B. Advanced Fluid Mechanics (4)
Laminar and turbulent flow. Pipe flow including friction factor. Boundary layers, separation, drag, and lift. Compressible flow including shock waves. Prerequisites: grade of C- or better in MAE 101A, or CENG 101A or CENG 103A, and MAE 110A or CENG 102 or consent of instructor.

MAE 101C. Heat Transfer (4)
Extension of fluid mechanics in MAE 101-B to viscous, heat-conducting flows. Application of the energy conservation equation to heat transfer in ducts and external boundary layers. Heat conduction and radiation transfer. Heat transfer coefficients in forced and free convection. Designers of thermal systems. Prerequisites: MAE 101A or CENG 101A, MAE 1018, and MAE 105, or consent of instructor.

MAE 102. Fluid Mechanics for Structural Engineers (4)
(Cross-listed with SE 112.) Fluid statics, hydrostatics forces; integral and differential forms of conservation equations for mass, momentum, and energy; Bernoulli equation; dimensional analysis; viscous pipe flow; external flow, boundary layers; open channel flow. Prerequisites: grade of C- or better in Phys. 2A, Math. 20D, and Math. 20E or consent of instructor.

MAE 104. Aerodynamics (4)
Basic relations describing flow field around wings and bodies of modern jet and rocket powered aircraft. Thin-wings theory. Slender-body theory. Formulation of theories for evaluating forces and moments on airplane geometries. Application to the design of high-speed airplanes. Prerequisites: open to MC 25, MC 27, MC 28 and SE 27 only and grade of C- or better in MAE 101-B or consent of instructor.

MAE 105. Introduction to Mathematical Physics (4)
Fourier series; Sturm Liouville theory; elementary partial differential equations, integral transforms with applications; to problems in vibration, wave motion, and heat conduction. Prerequisites: admission to engineering major or grades of C- or better in Phys. 2A-B and Math. 20D or Math. 21D.

MAE 107. Computational Methods in Engineering (4)
Introduction to scientific computing and algorithms; iterative methods, systems of linear equations with applications; nonlinear algebraic equations; function interpolation and differentiation and optimal procedures; data fitting and least-squares; numerical solution of ordinary differential equations. Prerequisites: engineering majors only and grades of C- or better in MAE 9 or MAE 10 and Math. 20F.

MAE 108. Probability and Statistical Methods for Mechanical and Environmental Engineering (4)
Probability theory; conditional probability, Bayes theorem, random variables and distributions; random variables, functions, central limit theorem. Engineering reliability, elements of estimation, random sampling, sampling distributions, hypothesis testing, confidence intervals. Curve fitting and data analysis. Prerequisite: Math. 20F.

MAE 110A. Thermodynamics (4)
Fundamentals of engineering thermodynamics: energy, work, properties of pure substances, first and second laws for closed systems and control volumes, gas mixtures. Application to engineering systems, power and refrigeration cycles, combustion. Prerequisites: grades of C- or better in Phys. 2C and Chem. 6A. Enrollment restricted to engineering majors only.

MAE 110B. Thermodynamic Systems (4)
Thermodynamic analysis of power cycles with application to combustion driven engines: internal combustion, diesel, and gas turbinis. Thermodynamics of mixtures and chemical and phase equilibrium. Computational methods for calculating chemical equilibrium. Prerequisite: grade of C- or better in MAE 110A.

MAE 113. Fundamentals of Propulsion (4)
Compressible flow, thermodynamics, and combustion relevant to aircraft and space vehicle propulsion. Analysis and design of components for gas turbines, including turbines, nozzles, combustion chambers and nozzles. Fundamentals of rocket propulsion. Prerequisites: engineering majors MC 25, MC 27 and MC 28 only and grades of C- or better in MAE 110A or CENG 102 and MAE 101A – B or CENG 101A and 101C (or CENG 103A – B).

MAE 117A. Elementary Plasma Physics (4)
(Cross-listed with Physics 151.) Particle motions, plasmas as fluids, waves, diffusion, equilibrium and stability, nonlinear effects, controlled fusion. Prerequisites: Math. 21D or consent of instructor. Phys. 100B-C or ECE 107 are recommended.

MAE 117B. Industrial Plasma Applications (4)
Chemical and plasma enhanced processes; electro-magnetic; atomic processes in plasmas; ionization, excitation, dissociation, rate constants, electron energy balance electric breakdown of the gases; debye length, plasmas quasi-neutrality, sheath, DC, capacitative, inductive, and wave-heated discharges; etching, deposition, and implantation. Prerequisite: Math. 20D or 21D, or consent of instructor.

MAE 117L. Elements of Experimental Plasma Physics (4)
Measurements of electron density and temperature with the lenguemore probes, emission spectroscopy measurements of neutrals and ions in plasmas; electric breakdown of the gases; plasma etching of materials. Prerequisites: none.

MAE 118A. Introduction to Energy Systems (4)
Overview of present-day primary energy sources and availability: stationary and mobile power plant technologies; air pollution and controls; introduction to climate change; basic physics of photovoltaics, fuel cells, wind power, and other renewable and developing energy technologies. An exploration of the “Hydrogen Economy.” Prerequisites: MAE 101A or CENG 101A, or consent of instructor.

MAE 118B. Twenty-First Century Energy Technologies I (4)
A survey of projected energy demands and resources. Climate change physics and impacts on energy systems. Basic physics of photovoltaics, fuel cells, wind power, and other renewable and developing energy technologies. An exploration of the “Hydrogen Economy.” Prerequisites: MAE 101A or CENG 101A, or consent of instructor.

MAE 118C. Twenty-First Century Energy Technologies II (4)
Overview of basic fission processes and fusion processes. Elementary fission reactor physics and engineering; environmental and waste disposal issues. Introduction to power producing fusion reactor physics. Survey of fusion technology issues, status and prospects for fusion energy. Prerequisite: MAE 101A or CENG 101A, or consent of instructor.

MAE 124. Environmental Challenges: Science and Solutions (4)
(Cross-listed with EYS 103.) This course explores the impacts of human social, economic, and industrial activity on the environment. It highlights the central roles in ensuring sustainable development played by market forces, technological innovation and governmental regulation on local, national, and global scales. Prerequisites: grade of C– or better in Math. 20B or Math. 10A–C, or consent of instructor.

MAE 125A. Flow and Transport in the Environment (4)
Study of river flow and hydraulic control; surface waves; applications to reservoirs and estuaries. Introduction to stratification and buoyancy; applications to atmospheric surface layer and the ocean mixed layer. Ideas behind turbulent dispersion. Turbulent and scaling laws. Gravity currents and katabatic flows. Prerequisites: MAE 101A or CENG 103A or CENG 101A.

MAE 125B. Fluid-Solid Interactions in Environment Engineering (4)
Introduction to groundwater flow. Pollution transport through the water table. Chemical processes in ozone hole. Overview of present-day primary energy sources and availability: stationary and mobile power plant technologies; air pollution and controls; introduction to climate change; basic physics of photovoltaics, fuel cells, wind power, and other renewable and developing energy technologies. An exploration of the “Hydrogen Economy.” Prerequisites: MAE 101A or CENG 101A, or consent of instructor.

MAE 125C. Case Studies in Environmental Engineering (4)
This course is project-oriented. Students will conduct research in small groups, give oral presentations and write
Energy methods and finite element analysis. Prerequisite: grade of C– or better in MAE 131A or SE 110A.

MAE 132. Intermediate Dynamics (4) Kinematics and kinetics of 3-D rigid body motion. Angular momentum and its rate of change. Euler’s and general equations of motion. Rotation about a fixed axis and a fixed point. Gyroscopic motion. Dynamic reactions. Lagrange’s equations of motion. Prerequisite: grade of C– or better in MAE 130B or SE 101B.

MAE 133. Finite Element Methods in Mechanical and Aerospace Engineering (4) Development of stiffness and mass matrices based upon variational principles and application to static, dynamic, and stability design problems in structural and solid mechanics. Architecture of computer codes for linear and nonlinear finite element analysis and basic computer implementation. The use of general purpose finite element structural analysis computer codes. Prerequisites: grade of C– or better in MAE 131A or SE 110A.

MAE 142. Dynamics and Control of Aerospace Vehicles (4) The dynamics of vehicles in space or air are derived for analysis of the stability properties of spacecraft and aircraft. The theory of flight, lift, drag, dutch roll and phugoid modes of aircraft are discussed. Optimal state space control theory for the design of analog and digital controllers. (Autopilot). Prerequisites: admission to the engineering major and grades of C– or better in MAE 104 and MAE 143B or ECE 171A, or consent of instructor.

MAE 143C. Digital Control Systems (4) Discrete time systems: sampling, aliasing, stability, Z-transform, discrete time signals, state space models; state equations, canonical forms, observability, controllability. Pole-placement design, observability, actuator principles, feedback, output feedback, linear quadratic regulator design. Implementation: digital approximation, computational and numerical issues. Prerequisite: grade of C– or better in MAE 143B.

MAE 149. Sensor Networks (4) (Cross-listed with ECE 156 and SOS 238) Characteristics of chemical, biological, and other physical sensors; signal processing techniques supporting distributed detection of salient events; wireless communication and networking protocols supporting formation of robust sensor fabrics; current experience with low power, low-cost sensor deployments. Prerequisites: upper-division standing and consent of instructor, or graduate student in science or engineering.

MAE 150. Computer-Aided Design (4) Computer-Aided Analysis and Design. Design methodology, tolerance analysis, Monte Carlo analysis, kinematics and computer-aided design of mechanisms; finite element analysis, design using Pro-E, Mechanica Motion and Mechanica Structures. Prerequisites: grade of C– or better in MAE 130A or SE 101A or BENG 110, MAE 107 or SE 121, and MAE 3; senior standing in engineering major, or consent of instructor.

MAE 155A. Aerospace Engineering Design I (4) Fundamental principles of aerospace vehicle design including the conceptual, preliminary, and detailed design phases. Aeronautical or astronautical design project that integrates all appropriate engineering disciplines as well as issues associated with optimization, teamwork, manufacturability, reporting, and professionalism. Prerequisites: grades of C– or better in MAE 133, 142, 150, 130C, or SE 2 and SE 160B or consent of instructor. Students may enroll concurrently with MAE 113, 142, and 150.

MAE 155B. Aerospace Engineering Design II (4) Fundamental principles of aerospace vehicle design including the conceptual, preliminary, and detailed design phases. Aeronautical or astronautical design project that integrates all appropriate engineering disciplines as well as issues associated with optimization, teamwork, manufacturability, reporting, and professionalism. Prerequisites: grade of C– or better in MAE 113, 142, 150, 155A or consent of instructor.

MAE 165A. Fundamental Principles of Mechanical Design I (4) Fundamental principles of mechanical design and the design process. Application of engineering science to the design and analysis of mechanical components. Initiation of team design projects that culminate in MAE 165B with a working prototype designed for a real engineering application. Professional ethics discussed. Course material may apply. Prerequisites: grades of C– or better in MAE 3, MAE 130C, MAE 131A, MAE 160, or MAE 131B, and MAE 179 or consent of instructor.

MAE 165B. Fundamental Principles of Mechanical Design II (4) Fundamental principles of mechanical design and the design process. Culmination of a team design project initiated in MAE 165A which results in a working prototype designed for a real engineering application. Prerequisite: grade of C– or better in MAE 165A in the immediately preceding quarter, MAE 101C, MAE 150 or consent of instructor.

MAE 166. Mechanical Behavior of Materials (4) Elasticity and anelasticity, dislocations and plasticity of crystals, creep, and strengthening mechanisms. Mechanical behavior of ceramics, composites, and polymers. Fracture: mechanics and microstructural fatigue. Laboratory demonstrations of selected topics. Prerequisites: grade of C– or better in MAE 20, MAE 130A (or SE 101A) and MAE 131A, or consent of instructor.

MAE 161. Electronic, Magnetic, and Photonic Materials (4) Introduction to the worlds of electronic, magnetic/photonic, materials; the unique properties of advance engineering materials in relation to processing, fabrication, and microstructure. Semiconductors, metals, alloys, ceramics, polymers, and composite materials and their practical applications. Prerequisite: consent of instructor. Not offered every year.

2010-2011 UC SAN DIEGO GENERAL CATALOG • MECHANICAL AND AEROSPACE ENGINEERING (MAE)
MAE 165. Fatigue and Failure Analysis of Engineering Components (4)

MAE 166. Nanomaterials (4)
Basic principles of synthesis techniques, processing, microstructural control and unique physical properties of materials in nano-dimensions. Nanowires, quantum dots, thin films, electrical transport, optical behavior, mechanical behavior, and applications of nanomaterials. Prerequisite: consent of instructor. Not offered every year.

MAE 167. Wave Dynamics in Materials (4)
Pressure and shear waves in infinite solids. Reflection and diffraction. Rayleigh and Love waves in semi-infinite space. Impulse load on a half space. Waveguides and group velocity. Prerequisite: consent of instructor. Not offered every year.

MAE 168. MEMS Materials, Fabrication, and Applications (4)
The principles of micro-electro-mechanical systems (MEMS) fabrication, materials involved, actuation principles utilized, and the fundamentals of MEMS operation in relation to stresses and deformation. Novel device applications, future trends, applications of applications of micro-electro-mechanical (MEMS) systems. Prerequisite: consent of instructor. Not offered every year.

MAE 170. Experimental Techniques (4)
Principles and practice of measurement and control and the design and conduct of experiments. Technical report writing. Lectures relate to dimensional analysis, error analysis, signal-to-noise problems, filtering, data acquisition and data reduction, as well as background of experiments and statistical analysis. Experiments relate to the use of electronic devices and sensors. Prerequisite: Grade of C– or better in Phys. 2CL and admission to any engineering major.

MAE 171A. Mechanical Engineering Laboratory I (4)
Design and analysis of experiments in fluid mechanics, solid mechanics, and control engineering. Experiments in wind tunnel, water tunnel, vibration table and material testing machines, and refined electromechanical systems. Laboratory report writing; error analysis; engineering ethics. Prerequisites: grade of C– or better in MAE 101C or CENG 101B, MAE 130C or SE 101C, MAE 160 or MAE 131B or SE 110B, MAE 140, MAE 143B or CENG 120, MAE 170, and senior standing in engineering major or consent of instructor.

MAE 171B. Mechanical Engineering Laboratory II (4)
Design and analysis of original experiments in mechanical engineering. Students research projects using experimental facilities in undergraduate laboratories: wind tunnel, water channel, vibration table, and testing machine and control systems. Students propose and design experiments, obtain data, complete engineering analysis and write a major report. Prerequisite: requires a grade of C– or better in MAE 171A.

MAE 175A. Aerospace Engineering Laboratory I (4)
Analysis of aerospace engineering systems using experimental facilities in undergraduate laboratories: wind tunnel, water channel, vibration table, and testing machine. Students operate experimental facilities, obtain data, complete engineering analysis and write major reports. Prerequisites: grade of C– or better in MAE 101C or CENG 103C or CENG 101C, MAE 143B, and MAE 170.

MAE 180A. Spacecraft Guidance I (4)
Astronomy, orbital motion, perturbations, coordinate systems and frames of reference. Geosynchronous orbits, satellite navigation, rocket engines, maneuvers, fuel consumption, guidance systems. Observation instrument point, tracking, control. Basic rocket dynamics. Navigation, telemetry, re-entry, and aero-assisted maneuvers. Mission design. Students perform analyses based on mission require-
ments. Prerequisite: upper-division standing in physics, mathematics, or engineering department.

MAE 181. Space Mission Analysis and Design (4)

MAE 192. Senior Seminar in Aerospace, Environmental or Mechanical Engineering (1)
The Senior Seminar Program is designed to allow senior undergraduate aerospace engineering major members in a small group setting to explore an intellectual topic in aerospace, environmental or mechanical engineering (at the upper-division level). Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic and permission from the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: department stamp or consent of instructor.

MAE 195. Teaching (2–4)
Teaching and tutorial assistance in an MAE course under supervision of faculty. More than four units may be used to satisfy graduation requirements. P/NP grades only. Prerequisites: junior status and a B average in major and consent of department chair.

MAE 197. Engineering Internship (1–4)
Students work in local industry or hospitals under faculty supervision. Units may not be applied toward graduation requirements. Satisfactory or unsatisfactory. Number of units determined by enrollment frequency. First quarter up to four units. Subsequent quarters cannot exceed one unit. Prerequisites: consent of instructor and department stamp, 2.50 overall GPA minimum, at least ninety units.

MAE 198. Directed Group Study (1–4)
A course to be given at the discretion of the faculty in which a group of students in a major or cross-listed course may meet under faculty supervision. Teaching and tutorial assistance in an MAE course under supervision of faculty. Prerequisites: consent of instructor. Not offered every year. Credit determined by enrollment frequency. First quarter up to four units. Subsequent quarters cannot exceed one unit. Prerequisites: consent of instructor and department stamp, 2.50 overall GPA minimum, at least ninety units.

MAE 199. Independent Study for Undergraduates (4)
Independent reading or research on a problem by special arrangement with a faculty member. P/NP grades only. Prerequisite: consent of instructor.

GRADUATE COURSES

MAE 205. Graduate Seminar (1)
Each graduate student in MAE is expected to attend one seminar per quarter, of his or her choice, dealing with current topics in fluid mechanics, solid mechanics, applied physics and fusion, chemical engineering, applied ocean sciences, energy and combustion, environmental engineering, or materials science, and dynamics and controls. Topics will vary. (S/U grades only)

MAE 207. Topics in Engineering Science (4)
A course to be given at the discretion of the faculty in which topics of current interest in engineering will be presented. Prerequisite: consent of instructor.

MAE 209. Continuum Mechanics Applied to Medicine/Biology (4)
(Cross-listed with BENG 209.) Introduction to the basic definitions of continuum mechanics and their mathematical formulation at the graduate level with applications to problems in medicine and biology. This course is intended for students with little or no background in mechanics; it is an introduction to the Biomechanics courses BENG 250 A–B in the Department of Bioengineering and to Solid and Fluid Mechanics courses MAE 210A and MAE 231A in the Department of Mechanical and Aerospace Engineering. This course should NOT be taken concurrently with MAE 210A or MAE 231A. Prerequisite: consent of instructor.

MAE 210A. Fluid Mechanics I (4)
(Cross-listed with CENG 210A.) Basic conservation laws. Flow kinematics. The Navier-Stokes equations and some of its exact solutions. Non-dimensional parameters and different flow regimes, vorticity dynamics. Prerequisites: MAE 101A–B and MAE 110A, or consent of instructor.

MAE 210B. Fluid Mechanics II (4)
Potential flows, boundary layers, low-Reynolds number flows. Prerequisites: MAE 210A, MAE 101A–B, and MAE 110A, or consent of instructor.

MAE 210C. Fluid Mechanics III (4)
Flow instabilities, linear stability theory; introduction to turbulent flows. Prerequisites: MAE 210A–B, MAE 101A–B, and MAE 110A, or consent of instructor.

MAE 211. Introduction to Combustion (4)
Fundamental aspects of flows of reactive gases, with emphasis on processes of combustion, including the relevant thermodynamics, chemical kinetics, fluid mechanics, and transport processes. Topics may include deflagrations, detonations, diffusion flames, ignition, extinction, and propellant combustion. Prerequisites: MAE 101A–B or CENG 101A–B, MAE 110A, or consent of instructor.

MAE 212. Introductory Compressible Flow (4)
Equations of motion for compressible fluids; one-dimensional gas dynamics and wave motion, waves in supersonic flow, including oblique shock waves; flow in ducts, nozzles, and wind tunnels; methods of characteristics. Prerequisites: MAE 101A–B or CENG 101A–B, MAE 110A, or consent of instructor.

MAE 213. Mechanics of Propulsion (4)
Fluid mechanics, thermodynamics and combustion processes involved in propulsion of aircraft and rockets by air breathing engines, and solid and liquid propellant rocket engines characteristics and matching of engine components; diffusers, compressors, combustors, turbines, pumps, nozzles. Prerequisites: MAE 101A–B, MAE 110A, MAE 212, or consent of instructor.

MAE 214A. Introduction to Turbulence and Turbulent Mixing (4)

MAE 216. Ocean Turbulence and Mixing (4)
(Cross-listed with SIO 213.) Mixing mechanisms, their identification, description and modeling. Introduction to turbulence, semi-empirical theories, importance of coherent structures, effects of stratification and rotation on turbulent structure, entrainment and mixing. S/U grades permitted.

MAE 217A. Introduction to Gas Discharge Plasma Physics (4)
 Charged particle motion in electromagnetic field, atomic processes in plasmas, electric breakdown of the gases, plasma quasi-neutrality, sheath, probes. Electron kinetics in low-temperature plasma, particle and energy fluxes, DC and RF driven discharges, instabilities of gas discharge plasmas. Prerequisites: Physics 100A–B or consent of instructor.

MAE 217B. Introduction to Non-Magnetized Hot Plasma Physics (4)
Coulomb collisions, collisionless approximation for hot plasma dynamics, Vlasov equation, waves in non-magnetically coupled plasma, dispersion equation, WKBJ approximation, Landau damping, plasma instabilities, quasi-linear theory. Prerequisite: MAE 217A or consent of instructor.

MAE 217C. Introduction to Magneted Hot Plasma Physics (4)
Drifts of magnetized charged particles, charged particle motion in different magnetic configurations, toroidal plasma equilibrium, Grad-Shafranov equation, neoclassical plasma transport in tokamaks, waves in homogeneous magnetized plasma, waves in inhomogeneous magnetized plasma, instabilities of magnetized plasma. Prerequisites: MAE 217A–B or consent of instructor.
densification, composite fabrication, superconductor synthesis, electronic and optical materials processing, and techniques to generate amorphous solids. Prerequisite: consent of instructor.

MAE 253. Advanced Ceramics (4)
(Cross-listed with MATS 236.) Topics include phase equilibria and crystallography, defects and thermodynamics (Kim, Kreglewski.) glass, sintering, electrical and ionic transport behavior, Brinnier diagrams, powder synthesis and compaction, sintering theory and grain growth, mechanical optical, magnetic, electrical properties, fuel cells. Prerequisite: consent of instructor or department stamp.

MAE 255. Boundary Layer and Renewable Energy Meteorology (4)
Radiative and convective heat transfer in the atmosphere. Surface energy balance and the urban heat island. Turbulence and dispersion in the atmospheric boundary layer. Atmospheric energy systems, resource assessment, and intermittency. Prerequisite: MAE 210A or consent of instructor.

MAE 261. Cardiovascular Fluid Mechanics (4)
Topics in the mechanics of blood flow including analytical solutions for flow in deformable vessels, one-dimensional equations, cardiovascular anatomy, lumped parameter models, vascular trees, scaling laws, and an introduction to the biomechanics and treatment of adult and congenital cardiovascular diseases. Prerequisite: MAE 210A, 290A, or consent of instructor.

MAE 262. Fluid Mechanics of the Cell (4)
Fluids phenomena relevant to the function, environment, and interaction of biological cells. Topics include: low-Reynolds number flows, cell motility, internal cellular flows, development and morphogenesis, hydrodynamics of suspensions and polymers, rheology, diffusion, hydrodynamics of deformable bodies (vesicles, membranes, filaments), cells under shear flow. Prerequisite: MAE 209, MAE 210A, or consent of instructor.

MAE 263. Experimental Methods in Cell Mechanics (4)
Methods to measure mechanical aspects of cellular nature and behavior such as intracellular rheology, intracellular force distribution and propagation, cell adhesion strength, generation of propulsive forces during locomotion, interaction with the extracellular matrix, and response to external mechanical stimuli. Prerequisites: MAE 209 or MAE 210A, MAE 131A or equivalent, or consent of instructor.

MAE 265A. Electronic and Photonic Properties of Materials (4)
(Cross-listed with MATS 251A.) The electronic and optical properties of metals, semiconductors, and insulators. The concept of the band structure. Electronic and lattice conductivity. Type I and Type II superconductivity. Optical engineering using photonic band gap crystals in one-, two-, and three-dimensional biological cells. Topics include: low-Reynolds number flows, cell motility, internal cellular flows, development and morphogenesis, hydrodynamics of suspensions and polymers, rheology, diffusion, hydrodynamics of deformable bodies (vesicles, membranes, filaments), cells under shear flow. Prerequisite: consent of instructor.

MAE 265B. Magnetic Materials: Principles and Applications (4)
(Cross-listed with MATS 251B.) The basis of magnetism: Classical and quantum mechanical points of view. Different kinds of magnetic materials. Magnetic phenomena including anisotropy, magnetostriiction, domains, and magneto- magnetization dynamics. Current frontiers of nano-magnetics research including thin films and particles. Optical, data storage, and biomedical engineering applications of soft and hard magnetic materials. Prerequisite: consent of instructor.

MAE 266. Biomaterials (4)
(Cross-listed with MATS 252.) This class will cover biomaterials and biomimetic materials. Metal, ceramic, and polymer biomaterials will be discussed. Emphasis will be on the structure-property relationships, biocompatibility/degradation issues and tissue/material interactions. Synthesis and mechanical testing of biomimetic materials will also be discussed. Prerequisite: consent of instructor.

MAE 267. Nanomaterials and Properties (4)
(Cross-listed with MATS 253.) This course discusses synthesis techniques, processing, microstructural control and unique properties of materials in nano-dimensions. Topics include nanowires, quantum dots, thin films, electrical transport, electron emission properties, optical behavior, mechanical behavior, and technical applications of nanomaterials. Prerequisite: consent of instructor.

(Cross-listed with MATS 255.) This course focuses on the unique physical properties of materials in nano-dimensions. Topics include nanowires, quantum dots, thin films, electrical transport, electron emission properties, optical behavior, mechanical behavior, and technical applications of nanomaterials. Prerequisite: consent of instructor.

MAE 269. Presentations, Inventions and Patents (4)
(Cross-listed with MATS 255.) This course covers methodology and skills for oral and written presentations. Topics include research proposal, specification, patent analysis, publication manuscripts, research work proposals, understanding and securing of inventions and intellectual properties, patent applications and licensing. Prerequisite: consent of instructor. Not offered in 2008–09.

MAE 271A. Thermodynamics of Solids (4)
(Cross-listed with MATS 214 and ECE 238B) The thermodynamic and statistical mechanics of solids. Basic concepts: equilibrium properties of alloy systems, thermodynamic information from phase diagrams, surfaces and interfaces, crystalline defects. Prerequisite: consent of instructor.

MAE 271B. Solid State Diffusion and Reaction Kinetics (4)
Thermally activated processes, Boltzmann factor, homogeneous and heterogeneous reactions, solid state diffusion, Fick’s laws, diffusion mechanisms, Kirkendall effect, Boltzmann-Matano analysis, high diffusivity paths. Prerequisite: consent of instructor.

MAE 271C. Phase Transformations (4)

MAE 272. Imperfections in Solids (4)
Point, line, and planar defects in crystallographic solids, including vacancies, self interstitials, solute atoms, dislocations, stacking faults, and grain boundaries; effects of imperfections on mechanical properties; interactions of dislocations with point defects; strain hardening by micro-obstacles, precipitation, and alloying elements.

MAE 273A. Dynamic Behavior of Materials (4)
(Elastic waves in continuum; longitudinal and shear waves. Surface waves. Plastic waves; shock waves, Rankine-Hugoniot relations. Method of characteristic, differential and difference form of conservation equations; dynamic plasticity and dynamic fracture. Shock wave reflection and interaction. Prerequisite: consent of instructor.

MAE 280A. Linear Systems Theory (4)
Linear algebra: inner products, outer products, vector norms, matrix norms, least squares problems, Jordan forms, coordinate transformations, positive definite matrices, etc. Properties of linear dynamic systems as illustrated by ODEs: observability, controllability, detectability, stability, trackability, optimality. Control systems design: state estimation, pole assignment, linear quadratic control. Prerequisite: MAE 143B or consent of instructor.

MAE 280B. Linear Control Design (4)
Parameterization of all stabilizing output feedback controllers, covariance controllers, H-infinity controllers, and L2 to L-infinity controllers. Continuous and discrete-time treatment. Alternating projection algorithms for solving output feedback problems. All control design problems reduced to one critical theorem in linear algebra. Prerequisite: MAE 280A.

MAE 281A. Nonlinear Systems (4)

MAE 281B. Nonlinear Control (4)

MAE 282. Adaptive Control (4)

MAE 283A. Parametric Identification: Theory and Methods (4)

MAE 283B. Approximate Identification and Control (4)

MAE 284. Robust and Multi-Variable Control (4)
Multivariable feedback systems: transfer function matrices, Smith-McMillan form, poles, zeros, principal gains, operator norms, limits on performance. Model uncertainties, stability and performance robustness. Stability robustness, controller design. Prerequisite: MAE 143C or MAE 280A.

MAE 286. Hybrid Systems (4)

MAE 288A. Optimal Control (4)

MAE 288B. Optimal Estimation (4)
Least Squares and Maximum Likelihood Estimation methods, Gauss-Markov models, State Estimation and Kalman Filtering, prediction and smoothing. The extended Kalman filter. Prerequisite: MAE 280A completed or concurrent.

MAE 289. Functional Analysis and Applications (4)

MAE 290A. Efficient Numerical Methods for Simulation, Optimization, and Control (4)
Linear algebra, numerical methods, and numerical analysis. Direct and iterative methods for systems of linear and nonlinear equations, the fundamental matrix decompositions (eigenvector/SVD/Jordan), transform methods (Fourier/Laplace/Z), function approximation, differentiation, integration (quadrature/ODEs), and minimization. Prerequisite: MAE 107 or consent of instructor.

MAE 290B. Numerical Methods for Differential Equations (4)
Numerical solution of differential equations in mathematical physics and engineering, ordinary and partial differential equations. Linear and nonlinear hyperbolic parabolic, and elliptic equations, with emphasis on prototypical cases, the convection-diffusion equation, Laplace's and Poisson equation. Finite difference methods will be considered in depth, and additional topics. Prerequisite: MAE 290A or consent of instructor.

MAE 291. Design and Mechanics in Computer Technology (4)
Design and mechanics problems inherent in computer peripherals such as disk files, tape drives, and printers. Formulation and solution of problems involving mechanics, fluid mechanics, and materials; Reynolds equation, slider bearings; friction and wear; actuator design, impact printing; silicon fluid jets. Prerequisite: consent of instructor. Not offered every year.

MAE 292. Computer-Aided Design and Analysis (4)
Introduction to 2-D and 3-D computer-aided design. Design problems may include: ball bearing kinematics, Weibull statistics, non-repeatable spindle run-out, four bar linkages, beam deflection and vibration, design of magnetic head suspension, hydrodynamic theory of lubrication, air bearings, heat transfer, optical servo, design of ink jet print head. Prerequisite: consent of instructor. Not offered every year.

MAE 293. Advanced Computer Graphics for Engineers and Scientists (4)
Advanced topics used to enhance scientific and engineering visualization. C programming assignments and the use of advanced graphics software. Continuation of topics from MAE 152, including color, computational geometry, 3-D contouring, volume visualization, and hardware architectures. Prerequisite: MAE 152 or consent of instructor.

MAE 294A. Introduction to Applied Mathematics (4)
(Cross-listed with SIO 203A.) Review of exact methods for ordinary differential equations. Expansions about regular and irregular singular points. Introduction to asymptotic expansions. Approximate methods for nonlinear differential equations. Regular and singular perturbation theory. Additional topics depending upon the interests of the instructor. Prerequisites: Math. 110, Math. 120A or consent of instructor.

MAE 294B. Introduction to Applied Mathematics II (4)
(Cross-listed with SIO 203B.) Asymptotic methods: method of steepest descent (if not covered in I), WKBJ method of multiple scales, boundary layer theory. Elements of complex analysis. Prerequisite: MAE 294A or SIO 203A or consent of instructor.

MAE 294C. Introduction to Applied Mathematics III (4)
(Cross-listed with SIO 203C.) Partial differential equations: characteristics, similarity solutions, Green's functions, images, wave equation, diffusion equation, Laplace's equation, Applications to continuum mechanics, potential fields, and transport phenomena such as diffusion, linear and nonlinear waves, Burger's equation and shocks. Other topics according to the interests of the instructor. Prerequisites: MAE 294B or SIO 203B or consent of instructor.

MAE 295. Field Study (1–12)
Provides field study in industry with faculty supervision. Analysis and problem solving using real world applications. Prerequisite: consent of advisor and department; 3.0 GPA.

MAE 296. Independent Study (1–4)
Independent reading or research on a problem as arranged by a designated faculty member. Must be taken for a letter grade only. Prerequisite: consent of instructor.

MAE 298. Directed Group Study (1–4)
Directed group study on a topic or in a field not included in regular department curriculum, by special arrangement with a faculty member. Prerequisite: consent of instructor. (S/U grades permitted.)

MAE 299. Graduate Research (1–12)
Independent work by graduate students engaged in research and writing theses. MAE graduate students only. (S/U grades only.)

MAE 501. Teaching Experience (2)
Provides field study in industry with faculty supervision. Analysis and problem solving using real world applications. Prerequisite: consent of advisor and department; 3.0 GPA.

MAE 290A or consent of instructor.

MAE 294A or SIO 203A or consent of instructor.

Prerequisite: consent of instructor. Not offered every year.

Prerequisite: consent of instructor or consent of advisor and department; 3.0 GPA.

Prerequisite: consent of instructor. Not offered every year.

Prerequisites: Math. 110, Math. 120A or consent of instructor.

Prerequisite: consent of instructor. Not offered every year.

Prerequisite: MAE 152 or consent of instructor.

Prerequisite: MAE 152 or consent of instructor.

Prerequisite: consent of instructor. Not offered every year.

Prerequisite: consent of instructor or consent of advisor and department; 3.0 GPA.

Prerequisite: consent of instructor. Not offered every year.

Prerequisites: Math. 110, Math. 120A or consent of instructor.
NanoEngineering (NANO)

PROFESSORS
Pao C. Chau, Ph.D., NanoEngineering
Shaochen Chen, Ph.D., NanoEngineering
Sadik C. Esener, Ph.D., NanoEngineering and Electrical and Computer Engineering
Eric Fullerton, Ph.D., Electrical and Computer Engineering and NanoEngineering
Michael J. Heller, Ph.D., NanoEngineering and BioEngineering
Sungho Jin, Ph.D., Mechanical and Aerospace Engineering and NanoEngineering
Marc A. Meyers, Ph.D., Mechanical and Aerospace Engineering and NanoEngineering
Jan B. Talbot, Ph.D., NanoEngineering
Joseph Wang, Ph.D., NanoEngineering
Kenneth S. Vecchio, Ph.D., Chair, NanoEngineering

ASSOCIATE PROFESSOR
Richard K. Herz, Ph.D., NanoEngineering

ASSISTANT PROFESSORS
Gaurav Arya, Ph.D., NanoEngineering
Jennifer N. Cha, Ph.D., NanoEngineering
Shirley Meng, Ph.D., NanoEngineering
Donald J. Sirbuly, Ph.D., NanoEngineering
Andrea R. Tao, Ph.D., NanoEngineering
Liangfang Zhang, Ph.D., NanoEngineering

AFFILIATED FACULTY
Adah Almutairi, Ph.D. Assistant Professor, Pharmaceutical Sciences
Prab Bandaru, Ph.D., Associate Professor, Mechanical and Aerospace Engineering
Karen Christman, Ph.D., Assistant Professor, Bioengineering
Seth M. Cohen, Ph.D., Associate Professor, Chemistry and Biochemistry
Marye Anne Fox, Ph.D., Chancellor, Professor, Chemistry and Biochemistry
Andrew C. Kummel, Ph.D., Professor, Chemistry and Biochemistry
Yu-Hwa Lo, Ph.D., Professor, Electrical and Computer Engineering
Michael J. Sailor, Ph.D., Professor, Chemistry and Biochemistry
Gabriel A. Silva, Ph.D., Assistant Professor, Bioengineering
Shankar Subramanian, Ph.D., Professor, Bioengineering
William R. Trogler, Ph.D., Professor, Chemistry and Biochemistry
Shy尼 Varghese, Ph.D., Assistant Professor, Bioengineering
James K. Whitesell, Ph.D., Professor, Chemistry and Biochemistry
Paul Yu, Ph.D., Professor, Electrical and Computer Engineering

PROFESSIONAL RESEARCH STAFF
Min-Chieh Chuang
Bahram Fatollahi
Fengchun Jiang
Shiyong Zhao

CHEMICAL ENGINEERING PROGRAM (CENG)

Student Affairs: 2802 Atkinson Hall, Warren College

PROFESSORS
Pao C. Chau, Ph.D., NanoEngineering, Co-Director
Robert E. Conti, Ph.D., Chemistry and Biochemistry
John E. Crowell, Ph.D., Chemistry and Biochemistry
Carl H. Gilmour, Ph.D., MAE
David A. Gough, Ph.D., Bioengineering
Miroslav Krstic, Ph.D., MAE
Andrew C. Kummel, Ph.D., Chemistry and Biochemistry
Juan C. Lasheras, Ph.D., MAE
Joanna M. McKittrick, Ph.D., MAE
Bernhard O. Palsson, Ph.D., Bioengineering
Kalyanasundaram Shethadi, Ph.D., MAE
Jan B. Talbot, Ph.D., NanoEngineering, Program Director
Joseph Wang, Ph.D., NanoEngineering
Forman A. Williams, Ph.D., MAE

PROFESSORS EMERITI
Stanley Middleman, Ph.D., MAE
David R. Miller, Ph.D., MAE

ASSOCIATE PROFESSORS
Raymond A. de Callafon, Ph.D., MAE
Richard K. Herz, Ph.D., NanoEngineering

ASSISTANT PROFESSOR
Alexander Groisman, Ph.D., Physics

AFFILIATED FACULTY
L. Amy Sung, Ph.D., Associate Professor, Bioengineering

BUSINESS AFFAIRS:
2803 Atkinson Hall, Warren College

http://nanoengineering.ucsd.edu

DEPARTMENTAL FOCUS

The Department of NanoEngineering focuses on nanoscale science, engineering, and technology that have the potential to make valuable advances in different areas that include, to name a few, new materials, biology and medicine, energy conversion, sensors, and environmental remediation. Nanoengineering is a highly diversified and multidisciplinary field. The graduate research programs cover a broad range of topics, but focus particularly on biomedical nanotechnology, nanotechnologies for energy conversion and storage, computational nanotechnology, and molecular and nanomaterials. Undergraduate degree programs focus on integrating the various science and engineering disciplines necessary for successful careers in the evolving nanotechnology industry.

DEGREE AND PROGRAM OPTIONS

The Department of NanoEngineering offers undergraduate programs leading to the B.S. degrees in NanoEngineering and Chemical Engineering. The Chemical Engineering Program is accredited by the Engineering Accreditation Commission of the Accreditation Board of Engineering and Technology (ABET/EAC). The Nanoengineering Program is newly introduced, but the program is designed using ABET accreditation criteria; the department will apply for accreditation once there are graduates to measure the program outcomes. These two degree programs have very different requirements and are described in separate sections.

NANOENGINEERING PROGRAM (NANO)

PROGRAM MISSION AND OBJECTIVES

The mission of the Nanoeengineering Program is to provide a multidisciplinary education in nanoscale science and technology. The primary goals are

- Prepare students for a career in nanotechnology by providing them with a sound grounding in multidisciplinary areas of nanoscale science and engineering.
- Increase students’ understanding of materials and their properties at the atomic and nanometer scales, including an understanding of the intimate relationship between the scale and the properties of materials. This is referred to as the third dimension in the periodic table, where elements, and combinations thereof, have properties and functions that depend on the material dimension, spanning from the nanoscale to macroscale.
- Prepare graduates who, while skilled in nanoscale science and engineering, will be qualified for jobs in traditional science-based industries and government laboratories and, as nanotechnologies mature, well positioned for jobs in this applied area. This program will be anticipating trends and providing students with integrated, cross-disciplinary scientific knowledge and professional skills.
- Educate a new generation of engineers who can participate in, and indeed seed, new high-technology companies that will be the key to maintaining jobs, wealth, and educational infrastructures as nanotechnology results in a new industrial revolution.
- Enable students to develop a range of professional, scientific, and computational skills that will enhance employment opportunities in a wide range of industrial and governmental institutions.
- Prepare students for the workplace through developing their ability to have effective communication skills, modern science and engineering skills, and contribute constructively
to multidisciplinary teams.

- Form strong multidisciplinary educational links through joint team projects that cross the traditional areas of science and engineering.

THE UNDERGRADUATE PROGRAM

The B.S. program in NanoEngineering is tailored to provide breadth and flexibility by taking advantage of the strength of basic sciences and other engineering disciplines at UC San Diego. The intention is to graduate nanomechanics who are multidisciplinary and can work in a broad spectrum of industries.

All NANO courses are taught only once per year, and courses are scheduled to be consistent with the curriculum as shown in the tables below. Under normal circumstance, students must follow the prescribed curriculum. Unavoidable deviation from the curriculum for unforeseen class scheduling conflicts and to comply with the prerequisites of some Bioengineering courses, students are required to take only four of the six courses in one major, with the other two outside their chosen engineering focus. Preapproved accepted courses of each of the four focuses are shown below. Students must keep in mind that the NANO courses are only offered once a year.

All NANO courses are taught only once per year, and courses are scheduled to be consistent with the curriculum as shown in the tables below. Under normal circumstance, students must follow the prescribed curriculum. Unavoidable deviation from the curriculum for unforeseen class scheduling conflicts and to comply with the prerequisites of some Bioengineering courses, students are required to take only four of the six courses in one major, with the other two outside their chosen engineering focus. Preapproved accepted courses of each of the four focuses are shown below. Students must keep in mind that the NANO courses are only offered once a year.

Humanities and social sciences (forty-eight units): This requirement is intended to fulfill the general-education requirements (GER) from respective colleges.

Basic sciences and mathematics (fifty-nine units): This lower-division requirement includes twenty-four units of mathematics (Math. 20A–F), sixteen units of physics (Phys. 2A–D), fifteen units of chemistry (Chem. 6A–C, 6BL), and four units of biology (BILD 1).

Engineering preparation (sixteen units): This requirement covers basics in computer programming, circuit analysis and circuits lab (ECE 15, 35, 45, 65).

Nanotechnology core (thirty-seven units): This requirement is constituted of a one-unit seminar (NANO 1) and nine core courses (NANO 101 to 104, 110 to 112, and 120A-B).

Nanotechnology electives (eight units): This requirement must be chosen from among the upper-division NANO courses offered by the department.

Engineering focus (twenty-four units): Students are recommended to select all six engineering electives from within one single major to constitute an engineering focus. However, to allow for unforeseen class scheduling conflicts and to comply with the prerequisites of some Bioengineering courses, students are required to take only four of the six courses in one major, with the other two outside their chosen engineering focus. Preapproved accepted courses of each of the four focuses are listed below.

- Bioengineering:
 BENG 100, 101, 103B*, 109, 110, 112A, 112B, 122A*, 130, 186A
 *BENG 103B requires CENG 101A and 122A requires MAE 140. Both prerequisites are accepted as part of the twenty-four-unit bioengineering focus.

- Chemical engineering:
 CENG 100, 101A, 101B, 101C, 102, 113, 120.

- Electrical engineering:

- Mechanical engineering:

- Materials science:
 NANO 108, 140, 148, 150, 156, 158, 161, 164, 168.

All students follow the same basic science preparation and core set of classes in NanoEngineering during the first two years.

Fall
Freshman Year
Math. 20A
Chem. 6A
ECE 15
HSS
Math. 20B
Chem. 6B
BILD 1
HSS
NANO 1

Sophomore Year
Math. 20D
Phys. 2B
Chem. 6BL
HSS
Math. 20F
Phys. 2C
NANO 101
HSS
Math. 20E
Phys. 2D
ECE 25
HSS

Winter
Spring

Recommended Course Sequence—Bioengineering Focus

Fall
Junior Year
NANO 102
CENG 101A
ECE 35
HSS
Senior Year
NANO 110
BENG 101
NE Elective
HSS

Spring
NANO 103
BENG 130
ECE 65
HSS
NANO 111
BENG 109
NANO 120A
HSS

Recommended Course Sequence—Chemical Engineering Focus

Fall
Junior Year
NANO 102
CENG 100
ECE 35
HSS
Senior Year
NANO 110
CENG 101A
NE Elective
HSS

Spring
NANO 103
CENG 102
ECE 65
HSS
NANO 112
CENG 101B
NANO 120B
HSS

Recommended Course Sequence—Electrical Engineering Focus

Fall
Junior Year
NANO 102
CENG 100
ECE 35
HSS
Senior Year
NANO 110
ECE 135A
NE Elective
HSS

Spring
NANO 103
CENG 102
ECE 65
HSS
NANO 111
ECE 135B
NANO 120A
HSS

Recommended Course Sequence—Mechanical Engineering Focus

Fall
Junior Year
NANO 102
NANO 108
ECE 35
HSS
Senior Year
NANO 110
CENG 101A
MAE 105
HSS

Spring
NANO 103
MAE 130A
ECE 65
HSS
NANO 111
NANO 120A
NE Elective
HSS

Recommended Course Sequence—Materials Science Focus

Fall
Junior Year
NANO 102

Spring
NANO 103
NANO 104
Academic Advising

Application for Admission to the Major

Admission to the department as a NANO major or minor, or to fulfill a major in another department that requires NANO courses, is in accordance with the general requirements established by the Jacobs School of Engineering. The admission requirements and procedures are described in detail in the section on “Acceptance to Departmental Majors in the Jacobs School of Engineering” in this catalog. Applicants who have demonstrated excellent academic performance prior to being admitted to UC San Diego will be admitted directly to the engineering major of their choice. These directly admitted students and all students are expected to complete lower- and upper-division courses, as suggested in the curriculum tables, in a timely fashion in the sequences outlined.

Academic Advising

Upon admission to the major, students should consult the catalog or NanoEngineering Web site (http://nanoengineering.ucsd.edu) for their program of study or their undergraduate advisor if they have questions. The program plan may be revised in subsequent years, but revisions involving curricular requirements require approval by the undergraduate advisor or the Undergraduate Affairs Committee. Because some course and/or curricular changes may be made every year, it is imperative that students consult with the department’s undergraduate advisor on an annual basis. As aforementioned, NANO and CENG courses are offered only once a year and therefore should be taken in the recommended sequence. If courses are taken out of sequence, it may not always be possible to enroll in courses as desired or needed. If this occurs, students should seek immediate departmental advice. When a student deviates from the sequence of courses specified for each curriculum in this catalog, it may be impossible to complete the major within the nominal four-year period.

In addition to the advising available through the Student Affairs Office, programmatic or technical advice may be obtained from faculty members. A specific faculty mentor is assigned to each student. All students are required to meet with their faculty mentor at least once a quarter.

Program Alterations/Exceptions to Requirements

Variations from or exceptions to any program or course requirements are possible only if the Undergraduate Affairs Committee approves a petition before the courses in question are taken. Petition forms may be obtained from the Student Affairs Office and must be processed through this office.

Independent Study

Students may take NANO 199, Independent Study for Undergraduates, under the guidance of a Nano faculty member. This course is taken as an elective on a P/NP basis. Under very restrictive conditions, however, it may be used to satisfy upper-division technical elective course requirements for the major. Students interested in this alternative must identify a faculty member with whom they wish to work and propose a two-quarter research or study topic. After obtaining the faculty member’s concurrence on the topic and scope of the study, the student must submit a Special Studies Course form (each quarter) and NANO 199 as Technical Elective Contract form to the Undergraduate Affairs Committee. These forms must be completed, approved, and processed prior to the add/drop deadline. Detailed policy in this regard and the requisite forms may be obtained from the Student Affairs Office.

Transfer Students

The undergraduate engineering curriculum is designed to integrate four years of college educational experience. It is not easy for transfer students to complete the major requirements in only two additional years beyond their junior college work. Students should consult their advisor for a transition program compatible with their junior college preparation.

Requirements for admission as a NANO major or into NANO courses are the same for transfer students as they are for continuing students (see section on “Acceptance to Departmental Majors in the Jacobs School of Engineering” in this catalog). Accordingly, when planning their program, transfer students should be mindful of lower-division prerequisite course requirements, as well as for meeting collegiate requirements. Students who have taken equivalent courses elsewhere may request to have transfer credit apply toward the department’s major requirements. To receive transfer credit, complete a Student Petition form and submit it to Student Affairs. For mathematics, chemistry, and physics, the respective department determines transfer equivalencies. An Undergraduate Student Petition must be submitted to each department from which you are requesting transfer credit.

The following courses are strongly recommended for all engineering transfer students for success in their major:

- Calculus I—for Science and Engineering (Math. 20A)
- Calculus II—for Science and Engineering (Math. 20B)
- Calculus and Analytic Geometry (Math. 20C)
- Differential Equations (Math. 20D)
- Linear Algebra (Math. 20F)
- Complete calculus-based physics series with lab experience (Physics 2A-B-C)
- Chemistry 6A (except computer science and computer engineering majors)
- Highest level of introductory computer programming language course offerings at the community college*
- Community college equivalent courses can be found at: http://www.assist.org

*Refer to the UC San Diego General Catalog to select major prerequisite recommendations for computer language courses.

GRADUATE PROGRAM

DEGREE AND PROGRAM OPTIONS

Plans are currently underway to develop graduate curricula leading to the M.S. and Ph.D. degrees in nanoengineering by 2011. Until NanoEngineering graduate programs are in place, students wishing to pursue nanoengineering as a graduate focus are encouraged to apply to related graduate programs in bioengineering, chemical engineering, and mechanical and aerospace engineering. Transfer to NanoEngineering will be considered upon approval of its degree programs.

The Chemical Engineering Program offers graduate instruction leading to the M.S. and Ph.D. degrees in chemical engineering. Effective fall 2009, Chemical Engineering will offer a concentration in nanotechnology within the graduate program, which also will bridge with the future graduate degree program in nanoengineering.

CHEMICAL ENGINEERING PROGRAM (CENG)

Student Affairs: 2802 Atkinson Hall, Warren College

PROGRAM OBJECTIVES

The Chemical Engineering Program has affiliated faculty from the Department of NanoEngineering, Department of Mechanical and Aerospace Engineering, Department of Chemistry and Biochemistry, and the Department of Bioengineering. The curricula at both the undergraduate and graduate levels are designed to support and foster chemical engineering as a profession that interfaces engineering and all aspects of basic sciences (physics, chemistry, and biology). The primary educational objectives of the Chemical Engineering Program are:

- To provide chemical engineering students with a strong technical education and communication skills that will enable them to have successful careers in a wide range of industrial and professional environments.
- To prepare chemical engineering students for rapidly changing technological environments with the core knowledge central to multidisciplinary development and personal improvement throughout their professional careers.
- To instill in chemical engineering students a strong sense of humanistic values and professionalism such that they can conduct ethically and knowledgeably regarding technological
impact in societal issues.

The curriculum is designed to prepare chemical engineering graduates for further education and personal development through their entire professional career. We strive to accomplish these goals by providing a rigorous and demanding curriculum that incorporates lectures, discussions, laboratory and project development experiences in basic sciences, mathematics, engineering sciences, and design as well as the humanities and social sciences.

B.S./M.S. Contiguous Program

A contiguous program leading to a bachelor of science and a master of science degree in chemical engineering is offered to a student with junior standing who has an upper-division GPA of 3.5 or better and a 3.0 overall UCSD GPA. During the last quarter of their junior year (more specifically, the fourth quarter prior to the receipt of the B.S. degree), students interested in obtaining the M.S. degree within one year following receipt of the B.S. degree may apply to the department for admission to the program.

The M.S. program is intended to extend and broaden an undergraduate background and/or equip practicing engineers with fundamental knowledge in their particular fields. The degree is offered under both the Thesis Plan I and the Comprehensive Examination Plan II.

Integrated B.S./M.S. Requirements

An integrated co-terminal program leading to a bachelor of science and a master of science degree in chemical engineering is offered to a student with junior standing who has an upper-division GPA of 3.5 or better and a 3.0 overall UCSD GPA. Details of the program are available from the Student Affairs Office.

Program Accreditation

The B.S. Program in chemical engineering is accredited by the Accreditation Board of Engineering and Technology (ABET/EAC).

GRADUATE PROGRAM

The Chemical Engineering Program offers graduate instruction leading to the M.S. and Ph.D. degrees in chemical engineering. The nanotechnology concentration signifies that four elective courses are chosen from the approved courses in this area.

Admission is in accordance with the general requirements of the graduate division, which requires at least a B.S. in some branch of engineering, sciences, or mathematics; an overall GPA of 3.0, and three letters of recommendation from individuals who can attest to the academic or professional competence and to the depth of their interest in pursuing graduate study.

In addition, all applicants are required to submit GRE General Test Scores. A minimum score of 550 on the Test of English as a Foreign Language (TOEFL) is required of all international applicants whose native language is not English. Students who score below 600 on the TOEFL are strongly encouraged to enroll in an English as a second language program before beginning graduate work. UC San Diego Extension offers an excellent English language program during the summers as well as the academic year.

Applicants are judged competitively. Based on the candidate's background, qualifications, and goals, admission to the program is in one of three categories: M.S. only, MS, or Ph.D. Admission to the M.S. only category is reserved for students for whom the M.S. degree is likely to be the terminal graduate degree. The M.S. designation is reserved for students currently interested in obtaining an M.S. degree but who at a later time may wish to continue in the doctoral degree program. Admission to the Ph.D. Program is reserved for qualified students whose final aim is a doctoral degree.

Non-matriculated students are welcome to seek enrollment in graduate-level courses via UC Extension's concurrent registration program, but an extension student's enrollment in a graduate course must be approved by the instructor.

MASTER'S DEGREE PROGRAM

The M.S. Program is intended to extend and broaden an undergraduate education with fundamental knowledge in different fields. The degree may be terminal, or obtained on the way to the Ph.D. The degree is offered under both the Thesis Plan I and the Comprehensive Examination Plan II.

M.S. Time Limit Policy: Full-time M.S. students are permitted seven quarters in which to complete all requirements. While there is no written time limit for part-time students, the department has the right to intervene and set individual deadlines if it becomes necessary.

Course requirements: All M.S. students must complete a total of forty-eight units, which include a core of five courses (twenty units) chosen among fluid dynamics (CENG 210A, MAE 210B), heat and mass transfer (CENG 221AB), kinetics (CENG 232), and mathematics. To maintain a certain balance in the core, no more than two mathematics courses should be chosen among the choices of applied mathematics (MAE 294AB or Math. 210AB) and numerical mathematics (MAE 290AB or Math. 270AB).

No more than three courses (twelve units) of upper-division courses may be applied toward the total course work requirement. No more than a total of eight units of CENG 296 and 298 may be applied toward the course work requirement. Units in seminars (CENG 259) may not be applied toward the degree requirement.

Thesis Plan I: Completion of the research thesis (CENG 299) fulfills twelve units toward the total graduation requirement. The balance is made up of the five core courses (twenty units) and additional four elective courses (sixteen units) subject to the restrictions described above. The nanotechnology concentration signifies that four elective courses are chosen from the approved courses in this area.

Comprehensive Examination Plan II: This plan involves course work only and culminates in an oral comprehensive examination based on topics selected from the core courses. In addition to the five core courses (twenty units), one must choose an additional seven electives (twenty-eight units) subject to the restrictions of CENG 259, 296, and 298 described above. Sample electives are listed in the table below. A student should consult his or her academic advisor to choose an appropriate course schedule, including alternatives in bioengineering, electrical and computer engineering, materials science, basic sciences, and mathematics. The nanotechnology concentration signifies that four elective courses are chosen from the approved courses in this area.

Fall

<table>
<thead>
<tr>
<th>Core selections</th>
<th>CENG 210A</th>
<th>CENG 221A</th>
<th>CENG 221B</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 290A or 294A</td>
<td>MAE 210B</td>
<td>MAE 252</td>
<td></td>
</tr>
</tbody>
</table>

Winter

<table>
<thead>
<tr>
<th>Core selections</th>
<th>CENG 290B or CENG 294B</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 201A or MAE 212</td>
<td></td>
</tr>
<tr>
<td>Math. 270A or Math. 270C</td>
<td></td>
</tr>
<tr>
<td>Chem. 211 or Chem. 212</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Core selections</th>
<th>CENG 290A or CENG 252</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 201C or Math. 212</td>
<td></td>
</tr>
<tr>
<td>Math. 270C or Math. 270A</td>
<td></td>
</tr>
<tr>
<td>Chem. 213</td>
<td></td>
</tr>
</tbody>
</table>

Change of Degree: Upon completion of the requirements for the M.S. degree, students admitted as M.S. only or M.S. candidates are not automatically eligible for admission to the Ph.D. Program.

M.S. only and M.S. candidates who subsequently wish to pursue a doctorate must submit an application for a change in status to their examining committee. The application, if approved by the committee, must be signed by a faculty member who expects to serve as the student's Ph.D. advisor. The student must also submit a general petition for graduate students to effect the change of status. If the student elects the comprehensive examination plan for the M.S. degree, the examining committee may recommend that the comprehensive examination may replace the preliminary qualifying examination expected of Ph.D. students.

DOCTORAL DEGREE PROGRAM

The Ph.D. Program is intended to prepare students for a variety of careers in research and teaching. The emphasis is on research. In general, there are no formal course requirements. All students, in consultation with their advisors, develop appropriate course programs that will prepare them for the Preliminary Qualifying Examination and for their dissertation research. These programs must be planned to meet the time limits established to advance to candidacy and to complete the requirements of the degree.

All Ph.D. students are required to pass three examinations. The first is a Preliminary Qualifying Examination, which should be taken within three to four quarters of full-time graduate study. The second is the Ph.D. Qualifying Examination. The last is the Dissertation Defense.

Preliminary Qualifying Examination: The examination is intended to determine a candidate's basic understanding of engineering fundamentals and the candidate's ability to pursue successfully a research project at a level appropriate for the doctorate. The scope of the examination is based on topics selected from the core curriculum as listed under the M.S. degree program. A candidate is expected to demonstrate knowledge equivalent to these courses and formal enrollment record is not a prerequisite. The format is an oral examination administered by a committee of three faculty members in the Chemical
Engineering Program. The candidate should present to the committee, prior to the examination, the five core courses that will constitute the basis of the examination.

Depth Requirement: A candidate must have the ability to perform in-depth analysis in the dissertation topic. A candidate should consult with the thesis advisor to develop a proper course program if it is deemed necessary. Depending on an individual’s background and the nature of the research problem, a candidate should either complete a set of a minimum of four courses or demonstrate to the thesis advisor the equivalent knowledge and ability.

Ph.D. Qualifying Examination: Prior to taking this examination, the candidate must have completed the departmental qualifying examination, obtained a faculty research advisor, and must have made initial progress on a chosen dissertation project. At the time of application for advancement to candidacy, a doctoral committee responsible for the remainder of the student’s graduate program is appointed by the Graduate Council under the policy listed in the “Graduate Studies” section of the UC San Diego General Catalog. The committee conducts the Ph.D. Qualifying Examination, during which the student must demonstrate the ability to engage in thesis research. The process involves the presentation of a plan for the thesis research project. The committee may ask questions directly or indirectly related to the project and general questions that it determines to be relevant. Upon successful completion of the examination, subject to the UCSD time limit policy, the student is advanced to candidacy and is awarded the candidate in philosophy degree (see “Graduate Studies” section in this catalog).

Teaching Experience: Prior to the dissertation defense, the candidate must serve at least once as a teaching assistant with the responsibility to hold a problem-solving section one hour a week.

Dissertation Defense: This is the final Ph.D. examination. Upon completion of the dissertation research project, the candidate writes a dissertation that must be successfully defended in an oral examination and public presentation conducted by the doctoral committee. A complete copy of the student’s dissertation must be submitted to each member of the doctoral committee four weeks before the defense. It is understood that this copy of the dissertation given to committee members will not be the final copy, and that the committee members may request changes in the text at the time of the defense. This examination may not be conducted earlier than three quarters after the date of advancement to doctoral candidacy. Acceptance of the dissertation by the Office of Graduate Studies and the University Librarian represents the final step in completion of all requirements for the Ph.D. degree.

Ph.D. Time Limit Policy: Pre-candidacy status is limited to four years. Doctoral students are eligible for university support for six years. The defense and submission of the doctoral dissertation must be within seven years.

Annual Evaluation: In the spring of each year, the faculty advisor evaluates each doctoral student’s overall performance in course work, research, and prospects for financial support for future years. A written assessment is given to the student after the evaluation. If a student’s work is found to be inadequate, the faculty may determine that the student cannot continue in the graduate department.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

COURSES IN CHEMICAL ENGINEERING (CENG)

All undergraduate students enrolled in CENG courses or admitted to the CENG program are expected to meet prerequisite and performance standards, i.e., students may not enroll in any CENG courses or courses in another department which are required for the major prior to having satisfied prerequisite courses with a C– or better. (The program does not consider D or F grades as adequate preparation for subsequent material.) Additional details are given under the program outline, course descriptions, and admission procedures for the Jacobs School of Engineering in this catalog.

LOWER-DIVISION

CENG 1. The Scope of Chemical Engineering (1)
Demonstrations and discussions of basic knowledge and the opportunities in chemical engineering for professional development. Introduction to campus library and computer resources. Use of personal software tools such as spread-sheeting and student edition of MATLAB.
Prerequisites: none. (P/NP grading only.)

UPPER-DIVISION

CENG 100. Process Modeling and Computation in Chemical Engineering (4)
Introduction to elementary numerical methods with applications to chemical engineering problems using a variety of problem solving strategies. Error analysis. Concepts of mathematical modeling, material and energy balances, and probability and statistics with applications to design problems.
Prerequisites: admission to the chemical engineering major only and grades of C– or better in MAE 9 or 10, and Chem. 6C or consent of instructor.

CENG 101A. Introductory Fluid Mechanics (4)
Kinematics and equation of motion; hydrostatics; Bernoulli’s equation; viscous flows; turbulence; pipe flow; boundary layers and drag in external flows; applications to chemical, structural, and bioengineering. Students may not receive credit for both MAE 101A and CENG 101A.
Prerequisites: admission to the major and grades of C– or better in MAE 9 or 10, and Chem. 6C or consent of instructor.

CENG 101B. Heat Transfer (4)
Conduction, convection, radiation heat transfer; design of heat exchangers. Students may not receive credit for both MAE 101C and CENG 101B.
Prerequisites: admission to the major and a grade of C– or better in CENG 101A.

CENG 101C. Mass Transfer (4)
Diffusive and convective mass transfer in solids, liquids, and gases.; steady and unsteady state; mass transfer coefficients; applications to chemical engineering and bioengineering. Students may not receive credit for both MAE 101D and CENG 101C.
Prerequisites: admission to the major and grades of C– or better in CENG 101A.

CENG 102. Chemical Engineering Thermodynamics (4)
Thermodynamic behavior of pure substances and mixtures. Properties of solutions, phase equilibria. Thermodynamic cycles. Chemical equilibria for homogeneous and heterogeneous systems. Prerequisites: CENG 100 and Math. 20D or consent of instructor.
CHEMICAL ENGINEERING GRADUATE COURSES

CENG 205. Graduate Seminar in Chemical Engineering (1)
Each credit applicable for a student of CENG is expected to attend one seminar per quarter, of his or her choice, dealing with current topics in chemical engineering. Topics will vary. Prerequisites: none.

CENG 207. Nanomedicine (4)
Introduction to nanomedicine; diffusion and drug dispersion; diffusion in biological systems; drug permeation through biological barriers; drug transport by fluid motion; pharmacokinetics of drug distribution; drug delivery systems; nanomedicine in practice: cancers, cardiovascular diseases, immune diseases, and skin diseases. Prerequisites: none.

CENG 208. Nanofabrication (4)
Basic engineering principles of nanofabrication. Topics include: photo-, electron beam and nanoinprint lithography, block copolymers and self-assembled monolayers, colloidal assembly, biological nanofabrication. Prerequisites: none.

CENG 210A. Fluid Mechanics I (4)
(Cross-listed with MENG 210A.) Basic conservation laws, flow kinematics. The Navier-Stokes equations and some of its exact solutions. Prerequisites: MENG 113A and ECE 15, or CENG 101A-B-C or consent of instructor.

CENG 211. Introduction to Nanoengineering (4)
Understanding nanotechnology, broad implications; miniaturization: scaling laws; nanoscale physics; types and properties of nanomaterials; nanomechanical oscillators; nanobiotechnology; effects of noise, sensitivity and stability; applications of nanotechnology and nanobiotechnology. Prerequisites: none.

CENG 212. Intermolecular and Surface Forces (4)
Development of quantitative understanding of the different intermolecular forces between atoms and molecules and how these forces give rise to interesting phenomena at the nanoscale, such as flocculation, wetting, and self-assembly in biological (natural) and synthetic systems. Prerequisites: none.

CENG 213. Nanoscale Synthesis and Characterization (4)
Examination of nanoscale synthesis—top-down and bottom-up; physical deposition; chemical vapor deposition; plasma processes; sol-gel processing; soft-lithography; block copolymers and self-assembly; layer-by-layer; molecular synthesis. Nanoscale characterization: microscopy (optical and electron: TEM, SEM); scanning probe microscopes (SEM, AFM, STM); X-ray; X-ray diffraction; spectroscopies (EDX, SIMS, Mass spect, Raman, XPS); particle size analysis; electrical, optical, magnetic, mechanical, thermal. Prerequisites: none.

CENG 214. Nanoscale Physics and Modeling (4)
Expanded mathematical analysis of topics introduced in CENG 212. Introduction of both analytical and numerical methods through application to problems in nanotechnology. Prerequisites: none. This course is offered by the Jacobs School of Engineering in cooperation with the Jacobs School of Management.

CENG 215. Nanosystems Integration (4)
Discussion of scaling issues and how to carry out the effective hierarchical assembly of diverse molecular and nanoscale components into higher order structures that retain the desired electronic, photonic, structural, mechanical, or catalytic properties at the microscopic and macroscopic levels. Novel ways to combine the best aspects of both top-down and bottom-up processes to create a totally unique paradigm change for the integration of heterogeneous molecules and nanocomponents into higher order structures. Prerequisites: none.

CENG 221A Heat Transfer (4)
(Cross-listed with MENG 221A.) Conduction, convection, and radiation heat transfer development of energy conservation equations. Analytical and numerical solutions to heat transport problems. Specific topics and applications vary. Prerequisites: MENG 113A-B-C or CENG 101A-B-C or consent of instructor.

CENG 221B Mass Transfer (4)
(Cross-listed with MENG 221B.) Fundamentals of diffusive and convective mass transfer and mass transfer with chemical reaction. Development of mass conservation equations. Analytical and numerical solutions to mass transport problems. Specific topics and applications vary. Prerequisites: MENG 113A-B-C or CENG 101A-B-C or consent of instructor.

CENG 251. Thermodynamics (4)
Principles of thermodynamics of single and multi-component systems. Phase equilibria, estimation, calculation, and modeling of mixtures of liquids and gases. Prerequisite: consent of instructor.

CENG 252. Chemical Reaction Engineering (4)
Analysis of chemical rate processes; complex kinetic systems. Chemical reactor properties in steady state and transient operations; optimal design policies. The interaction of chemical and physical transport processes in affecting reactor design and operating characteristics. Uniqueness; multiplicity and stability in reactor systems. Applications of the heterogeneous reactor systems. Prerequisite: consent of instructor.

CENG 253. Heterogeneous Catalysis (4)
Physics and chemistry of heterogeneous catalysis. Adsorption/desorption kinetics, chemical bonding, isoenergetic modes of reaction, catalytic cycles, selection of catalysts, poisoning, experimental techniques. Prerequisite: consent of instructor.

CENG 254. Biochemical Engineering Fundamentals (4)
Introduction to microbiology as relevant to the main topic, bacterial reactor analysis. Fermentation and enzyme technology. Prerequisite: consent of instructor.

CENG 255. Electrochemical Engineering (4)
Fundamentals of electrochemistry and electrochemical engineering. Structure of the double layer, cell potential and electrochemical thermodynamics, charge transfer kinetics, electrochemical transport phenomena, and introduction to colloidal chemistry. Applications such as corrosion prevention, electroplating, reactor design, batteries and fuel cells. Prerequisite: consent of instructor.

CENG 259. Seminar in Chemical Engineering (4)
Presentations on research progress by graduate students and by visitors from industrial and academic research laboratories. (May be repeated for credit. 5 U grades only.) Prerequisite: consent of instructor.

CENG 296. Independent Study in Chemical Engineering (1–12)
Independent reading or research on a problem as arranged by a faculty member. Must be taken for a letter grade only. Prerequisite: consent of instructor.

CENG 299. Graduate Research in Chemical Engineering (1–12)
S/U grades only. Prerequisite: consent of instructor.

CENG 301. Teaching Experience (2)
Teaching experience in an appropriate CENG undergradu- rate course under the direction of the faculty member in charge of the course. Lecturing one hour per week in either a problem-solving section or regular lecture. (S/U grades only) Prerequisites: consent of instructor and departmental stamp.

COURSES IN NANOENGINEERING (NANO)
All students enrolled in NANO courses or admitted to the NANO major are expected to meet prerequisite and performance standards, i.e., students may not enroll in any NANO courses or courses in another department that are required for the major prior to having satisfied prerequisite courses with a C– or better. (The department does not consider D grades as adequate preparation for subsequent material.) Additional details are given under the program outline, course descriptions, and admission procedures for the Jacobs School of Engineering in this catalog.

LOWER-DIVISION

NANO 1. Nanoengineering Seminar (1)
Overview of nanotechnology. Presentations and discussions of basic knowledge and career opportunities in nanotechnology for professional development. Introduction to campus library resources. Prerequisites: none. (P/NP grading only)

NANO 87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

UPPER-DIVISION

NANO 101. Introduction to Nanoengineering (4)
Introduction to nanotechnology: nanoscale fabrication; nanolithography and self-assembly; characterization tools; nanomaterials and nanostructures; nanotubes, nanowires, nanoparticles, and nanocomposites; nanoscale and molecular electronics; nanotechnology in magnetic systems; nanotechnology in integrative systems; nanoscale optoelectronics; nanobiotechnology; biomimetic systems, nanomotors, nanofluids, and nanomedicine. Prerequisites: grade of C– or better in Chem. 6B, Phys. 2B, Math. 20C.

NANO 102. Foundations in Nanotechnology: Chemical Principles (4)
Chemical principles involved in synthesis, assembly, and performance of nanostructured materials and devices. Chemical interactions, classical and statistical thermodynamics of small systems, diffusion, carbon-based nanomaterials, supramolecular chemistry, liquid crystals, colloidal and polymer chemistry, lipid vesicles, surface modification, surface functionalization, catalysis. Prerequisites: grade of C– or better in Chem. 6C, Math. 20D, NANO 101, or at least concurrent enrollment.

NANO 103. Foundations in Nanotechnology: Biochemical Principles (4)
Principles of biochemistry tailored to nanotechnologies. The structure and function of biomolecules and their specific roles in molecular interactions and signal pathways. Nanoscale detection methods. Prerequisites: grade of C– or better in BILD 1, Chem. 6C, NANO 101, or at least concurrent enrollment.

NANO 104. Foundations in Nanotechnology: Physical Principles (4)
Introduction to quantum mechanics and nanoelectronics. Wave mechanics, the Schroedinger equation, free and confined electrons, band theory of solids. Nanosolids in 0D, 1D, and 2D. Application to nanoelectronic devices. Prerequisites: Grade of C– or better in Phys. 2D or Chem. 133, Math. 20D, NANO 102 or at least concurrent enrollment.

NANO 110. Modeling of Nanotechnology Systems (4)
Engineering computation applied to nanotechnology including linear systems, nonlinear equations, optimization, solution of ordinary and partial differential equations, microfluidics simulation, quantum mechanical methods, Monte Carlo and molecular dynamics methods. Students will write programs and use open-source and commercial software. Prerequisites: grade of C– or better in Math. 20F, ECE 15, NANO 101.
NANO 111. Characterization of Nanoengineering Systems (4)
Fundamentals and practice of methods to image, measure, and analyze materials and devices that are structured at the nanometer scale. Optical and electron microscopy; scanning probe methods; photon-, ion-, and electron-probe methods, spectroscopic, magnetic, electrochemical, and thermal methods. Prerequisites: grade of C– or better in NANO 104.

NANO 112. Synthesis and Fabrication of Nanoengineering Systems (4)
Introduction to methods for fabricating materials and devices in nanoengineering: Nano-particle, -vesicle, -tube, and -wire synthesis. Top-down methods including chemical vapor deposition, conventional and advanced lithography, doping, and etching. Bottom-up methods including self-assembly. Integration of heterogeneous structures into functioning devices. Prerequisites: grade of C– or better in NANO 102 and 103.

NANO 120A. Nanoengineering System Design I (4)
Principles of product design and the design process. Application and integration of technologies in the design and production of nanoscale components. Engineering economics. Initiation of team design projects to be completed in NANO 120B. Prerequisites: grade of C– or better in NANO 110, 111, and 112.

NANO 120B. Nanoengineering System Design II (4)
Principles of product quality assurance in design and production. Professional ethics. Safety and design for the environment. Culmination of team design projects initiated in NANO 120A with a working prototype designed for a real engineering application. Prerequisites: grade of C– or better in NANO 120A.

NANO 140. Introduction to Molecular Simulations (4)
Principles of molecular simulations. The students will gain hands-on experience with development of a molecular dynamics code and Monte Carlo codes, performing simulations, and analyzing simulation results. The students will also learn to apply molecular simulation techniques for solving nanoengineering problems. Prerequisite: NANO 110.

NANO 143. Nanomedicine (4)
History of nanomedicine; length scale; main topics of nanomedicine: drug delivery, drugs and therapy, in vivo imaging, in vitro diagnosis, biomaterials, and active implants; nanomedicine in practice for disease treatment and diagnostics: cancers, cardiovascular diseases, immune diseases, and skin diseases. Prerequisites: NANO 101, 102, 103, 104, or consent of instructor.

NANO 145. Introduction to Nanomachines (4)
Understanding nanoscale motion, scaling laws, motion control at the nanoscale, biological nanomotors, molecular nanomachines, design of artificial nanomotors, propulsion mechanisms of artificial nanomotors, applications, and future opportunities and challenges. Prerequisites: NANO 101, 102, 103, 104, or consent of instructor.

NANO 146. Nanoscale Optical Microscopy and Spectroscopy (4)
Fundamentals in optical imaging and spectroscopy at the nanometer scale. Diffraction-limited techniques, near-field methods, multiphoton imaging and spectroscopy, Raman techniques, plasmon-enhanced methods, scan-probe techniques, novel sub-diffraction-limit imaging techniques, and energy transfer methods. Prerequisite: consent of instructor.

NANO 147. BioNanotechnology (4)
Introduction to biofabrication and bioengineering as applied to nanoscience and nanoengineering. Biological nanostructures, bioelectronics, and biophysics. Basic biochemistry, genetic engineering, and library screening techniques. Bioconjugation and characterization of biological systems on surfaces and nanoscale materials. Biological synthesis of inorganic nanocrystals. Prerequisite: NANO 101, 102, 103, 104, or consent of instructor.

NANO 148. Thermodynamics of Materials (4)
Fundamental laws of thermodynamics for simple substances; application to flow processes and to nonreacting mixtures; statistical thermodynamics of ideal gases and crystalline solids; chemical and materials thermodynamics; multiphase and multicomponent equilibria in reacting systems; electrochemistry. Prerequisite: NANO 20.

NANO 150. Mechanics of Nanomaterials (4)
Continuum, quantum and, statistical mechanics, interatomic forces and intermolecular interactions, nanomechanics of self-assembly, pattern formation, hierarchical ordering, defects, surfaces, and interfaces, plasticity, creep, fracture and fatigue, adhesion, friction and wear, nanorheology, nanotribology, composite materials, carbon nanomaterials, biological materials. Prerequisite: NANO 20.

NANO 156. Principles of Materials (4)
Basic principles of synthesis techniques, processing, microstructural control and unique physical properties of materials in nanodimensions. Nanowires, quantum dots, thin films, electrical transport, optical behavior, functional behavior, and technical applications of nanomaterial. Prerequisite: NANO 20.

NANO 158. Phase Transformations and Kinetics (4)
Materials and microstructures changes. Understanding of diffusion to variable changes in the chemical distribution and microstructure of materials, rates of diffusion. Phase transformations, effects of temperature and driving force on transformations and microstructure. Prerequisite: NANO 20.

NANO 161. Material Selection in Engineering Design (4)
Selection of materials for engineering systems, based on constitutive analyses of functional requirements and material properties. The role and implications of processing on material selection. Optimizing material selection in a quantitative methodology. Prerequisite: NANO 20.

NANO 162. Nanosensors: Principles, Design, and Applications (4)
Why nanosensors? Nanosensors based on different nanomaterials, fabrication of nanosensors, large-scale integration of nanosensor arrays, common recognition elements, surface chemistry and functionalization, signal transduction, practical applications. Prerequisite: consent of instructor.

NANO 164. Advanced Micro- and Nanomaterials for Energy Storage and Conversion (4)
Materials for energy storage and conversion in existing and future power systems, including fuel cells and batteries, photovoltaic cells, thermoelectric cells, and hybrids. Prerequisite: consent of instructor.

Introduction to physical principles of electrical, dielectric, and magnetic properties. Semiconductors, control of defects, thin film, and nanocrystal growth, electronic and optoelectronic devices. Processing-microstructure-property relations of dielectric materials, including piezoelectric, pyroelectric and ferroelectric, and magnetic materials. Prerequisite: NANO 20.

NANO 192. Senior Seminar in NanoEngineering (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in chemical engineering (at the upper-division level). Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students with preference given to seniors. Prerequisite: department stamp or consent of the instructor.

NANO 195. Teaching (2–4)
Teaching and tutorial assistance in a NANO course under supervision of instructor. Not more than four units may be used to satisfy graduation requirements. Prerequisites: junior status with a B average in major and consent of instructor. (P/NP only.)

NANO 197. Engineering Internship (1–4)
Coordinated through the UCSD Academic Internship Program, this course provides work experience through industry, government offices, hospitals, and their practices. Students work in local industry or hospitals under faculty supervision. Units may not be applied toward major graduation requirements. Internship is unsalaried. Prerequisites: completion of ninety units with 2.5 GPA and consent of instructor.

NANO 198. Directed Group Study (1–4)
Directed group study on a topic or in a field not included in the regular department curriculum, by special arrangement with a faculty member. Prerequisite: consent of instructor. (P/NP only.)

NANO 199. Independent Study for Undergraduates (4)
Independent reading or research on a problem by special arrangement with a faculty member. Prerequisite: consent of instructor. (P/NP only.)
DEPARTMENT FOCUS

The instructional and research programs of the department are grouped into four programmatic focus areas: civil structures, aerospace and composite structures, renewal of structures, and earthquake engineering. Both the undergraduate and graduate programs are characterized by strong interdisciplinary relationships with the Departments of Mechanical and Aerospace Engineering, Physics, Mathematics, Bioengineering, Chemistry, Electrical and Computer Engineering, Computer Science and Engineering, the Materials Science Program, and associated campus institutes such as the Institute of Geophysics and Planetary Physics, Institute for Pure and Applied Physical Sciences, Institute for Biomedical Engineering, Center of Excellence for Advanced Materials, California Space Institute, Calit2, and Scripps Institution of Oceanography.

The programs and curricula of the Department of Structural Engineering will educate and train engineers in a holistic approach to structural systems engineering by emphasizing and building on the commonality of engineering structures in materials, mechanics, analysis and design across the engineering disciplines of civil, aerospace, marine and mechanical engineering.

Although structural engineering is traditionally viewed as an activity within civil engineering, in actuality many other engineering disciplines such as aerospace, marine (naval, offshore), and mechanical engineering contain well established discipline-specific structural systems and components. In all of the various engineering disciplines there exists a large commonality in the structural materials used, in the general principles of structural mechanics, in the overall design philosophy and criteria, and in the modeling and analysis tools employed for the numerical quantification and visualization of structural response. Particularly, small disciplinary differences in materials and computational tools are rapidly disappearing with the civil engineering community opening up to new structural materials developed and used to date primarily in the aerospace industry, and with computational developments which are less product specific but more geared towards a holistic structural systems design approach with interactive graphics, object-oriented database management and concurrent visualization and data processing. Developments in overall structural systems design are increasingly cross-disciplinary over many traditional engineering areas.

THE UNDERGRADUATE PROGRAM

DEGREE AND PROGRAM OPTIONS

The Department of Structural Engineering offers an unique engineering program leading to the B.S. degree in structural engineering which is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (EAC/ABET). The Department of Structural Engineering also offers a nonaccredited B.S. degree in engineering sciences. The B.S. programs require a minimum of 148 units, plus college requirements in humanities and social sciences. All Structural Engineering programs of study have strong components in laboratory experimentation, numerical computation, and engineering design. Design is emphasized throughout the curricula by open-ended homework problems, by laboratory and computer courses which include student-initiated projects, and finally, by senior design project courses which involve teams of students working to solve engineering design problems brought in from industry. The Structural Engineering programs are designed to prepare students receiving bachelor's degrees for professional careers or for graduate education in their area of specialization. In addition, the programs can also be taken by students who intend to use their undergraduate engineering education as preparation for postgraduate professional training in non-technical fields such as business administration, law or medicine.

Structural Engineering is concerned with the design and analysis of civil, mechanical, aerospace, marine, naval, and offshore structures. Examples include bridges, dams, buildings, aircraft, spacecraft, ships, oil platforms, automobiles, and other transportation vehicles. This field requires a thorough knowledge of the behavior of solids (concrete, soils, rock, metals, plastics, and composite materials), fluid mechanics as it relates to structural loads, dynamics as it relates to structural response, mathematics for the generation of theoretical structural models and numerical analysis, and computer science for simulation purposes associated with computer-aided design, response analyses, and data acquisition. Basic understanding of materials behavior and structural performance is enhanced by laboratory courses involving static and dynamic stress failure tests of structural models, and response of structural systems. Within this area, students can specialize in (a) civil structures, (b) aerospace structures, (c) renewal of structures, or (d) earthquake engineering.

The engineering sciences program follows the overall Structural Engineering program except that the number of required design courses is reduced. In addition to core courses in dynamics, vibrations, structures, fluid mechanics, thermodynamics, heat transfer, and laboratory experimentation, a large number of technical electives are scheduled. This aspect of the curriculum allows flexibility by permitting specialization and in-depth study in one area of the engineering sciences or through a sequence of courses on various emerging technologies. Students must consult their advisors to develop a sound course of study to fulfill the technical elective requirements of this program.

MAJOR REQUIREMENTS

Specific course requirements for the major are outlined in a table herein. In addition to the required technical courses specifically indicated, a suggested scheduling of humanities and social science courses (HSS) is distributed in the curriculum for students to use to meet college general-education requirements. To graduate, students must maintain an overall GPA of at least 2.0, and the department requires at least a C– grade in each course required for the major.

Deviations from the program of study must be approved by the Undergraduate Affairs Committee prior to taking alternative courses. In cases where a student needs to take a course outside UC San Diego, prior departmental approval is essential. In
addition, technical elective (TE) course selections must have departmental approval prior to taking the courses. In the accredited program, TE courses are restricted to meet ABET standards. Courses such as SE 195, SE 197 and SE 198 are not allowed as technical electives in meeting the upper-division major requirements. SE 199 can be used as a technical elective only under restrictive conditions. Policies regarding these conditions may be obtained from the department’s Student Affairs Office. Graduate level courses may be petitioned for technical elective credit.

Students with different academic preparations may vary the scheduling of lower-division courses such as math, physics and chemistry, but should consult the department prior to doing so. Deviations in scheduling lower-division Structural Engineering courses are discouraged due to scheduling constraints. A tentative schedule of course offerings is available from the department each spring quarter for the following academic year.

GENERAL-EDUCATION/COLLEGE REQUIREMENT

For graduation, each student must satisfy general-education course requirements determined by the student's college, as well as the major requirements determined by the department. The six colleges at UCSD require widely different general-education courses, and the number of such courses differs from one college to another. Each student should choose his or her college carefully, considering the special nature of the college and the breadth of general education.

The Structural Engineering program allows for twelve humanities and social science (HSS) courses so that students can fulfill their college requirements. In the ABET accredited programs, students must develop a program that includes a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. Twelve HSS courses are listed here; individual college requirements may be higher.

Students must take one full-focus sequence (FS) in: (a) Civil Structures, (b) Aerospace Structures, (c) Renewal of Structures, or (d) Geotechnical Engineering. Students should note that not all focus sequence classes will be offered every year. Students admitted to the university prior to fall 2010 who have completed MAE 9 are not required to take SE 9.

Transfer students admitted to the university prior to fall 2007 who have completed MAE 9 are not required to take SE 9.

*Students must take one full-focus sequence (FS) in: (a) Civil Structures, (b) Aerospace Structures, (c) Renewal of Structures, or (d) Geotechnical Engineering. Students should note that not all focus sequence classes will be offered every year. Students admitted to the university prior to fall 2010 will be allowed to use the courses outlined in past focus sequences from the catalog year in which they entered the university.

ENGINEERING SCIENCES (Nonaccredited Program)

FALL

WINTER

SPRING

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 20A</td>
<td>Math. 20B</td>
<td>Math. 20C</td>
<td></td>
</tr>
<tr>
<td>SE 1</td>
<td>HSS</td>
<td>SE 2</td>
<td></td>
</tr>
<tr>
<td>Chem. 6A</td>
<td>Phys. 2A</td>
<td>Phys. 2B/2BL</td>
<td></td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
</tr>
</tbody>
</table>

SOLOMON YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 20D</td>
<td>Math. 20F</td>
<td>Math. 20E</td>
<td></td>
</tr>
<tr>
<td>Phys. 2C/2CL</td>
<td>Phys. 2B/2CL</td>
<td>Phys. 2B/2CL</td>
<td></td>
</tr>
<tr>
<td>SE 101A</td>
<td>SE 9</td>
<td>SE 10C</td>
<td></td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE 125</td>
<td>SE 120</td>
<td>SE 10C</td>
<td></td>
</tr>
<tr>
<td>TE</td>
<td>SE 120</td>
<td>SE 10C</td>
<td></td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE 125</td>
<td>SE 120</td>
<td>SE 10C</td>
<td></td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
</tr>
</tbody>
</table>

1. In fulfilling the humanities and social science requirements (HSS), students must take a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. Twelve HSS courses are listed here; individual college requirements may be higher.

2. Students admitted to the university prior to fall 2010 who have completed MAE 9 are not required to take SE 9.

3. Students must take one full-focus sequence (FS) in: (a) Civil Structures, (b) Aerospace Structures, (c) Renewal of Structures, or (d) Geotechnical Engineering. Students should note that not all focus sequence classes will be offered every year. Students admitted to the university prior to fall 2010 will be allowed to use the courses outlined in past focus sequences from the catalog year in which they entered the university.

STRUCTURAL ENGINEERING (ABET ACCREDITED PROGRAM)

Program Mission and Objectives

The B.S. Structural Engineering program is accredited by the ABET Inc. Engineering Accreditation Commission (Accreditation Board for Engineering and Technology). Accreditation is an assurance that the program meets established quality standards.

B.S. Structural Engineering Mission

To provide a comprehensive education and training to engineers using a holistic approach to structural systems engineering by emphasizing and building on the commonality of engineering structures at the levels of materials, mechanics, analysis, and design.

B.S. Structural Engineering Objectives

Program objectives represent graduates' performance three to five years after completing the B.S. program:

1. To provide our students receiving bachelor’s degrees with a strong technical education that will prepare them for successful professional careers in industry, or for continued graduate education in their area of specialization

2. To provide our students with fundamental structural engineering principles that can be applied across multiple engineering applications (such as aerospace, civil, marine, and mechanical).

3. To provide our students with broad multidisciplinary skills necessary to accomplish professional objectives in a rapidly changing technological world.

4. To provide our students with the ethical standards, communication and collaboration skills essential for professional practice and career advancement.

B.S. Structural Engineering Outcomes

Program outcomes are the expected knowledge, skills, attitudes, and behaviors of students at the time of completing the B.S. program:

1. An ability to apply knowledge of mathematics, science, and engineering

2. An ability to design and conduct experiments, as well as being able to analyze and interpret data

3. An ability to design a system, component, or process to meet desired needs

4. An ability to function in multidisciplinary teams

5. An ability to identify, formulate, and solve engineering problems

6. An understanding of professional and ethical responsibility

7. An ability to communicate effectively with written, oral, and visual means

8. The broad education necessary to understand the impact of engineering solutions in a global and societal context

9. A recognition of the need for and an ability to engage in lifelong learning

10. A knowledge of contemporary issues

11. An ability to use modern engineering techniques, skills, and computing tools necessary for engineering practice
in this catalog, it may be impossible to complete the Structural Engineering major within the normal four-year period. Students should refer to the four-year plan and course prerequisite map on the department Web site at http://www.structures.ucsd.edu.

In addition to the advising available through the Structural Engineering Student Affairs Office, programmatic or technical advice may be obtained from Structural Engineering faculty members. A specific Structural Engineering faculty advisor is assigned to each Structural Engineering student. All Structural Engineering students are required to meet with their faculty advisor at least once a year, preferably before the beginning of fall quarter.

PROGRAM ALTERATIONS/EXCEPTIONS TO REQUIREMENTS

Variations from, or exceptions to, any program or course requirements are possible only if a petition is approved by the Structural Engineering Undergraduate Affairs Committee before the courses in question are taken. Petition forms may be obtained from the Structural Engineering Student Affairs Office and must be processed through this office.

INDEPENDENT STUDY

Structural Engineering students may take SE 199, Independent Study for Undergraduates, under the guidance of a Structural Engineering faculty member. Normally, this course is taken as an elective on a P/NP basis. Under restrictive conditions, however, it may be used to satisfy upper-division technical elective course requirements for the major. Students interested in taking an SE 199 course must identify a faculty member with whom they wish to work and propose a research or study topic. After obtaining the faculty member's concurrence on the topic and scope of the study, the student must submit a Special Studies Course form to the Structural Engineering Undergraduate Affairs Committee. The forms must be completed, approved, and processed prior to the beginning of the quarter in which the course is to be taken. This should not be done during the add/drop period. Detailed policy in this regard and the requisite forms may be obtained from the Student Affairs Office.

GRADUATE PROGRAM

The Department of Structural Engineering offers instruction leading to the degrees of master of science (M.S.) and doctor of philosophy (Ph.D.) in structural engineering (SE). In addition, an M.S. degree in structural health monitoring, prognosis, and validated simulations has been activated. The graduate program is aimed at training a select number of highly skilled professionals in structural engineering with the academic and engineering credentials to assume leadership roles in industry and academia.

The M.S. degree program is intended to provide students with additional fundamental knowledge as well as specialized advanced knowledge in selected structural engineering aspects over and above the undergraduate degree course work. The doctor of philosophy (Ph.D.) degree program is intended to prepare students for careers in teaching, research, and/or in their chosen professional specialties. The Ph.D. program requires a departmental comprehensive examination, a Ph.D. candidacy examination, a Ph.D. dissertation based on new and unique research, and a dissertation defense.

Both degrees offer opportunities for training in one or more of the four primary research focus areas within the SE department: (1) Earthquake Engineering, (2) Advanced Composites and Aerospace Structural Systems, (3) Renewal Engineering, and (4) Structural Health Monitoring, Prognosis, and Validated Simulations. Admission to the UC San Diego graduate program in Structural Engineering requires at least a B.S. degree in engineering, physical sciences, or mathematics with an overall upper-division GPA of 3.0. Applicants must provide three letters of recommendation and recent GRE general test scores. International applicants whose native language is not English are required to demonstrate proficiency in English by taking the TOEFL test. The minimum TOEFL score required is 550 (paper-based), 213 (computer-based), and 80 (Internet-based test [iBT]). Based on the candidate’s choice, qualifications, and career objectives, admission to the program is in one of two categories: M.S. or Ph.D.

Applicants seeking enrollment in SE courses via UC Extension’s concurrent registration program are advised to refer to the “Graduate Studies Transferring Credit,” section of the UC San Diego General Catalog for clarification.

BACHELOR’S/MASTER’S PROGRAM

The department offers a bachelor’s/master’s degree program to enable students to complete both the B.S. and M.S. degrees in an accelerated timeframe. Undergraduate students in the Department of Structural Engineering who have at least 148 quarter units with a cumulative GPA of 3.5 or higher are eligible to apply. Admission to the bachelor’s/master’s degree program is automatic. Student applications are reviewed and the final decision is made by the Department of Structural Engineering. Acceptance into this program is an honor that carries with it practical benefits—the graduate application process is simplified (no GREs required) and advanced students are given access to graduate level courses. Upon acceptance as an undergraduate into the program, a faculty member will be assigned who will serve as the student’s advisor. Interested students should contact the Structural Engineering Student Affairs Office. Students must fulfill all requirements for the B.S. degree prior to being formally admitted to graduate status.

MASTER’S DEGREE PROGRAM

The M.S. degree program is intended to provide the student with additional fundamental knowledge as well as specialized advanced knowledge in selected structural engineering aspects over and above the undergraduate degree course work. Two plans, the M.S. Thesis Plan and the M.S. Comprehensive Examination Plan, are offered.
The M.S. Thesis Plan is designed for those students with an interest in research prior to entering the structural engineering profession or prior to entering a doctoral degree program. The M.S. Thesis Plan involves course work leading to the completion and defense of a master’s thesis. The M.S. Comprehensive Examination Plan involves course work and requires the completion of a written comprehensive examination covering multiple courses that the student has taken. The M.S. Comprehensive examination will be comprehensive and cover two focus sequences and at least one additional technical elective that the student has taken. The examination must be completed no later than the end of the eighth week of the quarter the student intends to graduate.

Master students will be required to complete three core courses before they can graduate with their master’s degree. The courses are SE 200 Applied Mathematics in Structural Engineering (or one of the following two similar courses: MAE294A and Math. 210A), SE 201 Advanced Structural Analysis, and SE 271 Solid Mechanics for Structural and Aerospace Engineering.

M.S. students must complete forty-eight units of credit for graduation. For the M.S. Comprehensive Examination Plan all forty-eight units of credit must consist of regular courses (twelve courses). For the M.S. Thesis Plan, thirty-six units (nine courses) from regular courses are required, in addition to twelve units of graduate research for the master’s thesis. For both M.S. plans, students are required to complete a minimum of two sequences from the following focus areas:

1. Structural Analysis
2. Structural Design
3. Computational Mechanics
4. Earthquake Engineering
5. Geotechnical Engineering
6. Advanced Composites
7. Solid Mechanics
8. Advanced Structural Behavior

A sequence is composed of three regular courses from the same focus area. The courses comprising the focus sequences are listed in the table in this section. To meet the specific needs of some students, other focus areas may be developed by a student in consultation with his or her advisor, but these must be pre-approved by the SE Graduate Affairs Committee. To allow for greater flexibility in the program, the remaining credits required from courses may be earned by completing additional focus sequences, parts of focus sequences, or other appropriate courses. Students may elect to take other appropriate technical electives (with the approval of their advisor and the SE Graduate Affairs Committee). In general, no undergraduate courses are allowed for the M.S. degree. In special cases where an undergraduate course may be used, the arrangement must be preapproved by both the academic advisor and the Graduate Affairs Committee.

Units obtained in SE 290 and 298 may not be applied towards course work requirements. No more than four units of SE 296 may be applied toward course work requirements and only with prior approval of the SE Graduate Affairs Committee.

The department also offers a seminar course each quarter dealing with current research topics in Structural Engineering (SE 290). Students must take SE 290 every quarter in the first year, and are strongly recommended to take it for at least one quarter in every subsequent year.

FOCUS SEQUENCES

Structural Analysis
SE 201. Advanced Structural Analysis
SE 202. Structural Stability
SE 203. Structural Dynamics
SE 204. Advanced Structural Dynamics
SE 205. Nonlinear Mechanical Vibrations
SE 206. Random Vibrations

Structural Design
SE 211. Advanced RC/PC Design
SE 212. Advanced Structural Steel Design
SE 213. Bridge Design
SE 223. Advanced Seismic Design of Structures
SE 254. FRP Rehabilitation of Civil Structures

Computational Mechanics
SE 233. Computational Techniques in Finite Elements
SE 276A. Finite Element Methods in Solid Mechanics I
SE 276B. Finite Element Methods in Solid Mechanics II
SE 277. Error Control in Finite Element Analysis
SE 278A. Finite Element Methods for Computational Fluid Dynamics

Earthquake Engineering
SE 203. Structural Dynamics
SE 206. Random Vibrations
SE 221. Earthquake Engineering
SE 222. Geotechnical Earthquake Engineering
SE 223. Advanced Seismic Design of Structures
SE 243. Soil Structure Interaction

Geotechnical Engineering
SE 222. Geotechnical Earthquake Engineering
SE 241. Advanced Soil Mechanics
SE 242. Advanced Foundation Engineering
SE 243. Soil Structure Interaction

Advanced Composites
SE 253A. Mechanics of Laminated Composite Structures I
SE 253B. Mechanics of Laminated Composite Structures II
SE 253C. Mechanics of Laminated Anisotropy Plates and Shells

Experimental Mechanics and NDE
SE 252. Experimental Mechanics and NDE
SE 271. Solid Mechanics for Structural and Aerospace Engineering

Theory of Elasticity
SE 272. Theory of Elasticity
SE 273. Anelasticity

Advanced Structural Behavior
SE 205. Nonlinear Mechanical Vibrations
SE 224. Structural Reliability and Risk Analysis
SE 206. Random Vibrations
SE 252. Experimental Mechanics and NDE
SE 265. Structural Health Monitoring Principles

Students taking the Solid Mechanics focus sequence are required to take SE 271, SE 272, and one of these courses: SE 273, SE 252 or SE 235.

M.S. DEGREE IN STRUCTURAL ENGINEERING WITH SPECIALIZATION IN HEALTH MONITORING, PROGNOSIS, AND VALIDATED SIMULATIONS (SHMP&VS)

The M.S. degree in SHMP&VS provides specialized multidisciplinary knowledge in three technology areas of (1) sensing technology, (2) data interrogation, and (3) predictive modeling. Many courses currently offered within the Jacobs School of Engineering may be grouped into numerous focus sequences within each technology area, as shown in the following list:

A. SENSING TECHNOLOGY AREA

Sensing Methodologies
SE 252. Experimental Mechanics and NDE
MAE 261. Sensors and Measurements
MAE 268. MEMS Materials, Fabrication, and Applications
Data Acquisition Systems
ECE 257B. Principles of Wireless Networks
ECE 258A-B. Digital Communications
ECE 259CN. Advanced Coding and Modulation for Digital Communications
MAE 261. Sensors and Measurements
CSE 237A. Introduction to Embedded Computing
CSE 237B. Software for Embedded Computing
CSE 237C. Validation/Testing of Embedded Systems
CSE 237D. Design Automation and Prototyping for Embedded Systems
Controls
MAE 280A. Linear Systems Theory
MAE 280B. Linear Control Design
MAE 282. Adaptive Control
MAE 284. Robust and Multi-Variable Control
MAE 285. Optimal Control and Estimation

B. DATA INTERROGATION TECHNOLOGY AREA
Signal Processing
ECE 161A/SIO 207A. Introduction to Digital Signal Processing
ECE 251AN/SIO 207B. Digital Signal Processing I
ECE 251BN/SIO 207C. Digital Signal Processing II
ECE 251CN. Filter Banks and Wavelets
ECE 251DN or SIO 207D. Array Processing
ECE 253A. Fundamentals of Digital Image Processing
ECE 253B. Digital Image Analysis
ECE 254. Detection Theory
ECE 255AN. Information Theory
System Identification
MAE 283A. Parameter Identification: Theory and Methods
MAE 283B. Approximate Identification and Control
ECE 256A-B. Time Series Analysis and Applications
ECE 275A. Parameter Estimation I
ECE 275B. Parameter Estimation II
Pattern Recognition
CSE 250A. Artificial Intelligence: Search and Reasoning
CSE 250B. Artificial Intelligence: Learning
CSE 253. Neural Networks for Pattern Recognition
CSE 254. Statistical Learning
CSE 255. Data Mining and Artificial Intelligence Applications
ECE 270A-B-C. Neurocomputing
Statistical/Probabalistic Methods
MTH 281A-B-C. Mathematical Statistics
CSE 254. Statistical Learning
SE 206. Random Vibrations
SE 224. Structural Reliability and Risk Analysis

C. PREDICTIVE MODELING TECHNOLOGY AREA
Structural Analysis
SE 201. Advanced Structural Analysis
SE 202. Structural Stability
SE 203. Structural Dynamics
SE 204. Structural Reliability and Risk Analysis
Finite Element
MAE 232A. Finite Element Methods in Solid Mechanics I
MAE 232B. Finite Element Methods in Solid Mechanics II
MAE 232C. Advances in Materials Computations
SE 274. Nonlinear Finite Elemental Methods
Solid Mechanics
SE 271. Solid Mechanics for Structural and Aerospace Engineering
SE 272. Theory of Elasticity
SE 273. Theory of Plasticity and Viscoelasticity
SE 252. Experimental Mechanics and NDE
SE 235. Wave Propagation in Elastic Media
Material Behavior/Modeling
MAE 233B. Micromechanics
MAE 233C. Advanced Mechanics of Composite Materials
MAE 232C. Advances in Materials Computations
MAE 250. Fatigue, Fracture, and Failure Analysis in Engineering Materials
MAE 273A. Dynamic Behavior of Materials
SE 245. Constitutive Modeling and Numerical Implementation
Advanced Structural Behavior
SE 205. Nonlinear Mechanical Vibrations
SE 206. Random Vibrations
SE 224. Structural Reliability and Risk Analysis
SE 252. Experimental Mechanics and NDE
SE 265. Structural Health Monitoring Principles
Earthquake Engineering
SE 203. Structural Dynamics
SE 206. Random Vibrations
SE 221. Earthquake Engineering
SE 222. Geotechnical Earthquake Engineering
SE 223. Advanced Seismic Design of Structures
Advanced Composites
SE 142. Design of Composite Structures
SE 251. Processing Science of Composites
SE 253. Mechanics of Laminated Composite Structures
MAE 233C. Advanced Mechanics of Composite Materials
SE 254. FRP Rehabilitation of Civil Structures

Two degree plans in SHMP&VS will be offered: M.S. Thesis Plan and M.S. Comprehensive Examination Plan. Students in both plans must complete forty-eight units of credit for graduation. For both plans, students must complete thirty-six units of course work consisting of one focus sequence from each of the three technology areas A, B, and C listed above. Any three of the courses listed under a specific topic area constitute a focus sequence. Courses must be chosen in consultation with the student's advisor. The remaining twelve units must be completed as graduate research SE 299.

For the M.S. SHMP&VS Thesis Plan, the twelve-unit graduate research SE 299 must be conducted as a mentored research project. This project is intended to provide a mentored practicum whereby students integrate knowledge learned from their technology areas into comprehensively solving a problem from structural health monitoring/prognosis or model validation and uncertainty quantification, at their discretion. This project will emphasize professional practice, with both oral and written communication of technical data, and will include a strong design component. The project will be presented to a committee of two faculty members in Structural Engineering and one from another department within the Jacobs School of Engineering or an adjunct faculty member in an appropriate area of focus.

For the M.S. SHMP&VS Thesis Plan, the twelve-unit graduate research SE 299 culminates with the preparation of a research thesis. The thesis must be successfully defended in an oral examination and public presentation conducted by a committee composed of three faculty members. The committee will consist of two faculty members in Structural Engineering and one from another department within the Jacobs School of Engineering or an adjunct faculty member in an appropriate area of focus. A complete copy of the student's thesis must be submitted to each member of the M.S. thesis committee at least two weeks prior to the defense.

Because of the inherent multidisciplinary nature of the M.S. SHMP&VS degree, research within SE 299 can be conducted at outside locations (industry or government facilities). In this case a scientist on location, with an adjunct faculty appointment at UCSD, will be part of the student's committee.

All students in the M.S. SHMP&VS program are required to take a seminar course (SE 290) each quarter they are registered.

DOCTORAL DEGREE PROGRAM

The Ph.D. program is intended to prepare students for a variety of careers in research, teaching and advanced professional practice in the broad sense of structural engineering, encompassing civil and aerospace structures, earthquake and geotechnical engineering, composites, and engineering mechanics. Depending on the student's background and ability, research is initiated as soon as possible. All students, in consultation with their advisors, develop course programs that will prepare them for the Departmental Comprehensive Examination and for their dissertation research. However, these programs of study and research must be planned to meet the time limits established to advance to candidacy and to complete the requirements for the degree. Doctoral students who have passed the Departmental Comprehensive Examination may take any course for a S/U grade, with the exception of any course that the student's Departmental Comprehensive or Ph.D. Candidacy Examination Committee stipulates must be taken in order to remove a deficiency. It is strongly recommended that all Structural Engineering graduate students take a minimum of two courses (other than research) per academic year after passing the Departmental Comprehensive Examination.

The department also offers a seminar course each quarter dealing with current research topics in Earthquake Engineering (SE 290). Students must take SE 290 every quarter in the first year of graduate study, and it is strongly recommended to take it for at least one quarter in every subsequent year.
All doctoral students will be required to take SE 200, Applied Mathematics in Structural Engineering, prior to taking the departmental comprehensive exam.

Doctoral Examinations: A Structural Engineering Ph.D. student is required to pass three examinations. The first is a Departmental Comprehensive Examination which should be taken within three to six quarters of full-time graduate study and requires a 3.5 GPA. This examination is intended to determine the student’s ability to successfully pursue a research project at a level appropriate for the doctoral degree. It is administered by at least four faculty, three of whom must be in Structural Engineering. The student is responsible for material pertaining to four focus areas. One focus area can be satisfied by course work, provided that all courses in that area have been taken at UCSD, the grade in each course is B or better, and the overall GPA in that area is at least 3.5. In order to insure appropriate breadth, the focus areas should consist of the following: (a) two focus areas within Structural Engineering which are closely related to the student’s research interests, (b) one focus area within Structural Engineering that is not directly related to the student’s area of research, and (c) one minor focus area outside the Department of Structural Engineering. An update list of sample focus areas for Ph.D. students is available in the Structural Engineering Graduate Handbook. Minor areas too closely related to the major areas will not be approved by the SE Graduate Affairs Committee. The Solid Mechanics Focus Sequence, which is jointly taught by the Department of Structural Engineering and the Department of Mechanical and Aerospace Engineering, cannot be used to satisfy the outside Structural Engineering requirement. Students intending to specialize in the emerging areas of structural health monitoring, damage prognosis, and validated simulations are advised to take courses in the focus areas of Advanced Structural Behavior and elective courses MAE 283, MAE 261, ECE 251AN, ECE 251B, ECE 254, and CSE 291 which can be used to satisfy the outside Structural Engineering requirement.

Since the examination areas must be approved by the Structural Engineering Graduate Affairs Committee, students are advised to seek such approval well before their expected examination date, preferably while planning their graduate studies. Although students are not required to take particular courses in preparation for the Departmental Comprehensive Examination, the scope of the examination in each area is associated with a set of three graduate courses, generally in focus areas offered or approved by the department. A list of focus areas is available in the Structural Engineering Graduate Handbook. A candidate can develop a sense of the level of knowledge expected to be demonstrated during the examination by studying the appropriate syllabi and/or discussing the course content with faculty experienced in teaching the courses involved. The Departmental Comprehensive Examination may be a written or an oral examination, at the discretion of the committee.

Teaching experience is required of all Structural Engineering Ph.D. students prior to taking the Ph.D. Candidacy Examination. Teaching experience is defined as lecturing one hour per week in either a problem-solving section or laboratory session, for one quarter in an undergraduate course designated by the department. The requirement can be fulfilled by serving as a teaching assistant or by taking SE 501 for academic credit. Students must contact the Student Affairs Office to plan for completion of this requirement.

The Ph.D. Candidacy Examination is the second examination required of Structural Engineering doctoral students. In preparation for the Ph.D. Candidacy Examination, students must have completed the Departmental Comprehensive Examination and the Departmental Teaching Experience requirement, obtained a faculty research advisor, have identified a topic for their dissertation research, and have made initial progress in that research. At the time of application for advancement to candidacy, a doctoral committee responsible for the remainder of the student’s graduate program is appointed by the Graduate Council. In accordance with Academic Senate Regulations 715(D): “A doctoral committee of five or more members shall be appointed by the dean of Graduate Studies under the authority of the Graduate Council. The committee members shall be chosen from at least two departments, and at least two members shall represent academic specialties that differ from the student’s chosen specialty. In all cases, each committee must include one tenured UCSD faculty member from outside the student’s major department.” The committee conducts the Ph.D. Candidacy Examination, during which students must demonstrate the ability to engage in dissertation research. This involves the presentation of a plan for the dissertation research project. A short written document describing the research plan must be submitted to each member of the committee at least two weeks before the Ph.D. Candidacy Examination. The committee may ask questions directly or indirectly related to the research project and general questions that it determines to be relevant. Upon successful completion of this examination, students are advanced to candidacy and are awarded the candidate of philosophy degree. The Ph.D. Candidacy Examination is an oral examination.

The Dissertation Defense is the final Ph.D. examination. Upon completion of the dissertation research project, the student writes a dissertation that must then be successfully defended in an oral examination and public presentation conducted by the doctoral committee. A complete copy of the student’s dissertation must be submitted to each member of the doctoral committee at least four weeks before the defense. While the copy of the dissertation handed to the committee is expected to be complete and in final form, it should be noted that students are expected to make changes in the text per direction of the committee as a result of the defense. This examination cannot be conducted earlier than three quarters after the date of advancement to doctoral candidacy. Acceptance of the dissertation by the Office of Graduate Studies and the university librarian represents the final step in completion of all requirements for the Ph.D.

Ph.D. Time Limit Policy. Pre-candidacy status is limited to four years. Doctoral students are eligible for university support for six years. The defense and submission of the doctoral dissertation must be within seven years.

Evaluations. In the spring of each year, the department faculty members evaluate each doctoral student’s overall performance in course work, research, and prospects for financial support for future years. A written assessment is given to the student after the evaluation. If a student’s work is found to be inadequate, the faculty may determine that the student cannot continue in the graduate program.

Courses

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

All undergraduate students enrolled in Structural Engineering courses or admitted into a Structural Engineering program are expected to meet prerequisite and performance standards, i.e., students may not enroll in any SE courses or courses in another department which are required for the major prior to having satisfied prerequisite courses with a C− or better. (The department does not consider D or F grades as adequate preparation for subsequent material.) Additional details are given under the various program outlines, course descriptions, and admission procedures for the School of Engineering in this catalog. Furthermore, the majority of SE courses have enrollment restrictions which give priority to, or are open only to, structural engineering students. Where these restrictions apply, the registrar will not enroll other students except by department stamp on class enrollment cards. The department expects that students will adhere to these policies on their own volition and enroll in courses accordingly. Students are advised that they may be dropped at any time from course rosters if prerequisites and/or performance standards have not been met.

While some courses may be offered more than once each year, most SE courses are taught only once per year, and courses are scheduled to be consistent with the curricula as shown in the tables. When possible, SE does offer selected large-enrollment courses more than once each year. A tentative schedule of course offerings is available from the department each spring for the following academic year.

Program and or materials fees may apply to those courses with large lab components.

Lower-Division

SE 1. Introduction to Structures and Design (4)
Introduction to structural components, systems from aerospace, civil, mechanical, marine and offshore areas. Structural action, the design process. History of structural engineering. Role and responsibility of structural engineers in society. Engineering economics, costs-benefits analysis. Implications on safety. Professional ethics. Priority enrollment given to structural engineering majors.

SE 2. Structural Materials (4)
2A. Priority enrollment given to structural engineering majors and mechanical and aerospace engineering majors.

Introduction to the Matlab environment. Variables and types, statements, functions, blocks, loops, and branches. Algorithm development. Functions, function handles, input and output arguments. Data encapsulation and object-oriented programming. Toolboxes and libraries. Models from physics (mechanics and thermodynamics) are used in exercises and projects. Prerequisites: grade of C– or better in Math. 20D and Math. 20F (20F may be concurrent).

SE 10A. Design Competition—Design, Build, and Fly Aircraft (1)
Student teams design, test, and fly unmanned aircraft for a national student competition. Students concentrate on vehicle design system including aerodynamics, structures, propulsion, and performance. Teams engineer and fabricate the aircraft, submit a design report, and prepare aircraft for competition. Prerequisites: consent of instructor.

SE 87. Freshman Seminar (1)
The freshman seminar program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Prerequisite: open to freshmen only.

UPPER DIVISION

SE 101A. Mechanics I: Statics (4)
Principles of statics using vectors. Two- and three-dimensional equilibrium of statically determinate structures under discrete and distributed loading including hydrostatics; internal forces and concepts of stress; free body diagrams; moment of moment of inertia; analysis of trusses and beams. Prerequisites: grade of C– or better in Math. 20C and Phys. 2A.

SE 101B. Mechanics II: Dynamics (4)

SE 101C. Structural Mechanics III: Structural Dynamics (4)
Free and forced vibrations of damped 1-DOF systems; vibrations isolation, impact and packaging problems. Analysis of discrete MDOF systems using matrix representation. Normal mode frequencies and modal matrix formulation. Lagrange’s equations. Modal superposition for analysis of continuous vibrating systems. Prerequisites: grade of C– or better in Math. 20F and SE 101B (or MAE 130B).

SE 102. Numerical, Computational, and Graphical Tools for Structural Engineering I (4)

SE 103. Conceptual Structural Design (4)
Introduction to design principles and structural action. Development of design theories, approaches and methodology. Concepts of load and resistance factors, factors of safety, limit and ultimate states, design allowable. Simple design examples from aerospace, civil, marine, offshore and mechanical structural systems. Prerequisites: grade of C– or better in SE 2, SE 9, and SE 101A (or MAE 130A).

SE 110A. Solid Mechanics I (4)

SE 110B. Solid Mechanics II (4)

SE 111A-B. Steel Bridge Design Competition (2-2)
Student teams design, test, and build a steel bridge for regional and national ASCE design competition. Students focus on learning ASCE guidelines, rules, and constraints for adherence to national competition policy. Prerequisites: grade of C– or better in SE 103 and SE 110A (or MAE 131A). SE 111A for SE 111B.

SE 112A-B. Concrete Canoe Design Competition (2-2)
Student teams design, test, and build a concrete canoe for regional and national ASCE design competition. Students focus on learning and applying specific fundamental ASCE competition rules, guidelines, and constraints into design. Prerequisites: grade of C– or better in SE 110A (or MAE 131A). SE 112A for SE 112B.

SE 115. Fluid Mechanics for Structural Engineering (4)
Fluid statics, hydrostatics; integral and differential forms of conservation equations for mass, momentum, and energy; Bernoulli equation; dimensions; analysis; jet, pipe flow; external flow, boundary layers; open channel flow. Prerequisites: grade of C– or better in Phys. 2A, Math. 20D, and Math. 20E.

Engineering graphics, solid modeling, CAD applications including 2-D and 3-D transformations, 3-D viewing, wireframe and solid models. Hidden surface elimination. Prerequisite: grade of C– or better in SE 102 and SE 103, SE majors.

SE 121. Numerical Methods in Engineering (4)
Advanced numerical methods for applications in engineering problems. Solution of systems of linear and nonlinear equations, function interpolation and curve fitting, function approximation, computation of integrals, numerical differentiation, and solution of systems of ordinary differential equations. Prerequisites: grade of C– or better in SE 102, SE majors.

SE 125. Statistics, Probability and Reliability (4)
Probability theory. Mathematical statistics, data analysis and inferential statistics, distributions, confidence intervals. Introduction to structural reliability and random phenomena. Applications to components and systems. Prerequisites: SE majors.

SE 130A-B. Structural Analysis (4)
Classical methods of analysis for statically indeterminate structures. Development of computer codes for the analysis of civil, mechanical, and aerospace structures from the matrix formulation of the classical structural theory, through the direct stiffness formulation, to production-type structural analysis programs. Prerequisites: grade of C– or better in SE 110A or SE 110B. Priority enrollment given to structural engineering majors.

SE 131. Finite Element Analysis (4)
Development of stiffness and mass matrices based upon variational principles. Application to static and dynamic problems in structural and solid mechanics. The use of general purpose finite element structural analysis codes. Prerequisites: grade of C– or better in SE 121, SE 130B, and SE major.

SE 140. Structures and Materials Laboratory (4)
Introduction to instrumentation and testing techniques. Discussion of standard tension and compression tests. Similitude relationships for structural models. Term project in model structure including complete engineering report and design results of the term project. Prerequisites: grade of C– or better in SE 103, SE 130B, MAE 170, and senior standing in the major.

SE 142. Design of Composite Structures (4)
Design and analysis of lightweight structures composed of laminated composite materials. Stiffness, strength, failure mechanisms, micromechanics, and hygrothermal behavior. Fabrication and experimental testing. Design projects that involve computer implementation. Prerequisites: SE 110A (or MAE 131A) and SE 110B.

SE 150. Design of Steel Structures (4)

SE 151A. Design of Reinforced Concrete (4)
Concrete and reinforcement properties. Service and ultimate limit state analysis and design. Design and detailing of structural components. Prerequisites: grade of C– or better in SE 103 and SE 130A.

SE 151B. Design of Prestressed Concrete (4)
Time-dependent and independent properties of concrete and reinforcing material. Concept and application of prestressed concrete. Service and ultimate limit state analysis and design of prestressed structures and components. Detailing of components. Calculation of deflection and prestress losses. Prerequisites: grade of C– or better in SE 151A.

SE 152. Seismic Design of Structures (4)

SE 154. Design of Timber Structures (4)

SE 160A. Aerospace Structural Mechanics I (4)
Aircraft and spacecraft flight load definition and operational envelopes, metallic and composite material selection and comparison, applied elasticity, failure theories, stiffened shell panels, thin-wall open and closed-cell torsion prismatic vessels, unsymmetrical loading, shear centers and bending of plates. Prerequisites: grade of C– or better in SE 2, SE 101B (or MAE 130B), and SE 110A (or MAE 131A). Priority enrollment given to engineering majors.

SE 160B. Aerospace Structural Mechanics II (4)
Work-energy principles, matrix models, bending of plates and shells, structural stability of beams and plates, tension field beams, wing divergence and control reversal, vibration damping and flutter, fasteners and structural joints, structural test methods. Prerequisites: grade of C– or better in SE 160A. Priority enrollment given to engineering majors.

SE 163. Nondestructive Evaluation (4)
Damage detection, materials characterization. Introduction to nondestructive evaluation, impedance-based methods, ultrasonic, acoustic, thermographic, liquid penetrant, proof testing, stress coatings, vibrational techniques. Prerequisites: grade of C– or better in SE 110A and SE 110B or consent of instructor; SE major.

SE 168. Structural System Testing and Model Correlation (4)
Dynamic/model testing of structures: test planning/execution, actuators, sensing, and data acquisition, signal processing, data conditioning, test troubleshooting. Methods of updating finite element structural models to correlate with dynamic test results. Model/test correlation assessment in industrial practice. Knowledge of MATLAB strongly encouraged. Prerequisites: grade of C– or better in SE 101C (or MAE 130C) and SE 131.
SE 170. Civil Structures Rehabilitation (4)
Identification of structural distress, lessons from past history, materials and structural concepts related to rehabilitation, seismic retrofit. Strengthening of beams, slabs and walls, design detailing, safety factors, fabrication/installation methods. Prerequisites: grade of C– or better in SE 103, SE 130A–B, SE 151A.

SE 171. Aerospace Structures Repair (4)
Identification of structural distress, corrosion/stress corrosion cracking, fatigue cracking, damage tolerance, integrity and durability of built-up members, patching, health monitoring. Prerequisites: grade of C– or better in SE 138B or SE 160B.

SE 180. Earthquake Engineering (4)

SE 181. Geotechnical Engineering (4)
General introduction to physical and engineering properties of soils. Soil classification and identification methods. Compaction and construction control. Total and effective stress. Permeability, seepage, and consolidation phenomena. Shear strength of sand and clay. Prerequisites: grade of C– or better in SE 110A or MAE 131A; SE major.

SE 182. Foundation Engineering (4)
Application of soil mechanics to the analysis, design, and construction of foundations for structures. Soil exploration, sampling, and in-situ testing techniques. Stress distribution and settlement of structures. Bearing capacities of shallow foundations. Axial and lateral capacity of deep foundations, earth pressures on retaining walls. Prerequisites: grade of C–or better in SE 181; SE major.

SE 183/246. Engineering Geology (4)
Influence of geology on design of engineering works. Mineral and rock identification and their engineering behavior. Geologic mapping. Rock mechanics, rock slope stability, and tunnel engineering. Local field trips. Prerequisites: senior standing; priority enrollment is given to structural engineering majors; graduate standing required for SE 246.

SE 192. Senior Seminar (1)
The Senior Seminar is designed to allow senior undergraduates to meet with faculty members to explore an intellectual topic in structural engineering. Topics will vary from quarter to quarter. Enrollment is limited to twenty students. Prerequisite: senior standing; permission given to seniors. Prerequisites: SE major. Department stamp and/or consent of instructor.

SE 195. Teaching (2–4)
Teaching and tutorial assistance in a SE course under supervision of instructor. Not more than four units may be used to satisfy graduation requirements. (P/NP grades only.) Prerequisites: B average in major, upper-division standing and consent of department chair. Department stamp required.

SE 197. Engineering Internship (1–4)
An enrichment program, available to a limited number of undergraduate students, which provides work experience with industry, government offices, etc., under the supervision of a faculty member and industrial supervisor. Coordination of the Engineering Internship is conducted through UCSD’s Academic Internship Program. Prerequisites: completion of ninety units with a 2.5 GPA and consent of department chair. Department stamp required.

SE 198. Directed Study Group (4)
Directed group study, on a topic or in a field not included in the regular departmental curriculum, by special arrangement with a faculty member. (P/NP grades only.) Prerequisite: consent of instructor or department stamp.

SE 199. Independent Study (1–4)
Independent reading or research on a problem by special arrangement with a faculty member. (P/NP grades only.) Prerequisite: consent of instructor or department stamp.

GRADUATE
SE 200. Applied Mathematics in Structural Engineering (4)
This course is designed for beginning graduate students the basic preparation in mathematical methods required for graduate Structural Engineering courses. Topics include systems of linear algebraic equations; ordinary differential equations; diffusion and wave propagation problems; and calculus variation. Prerequisite: graduate standing.

SE 201. Advanced Structural Analysis (4)
Applications of advanced analytical concepts to structural engineering problems. Effects of approximations in the discretization and the type of finite elements under consideration. An introduction to the nonlinear behavior of structural systems focusing on basic concepts and computational techniques. Prerequisites: SE 130A-B or equivalent, or consent of instructor.

SE 202. Structural Stability (4)
Static, dynamic, and energy-based techniques and predicting elastic stability. Linear and nonlinear analysis of classical and shear deformable beams and plates. Ritz, Galerkin, and finite element approaches for frames and reinforced shells. Nonconservative aerodynamic (divergence flutter) and follower forces. Prerequisite: SE 110B or consent of instructor.

SE 203. Structural Dynamics (4)

SE 204. Advanced Structural Dynamics (4)

SE 205. Nonlinear Mechanical Vibrations (4)
Advanced analytical techniques to understand nonlinearity in mechanical vibration. Phase plane analysis, instability, and bifurcations. Application in nonlinear structural resistance. Introduction to chaotic dynamics, advanced time series analysis, and using chaotic dynamics in applications such as structural damage assessment. Prerequisite: SE 206 or consent of instructor.

SE 206. Random Vibrations (4)

SE 207. Topics in Structural Engineering (4)
A course to be given at the discretion of the faculty in which topics of current interest in structural engineering will be presented.

SE 211. Advanced Reinforced and Prestressed Concrete Design (4)
Advanced topics in concrete design, including frame and shear wall structures, design of connections, reinforced and prestressed concrete system evaluation for seismic resistance including confinement and ductility requirements. Upper and lower bound theories for slabs. Sign, Prerequisite: SE 151A, or equivalent background in basic RC/PC design, or consent of instructor.

SE 212. Advanced Structural Steel Design (4)
Load and Resistance Factor Design (LRFD) philosophy. Behavior and design of steel elements for global and local buckling. Background of seismic codes. Ductility requirements and capacity design concepts. Seismic design of steel moment frames and braced frames. Prerequisites: SE 201 and SE 150, or equivalent course, or consent of instructor.

SE 213. Bridge Design (4)
Design and analysis of bridge structures, construction methods, load conditions. Special problems in analysis—box girders, curved and skewed bridges, environmental and seismic loads. Bearings and expansion joints. Time-temperature-dependent superstructure deformations. Conceptual/初步bridge design project. Prerequisites: SE 201 and fundamental courses in RC and PC design, or consent of instructor.

SE 214. Masonry Structures (4)
Analysis and design of unreinforced and reinforced masonry structure using advanced analytical techniques and design philosophies. Material properties, stability, and buckling of unreinforced masonry. Flexural strength, shear strength, stiffness, and ductility of reinforced masonry elements. Design for seismic loads. Prerequisites: SE 151A, B, or equivalent basic reinforced concrete course, or consent of instructor; graduate standing.

SE 215. Cable Structures (4)
The course deals with cable structures from a structural mechanics point of view. The theoretical and practical aspects of the application of cables to moorings, guyed structures, suspension bridges, cable-stayed bridges, and suspended membranes are discussed. Prerequisite: graduate standing or consent of instructor.

SE 220. Seismic Isolation and Energy Dissipation (4)
Concepts, advantages and limitations of seismic isolation techniques, fundamentals of dynamic response under seismic excitation; spectral analysis; damping; energy approach; application to buildings and structures. Prerequisite: background in structural dynamics, or consent of instructor.

SE 221. Earthquake Engineering (4)
Introduction to plate tectonics and seismology. Rupture mechanism, measures of magnitude and intensity, earthquake occurrence and relation to geologic, tectonic processes. Probabilistic, dynamic hazard analysis. Strong earthquake ground motion; site effects on ground motion; structural response; soil-structure interaction; design criteria; code requirements.

SE 222. Geotechnical Earthquake Engineering (4)
Influence of soil conditions on ground motion characteristics; dynamic behavior of soils, computation of ground response using wave propagation analysis and finite element analysis; evaluation and mitigation of soil liquefaction; soil-structure interaction; lateral pressures on earth retaining structures; analysis of slope stability.

SE 223. Advanced Seismic Design of Structures (4)

SE 224. Structural Reliability and Risk Analysis (4)
Probability theory and random processes; fundamentals of structural reliability theory. Modern methods of structural reliability analysis including computational aspects; structural component and system reliability. Reliability-based design codes; structural modeling for performance and safety. Risk analysis of structural systems. Prerequisites: basic knowledge of probability theory (e.g., SE 125).

SE 233. Computational Techniques in Finite Elements (4)
Practical application of the finite element method to problems in solid mechanics including basic preprocessing and postprocessing. Topics include element types, mesh refinement, boundary conditions, dynamics, eigenvalue problems, and linear and nonlinear solution methods.

SE 234. Plates and Shells (4)
General mathematical formulation of the theory of thin elastic shells; linear membrane and bending theories; finite strain and rotation theories; shell of revolution; shallow shells; and principles of simple panel theory. Survey of recent advances. Prerequisite: graduate student standing.

8 2010-2011 UC SAN DIEGO GENERAL CATALOG • ENGINEERING: STRUCTURAL ENGINEERING (SE)
SE 235. Wave Propagation in Elastic Media (4)
Wave propagation in elastic media with emphasis on waves in unbounded media and on uniform and layered half-spaces. Fundamental aspects of elastodynamics. Application to strong-motion seismology, earthquake engineering, dynamics of foundations, computational wave propagation, and non-destructive evaluations. Prerequisite: graduate standing or consent of instructor.

SE 236. Wave Propagation in Continuous Structural Elements (4)
Propagation of elastic waves in thin structural elements such as strings, rods, beams, membranes, plates and shells. An approximate strength-of-materials approach is used to consider propagation of elastic waves in these elements and obtain the dynamic response to transient loads. Prerequisite: graduate standing or consent of instructor.

SE 241. Advanced Soil Mechanics (4)
Advanced treatment of topics in soil mechanics, including state of stress, pore pressure, consolidation and settlement analysis, shear strength of cohesionless and cohesive soils, mechanisms of ground improvement, and slope stability analysis. Concepts in course reinforced by laboratory experiments.

SE 242. Advanced Foundation Engineering (4)
Advanced treatment of topics in foundation engineering, including adultin foundations, design of earth retaining structures, bearing capacity, ground improvement for foundation support, analysis and design of shallow and deep foundations, including drilled piers and driven piles.

SE 243. Soil-Structure Interaction (4)
Advanced treatment of soils interaction with structures, including shallow and deep foundations, bridge abutments, retaining walls, and buried structures subjected to static and dynamic loading. Elastic approximation. Linear and nonlinear Winkler models p-y and t-z curves.

SE 245. Constitutive Modeling and Numerical Implementation (4)
Development and numerical implementation of procedures to model the nonlinear behavior of engineering materials, including soil and concrete. Inelastic hyperbolic and elastoplastic modeling of hysteretic response to cyclic loading. Behavior of soil-structure systems under transient loading, such as seismic earthquake excitation.

SE 246. Engineering Geology (4)
Influence of geology on design of engineering works. Mineral and rock identification and their engineering behavior. Geologic mapping. Rock mechanics, rock slope stability, and tunnel engineering. Local field trips. (Graduate students are required to submit a term project based on two extended weekend field trips and self-guided research.)

SE 251A. Processing Science of Composites (4)
Introduction to processing, fabrication methods; process models; materials-process-microstructure interaction; materials selection; form and quality control. Wet layup/sprayup, autoclave cure, SMC, injection molding, RTM; resin infusion; winding and fiber placement; pultrusion. Process induced defects, environmental considerations. Prerequisite: graduate standing.

SE 251B. Mechanical Behaviors of Polymers and Composites (4)
Material science oriented course on polymers and composites. Mechanical properties of polymers; micromechanisms of elastic and plastic behavior; applications to material characterizations; defects and environmental considerations. Prerequisite: graduate standing required.

SE 252. Experimental Mechanics and NDE (4)
Theory of electrical resistance strain gages, full-field coherent optical methods including photoelasticity, moiré and speckle interferometry, ultrasonics, thermography and fiber Bragg grating. Applications to materials characterizations, defect detection and health monitoring of structures with emphasis on fiber-reinforced composites. Prerequisites: SE 101A, SE 110A, and MAE 131B, or consent of instructor.

SE 253A. Mechanics of Laminated Composite Structures I (4)
Graduate-level introductory course on mechanics of composites and anisotropic materials. Overview of composite materials and processes, 3-D properties and stress-strain relationships, micromechanics, classical laminated plate theory, basic failure criteria, thermal/moisture/CTE. Students may not receive credit for both SE 253A and SE 250. Prerequisite: graduate standing.

SE 253B. Mechanics of Laminated Composite Structures II (4)
Advanced topics, with prerequisite being SE 253A, or equivalent. Macro- and micro-material modeling, classical and shear deformable laminated beam and plate theories developed via energy principles, Ritz, Galerkin, and Finite element based solutions, advanced failure theories, fracture, holes/notches and hole-size effect, interlaminar stresses, free-edge problems, impact, damage tolerance, fatigue, elastic tailoring, thermally stable/zero CTE structures, etc. Prerequisites: SE 253A or equivalent, graduate standing.

SE 253C. Mechanics of Laminated Anisotropy Plates and Shells (4)
Static, dynamic, and elastic stability of laminated anisotropic plates and cylindrical shells. Theories covered include thin-plate (classical lamination theory), first- and third-order shear-deformable (Reissner-Mindlin, and Reddy) thick plates, and refined layer theories. Solutions covered include exact, approximate (Ritz, Galerkin) and the finite element method. Additional topics include sandwich construction, elastic couplings, thermal response, shear factor determination, fiber and interlaminar stress recovery, strength, and safety considerations. Prerequisites: graduate student standing required; must have taken SE 253B or equivalent, or consent of instructor.

SE 254. FRPs in Civil Structures (4)

SE 255. Textile Composite Structures (4)
Introduction to textile structure and behavior, mechanics of yarns and fabrics as relevant to structural composites and geotechnical applications. Mechanics of textiles and fabric-based composites. Applications in fiber reinforced composites, coated textile structures, geotextiles.

SE 261. Aerospace Engineering Design (4)
Advanced topics in the design of weight-critical aerospace structures. Topics include: conceptual design, general load definitions; metallics and polymeric composite material selection; semi-monocoque analysis techniques, and bolted/bonded connections. Design procedures for sizing the structural components of aircraft and spacecraft will be reviewed.

SE 262. Aerospace Structures Repair (4)

SE 265. Structural Health Monitoring (4)
A modern paradigm of structural health monitoring as it applies to structural and mechanical systems is presented. Concepts in data acquisition, feature extraction, data normalization, and statistical modeling will be introduced in an integrated context. MATLAB-based exercises. Term project. Prerequisites: undergraduate vibrations or structural dynamics course.

SE 271. Solid Mechanics for Structural and Aerospace Engineering (4)
Application of principles of solid mechanics to structural components and systems, description of stresses, strains, and deformation. Use of conservation equations and principle of minimum potential energy. Development of constitutive equations for metallic cementitious and polymeric materials. Prerequisite: SE 110A or consent of instructor.

SE 272. Theory of Elasticity (4)
Development, formulation, and application of field equations of elasticity and variational principles for structural applications in civil and aerospace area. Use of plane stress and plane strain formulation, solution of typical boundary value problems. Prerequisite: SE 271 or consent of instructor.

SE 273. Anelasticity (4)
Mechanical models of viscoelastic, plastic, and viscoplastic behavior in simple shear or uniaxial strain. Constitutive relations for three-dimensional states of stress and strain application to selected technological problems. Prerequisites: graduate standing and SE 271 and SE 272, or MAE 231A and MAE 231B, or consent of instructor.

SE 275. Hydrodynamics in Marine Engineering (4)
Fluid dynamics equations; potential flow-theory; basic potential-flow solutions; added mass, DOP, hydrodynamic forces/moments on a body; water wave theory; irregular wave field; wave-body interactions; high/low-frequency responses; vortex-induced vibrations; galloping; numerical methods. Prerequisite: graduate standing.

SE 276A. Finite Element Methods in Solid Mechanics I (4)
Finite element methods for linear problems in solid mechanics. Emphasis on the principle of virtual work, finite element stiffness matrices, various finite element formulations and their accuracy and the numerical implementation required to solve problems in small strain, isotropic elasticity in solid mechanics.

SE 276B. Finite Element Methods in Solid Mechanics II (4)
Finite element methods for linear problems in structural dynamics. Beam, plate, and doubly curved shell elements are derived. Strategies for eliminating shear locking problems are introduced. Formulation and numerical solution of the equations of motion for structural dynamics are introduced and the effect of different mass matrix formulations on the solution accuracy is explored.

SE 276C. Finite Element Methods in Solid Mechanics III (4)
Finite element methods for problems with both material and geometrical (large deformations) nonlinearities. The total LaGrangian and the updated LaGrangian formulations are introduced. Basic solution methods for the nonlinear equations are developed and applied to problems in plasticity and hyperelasticity. Prerequisites: graduate standing and SE 276A or MAE 232A and MAE 231A or SE 271.

SE 277. Error Control in Finite Element Analysis (4)
This course will provide an overview of the latest technology for evaluating and improving the accuracy and validity of linear and nonlinear finite element models, solution verification, finite element model validation, sensitivity analysis, uncertainty analysis, and test-analysis correlation. Prerequisite: SE 2328 or MAE 2328.

SE 278A. Finite Element Methods for Computational Fluid Dynamics (4)
Development and application of advanced computational techniques for fluid flow. Stabilized and variational multiscale methods for finite element and related discretizations are stressed. Applications involve advection-diffusion equations and systems, and incompressible and compressible Navier-Stokes equations. Turbulence modeling will also be covered. Prerequisite: MAE 232A or SE 276A or consent of instructor.

2010-2011 UC SAN DIEGO GENERAL CATALOG • ENGINEERING: STRUCTURAL ENGINEERING (SE)
SE 278B. Computational Fluid-Structure Interaction (4)
Conservation laws on general moving domains. Arbitrary Lagrange-Eulerian (ALE) and space-time approaches to fluid-structure interaction are covered. Suitable discretizations, mesh motion, and discrete solution strategies are discussed. Prerequisite: SE 278A.

SE 290. Seminar in Earthquake Engineering (2)
Weekly seminar and discussion by faculty, visitors, postdoctoral research fellows and graduate students concerning research topics in earthquake engineering and related subjects. May be repeated for credit. (S/U grades only.)

SE 296. Independent Study (4)
Prerequisite: consent of instructor.

SE 298. Directed Group Study (1–4)
Directed group study on a topic or in a field not included in regular department curriculum, by special arrangement with a faculty member. Prerequisite: consent of instructor.

SE 299. Graduate Research (1–12)
(S/U grades permitted.)

SE 501. Teaching Experience (2)
Teaching experience in an appropriate SE undergraduate course under direction of the faculty member in charge of the course. Lecturing one hour per week in either a problem-solving section or regular lecture. Prerequisites: consent of instructor and the department. (S/U grades permitted.)
English as a Second Language

OFFICE: 232 Literature Building, Warren College
http://basicwriting.ucsd.edu

The English as a Second Language Program (ESL) offers course work specific to the language needs of students for whom English is a second (or subsequent) language. This course is SDCC 4. SDCC 4 is a required course for all undergraduates who have not satisfied the UC Entry Level Writing requirement and who have been designated as needing the course based on their UC Analytical Writing Placement Examination. A combination of instructor recommendation, Entry Level Writing Exit Exam result, and a possible portfolio review places students in SDCC 4 for another quarter, in SDCC 1, or in a college writing sequence. Like SDCC 1, SDCC 4 is taught through a cooperative agreement with the San Diego Community College District. Under Academic Senate regulations, SDCC 4 cannot be counted toward graduation requirements; however, the course units do count as workload credit toward the Minimum Progress requirement and toward eligibility for financial assistance.

For further information about the UC Entry Level Writing Requirement or the UC Analytical Writing Placement Exam, please visit the Basic Writing office, or call (858) 534-6177.
Entry Level Writing

OFFICE: 232 Literature Building
http://basicwriting.ucsd.edu/

For information about satisfying the University of California Entry Level Writing requirement, especially prior to enrollment, please refer to “UC Entry Level Writing Requirement,” in the catalog section “Academic Regulations.”

Students who have not satisfied the UC Entry Level Writing requirement before enrolling at UC San Diego must satisfy the requirement by achieving a grade of C or better in SDCC 1 (English Composition—Entry Level Writing) and by passing the Entry Level Writing Exit Examination given at the end of SDCC 1. That examination is administered by the Basic Writing Program office. Students must enroll in SDCC 1 or SDCC 4 during the first quarter of residence at UCSD. SDCC 1 and SDCC 4 are Mesa College courses taught at UCSD as part of a cooperative program with the San Diego Community College District.

Under Academic Senate regulations, SDCC 1 and SDCC 4 cannot be counted toward graduation requirements; however, the course units do count as workload credit toward the minimum progress requirement and toward eligibility for financial assistance.

For further information about the UC Entry Level Writing requirement or the UC Analytical Writing Placement Examination, please visit the Basic Writing office, 232 Literature Building, or call (858) 534-6177.
Environmental Studies

DIRECTOR
Susan Smith, Ph.D., Provost, John Muir College

FACULTY
Craig Callender, Ph.D., Professor, Philosophy
Richard T. Carson, Jr., Ph.D., Professor, Economics
Pao C. Chau, Ph.D., Professor, NanoEngineering
Paul Dayton, Ph.D., Professor, Scripps Institution of Oceanography
Clark Gibson, Ph.D., Professor, Political Science
John Granger, Ph.D., Lecturer, Literature
James J. Moore, Ph.D., Associate Professor, Anthropology
Naomi Oreskes, Ph.D., Professor, History
Keith Pezzoli, Ph.D., Professor, Visual Arts
David Woodruff, Ph.D., Professor, Biology—Ecology, Behavior and Evolution

OFFICE: 2113 Humanities and Social Sciences Building, Muir College
(858) 534-3589
http://provost.ucsd.edu/muir/instructional/environmental-studies

MINOR IN ENVIRONMENTAL STUDIES

The Environmental Studies minor offers students from every major a basic grounding in the scientific, technical, social, and cultural issues presented by the interaction of human beings with their environment and the need to build a more environmentally sustainable future.

The two required courses, ENVR30 and ENVR130, have no prerequisites. Some of the other courses related to the minor, particularly those in Group A, have significant prerequisites; students planning an Environmental Studies minor should check catalog course descriptions carefully. Some credit toward the minor may be gained through independent study, field research, study abroad, the Academic Internship Program, and others (prior approval matters only in particular quarters. Petitionable courses may be approved by petition to the minor during the quarters in which they appear in the ENVR quarterly lists.

QUARTERLY LISTS

Each quarter, when the upcoming quarter's Schedule of Classes is published, the Environmental Studies quarterly list is available in 2113 HSS and at the Web site. It is an important, comprehensive source of information about ENVR course offerings as well as those from departments throughout the campus. It identifies applicable as well as petitionable courses for a given quarter. For reference, the office and the Web site maintain archives of quarterly lists.

The minor is structured as follows:

Required:
- Environmental Studies 30, usually offered in the fall quarter.
- Environmental Studies 130, usually offered in the winter quarter (need not be taken consecutively).

Required:
- Five additional courses, at least four in the upper-division, from the following two groups. At least one course must be taken from Group A and one from Group B.

Group A—Natural Sciences

Biology LD 3. Organismic and Evolutionary Biology
BIEB 121. General Ecology Laboratory
BIEB 131. Marine Invertebrate Ecology Laboratory
BIEB 132. Introduction to Marine Biology
BIEB 134. Introduction to Biological Oceanography
BIEB 140. Biodiversity
BIEB 165. Behavioral Ecology Laboratory
BIEB 166. Animal Behavior and Communication
BIEB 176. Conservation and the Human Predicament (cross-listed with ANBI 132)
Chemistry 15. Chemistry of the Universe
Chemistry 149A. Environmental Chemistry
Chemistry 149B. Environmental Chemistry
Chemistry 173. Atmospheric Chemistry

Environmental Studies 102. Selected Topics in Environmental Studies (when taught from a natural sciences perspective)

Environmental Systems 101. The Living Earth
Environmental Systems 103. The Human Earth
Environmental Systems 120. Science and Environmental Writing
MAE 118A. Energy: Non-Nuclear Energy Technologies
SIO 10. The Earth
SIO 12. History of Earth and Evolution
SIO 15. Natural Disasters
SIO 16. Geology of National Parks
SIO 20. The Atmosphere
SIO 30. The Oceans
SIO 35. Water
SIO 110. Introduction to GIS and GPS for Scientists

Environmental Studies 102. Selected Topics in Environmental Studies

Environmental Studies 140. Wilderness and Human Values

Group B—Social Sciences/Humanities

ANAR 108. Archaeology of the UCSD Campus
ANAR 182. Origins of Agriculture and Sedentism
ANBI 132. Conservation and the Human Predicament (cross-listed with BIEB 176)
ANSC 160. Nature, Culture and Environmentalism Communication

Environmental Studies 102. Selected Topics in Environmental Studies (when taught from a humanities/social sciences perspective)

Environmental Studies 110. Environmental Law

Environmental Studies 140. Wilderness and Human Values

Ethnic Studies 103. Environmental Racism
History US 154. Western Environmental History
IRPS GN 458. International Environmental Policy and Politics
IRPS GN 459. Conflict Resolution of Environmental Issues

Philosophy 148. Philosophy and the Environment

Political Science 162. Environmental Policy
Soc/C 149. Sociology of the Environment
Urban Studies & Planning 2. Urban World System
Urban Studies & Planning 124. Land Use Planning
Urban Studies & Planning 144. Environmental and Preventive Health Issues

Urban Studies & Planning 171. Sustainable Development

APPLICABLE AND PETITIONABLE COURSES

Environmentally-based courses offered by UC San Diego departments fall into two categories: applicable and petitionable. Applicable courses are those which have been approved as always applying to the ENVR minor. Petitionable courses are either new and therefore not yet approved as applicable or are "topics" courses which focus on environmental matters only in particular quarters. Petitionable courses may be approved by petition to the minor during the quarters in which they appear in the ENVR quarterly lists.

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

30. Environmental Issues: Natural Sciences

Examine global and regional environmental issues. The approach is to consider the scientific basis for policy options. Simple principles of chemistry and biology are introduced. The scope of problems include: air and water pollution, climate modification, solid-waste disposal, hazardous-waste treatment, and environmental impact assessment. Prerequisite: none.

87. Environmental Studies Freshman Seminar

The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

102. Selected Topics in Environmental Studies

An interdisciplinary course focusing on one of a variety of topics related to environmental studies such as environmental policy and politics, foreign study in environmental problems, environmental history, nature writers, ethics and the environment. May be repeated for credit as topics vary. Prerequisite: upper-division standing or consent of instructor.

110. Environmental Law

Explores environmental policy in the United States and the ways in which it is reflected in law. The social and political issues addressed include environmental justice and environmental racism, as well as the role of government in implementing environmental law. Prerequisite: upper-division standing or consent of instructor.
120. Coastal Ecology (4)
Explores the diverse ecosystems of coastal San Diego County (salt marsh, rocky intertidal, sandy beach, etc.) in the classroom and in the field with attention to basic principles of field ecology, natural history, and techniques for collecting ecological data. Course and/or materials fee may apply. Prerequisite: upper-division standing or consent of instructor.

130. Environmental Issues: Social Sciences (4)
Explores contemporary environmental issues from the perspective of the social sciences. It includes the cultural framing of environmental issues and appropriate social action, the analysis of economic incentives and constraints, and a comparison of policy approaches. Prerequisite: upper-division standing or consent of instructor.

140. Wilderness and Human Values (4)
"Wilderness" plays a central role in the consciousness of American environmentalists and serves as focal point for public policies, recreation, and political activism. This course explores its evolving historical, philosophical, ecological, and aesthetic meanings and includes guest speakers and a field component. Prerequisite: upper-division standing or consent of instructor.

141. Wilderness and Human Values Workshop (2)
A course to prepare students to serve as discussion leaders for ENVR 140, Wilderness and Human Values. Includes reading, discussion, library and on-line research, and field trips. Prerequisites: consent of instructor and department stamp.

192. Senior Seminar in Environmental Studies (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in Environmental Studies (at the upper-division level). Topics will vary from quarter to quarter. Senior Seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: upper-division standing, department stamp and/or consent of instructor. (Not offered in 2009–10.)

195. Apprentice Teaching (0-4)
Instructor will define assistant's responsibilities in preparing class presentations, leading students' discussions, and evaluating students' work.

198. Directed Group Study (4)
Directed group research and study, normally with a focus on areas not otherwise covered in the curriculum. Prerequisites: upper-division standing or consent of instructor. Department stamp required.

199. Independent Study (4)
Independent study in a topic not generally covered in the regular curriculum.

500. Apprentice Teaching in Environmental Studies (4)
A course in which teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty: handling of discussions, preparation and grading of examinations and other written exercises, and student relations. Prerequisite: graduate standing.
Environmental Systems

PROGRAM FACULTY
Mark H. Thiemen, Professor, Chemistry and Biochemistry, Program Director
Jane Teneras, Lecturer, Associate Director
Eric E. Allen, Assistant Professor, Marine Biology, SIO
Donna Blackman, Research Geophysicist, SIO
Ronald S. Burton, Professor, Marine Biology, SIO
Richard T. Carson, Professor, Economics
Christopher D. Charles, Professor, Oceanography, SIO
Elsa E. Cleland, Assistant Professor, Biology
Clark Gibson, Professor, Political Science
Sarah T. Gille, Associate Professor, MAE, SIO
Joshua S. Graff Zivin, Associate Professor, International Relations and Pacific Studies
Kim Griest, Professor, Physics
Amro M. Hamdoun, Assistant Professor, Marine Biology, SIO
Philip Hastings, Professor, Marine Biology, SIO
Myrl C. Hendershott, Professor, Oceanography, SIO
David R. Hilton, Professor, Geochemistry
William S. Hodgkiis, Professor, Electrical Engineering, SIO
David A. Holway, Associate Professor, Biology
Miriam Kastner, Professor, Geosciences, SIO
Lisa Levin, Professor, Integrative Oceanography, SIO
Paul Linden, Professor, MAE
Kim McDonald, Lecturer, Director of Science Communication
Joel Norris, Associate Professor, Climate Sciences, SIO
Brian Palenik, Professor, Marine Biology, SIO
Keith Pezzoli, Lecturer, Urban Studies and Planning
Frank L. Powell, Professor, Medicine/Director, White Mountain Research Station
Jeffrey B. Remmel, Professor, Mathematics
Lisa Shaffer, Executive Director, Environmental Sustainability Initiative
John Sclater, Professor, Marine Geophysics, SIO
Richard C. J. Somerville, Professor Emeritus, Climate Sciences, SIO
Hubert Staupidel, Research Geophysicist, SIO
Lynne Tauley, Professor, Physical Oceanography, SIO
Lisa Tauxe, Professor, Geosciences, SIO
David Woodruff, Professor, Biology
Junjie Zhang, Assistant Professor, International Relations and Pacific Studies
OFFICE: 188 Galbraith Hall, Revelle College

This interdisciplinary program recognizes that local, national, regional, international, and global environmental problems do not fit neatly into traditional academic departments. A measurable part of society’s inability to effectively manage complex environmental problems stems from the lack of specialists who can apply analytical tools that cross disciplinary boundaries. Many environmental specialists possess little training in the natural sciences including both the fundamental ideas and methodologies of the earth and environmental sciences. The environmental systems major was created to address both of these shortcomings.

To encourage and foster an interdisciplinary focus in the major, the Environmental Systems Program is supported by a wide range of UC San Diego faculty representing the natural sciences, the social sciences, the humanities, engineering, and medicine. The program includes a required lower-division core, an upper-division “integrating course sequence,” two other upper-division courses and statistics, an advanced track, and a senior integrative project and seminar. There is a strong emphasis on a rigorous natural science foundation as well as an introduction to the policy sciences for all students enrolled in the major. The Environmental Systems Program places a significant value on interdisciplinary problem solving and all majors are expected to complete an integrative Senior Project in their final year. The Senior Project is designed by the student to focus on an interdisciplinary environmental problem or research topic. Appropriate topics for the Senior Project could conceivably include biodiversity conservation, coastal zone management, environmental health, climate change, environmental justice, and/or urban air quality. An important component of the Senior Project is an off-campus or laboratory internship where students might work on, for example, the development of a comprehensive management plan for a threatened ecosystem. The Senior Seminar provides a venue for the presentation and group evaluation of the ESYS Senior Projects.

THE ENVIRONMENTAL SYSTEMS MAJOR

The requirements for completion of the environmental systems major include a lower-division core, two upper-division courses, a three course upper-division integrating sequence (ESYS 101, ESYS 102, ESYS 103), an upper-division statistics course, advanced courses in one of four tracks, and the Senior Project (ESYS 190A) and Senior Seminar (ESYS 190B). It is suggested that the integrating sequence ESYS 101, 102, and 103 should be completed by sophomore year, if possible. Any questions concerning the requirements should be directed to the associate director or the program advisor. Students completing the advanced tracks in Earth Sciences, Ecology, Behavior, and Evolution, and Environmental Chemistry will be awarded a B.S. in environmental systems. The B.A. in environmental systems will be granted to students completing the Environmental Policy track within the major.

A grade-point average of 2.0 or higher in the upper-division major program is required for graduation. Students must receive a grade of C– or better in any course to be counted toward fulfillment of the major requirements. In exceptional cases, students with a grade-point average in the major of 2.5 or greater may petition to have one grade of D accepted.

All courses (lower- and upper-division) required for the major must be taken for a letter grade.

Lower-Division Core Requirements
(Should be completed early in student’s degree program.)

Biology 3—BILD 3
Chemistry 6A-B, 6BL, 6C
Physics 1A, 1AL, 1B, 1BL, 1C, 1CL (Physics 2A-B-C recommended for Earth Sciences track.)
Mathematics 10A-B-C (Math. 20A-B-C recommended for Earth Sciences track.)

Economics 1
SIO 50—for Earth Sciences track only

Upper-Division Core Requirements
Economics 131. Economics of the Environment
Political Science 160AA. Introduction to Policy Analysis

Integrating Course Sequence
It is suggested that the Integrating Course Sequence of Esys 101, 102 and 103 be completed by the sophomore year, if possible.

Environmental Systems 101. Environmental Biology
Environmental Systems 102. The Solid and Fluid Earth
Environmental Systems 103. Environmental Challenges: Science and Solutions
Environmental Systems 190A. Senior Project (two quarters)
Environmental Systems 190B. Senior Seminar

ENVIRONMENTAL SYSTEMS MAJOR TRACKS

There are four advanced tracks in which students must complete a minimum of seven upper-division courses. Students will select courses following the requirements below in consultation with a faculty advisor.

Earth Sciences
Ecology, Behavior, and Evolution
Environmental Chemistry
Environmental Policy

It is possible to complete the requirements for any of the Environmental Systems tracks with five upper-division electives and a specialization that consists of two additional upper-division electives from any other track. For example, a student interested in the policy and scientific dimensions of habitat conservation planning for endangered species might plan a course of study to include five advanced courses from the Ecology, Behavior, and Evolution track and two advanced courses from the Environmental Policy track.

EARTH SCIENCES TRACK

Required lower-division course:
SIO 50. Introduction to Earth and Environmental Sciences

Required upper-division courses:
ENVIRONMENTAL CHEMISTRY TRACK

Students must complete two of the following courses:

- Chemistry 149A. Environmental Chemistry
- Chemistry 149B. Environmental Chemistry
- Chemistry 173/273. Atmospheric Chemistry
- SIO 141/Chem 174. Chemical Principles of Marine Chemistry

Students must complete:

- Math 183. Statistical Methods OR
- Math 186. Probability Statistics for Bioinformatics
- Chemistry 100A. Analytical Chemistry Laboratory
- Chemistry 140A and B. Organic Chemistry I and II

One upper-division lab from either:
- Chemistry 100B. Instrument Analysis Laboratory
- Chemistry 143A. Organic Chemistry Laboratory

Two upper-division restricted electives from:
- Chemistry 124. Bioorganic Chemistry
- Chemistry 126. Physical Chemistry or Chem. 133
- (Note: Chem. 126 and Chem. 133 both require Physics 2D and Math 20D as prerequisites.)
- Chemistry 127. Physical Chemistry or Chem. 131, Chem. 132
- Chemistry 140C. Organic Chemistry III
- ESYS 199. Independent Study

Other courses may be substituted by petition.

Curriculum Guide Planning

ENVIRONMENTAL POLICY TRACK

Required upper-division course

One upper-division Statistics course—Math 183

Statistical Methods or Economics 120A Econometrics

Upper-division electives

- Students complete a minimum of seven courses selected from the following:
- Economics 116. Economic Development
- Economics 125. Economics of Population Growth
- Economics 130. Public Policy
- Economics 132. Energy Economics
- Environmental Systems 120. Science and Environmental Writing

Curriculum Guide Planning

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 6A</td>
<td>Chem. 6B</td>
<td>Chem. 6C</td>
</tr>
<tr>
<td>Math. 20A or Math. 10A</td>
<td>Math. 20B or Math. 10B</td>
<td>Math. 10C</td>
</tr>
<tr>
<td>SIO 288. Marine Microbiology Laboratory</td>
<td>SIO 100. Introduction to Tectonics</td>
<td>SIO 105. Sedimentology and Stratigraphy</td>
</tr>
<tr>
<td>BIEB 100. Biometry (satisfies upper-division statistics requirement)</td>
<td>SIO 104. Analytical Chemistry Laboratory</td>
<td>BIEB 167. Animal Communication Lab</td>
</tr>
<tr>
<td>BIEB 136. Marine Geology</td>
<td>BIEB 137. Marine Geology 2</td>
<td>ESYS 120. Science and Environmental Writing</td>
</tr>
<tr>
<td>BIEB 140. Marine Geology</td>
<td>BIEB 141. Marine Geology 4</td>
<td>ESYS 199. Independent Study</td>
</tr>
</tbody>
</table>

Other courses may be substituted by petition.
*IR-GN 457/257. Cost Benefit Analyses
*IR-GN 459/259. Conflict Resolution of Environmental Issues
*IR-GN 487/289. Applied Environmental Issues
*IR-GN 488/206. Corporate Strategy and the Environment
*IR-GN 490/290. Special Topics in Pacific International Affairs (petition only)
*IR-GN 453/253. Sustainable Development
*IR-GN 458/258. International Environmental Policy
HISC 105. History of Environmentalism
HIUS 154. Western Environmental History
ANBI 132. Conservation and the Human Predicament
Com/Cul 148. Communication and the Environment
Env. Studies 102. Selected Topics in Environmental Studies
Env. Studies 110. Environmental Law
Env. Studies 130. Environmental Issues
Philosophy 148. Philosophy and the Environment
Philosophy 164. Technology and Human Values
SIO 110. Introduction to GIS and GPS for Scientists
SIO 112. Urban Landscapes
USP 124. Land Use Planning
USP 144. Environmental and Preventive Health Issues
USP 170. Sustainability Planning
USP 171. Sustainable Development

Other courses may be substituted by petition.

*These graduate courses are offered through the Graduate School of International Relations and Pacific Studies. Enrollment in these courses requires the permission of the instructor.

Curriculum Guide Planning

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem. 6A</td>
<td>Chem. 68</td>
<td>Chem. 6C</td>
</tr>
<tr>
<td>Math. 10A</td>
<td>Math. 10B</td>
<td>Math. 10C</td>
</tr>
<tr>
<td>Biol. 3</td>
<td>Biol. 3</td>
<td>Chem. 6BL</td>
</tr>
<tr>
<td>Sophomore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 1A, 1AL</td>
<td>Phys. 1B, 1BL, 1CL</td>
<td>Math. 183 or Econ. 131</td>
</tr>
<tr>
<td>Econ. 1</td>
<td>Econ. 120A</td>
<td></td>
</tr>
<tr>
<td>ESYS 101</td>
<td>ESYS 102</td>
<td>ESYS 103/MAE 124</td>
</tr>
<tr>
<td>Junior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly 160AA/USP 101</td>
<td>UD elective</td>
<td>UD elective</td>
</tr>
<tr>
<td>UD elective</td>
<td>UD elective</td>
<td>UD elective</td>
</tr>
<tr>
<td>Senior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESYS 190A</td>
<td>ESYS 190A</td>
<td>ESYS 190B</td>
</tr>
<tr>
<td>UD elective</td>
<td>UD elective</td>
<td>UD elective</td>
</tr>
</tbody>
</table>
| ENVIRONMENTAL SYSTEMS MINOR

A minor in Environmental Systems will expose students to the interdisciplinary approach necessary to address environmental problems. The program places a strong emphasis on a rigorous natural science foundation. Thus, most of the courses related to the minor have significant prerequisites; students planning an Environmental Systems minor should check catalog course description carefully.

The minor consists of twenty-eight units, at least twenty of which must be upper-division. Any upper division course used to satisfy major requirements may not be applied toward a minor. Up to two courses for the minor may be taken on a Pass/Not Pass basis, (upper or lower division). Students must earn at least a letter grade of C– in the remaining five or more courses used for the minor. Students considering the Environmental Systems minor are strongly advised to meet with the associate director or the program advisor.

The minor is structured as followed:

LOWER-DIVISION Courses

Any two of the following lower-division courses, if they are not lower-division requirements for the student's major, may be applied to satisfy eight of the total units necessary for the minor:

- Biology 3
- Math. 10A-B-C
- Chemistry 6A-B-6BL-C
- Physics 1A-AL,1B-1BL,1C-CL
- Economics 1
- Scripps Undergraduate Education (SIO); any lower-division course
- Environmental Systems 10
- Environmental Studies 30

Required Core Courses

- Environmental Systems 101, offered every fall quarter
- Environmental Systems 102, offered every winter quarter
- Environmental Systems 103, offered every spring quarter

Note: ESYS 102 and ESYS 103 all have significant prerequisites; students planning an Environmental Systems minor should check course descriptions and prerequisites carefully.

Upper-Division Electives

At least two additional upper-division courses from the advanced tracks in the Environmental Systems major. The lists of upper-division electives are reviewed and updated each quarter. They are available in the Environmental Systems Office and on the program Web site (http://esys.ucsd.edu). Students are advised to consult with the Environmental Systems program advisors or associate director.

SPECIAL STUDIES COURSES

Special Studies in the environmental systems is offered as ESYS 199. This course is subject to consent of the instructor and approval by the Environmental Systems faculty advisor. This course is open to students who have accrued at least ninety quarter-units and have a GPA of 3.0. No more than two quarters of environmental systems special studies may be counted toward the environmental systems major.

Study abroad through the Education Abroad Program or Opportunities Abroad Program can enhance a student's major, particularly as an opportunity for diverse field experiences. However, careful planning is important to meet all major requirements. Please contact the Environmental Systems Office as early as possible if you are planning to study abroad.

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

Many of the courses that are used to fulfill the requirements of the environmental systems major are offered by other departments and programs. Most of these courses are offered on a regular basis. Students should consult the Schedule or contact the Environmental Systems office in order to obtain current information. The courses below are offered directly through the Environmental Systems Program.

LOWER-DIVISION

ESYS 10. Introduction to Environmental Systems (4)

This course explores the interdisciplinary character of environmental issues through an examination of a particular topic (climate change, for example) from numerous disciplinary perspectives (e.g., biology, chemistry, physics, political science, and economics). Prerequisite: none. (F)

ESYS 87. Freshman Seminar (1)

The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate college, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students with preference given to entering freshmen. (F)

ESYS 90. Perspectives on Environmental Issues (1)

Provides an introduction to environmental systems. Faculty members from departments in the natural sciences, geosciences, and social sciences will offer perspectives in these areas. (F)

UPPER-DIVISION

ESYS 101. Environmental Biology (4)

This course surveys biochemical and physiological processes governing the relationship between organisms and their environments, such as those involved in element cycling and cellular homeostasis. The course introduces biological perspectives on human activities ranging from antibiotic use to genetic engineering. Prerequisite: BILD 1 or 2 or equivalent, or consent of instructor. (F)

ESYS 102. The Solid and Fluid Earth (4)

Earth's dynamic physical systems interact in complex ways with profound impact on our environment. Processes such as volcanism and weathering enable geochmical exchange between solid and fluid (ocean and atmosphere) systems. Sea-level and climate changes interface with tectonic processes. Prerequisites: Math. 10A, Chem. 6A, Physics 1A or consent of instructor. (W)

ESYS 103/MAE 124. Environmental Challenges: Science and Solutions (4)

This course explores the impacts of human, social, economic, and industrial activity on the environment. It highlights the central roles in ensuring sustainable development played by market forces, technological innovation, and government regulation on local, national, and global scales. Prerequisite: Math 10A-C or Math 20B or consent of instructor. (S)

ESYS 120. Science and Environmental Writing (4)

Course designed to improve the written communication scales.

Prerequisite: upper-division standing in
science or mathematics major and completion of college composition requirement (or consent of instructor). (W)

ESYS 150. Environmental Perils (4)
An advanced field-oriented course for engineering and science students stressing the geologic basis for environmental perils such as earthquakes, erosion, flooding, and waste disposal. Two one-hour lectures, and a two-hour lab/field trip each week. **Prerequisites:** Math. 10 A-B-C sequence and Physics 1A,AL; 1B,BL; 1C,1CL sequence or equivalent. (S)

ESYS 190A. Senior Project (8)
All majors are required to complete an integrative Senior Project in their senior year. The Senior Project is designed by the student to focus on an interdisciplinary environmental problem or research topic and is developed either individually or as part of a team over two quarters. Appropriate topics could include biodiversity conservation, environmental health, and/or global change. An important component of the Senior Project is an off-campus or laboratory internship. **Prerequisites:** ESYS 103 and upper-division standing, departmental approval, majors only. (F,W)

ESYS 190B. Environmental Systems Senior Seminar (4)
The seminar provides a venue for the development, presentation, and evaluation of the Environmental Systems Integrative Project. The seminar will include work on research methods as well as paper presentation skills. **Prerequisites:** Completion of ESYS 190A or ESYS 190A(W) sequence, senior standing and majors only. (S)

ESYS 199. Independent Study (2-4)
Individually guided readings or projects in the area of environmental systems.
Ethnic Studies

FACULTY

Robert R. Alvarez, Ph.D., Professor and Director, California Cultures in Comparative Perspective
Kirstie A. Dorr, Ph.D., Assistant Professor
Yen Le Espiritu, Ph.D., Professor
Ross H. Frank, Ph.D., Associate Professor
Adria L. Imada, Ph.D., Assistant Professor
Sara C. Kaplan, Ph.D., Assistant Professor
Roshanak Kheshti, Ph.D., Assistant Professor
Gabriel Mendes, Ph.D., Assistant Professor
Curtis F. Marez, Ph.D., Associate Professor
Ivan Evans, Professor Emeritus, Communication/Visual Arts
Nayantara Suroias, Associate Professor, Political Science
Matthew Chen, Professor Emeritus, Linguistics
Dennis Childs, Assistant Professor, Literature
Wayne Cornelius, Director, Center for Comparative Immigration Studies and Professor, Political Science
Anthony Davis, Professor, Music
Robert Cancel, Associate Professor, Literature
David Borgo, Associate Professor, Music
Matthew Chen, Professor Emeritus, Linguistics
Dennise Ferreira da Silva, Ph.D., Associate Professor
Kalindi A. Vora, Ph.D., Assistant Professor
K. Wayne Yang, Ph.D., Assistant Professor

PROFESSOR EMERITA

Ana Celia Zentella, Ph.D.

ASSOCIATED FACULTY

Luis A. Alvarez, Associate Professor, History
Patrick W. Anderson, Assistant Professor, Communication
John D. Blanco, Associate Professor, Literature
David Borgo, Associate Professor, Music
Robert Cancel, Associate Professor, Literature
Matthew Chen, Professor Emeritus, Linguistics
Dennis Childs, Assistant Professor, Literature
Wayne Cornelius, Director, Center for Comparative Immigration Studies and Professor, Political Science
Anthony Davis, Professor, Music
Ricardo R. Dominguez, Associate Professor, Visual Arts
Gerald Doppelt, Professor, Philosophy
Steven Epstein, Associate Professor, Sociology
Steve Erle, Director, Urban Studies and Planning Program and Professor, Political Science
Ivan Evans, Associate Professor, Sociology
Claudio Frenner-Lopez, Lecturer with Security of Employment Emeritus, Communication/Visual Arts
Camille Forbes, Assistant Professor, Literature
Takashi Fujitani, Professor, History
Nadine A. George, Associate Professor, Theatre and Dance
Rosemary George, Associate Professor, Critical Gender Studies Program and Literature
Nora Gordon, Assistant Professor, Economics
David Gutiérrez, Professor, History
Michael Hardimon, Associate Professor, Philosophy
Louis Hock, Professor, Visual Arts
Jorge Huerta, Professor, Theatre and Dance
Sara Johnson, Assistant Professor, Literature
Bennetta Jules-Rosette, Professor, Sociology
Matha Lampland, Associate Professor, Critical Gender Studies and Sociology
Arend Lijphardt, Professor Emeritus, Political Science
James Lin, Professor, Mathematics
Lisa Lowe, Professor, Literature
Cecil Lyele, Professor Emeritus, Music
George Mariscal, Professor, Literature
Michael Meeker, Professor Emeritus, Anthropology
Masao Miyoshi, Professor Emeritus, Literature

JOHN C. MOORE, PROFESSOR, LINGUISTICS

Elizabeth Newspaper, Associate Professor, Visual Arts
Edward Reynolds, Professor Emeritus, History
Emily Roxworthy, Assistant Professor, Theatre and Dance
Ramón Eduardo Ruiz, Professor Emeritus, History
Marta Sánchez, Professor Emerita, Literature
Rosaura Sánchez, Professor, Literature
Gershon Shafir, Professor, Sociology
Fausanna Solis, Professor Emerita, Urban Studies/Family and Preventive Medicine
Roberto Tejada, Associate Professor, Visual Arts
Olga Vásquez, Associate Professor, Communication
Daniel Widener, Associate Professor, History
Lisa Yoneyama, Associate Professor, Literature
Elana Zilberg, Associate Professor, Communication

OFFICE: Social Science Building, Room 201
http://www.ethnicstudies.ucsd.edu

Ethnic studies is the study of the social, cultural, and historical forces that have shaped the development of America’s diverse ethnic peoples over the last 500 years and which continue to shape our future. Focusing on immigration, slavery, and confinement, those three social processes that combined to create in the United States a nation of nations, ethnic studies intensively examines the histories, languages, and cultures of America’s racial and ethnic minority groups in and of themselves, in their relationships to one another, and particularly, in structural contexts of power.

The curriculum of the Department of Ethnic Studies is designed (1) to study intensively the particular histories of different ethnic and racial groups in the United States, especially intragroup stratification; (2) to draw larger theoretical lessons from comparisons among these groups; (3) to articulate general principles that shape racial and ethnic relations both currently and historically; and (4) to explore how ethnic identity is constructed and reconstructed over time both internally and externally.

A degree in ethnic studies offers training of special interest to those considering admission to graduate or professional schools and careers in education, law, medicine, public health, social work, journalism, business, city planning, politics, psychology, international relations, or creative writing. A major in ethnic studies is designed to impart fundamental skills in critical thinking, comparative analysis, social theory and research analysis, and written expression. These skills will give students the opportunity to satisfy the increasingly rigorous expectations of graduate admissions committees and prospective employers for a broad liberal arts perspective.

THE MAJOR

to Ethnic Studies, will consist of the following three courses: Population Histories of the United States, Immigration and the Transformation of American Life, Race and Ethnic Relations in the United States.

2. A minimum of twelve four-unit upper-division courses in the Department of Ethnic Studies must be completed from the following five categories:

- One four-unit upper-division course that intensively explores the theory and comparative methods of ethnic studies (Ethnic Studies 100, Theories and Methods of Ethnic Studies). All ethnic studies majors should complete this course before proceeding with the other requirements listed below.
- Four upper-division ethnic studies history and social science courses from those listed below:

 ETHN 103. Environmental Racism
 ETHN 104. Race, Space, and Segregation
 ETHN 105. Ethnic Diversity and the City
 ETHN 107. Field Work in Racial and Ethnic Communities
 ETHN 108. Race, Culture, and Social Change
 ETHN 109. Race and Social Movements
 ETHN 112A. History of Native Americans in the United States I
 ETHN 112B. History of Native Americans in the United States II
 ETHN 116. The United States-Mexico Border in Comparative Perspective
 ETHN 117. Organic Social Movements
 ETHN 118. Contemporary Immigration Issues
 ETHN 119. Race in the Americas
 ETHN 120. Race and Performance: The Politics of Popular Culture
 ETHN 121. Contemporary Asian-American History
 ETHN 123. Asian-American Politics
 ETHN 125. Asian-American History
 ETHN 126. Comparative Filipino- and Vietnamese-American Identities and Communities
 ETHN 127. Sexuality and Nation
 ETHN 129. Asian and Latina Immigrant Workers in the Global Economy
 ETHN 130. Social and Economic History of the Southwest I
 ETHN 131. Social and Economic History of the Southwest II
 ETHN 134. Immigration and Ethnicity in Modern American Society
 ETHN 149. African American History in the Twentieth Century
 ETHN 151. Ethnic Politics in America
 ETHN 152. Law and Civil Rights
 ETHN 159. Topics in African American History
 ETHN 161. Black Politics and Protest Since 1941
 ETHN 165. Sex and Gender in African American Communities
 ETHN 167. African-American History in War and Peace: 1917 to the Present
 ETHN 170A. Origins of the Atlantic World, c. 1450–1650
 ETHN 170B. Slavery and the Atlantic World
 ETHN 183. Gender, Race, Ethnicity, and Class

2010-2011 UC SAN DIEGO GENERAL CATALOG • ETHNIC STUDIES 1
c. At least three upper-division ethnic studies courses that focus on language, ethnicity, and institutional discourses:

ETHN 120. Race and Performance: The Politics of Popular Culture
ETHN 140. Language and American Ethnicity
ETHN 141. Language, Culture, and Inequality
ETHN 142. Medicine, Race, and the Global Politics of Inequality
ETHN 144. Bilingual Communities in the U.S.A.
ETHN 145. Spanish Language in the United States
ETHN 164. African Americans and the Mass Media
ETHN 185. Discourse, Power, and Inequality
ETHN 186. The Ethnic Press in the United States

Students may petition to count one course on language, ethnicity, and institutional discourses offered by other departments. In addition, one course in foreign language at the upper-division level may be counted in partial fulfillment of this requirement, with the consent of the department. Students must seek faculty advice on which courses would best satisfy the requirement and yield the most rigorous training.

d. At least three upper-division ethnic studies courses on the literature and cultural expressions of American racial and ethnic minorities.

ETHN 101. Ethnic Images in Film
ETHN 110. Cultural World Views of Native Americans
ETHN 111. Native American Literature
ETHN 120. Race and Performance: The Politics of Popular Culture
ETHN 122. Asian-American Culture and Identity
ETHN 123. Asian-American Politics
ETHN 124. Asian-American Literature
ETHN 126. Comparative Filipino- and Vietnamese-American Identities and Communities
ETHN 128. Hip Hop: The Politics of Culture
ETHN 132. Chicano Dramatic Literature
ETHN 133. Hispanic-American Dramatic Literature
ETHN 135A. Early Latino/a-Chicano/a Cultural Production: 1848 to 1960
ETHN 135B. Contemporary Latino/a-Chicano/a Cultural Production: 1960 to Present
ETHN 136. Topics in Chicano/a-Latino/a Cultures
ETHN 138. Chicano/a-Latino/a Poetry
ETHN 139. Chicano Literature in English
ETHN 140A. Theatrical Ensemble
ETHN 141A and ETHN 141B. Comparative African American Literature
ETHN 142. Afro-American Prose
ETHN 143. Themes in Afro-American Literature
ETHN 175. Literature of the Harlem Renaissance
ETHN 176. Black Music/Black Texts: Communication and Cultural Expression
ETHN 178. Blues: An Oral Tradition
ETHN 179A. Jazz Roots and Early Development (1900–1943)
ETHN 179B. Jazz Since 1946: Freedom and Form
e. One four-unit field methods course (Ethnic Studies 190, Research Methods: Studying Ethnic and Racial Communities).

3. Since the goal of the Department of Ethnic Studies is to intensively study both the particular histories of various ethnic and racial groups in the United States and to draw larger theoretical lessons from comparisons among and between groups, students may not fulfill requirements 28 and 29 by focusing all of the seven required courses on only one ethnic or racial group.

4. Ethnic studies majors, including students who are double majors, may petition up to four upper-division courses to fulfill major requirements as long as each of the following three conditions is met for each course: (1) the course is taken from another UC San Diego department, taken from a UCSD approved study abroad program, or taken at another UC campus; (2) the course work is appropriate to the ethnic studies major; and (3) the student completes at least one course offered by the UCSD ethnic studies department in each of the five upper-division categories.

5. To satisfy the requirements for the major, lower- and upper-division courses must be completed with a P, C–, or better grade.

6. Except for independent study course electives (ETHN 197, 198, or 199) which are always taken with a Pass/Not Pass grade option, students majoring in ethnic studies may take up to two courses, either lower- or upper-division, with a Pass/Not Pass option.

THE HONORS PROGRAM

Consistent with other research opportunities offered to undergraduates on the UCSD campus, the department offers the Honors Program to ethnic studies majors in their senior or junior year the opportunity to conduct original research using interdisciplinary methodologies in the comparative study of race and ethnicity. To enroll in the Honors Program, an undergraduate must have a minimum grade-point average of 3.5 in ethnic studies classes counted toward the major. Students with a GPA lower than 3.5 in the major may be admitted by exception if they show promise of success in research.

The Honors Program will be an extension of current departmental offerings using existing faculty resources. Ethnic studies and affiliated faculty will choose to advise students who successfully complete ETHN 191A and continue in the Honors Program based on related research interests. The student will enroll in ETHN 191B and ETHN 191C and work with the appropriate faculty advisor. Students will present their research projects at the annual Ethnic Studies Honors Symposium in June. Students who complete the sequence ETHN 191A, ETHN 191B, and ETHN 191C will receive one credit toward the B (Social Studies/Humanities) requirements for the ethnic studies major. Students who complete their research project with a grade of B or better and maintain a minimum 3.25 GPA in the ethnic studies major will receive Distinction in the major upon graduation from UCSD.

ETHN 191. Undergraduate Research in Ethnic Studies (4)

This course is designed to help students conduct their own research rather than merely read the research of others. The course will introduce students to research paradigms in ethnic studies, familiarize them with finding aids and other library resources, and involve them in the design of research plans.

ETHN 191B. Honors Research in Ethnic Studies (4)

This course is a continuation of Ethnic Studies 191A, Undergraduate Research in Ethnic Studies. Students who have completed ETHN 191A and selected a faculty research advisor may enroll in this course. During the quarter the research for the honors project will be completed under the faculty advisor’s supervision. Faculty advisors will meet weekly with their honors students to oversee the progress made in carrying out the plan of research. Formerly ETHN 192. Prerequisites: upper-division standing, consent of instructor, and completion of 191A.

ETHN 191C. Honors Research in Ethnic Studies (4)

This course is a continuation of Ethnic Studies 191B Honors Research in Ethnic Studies. Students who have completed ETHN 191A and selected a faculty research advisor may enroll in this course. During the quarter the written drafts and final honors paper will be completed under the faculty advisor’s supervision. The student will meet weekly with the faculty advisor in order to prepare drafts and the final version of the honors paper. Formerly ETHN 193. Prerequisites: ETHN 191A and ETHN 191B.

EDUCATION ABROAD PROGRAM

Students are able to participate in the UC Education Abroad Program (EAP) or UCSD’s Opportunities Abroad Program (OAP) while still making progress toward completing their major. Students considering this option should discuss their plans with the undergraduate advisor prior to going abroad, and courses taken abroad must be approved by the department. Interested students should contact the Programs Abroad Office in the International Center.

THE MINOR

Students may minor in ethnic studies. Consistent with the provision for a minor curriculum for students entering after January 1, 1998, students...
wishing to minor in ethnic studies must satisfy the following requirements:

1. Students must take two four-unit courses in the history and theoretical dimensions of ethnic diversity in the United States from the lower-division sequence (Ethnic Studies 1A-B-C); or students must take two four-unit upper-division courses in analytic and comparative study of ethnicity. Theories and Methods of Ethnic Studies (ETHN 100); and Research Methods, Studying Ethnic and Racial Communities (ETHN 190).

2. Students must take five four-unit upper-division ethnic studies elective courses; at least two, but no more than three of the five elective courses must be selected from either the ethnic studies history and social studies courses (listed above in section 2B) or the ethnic studies literature and cultural expressions courses (listed above in section 2D). While language and ethnicity courses offered by the department (listed above in section 2C) may also be used to satisfy this requirement, foreign language and area studies courses from other departments may not. No more than two independent study courses (ETHN 197, 198, or 199) may be used to satisfy this requirement.

3. To satisfy the requirements for the minor, lower- and upper-division courses must be completed with a P, C–, or better grade.

4. Except for independent study course electives (ETHN 197, 198, or 199) that are always taken with a Pass/Not Pass grade option, students minoring in ethnic studies may take one course, either lower- or upper-division, with a Pass/Not Pass grade option.

Students interested in the African-American experience should consider the following courses:

ETHN 149. African American History in the Twentieth Century
ETHN 159. Topics in African American History
ETHN 161. Black Politics and Protest since 1941
ETHN 164. African Americans and the Mass Media
ETHN 165. Sex and Gender in African American Communities
ETHN 167. African-American History in War and Peace, 1917 to the Present
ETHN 170A. Origins of the Atlantic World, c. 1450–1650
ETHN 170B. Slavery and the Atlantic World
ETHN 172. Afro-American Prose
ETHN 174. Themes in Afro-American Literature
ETHN 175. Literature of the Harlem Renaissance
ETHN 176. Black Music/Black Texts. Communication and Cultural Expression
ETHN 178. Blues: An Oral Tradition
ETHN 179A. Jazz Roots and Early Development (1900–1943)
ETHN 179B. Jazz Since 1946: Freedom and Form
ETHN 181. Topics in the Comparative History of Modern Slavery
ETHN 184. Black Intellectuals in the Twentieth Century
ETHN 187. Black Nationalism
ETHN 188. African Americans, Religion, and the City

Students interested in the Chicano experience should consider the following courses:

ETHN 116. The United States-Mexico Border in Comparative Perspective
ETHN 130. Social and Economic History of the Southwest I
ETHN 131. Social and Economic History of the Southwest II
ETHN 132. Chicano Dramatic Literature
ETHN 133. Hispanic-American Dramatic Literature
ETHN 135A. Early Latino/a-Chicano/a Cultural Production: 1848 to 1960
ETHN 135B. Contemporary Latino/a-Chicano/a Cultural Production: 1960 to Present
ETHN 136. Topics in Chicano/a-Latino/a Cultures
ETHN 138. Chicano/a-Latino/a Poetry
ETHN 139. Chicano Literature in English
ETHN 145. Spanish Language in the United States
ETHN 148. Latino/a and Chicano/a Literature
ETHN 180. Topics in Mexican American History

Students interested in the Asian-American experience should consider the following courses:

ETHN 20. Introduction to Asian American History
ETHN 120. Race and Performance: The Politics of Popular Culture
ETHN 121. Contemporary Asian-American History
ETHN 122. Asian-American Culture and Identity
ETHN 123. Asian-American Politics
ETHN 124. Asian-American Literature
ETHN 125. Asian-American History
ETHN 126. Comparative Filipino- and Vietnamese-American Identities and Communities

Students interested in the Native American experience should consider the following courses:

ETHN 110. Cultural World Views of Native Americans
ETHN 111. Native American Literature
ETHN 112A. History of Native Americans in the United States I

ETHN 112B. HISTORY OF NATIVE AMERICANS IN THE UNITED STATES II

The UC San Diego Department of Ethnic Studies emphasizes comparative, analytic, and relational study of ethnicity and race in the United States. Our fields of emphasis include intercultural communication and conflict, population histories of the Americas, ethnicity and identity, immigration and assimilation, ethnic politics and social movements, race and racism, urban ethnicity, gender and sexuality, intellectual and cultural histories of ethnic groups, cultural pluralism, national integration, language and ethnic life, and mass media representations of ethnic identity.

ADMISSION

New students are admitted in the fall quarter of each academic year. Prospective applicants should submit the official application for admission and awards (same form), one set of official transcripts from each institution attended after high school, official scores from the Graduate Record Examination, application fee, at least three letters of recommendation, and one or more samples of the applicant’s own writing, such as term papers. Additionally, foreign applicants must submit official scores from the Test of English as a Foreign Language (TOEFL). Applicants are encouraged to visit the department to talk with faculty and graduate students. The application deadline is January 15.

PROGRAM OF STUDY

Students are required to enroll as full-time graduate students, to carry a minimum enrollment of twelve units of graduate-level courses each quarter, and to maintain a grade-point average of 3.2 or better. To obtain an M.A. degree students must take fifty-four units of course work and write a master’s thesis.

CORE CURRICULUM SEQUENCE REQUIREMENTS

1. Ethnic Studies 200A-B-C, Core Seminar
 All graduate students will be required to take the introductory three-quarter core seminar (four units each, twelve units total) during their first year in the program. This course covers the genealogy of critical racial and ethnic studies (its antecedents and development as a distinct and interdisciplinary method of inquiry), interdisciplinarity and knowledge production in ethnic studies, and research in ethnic studies (Pro Seminar).

2. Ethnic Studies 230, Department Colloquium
 During the first two years of graduate study, all students will be required to enroll in six one-quarter colloquia required by the department. In Ethnic Studies 230, department faculty and visiting lecturers will make presentations about research in progress in our field. This colloquium is a one-unit course and must be taken for a total of six quarters.

 All graduate students will be required to take the three-quarter core research methods course (four units each, twelve units total) during their first year in the program. ETHN 240A, Historical Methods and Archives; ETHN 240B, Cultural Studies and Cultural Production; and ETHN 240C Qualitative Methods/Ethnography.

4. Ethnic Studies 290A-B, Master’s Thesis Preparation
 Students are required to write a master’s thesis as part of the requirements for the master of arts in ethnic studies. Students should enroll in thesis preparation courses in the fall and spring quarters of the second year of graduate studies.

FOREIGN LANGUAGE REQUIREMENT

Competence in one or more foreign languages is encouraged but not required at the M.A. level. All doctoral candidates must satisfy the department’s graduate committee that they have adequate linguistic competence in one foreign language relevant to their area of research by translating three pages of scholarly text written in the designated foreign language. The graduate committee may waive the language requirement and test the candidate on other specialized skills in instances where knowledge of a foreign language is not relevant to the candidate’s areas of research.

INSTRUCTION IN QUANTIFICATION

The department encourages graduate students to employ quantitative methods where appropriate. Instruction in quantitative methods can fulfill elective requirements; recommended courses include Sociology 205 and 206, Survey and Demographic
Methods: Political Science 270, Quantitative Methods in Political Science. In cases where a reading knowledge of evidence assembled through quantitative methods would be useful, students who obtain the permission of the director of Graduate Studies may fulfill elective requirements by taking no more than two selected undergraduate courses including Sociology 103, Computer Applications to Data Management in Sociology; Sociology 107, Demographic Methods; Sociology 108, Quantitative Analysis of Survey Data; Sociology 109, Quantitative Analysis of Sociological Data; and Political Science 170, Quantitative Political Science, among others.

THE MASTER’S DEGREE

Students entering the ethnic studies doctoral program must first complete a master’s degree before continuing toward the doctorate. University regulations prohibit entering students who already have a master’s degree in ethnic studies from receiving a second master’s degree. Nonetheless, students who are admitted to the ethnic studies doctoral program with a master’s degree must complete all the requirements for the ethnic studies master of arts degree. The M.A. will also be a terminal degree for those students denied admission to candidacy.

To obtain the M.A. degree, students must complete the department’s course requirements satisfactorily. At the end of the second year in the graduate program, students must submit a written thesis to their Master’s Thesis Committee (MTC). The committee will assess the quality of the work and determine whether it demonstrates the likelihood of success in conducting doctoral research.

The final decision regarding the M.A. degree is based on grades, the master’s thesis, and yearly faculty evaluations. The Graduate Program Committee awards three possible grades: Pass, M.A. Only, and Not Pass. All passing students (with the exception of those who already have a master’s degree in ethnic studies from another institution) receive the master of arts degree and proceed in their course of studies for the doctorate. Students who receive M.A. Only evaluations gain the master’s degree but may not continue in the department’s Ph.D. program. Students who receive a Not Pass evaluation must withdraw from the program without a graduate degree. The master’s degree is earned as one of the requirements for the Ph.D. and is based on the quality of the student’s work during the first two years in the graduate program. At the end of the second year, students are evaluated by the Graduate Program Committee for the master’s degree. At that time, the committee (GPC) ascertains the student’s suitability for doctoral work and recommends either advancement to Ph.D. work or termination.

REQUIREMENTS FOR THE QUALIFYING EXAMINATIONS

When students complete all the core curriculum requirements and have taken five four-unit elective courses in appropriate areas or disciplines, they are eligible to take the qualifying examination for the Ph.D. degree. Students will be encouraged to take the exam by the end of their third year in the program, but this examination must be completed by the end of the student’s fourth year in the program. The qualifying exam is both written and oral; it consists of two parts. Part one tests the student’s basic competence and knowledge of ethnic studies scholarship as spelled out in the Department of Ethnic Studies required graduate reading list. The reading list will be distributed to every student entering the graduate program. Over the next three years, students are required to read all of these books and articles, and to have their mastery of these readings tested during the qualifying examination. Part two of the examination requires the submission of a dissertation prospectus. The dissertation prospectus is a written document that (1) specifies the dissertation research topic; (2) places the dissertation research in the context of the relevant literature in the field; (3) identifies the significance of the project as original discovery scholarship; (4) explains and justifies the research methods to be employed; (5) establishes the feasibility of the research and identifies the primary sources or data bases to be used; (6) indicates the anticipated steps leading to completion of the project; and (7) provides a timetable for the research and writing phases of the project.

The Doctoral Committee consists of five persons proposed by the student and accepted by the department chair and the office of Graduate Studies according to graduate council regulations. A sixth member of the committee may be added with the approval of the department chair. Students are expected to select the chair of their examination committee by the winter quarter of the third year of study. The chair of the Ph.D. Examination Committee serves as the student’s advisor for the remainder of the student’s graduate program. Three of the Examination Committee members must be Department of Ethnic Studies faculty; the other two must be from other departments.

Fourteen days before the scheduled qualifying examination, the student must submit the written dissertation prospectus to the examination committee. On this same day, the student will receive from the chair of the examination committee a three-question written exam testing knowledge of the required graduate reading list. Seven days before the scheduled qualifying examination, the student must submit written answers to the questions that have been posed, distributing copies of these essays to all examination committee members. A two-hour oral examination will occur on the appointed date. At the two-hour oral exam, the student will answer questions posed by the committee about the student’s dissertation prospectus, mastery of the required graduate reading list, answers to the written part of the exam, and comprehensive knowledge of ethnic studies scholarship. Based on written papers and oral performance, three possible grades will be selected by the examination committee: Not Pass, Pass, and High Pass. Students who receive a Not Pass must retake the qualifying examination within one year and obtain a Pass grade to remain in the doctoral program.

THE DOCTORAL DISSERTATION

Once students pass the qualifying exam, they may begin dissertation research. Students are expected to consult with their committee members on a regular basis during the research process. All doctoral students will be evaluated annually by the doctoral committee and given a written report signed by the thesis advisor according to campus policy.

When the dissertation has been substantially completed and once committee members have had the opportunity to review drafts of the written work, the committee meets (with or without the student present at the discretion of the committee chair) to consider the progress made and to identify concerns, changes to be made, or further research to be done. Once the committee members are substantially satisfied with the written work, the student, in consultation with the committee, schedules the oral defense of the dissertation. By university regulation, the defense is open to the public.

The final version of the dissertation must be approved by each member of the doctoral committee. Having successfully defended the dissertation in oral examination, the student is eligible to receive the Ph.D. degree. The final version of the dissertation is then filed with the university librarian via the office of Graduate Studies. Acceptance of the dissertation by the university librarian is the final step in completing all requirements for the Ph.D.

DEPARTMENTAL PH.D. TIME LIMITS POLICY

Pre-candidacy status, that is, the registered time before a student passes the qualifying examination and thereby advances to Ph.D. candidacy, may not exceed four years. Normative time for a Ph.D. in ethnic studies is six years. Normative time is defined as that period of time in which students under normal circumstances are expected to complete their doctoral program. To provide an incentive for students to complete the Ph.D. within normative time, students will only be eligible for departmental financial support for six years (eighteen quarters). By university policies, the doctoral dissertation must be submitted and defended within eight years. To meet this normative time limit, and to meet departmental requirements, students must complete the Qualifying Examination by the end of the fourth year.

In the spring quarter each year, the Graduate Program Committee will assess the progress of each pre-candidacy student on the basis of evaluations submitted by three faculty members chosen by the student. The committee will establish that the student is in good standing, recommend additional course work, or recommend dismissal. The committee may wish to meet with some students in person to discuss the student’s evaluation and progress toward the degree.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LOWER-DIVISION

1A. Introduction to Ethnic Studies: Population Histories of the United States (4)

This course examines the comparative historical demography of what is today the United States, focusing on the arrival, growth, distribution, and redistribution of immigrants from Asia, Europe, Africa, and Latin America.
18. Introduction to Ethnic Studies: Immigration and the Transformation of American Life (4)

A history of immigration to the United States from colonial times to the present, with an emphasis on the roles of ethnic and racial groups in economics, power relations between dominant and subordinate groups, and contemporary ethnic and racial consciousness.

19. Race, Space, and Segregation (4)

Through in-depth studies of housing segregation, urban renewal and displacement, neighborhood race effects, and the location of hazards and amenities, this course examines how space becomes racialized and how race becomes spatialized in the contemporary United States.

20. Introduction to Asian-American History (4)

This course introduces students to key issues in Asian-American lives, with emphasis on the global historical context of migration; changing ethnic and racial consciousness; economic, social, and political status; cultural production; and family and gender relations.

21. Comparative Ethnic Studies (1–4)

An introduction to research in ethnic studies with special standing. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

22. Field Studies in Racial and Ethnic Communities (1–4)

Supervised community fieldwork on topics of importance to racial and ethnic communities in the San Diego County region. Regular individual meetings with faculty sponsor and final project and/or written report are required. Prerequisites: upper-division standing, completion of at least thirty units of undergraduate study at UCSD, minimum 3.0 GPA at UCSD, consent of instructor, and approved and completed Special Studies Form.

23. Directed Group Studies (1–4)

Directed group study on a topic in a field not included in the regular department curriculum by special arrangement with a faculty member. Prerequisites: lower-division standing, completion of at least thirty units of undergraduate study at UCSD, minimum 3.0 GPA at UCSD, consent of instructor, and completed and approved Special Studies Form.

24. Independent Study (1–4)

Directed study on a topic or in a field not included in the regular department curriculum by special arrangement with a faculty member. Prerequisites: lower-division standing, completion of at least thirty units of undergraduate study at UCSD, minimum 3.0 GPA at UCSD, consent of instructor, and completed and approved Special Studies Form.

UPPER-DIVISION

PREREQUISITE: upper-division standing or consent of instructor.

100. Theories and Methods in Ethnic Studies (4)

An introduction to research in ethnic studies with special emphasis on theories, concepts, and methods. Students will explore how racial and ethnic categories are shaped by gender, class, and regional experiences and will study ethnicity and race in comparative perspective.

101. Ethnic Images in Film (4)

An upper-division lecture course studying representations of ethnicity in the American cinema. Topics include ethnic images as narrative devices, the social implications of ethnic images, and the role of film in shaping and reflecting societal power relations.

102. Environmental Racism (4)

This course will examine the concept of environmental racism, the history of its widespread existence, and the efforts by government, residents, workers, and activists to combat it. We will examine those forces that create environmental injustices in order to understand its causes as well as its consequences. Students are expected to learn and apply several concepts and social scientific theories to the course material.

103. Race, Space, and Segregation (4)

Through in-depth studies of housing segregation, urban renewal and displacement, neighborhood race effects, and the location of hazards and amenities, this course examines how space becomes racialized and how race becomes spatialized in the contemporary United States.

105. Ethnic Diversity and the City (4)

This course will examine the city as a crucible of ethnic identity, exploring both the racial and ethnic dimensions of urban life in the U.S. from the Civil War to the present. (Cross-listed with USP 104.)

107. Fieldwork in Racial and Ethnic Communities (4)

This is a research course examining social, economic, and political issues in ethnic and racial communities through a variety of research methods that may include interviews and archival, library, and historical research. (Cross-listed with USP 130.)

108. Race, Culture, and Social Change (4)

Aggregated groups often generate distinctive forms of cultural expression by turning negative ascription into positive affirmation and by transforming segregation into congregation. This course examines the role of cultural expressions in struggles for social change by these communities inside and outside the U.S. (Cross-listed with MUS 151.)

109. Race and Social Movements (4)

This course explores collective mobilizations for resources, recognition, and power by members of aggregated racial and ethnic groups, past and present. Emphasis will be placed on the conditions that generate collective movements, the strategies and ideologies that these movements have developed, and on the prospect for collective mobilization for change within aggregated communities in the present and future.

110. Cultural World Views of Native Americans (4)

Using interdisciplinary methods, this course examines the cultural world views of various Native American societies in the United States through an exploration of written literary texts and other expressive cultural forms such as dance, art, song, religious and medicinal rituals.

111. Native American Literature (4)

This course analyzes Native American written and oral traditions. Students will read chronicles and commentaries on published texts, historic speeches, trickster narratives, oratorical and prophetic tribal epics, and will delve into the methodological problems posed by tribal literature in translation.

112A. History of Native Americans in the United States I (4)

This course examines the history of Native Americans in the United States, with emphasis on the lifeways, mores, warfare, cultural adaptation, and relations with the European colonial powers and the emerging United States until 1870. (Cross-listed with HUUS 108A.)

112B. History of Native Americans in the United States II (4)

This course examines the history of Native Americans in the United States, with emphasis on the lifeways, mores, warfare, cultural adaptation, and relations with the United States from 1870 to the present. (Cross-listed with HUUS 108B.)

116. The United States—Mexico Border in Comparative Perspective (4)

This course critically explores the U.S.—Mexico frontier and the social-cultural issues on both sides of the international demarcation. Social-historical and political-economic patterns illuminating border life, ethnic identity, social diversity, and cultural expression. Border ethnography is complemented by film and music.

117. Organic Social Movements (4)

Examination of local responses to global change and social disruption through the examination of organic movements in indigenous societies. In-depth analysis of the Kuna Indians of San Blas, Mexican Zapotitlans of Chiapas, Mexico; and Micronesians of the western Pacific.

118. Contemporary Immigration Issues (4)

This course examines the diversity of today's immigrants— their social origins and contexts of exit and their adaptation experiences and contexts of incorporation.

119. Race in the Americas (4)

This course explores the genesis, evolution, and contradictions of racially heterogeneous societies in the Americas, focusing on how space becomes racialized and how race becomes spatialized in the contemporary United States.

120. Race and Performance: The Politics of Popular Culture (4)

This course explores how racial categories and ideologies have been constructed through performance and displays of the body in the United States and other sites. Racialized performances, whether self-displays or coerced displays, such as world's fairs, museums, minstrelsy, film, ethnography, and tourist performances are considered. Prerequisite: upper-division standing or consent of instructor.

121. Contemporary Asian-American History (4)

This course will study changes in Asian-American communities as a result of renewed immigration since 1965; the influx of refugees from Vietnam, Kampuchea, and Laos; the impact of contemporary social movements on Asian-Americans' current economic, social, and political status.

122. Asian-American Culture and Identity (4)

A survey of Asian-American cultural expressions in literature, art, and music to understand the social experiences that helped forge Asian-American identity. Topics: culture conflict, media portrayals, assimilation pressures, the model minority myth, and interethnic relations.

123. Asian-American Politics (4)

This course will examine the development of Asian-American politics by studying the historical and contemporary factors, such as political and economic exclusion, that have contributed to the importance and complexity of ethnicity as a mobilizing force in politics. Prerequisite: upper-division standing or instructor approval.

124. Asian-American Literature (4)

Selected topics in the literature by men and women of Asian descent who live and write in the United States. May be repeated for credit when topics vary. (Cross-listed with LTEN 181.)

125. Asian-American History (4)

Explore how Asian Americans were involved in the political, economic and cultural formation of United States society. Topics include migration; labor systems; gender, sexuality and social organization; racial ideologies and anti-Asian movements; and nationalism and debates over citizenship. (Cross-listed with HUUS 124.)

126. Comparative Filipino and Vietnamese-American Identities and Communities (4)

This course compares the historical and contemporary social, political, and economic experiences of Filipino and Vietnamese-Americans, paying particular attention to the impact of U.S. wars in the Philippines and in Vietnam on their respective lives. Prerequisite: upper-division standing.

127. Sexuality and Nation (4)

This course explores the nexus of sex, race, ethnicity, gender, and nation and considers their influence on identity, sexuality, migration, movement, and borders and other social, and cultural, and political issues that these constructs affect. (Cross-listed with GGS 112.)

128. Hip Hop: The Politics of Culture (4)

Examination of hip hop's technology, lyrics, and dance and its influences in graffiti, film, music video, fiction, advertising, gender, corporate investment, government, and censorship with a critical focus on race, gender, and popular culture and the politics of creative expression. (Cross-listed with MUS 152.)
129. Asian and Latina Immigrant Workers in the Global Economy (4)
This course will explore the social, political, and economic implications of global economic restructuring, immigration policies, and welfare reform on Asian and Latina immigrant women in the United States. We will critically examine these larger social forces from the perspectives of Latina and Asian immigrant women, incorporating theories of race, class, and gender to provide a careful reading of the experiences of immigrant women on the global assembly line. (Cross-listed with USP 135.)

130. Social and Economic History of the Southwest I (4)
This course examines the history of the Spanish and Mexican Borderlands (what became the U.S. Southwest) from roughly 1400 to the end of the U.S.-Mexican War in 1848, focusing specifically on the area’s social, cultural, and political development. (Cross-listed with HIUS 158.)

131. Social and Economic History of the Southwest II (4)
This course examines the history of the American Southwest from the U.S.-Mexican War in 1846–48 to the present, focusing on immigration, racial and ethnic conflict, and the growth of Chicanio nationalism. (Cross-listed with HIUS 159.)

132. Chicano Dramatic Literature (4)
Focusing on the contemporary evolution of Chicana dramatic literature, the course will analyze playwrights and theatre groups that express the Chicano experience in the United States, examining relevant acts, plays, and documentaries for their contributions to the developing Chicano theatre movement. (Cross-listed with THHS 110.)

133. Hispanic-American Dramatic Literature (4)
This course examines the plays of leading Cuban-American, Puerto Rican, and Chicano playwrights in an effort to understand the experiences of these Hispanic-American groups in the United States. (Cross-listed with THHS 111.)

134. Immigration and Ethnicity in Modern America (4)
Comparative study of immigration and ethnic-group formation in the United States from 1880 to the present. Topics include immigrant adaptation, competing theories about the experiences of different ethnic groups, and the persistence of ethnic attachments in modern American society. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students may be required to submit a more substantial piece of work. (Cross-listed with HIUS 180 and HIUS 280.) Prerequisites: upper-division standing and departmental stamp.

135A. Early Latino/a-Chicana/o Cultural Production: 1848 to 1960 (4)
Cross-disciplinary study of nineteenth- and early twentieth-century Latino/a-Chicana/o literature, folklore, music, test monia, or other cultural practices. Specific periods covered will fall between the immediate aftermath of the Treaty of Guadalupe Hidalgo to the Cuban revolution. Repeatable for credit when topics vary. (Cross-listed with LTSP 150A.) Prerequisite: LTSP 50B or consent of instructor.

135B. Contemporary Latino/a-Chicana/o Cultural Production: 1960 to Present (4)
Cross-disciplinary study of late twentieth-century Latino/a-Chicana/o literature, the visual and performing arts, film, or other cultural practices. Specific periods covered will fall between the Kennedy years to the era of neoliberalism and the creation of “Hispanic” or Latino/a identities. Repeatable for credit when topics vary. (Cross-listed with LTSP 150B.) Prerequisite: LTSP 50B or consent of instructor.

136. Topics in Chicano/a-Latina/o Cultures (4)
Cross-disciplinary study of late twentieth-century Latino/a-Chicana/o literature, the visual and performing arts, film, or other cultural practices. Representative areas of study are social movements, revolution, immigration, globalization, gender, sexuality, and the visual practices of the U.S.-Mexican border, and Chicana/o-Mexicana/o literary relations. Repeatable for credit when topics vary. (Cross-listed with LTSP 151.) Prerequisite: LTSP 50B or consent of instructor.

137. Chicano/a and Latina/o Poetry (4)
A study of themes and issues in the poetic production of Latino communities in the United States. Every effort will be made to select text in Spanish but some will be bilingual. Repeatable for credits when topics vary. (Cross-listed with LTSP 153.) Prerequisite: LTSP 50B or consent of instructor.

140. Language and American Ethnicity (4)
This quarter explores the intersection of language and ethnicity in the United States, focusing on the social and political impact of bilingualism, ethnically based English dialects, and standard and nonstandard English.

141. Language, Culture, and Inequality (4)
A critical review of conceptions of language and how they have been deployed in constructing images of culture, race, ethnicity, and gender. May be taken for credit three times. (Cross-listed with THHS 210.)

142. Medicine, Race, and the Global Politics of Inequality (4)
Globalization fosters both the transmission of AIDS, cholera, tuberculosis, and other infectious diseases and gross inequalities in the resources available to prevent and cure them. This course focuses on how race, ethnicity, gender, sexuality, class, and nation both shape and are shaped by the social construction of health and disease worldwide.

144. Bilingual Communities in the U.S. (4)
This course examines the ways of doing being bilingual” that exist among communities of speakers of varied national origins, generations, networks, localities, races, classes, and genders. Of particular interest are the varied types of bilingual individuals and linguistic repertoires that exist in communities of Native American, Chicano/Latino, and Asian origin, and the implications of shifting and hybrid linguistic identities for the drawing of community boundaries and the shaping of national language policy. Specific topics include the intersection of language loss or maintenance in families, the linguistic and cultural repercussions of code switching and word borrowing, bilingual education, linguistic profiling, and language ideologies.

145. Spanish Language in the United States (4)
A sociolinguistic study of the popular dialects in the United States and their relation to other Latin American dialects. The course will cover phonological and syntactic differences between the dialects as well as the influence of English on the Southwest dialects. (Cross-listed with LTSP 162.)

146A. Theatrical Ensemble (4)
An intensive theatre practicum designed to generate theatre created by an ensemble, with particular emphasis upon the analysis of text. Students will explore and analyze scripts and authors. Ensemble segments include black theatre, Chicano theatre, feminist theatre, and the Latinx theater. (Cross-listed with TEDC 120.)

148. Latino/a and Chicana/o Literature (4)
This course will study the representation of a variety of social issues (immigration, racism, class differences, violence, inter/intra-ethnic relations, etc.) in works written in Spanish by Latino/a and Chicanas/a writers. May be repeated for credit as topics, texts, and historical periods vary. (Cross-listed with LTSP 154.) Prerequisite: LTSP 50B or consent of instructor.

149. African American History in the Twentieth Century (4)
This course examines the transformation of African America across the expanse of the long twentieth century: imperialism, migration, urbanization, desegregation, and deindustrialization. Special emphasis will be placed on issues of culture, international relations, and urban politics.

151. Ethnic Politics in America (4)
This course will survey the political effects of immigration, ethnic mobilization, and community building in America, and the contemporary role of ethnicity in politics and intergroup relations.

152. Law and Civil Rights (4)
This course students explore the relationship between race, class, and law as it applies to civil rights both in a historical and a contemporary context. Topics include racism and the law, history of the Fourteenth Amendment, equal protection, school desegregation, and affirmative action.

159. Topics in African American History (4)
A colloquium dealing with special topics in the history of people of African descent in the United States. Themes vary from quarter to quarter. Students will vary. (Cross-listed with HIUS 183 and HIUS 283.)

161. Black Politics and Protest Since 1941 (4)
Discussion of black social, political, and intellectual experiences since the publication of Malcolm X’s Autobiography. Close examination of blacks’ involvement in and relationships to World War II, cold war, civil rights movements, black power movement, Reagan revolution, and underclass debate.

164. African Americans and the Mass Media (4)
Examination of the media representations of African Americans from slavery to the present focusing on emerging and transmission of enduring stereotypes; their relationship to changing social, political, and economic frameworks; and African Americans’ responses to and interpretations of these mediated images. (Cross-listed with MUS 153.)

165. Sex and Gender in African American Communities (4)
This course will investigate the changing constructions of sex, gender, and sexuality in African American communities defined by historical period, region, and class. Topics will include the sexual division of labor, myths of black sexuality, the rise of black feminism, black masculinity, and queer politics.

167. African-American History in War and Peace: 1917 to the Present (4)
The social, political, economic, and ideological pressures generated during the international conflicts of the twentieth century have had an enormous impact on American life. This course examines how the pressures of “total war” and “cold war” shaped the African-American experience in both war and peacetime. (Cross-listed with HIUS 138)

168. Comparative Ethnic Literature (4)
A lecture-discussion course that juxtaposes the experience of two or more U.S. ethnic groups and examines their relationship with the dominant culture. Students will analyze a variety of texts representing the history of ethnicity in this country. Topics will vary. (Cross-listed with LTEN 178.)

170A. Origins of the Atlantic World, c. 1450–1650 (4)
An examination of interactions among the peoples of western Europe, Africa, and the Americas that transformed the Atlantic basin into an interconnected “Atlantic World.” Topics will include maritime technology and the European Age of Discovery, colonization in the Americas, the beginnings of the transatlantic slave trade, and early development of plantation slavery in the New World. (Cross-listed with HIUS 135A.)

170B. Slavery and the Atlantic World (4)
The development of the Atlantic slave trade and the spread of racial slavery in the Americas before 1800. Explores the diversity of slave labor in the Americas and the different slave cultures African Americans produced under the constraints of slavery. (Cross-listed with HIUS 135B.)

172. Afro-American Prose (4)
Students will analyze and discuss the novel, the personal narrative, and other prose genres, with particular emphasis on the developing characters of Afro-American narrative and the cultural and social circumstances that influence their development. (Cross-listed with LTEN 183.)

174. Themes in Afro-American Literature (4)
This course focuses on the influence of slavery upon African American writers. Our concern is not where slavery was but upon what it is within the works and what these texts reveal about themselves, their authors, and their audiences. (Cross-listed with LTEN 185.)
The course will trace the emergence, development, and longevity of ethnic presses, their role in cultivating and maintaining ethnic identity, and their attempts to respond to and resist images in mainstream media.

187. Black Nationalism (4)
This course will investigate the ideologies and practices of black nationalist movements in the United States and/or across the black diaspora, focusing on their political philosophy, political culture, and gender and class structure.

188. African Americans, Religion, and the City (4)
This course details the history of African American migration to urban areas after World War I and World War II and explores the role of religion in their lives as well as the impact that their religious experiences had upon the cities in which they lived. (Cross-listed with USP 132.)

189. Special Topics in Ethnic Studies (4)
A reading and discussion course that explores special topics in ethnic studies. Themes will vary from quarter to quarter; therefore, course may be repeated three times as long as topics vary. SEMINARS AND INDEPENDENT STUDIES

190. Research Methods: Studying Racial and Ethnic Communities (4)
The course offers students the basic research methods with which to study ethnic and racial communities. The various topics to be explored include human and physical geography, transportation, employment, economic structure, cultural values, housing, health, education, and intergroup relations. (Repeats with USP 129.)

191A. Undergraduate Research in Ethnic Studies (4)
This course is designed to help students conduct their own research rather than merely read the research of others. The course will introduce students to research paradigms in ethnic studies, familiarize them with finding aids and other library resources, and involve them in the design of research plans. Prerequisite: instructor approval.

191B. Honors Research in Ethnic Studies (4)
This course is a continuation of Ethnic Studies 191. Undergraduate Research in Ethnic Studies. Students who have completed ETHN 191 and selected a faculty research advisor may enroll in this course. During the quarter the research for the honors project will be completed under the faculty advisor’s supervision. Faculty advisors will meet weekly with their honors students to oversee the progress made in carrying out the plan of research. Prerequisite: completion of 191.

191C. Honors Research in Ethnic Studies (4)
This course is a continuation of Ethnic Studies 192. Honors Research in Ethnic Studies. Students who have completed ETHN 192 and are continuing to work with a faculty research advisor may enroll in this course. During the quarter the written drafts and final honors paper will be completed under the faculty advisor’s supervision. The student will meet weekly with the faculty advisor in order to prepare drafts and the final version of the honors paper. Prerequisite: instructor approval.

197. Fieldwork in Racial and Ethnic Communities (4)
This course comprises supervised community fieldwork on topics of importance to racial and ethnic communities in the greater San Diego area. Regular individual meetings with faculty sponsor and written reports are required. (May be repeated for credit.)

198. Directed Group Studies (4)
Directed group study on a topic or in a field not included in the regular department curriculum by special arrangement with a faculty member. (May be repeated for credit.)

199. Supervised Independent Study and Research (4)
Individual research on a topic that leads to the writing of a major paper. (May be repeated for credit.)

GRADUATE

Introduction to critical racial and ethnic studies and how this perspective departs from traditional constructions of race and culture; examination of relevant studies to identify themes, concepts, and formulations that indicate the critical departures that characterize the field. Prerequisite: graduate standing or consent of instructor.

200B. Formulations: Interdisciplinarity and Knowledge Production in Ethnic Studies (4)
This course uses model studies to explore how comparative and relational problems are posed as research projects, how research questions are constructed, and how they employ theory to frame the project and establish what is at stake in the research. Prerequisite: graduate standing or consent of instructor.

200C. Projects (ProSeminar): Research in Ethnic Studies (4)
Students examine research designs presented by faculty and advanced graduate students to study how to conceive of and pose research questions, integrate theoretical and methodological models, and conceptualize their own research project. Prerequisite: graduate standing or consent of instructor.

230. Departmental Colloquium (1)
This course is a forum for the presentation of recent research by guests, faculty, and students. This course may be taken for credit six times.

240. Western Methods and Archives (4)
This course seeks to develop research skills in historical methods; to understand techniques and tools historians use to create historical narratives using archival and historical sources; and to compare and relate the value of these to ethnic studies research.

241. Cultural Studies and Cultural Production (4)
This course will train students in interdisciplinary research concerned with power and the production of knowledge, with a focus on conducting multimedia field research, applying discourse analysis, and recognizing forms of data across disciplinary divides.

241A. Community Ethnography I: Method and Theory (4)
This course reviews the major tenets of ethnography using case studies of ethnographic work and critical theory pertaining to epistemological concerns in the social sciences. Critical here are the major ethical parameters of conducting ethnography in ethnic communities, the role of researchers, and the practical implications of such research.

241B. Community Ethnography II: Practicum (4)
This course focuses on the practical application of ethnographic concepts and methods in actual field research in a local San Diego community. The purpose here is to provide experience in conducting ethnography through participant observation, interviews, and contributing to communities. This will include a brief overview of ethnographic method, but will focus on hands-on research, analysis, and ethnographic writing.

242. Qualitative Methods/Ethnography (4)
This course focuses on conceptual and methodological frameworks of ethnography and qualitative inquiry, including research design, grounded theory, the field note journal, participant observation, and interviewing; major themes include the role of indigenous/insider researchers, ethics of involvement, and community collaboration.

253. Mass Media and Ethnic Identity (4)
This course examines the ways that ethnic identity influences the practices of mass media, and the ways in which mass media shape and reflect ethnic identity.

254. Race and Racism (4)
This course examines inequality based on race with a focus on the institutions, symbols, and social practices which structure and maintain racism. Particular attention is given to laws and social policy that reinforce racial inequality.
256. Gender, Sexuality, and Race (4)
This course studies the body cross-culturally as the site for the construction of gender, sex, ethnic, and racial identities. **Prerequisite:** graduate standing or consent of instructor.

257A-B. Social Theory (4-4)
An intensive survey of social and cultural theory, focusing on how constructions of science, language, politics, and social inequality shaped early modernity, romantic nationalism, Marxism, cultural relativism, psychoanalysis, and fin de siècle social thought. The second quarter surveys poststructuralist, postmodern, feminist, subaltern studies, globalization, and other critiques. ETHN 257A is not a prerequisite for ETHN 257B.

259. Comparative Conquests, Colonization, and Resistance in the Americas (4)
This course will offer a comparative survey of the impact of European interactions with Native nations and populations in the New World, from Peru to Canada. Readings will emphasize modes of initial interaction, patterns of European colonization, and Native adaptation and resistance, and broader changes in Native culture and cosmology as a result of conquest and colonization.

260. Transnationalism and Borderlands: The Local and Global (4)
This course critically reviews the analytical frameworks of transnationalism and borderlands. The goals are to assess traditional and current social science practice on immigration, identity, and community studies, and to understand how diverse peoples engage and participate in global processes.

261. Race and Law (4)
This seminar advances a critique of law’s innocence—of its claims for universality. The reading of legal and scientific texts will indicate how, by incorporation existing constructions of the meanings of race, the law produces racialized modern subjects.

262. Race, Inequality, and Health (4)
New critical and multidisciplinary perspectives provide tools for examining entrenched and newly emerging diseases and inequalities. This course examines medicine and public health in relationship to race, gender, sexuality, class, and nation and explores how these connections affect the distribution of health and health services locally, nationally, and internationally.

263. Language and Socialization across Cultures (4)
This course will focus on the ways in which children in different ethnic and racial groups are socialized to language and through language. We will explore racial and class and gender ideologies that underpin the ways parents expect children to learn to speak; examine effective and appropriate methods for studying cultural patterns and understanding ideologies; and consider impacts of bilingualism, stigmatized dialects, immigration, religious training, and home-school conflicts in ways of speaking and using language(s). **Prerequisite:** graduate standing or consent of instructor.

264. War, Race, and Violence (4)
This course critically examines theories and research on war, race, and violence, including everyday forms of state violence, war and the making of empire, the politics of war memory, and war refugees. **Prerequisite:** graduate standing or consent of instructor.

265. Critical Immigration and Refugee Studies (4)
This course surveys the field of immigration and refugee studies and introduces students to recent theories and cutting-edge research in the field. Key topics: gender and migration; diaspora and transnationalism; immigration, race, and citizenship; and globalization and immigrant labor. **Prerequisite:** graduate standing or consent of instructor.

266. Popular Culture and Pedagogy (4)
This course examines popular culture as a site of domination and resistance, and pedagogy broadly as (always political) educational projects in a variety of social contexts with a focus on youth popular culture in U.S. urban public schools. **Prerequisite:** graduate standing or consent of instructor.

267. Critical Immigration and Refugee Studies (4)
This course is a research seminar on themes of contemporary and historic importance in ethnic studies. Themes will be determined by instructor. Course may be repeated three times for credit.

290A-B. Master’s Thesis Preparation (4-4)
All graduate students are required to write a master’s thesis as part of the requirements for the master of arts in ethnic studies. Students should enroll in the thesis preparation courses in the fall and spring quarters of the second year of graduate studies.

298. Directed Reading (1–12)
This is an independent research or individual guided tutorial in an area not covered by present course offerings. This course may be repeated for an indefinite number of times due to the independent nature of the content of the course.

299. Thesis Research (1–12)
Open to graduate students conducting doctoral thesis research. This course may be repeated for an indefinite number of times due to the independent nature of thesis research and writing.

500. Apprentice Teaching in Ethnic Studies (4)
A course in which teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty: handling of discussions, preparation and grading of examinations and other written exercises, and student relations.
European Studies

FACULTY

Georgios H. Anagnostopoulos, Professor, Philosophy
Eric Bakovic, Associate Professor, Linguistics
Ronald S. Berman, Professor, Literature
Richard Berntsen, Associate Professor, Sociology
Frank Biess, Associate Professor, History; Vice Chair, History
John D. Blanco, Associate Professor, Literature
David O. Brink, Professor, Philosophy
Norman Bryson, Professor, Visual Arts
Nancy A. Caciola, Associate Professor, History
Craig Callender, Professor, Philosophy
Jim Carmody, Associate Professor, Theatre and Dance
Steven Cassidy, Professor, Literature
Charles Chamberlain, Lecturer, Literature
William M. Chandler, Professor, Political Science
Alain Cohen, Professor, Literature
Ellen T. Comisso, Professor, Political Science
Jaime Concha, Professor, Literature
Wayne Cornelius, Professor, Political Science and Center for Comparative and Immigration Studies
Stephen Cox, Professor, Literature
Thomas Csdaras, Professor, Anthropology
R. Michael Davidson, Professor, Literature
Adriana De Marchi Gherini, Lecturer, Literature
Gerald D. Doppelt, Professor, Philosophy
Page duBois, Professor, Literature
Robert S. Edelman, Professor, History
Anthony Edwards, Professor, Literature
Fatima El Tayeb, Assistant Professor, Literature
Thomas Gallant, Professor, History; Endowed Chair, History
Rosemary George, Associate Professor, Literature
Cathy Gere, Assistant Professor, History
Amelia Glaser, Assistant Professor, Literature
Harvey Goldman, Professor, Sociology
Jean-Pierre Gorin, Professor, Visual Arts
Peter Gourevitch, Professor, Political Science
Jack M. Greenstein, Associate Professor, Visual Arts
Daniel Hallin, Professor, Communication
Mark Hanna, Assistant Professor, History
Michael O. Hardimon, Associate Professor, Philosophy
Jeffrey Haydu, Professor, Sociology
Marcel Henaff, Professor, Literature
Ariana Hernandez-Reguant, Assistant Professor, Communication
Deborah Hertz, Professor, History; Endowed Chair, History
Germaine Hoston, Professor, Political Science
Alan Houston, Associate Professor, Political Science; Provost, Eleanor Roosevelt College
Judith M. Hughes, Professor, History
Stephanie H. Jed, Associate Professor, Literature
Monte Ransome Johnson, Assistant Professor, Philosophy
Dayna Kalleres, Assistant Professor, Literature
Hasan Kayali, Associate Professor, History
Grant Kester, Associate Professor, Visual Arts
Susan Kirkpatrick, Professor Emerita, Literature
Robert Kluender, Associate Professor, Linguistics
Todd Kontje, Professor, Literature
Lisa Lampert-Weissig, Associate Professor, Literature
Martha Lampland, Associate Professor, Sociology
Lisa Lowe, Professor, Literature
Margaret Loose, Assistant Professor, Literature
Gerald Mackie, Associate Professor, Political Science
Victor Magagna, Associate Professor, Political Science
Babette Mangolte, Professor, Visual Arts
John Marino, Professor, History
George Mariscal, Professor, Literature
Isaac Martin, Associate Professor, Sociology
Luis Martin-Cabrera, Assistant Professor, Literature
Marianne McDonald, Professor, Theatre and Dance
Louis A. Montrose, Professor Emeritus, Literature
Chandra Mukerji, Professor, Communication
Sheldon A. Nodelman, Professor, Visual Arts
W. Arctander O'Brien, Associate Professor, Literature
Esra G. Ozurek, Associate Professor, Anthropology
Patrick Patterson, Assistant Professor, History
Catherine Ploye, Lecturer, Literature
Michael Provence, Associate Professor, History
Babak Rahimi, Assistant Professor, Literature
Pamela B. Radeliff, Associate Professor, History
Roddey Reid, Professor, Literature; Director, European Studies Minor
Samuel C. Rickless, Professor, Philosophy
David R. Ringrose, Professor Emeritus, History
Philip G. Roeder, Professor, Political Science
Akos Rona-Tas, Associate Professor, Sociology
John Rouse, Associate Professor, Theatre and Dance
Donald Rutherford, Professor, Philosophy
Andrew Scull, Professor, Sociology
Gershon Shafir, Professor, Sociology
Kathryn Shevelow, Associate Professor, Literature
Matthew Shugart, Professor, Political Science
Janet Sman, Professor, Theatre and Dance
Susan Smith, Associate Professor, Visual Arts; Provost, John Muir College
Lesley Stern, Professor, Visual Arts
Jane Stevens, Associate Professor, Music
Kareem Strom, Professor, Political Science
Tracy B. Strong, Professor, Political Science
Charles Thorpe, Associate Professor, Sociology
Cynthia M. Truant, Associate Professor, History
Eric Van Young, Professor, History
Pasquale Verdichio, Associate Professor, Literature
Mary Vidal, Associate Professor, Visual Arts
Carlos Waisman, Professor, Sociology
Cynthia Walk, Associate Professor, Emerita, Literature
Eric Watkins, Professor, Philosophy
Don Wayne, Associate Professor, Literature; Provost, Revelle College
John Welchman, Professor, Visual Arts
Eliot Wirshbo, Lecturer, Literature
Winifred Woodhull, Associate Professor, Literature
Kathryn A. Woolard, Professor, Anthropology
Oumelbanine Zahi, Professor, Literature

OFFICE:
History Undergraduate Advising
Humanities and Social Sciences Building, Fifth Floor
E-mail: historyundergrad@ucsd.edu
http://history.ucsd.edu/programs/caesar-programs/european-stud/

THE EUROPEAN STUDIES MINOR

The European Studies minor is for students with strong European interests or who plan to study in Europe on an Education Abroad Program (EAP) or Opportunities Abroad Program (OAP) but also those who seek to complement their major with the study of Europe as a political, cultural, and economic entity. To receive a minor in European Studies, a student must complete seven four-unit courses (twenty-eight units).

(A) Language requirement

All minors must demonstrate basic proficiency in a single European language other than English by completing four quarters of language instruction (or equivalent). Students may also complete this requirement by demonstrating advanced language ability on a proficiency exam. Students completing the language requirement through waiver (700 or better on SAT II language, score of 4 or better on AP language), or proficiency exam will fulfill the language component of the minor by completing one of these requirements but no course credit will be applied toward the (seven) courses required for the minor.

Up to TWO four-unit courses in foreign language can be included in the seven courses required for the minor. These may be lower-division courses.

(B) Additional course requirements

1. The remaining five to seven courses (depending on the number of language courses applied to the minor) must include at least three courses on Europe as a whole including one course in each of the two broad tracks.
 a. Economics and Politics
 b. Culture and Society
 (See course listings for each track.)
2. At least one of the track courses should be in the Department of History.
3. No more than three courses in any one department.
4. All courses applied to the minor must receive a letter grade of C– or better.
5. Upper-division courses may include up to two 198 and 199 courses and up to three courses from UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP) with the approval of the minor advisor.

6. Minors in European Studies are encouraged to participate in the UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP). Students should consult with the faculty director before going abroad to determine which courses will be approved for minor credit.

TRACKS IN THE EUROPEAN STUDIES MINOR

Courses preceded by an asterisk are petitionable for credit towards the minor as content warrants.

ECONOMICS AND POLITICS

COMMUNICATION

COSF 140B. Comparative Media Systems: Europe
HISTORY
HIEU 109. European Nationalism from a Historical Perspective
HIEU 113. Rule, Conflict, and Dissent in the Middle Ages
HIEU 126. Age of Expansion: Europe and the World, 1400–1600
HIEU 128. Europe Since 1945
HIEU 141. European Diplomatic History, 1870–1945
HIEU 146. Fascism, Communism, and the Crisis of Liberal Democracy: Europe 1919–1945

PHILOSOPHY
PHIL 166. Classics in Political Philosophy
PHIL 167. Contemporary Political Philosophy

POLITICAL SCIENCE
POLI 110A. Citizens and Saints: Political Thought from Plato to Augustine
POLI 110B. Sovereigns, Subjects, and the Modern State: Political Thought from Machiavelli to Rousseau (A)
POLI 110C. Revolution and Reaction: Political Thought from Kant to Nietzsche
POLI 110DA. Freedom and Discipline: Political Thought in the Twentieth Century
POLI 120A. Political Development of Western Europe
POLI 120H. European Integration
POLI 126AA. Fundamentals of Political Economy: Modern Capitalism
POLI 126AB. Politics and Economics in Eastern Europe

SOCIOLOGY
Soc/B 111A. Human Rights—Principles and Problems
Soc/B 111B. Human Rights—Practices and Cases
SOCI 177. International Terrorism

CULTURE AND SOCIETY
ANTHR 124. Paths to European Hegemony

HISTORY
HIEU 110. The Rise of Europe
HIEU 111. Europe in the Middle Ages
HIEU 125. Reformation Europe
HIEU 130. Europe in the Eighteenth Century
HIEU 133. Gender in Antiquity and the Early Medieval Mediterranean
HIEU 136A. European Society and Social Thought, 1688–1870
HIEU 136B. European Society and Social Thought, 1870–1989
HIEU 142. European Intellectual History, 1780–1870
HIEU 143. European Intellectual History, 1870–1945
HIEU 147. Women and Gender in Early Modern Europe
HIEU 148. Women and Gender from the Enlightenment to the Victorian Eras
HIEU 149. History of Women in Europe: 1870 to the Present
HIEU 163/263. Special Topics in Medieval History
HIEU 165/265. Special Topics in Early Modern Spain
HIEU 171/271. Special Topics in Twentieth-Century Europe
HIEU 174/274. The Holocaust: A Psychological Approach
HIEU 180/280. Topics in European Women's History
HISC 101A. Science in the Greek and Modern World
HISC 101B. Medieval Science in the Latin West, ca. 500–1500
HISC 101C. Early Modern Science
HISC 106. The Scientific Revolution
HISC 107. The Emergence of Modern Science

LINGUISTICS
*LIGN 141. Language Structures
*LIGN 150. Historical Linguistics

LITERATURE
LTEU 139. Marx/Nietzsche/Freud
LTH 115. Introduction to Critical Theory

MUSIC
MUS 4. Introduction to Western Music
MUS 112. Topics in European Music Before 1750
MUS 113. Topics in Classical, Romantic, and Modern Music
*MUS 114. Music of the Twentieth Century
*MUS 115. Women in Music
MUS 120A-B-C. Survey of Music
*MUS 126A. History of Art and Technology

PHILOSOPHY
PHIL 13. Introduction to Philosophy: Ethics
PHIL 14. Introduction to Philosophy: Metaphysics
PHIL 15. Introduction to Philosophy: Theory of Knowledge
PHIL 31. History of Philosophy: Ancient Philosophy
PHIL 32. History of Philosophy: The Origins of Modern Philosophy
PHIL 33. History of Philosophy: Philosophy in the Age of Enlightenment
PHIL 102. Hellenistic Philosophy
PHIL 104. The Rationalists
PHIL 105. The Empiricists
PHIL 108. Nineteenth-Century Philosophy
*PHIL 111. Contemporary Work in Epistemology and Metaphysics
*PHIL 126. Topics in the History of Logic
*PHIL 145. Philosophy of Science
*PHIL 146. Philosophy of Physics

PHIL 153. Philosophy of History
PHIL 161. Topics in the History of Ethics
PHIL 166. Classics in Political Philosophy
*PHIL 167. Contemporary Political Philosophy
*PHIL 169. Feminism and Philosophy
*PHIL 170. Philosophy and Race
PHIL 175. Aesthetics
*PHIL 177. Philosophy and Literature
PHIL 180. Phenomenology
PHIL 181. Existentialism
PHIL 182. Marx and Marxism
PHIL 183. Topics in Continental Philosophy

RELIGION, PROGRAM FOR THE STUDY OF
RELI 110A. The Modern Study of Religion: Religion in Modernity
*RELI 112. Texts and Contexts: The Holy Book in Islam
*RELI 131. Topics in Religion and Sexuality
*RELI 132. Topics in Orthodoxy and Heterodoxy
*RELI 141. Public Sphere and Religion
*RELI 142. Secularization and Religion
*RELI 188. Special Topics in Religion
*RELI 189. Seminar in Religion

SOCIOLOGY
SOCI 20. Social Change in the Modern World
SOCI 100. Classical Sociological Theory
SOC/ A 102. Contemporary Sociological Theory
SOCI 106. Comparative and Historical Methods
SOCI 106M. Holocaust Diaries
SOCI 178. The Holocaust

THEATRE AND DANCE
*TDHT 101/201. Topics in Dramatic Literature and Theatre History
TDHD 171. Dance History I (Ancient to 1900)
TDHD 172. Dance History II (1900 to 1960)
TDHD 173. Dance History III (1960 to Present)

VISUAL ARTS
VIS 20. Introduction to Art History
VIS 22. Formations of Modern Art
VIS 84. History of Film
VIS 113AN. History of Criticism I: Early Modern
VIS 113BN. History of Criticism II: Early Twentieth Century (1900–1950)
VIS 113CN. History of Criticism III: Contemporary (1950–Present)
VIS 117B. Theories of Representation
VIS 120C. Late Antique Art
VIS 121AN. The Idea of Medieval Art
VIS 121B. Castles, Cathedrals, and Cities
VIS 121C. Art and Gender in the Middle Ages and Renaissance
VIS 121D. The Illuminated Manuscript in the Middle Ages
VIS 122AN. Renaissance Art
VIS 122CN. Defining High Renaissance Art
VIS 123CN. Early Print Culture: The First Media Revolution
VIS 124AN. Baroque Art
VIS 125A. Twentieth-Century Art
*VIS 151. History of the Experimental Film
*VIS 158. Histories of Photography
Film Studies

OFFICE: 2113 Humanities and Social Sciences
Building, Muir College
(858) 534-3589
http://muir.ucsd.edu/instructional/film-studies/

DIRECTOR
Susan Smith, Ph.D., Visual Arts

PROFESSORS
Steven Adler, M.F.A., Theatre and Dance
Elizabeth Cartwright, Ph.D., Communication
Alain J.-J. Cohen, Ph.D., Literature
Stephen D. Cox, Ph.D., Literature
R. Michael Davidson, Ph.D., Literature
Allan Havis, M.F.A., Theatre and Dance
Walton Jones, M.F.A., Emeritus, Theatre and Dance
Bennetta Jules-Rosette, Ph.D., Sociology
Marianne McDonald, Ph.D., Theatre
Paul Pickowicz, Ph.D., History
Lesley Stern, Ph.D., Visual Arts
Yingin Zhang, Ph.D. Literature

ASSOCIATE PROFESSORS
Robert Cancel, Ph.D., Literature
James Carmody, Ph.D., Theatre
Brian Goldfarb, Ph.D., Communication
Winifred Woodhull, Ph.D., Literature

SENIOR LECTURER WITH SECURITY OF EMPLOYMENT
Ursula Meyer, M.F.A., Theatre and Dance

OFFICE: 2113 Humanities and Social Sciences
Building, Muir College
(858) 534-3589
http://muir.ucsd.edu/instructional/film-studies/

THE MINOR

In the course of the twentieth century, film in all its applications—as storytelling, as documentary, as propaganda, as popular entertainment—became a powerful social and cultural force on an international scale. The importance of film is reflected in the number of faculty at UC San Diego whose scholarship and teaching involves film and in the number of courses regularly offered that focus on some aspect of film studies and use film as an essential component of the course material. The Film Studies minor is designed to give students a flexible introduction to the full range of courses on film available here. As noted below, the only constraints are that five of the seven courses must be in the upper division and that the seven courses must come from at least two different departments. This latter requirement is designed to insure some level of breadth in the minor. The minor should be of interest to students with a wide range of interests, from those who plan graduate study in film to those who simply wish to understand better this powerful and influential medium.

REQUIREMENTS

Seven courses, at least five of which must be upper-division, from the following list. The seven courses must be drawn from at least two different departments.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

COCU 110. Cinema in Latin America (4)
COCU 125. How to Read a Film (4)
COCU 132 Gender and Media (4)
COSF 186. Film Industry (4)
ETHN 101. Ethnic Images in Film (4)
FILM 87. Film Studies Freshman Seminar (1)
FILM 192. Senior Seminar in Film Studies (1)
HIEA 133. Twentieth-Century China: Cultural History (4)
HIUS 122. History and Hollywood: America and the Movies since the Great Depression (4)
LTWL 4A-B-C-D-E-M. Fiction and Film in Twentieth-Century Societies (4-4-4-4-4)
LTAF 120. Literature and Film of Modern Africa (4)
LTEA 120A. Chinese Films (4)
LTEA 120B. Taiwan Films (4)
LTEA 120C. Hong Kong Films (4)
LTWL 180. Film Studies and Literature: Film History (4)
LTWL 181. Film Studies and Literature: Film Movement (4)
LTWL 183. Film Studies and Literature: Director’s Work (4)
LTWL 184. Film Studies and Literature: Close Analysis of Filmic Text (4)
PHIL 176. Film Aesthetics (4)
Soca 105. Ethnographic Film: Media Methods (4)
SOCB 172. Films and Society (4)
SOCD 187. African Societies through Film (4)
TDGE 10. Theatre and Film (4)
TDGE 11. Great Performances on Film (4)
TDGE 27. User-Friendly Shakespeare (4)
TDGE 122. The Films of Woody Allen (4)
TDGE 124. Cult Films: Weirdly Dramatic (4)
TDHT 116. Old Myths in New Films (4)
TDPW 104. Screenwriting (4)
VIS 84. History of Film (4)
VIS 150. History and Art of the Silent Cinema (4)
VIS 151. History of the Experimental Film (4)
VIS 152. Film in Social Context (4)
VIS 153. The Genre Series (4)
VIS 154. Hard Look at the Movies (4)
VIS 155. The Director Series (4)
VIS 156N. Special Problems in Film History and Theory (4)
Freshman Seminar Program

Office of the Senior Vice Chancellor—Academic Affairs
Associate Vice Chancellor—Undergraduate Education

OFFICE: University Center, Room 104
(858) 822-5855
http://ugseminars.ucsd.edu

The Freshman Seminar Program debuted in 2003–04 to offer students early intellectual contact with faculty members, spark their interest in a broad range of topics, and enrich the undergraduate experience at UC San Diego. These seminars create a unique classroom environment by providing new students with opportunities to engage in intellectual discussions with faculty and peers in a small supportive class setting, and by fostering the development of critical thinking and analytical skills. Incoming students are highly encouraged to enroll in freshman seminars during their first year at UCSD. Students can select from an interesting and exciting array of seminars each quarter, designated by courses numbered 87 (e.g., PHYS 87).

Faculty from all departments offer approximately 150 seminars each academic year. Seminars offer one unit of credit and are graded Pass/Not Pass. Enrollment is limited to twenty students per seminar, with preference given to entering freshmen, and up to four seminars may be taken for credit.

Please visit the Freshman Seminar Program Web site at http://ugseminars.ucsd.edu for a description of seminars currently offered. This site also contains useful information, such as enrollment procedures for freshmen with advanced standing, and additional program details. Questions about a specific freshman seminar should be directed to the department offering the seminar.
German Studies

PROGRAM DIRECTOR
Lisa Lampert-Weissig, Associate Professor, Literature

FACULTY
Frank Biess, Associate Professor, History
William M. Chandler, Professor, Political Science
Fatima El-Tayeb, Assistant Professor, Literature
Harvey S. Goldman, Professor, Sociology
Michael O. Hardimon, Associate Professor, Philosophy
Deborah Hertz, Professor, History
Todd Kontje, Professor, Literature
William A. O’Brien, Associate Professor, Literature
Esra Özyürek, Professor, Political Science
Jane Stevens, Associate Professor, Music
Tracy B. Strong, Professor, Political Science
Eric Watkins, Professor, Philosophy

OFFICE:
History Undergraduate Advising
Humanities and Social Sciences Building, Fifth Floor
Muir College
(858) 534-0491
http://history.ucsd.edu/programs/caesar-programs/german-stud/

PROGRAM DESCRIPTION
German Studies is an interdisciplinary program that offers both a major and a minor for students with broad academic interests in the German-speaking world.

In consultation with a faculty advisor in the program, students design individual plans of study from the many core courses offered in the Departments of History, Literature, Music, Philosophy, Political Science, Sociology, and Theatre and Dance. Further courses, including some offered by other departments, may be incorporated into the student’s program, if they bear directly on German Studies. Students considering a major or minor should consult a member of the German Studies faculty as early as possible.

Students need to attain competence in German (two years of university-level language courses or the equivalent) before they can take certain required upper-division courses. It is recommended that students attain this level of competence early in the program.

STUDY ABROAD
All German Studies students are strongly encouraged to make overseas study an integral part of their program. The UC Education Abroad Program (EAP) conducts formal programs of study in Berlin, Göttingen, and Bayreuth ranging from one-quarter, intensive beginning language programs to a full year of study at a German university. Students may petition to use up to five courses completed while studying abroad in their major, and three in their minor.

SENIOR HONORS THESIS
At the beginning of his or her senior year, a student major in German Studies may elect to write a Senior Honor’s Thesis. To be eligible, the student must have a GPA of 3.5 in the German Studies major at the beginning of the senior year.

To begin work, the student forms a committee of three appropriate faculty members, including a committee chair, who is chosen from among the German Studies Core Faculty. The chair supervises the student in a two-quarter program of independent study to research and write an Honor’s Thesis of approximately thirty to fifty pages (GMST 196A/B; the two courses count among the required twelve for the major). The student defends the thesis in an hour oral exam with the full committee, which is charged with recommending the degree of honors that will appear on the student’s transcript and diploma.

THE MAJOR
The major in German Studies requires twelve upper-division courses chosen from the core course list, and includes German Studies I and II (LTGM 100 and 101) three courses in German Literature two courses in History five additional core courses, taken in at least two different departments. At least two of these courses must be taken outside the literature department.

Students plan their major in consultation with their German Studies faculty advisor, and submit it to the program director for approval.

THE MINOR
The minor in German Studies consists of seven courses, at least five of which must be upper-division, including German Studies I or II (LTGM 100 or 101) at least six additional core courses, taken in at least two departments.

Students plan their minor in consultation with their German Studies faculty advisor, and submit it to the program director for approval.

CORE COURSES
Courses marked with an asterisk (*) frequently cover topics bearing on German Studies. Students should check the departments’ quarterly course descriptions and yearly course spreads for their applicability to the program, and discuss them in advance with their German Studies advisor.

GERMAN STUDIES
GMST 196A/B. Honors Thesis

HISTORY
HIEU 125. Reformation Europe
HIEU 132. Germany from Luther to Bismarck
HIEU 142. European Intellectual History: 1780–1870
HIEU 143. European Intellectual History: 1870–1945
HIEU 146. Fascism, Communism, and the Crisis of Liberal Democracy: Europe 1919–1945
HIEU 154. Modern German History: From Bismarck to Hitler
HIEU 155. Modern Austria
HIEU 177. Special Topics in Modern German Thought

LITERATURE
LTGM 2A. Intermediate German I
LTGM 2B. Intermediate German II
LTGM 2C. Intermediate German III
LTGM 100. German Studies I: Aesthetic Cultures
LTGM 101. German Studies II: National Identities
LTGM 123. Eighteenth-Century German Literature
LTGM 125. Nineteenth-Century German Literature
LTGM 126. Twentieth-Century German Literature
LTGM 130. German Literary Prose
LTGM 131. German Dramatic Literature
LTGM 132. German Poetry
LTGM 190. Seminars in German Culture
*LTEU 110. European Romanticism
LTEU 130. German Literature in Translation
LTEU 139. Marx, Nietzsche, Freud
*LTWL 4B. Fiction and Film in Twentieth-Century Societies
*LTWL 160. Women and Literature
*LTWL 172. Special Topics in Literature
*LTWL 176. Literature and Ideas
*LTWL 180. Film Studies and Literature: Film History
*LTWL 183. Film Studies and Literature: Director’s Work

MUSIC
*MUS 113. Topics in Classic, Romantic, and Modern Music

PHILOSOPHY
PHIL 106. Kant
PHIL 107. Hegel
*PHIL 108. Nineteenth-Century Philosophy
PHIL 180. Phenomenology
PHIL 181. Existentialism
*PHIL 183. Topics in Continental Philosophy

POLITICAL SCIENCE
POLI 110C. Revolution and Reaction: Political Thought from Kant to Nietzsche
POLI 114B. Marxist Political Thought
POLI 120B. The German Political System
POLI 120D. Germany: Before, During, and After Division
*POLI 120H. European Integration

2010-2011 UC SAN DIEGO GENERAL CATALOG • GERMAN STUDIES
SOCIOLOGY
SOC 178. The Holocaust

THEATRE AND DANCE
*TDHT 101. Topics in Dramatic Literature and Theatre History
*TDHT 102. Masters of Theatre
UC San Diego Global Seminars Program

OFFICE: Programs Abroad Office in the International Center (corner of Gilman Drive and Library Walk) (858) 534-1123
http://programsabroad.ucsd.edu

Sharon Rose, Linguistics, Faculty Director
Paula Levin, Education Studies, Associate Faculty Director
Lynn Anderson, Dean of International Education
Kimberly Burton, Director of Programs Abroad
Jim Galvin, Director of Faculty-Led Programs Abroad
Jenny Garza, Coordinator of Faculty-Led Programs Abroad
Kelly O'Sullivan, Academic Integration Officer

UC San Diego Global Seminars are summer study abroad experiences led by a UCSD professor. These programs are five weeks in duration. Students enroll in two courses for a total of eight UCSD units. Class sizes are between fifteen and thirty students, so there are excellent opportunities for interaction with some of the best professors at UCSD. All courses are taught in English, but several programs have some very basic, elementary language instruction to help students navigate the local community. The Programs Abroad Office assists students with advising, application, financial aid, predeparture orientation, and reentry issues. Special study abroad scholarships are available. For more information, consult the UC San Diego Global Seminars section of the Programs Abroad Web site at http://globalseminar.ucsd.edu.

RELATED PROGRAMS

For other study abroad opportunities, see UC "Education Abroad Program (EAP)" and UC San Diego "Opportunities Abroad Program (OAP)."
Health Care—Leadership of Healthcare Organizations

PROGRAM DIRECTOR
Richard Kronick, Ph.D., Associate Professor and Chief, Division of Healthcare Sciences, Family and Preventive Medicine

ASSOCIATE PROGRAM DIRECTOR
Todd Gilmer, Ph.D., Associate Adjunct Professor, Family and Preventive Medicine

ASSOCIATED FACULTY
Gloria E. Bader, Ed.D., The Bader Group
Stephan J. Bera, Ph.D., Academic Coordinator, UCSD Extension
Bruce Dunn, M.P.A., Associate Dean, UCSD Extension
Theodore Ganiats, M.D., Professor, Chair, Family and Preventive Medicine
Robert H. Kaplan, Ph.D., The Bader Group
Joshua Lee, M.D., Associate Clinical Professor
Bryan Liang, M.D., Ph.D., Associate Professor, Anesthesiology, UCSD School of Medicine; Professor of Law, Institute of Health Law Studies, California Western School of Law
Robert Resnik, M.D., Professor, Reproductive Medicine
Maria Savoia, M.D., Professor, Clinical Medicine
Douglas Werner, M.A., Torrey Pines Health Group
Michael Willoughby, Ph.D., Lecturer, Economics

OFFICE: La Jolla Village Professional Center 8950 Villa La Jolla Drive, Suite A-212
(858) 534-9160
E-mail: lhco@ucsd.edu
http://lhco.ucsd.edu

PROGRAM DESCRIPTION
The Master of Advanced Studies (MAS) in the Leadership of Healthcare Organizations provides depth and focus on management for healthcare professionals with an emphasis on clinical process improvement. The goal of the program is to prepare healthcare professionals to participate more effectively in the business decisions that affect the quality of patient care by teaching participants to deal with error prevention, process quality, and systems of care. Students gain the advanced knowledge and skills that are essential to manage escalating challenges in the competitive business environment of health care. The MAS program crosses many fields and clinical and administrative professions in the health industry, including medicine, nursing, mental health, dentistry, insurance, pharmacy, and other related areas. The program is appropriate for nurses, managers, physicians, allied health professionals, healthcare executives, and medical students as they assume more active roles in healthcare leadership and on management teams.

The MAS in the Leadership of Healthcare Organizations is a part-time, self-supporting degree program with a flexible course schedule designed for working professionals. It is the first graduate degree of its kind within the University of California system. The UC San Diego graduate division confers the MAS degree and the Department of Family and Preventive Medicine in the UCSD School of Medicine is responsible for the academic management of the curriculum. UCSD Extension administers the program and provides student advising and career counseling services.

ADMISSION
New students are admitted in the fall, winter, and spring quarter of each academic year. Prospective candidates should submit and complete the official UCSD online graduate application for admission, the application fee, one set of official transcripts from each institution attended after high school, three letters of professional recommendation, and a current résumé or c.v. The GRE/GMAT is not required; however, it is strongly recommended that candidates have a minimum of five years of professional experience in health care. International applicants must submit official scores from the Test of English as a Foreign Language (TOEFL). The application deadlines are July 15 (fall), October 15 (winter), and January 15 (spring).

PROGRAM OF STUDY
The part-time degree program is designed to be completed in one, two, or three years, depending upon a participant’s time to devote to the program. Classes are typically scheduled in the late afternoons, evenings, or weekends to meet the demands of working professionals. Students are required to complete forty-two units of required courses.

COURSES
For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

CURRICULUM
LHCO 201A-2B. Topics in Healthcare Management and Innovation (2-2)
Weekly discussions with healthcare entrepreneurs and managers will expose students to real-life experiences. How are solutions brought to the marketplace? How are solutions identified and implemented? How are solutions brought to the marketplace?

LHCO 202. Organizational Dynamics and Change Management (4)
This course examines principles and applications of management and organization theory as applied to healthcare organizations. It covers methods for assessing key features of organizational environments and internal structures and identifying, developing, and implementing strategies for improved performance.

LHCO 203. Using and Managing Information and Information Technologies (4)
Designed to familiarize health administrators and professionals with the principles of information systems design and management for health care. Provides an understanding of current trends in information technologies for healthcare and management issues unique to it. Includes hands-on computer lab.

LHCO 204. Managing People and Teams (2)
This course studies key management concepts and roles of management and how they apply in successful, dynamic organizations. It also examines competencies of effective managers in developing customer focus, planning, selecting and developing individuals and teams, communicating, managing resources, using technology and being adaptable.

LHCO 205. Modern Healthcare Organizations (4)
Describes and analyzes the dynamics responsible for the change in healthcare delivery and effects on development of modern healthcare organizations. Describes actions taken by employers, insurers, consumers, and government, analyzing the effects on physicians and provider organizations. Note: It is recommended that students take this course in their first winter quarter in the program.

LHCO 206. Topics in Financial Management and Decision Making (2)
This course presents real-life applications in healthcare provider organizations of financial management and decision-making. Topics include budgeting, uses of financial reports, development of long-range financial forecasts, benchmarking, business plan development, and actuarial analysis in projecting health care delivery costs.

LHCO 207. Health Law and Medical Liability (4)
This course provides an introduction to the relationship of law to health care, including liability, government regulation, financial and ethical issues, contracting and negotiation and dispute resolution.

LHCO 209. Patient Outcomes and Quality of Care (4)
This course provides a critical overview of the tools used to measure outcomes and quality of care, development and use of practical guidelines, advantages and disadvantages of various methods, and the use of such analysis in administrative decision-making.

LHCO 211. Healthcare Leadership and Political Advocacy (2)
Within the context of healthcare advocacy, the course examines the organizational and individual issues that impact success in promoting and advocating for a healthcare agenda. The course aims to provide clarity to that process and assist students with understanding how to navigate the political landscape. Students learn about the legislative process, lobbying, the impact of political campaigns, the involvement of the media, and how healthcare economics impact politics.

LHCO 212. Statistics and Applied Decision Making (2)
Students will learn statistical methods and their most common applications in healthcare management. Topics covered include data presentation, sampling, the development and use of confidence intervals, hypothesis testing, analysis of variance and simple regression. We will also explore elementary probability theory and decision making under uncertainty. Students who have taken LHCO 208 may not receive credit for LHCO 212. Prerequisite: admission to MAS in LHCO or consent of department.

LHCO 213. Financial Accounting and Analysis (2)
Students will learn the use of financial information within a healthcare organization. Topics covered will include capital structure, working capital and cash management, the time value of money, and capital budgeting. Students who have taken LHCO 208 may not receive credit for LHCO 213. Prerequisite: admission to the MAS in the Leadership of Healthcare Organizations Program or consent of department.

LHCO 214. Practical Business Communication Skills for Healthcare Professionals (2)
This course focuses on developing effective business communication skills for professionals in managerial/senior roles in healthcare. Writing scenarios include: preparing briefings and updates using presentation software and/or briefing packets; organizing data; constructing proposals and reports; soliciting; coordinating projects via email; and drafting and editing group documents. On-the-job examples from the student’s workplace are used throughout the course. Prerequisite: admission to the MAS in
the Leadership of Healthcare Organizations Program or consent of department.

LHCO 296A. Independent Study Project (ISP) Prospectus (2)
As part of preparing for the ISP, each student must prepare a prospectus based on some topic of research interest relevant to leadership of healthcare organizations. The prospectus will consist of an integrative literature review and a proposal for an applied research project based on the chosen topic. Prerequisite: admission to the MAS in the Leadership of Healthcare Organizations Program or consent of department.

LHCO 296B. Independent Study Project in the Management of Healthcare (4)
The Independent Study Project (ISP) is the cornerstone of the MAS Program. Students will be involved in a high-level applied research project that integrates what they have learned in their formal course work. The ISP will be an independent and creative scholarly activity in an area related to one or more of the topics covered in the formal curriculum. Students’ work will be evaluated by a committee consisting of faculty and, when appropriate, industry advisors.
Health Care—Social Issues

One course in Urban Studies and Planning chosen from the following:
143—The U.S. Health Care System
144—Environmental and Preventive Health Issues
145—Aging: Social and Health Policy Issues
147—Case Studies in Health Care Programs/Poor and Underserved Population

(Additional Urban Studies and Planning courses may be taken to fulfill elective requirements in the minor.)

Elective Course Options

Anthropology
ANTH 2—Human Origins
ANBI 100—Special Topics in Biological Anthropology (topic approval required)
ANBI 141—The Evolution of Human Diet
ANSC 100—Special Topics in Socio-Cultural Anthropology (topic approval required)
ANSC 164—The Anthropology of Medicine

Biology
BILD 36—AIDS, Science, and Society
BICC 136—AIDS, Science, and Society

Clinical Science
174—Drugs: Brain, Mind, and Culture

Contemporary Issues
22—Human Sexuality
40—The AIDS Epidemic
136—The Anthropology of Medicine

Economics
140—Economics of Health Producers
141—Economics of Health Consumers

Ethnic Studies
142—Medicine, Race, and the Global Politics of Inequality

History
HISC 115—History of Modern Medicine
HISC 116—History of Bioethics
HISC 174—History of Localization of Brain Function

Philosophy
147—Philosophy of Biology
148—Philosophy and the Environment
151—Philosophy of Neuroscience
162—Contemporary Moral Issues
164—Technology and Human Values

Psychology
2—General Psychology: Biological Foundations
60—Introduction to Statistics
104—Introduction to Social Psychology
124—Introduction to Clinical Psychology
132—Hormones and Behavior
134—Eating Disorders
154—Behavior Modification
155—Social Psychology and Medicine
163—Abnormal Psychology
168—Psychological Disorders of Childhood
169—Brain Damage and Mental Function
172—Psychology of Human Sexuality
179—Drugs, Addiction, and Mental Disorders
181—Drugs and Behavior
188—Impulse Control Disorders

Science, Technology, and Public Affairs
181—Essentials of Global Health

Sociology
120—The Practice of Social Research
120T—Special Topics in Culture, Language, and Social Interaction (topic approval required)
134E—Making of Modern Medicine
135—Medical Sociology
136E—Sociology of Mental Illness: A Historical Approach
136F—Sociology of Mental Illness in Contemporary Society
138—Genetics and Society
143—Suicide

Urban Studies and Planning
143—The U.S. Health Care System
144—Environmental and Preventive Health Issues
145—Aging: Social and Health Policy Issues
147—Case Studies in Health Care Programs/Poor and Underserved Population

Students may petition to substitute courses in the minor that have substantial content related to health care and society. Petitions should be submitted to the Warren College Interdisciplinary Programs Office.

RECOMMENDED INTERNSHIP EXPERIENCE

A health care related internship (AIP 197) is recommended and should be arranged at least one quarter in advance through the Academic Internship Program, Literature Building, Second Floor, http://aip.ucsd.edu/. Clinical and research placements are available.

FACULTY ADVISORY COMMITTEE

Sandra Brown, Professor, Psychology, Program Director
Gerald Doppelt, Professor, Philosophy
John Evans, Associate Professor, Sociology
Leslie Lewis, Lecturer, Urban Studies and Planning
Dana Nelkin, Associate Professor, Philosophy
Vivian Reznik, Professor of Pediatrics, School of Medicine
Andrew Scull, Professor, Sociology
Health Law

PROGRAM CODIRECTORS
Susan A. Channick, J.D., Professor of Law, California Western School of Law
Bryan Liang, M.D., Ph.D., J.D., Executive Director and E. Donald Shapiro Distinguished Professor of Law; Institute of Health Law Studies, California Western School of Law; Associate Professor of Anesthesiology, UCSD School of Medicine
Leonard Deftos, M.D., J.D., LL.M., Professor of Medicine, UCSD School of Medicine; Physician, VA San Diego Healthcare System; Adjunct Professor of Law, California Western School of Law

ASSOCIATED FACULTY
Edward Dauer, J.D., Visiting Professor of Law, California Western School of Law, Dean Emeritus, Starn College of Law at the University of Denver
Leonard J. Deftos, M.D., J.D., LL.M., Professor of Medicine, UCSD School of Medicine; Physician, VA San Diego Healthcare System; Adjunct Professor of Law, California Western School of Law
Mary Devereaux, Ph.D., Director, Biomedical Ethics Program, Department of Pathology, UCSD School of Medicine
Theodore Ganiats, M.D., Professor, Interim Chair, Department of Family and Preventive Medicine, UCSD School of Medicine
Robert E. Hertzka, M.D., Assistant Clinical Professor, Department of Anesthesiology, UCSD School of Medicine
Richard Kronick, Ph.D., Professor and Chief, Division of Health Care Sciences, Department of Family and Preventive Medicine, UCSD School of Medicine
Bryan Liang, M.D., Ph.D., J.D., E. Donald Shapiro Distinguished Professor of Law; Executive Director of the Institute of Health Law Studies, California Western School of Law; Associate Professor of Anesthesiology, UCSD School of Medicine
Loki Natarajan, Associate Adjunct Professor, Biostatistics, UCSD School of Medicine
Rema Raman, Ph.D., Assistant Adjunct Professor, Biostatistics, UCSD School of Medicine
Michael Willoughby, Ph.D., C.F.A., Lecturer, Department of Economics, UCSD
Deborah L. Wingard, Ph.D., Professor, Department of Family and Preventive Medicine, Division of Epidemiology, UCSD School of Medicine

PROGRAM DESCRIPTION

The Master of Advanced Studies (M.A.S.) in Health Law is a joint-degree offering from UC San Diego and California Western School of Law. The program was developed in response to the increasing need to equip professionals from the health care and legal disciplines with a more complete understanding of the best scientific, ethical, regulatory, and management practices. As medical decisions grow more complicated and far-reaching, the intersection of legal and medical/health care practices will be one of the most critical focal points of society for decades to come. Managed care, advances in medical treatment and biotechnology, issues of access, and bioethics all absorb the attention of our regulatory, legislative, and judicial systems. Health care and legal professionals will need to have the specialized skills and training to be effective and influential in this complex environment.

Led by select faculty from the School of Medicine at UC San Diego and California Western School of Law, the rigorous and timely graduate-level curriculum is designed to orient professionals to the common activities, philosophy of practice, and challenges of the companion discipline in health care or law. The program focuses on acculturating practitioners in both fields to become leaders in providing integrated, sensitive solutions to everyday practice and policy issues.

ADMISSION

New students are admitted in the fall quarter of each academic year. Prospective candidates should submit an official UCSD on-line graduate application for admission, the application fee, one set of official transcripts from each institution attended after high school, three letters of professional letters of recommendation, and a current résumé or c.v. The GRE/GMAT is not required; however, it is strongly recommended that candidates possess, or currently be pursuing, a graduate degree in a scientific or health care related field and also have some level of experience in scientific or clinical research. In some instances candidates without an advanced degree may be admitted to the joint-degree program if they have demonstrated substantial professional experience in the field at increasing levels of responsibility. The application deadline is April 2.

PROGRAM OF STUDY

The part-time master’s degree program is designed to be completed in eighteen months to two or three years, depending upon a participant’s time to devote to the program. Responsibility for course offerings is shared between UC San Diego School of Medicine and California Western School of Law and students will be expected to enroll in courses at both institutions. Courses are typically held in the late afternoons or evenings, to allow flexibility for participants’ home and work life. The forty-five-unit core degree comprises fifteen units of required courses, twelve units of core courses, twelve units of general electives, and six units of a capstone project.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

REQUIRED COURSES (FROM UCSD)

HLAW 201. Introduction to Medical/Health Care Practice (3)
This course examines the non-medical professional perspective on the environment in which the medical practitioner must manage the patient relationship and deal with legal concerns. Topics include patient safety and privacy, medical technology and research, pharmacoeconomics, and economics. Prerequisites: HLAW 201A–C or consent of instructor.

HLAW 207A. Principles in Health Law and Policy A (6)
This course presents a comprehensive view of modern issues at the intersection of healthcare and law, with an emphasis on improving understanding and synergy between the professions. The course stresses foundational understanding of how health law and policy is formulated and the application of health law and policy in current practice. A portion of the class is devoted to group work where students select and study issues in depth to build a framework for resolving enduring challenges in the field. A variety of topics on the health law system and procedures/processes, such as Medicare and MediCal coverage, are introduced to reinforce understanding. Students who have taken HLAW 202A–C, HLAW 203A–C, or HLAW 204A–C may not receive credit for HLAW 207A. Prerequisite: M.A.S. health law student or consent of department.

HLAW 207B. Principles in Health Law and Policy B (6)
This course presents a comprehensive view of modern issues at the intersection of healthcare and law, with an emphasis on improving understanding and synergy between the professions. The course stresses foundational understanding of how health law and policy is formulated and the application of health law and policy in current practice. A portion of the class is devoted to group work where students select and study issues in depth to build a framework for resolving enduring challenges in the field. A variety of topics on the health law system and procedures/processes, such as Medicare and MediCal coverage, are introduced to reinforce understanding. Students who have taken HLAW 202A–C, HLAW 203A–C, or HLAW 204A–C may not receive credit for HLAW 207B. Prerequisite: HLAW 207A, M.A.S. health law student, or consent of department.

HLAW 296A. Independent Study Project Proposal (2)
As part of preparing for the independent study project, each student must prepare a proposal based on a topic of research interest directly relevant to health law. The proposal will consist of an integrative literature review and a proposal for an applied research project based on the chosen topic. Prerequisite: admission to the M.A.S. in Health Law Program or consent of the department.

HLAW 296B. Independent Study Project in Health Law (4)
The independent study project is the cornerstone of the M.A.S. Program. Students will be involved in a high-level applied research project that integrates what they have learned in their formal course work. The project will be an independent and creative endeavor carried out in an area of health law related to one or more of the topics covered in the formal curriculum. Students’ work will be evaluated by a committee of faculty and may also include industry advisors when appropriate. Prerequisites: admission to the M.A.S. in Health Law Program or consent of department; HLAW 296A.

PRESCRIBED ELECTIVES (FROM UCSD)

HLAW 205A. Bioethics Seminar—Clinical Focus A (2)
This seminar examines bioethical concerns and considerations from a clinical perspective. Using medical literature and case law, topics such as bioethics principles, informed consent, technology and reproduction, surrogacy, fetal rights, and the right to die are presented and discussed. Prerequisite: M.A.S. health law student or consent of instructor.
HLAW 205B. Bioethics Seminar—Clinical Focus B (2)
The seminar broadens the focus on the patient/doctor relationship and medical ethical issues in healthcare policy at the national and global levels. Topics include allocation of scarce medical resources; compulsory public health measures; clinical research in the developing world; and cross-cultural medical practice. Prerequisite: M.A.S. health law student or consent of instructor.

LHCO 205. Modern Health Care Organizations (4)
Describes and analyzes the dynamics responsible for the change in health care delivery and effects on development of modern health care organizations. Describes actions taken by employers, insurers, consumers, and government, and analyzes the effects on physicians and provider organizations. Prerequisite: M.A.S. health law student or consent of instructor.

LHCO 206. Topics in Financial Management/Decision-Making in Health Care (2)
Presents real-life applications in health care provider organizations of financial management and decision-making. Topics include budgeting, uses of financial reports, development of long-range forecasts, benchmarking, business plan development, and actuarial analysis in projecting health care delivery costs. Prerequisite: M.A.S. health law student or consent of instructor.

LHCO 213. Financial Accounting and Analysis (2)
Students will learn the use of financial information within a healthcare organization. Topics covered will include capital structure, working capital and cash management, the time value of money, and capital budgeting. Students who have taken LHCO 208 may not receive credit for LHCO 213. Prerequisite: admission to the M.A.S. in the leadership of healthcare organizations program or consent of department.

HLAW 208. Influencing Public Policy (2)
Students will learn the basic policy framework in the U.S. (i.e., the "legal process") and points at which this framework can be influenced to formulate public policy in health care. Prerequisite: M.A.S. health law student or consent of department.

GENERAL ELECTIVES
Varies. Refer to list of elective courses from UCSD and California Western School of Law.
History

PROFESSORS
Robert S. Edelman, Ph.D.
Joseph W. Escherick, Ph.D., Hsui Professor of Chinese Studies, Hwee-Chih and Julia Hsiu, Endowed Chair in Chinese Studies
Takashi Fujitani, Ph.D.
Thomas Gallant, Ph.D., Nicholas Family Endowed Chair, Modern Greek History
David M. Goodblatt, Ph.D., Endowed Chair, Judaic Studies
David G. Gutiérrez, Ph.D.
Deborah Hertz, Ph.D., Herman Wouk Endowed Chair in Modern Jewish Studies
Judith M. Hughes, Ph.D.
Christine F. Hunefeldt, Ph.D., Director, Center for Iberian and Latin American Studies
John A. Marino, Ph.D., Chair
Michael P. Montéon, Ph.D.
Naomi Oreskes, Ph.D., Provost, Sixth College
Michael E. Parrish, Ph.D.
Paul G. Pickowicz, Ph.D., Endowed Chair, Modern Chinese History
William H. Propp, Ph.D., Endowed Chair, Harriet and Louis Bookheim Professor of Biblical and Related Languages
Stefan A. Tanaka, Ph.D.
Eric Van Young, Ph.D.
Robert S. Westman, Ph.D.

ASSOCIATE PROFESSORS
Luis Alvarez, Ph.D.
Frank Biess, Ph.D.
Nancy Caciola, Ph.D.
Tal Golan, Ph.D.
Hasan Kayali, Ph.D.
Rachel Klein, Ph.D.
Weijing Lu, Ph.D.
Rebecca Jo Plant, Ph.D.
Jeremy Preschof, Ph.D.
Michael Provence, Ph.D.
Pamela B. Radcliff, Ph.D.
Sarah Schneewind, Ph.D.
Nayan B. Shah, Ph.D.
Cynthia M. Traunt, Ph.D.
Daniel L. Widner, Ph.D.

ASSISTANT PROFESSORS
Catherina M. Gere, Ph.D.
Mark Hanna, Ph.D.
Mark Hendrickson, Ph.D.
Todd A. Henry, Ph.D. (In Residence), Professorship is supported by a grant from the Korea Foundation.
Nancy H. Kwak, Ph.D.
Everard Meade, Ph.D.
Patrick Patterson, Ph.D.

ADJUNCT FACULTY
Michal Belknap, Ph.D., Earl Warren Professor of Law, California Western School of Law
Amy Bridges-Kronick, Ph.D., Professor, Political Science
Suzanne Cahill, Ph.D., Adjunct Professor

Paul Drake, Ph.D., Professor, Political Science and Institute of the Americas Chair for Inter-American Affairs; Senior Vice Chancellor, Academic Affairs
Steve Erie, Ph.D., Professor, Political Science
Peter H. Smith, Ph.D., Professor, Political Science and Simón Bolívar Chair in Latin American Studies

LECTURER WITH POTENTIAL SECURITY OF EMPLOYMENT
Jane Kuo, Ph.D.

PROFESSORS EMERITI
Guillermo Cepedes, Ph.D.
Stanley A. Chodorow, Ph.D.
Gabriel Jackson, Ph.D.
David Luft, Ph.D.
Thomas A. Metzger, Ph.D.
Allan Mitchell, Ph.D.
Alden A. Mosshammer, Ph.D.
Edward Reynolds, Ph.D.
David R. Ringrose, Ph.D.
Martin J. S. Rudwick, Ph.D.
Ramón Eduardo Ruiz, Ph.D.

EMERITUS LECTURER WITH SECURITY OF EMPLOYMENT
Ping C. Hu

OFFICE: Humanities and Social Sciences Building, Room 5016
(858) 534-1996
E-mail: history@ucsd.edu
http://history.ucsd.edu

THE UNDERGRADUATE PROGRAM

“Whereas other subjects may make us smarter for next time,” said the great historian of the Renaissance, Jakob Burckhardt, “the study of history makes us wiser forever.” History prepares students for careers in law, government, diplomacy, international business, nonprofit administration, and education. But history is also good preparation for any other field that requires assessing evidence and making written and oral arguments, fields including engineering, medicine, and entrepreneurship. Moreover, history opens the mind to the full range of the human experience as it has unfolded over the ages. As an academic discipline at the crossroads of the humanities, the arts, and the social sciences, history is a unique gateway to the richness of the human experience as it has unfolded over the ages. As an academic discipline at the crossroads of the humanities, the arts, and the social sciences, history is a unique gateway to the richness of the American cultural heritage, to the immense variety of world civilizations, and to understanding what has happened in the past and why.

To declare a major in history, consult with the undergraduate student advisor on the fifth floor of H&SS. In selecting your field of emphasis, you may also consult with the director of undergraduate studies or other faculty members. The fields of emphasis are as follows: Africa (HIAF), East Asia (HIEA), Europe (HIEU), Near East (HINE), Latin America (HILA), History of Science (HISC), United States (HIFS); as well as the following three thematic fields: gender and sexuality; race, ethnicity, and migration; and war, revolution, and social change. A list of courses approved for the thematic fields is available in the department office or on its Web site http://history.ucsd.edu. In special cases, upon approval of the director of undergraduate studies, students may devise a different field of emphasis (e.g., economic, legal, or social history).

The department also administers the following special research and instructional units: Chinese Studies; Judaic Studies; and the Committee on Area and Ethnic Studies and Research (CAESAR), which includes Classical Studies, European Studies, German Studies, Italian Studies, Japanese Studies, Middle East Studies, and Russian and Soviet Studies.

The department is fortunate in having the research and professional activities of its faculty supported by the Laura and John Gdalbraith Faculty Development Fund.

Basic requirements for the major are as follows:
1. Three lower-division courses in history.
 Lower-division courses may be selected from the following:
 HILD 2 A-B-C. United States History
 HILD 7 A-B-C. Race and Ethnicity in the U.S.A.
 HILD 10-11-12. East Asia

Majors may also satisfy the lower-division requirement by completing the Revelle College Humanities Sequence or the Eleanor Roosevelt College Sequence “Making of the Modern World.” Majors may petition to fulfill all or part of the lower-division requirement with AP credit in history or courses from another school.

2. Twelve four-unit upper-division courses, distributed as follows:
 a. At least three courses in the field of emphasis.
 b. At least three courses in other fields within the department.
 c. Three of the twelve courses must focus on the period before 1800, indicated by the (+).
 d. At least one of the twelve courses must be a colloquium in which students write a substantial term paper. Colloquia are courses with numbers between 160 and 190, or others approved by the undergraduate advisor. Note: the colloquium need not be in the major field of emphasis.

Students majoring in history will normally take at least eight of their twelve upper-division history courses at UC San Diego. Exceptions may be made for transfer students and for students participating in the EAP/OAP program.

Special independent study courses, such as HITO 198, Directed Group Study, and HITO 199, Independent Study, are available, especially for students interested in the Honors Program and in graduate study.

With the exception of 199 courses, all work in the major must be taken for a letter grade. Of the twelve upper-division courses required in the major, no more than two may be History 199 credits. Exceptions to these rules may be approved by the director of undergraduate studies.

Established in 1983, the Armin Rappaport Memorial Fund endows an annual prize for the best
THE HONORS PROGRAM

The department offers a special program for outstanding students. The Honors Program is especially recommended for those students interested in pursuing graduate study in history or allied fields. It is also a particularly effective preparation for professional careers. Candidates for History Honors are chosen during the spring quarter from among juniors in history who have taken at least four upper-division courses in the department. Juniors with a 3.5 GPA in history (3.0 overall) are eligible to apply. Admission to the program is based on the student’s academic work. Interested candidates should complete the application form (available in the Department of History office) by the second Friday of May.

In addition to regular course work in the department, the Honors Program consists of a colloquium in historiography offered in the fall quarter of the senior year and a program of independent study leading to the completion of an honors essay on a topic of the student’s choice. During the fall quarter of the senior year, candidates select a topic and begin preliminary work on the Honors essay in consultation with a major field advisor (HITO 194). During the winter quarter the student pursues a course of independent study devoted to the completion of the Honors essay (HITO 195). The award of History Honors is based on satisfactory completion of the colloquium in history and the Honors essay. Students are expected to maintain an average of 3.5 or better in all work taken within the department. Honors candidates must include at least three colloquia in their regular course work.

Candidates for history honors should organize their upper-division course work as follows:

1. Six quarter-courses in one of the major fields offered by the department.
2. Three quarter-courses in a field other than the primary one.
3. Three of these nine quarter-courses must be colloquia.
4. HITO 196. Colloquium in History.

MINORS IN HISTORY

The minor consists of at least seven courses, five of which must be upper-division. Although there is no specific distribution requirement, the courses should be selected to constitute a coherent curriculum. No more than two upper-division courses applied to a minor may be taken for Pass/Not Pass. Prospective minors in history should consult with an undergraduate advisor for approval of their program.

EDUCATION ABROAD PROGRAM

History majors are encouraged to participate in the UC Education Abroad Program (EAP) or UCSD’s Opportunities Abroad Program (OAP), while still making progress toward completing their major. Students considering this option should discuss their plans with the departmental Educational Abroad faculty advisor before going abroad, and courses taken abroad must be approved by the department. (For more information on departmental procedures for study abroad see undergraduate program [http://history.ucsd.edu]) EAP is detailed in the Educational Abroad Program of the UC San Diego General Catalog, or visit http://programsabroad.ucsd.edu Financial aid is applicable to study abroad, and study abroad scholarships are available. Interested students should contact the Programs Abroad Office in the International Center.

THE GRADUATE PROGRAM

THE MASTER’S PROGRAM

The M.A. program is designed to introduce students to the basic skills of historical research as well as to the debates about, and the approaches to, historical scholarship in a specific field. Master’s students ordinarily do not receive financial aid from the department or the university except when funds are not utilized for support of Ph.D. candidates.

The department offers M.A.s in European history, United States history, and history of science. In addition, the Department of History administers an interdisciplinary M.A. program in Judaic studies. Students interested in pursuing an M.A. degree in Latin American history are encouraged to apply for admission to the Latin American Studies program. The department also offers the opportunity for students to design special M.A. programs in areas such as African history or medieval European history.

Admissions

Admission is based on the applicant’s undergraduate preparation; previous graduate work, if any; three letters of recommendation; one or two papers (preferably written for history courses); and scores from the Graduate Record Examination (GRE). The GRE subject exam in history is not required. The Test of English as a Foreign Language (TOEFL) is required for foreign applicants. A minimum score of 550 for the paper-based test, a score of 213 for the computer-based test, or a score of 80 on the Internet-based test is required on the TOEFL. The minimum grade-point average for admission is 3.0 with a higher average in history and related subjects. Refer to the online application for filing deadline.

For online application visit [http://oas.ucsd.edu]

General Requirements

The master’s program can be completed in one year of full-time study or two years of half-time study, and includes nine four-unit courses (thirty-six units) in a major field. Required courses vary for each major field (see below), but all courses must be taken for a letter grade. With very few exceptions, students are expected to begin their programs in the fall quarter. In addition to the course requirements, completion of the M.A. degree requires that students pass a one-hour oral examination at the end of their final quarter of enrollment.

Language requirement: While proficiency in a foreign language is only required in European history (see below), prospective applicants are strongly urged to begin study of a foreign language appropriate to the proposed area of concentration as early as possible in their academic career.

Area of Concentration: Judaic Studies

Judaic Studies is an interdisciplinary program that allows students interested in many areas to build a coordinated graduate program leading to an M.A. Courses that count toward the degree may be in a wide array of university programs and departments, including history, literature, anthropology, political sciences, sociology, and philosophy.

1. Admission Requirements

a. B.A. or equivalent.
b. Two years of course work in the language or languages appropriate to the field of Judaic studies.
c. Applicants should apply through the Department of History.

2. Degree Requirements

a. The M.A. degree will be granted for thirty-six credits, ordinarily completed in one or two years.
b. Students may enroll in no more than two undergraduate courses. All courses should be approved by the faculty mentor of the student.

Area of Concentration: Europe

Candidates for the M.A. degree in European history pursue a program concentrating on the history of early modern and modern Europe. Some training in a discipline other than history is also recommended. The requirement of nine courses (thirty-six units) is normally distributed as follows:

1. A two-quarter research seminar, either HIGR 230 or 231.
3. European historiography courses: HIGR 220, 221, and/or 222. Each year one to two of these historiography courses are offered, and the student must take these.
4. Two courses in pre-industrial Europe, 1450–1750: HIGR 220 and 221, or HIGR 230 may be counted for this distribution requirement.
5. Two courses in industrial Europe since 1750: HIGR 221, 222, or HIGR 231 may be counted for this requirement, as well as appropriate graduate level colloquia.

Note: HIGR 221 may NOT be used for both (3) and (4).

6. One course in a discipline other than history, if relevant to the student’s program.
7. The remaining courses may be chosen, in consultation with the graduate advisor in the student’s
field, from among the available undergraduate/graduate colloquia (#2605–2805).

Language requirement: M.A. candidates in European history must demonstrate reading competence in one European language other than English.

Area of Concentration: History of Science

The master's program in history of science provides a broad background in preparation for a variety of careers related to science and technology, business, journalism, education, government, or for more advanced degree work. The nine courses (thirty-six units) required are normally distributed as follows:
1. Two courses in science in early modern Europe.
2. Two courses in science since 1750.
3. A two-quarter research seminar.
4. The remaining courses are chosen in consultation with the faculty in history of science. For students whose previous training has been mainly scientific, these will include courses in historical fields other than the history of science. For students who already have historical training, they may include one or more courses related to the sciences.

Area of Concentration: Latin America

This program offers the student a general preparation in the history of Latin America. Students will have the opportunity to specialize in national or colonial periods and can emphasize work in one country. Advanced work in another discipline related to Latin America may also be included in the program. Thirty-six units normally should be distributed as follows:
1. HILA 267, 268, 269
2. Three graduate courses in Latin American history
3. Three other courses related to Latin America in history or in other disciplines

Area of Concentration: United States

This area of concentration offers the M.A. candidate a broad grounding in the literature of American history from the colonial period to the present. In addition to a shared core of courses, students specialize in a topical field of their own choosing. Training in a related discipline outside of history is encouraged. The requirement of nine courses (thirty-six units) is ordinarily distributed as follows:
1. HIGR 265A-B-C. The Literature of American History. These colloquia are required of all entering graduate students in American history.
2. A two-quarter research seminar.
3. Two courses in a single topical field chosen from African-American history, Asian American history, Atlantic history, history of the borderlands and Southwest, Chicano history, economic history, legal and constitutional history, political history, social and cultural history, history of the South, history of the West, or history of women, gender, and sexuality.
4. Two additional courses chosen in consultation with the student's advisor. These courses may be in a related field outside the department.
5. At least six of the nine courses must be colloquia or graduate-level courses. Students may take conjoined courses, directed readings, research seminars, or the 265 series to meet this requirement.

PH.D. PROGRAM

Admission

The Department of History offers the doctor of philosophy degree in the fields of ancient history, East Asian history, European history, history of science, Latin American history, Middle Eastern history, and United States history. Applicants must indicate to which of these programs they seek admission.

Admission is based on the applicant's undergraduate preparation; previous graduate work, if any; three letters of recommendation; one or two writing samples (preferably written for history courses); and scores from the Graduate Record Examination (GRE). The GRE subject exam in history is not required. The Test of English as a Foreign Language (TOEFL) is required for foreign applicants. A minimum score of 550 for the paper-based test or a score of 213 for the computer-based test is required on the TOEFL. The minimum grade-point average for admission is 3.0 with a higher average in history and related subjects. With very few exceptions, students are expected to begin their programs in the fall quarter.

In most areas of concentration, knowledge of at least two foreign languages will be required during a student's academic career. In general, applicants are expected to have a reading knowledge of the languages most appropriate to their major field at the time of admission. Thus, students in ancient history, East Asian history, European history, history of science, Latin American history, and Middle Eastern history should have a working knowledge of at least one foreign language at the time of admission. Refer to the online application for filing deadline.

For online application visit: http://ogs.ucsd.edu/

Fields of Study

Each student will pursue a major field within one of the PhD programs, and two minor fields. The first minor field can be a supplementary field within their program (e.g., medieval Chinese history for a modern Chinese historian), while the second minor field is usually chosen from outside the geographical area or outside the discipline. During the first two years, the student should identify a special area of interest in the major field to pursue a dissertation project.

I. Ancient History

Students in ancient history will be expected to demonstrate a broad mastery of the entire field, with special concentration as follows:
1. Major Fields
 a. The history of Israel in the biblical period
 b. The history of the Jewish people in antiquity
2. First Minor
 a. One of the fields listed above not chosen as the major field
 b. Greek and Roman history
 c. The Middle East before Islam (western Asia and northeastern Africa from the sixth century B.C.E. to the seventh century C.E.)

3. Second Minor
 a. A field of history outside of ancient history
 b. A related discipline, offered through another department

4. Language Requirements
 a. All students will be expected to demonstrate a reading knowledge of two modern foreign languages, usually French and German. This requirement may be satisfied by any of the means recognized by the department.
 b. All students will be expected to demonstrate a reading knowledge of at least one and usually two of the three following ancient languages: Greek, Hebrew, and Latin. The languages will be chosen as appropriate to the student's particular interests and the requirement will be satisfied by departmental examination.
 c. The second and sometimes third language not elected under (2) may be required if necessary for the student's research. Additional languages, such as Akkadian, Aramaic, Egyptian, Ugaritic, Phoenician, and middle and modern Hebrew, may be required as necessary for the student's research. The required level of competence will be set as appropriate to the student's needs and the requirement will be satisfied by departmental examination.

5. Core Courses
 HIGR 255 Historical Scholarship in Ancient History
 HIGR 260 Research Seminar in Ancient History (two quarters)

II. East Asian History

Students in East Asian history will be expected to demonstrate broad competence in the entire field, with special concentration as follows:

1. Major Fields
 a. Modern China
 b. Modern Japan
 c. Pre-modern China
2. Minor Fields
 Students majoring in modern Chinese history will be expected to pass three minor fields for a broad perspective on East Asian history:
 a. Pre-modern Chinese history
 b. Modern Japanese history
 c. A history field outside of East Asia, or a discipline outside of history
 For students majoring in Japanese history:
 d. A field in history
 e. A related field offered through another department
 Note: One of the minor fields must not focus exclusively on East Asia.
 Students majoring in pre-modern Chinese history will pass three minor fields:
 g. Modern Chinese history
 h. Pre-modern history of another area

i. One of modern Japanese history; a relevant field outside of East Asia; or a discipline outside of history

3. Language Requirements
 For students majoring in Chinese history: students must demonstrate a reading knowledge of Chinese and a reading knowledge of a second foreign language related to the student’s research interests.
 For students majoring in Japanese history: students must demonstrate a reading and speaking knowledge of Japanese. Depending on specialization, reading knowledge of a second foreign language might be necessary.
 Students majoring in pre-modern Chinese history must demonstrate proficiency in classical Chinese, and another relevant Asian or European language.

4. Core Courses
 For Chinese history students:
 - HIGR 210: Historical Scholarship on Modern Chinese History (three quarters)
 - HIGR 211: Historical Scholarship on Modern Japanese History (two quarters)
 - HIGR 212: Historical Scholarship on Modern East Asian History
 - HIGR 213: Sources on Modern Chinese History
 - HIGR 215A-B: Research Seminar in Modern Chinese History
 - HIGR 217A-B-C: Historical Scholarship on Pre-Modern Chinese History
 For Japanese history students:
 - HIGR 211: Historical Scholarship on Modern Japanese History (two quarters)
 - HIGR 212: Historical Scholarship on Modern East Asian History
 - HIGR 214: Readings in Japanese on Modern Japan
 - HIGR 216A-B: Research Seminar in Modern Japanese History

III. European History

 The graduate program in European history aims to achieve a dual objective: to develop a broad mastery of the major themes and scholarship in the field, as well as to encourage a special focus of research within a single nation or region in either the modern or early modern era.

 1. Major Fields
 Within the major field, national specialization is offered in modern Germany, Spain, Russia and Greece, and in early modern Italy and France. Regional specialization is offered in central/eastern Europe and in the Mediterranean.
 a. Modern Europe
 b. Early modern Europe
 2. First Minor Field
 The first minor field should be selected from within the parameters of European history, but in a chronological period outside that of the major field.
 a. Ancient Mediterranean
 b. Medieval Europe
 c. Early modern Europe
 d. Modern Europe
 e. A second national history

3. Second Minor Field
 The second minor field is designed either to develop a non-European teaching expertise or to pursue broader theoretical reading related to the research interests of the student.
 a. A geographical area outside Europe
 b. History of science
 c. A transnational thematic or theoretical concentration, such as gender history, citizenship, nationalism, etc.
 d. A thematic or theoretical concentration rooted in another discipline, such as anthropology, sociology, art history, ethnic studies, or literature.

4. Language Requirement
 All European Ph.D. students must show reading proficiency in two European languages other than English.

5. Core Required Courses
 - HIGR 200: History and Social Theory
 - HIGR 220: Historical Scholarship on European History, 1500–1715
 - HIGR 221: Historical Scholarship on European History, 1715–1850
 - HIGR 222: Historical Scholarship on European History Since 1850
 - HIGR 230A-B: Research Seminar in Early Modern Europe
 - HIGR 231A-B: Research Seminar in Modern Europe

IV. History of Science

 Note: Students should indicate whether they are also applicants for admission to the interdepartmental program in Science Studies (history, philosophy, and sociology of science).

 1. Major Fields
 a. Science in early modern Europe
 b. Science in the eighteenth and nineteenth centuries
 c. Science in the twentieth century
 d. Another field of comparable breadth, defined in consultation with the major field advisor
 2. First and Second Minor Fields (any two of the following may be selected, in consultation with the major field advisor).
 b. Any of the other fields offered by the department, provided that it offers general historical understanding of the same period as the major field.
 c. A field of history of science not chosen as the major field.
 d. A second field of history, provided that it concentrates on a period or region other than that chosen for the first minor field.
 e. A related discipline, offered through another department. Note: This field may be in the physical or life sciences.

3. Language Requirement
 Competency in one or two languages in addition to English before advancement to candidacy is required. The requirement will vary depending on chosen major field.

4. Core Required Courses
 - HIGR 236A-B: Seminar in History of Science
 - HIGR 238: Introduction to Science Studies
 - HIGR 239: Seminar in Science Studies
 - HIGR 240: Colloquium in Science Studies
 - HIGR 241: Advanced Approaches to Science Studies

V. Latin American History

 Doctoral candidates in Latin American history are expected to gain a broad chronological and geographical mastery of the field as a whole. The oral examination in the major field, while concentrating on the student’s special area of interest, will be a comprehensive examination covering the whole field of Latin American history.

 1. Major Fields
 a. The national period of Latin America, with a specialty in the Andean Republics, Brazil, the Caribbean, Mexico, or the Southern Cone countries
 b. Colonial Latin America, with an emphasis on one major region
 2. First Minor
 The student should select either the national period or the colonial period as a chronological supplement to the major.

 3. Second Minor
 a. The history of another geographic area outside Latin America and the Caribbean
 b. An area of discipline, offered through another department, related to the student’s dissertation or preparation for university teaching

4. Language Requirement
 Competency in two languages in addition to English before advancement to candidacy is required. Normally the first of these will be Spanish. The second may be Portuguese or another European or non-European language, including an indigenous language of the Americas.

5. Core Required Classes
 - HIGR 200: History and Social Theory
 - HILA 267/268/269: Seminar in the Literature of Latin American History
 - HIGR 247A-B: Readings and Seminar on Colonial Latin America
 - HIGR 248A-B-C: Readings and Seminar on Latin America, National Period
VI. Middle Eastern History

The objective of the doctoral program in Middle Eastern history is to achieve broad expertise in the modern history of the Middle East and to develop a special focus in the history of the late Ottoman Empire or its successor states.

1. Major Fields
 a. Late Ottoman history (approximately 1780 to 1920)
 b. Colonial and national period of the post-Ottoman Middle East with a specialty in the Arab East, Turkey, Egypt, etc.

2. Minor Fields
 Any two of the following:
 a. The field of Middle Eastern history not chosen as a major field (see above)
 b. The modern history of a geographic area outside of the Middle East (ordinarily in European history)
 c. A related geographical or topical field (e.g., medieval Middle East, Iran, gender studies) offered through another department

3. Language Requirement
 Students must possess a sound foundation in reading Arabic or Turkish (Ottoman Turkish or modern Turkish) as a requirement for admission to the program. Reading competence in two languages in addition to English is required before advancement to candidacy: the regional language Arabic or Turkish (above), and a modern European language (other than English) related to the major field of specialization.

4. Core Required Courses
 HIGR 275A-B: Research Seminar in Middle Eastern History

VII. United States History

1. Major Fields
 a. United States History

2. First Minor
 a. One of the following topical fields:
 - African-American history
 - Asian-American history
 - Atlantic history
 - economic history
 - legal and constitutional history
 - political history
 - social and cultural history
 - history of the South
 - history of the West
 - history of women, gender, and sexuality
 - one designed in consultation with the advisor

3. Second Minor
 a. A geographic area outside the United States in either the premodern or modern period
 b. A related discipline offered through another department

4. Language Requirement
 Competency in one language in addition to English before advancement to candidacy is required.

5. Third-Year Seminar
 U.S. History students are encouraged in their third year of study to complete HIGR 271: New Research Directions in U.S. History.

6. Core Courses
 HIGR 200: History and Social Theory
 HIGR 265A-B-C: The Literature of American History
 HIGR 267A-B: Research Seminar in United States History
 HIGR 271: New Research Directions in U.S. History

VIII. Dual Degree Program

Students who wish to earn both the Ph.D. in history from UC San Diego and the Juris Doctor from California Western School of Law must apply to and be independently accepted into both programs under each of the campus’ standards and procedures.

Students pursuing the dual degree program will normally alternate years at each institution, in a manner agreed on by the student’s advisors and appropriate committees. Thus, for example, a student may spend his or her first year at Cal Western, his or her second year at UCSD, and so on through the program. At least one year at each institution must be completed by the end of three years.

Each institution will accept a small number of course credits from the other institution to satisfy its degree requirements. Cal Western remains on a semester system, while UCSD continues on a quarter system. With the exception of the historiography and research seminars and subject to approval by a faculty advisor and the graduate committee, the Department of History will accept for credit up to two classes from Cal Western.

IX. Other Fields

Students may be admitted to graduate study leading to the Ph.D. in fields other than those listed above upon the recommendation of an appropriate faculty member. In such cases, a special program of study appropriate to the field will be devised by the major field advisor, subject to the approval of the department’s graduate committee.

Note: The department also offers graduate work in African history. When appropriate, students may select a minor field in this area.

Ph.D. Course Work

A normal full-time program consists of twelve units (or three four-unit courses) per quarter. Ph.D. students are expected to complete at least one of the following minimum formal courses of study prior to their qualifying examination: (1) two two-quarter research seminars, three one-quarter historiography courses in their major field, and five other courses (which may be a combination of colloquia, conjoined courses, or directed readings, but which must include one cross-field graduate colloquium like HIGR 200); or (2) three two-quarter research seminars (not necessarily in the same field), three one-quarter historiography courses in their major field, and three other courses (which may be a combination of colloquia, conjoined courses, or directed readings, but which must include one cross-field graduate colloquium like HIGR 200). Students are encouraged to take their first research seminar in their major field during the initial year of graduate study. After the first year, most students' full-time program includes two regular academic courses each quarter (eight units) and employment as a 50 percent teaching assistant (four units).

Cross-Field Thematic Graduate Colloquia

In addition to the graduate courses offered by the field groups, the department will offer at least one and up to three cross-field colloquia each year, which are designed to cross geographical and chronological boundaries. Two of these courses are taught at least every other year under this rubric.

An introductory graduate course for students in all fields. Themes include cross-field historiography and theory, interdisciplinary approaches to history and historical method. (May be taken twice for credit, if the reading list is significantly different.)

HIGR 205: Feminist Historical Studies
An introduction to feminist historical studies. This course will provide students with training in women’s history, in the feminist theories that undergird that scholarship, and in gender analysis. (May be taken twice for credit, if the reading list is significantly different.)

HIGR 207: Nationalism, Colonialism, and Race
A transdisciplinary and comparative course on the interplay of nationalism, colonialism, and race (as well as class and gender/sexuality) in the nineteenth and twentieth centuries.

All Ph.D. students are required to complete at least one cross-field graduate course (typically in the HIGR 200-HIGR 208 series) before advancement to candidacy. Students are strongly encouraged to meet this requirement in their first year, as their field and program of study permits.

Part-time Study

Students who enroll in fewer than twelve graduate or upper-division units per quarter are considered part-time students. Part-time study may be pursued in several master’s programs and a few Ph.D. programs at UCSD. Approval for individual students to enroll on a part-time basis may be given for reasons of occupation, family responsibilities, or health. Individuals who are interested in part-time study and meet the above qualifications should see the department’s graduate coordinator.

Part-time students must satisfy the same admission requirements as full-time students and are eligible, at the discretion of the department, for 25 percent time teaching or research assistantships. Students who are approved by the dean of Graduate Studies for enrollment in a program of half-time study or less (maximum of six units) may be eligible for a reduction in fees. All other students pay the same fees as full-time students.

Ph.D. and M.A. Language Requirements

Ph.D. candidates in Chinese, European, Middle Eastern, and Latin American history must demonstrate competence in two foreign languages.
Ph.D. candidates in history of science, Japanese, and United States history, as well as M.A. candidates in European and Latin American history, must demonstrate competency in one foreign language.

Ph.D. candidates in ancient history must demonstrate competency in two modern foreign languages as well as the relevant ancient languages.

Ph.D. candidates in Middle Eastern history must possess a sound foundation in reading Arabic or Turkish (Ottoman Turkish or modern Turkish) as a requirement for admission to the program. Reading competency in two languages in addition to English is required before advancement to candidacy: the regional language Arabic or Turkish above, and a modern European language (other than English) related to the major field of specialization.

Additional languages appropriate to the special field of study as well as language requirements for a candidate in a field other than those already mentioned may be required by the graduate committee in consultation with the student's major field advisor. Students may satisfy the foreign language requirement in one of the following ways:

1. By completing, with a grade of B- or better in each term, a two-year language sequence from the student's undergraduate institution. Such a sequence must have been completed within two years of the time the request is made to the graduate committee for certification of competency.

2. By completing, while as a graduate student, with a satisfactory (S) grade in each term, a two-year, lower-division sequence in the language approved by the graduate committee.

3. By completing, while as a graduate student, with a satisfactory (S) grade in each term, a one-year, upper-division sequence in the language approved by the graduate committee.

4. By passing a translation examination administered by the department. (This is the only option available for Chinese and Japanese.)

Students are urged to complete at least one foreign language examination by the end of the first year of study and must do so by the beginning of their third year. Failure to meet this requirement is grounds for denial of financial support. No student may take the oral qualifying examination before completing all language requirements.

Ph.D. Examinations

A. Minor Fields

Ph.D. candidates are strongly encouraged to take at least one minor field examination by the end of the first year and to complete the second minor exam by the end of the second year. All minor fields must be completed before the major field exam can be taken. Generally, the department recognizes two types of minor fields. The first is a teaching field. That is, passing a minor field in an area certifies, on a student's record and resume, that the student has mastered the literature and the major issues in another geographical or chronological field such that the student is qualified to teach in that area. (An example would be a minor field in modern Japanese history for an East Asian history student specializing in modern China; or early modern European history for a modern Europeanist.) A second type of minor field is designed to familiarize a student with a range of theoretical, comparative, and/or transnational issues, which will be useful in the formulation of a dissertation topic and future research in the student's major field.

In some cases, this minor field is pursued outside the department (in consultation with the student's advisor); an example might be a minor in the Department of Ethnic Studies for a student working on race and ethnicity in the U.S. In other cases, the student may identify a faculty member or series of faculty members within the department who focus on a particular theme, such as gender, citizenship, or imperialism.

The minor field is defined by a reading list agreed on by the student and the minor field advisor(s).

As a guideline, the reading list should encompass about three-quarters' worth of course work (which may be taken with up to three faculty members), and include about fifty titles, with forty to seventy titles representing a reasonable range, depending on the combination of books and articles. The list is intended to establish what will be expected of the student and to prevent confusion over the material to be covered. The list should be finalized at the beginning of the quarter during which the student plans to complete the minor field.

Completion or evaluation of a minor field takes several forms, depending on the policies of different field groups or individual professors.

1. A one-hour oral examination.

2. A three-hour or twenty-four-hour take-home written exam.

3. An "un-timed" synthetic essay, twenty-five to thirty pages, that organizes the scholarship of the field.

4. Three shorter papers (eight to ten pages) each encompassing a single quarter's worth of reading. This option is especially appropriate in cases where the student is working with more than one faculty member on a minor field.

5. Developing a course syllabus in the field.

B. The Major Field: Oral Qualifying Examination and Candidacy

Students are normally expected to take their qualifying examination no later than the spring of their third year of study (except as otherwise specified by the individual fields), and required to do so within four years. Students must fulfill all course work, minor field, and language requirements before taking the qualifying examination. The qualifying examination is an oral test in the student's major field of study, conducted by at least five examiners. A minimum of three examiners must be members of the Department of History, and usually they will be in the student's major field. The fourth can be either a faculty member from inside the department but outside the major field, or someone from another department. The fifth must be a tenured faculty member in another department. The student's minor field advisor(s), whether inside the department or in another department, often serve in this "outside" capacity on the oral committee, although this is not required. Students should consult with their advisor about the composition of the examining committee before their examination. In addition, the membership of the committee must be approved before the exam by the department chair and the dean of Graduate Studies. The student must meet with the graduate coordinator at least three weeks prior to the oral date to arrange for the submission of this paperwork.

The purpose of the major field oral examination is twofold: 1) to evaluate the student's knowledge of the major research field and 2) to discuss the student's dissertation project (with the exception of the U.S. field, which holds a separate meeting for this purpose, no later than two months after the exam).

The exam lasts between two and three hours, and is structured to give each of the five committee members an opportunity to ask questions of the student, based on the major field reading list. When the prospectus is also under discussion, usually the last half-hour is reserved for this purpose. When the exam is over, the student leaves the room and the committee decides whether the student has passed the exam and advanced to candidacy.

1. The major field book list should be drawn up by the student in consultation with the faculty advisor, and should be finalized at least thirty days before the date of the exam. Each major field list will reflect the unique interests of the student, while also incorporating core themes of the field. Some field groups have formal core lists that may comprise a part of each student's total list, while others do not. In all cases, students are expected to organize their major field lists according to the specific themes/nations/issues that have informed their graduate study, since no major field list can be all-inclusive. The number of titles on a major field list should be around 100, with 80–120 titles representing a reasonable range.

2. The discussion of the dissertation project will be framed by a five- to ten-page prospectus written by the student and submitted to the committee with the book list, at least three weeks before the exam. The purpose of the discussion is to determine the feasibility of the scope of the project and to offer suggestions about source materials and research strategies.

Should a student fail the examination, the examining committee will clarify the weaknesses in the exam, so that the student can prepare to take it a second time. If a second oral examination is warranted, the department requires that it should be taken no later than one quarter after the first examination. If the student fails the oral examination a second time, his or her graduate studies in the department will be terminated.

An M.A. degree may also be awarded to continuing Ph.D. students upon successfully passing the oral qualifying examination. The M.A. is not automatically awarded; students must apply in advance to receive the degree, but no additional work is required. Note: Students who wish to receive an M.A. degree as part
of the Ph.D. program must apply for master's degree candidacy by the end of the second week of the quarter in which they expect to receive the degree. Please see the graduate coordinator regarding this application.

The various requirements noted above apply to students who have done no previous graduate work in history. If a candidate has completed some graduate work before entering UCSD, appropriate adjustments in course work may be approved by general petition to the graduate committee. Nevertheless, all candidates are required to meet language requirements, pass field examinations, and complete and defend a dissertation.

Dissertation

After completing all relevant examinations and language requirements, the student is expected to write a dissertation under the supervision of his or her faculty advisor and the doctoral committee. The Department of History has established the following guidelines for dissertation work. The dissertation should:

- represent an original and significant contribution to knowledge
- be based upon primary research
- clearly demonstrate the capacity of the student to pursue independent historical research
- be written in clear and coherent prose

The scope of the dissertation and its length will depend upon the nature of the problem and the documentation. The department encourages students to complete their research and writing by the end of their sixth year of study. The scope and length of the dissertation should therefore be such that a complete project can be executed in no more than three years, but it should also be capable of further development for publication as a series of articles in scholarly journals, or as a book.

Guidelines for Ph.D. Completion

First Year

- All courses must be taken for a letter grade.
- Research seminar and field group historiography courses.
- Cross-field graduate colloquium (recommended).
- One language requirement.
- Select an advisor in major field.
- Define major and two minor fields with advisor.
- Complete one minor field.

Second Year

- Second research seminar and remaining field group required courses.
- Complete language requirement.
- Complete second minor field.

Third Year

- If not done so already, complete all minor field exams, language requirements, and course work (twelve four-unit courses required).
- Write a dissertation prospectus in preparation for the major field exam.
- Pass qualifying exam in major field.

Fourth Year

- Primary/field/archival research for the dissertation.

Fifth–Seventh Years

- Writing and completing dissertation.

Note: While students may take an eighth year to complete the Ph.D., they may not receive financial support from the university or the department, including TAships or readerships after the seventh year.

Departmental Ph.D. Time Limit Policies

- Students must be advanced to candidacy by the end of four years. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

Financial Support

- Upon recommendation of the department, several types of financial aid are available to graduate students: teaching assistantships, readerships, research assistantships, fellowships, and travel grants, and full or partial remission of fees and tuition. Graduate students are eligible for one or a combination of the six forms of financial support.

- Entering students who are offered a multi-year financial package are either offered fellowships or readerships, along with fee and tuition remission during their first year, followed by guaranteed employment as a teaching assistant in subsequent years. In some cases, guaranteed dissertation writing funds are part of such a package. Regardless of the initial financial package, the department seeks to ensure that all continuing Ph.D. students are financially supported, usually through TAships. In recent years all students needing support have received either fellowships, teaching assistant, or research assistant positions. To the extent that resources are insufficient to meet the need, the department, on the advice of the graduate committee, will rank students using a combined criterion of academic performance and financial need.

- Fellowships, travel grants, and research assistantships are granted by the Office of Graduate Studies (OGS) upon the recommendation of the department. Teaching assistants are appointed by the department upon the recommendation of the graduate committee and by the college writing programs. Readers are appointed by the department upon the recommendation of the professor whose course requires such assistance. At the discretion of the department, half-time graduate students are eligible for 25 percent TAships. Graduate students must maintain a minimum grade-point average of 3.0 to be considered for any type of financial aid. Financial support is not renewed automatically but is approved by the department on a yearly basis.

- Departmental policy has been to seek seven years of support for students in the program. The Office of Graduate Studies grants partial remission of fees for nine quarters after advancement to candidacy (“normative time”) if the student is advanced to candidacy by the end of the third year. (If the student delays advancement, the amount of normative time is reduced accordingly.) Upon expiration of normative time the student must complete the dissertation or resume full payment of fees.

Opportunities for Teaching

Undergraduate teaching, for which graduate teaching assistants earn regular academic credit, is an integral part of the graduate program at UCSD. The department considers experience in teaching an important part of a graduate student’s professional training. To prepare for an academic career, the Ph.D. candidate is encouraged to assist in courses offered by the department, ordinarily as a course Reader (grader) or Teaching Assistant. A maximum of four units per quarter may be taken in undergraduate teaching.

Readerships are available in a variety of upper-division history courses, while the department offers positions for teaching assistantships in lower-division East Asian and U.S. history courses. Graduate students in other fields usually serve as TAs in the interdisciplinary college programs, such as ERC’s “Making of the Modern World,” Revelle’s “Humanities,” Marshall’s “Dimensions of Culture,” Sixth’s “CAT,” and the Muir College Writing Program. Assistantships must maintain a minimum grade-point average of 3.0 in order to receive academic employment on campus.

Job Placement

In recent years, 85 percent of the department’s Ph.D. graduates received positions as tenure-track assistant professors at colleges and universities around the country. The remaining 15 percent are currently administrators, visiting scholars, lecturers, or postdoctoral fellows at various educational institutions. Experience indicates that many from this latter group will eventually get professional appointments.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

+ Courses that focus on the period before 1800.

LOWER-DIVISION

HILD 2A–B–C, United States

A year-long lower-division course that will provide students with a background in United States history from colonial times to the present, concentrating on social, economic, and political developments. (Satisfies Muir College humanities requirement and American History and Institutions requirement.)

HILD 7A–B–C, Race and Ethnicity in the United States

Lectures and discussions surveying the topics of race, slavery, demographic patterns, ethnic variety, rural and urban life in the U.S.A., with special focus on European, Asian, and Mexican immigration.

HILD 7A, Race and Ethnicity in the United States (4)

A lecture-discussion course on the comparative ethnic history of the United States. Of central concern will be
slavery, race, oppression, mass migrations, ethnicity, city life in industrial America, and power and protest in modern America.

HILD 7B. Race and Ethnicity in the United States (4)
A lecture-discussion course on the comparative ethnic history of the United States. Of central concern will be the Asian-American and white ethnic groups, race, oppression, mass migrations, ethnicity, city life in industrial America, and power and protest in modern America.

HILD 7C. Race and Ethnicity in the United States (4)
A lecture-discussion course on the comparative ethnic history of the United States. Of central concern will be the Mexican-American, race, oppression, mass migrations, ethnicity, city life in industrial America, and power and protest in modern America.

HILD 10-11-12. East Asia
A lower-division survey that compares and contrasts the development of China and Japan from ancient times to the present. Themes include the nature of traditional East Asian society and culture; East Asian responses to political and economic challenges posed by an industrialized West, and war, revolution and modernization in the twentieth century.

HILD 10. East Asia: The Great Tradition (4)
The evolution of East Asian civilization from the first writing through classical Heian Japan and late imperial Song China. Primary and secondary readings on basic ideas, institutions, and practices of the Confucian, Daoist, and Buddhist paths and of the state and family.

HILD 11. East Asia and the West, 1279–1911 (4)
From the Mongol conquests to China's last dynasty and Japan's annexation of Korea, this course examines political, institutional, and cultural ruptures and continuities as the East Asian countries responded to the challenges of Western imperialism with defense, reform, conservative reaction and creative imitation.

HILD 12. Twentieth-Century East Asia (4)
Examines the emergence of a regionally dominant Japan before and after World War II; the process of revolution and state-building in China during the Nationalist and Communist eras; and Korea's encounter with colonialism, nationalism, war, revolution and industrialization.

HILD 14. Film and History in Latin America (4)
Students watch films on Latin America and compare them to historical research on similar episodes or issues. Films will vary each year but will focus on the social and psychological consequences of colonialism, forced labor, religious beliefs, and "Modernization."

UPPER-DIVISION

Please note: The following upper-division courses are offered on a regular basis, although not every class is available every year. Check with the department to see what is available each quarter.

AFRICA

Lecture Courses

HIAF 111. Modern Africa Since 1880 (4)
A survey of African history dealing with the European scramble for the broad outlines of historical developments in the sub-region through the twentieth century, including such themes as religious, political, and social changes. Prerequisite: upper-division standing.

HIAF 112. West Africa Since 1880 (4)
West Africa from the nineteenth century onwards and examines the broad outlines of historical developments in the sub-region through the twentieth century, including themes as social, political, and economic. Prerequisite: upper-division standing.

HIAF 113. Small Wars and the Global Order: Africa and Asia (4)
Examines the traumas, interrelation, and global repercussions of national conflicts ('small wars') in the postcolonial world. Focus on Africa and Asia from the Cold War to the present with particular attention to the intersection of foreign interests, insurgency, and geopolitics. Prerequisite: upper-division standing or instructor consent.

HIAF 120. History of South Africa (4)
The origins and the interaction between the peoples of South Africa. Special attention will be devoted to industrial development, urbanization, African and Africaner nationalism, and the causes and development of apartheid and its consequences. Prerequisite: upper-division standing.

HIAF 122. Traditional African Religions (4)
A study of the meaning, structure, and sources of African traditional religion. The course examines the attitudes of mind and belief and practices which have evolved in many societies in Africa.

HIAF 123. West Africa from Earliest Times to 1800 (4)
Plant and animal domestication, iron-working and the distribution of ethnic/language groups, urbanization, regional and long-distance commerce, and the rise of medieval kingdoms. Prerequisite: upper-division standing. +

HIAF 124. Islam in Contemporary African Societies (4)
The spread of Islam in Africa. The rise of Islamic orthodoxy during the eighteenth and nineteenth centuries, and the social and political effects in the contemporary period geared towards the establishment of Islamic theocracies. Prerequisite: upper-division standing.

HIAF 130. African Society and the Slave Trade (4)
Topics include trans-Saharan trade, slavery with African societies, Atlantic slave trade, East African slave trade, problems of numbers exported and profitability, impact of slave trade on African society, and the abolition of the slave trade. Prerequisite: upper-division standing.

Colloquia

The following courses are available to both undergraduate and graduate students. Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.

HIAF 161/261. Special Topics in African History (4)
This colloquium is intended for students with sufficient background in African history. Topics, which vary from year to year, will include traditional political, economic, and religious systems, and theory and practice of indirect rule, decolonization, African socialism, and pan-Africanism. Department stamp required.

HIAF 162/262. The African Diaspora in the Atlantic World (4)
Expose students to the competing paradigms adopted by scholars in the search for an appropriate analytical framework for understanding the African diaspora in the Atlantic world, as well as examine the African impact on Atlantic communities. Graduate students are required to submit an additional paper. Prerequisite: upper-division or graduate standing. Department stamp required.

HIAF 199. Independent Study in African History (4)
Directed readings for undergraduates. Prerequisite: consent of instructor and academic advisor required.

EAST ASIA

Lecture Courses

HIEA 111. Japan: Twelfth to Mid-Nineteenth Centuries (4)
Covers important political issues—such as the medieval decentralization of state power, unification in the sixteenth and seventeenth centuries, the Tokugawa system of rule, and conflicts between rulers and ruled—while examining long-term changes in economy, society, and culture.
HIEA 125. Women and Gender in East Asia (4)
The impact of modern transformations on female roles and gender relations in China, Japan, and Korea, focusing on the late imperial/early modern periods through the twentieth-century. Prerequisite: upper-division standing or instructor consent.

HIEA 126. The Silk Road in Chinese and Japanese History (4)
This course studies the peoples, cultures, religions, economics, arts, and technologies of the trade routes known collectively as the Silk Road from c. 200 BCE to 1000 CE. We will use an interdisciplinary approach. Primary sources will include written texts and visual materials. We will examine these trade routes as an early example of globalization. Prerequisite: upper-division standing or consent of instructor. +

HIEA 128. History of Material Culture in China (4)
Introduction to material culture in China from a historical perspective. Consider Chinese primary sources (including both historical texts and objects) from the point of view of the new interdisciplinary field of material culture studies. Prerequisite: upper-division standing. +

HIEA 129. Faces of the Chinese Past (4)
Through the biographies and autobiographies of prominent and ordinary men and women from antiquity to today, this course explores the evolution of the individual's social structures, class and gender in personal experience, and the production of primary and secondary sources. Prerequisite: upper-division standing or consent of instructor. +

HIEA 131. China in War and Revolution, 1911–1949 (4)
An exploration of the formative period of the twentieth-century Chinese Revolution: the New Culture Movement, modern urban culture, the nature of Nationalist (Guomindang) rule, war with Japan, revolutionary nationalism, and the Chinese Communist rise to power. Prerequisite: upper-division standing or instructor consent.

HIEA 132. History of the People’s Republic of China (4)
This course analyzes the history of the PRC from 1949 to the present. Special emphasis is placed on the problem of postrevolutionary institutionalization, the role of ideology, the tension between city and countryside, Maoism, the Great Leap Forward, the Cultural Revolution. Prerequisite: upper-division standing or consent of instructor. +

HIEA 133. Twentieth-Century China: Cultural History (4)
This course looks at how the historical problems of twentieth-century China are treated in the popular and elite cultures of the Nationalist and Communist eras. Special emphasis is placed on film and fiction. Prerequisite: upper-division standing or consent of instructor. +

HIEA 134. History of Thought and Religion in China: Confucianism (4)
Course will take up one of the main traditions of Chinese thought or religion, Confucianism, and trace it from its origins to the present. The course will explain the system of thought and trace it as it changes through history and within human lives and institutions. Prerequisite: upper-division standing or instructor consent. +

HIEA 135. History of Thought and Religion in China: Buddhism (4)
Course will take up one of the main traditions of Chinese thought or religion, Buddhism, and trace it from its origins to the present. The course will explain the system of thought and trace it as it changes through history and within human lives and institutions. Prerequisite: upper-division standing or instructor consent. +

HIEA 136. History of Thought and Religion in China: Daoism (4)
Course will take up one of the main traditions of Chinese thought or religion, Daoism, and trace it from its origins to the present. The course will explain the system of thought and trace it as it changes through history and within human lives and institutions. Prerequisite: upper-division standing or instructor consent. +

HIEA 137. Women and the Family in Chinese History (4)
The course explores the institutions of family and marriage, and women's roles and experiences within the family and beyond, from classical times to the early twentieth century. Prerequisite: upper-division standing or consent of instructor. +

HIEA 138. Women and the Chinese Revolution (4)
Examines women's roles and experiences in the twentieth-century Chinese revolution, the ways in which women participated in the process of historical change, the question of to what extent the revolution "liberated" women from "Confucian tradition." Prerequisite: upper-division standing or consent of instructor.

HIEA 150. Modern Korea, 1800–1945 (4)
This course examines Korea's entrance into the modern world. It utilizes both textual and audio-visual materials to explore key geopolitical shifts and global phenomena, such as imperialism, nationalism, capitalism, and socialism. Prerequisite: upper-division standing or consent of instructor. +

HIEA 151. The Two Koreas, 1945–Present (4)
This course traces the peninsula's division into two rival regimes. It utilizes both textual and audio-visual materials to reveal the varied experiences of North and South Korea, with authoritarianism, industrialization, and globalization. Prerequisite: upper-division standing or consent of instructor. +

Colloquia
The following courses are available to both undergraduate and graduate students. Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Prerequisites: upper-division or graduate standing, department stamp.+

HIEA 160/260. Seminar in Modern Japanese History (4)
This colloquium examines controversial domestic and international issues in Japanese history from 1850 to recent times. Topics will vary from year to year. Prerequisite: department stamp, consent of instructor.

HIEA 162/262. History of Women in China (4)
This course concerns women in Chinese history in Imperial times. This course will focus on women's changing roles in the family, society, and culture. Topics will vary from year to year. Requirements will vary for undergraduate, M.A., and Ph.D. students. Prerequisite: upper-division standing.

HIEA 163/263. Cinema and Society in Twentieth-Century China (4)
This colloquium will explore the relationship between cinema and society in twentieth-century China. The emphasis will be on the social, political, and cultural impact of filmmaking. The specific period under examination (1930s, 1940s, post-1949) may vary each quarter. Graduate students will be expected to submit an additional paper. Prerequisite: upper-division or graduate standing and department stamp.

HIEA 164/264. Seminar in Late Imperial Chinese History (4)
Pairs primary sources with scholarship built on them to illuminate later imperial state, society, and individual lives, and to show how historians generate and answer questions. Topics vary; may be repeated for credit. Graduate students will be expected to submit an additional paper or project. Prerequisite: upper-division or graduate standing and department stamp. +

HIEA 165/265. Topics in Medieval Chinese History (4)
Topics will vary in the history of medieval China. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students will submit a more substantial piece of work with in-depth analysis and with an increased number of sources cited. A typical undergraduate paper would be ten pages, whereas a typical graduate paper would require engagement with primary sources, more extensive reading of secondary material, and be about twenty pages. Prerequisite: upper-division or graduate standing and department stamp. +

HIEA 166/266. Creating Ming Histories (4)
The Ming (1368–1644) is often considered expanding Europe's opposite: absolutist, closed, and stagnant. Reading new scholarship in conjunction with its primary sources, we'll explore the period's dynamic politics and competitive society, and the production of historical knowledge. Graduate students will be required to submit an additional paper. Prerequisite: upper-division or graduate standing and department stamp.

HIEA 167/267. Special Topics in Modern Chinese History (4)
This seminar examines various domestic and international issues in Chinese history from 1800 to recent times. When topics vary, may be repeated for credit. Graduate students will be required to submit a more substantial piece of work or an additional paper. Prerequisite: upper-division standing or consent of instructor.

HIEA 168/268. Topics in Classical and Medieval Chinese History (4)
Chinese society, thought, religion, culture, economy and politics from the Shang through the Song dynasties, through primary and secondary sources. Topics vary; may be repeated for credit. Requirements differ for undergraduate, M.A. and Ph.D. students. Graduate students will be required to submit a more substantial piece of work or an additional paper. Prerequisite: upper-division standing or consent of instructor.

HIEA 171/271. Society and Culture in Premodern China (4)
Explores premodern Chinese society and culture through the reading and discussion of classics and masterpieces in history. Examines how values and ideas were represented in the texts and how they differed, developed, or shifted over time. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students are required to submit an additional paper. Prerequisite: upper-division or graduate standing, department stamp. +

HIEA 180. Topics in Modern Korean History (4)
This colloquium will examine selected topics in modern Korean history through both primary sources (in translation) and secondary sources. Topics will vary year to year. Prerequisites: upper-division standing and departmental stamp.

HIEA 199. Independent Study in East Asian History (4)
Directed reading for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor required.

EUROPE
See History of Science for more European courses (HISC 101ABC, HISC 106).

Lecture Courses
HIEU 101. Greece in the Classical Age (4)
The social, political, and cultural history of the ancient Greek world from the Persian Wars to the death of Alexander the Great (480–323 B.C.). +

HIEU 101A. Ancient Greek Civilization (4)
The social political, and cultural history of the ancient Greek world from the earliest settlements to the empire of Alexander the Great (c. 300–323 B.C.). Prerequisite: upper-division standing or consent of instructor.
HIEU 102. The Roman Republic (4)
The political, economic, and intellectual history of the Roman world from the foundation of Rome to the time of Julius Caesar. +

HIEU 103. The Roman Empire (4)
The political, economic, and intellectual history of the Roman world from the time of Julius Caesar to the death of Justinian (A.D. 565). +

HIEU 104. Byzantine Empire (4)
A survey of the political, economic, and cultural developments of the Byzantine state from the reign of Constantine to the fall of Constantinople. This course will emphasize the importance of the Byzantine state within a larger European focus, its relationship to the emerging Arab states, its political and cultural contributions to Europe and the late medieval period. +

HIEU 105. The Early Christian Church (4)
A study of the origins and development of early Christian thought, literature, and institution from the New Testament period to the Council of Chalcedon. Prerequisite: upper-division standing or consent of instructor. +

HIEU 110. The Rise of Europe (4)
The development of European society and culture from the decline of the Roman Empire to 1050. Prerequisite: Humanities.

HIEU 111. Europe in the Middle Ages (4)
The development of European society and culture from 1050 to 1400. Prerequisite: Humanities sequence or its equivalent. +

HIEU 112. Saints and Sinners in the Middle Ages (4)
This class examines medieval history through the lens of hagiography and biography. Such texts provide intimate views of the culture, including: family and social structures; attitudes towards the supernatural; the body, gender, and aging; peace and violence; hierarchy and dissent. Prerequisite: upper-division standing or consent of instructor. +

HIEU 113. Rule, Conflict, and Dissent in the Middle Ages (4)
This course explores the question of religious and political dissent in Europe from the twelfth through the fifteenth centuries. We will explore the tensions between ideal models of religious and cultural unity, and the realities of community conflict, heretical controversies, and popular uprisings. +

HIEU 113A. Conflict and Settlement in Medieval Europe (4)
The course studies conflict resolution in Europe during the ninth to thirteenth centuries when governments were too weak to enforce norms of peace and order. We will read medieval literature and histories and anthropological accounts of conflict resolution in stateless societies. Prerequisite: upper-division standing or instructor consent. +

HIEU 115. The Pursuit of the Millennium (4)
The year 2000 provokes questions about the transformation of time, culture, and society. Taking the year 1000 as a touchstone, this class examines the history of apocalyptic expectations in the Middle Ages through a close scrutiny of both texts and art. Prerequisite: upper-division standing or consent of instructor. +

HIEU 116. The Greek Diaspora (4)
This course examines the history of the Greek Diaspora in Canada, South America, Australia, and Africa from 1700 to the present. Special attention is paid to the Greek migration to North America during the twentieth century. Prerequisite: upper-division standing or consent of instructor.

HIEU 117A. Greece and the Balkans in the Age of Nationalism (4)
This course examines the history of Greece and the Balkans (1830–1912) and the political and economic development in the eighteenth century, nationalism, independence wars, state-nation formation, interstate relations, the Eastern Question, rural society, urbanization, emigration, and the Balkan Wars. Prerequisite: upper-division standing or consent of instructor.

HIEU 117B. Greece and the Balkans during the Twentieth Century (4)
This course examines the history of Greece and the Balkans (1914–2001). Topics covered: World War I, population exchange, authoritarianism, modernization, World War II, resistance, civil war, Greek-Turkish relations, Cyprus, collapse of Communism, 1990s conflicts, and EU expansion. Prerequisite: upper-division standing or consent of instructor.

HIEU 118. Americanization in Europe (4)
Examines problems surrounding the transfer of American culture, values, and styles to Europe in the twentieth and twenty-first centuries. Topics may include: consumer society, popular culture, commercial and business practices, “McDonaldization,” political and military influence, democratization, and resistance to Americanization. Students may not receive credit for both HIEU 117A and HIEU 118. Prerequisite: upper-division standing or consent of instructor.

HIEU 119. Modern Italy: From Unification to the Present (4)
History of Italy from the 1860s to the present with special focus on the changing relationship between state and society. Topics include the “Southern Problem,” the Catholic Church, the fascist dictatorship, the Cold War, terrorism, contemporary politics and culture. Prerequisite: upper-division standing or consent of instructor.

HIEU 120. The Renaissance in Italy (4)
The social, political, and cultural transformation of late-medieval Italy from the heyday of mercantile expansion before the plague to the dissolution of the Italian state system with the French invasions of 1494. Special focus upon family, associational life and factionalism in the city, the development of the techniques of capitalist accumulation, and the spread of humanism. Prerequisite: upper-division standing. +

HIEU 122. Politics Italian Renaissance Style (4)
Modern political and historical thought find their roots in the realistic examination of fifteenth- and sixteenth-century Italian political experience. Contemporary Renaissance humanists and thinkers—Machiavelli, Guicciardini, Castiglione, Botero, and Campanella—tested classical, Christian, and legal models against practical necessities. +

HIEU 125. Reformation Europe (4)
The intellectual and social history of the Reformation and Counter-Reformation from the French invasions to the Edict of Nantes. Emphasis is upon reform from below and above, the transformation of grass-roots spirituality into institutional control. Prerequisite: upper-division standing or consent of instructor. +

HIEU 126. Age of Expansion: Europe and the World, 1400–1600 (4)
Course will begin with a survey of the major empires of the fifteenth century, concentrating on the links between them. It will then examine the entrance of Europeans on the global scene in the sixteenth century. This part of the course will examine European/ non-European encounters, focusing on perceptions, economic interaction, and institutional adaptation and will emphasize the Hispanic American, Ottoman, and Indian Ocean cases. +

HIEU 127. Sport in the Modern World (4)
This course looks at the phenomenon of sport in all of European history from Ferdinand and Isabella to 1700. Argument will focus on colonialism in Africa. Prerequisite: upper-division standing or consent of instructor.

HIEU 128. Europe Since 1945 (4)
An analysis of European history since the end of the Second World War. Focus is on political, social, economic, and cultural developments within European societies as well as on Europe’s relationship with the wider world (the Cold War, decolonization).

HIEU 129. Paris, Past and Present (4)
This course surveys the historical and cultural significance of Paris from about 1500 to the present. The focus is on interactions between political, architectural, and urban evolutions, and the changing populations of Paris in times of war, revolutions, and peace. +

HIEU 130. Europe in the Eighteenth Century (4)
A lecture-discussion course focusing on Europe from 1688–1789. Emphasis is on the social, cultural, and intellectual history of France, Germany, and England. Topics considered will include family life, urban and rural production and unrest, the poor, absolutism, and the Enlightenment from Voltaire to Rousseau. Prerequisite: upper-division standing. +

HIEU 131. The French Revolution: 1789–1814 (4)
This course examines the Revolution in France and its impact in Europe and the Caribbean. Special emphasis will be given to the origins of the Revolution, the development of political and popular radicalism and symbolism from 1789 to 1794, the role of political participants (e.g., women, sans-culottes, Robespierre), and the legacy of revolutionary wars and the Napoleonic system on Europe. Prerequisite: upper-division standing. +

HIEU 132. Germany from Luther to Bismarck (4)
How Germany, from being a maze of tiny states rife with religious conflict, became a nation. Did the nations-building process lead to Nazism? Prerequisite: upper-division standing or consent of instructor. +

HIEU 133. Gender in Antiquity and the Early Medieval Mediterranean (4)
This course examines gender roles and relations at the end of the classical period and its development into the Middle Ages in both Eastern and Western Mediterranean. Course will examine the ways in which our medieval predecessors assigned gender traits and relationships to members of society. It will approach the topic in part through an examination of the language used about gender and in part through use of modern gender theories. Prerequisite: upper-division standing. +

HIEU 134. The Formation of the Russian Empire, 800–1855 (4)
This course discusses society and culture in Russia under the tsars at the end of the period of serfdom. Special emphasis will be given to the period from 1725 to 1790 and the impact that the Russian Empire had on the eighteenth century. Prerequisite: upper-division standing or consent of instructor.

HIEU 136. Social History of Crime and Criminal Justice in Europe, 1700–1914 (4)
This course investigates the social history of crime, criminal justice, and policing in Europe between approximately 1700 and 1900. The topic enables students to investigate a wide variety of issues, including state formation, gender relations, and class relations. Prerequisite: upper-division standing or consent of instructor.

HIEU 136A. European Society and Social Thought, 1688–1870 (4)
A lecture and discussion course on European political and cultural development and social theory from 1688–1870. Important writings will be considered both as responses to and as provocations for political and cultural change. +

HIEU 136B. European Society and Social Thought, 1870–1989 (4)
A lecture and discussion course on European political and cultural development and theory from 1870–1989. Important writings will be considered both as responses to and as provocations for political and cultural change.

HIEU 137. History of Colonialism: From New Imperialism to Decolonization (4)
This course surveys the age of colonialism in the nineteenth and twentieth century. The course will focus on the debates on colonialism in the metropolis as well as on the conflicts inside the colonies. Considerable emphasis will be placed on colonialism in Africa. Prerequisite: upper-division standing or consent of instructor.

HIEU 138. Imperial Spain, 1476–1808 (4)
The rise and decline of Spain’s European empire from Ferdinand and Isabella to 1700. The revival of Spain and her return to European affairs in the eighteenth century.
HIEU 139. The Origins of Constitutions (4)
The course will cover the development of constitutional ideas and institutions from the twelfth century to the U.S. Constitution. Students will read legal texts and commentatorsthat established the foundations of the ideas of the rule of law, limited government, and independent judiciary. Students will study the formation of institutions such as parliament, the court system, and common law. The course will start and finish with an analysis of the U.S. Constitution. Prerequisite: upper-division standing or consent of instructor. +

HIEU 141. European Diplomatic History, 1870–1945 (4)

HIEU 142. European Intellectual History, 1780–1870 (4)
European thought from the late Enlightenment and the French Revolution to Marx and Baudelaire, emphasizing the origins of romanticism, idealism, and positivism in England, Germany, and France. Prerequisite: upper-division standing or consent of instructor.

HIEU 143. European Intellectual History, 1870–1945 (4)
A lecture-discussion course on the crisis of bourgeois culture, the redefinition of Marxist ideology, and the transformation of modern social theory. Readings will include Nietzsche, Sorel, Weber, Freud, and Musil. (This course satisfies the minor in the Humanities Program.) Prerequisite: upper-division standing.

HIEU 145. The Holocaust as Public History (4)
We will study historical accounts, memoirs, diaries, and oral histories to master the Holocaust epoch. We will contrast scholarly narratives to personal experience as different ways to learn about the past. Students will design projects for public education. Prerequisite: upper-division standing or consent of instructor.

HIEU 146. Fascism, Communism, and the Crisis of Liberal Democracy: Europe 1919–1945 (4)
A consideration of the political, social, and cultural crisis that faced Western liberal democracies in the interwar period, with emphasis on the mass movements that opposed bourgeois liberalism from both the left and the right.

HIEU 147. Women and Gender in Early Modern Europe (4)
This course examines the history of European women and gender issues from about 1500 to 1700. Three major themes are covered: intellectual and cultural trends; the nature of the human body and work roles; and, spiritual beliefs, experiences, and practices. Prerequisite: upper-division standing or consent of instructor. +

HIEU 147A. Women in the Middle Ages (4)
This course examines the image and the reality of women in the period from 200–1500. We will focus upon the ambivalent status of women in this period as "internal others" to medieval—simultaneously necessary to the functioning of society, yet viewed as marginal to its interests or even as outsiders. Prerequisite: upper-division standing or instructor consent. +

HIEU 148. Women and Gender from the Enlightenment to the Victorian Eras (4)
This course examines European women and gender issues from about 1700 to 1871. Major themes covered are: intellectual and cultural trends (e.g., education and politics); attitudes toward female and male bodies and work roles; and, spiritual beliefs and practices. Prerequisite: upper-division standing or consent of instructor. +

HIEU 149. History of Women in Europe: 1870 to the Present (4)
This course explores the history of women across classes from 1870 to the present, with an emphasis on the variety of women’s experience and the efforts towards and obstacles to empowerment. Topics include: women and the state, science and gender, feminist movements and the evolution of women’s work. Prerequisite: upper-division standing.

HIEU 150. Modern British History (4)
Emphasis on changes in social structure and corresponding shifts in political power. The expansion and the end of empire. Two World Wars and the erosion of economic leadership. Prerequisite: upper-division standing or consent of instructor.

HIEU 151. Spain since 1808 (4)
Social, political, cultural history of Spain since Napoleon. Features second Spanish Republic, the Civil War, Franco era, and transition to democracy. Prerequisite: upper-division standing.

HIEU 152. The Worst of Times: Everyday Life in Authoritarian and Dictatorial Societies (4)
Examines how ordinary citizens coped with the problems of life under Europe’s authoritarian regimes. Topics may include Nazism, fascism, and quasi-fascist societies (e.g., Franco’s Spain, Salazar’s Portugal), and communist practice from Leninism to Stalinism to the milder Titoism of ‘Yugoslavia.’ Prerequisites: upper-division standing or consent of instructor.

HIEU 154. Modern German History: From Bismarck to Hitler (4)
An analysis of the volatile course of German history from unification to the collapse of the Nazi dictatorship. Focus is on domestic developments inside Germany as well as on their impact on European and global politics in the twentieth century.

HIEU 155. Modern Austria (4)
The political, social, and intellectual history of Austria from Maria Theresia to the First Republic with special emphasis on the crisis of liberal culture in the late nineteenth century. Prerequisite: upper-division standing or consent of instructor.

This course explores war, revolution, development, and terror in the Soviet Union from 1905–1991. Prerequisite: upper-division standing or consent of instructor.

HIEU 157. Religion and the Law in Modern European History (4)
Comparative examination of the relationship between religious and legal norms in Europe from the Reformation to the present. Topics may include government sponsorship; religious expression; conflicts with secular law; religious rights as human rights; and religious and cultural politics. Prerequisite: upper-division standing or consent of instructor.

HIEU 158. Why Hitler? How Auschwitz? (4)
Why did Germany in 1919 produce an Adolf Hitler; how did the Nazis take power in 1933; and why did the Third Reich last until 1945? Why did the war against the Jews become a reality? Which were the vicissitudes of Jewish life in Palestine? Prerequisite: upper-division standing or consent of instructor.

HIEU 159. Three Centuries of Zionism, 1648–1948 (4)
For centuries the land of Israel was present in Jewish life in Palestine? Why did the war against the Jews become a reality? Which were the vicissitudes of Jewish life in Palestine? Prerequisite: upper-division standing or consent of instructor.

HIEU 160/260. Topics in the History of Greece (4)
A seminar focusing on selected topics in Greek history from the Bronze Age to the Roman Conquest. Prerequisite: upper-division standing or consent of instructor. +
and citizenship, conflicts over Muslim immigration; and implications for European integration. Students may not receive credit for both HIEU 181/281 and ERC 101. Graduate students will be expected to submit an additional paper. Prerequisites: upper-division or graduate standing and department stamp.

HIEU 182/282. The Muslim Experience in Contemporary European Society (4)
Comparative study of Islam in Europe since 1945. Topics include: indigenous populations; immigration; Islamic law; church-state questions; EU expansion/integration; gender issues; terrorism; Islamophobia; “Europeanizing” Islam; the historical tradition of European-Muslim encounter and its present political/cultural issues. Graduate students will be required to do an additional paper. Prerequisites: upper-division or graduate standing and department stamp.

HIEU 183/283. Social History and Anthropology of the Mediterranean (4)
This seminar examines the social history and anthropology of the Mediterranean. Topics covered are: the Mediterranean debate, rural economy, peasant society, gender relations, honor and shame, rural violence, class formation, and emigration. The seminar introduces the methodology of historical anthropology. Graduate students will be expected to complete an additional paper or project. Prerequisite: upper-division or graduate standing and department stamp.

HIEU 184/284. Yugoslavia: Before, During, and After (4)
Examines the three ethno-religious Yugoslav states that existed from 1918 until the 1990s. Topics include inter-ethnic relations, foreign affairs, Tito’s revisionist communism, the consumerist Yugoslav Dream, culture and society, the violent break-up of the 1990s, and the post-Yugoslav order. Graduate students will be required to submit an additional paper. Prerequisite: upper-division or graduate standing and department stamp.

HIEU 198. Directed Group Study (1, 2, 3, 4)
Directed group study on European history under the supervision of a member of the faculty on a topic not generally included in the regular curriculum. Students must make arrangements with individual faculty members. Prerequisites: upper-division standing, completion of at least ninety units of UCSD undergraduate study, a minimum UCSD G.P.A. of 2.95, a completed and approved Special Studies form, and department stamp.

HIEU 199. Independent Study in European History (4)
Directed readings for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor.

LATIN AMERICA

Lecture Courses

HILA 100. Latin America—Colonial Transformations (4)
Lecture-discussion survey of Latin America from the pre-Columbian era to 1825. It addresses such issues as the nature of indigenous cultures, the implanting of colonial institutions, native resistance and adaptations, late colonial growth and the onset of independence. +

Lecture-discussion survey of Latin America in the nineteenth century. It addresses such issues as the collapse of colonial practices in the society and economy as well as the creation of national governments, political instability, disparities among regions within particular countries, and the economies oriented toward the export of goods to Europe and the United States.

HILA 102. Latin America in the Twentieth Century (4)
This course surveys the history of the region by focusing on two interrelated phenomena: the absence of democracy in most nations and the region’s economic dependence on more advanced countries, especially the United States. Among the topics discussed will be the Mexican Revolution, the military in politics, labor movements, the wars in Central America, liberation theology, and the current debt crisis. Prerequisite: upper-division standing or consent of instructor.

HILA 103. Revolution in Modern Latin America (4)
A political, economic, and social examination of the causes and consequences of the Mexican, Cuban, and Nicaraguan revolutions. Also examine guerrilla movements that failed to gain power in their respective countries, namely the Shining Path in Peru, FARC in Colombia, and the Zapatistas in Mexico. Prerequisite: upper-division standing.

HILA 104. Modern U.S.–Latin American Relations (4)
A survey of inter-American relations during the twentieth century. Emphasis will be placed on U.S. territorial and economic expansion, U.S. national-security and ideological morality, and Latin American efforts to influence U.S. policy in order to strengthen, in most cases, elite domination of society. Prerequisite: upper-division standing.

HILA 112. Economic and Social History of the Andean Region (4)
Study of the economic and social problems of the Andean region from the colonial period until the crisis of 1912, with special attention to theoretical models to explain the processes of change. Prerequisite: upper-division standing.

HILA 113. Lord and Peasant in Latin America (4)
Examination of the historical roots of population problems, social conflict, and revolution in Latin America, with emphasis on man-land relationships. Special emphasis on modern reform efforts and on Mexico, Cuba, Brazil, and Argentina. Lecture, discussion, and films. Prerequisite: upper-division or consent of instructor. +

HILA 114. Dictatorships in Latin America (4)
How did dictatorships come about? Who were the authoritarian leaders? How did they organize their regimes and what were the consequences? Recent publications on dictators in Latin America allow for comparisons across countries and throughout time to answer those questions. Prerequisite: upper-division standing.

HILA 115. The Latin American City, a History (4)
A survey of the development of urban forms of Latin America and of the role that cities played in the region as administrative and economic centers. After a brief survey of pre-Columbian centers, the lectures will trace the development of cities as outposts of the Iberian empires and as “city-states” that formed the nucleii of new nations after 1810. The course concentrates primarily on the cities of South America, but some references will be made to Mexico City. It ends with a discussion of modern silt and Third World urbanization. Lima, Santiago de Chile, Buenos Aires, Rio de Janeiro, and Sao Paulo are its principal examples. Prerequisite: upper-division standing.

From coffee boom through rebellion, militarization, revolution, state terrorism, and migration, the U.S. has loomed large in the history of El Salvador. This course explores this relationship from 1920 to the present through the prisms of revolution and human rights. Prerequisite: upper-division standing.

HILA 120. History of Argentina (4)
A survey from the pre-Columbian to the present, with an emphasis on the nineteenth and twentieth centuries. Among the topics covered: the expansion of the frontier, the creation of a cosmopolitan, predominately European culture, and the failure of industrialization to provide an economic basis for democracy. Prerequisite: upper-division standing.

HILA 121. History of Brazil (4)
From colonial times to the present, with an emphasis on the nineteenth and twentieth centuries. Among the topics covered: the evolution of a slave-based economy, the key differences among regions, the military in politics; and the creation of the nation and industrialized country in Latin America. Prerequisite: upper-division standing.

HILA 121A. History of Brazil, 1808 to 1904 (4)
This course will discuss transformations in Brazilian society from 1808 to 1904, covering the Independence, the Empire, end of slavery, beginning of a Republican system, modernization, social protests, popular culture, nation building, and changes in the politics of social dominance. Prerequisite: upper-division standing or consent of instructor.

HILA 122. Cuba: From Colony to Socialist Republic (4)
A lecture-discussion course on the historical roots of revolutionary Cuba, with special emphasis on the impact of the United States on the island’s development and society. Prerequisite: upper-division standing.

HILA 124A. History of Women and Gender in Latin America (4)
A broad historical overview of Hispanic-American women’s history focusing on issues of gender, sexuality, and the family as they relate to women, as well as the historiographical issues in Latin American and Chicana women’s history. Prerequisite: upper-division standing or consent of instructor.

HILA 126. From Columbus to Castro: Caribbean Culture and Society (4)
Exploration of the relationships between socioeconomic and cultural development in Caribbean history; slavery and empire; nationalism and migration; voodoo and Rastafarianism, and the literary arts. Prerequisite: upper-division standing.

HILA 127. History, Culture, and Power (4)
What is the historical evidence on the relationship between culture and power: from the indigenous “national” revolution (eighteenth century) to “indigenismo”; from indigenous upheavals in Ecuador, Bolivia, Mexico and Peru, to the intellectual “archaic utopia” (twentieth century). Prerequisite: upper-division standing or instructor consent.

HILA 131. A History of Mexico (4)
A century of Mexican history, 1821–1924: the quest for political unity and economic solvency, the forging of a nationality, the Gilded Age and aftermath, the ambivalent Revolution of Zapata and his enemies. Prerequisite: upper-division standing or consent of instructor.

HILA 132. A History of Contemporary Mexico (4)
The paradox of a conservative state as heir to a legendary social upheaval, with special emphasis on the mural art renaissance, the school crusade, the economic dilemma, and the failure to eradicate poverty and inequality. Lectures and discussion. Prerequisite: upper-division standing or consent of instructor.

Colloquia

The following courses are available to both undergraduate and graduate students. Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.

HILA 161/261. History of Women in Latin America (4)
A broad historical overview of Hispanic-American women’s history focusing on issues of gender, sexuality, and the family as they relate to women, as well as the historiographical issues in Latin American and Chicana women’s history. Prerequisites: upper-division standing and consent of instructor.

HILA 162/262. Special Topics in Latin American History (4)
Topics will vary from year to year or quarter to quarter. May be repeated for an infinite number of times due to the nature of the content of the course always changing. Prerequisite: upper-division standing or consent of instructor.

HILA 163/263. The History of Chile 1880–Present (4)
The course surveys Chile’s basic developments beginning with the era of nitrate exports. Students will have the opportunity to address a specific issue of his/her own choosing and develop the topic for class presentation and a final paper. Graduate students are expected to submit a more substantial piece of work. Prerequisite: upper-division standing or consent of instructor.
HILA 167/267. Scholarship on Latin American History in the Colonial Period (4)
Introduction to the historiography on Latin America for the colonial period from Spanish and Portuguese conquests to the Wars of Independence. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students are required to submit an additional research paper. Prerequisites: upper-division standing or consent of instructor and department stamp.

HILA 168/268. Scholarship on Latin American History in the Nineteenth Century (4)
Introduction to the historiography on Latin America for the nineteenth century: world economy, nation-state building, agrarian processes, incipient industrialization, political and cultural thought, and social structure. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students are required to submit an additional research paper. Prerequisites: upper-division standing or consent of instructor; reading knowledge of Spanish; department stamp.

HILA 199. Independent Study in Latin American History (4)
Directed readings for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor and department stamp.

NEAR EAST
Lecture Courses
HINE 101A. History of Ancient Mesopotamia (4)
Course will trace the political and cultural history of Mesopotamia (modern Iraq), beginning with rise of cities in the fourth millennium B.C.E., continuing through the Sumerian, Akkadian, Assyrian, and Babylonian periods, and ending with the fall of Babylon (539 B.C.E.). Prerequisite: upper-division or instructor consent.

HINE 102. The Jews in Their Homeland in Antiquity (4)
The Jews lived from the sixth century BCE to the seventh century CE. Statehood, nationalism, and autonomy within the framework of the Persian empire, the Hellenistic kingdoms, and the Roman-Byzantine empire. Cultural and religious developments will be explored. Prerequisite: upper-division standing or instructor consent.

HINE 103. The Jewish Diaspora in Antiquity (4)
The Jews outside their homeland and in pre-Islamic times, concentrating on the Greco-Roman West and the Parthian-Sasanian East. Topics include assimilation and survival; anti-Semitism and missionizing; patterns of organization and autonomy; cultural and religious developments. Prerequisite: upper-division standing.

HINE 108. The Middle East before Islam (4)
The peoples, politics, and cultures of Southwest Asia and Egypt from the sixth century B.C.E. to the seventh century C.E. The Achemenid Empire, the Ptolemaic and Seleucid kingdoms, the Roman Orient, the Parthian and Sasanian states. Prerequisite: upper-division standing.

HINE 109B. Learning to Read Biblical Hebrew II (4)
Continued study of the language of the Bible with emphasis on advanced grammar and vocabulary. Prerequisite: HINE 109A. Offered during the summer.

HINE 111. Anthropology and the Hebrew Bible (4)
This course approaches the Hebrew Bible (Old Testament) from the perspective of cultural anthropology. Institutions studied will include the family, rites of passage, taboos, warfare, animism, demons, sorcery, and animal sacrifice. Prerequisite: upper-division or instructor consent. Not offered this academic year.

HINE 112AL. Great Stories from the Hebrew Bible/Religious Language (1)
Students with advanced Hebrew can study the texts in HINE 112A in the original language. Prerequisite: upper-division standing or consent of instructor.

HINE 112B. Great Poems from the Hebrew Bible (4)
A close reading of select poetic passages from the Hebrew Bible/Old Testament. Prerequisite: upper-division standing or consent of instructor.

HINE 112BL. Great Poems from the Hebrew Bible/Foreign Language (1)
Students with advanced Hebrew can study the texts in HINE 112B in the original language. Prerequisite: upper-division standing or consent of instructor.

HINE 113. Ancient Near East Mythology (4)
Course will analyze and compare major myths from Egypt, Israel, Ugarit, and Mesopotamia, employing a variety of modern approaches. Prerequisite: upper-division standing or consent of instructor.

HINE 114. History of the Islamic Middle East (4)
A survey of the Middle East from the rise of Islam to the region's economic, political, and cultural integration into the West (mid-nineteenth century). Emphasis on socio-economic and political changes in the early Arab empires and the Ottoman state.

HINE 115. Islamic Civilization (4)
An introductory survey of Islamic civilizations. History and society, law, science and philosophy, arts and letters, and architecture. A broad picture of the dynamics and achievements of Islamic societies over time. Prerequisite: upper-division standing or consent of instructor.

HINE 116. The Middle East in the Age of European Empires (1798-1914) (4)
Examines the contacts of the late Ottoman Empire and Qajar Iran with Europe from the Napoleonic invasion of Egypt to World War I, the diverse facets of the relationship with the West, and the reshaping of the institutions of the Islamic states and societies.

HINE 118. The Middle East in the Twentieth Century (4)
An introduction to the history of the Middle East since 1914. Themes such as nationalism, imperialism, the oil revolution, and religious revivalism will be treated within a broad chronological and comparative framework drawing on the experience of selected countries.

HINE 119. US Mid-East Policy Post-WWII (4)
An examination of post-WWII Middle East conflicts, including the Israeli-Arab conflicts, the Lebanese Civil War, and the Gulf War of the 1980s. The roles of the superpowers and Middle Eastern states during the period.

HINE 122. Politicization of Religion in the Middle East (4)
Islamic formulation of dissent from the nineteenth century to our day; social, cultural, and political movements influenced by religion; domestic, interregional, and international dimensions with emphasis on the Arab East, Iran, and Turkey. Prerequisite: upper-division standing.

HINE 123. The Emergence of Middle East Nationalisms (4)
A survey of nationalism in the modern Middle East with reference to current theories of identity formation in Europe and South Asia. The course will examine shifting identities in the Ottoman Empire, its Turkish and Arab successor states, and Iran. Prerequisite: upper-division standing or consent of instructor.

HINE 126. Iranian Revolution in Historical Perspective (4)
Iran's social and political history in the twentieth century with emphasis on the Constitutional movement of the late Qajar period, formation and development of the Pahlavi state, anatomy of the 1978–79 Revolution, and a survey of the Islamic Republic. Prerequisite: upper-division or instructor consent.

HINE 127. History of Modern Turkey (4)
Eastern problems on the example of Turkey and with special attention to collective identities, state-society dynamics, foreign and regional policies, and varieties of modernity. Prerequisite: upper-division standing or consent of instructor.

HINE 151B/251B. Introduction to Aramaic Dialects (4)
Study of Ancient Inscriptional Persian Imperial and Syriac Aramaic.

HINE 152A/252A. The Evolution of the Northwest Semitic Dialects (4)
Principles of historical linguistics, application to the languages of the ancient Levant. Prerequisites: knowledge of at least one Semitic language; a course in general linguistics is also desirable.

HINE 152B/252B. Introduction to Uguritic (4)
Decipherment of Uguritic tablets, history, and culture of ancient Ugur, study of Uguritic myths.

HINE 152C/252C. Advanced Uguritic (4)
Continued study of Uguritic literature, comparison with Canaanite inscriptions.

HINE 153A/253A. Introduction to Akkadian Language and Mesopotamian Culture (4)
Students study cuneiform script and elements of Babylonian-Assyrian grammar, as well as the history of Ancient Mesopotamia.

HINE 153B/253B. Continued Akkadian Language (4)
Student begins to read and analyze ancient Mesopotamian texts from a variety of genres.

HINE 153C/253C. Advanced Akkadian Language (4)
Continued study of Mesopotamia literature and history.

Colloquia
The following courses are available to both undergraduate and graduate students. Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.

HINE 161/HINE 261. Seminar in the Hebrew Bible (4)
Systematic reading and rendering of the books of the Hebrew Bible in order. Each time the class is taught, we will look at a different book. Adequate knowledge of Biblical Hebrew is required. Graduate students will have to write an extra paper or exam. Prerequisites: Judaic Studies 103, graduate standing, or consent of instructor.

HINE 162/262. Anthropology and the Hebrew Bible (4)
This course approaches the Hebrew Bible (Old Testament) from the perspective of cultural anthropology. Institutions studied will include the family, rites of passage, food taboos, warfare, animism, demons, sorcery, and animal sacrifice. Formerly HINE 111; students may receive credit for HINE 111 and HINE 162/262. Graduate students will be required to complete an extra paper. Prerequisites: upper-division or graduate standing and department stamp.
HINE 163/263. Topics in the Ancient World (4)
Topics on the ancient world will vary from year to year. Requirements will vary for undergraduate and graduate students. Graduate students will submit a more substantial piece of work with in-depth analysis and with an increased number of sources cited. A typical undergraduate paper would be ten pages, whereas a typical graduate paper would require engagement with primary sources, more extensive reading of secondary material, and be about twenty pages. Prerequisite: upper-division or graduate standing and departmental stamp.

HINE 166/266. Nationalism in the Middle East (4)
Growth of nationalism in relation to imperialism, religion, and revolution in the nineteenth- and twentieth-century Middle East. Emergence of cultural and political ethnic consciousness in the Ottoman state. Comparative study of Arab, Iranian, and Turkish nationalism as well as Zionism. Prerequisite: department stamp or consent of instructor.

HINE 170/270. Special Topics in Jewish History (4)
This course studies a period or theme in Jewish history. Topics will vary from year to year. Prerequisite: department stamp required.

HINE 181/281. Problems in the Study of Hebrew Manuscripts (4)
Detailed study of a portion of biblical text. Focus on textual-critical and source-critical problems. Prerequisite: upper-division or graduate standing.

HINE 186/286. Special Topics in Middle Eastern History (4)
Focused study of historical roots of contemporary problems in the Middle East: Islamic modernism and Islamist movements; contacts with the West; ethnic and religious minorities; role of the military; economic resources and development. Department stamp and permission of instructor.

HINE 199. Independent Study in Near Eastern History (4)
Directed readings for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor.

HISTORY OF SCIENCE

Lecture Courses

HISC 101A. Science in the Greek and Roman World (4)
A survey of the principal features of ancient science: the origins of Greek naturalism, the criticism of magic, notions of quantification. Topics may include astronomy, astrology, mechanics and physical theory, classification of living beings, and human cognition. Emphasis on primary sources, such as the presocratic natural philosophers: Plato, Aristototle, Euclid, Archimedes, Ptolemy, Pliny Galen, and Proclus. Prerequisite: upper-division standing.

HISC 101B. Medieval Science in the Latin West, ca. 500–1500 (4)

HISC 10C. Early Modern Science (4)

HISC 102. Technology in World History (4)
Technology as an agent of change. How have humans harnessed the power of nature? What factors have contributed to successes and failures? How has technology changed human life? How should we evaluate the quality of these changes? Prerequisite: upper-division standing.

HISC 103. Gender and Science in Historical Perspective (4)
History of women's struggles and strategies for access and equality in professional science. Questions related to gender bias in science—as a social institution and as an epistemological premise—will be addressed in light of the historical and biographical readings. Prerequisite: upper-division standing.

HISC 104. History of Popular Science (4)
Historical aspects of the popularization of science. The changing relation between expert science and popular understanding. The reciprocal impact of scientific discoveries and theories, and popular conceptions of the natural world. Prerequisite: upper-division standing or consent of instructor.

HISC 105. History of Environmentalism (4)
History of human effects on the natural environment, with emphasis on understanding the roles of the physical and biological sciences in providing insights into environmental processes. Prerequisite: upper-division standing or consent of instructor.

HISC 106. The Scientific Revolution (4)
A cultural history of the formation of early modern science in the sixteenth and seventeenth centuries: the social forms of scientific life; the construction and meaning of the new cosmologies from Copernicus to Newton; the sciences and politics and the politics of science; the origins of experimental practice: how Sir Isaac Newton restored law and order to the West. Prerequisite: upper-division standing.

HISC 107. The Emergence of Modern Science
The development of the modern conception of the sciences, and of the modern social and institutional structure of scientific activity, chiefly in Europe, during the eighteenth and nineteenth centuries. Prerequisite: upper-division standing.

HISC 108. Life Sciences in the Twentieth Century (4)
The history of twentieth-century life sciences, with an emphasis on the way in which model organisms such as fruit flies, guinea pigs, bacteriophage, and zebra fish shaped the quest to unlock the secrets of heredity, evolution, and development. Prerequisite: upper-division standing or consent of instructor.

HISC 109. Science in Western Civilization (4)
An introduction to scientific thought as it relates to Western culture. Among the topics considered: Aristotelian, medieval, modern, and postmodern science; the scientific revolution; the Newtonian universe; science and the Enlightenment; evolution; science and the modern state; technoscience and biotechnology. Prerequisite: upper-division standing or consent of instructor.

HISC 111. The Atomic Bomb and the Atomic Age (4)
Development of nuclear science and weapons—1930s to present—including the discovery of radioactivity and fission, the Manhattan project, the bombings of Hiroshima and Nagasaki and end of WWII, the H-bomb, and legacies of nuclear proliferation, environmental damage, and radioactive waste. Prerequisite: upper-division standing or consent of instructor.

HISC 114. The Darwinian Legacy (4)
The Origin of Species by means of Natural Selection, and its scientific, intellectual, and political legacies. Topics include social Darwinism, eugenics, Nazi racial hygiene, population control, neo-Malthusianism in the modern environmental movement. Prerequisite: upper-division standing.

HISC 115. History of Modern Medicine (4)
Explores the origin of clinical method, the hospital, internal surgery, and the medical laboratory, as well as the historical roots of debates over health-care reform, genetic determinism, and the medicalization of society. Prerequisite: upper-division standing or consent of instructor.

HISC 116. History of Bioethics (4)
The story behind the postwar rise of bioethics—medical scandals breaking in the mass media, the development of novel technologies for saving and prolonging life, the emergence of new diseases, the unprecedented scope for manipulation opened up by biology. Prerequisite: upper-division standing or consent of instructor.

HISC 117. History of the Neurosciences (4)
A survey of the history of the neurosciences from the seventeenth century to the present, exploring the political, philosophical, cultural, aesthetic and ethical aspects of research into the workings of the human brain. Prerequisite: upper-division standing or consent of instructor.

HISC 118. History of Sexology (4)
Analyses the history of sexology as a series of episodes in the science of human difference, from the European reception of the first translation of the Kama Sutra in 1883 to the search for the ‘gay gene’ in the 1990s. Prerequisite: upper-division standing or consent of instructor.

HISC 120A. Technology in America I (4)
The role of technology in America's history through the Civil War. Indigenous and colonial development, transportation infrastructures, and industrialization are explored to understand the connections among technology, society, and culture. Prerequisite: upper-division standing.

HISC 121. Listening In: Sound, Music, and Noise in America (4)
Explores the cultural meaning of sound by examining the history of the phonograph, radio, movies, Muzak, noise-abatement, and architectural acoustics. What needs did these technologies fulfill? How did they reinforce and challenge the society in which they were developed? Prerequisite: upper-division standing.

HISC 123. Technology in the Twentieth Century (4)
Major technological developments in the twentieth century, including the rise and decline of technologies, unexpected hazards and unanticipated consequences, and why some technologies fail. Prerequisite: upper-division standing.

HISC 131. Science, Technology, and Law (4)
Science and law are two of the most powerful establishments of modern Western culture. Science organizes our knowledge of the world; law directs our action in it. Will explore the historical roots of the interplay between them. Prerequisite: upper-division standing.

Colloquia

The following courses are available to both undergraduate and graduate students. Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.

HISC 160/260. Historical Approaches to the Study of Science (4)
Major recent publications in the history of science will be discussed and analyzed; the topics will range in period from the seventeenth century to the twentieth, and will deal with all major branches of natural science. Special topics. Topics will vary from year to year. Prerequisite: consent of instructor.

HISC 161/261. Seminar in Newton and Newtonianism (4)
This course focuses on the single most important figure of the scientific revolution, Isaac Newton, and on his science and philosophy which set the frame of reference for physics and general science until the twentieth century. Graduate students are required to submit an additional piece of work. Prerequisite: upper-division or graduate standing and department stamp.
HISC 163/263. History, Science, and Politics of Climate Change (4)
The complex historical development of human understanding of global climate change, including key scientific work, and the cultural dimensions of proof and persuasion. Special emphasis on urban systems and the differential political acceptance of the scientific evidence in the U.S. and the world. Graduate students are required to submit an additional paper. Prerequisite: upper-division or graduate standing. Department stamp required.

HISC 164/264. Topics in the History of the Physical Sciences (4)
Intensive study of specific problems in the physical sciences, ranging in period from the Renaissance to the twentieth century. Topics vary from year to year, and students may therefore repeat the course for credit.

HISC 165. Topics in Twentieth-Century Science and Culture (4)
This seminar explores topics at the interface of science, technology, and culture, from the late nineteenth century to the present. Topics change yearly; may be repeated for credit with instructor's permission. Prerequisite: upper-division standing or consent of instructor.

HISC 166/266. The Galileo Affair (4)
Galileo's condemnation by the Catholic Church in 1633 is a well-known but misunderstood episode. Was Galileo punished for holding dangerous scientific views? Personal arrogance? Disobedience? Religious transgressions? Readings in original sources, recent historical interpretations. Graduate students will be expected to submit a more substantial piece of work.

HISC 167/267. Gender and Science (4)
Why have women been traditionally excluded from science? How has this affected scientific knowledge? How have scientists constructed gendered representations not only of women, but also of science and nature? We will address these questions from perspectives including history, philosophy, and psychoanalytic theory. Prerequisite: upper-division standing or consent of instructor.

HISC 168/268. The Extraterrestrial Life Question (4)
The changing fortunes of the belief in the existence of life beyond the Earth (pluralism) from 1750–present as it evolved from a marginal speculation to a central scientific question with wide-ranging consequences for traditional religious belief-systems. Graduate students will be expected to submit a more substantial piece of work. Prerequisite: upper-division or graduate standing or consent of instructor.

HISC 170/270. Topics in the History of Science and Technology (4)
This seminar explores topics at the interface of science, technology, and society, ranging from the seventeenth century to the twentieth. Requirements will vary for undergraduates, M.A., and Ph.D. students. Graduate students are required to submit an additional paper. Prerequisite: upper-division standing or consent of instructor.

HISC 172/272. Building The history of the built environment in the United States, from skyscrapers to subways, canals and railroads to factories and department stores. The technological history of structures and infrastructures, and the social and cultural values that have been “built into” our material environment. Graduate students are required to submit an additional paper. Prerequisite: upper-division standing or consent of instructor.

HISC 173/273. Seminar on Darwin and Darwinisms (4)
Examines evolutionary theory before Darwin, the development of the theory of natural selection, the ongoing challenge from Lamarckism, nineteenth-century social Darwinism, the emergence of the neo-Darwinist synthesis, and the recent controversies over evolutionary psychology and creationism. Graduate students are expected to submit an additional paper. Prerequisite: upper-division standing or graduate and department stamp.

HISC 174/274. History of Localization of Brain Function (4)
From the beginnings of brain anatomy in the 1660s to the current rage for functional magnetic resonance imaging studies, this class investigates philosophical, ethical, and cultural dimensions of the quest to localize psychological phenomena in the physical brain. Graduate students are required to submit an additional paper. Prerequisite: upper-division or graduate standing and department stamp.

HISC 175/275. The Historical Sciences in the Nineteenth Century (4)
A critical analysis of the host of “historical sciences” that developed over the course of the long nineteenth century, from archaeology and paleontology to psychoanalysis and craniometry, including the science of history itself. Graduate students will be required to submit an additional paper. Prerequisite: upper-division or graduate standing and department stamp.

HISC 199. Independent Study in the History of Science (4)
Directed readings for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor.

TOPICS
Courses

HITO 87. Special Freshman Seminar (1)
A seminar intended for exposing undergraduate students, especially freshmen, to exciting research conducted by department faculty. Enrollment is limited. Topic will vary quarter by quarter.

HITO 99. Independent Study on History Topics (1)
Independent study for undergraduates with lower-division standing under the supervision of a member of the faculty on a topic not generally included in the regular curriculum. Students must make arrangements with individual faculty members. Prerequisites: lower-division standing, completion of thirty units of UCSD undergraduate study, a minimum UCSD GPA of 3.0, and a completed and approved Special Studies form.

HITO 102. Religious Traditions: East Asian Religious Traditions (4)
Introduction to the major religious traditions of Asia: Hinduism, Buddhism, Taoism, Shinto, and Confucianism. The course will focus on one religion each year. Since special topics will vary from year to year the course may be repeated for credit three times. Prerequisite: upper-division standing. +

HITO 104. The Jews and Judaism in the Ancient and Medieval World (4)
The political and cultural history of the Jews through the early modern period. Life under ancient empires, Christianity and Islam. The post-biblical development of the Jewish religion and its eventual crystallization into the classical, rabbinic model. +

HITO 105. The Jews and Judaism in the Modern World (4)
Topics include the political emancipation of the Jews of Europe; the emergence of Reform, Conservative, and Modern Orthodox Judaism; hasidism; modern anti-Semitism; Jewish socialism; Zionism; the Holocaust; the American Jewish community; the State of Israel.

HITO 106. Love and Family in the Jewish Past (4)
Jewish women's experiences from the seventeenth century to the present, covering Europe, the United States, and Israel. We examine work, marriage, motherhood, spirituality, education, community, and politics across three centuries and three continents. Prerequisite: upper-division standing.

HITO 111/211. Marxist Theory (4)
A survey and examination of the principal writings of Marx concerning economic theory and analysis. Emphasis on the theory of value, production, technical change, reproduction and accumulation. Some consideration will also be made of certain neo-Marxist contributions and critiques. Prerequisite: introductory economics or consent of instructor.

HITO 117. World History 1200–1800 (4)
This course examines the interaction between sections of the globe after 1200. It emphasizes factors operating on a transcontinental scale (disease, climate, migration) and historical/cultural phenomena that bridge distance (religion, trade, urban systems). This is not narrative history, but a study of developments that operated on a global scale and constituted the first phase of globalization. Prerequisite: upper-division standing or consent of instructor. +

HITO 119/HMNR 100. Human Rights I: History and Theory (4)
Explores where human rights come from and what they mean by integrating them into a history of modern society, from the Conquest of the Americas and the origins of the Enlightenment, to the Holocaust and the contemporary human rights regime. Prerequisite: upper-division standing or consent of instructor.

HITO 126. A History of Childhood (4)
This course will examine the different ways that attitudes toward children have changed throughout history. By focusing on the way that the child was understood, we will examine the changing role of the family, the role of culture in human development, and the impact of industrialization and modern institutions on the child and childhood.

HITO 133. War and Society: The Second World War (4)
An examination of the Second World War in Europe, Asia, and the United States. Focus will be on the domestic impact of the war on the belligerent countries as well as on the experiences of ordinary soldiers and civilians. Prerequisite: upper-division standing or consent of instructor.

HITO 134. International Law—War Crimes and Genocide (4)
Comparative study of genocide and war crimes, stressing European developments since 1900 with reference to cases elsewhere. Topics include historical precedents; evolving legal concepts; and enforcement mechanisms. Emphasis on the Holocaust, the USSR under Stalin, ex-Yugoslavia, and the Armenian genocide. Students may not receive credit for both HITO 134 and ERC 102. Prerequisite: upper-division standing or consent of instructor.

HITO 135. Historical Anthropology (4)
This course will give an interdisciplinary introduction to anthropological thought in the nineteenth and twentieth centuries. Secondly, it will deal with different fields of historical anthropology. Central questions and approaches will be discussed by presenting selected case studies. Prerequisite: upper-division standing or consent of instructor.

Colloquia

The following courses are available to both undergraduate and graduate students. Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduates, M.A., and Ph.D. students.

HITO 166/266. Death Penalty Global Perspectives Since 1492 (4)
From early modern witches, rebels, and heretics to hyper-modern gangsters, terrorists, and serial killers, applying capital punishment to foreign nationals and ethnic minorities has sustained a global obsession about the sanctity of human life and the meaning of citizenship in the Americas and Europe. Graduate students must complete an additional paper. Prerequisite: upper-division or graduate standing and department stamp.

HITO 172/272. War in the Twentieth Century: A Psychological Approach (4)
Reckoning by novelists, essayists, and biographers with the phenomenon of contemporary warfare as an unprecedented experience and an abiding threat. Graduate students are required to submit a more substantial piece of work. Prerequisite: upper-division or graduate standing and department stamp.
UNITED STATES

See History of Science for more U.S. courses (HISC 105, HISC 108, HISC 111).

Lecture Courses

HIOUS 100. Colonial Period to 1763 (4)
Political and social history of the thirteen colonies: European background, settlement and expansion, begin-
nings of culture, and the imperial context. Prerequisite: upper-division standing. +

HIOUS 101. The American Revolution (4)
Causes and consequences of the revolution: intellectual and social change, the problems of the new nation, the
Constitution, and the origins of political parties. Prerequisite: upper-division standing. +

HIOUS 103. The World We Have Lost: Social History of Early America (4)
Selected themes in early American social history—in-
cluding race, gender, faith, economy, and age—from an
anthropological perspective. What distinguished it from
our own world? Prerequisite: upper-division standing. +

HIOUS 104. The Revolutionary Atlantic (4)
The upheavals that transformed the early modern Atlantic emphasizing the United States, Caribbean, and Great
Britain. Topics: struggles to define democracy, the reorga-
nization of the Atlantic state system, the Enlightenment, and
international responses to the American and French Revolutions. Prerequisite: upper-division standing. +

HIOUS 106B. American Foreign Relations, since 1900 (4)
Examines foreign relations of the United States from acquisition of a formal overseas empire in the aftermath
of the Spanish-American War to the end of the Cold War. Topics cover a range of public and private interactions
with the world. Prerequisite: upper-division standing or consent of instructor.

HIOUS 107. The Early Republic (4)
This course will examine the transformation of American society and politics between the American Revolution and
the Jacksonian period. Topics to be considered include the emergence of domesticity, the development of political
parties, the expansion of capitalist relations, the debate over slavery, the early labor movement, and the origins
and motivations of middle-class reform. +

HIOUS 108A/ETNN 112A. History of Native Americans in the United States I (4)
This course examines the history of the Native Americans in the United States with emphasis on the lifeways,
mores, warfare, cultural adaptation, and relations with the
European colonial powers and the emerging United States until 1870. Prerequisite: upper-division standing or consent of instructor. +

HIOUS 108B/ETNN 112B. History of Native Americans in the United States II (4)
This course examines the history of the Native Americans in the United States with emphasis on the lifeways, mores,
warfare, cultural adaptation, and relations with the United States from 1870 to the present. Prerequisite: upper-
division standing or consent of instructor.

HIOUS 109. Intellectual History: From Contact to Civil War (4)
An exploration of cultural, political, religious, and social thought in early America. Emphasis will be placed on the
trans-Atlantic context and on the relationships between intellectuals and authority. Prerequisite: upper-division standing or consent of instructor. +

HIOUS 114. California History (4)
This course examines California history from 1800 onward, with an emphasis on social, economic, and political change.
The course will explore the effect of national and interna-
tional events as well as the ways in which California—the
ideal and the real—shapes the American experience.

HIOUS 115. History of Sexuality in the United States (4)
Constructions of sex and sexuality in the United States from the time of pre-contact Native America to the present,
focusing on sexual behaviors, sexual ideologies, and the uses of sexuality for social control.

HIUS 116. War and American Society (4)
The connection between social relations and America’s wars. Ways that American society has influenced deci-
sions to prepare for or go to war as well as the impact of war on class relations and ideologies of race and gender. Prerequisite: upper-division standing.

HIUS 117. History of Los Angeles (4)
This course examines the history of Los Angeles from the late tenth century to the present. Particular issues to be addressed include urbanization, ethnicity, politics,
technological change, and cultural diversification.

HIUS 120. Peace Movements in America (4)
Topics will include Quaker origins of the American peace movements and examples of opposition to wars in the
twentieth century from World Wars I and II, Vietnam, anti-
nuclear movements, and intervention in Central America
in Iraq. Prerequisite: upper-division standing or consent of instructor.

HIUS 122. History and Hollywood: America and the Movies Since the Great Depression (4)
A lecture-discussion course utilizing written texts and films to explore major themes in American politics and culture
in the Great Depression through the 1990s. Topics will include the wars of America, McCarthyism, the counter-
culture of the 1960s, and the transformation of race and gender relations. Prerequisite: upper-division standing or consent of instructor.

HIUS 123/USP 167. History of New York City (4)
New York City breathes history. Whether it is in the music, the literature, or the architecture, the city informs our
most basic conceptions of American identity. This course examines the evolution of Gotham from the colonial era
to today. Prerequisite: upper-division standing or consent of instructor.

HIUS 124/ETNN 125. Asian American History
Explore how Asian Americans were involved in the political, economic, and cultural formation of United States society. Topics include migration; labor systems; gender, sexuality and social organization; racial ideologies and anti-Asian movements; and nationalism and debates over citizenship.

HIUS 128. African-American Legal History (4)
This course sketches the shifting experience persons of African descent have had with the law in the United States. Films, cases, articles, and book excerpts are used to convey the complex nature of this four hundred year journey. Prerequisite: upper-division standing or consent of instructor.

HIUS 130. Cultural History from 1607 to the Civil War (4)
This course will explore connections between American culture and the transformations of class relations, gender
ideology, and political thought. Topics will include the transformations of religious perspectives and practices,
republican art and architecture, artisan and working class
culture, the changing place of art and artists in American society, antebellum reform movements, antislavery and proslavery thought. Prerequisite: upper-division standing or consent of instructor.

HIUS 131. Cultural History from the Civil War to the Present (4)
This course will focus on the transformation of work and leisure and the development of consumer culture. Students
will consider connections between culture, class relations, gender ideology, and politics. Topics will include labor
radicalism, Taylorism, the development of organized sports, the rise of department stores, the transformation of middle-class sexual morality, the growth of commercial entertainment, and the culture of the Cold War.

HIUS 132. Civil War—Reconstruction in Pop Culture (4)
This course considers how cultural processes have shaped histories of the Civil War and Reconstruction. Students
will analyze the relationship between popular culture and major themes of the era through the use of literature,
texts, film, television, and print. Students may not receive
credit for both HIUS 132 and HIUS 132S. Prerequisite: upper-division standing or consent of instructor.

HIUS 133. The Golden Age of Piracy (4)
This interdisciplinary lecture course focuses on the history and literature of global piracy in the English-speaking world from Sir Francis Drake to Blackbeard and how this Golden Age was remembered in the popular fiction of the nineteenth and twentieth centuries. Prerequisite: upper-division standing or consent of instructor. +

HIUS 134. From Be Bop to Hip Hop: African American Cultural History Since 1945 (4)
Explore the politics of black culture in the postwar period. Topics include: the dynamic interplay of social factors (migration, civil rights, black power, deindustrialization, globalization), since World War II. Prerequisite: upper-division standing or consent of instructor.

An examination of interactions among the peoples of western Europe, Africa, and the Americas that transformed the Atlantic basin into an interconnected “Atlantic World.” Topics will include maritime technology and the European Age of Discovery, colonization in the Americas, the beginnings of the transatlantic slave trade and the early development of plantation agriculture in the New World. Prerequisite: upper-division standing or consent of instructor. +

HIUS 135B/ETHN 170B. Slavery and the Atlantic World (4)
The development of the Atlantic slave trade and the spread of racial slavery in the Americas before 1800. Explores the diversity of slave labor in the Americas and the different slave culture of African Americans produced under the constraints of slavery. Prerequisite: upper-division standing or consent of instructor. +

HIUS 138/ETHN 167. African-American History in War and Peace: 1917 to the Present (4)
The social, political, economic, and ideological pressures generated during the two world wars. Prerequisite: upper-division standing or consent of instructor.

HIUS 139/ETHN 149. African-American History in the Twentieth Century (4)
This course examines the transformation of African America across the expanse of the long twentieth century: imperialism, migration, urbanization, de-segregation, and deindustrialization. Special emphasis will be placed on issues of culture, international relations, and urban politics. Prerequisite: upper-division standing.

HIUS 140/Econ 158A. Economic History of the United States I (4)
The United States as a raw materials producer, as an agrarian society, and as an industrial nation. Emphasis on the logic of the growth process, the social and political tensions accompanying expansion, and pre-twentieth-century transformations of American capitalism.

HIUS 141/Econ 158B. Economic History of the United States II (4)
The United States as modern industrial nation. Emphasis on the logic of the growth process, the social and political tensions accompanying expansion, and nineteenth- and early-twentieth-century transformations of American capitalism.

HIUS 142. Great Trials of the Anglo-American World (4)
Examines the history of the United States since 1845 and the consequences of colonization, the evolution of the civil rights movement, and the growth of African American culture, including music, film, and literature. Prerequisite: upper-division standing or consent of instructor.

HIUS 142A. United States in the Twentieth Century, 1900–1945 (4)
Examines the political, economic, and social history of the American people from the turn of the twentieth century to the end of World War II. Topics: progressive movement, impact of the Great Depression, and the consequences of two world wars. Prerequisite: upper-division standing or consent of instructor.

HIUS 142B. United States in the Twentieth Century, 1945 to the Present (4)
Examines the political, economic, social history of the American people from the end of World War II to the present. Topics: postwar politics and society, the Cold War struggle for racial justice, and the rise of American conservatism since the 1980s. Prerequisite: upper-division standing or consent of instructor.

HIUS 146. Race, Riots, and Violence in the U.S. (4)
Examining the history of racial practice and the evolution of American society from the Civil War to the present. Topics include: slavery, segregation, discrimination, and civil rights movements. Prerequisite: upper-division standing or consent of instructor.

HIUS 147/USP 165. History of the American Suburb (4)
This lecture explores the development of suburbs in America, from the early nineteenth century to the contemporary era. Topics include suburbanization, class, ethnic and racial dimensions, government influences, social life, and cultural responses to suburbia. The class will explore competing theories of urbanization as it surveys the major literature. Prerequisite: upper-division standing or consent of instructor.

HIUS 148/USP 103. The American City in the Twentieth Century (4)
This course focuses on the phenomenon of modern American urbanization. Case studies of individual cities will help illustrate the social, political, and environmental consequences of rapid urban expansion, as well as the ways in which urban problems have been dealt with historically.

HIUS 149. The United States in the 1950s (4)
An overview of the social and political developments that polarized American society in the tumultuous decade of the 1950s. Topics include suburbanization, class, ethnic and racial dimensions, government influences, social life, and cultural responses to suburbia. The class will explore competing theories of urbanization as it surveys the major literature. Prerequisite: upper-division standing or consent of instructor.

HIUS 150. American Legal History to 1865 (4)
The history of American law and legal institutions. This quarter focuses on crime and punishment in the colonial era, the emergence of theories of popular sovereignty, the forging of the Constitution and American federalism, the relationship between law and economic change, and the crisis of slavery and Union. Prerequisite: upper-division standing. +

HIUS 151. American Legal History since 1865 (4)
The history of American law and legal institutions. This course examines legal developments since the Civil War, focusing on the period from 1865 to the present. Topics include: the constitutional development of constitutional thought and practice in the United States since 1865, the rise of big business, the origins of the modern welfare state, and the Great Depression. Prerequisite: upper-division standing or consent of instructor.

HIUS 152A. A Constitutional History of the United States to 1865 (4)
The historical development of constitutional thought and practice in the United States from the era of the American Revolution through the Civil War, with special attention to the role of the Supreme Court under Chief Justices Marshall and Taney. Prerequisite: upper-division standing or consent of instructor.

HIUS 152B. A Constitutional History of the United States Since 1865 (4)
The historical development of constitutional thought and practice in the United States since 1865, with special attention to the role of the Supreme Court from Chief Justices Chase to Rehnquist. Prerequisite: upper-division standing or consent of instructor. +

HIUS 153. American Political Trials (4)
Survey of politicized criminal trials and impeachments from Colonial times to the 1880s. Examines politically-motivated prosecutions and trials that became subjects of political controversy, were exploited by politicians for political purposes, or had their outcomes determined by political considerations. +

HIUS 154. Western Environmental History (4)
This course examines human interaction with the western American environment and explores the distinction between objective environmental understanding of science and the subjective views of history and historians. The course will also analyze the most compelling environmental issues in the contemporary West.

HIUS 155. From Zoot Suits to Hip Hop: Race and Popular Culture since World War II (4)
Tracing popular cultural production and consumption in the United States since World War II. It explores how popular culture as an arena where social relations are negotiated and where race, class, and gender identities are constructed, transformed, and contested. Prerequisite: upper-division standing or consent of instructor.

HIUS 155A. Religion and Law in American History: Foundations to the Civil War (4)
Selected problems in the history of the relationship between religious beliefs and practice and legal institutions in the Anglo-American world. Topics include the English background, religion in the age of the American Revolution and the antebellum period. Prerequisite: upper-division standing or consent of instructor. +

HIUS 155B. Religion and Law in American History: Civil War to the Present (4)
Selected problems in the history of the relationship between religious beliefs and practice and legal institutions in America from the Civil War to the present. Topics include the religion and government aid; sacred duties and the law; and religion and cultural politics. Prerequisite: upper-division standing or consent of instructor.

HIUS 156. American Women, American Womanhood (4)
This course explores the emergence of a dominant ideology of womanhood in America from the eighteenth century and contrasts the ideal with the historically diverse experience of women of different races and classes, from settlement to 1870. Topics include witchcraft, evangelicalism, cult of domesticity, sexuality, race of industrial capitalism and the transformation of women’s work, Civil War, and the first feminist movement. Prerequisite: upper-division standing. +

HIUS 157. American Women, American Womanhood 1870 to Present
This course explores the making of the ideology of womanhood in modern America and the diversity of American women’s experience from 1870 to the present. Topics include the suffrage movement, the struggle for reproductive rights and the ERA; immigrant and women’s, women’s work, and labor organization; education; the modern feminist movement and the contemporary politics of reproduction, including abortion and surrogate motherhood. Prerequisite: upper-division standing. +

HIUS 158/ETHN 130. Social and Economic History of the Southwest I (4)
This course examines the history of the Spanish and Mexican frontiers (what became the U.S. Southwest) from roughly 1400 to 1848, focusing specifically on the area’s social, cultural, and political development.

HIUS 159/ETHN 131. Social and Economic History of the Southwest II (4)
(Cross-listed as Ethnic Studies 131.) This course examines the history of the American Southwest from the U.S.-Mexican War in 1846–48 to the present, focusing on immigration, racial and ethnic conflict, and the growth of Chicano national identity.

Colloquia
The following courses are available to both undergraduate and graduate students. Undergraduates must receive a departmental stamp or permission of the instructor to register for the course.
HIUS 178/278. The Atlantic World, 1400–1800 (4)
This course explains the origin of the Atlantic as a zone of interaction for Europeans, Indigenous Americans, and Africans, and evaluates the consequences of the interaction over several centuries by exploring contests over political power and demographic change. Graduate students will submit a more substantial piece of work with in-depth analysis and with an increased number of sources cited. A typical undergraduate paper would be ten pages, whereas a graduate paper would require engagement with primary sources, more extensive reading of secondary material, and be about twenty pages. Prerequisites: upper-division or graduate standing and departmental stamp. +

HIUS 180/ETHN 134. Immigration and Ethnicity in Modern American Society (4)
Comparative study of immigration and ethnic-group formation in the United States from 1880 to the present. Topics include immigrant adaptation, competing theories about the experiences of different ethnic groups, and the persistence of ethnic attachments in modern American society. Prerequisite: upper-division standing.

HIUS 181/281. Topics in Twentieth Century United States History (4)
A colloquium dealing with special topics in U.S. history from 1900 to the present. Themes will vary from year to year. Prerequisite: department stamp or consent of instructor.

HIUS 183/283/ETHN 159. Topics in African American History (4)
A colloquium dealing with special topics in the history of people of African descent in the United States. Themes will vary from quarter to quarter. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students will be required to submit a more substantial piece of work. Prerequisite: upper-division standing or consent of instructor.

HIUS 187/287. Topics in American Social History (4)
Colloquium on selected topics in American social history. Topics will vary from year to year, and the course may therefore be repeated for credit.

HIUS 188/288. Topics in Culture and Politics (4)
Colloquium on select topics in culture and politics in the United States. Topics will vary from quarter to quarter. Graduate students will be required to submit an additional piece of work. Prerequisite: upper-division or graduate standing and departmental stamp.

HIUS 189/289. The Social History of Seafaring in Early America (4)
All American colonies were originally maritime colonies. This seminar will explore the social history of fishing, whaling, shipping, and freebooting during the colonial period, and will investigate through primary and secondary sources the experience of living in communities that followed the sea. Graduate students are required to submit an additional paper. Prerequisites: upper-division standing or consent of instructor and departmental stamp.+

HIUS 199. Independent Study in United States History (4)
Directed readings for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor and departmental stamp required.

GRADUATE
Graduate standing is a prerequisite for all graduate-level courses. For more graduate courses (200+), look at history undergraduate colloquia (courses numbered 160–190).

HIGR 200. History and Theory (4)
An introductory graduate course for students in all fields. Themes include cross-field historiography and theory, interdisciplinary approaches to history and historical method. (May be taken twice for credit, if the reading list is significantly different.)

HIGR 204A-B. The History of the University (4-4)
Traces the history and idea of the university from its medieval origins, with emphasis on its post-WWII incarnation as an engine of scientific investigation, economic growth, socio-cultural analysis, and artistic experimentation. Research project will utilize original sources in UCSD’s archives. Students must complete both HIGR 204A and 204B in order to get credit for both. HIGR 204A focuses on the research portion of the class.

HIGR 205. Feminist Historical Studies (4)
An introduction to feminist historical studies, this course is designed for interested graduate students from all history fields. Graduate students from other disciplines are also encouraged to participate. The course will provide students a rigorous training in women’s history, in the feminist theories that undergird that scholarship, and in the engagement field of gender analysis. The particular content of the course will change from year to year, but each course will include theoretical texts, historical case studies, and primary sources. Readings will be drawn from different times and places. This course is strongly recommended for those preparing minor fields in women’s history. The course can be repeated twice for credit.

HIGR 210. Historical Scholarship on Modern Chinese History (4)
This course will introduce students to the monographic literature and the main historiographic controversies of modern Chinese history.

HIGR 211. Historical Scholarship on Modern Japanese History (4)
This course will introduce students to the monographic literature and the main historiographic controversies of modern Japanese history.

HIGR 212. Historical Scholarship on Modern East Asian History (4)
This course will introduce students to the monographic literature and the main historiographic controversies of modern East Asian history.

HIGR 213. Sources on Modern Chinese History (4)
An introduction to Chinese documentary sources and collections on Qing and Republican History. This course will introduce students to the language of Qing documents, and to the contents and uses of imperial documents and archives, documentary collections, periodicals, gazetteers, etc.

HIGR 215A-B. Research Seminar in Modern Chinese History (4-4)
A two-quarter research seminar in Chinese history. A paper, based on original research, will be due in the second semester. This seminar topic will be announced at the end of the first quarter. Final grade will not be given until the end of the second quarter. Prerequisite: 215A is a prerequisite for 215B.

HIGR 216A-B. Research Seminar in Modern Japanese History (4-4)
A two-quarter research seminar in Japanese history. A paper, based on original research, will be due in the second semester. This seminar topic will be announced at the end of the first quarter. Final grade will not be given until the end of the second quarter. Prerequisite: 216A is a prerequisite for 216B.

HIGR 217A. Historical Scholarship on Pre-Modern Chinese History: Foundations—China before Buddhism (4)
Ancient society differed dramatically from the imperial, bureaucratic, commercial, Buddhist China of later times. Yet texts and artifacts of antiquity echoed powerfully through the centuries. We will study foundational texts, practices, and objects in their own contexts and also consider their later uses.

HIGR 217B. Historical Scholarship on Pre-Modern Chinese History: Han Dynasty through the Song Dynasty (4)
Course introduces history and society during the Chinese Middle Ages (c. 200 BCE–1200 CE), including the Han, Six, Tang, and Song Dynasties. Examination of the birth and
development of China's great religions, Buddhism and Daoism, and the international culture of the Silk Road, and political and cultural systems that still resonate in China today.

HIGR 217C. Historical Scholarship on Pre-Modern Chinese History: Late Imperial Chinese History, 1200–1800 (4) Course subject varies among periods before 1900. 218A includes secondary scholarship studied for content, method, and structure; research methods and resources; and development of the research topic. In 218B students write an original research paper using primary sources. Prerequisites: graduate standing or consent of instructor. Reading knowledge of Chinese. HIGR 218A.

HIGR 218B. Graduate Seminar in Pre-Modern Chinese History (4) Course subject varies among periods before 1900. 218A includes secondary scholarship studied for content, method, and structure; research methods and resources; and development of the research topic. In 218B students write an original research paper using primary sources. Prerequisites: graduate standing or consent of instructor. Reading knowledge of Chinese. HIGR 218A.

HIGR 220. Historical Scholarship on European History, 1500–1715 (4) Introduction to the historiography on Renaissance, Reformation, and early modern Europe: an overview of methodologies with emphasis on sources and critical ap- proaches. Required for all beginning European history graduate students.

HIGR 221. Historical Scholarship on European History, 1715–1850 (4) Selected topics in European history from the early modern to the modern era. Readings and discussions focus on issues of methodology and interpretation. Required for all beginning European history graduate students.

HIGR 222. Historical Scholarship on European History, since 1850 (4) Critical evaluation of selected topics in the period of modern Europe from the mid-nineteenth century to the present. Required for all beginning European history gradu- ate students.

HIGR 230A-B. Research Seminar in Early Modern Europe (4-4) Selected topics in the period from the sixteenth century through the early nineteenth, with an emphasis on the theory and practice of socio-economic history. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter. Prerequisite: 230A is a prerequisite for 230B.

HIGR 231A-B. Research Seminar in Modern European History (4-4) Selected topics in the period of the nineteenth and twen- tieth centuries. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter. Prerequisite: 231A is a prerequisite for 231B.

HIGR 235. Science, Empire, and Exploration (4) Examines links between scientific work, particularly expedi- tions and exploration, and political programs of empire in the seventeenth to twentieth centuries. Topics: collecting expeditions as expressions of empire; role of colonial administrative networks in facilitating field-based inves- tigations; relation between European and non-European knowledge systems.

HIGR 236A-B. Research Seminar in History of Science (4-4) A two-quarter research seminar comprising intensive study of a specific topic in the history of science. The first quarter will be devoted to readings and discussions; the second chiefly to the writing of individual research papers. Topics vary from year to year, and students may therefore repeat the course for credit. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter.

HIGR 237. Topics in the History of Ocean Sciences (4) (Cross-listed with SIO 201.) Intensive study of specific prob- lems in the history of the ocean sciences, and of related earth and atmospheric sciences, in the modern period. Topics vary from year to year, and students may therefore repeat the course for credit.

HIGR 238. Introduction to Science Studies (4) (Cross-listed as Communication 225A, Philosophy 209A, and Sociology 255A.) Study and discussion of classic work in history of science, sociology of science and philosophy of science, and of work that attempts to develop a unified science studies approach. Required for all students in the Science Studies Program. Prerequisite: enrollment in Science Studies Program.

HIGR 239. Seminar in Science Studies (4) (Cross-listed as Communication 225B, Philosophy 209B, and Sociology 255B.) Study and discussion of selected topics in the science studies field. Required for all students in the Science Studies Program. May be repeated as course content changes annually. Prerequisite: enrollment in the Science Studies Program.

HIGR 241. Advanced Approaches to Science Studies (4) (Cross-listed as CSOR 225D, PHIL 290D, SOCQ 225D.) Focus on recent literature in the history, philosophy, and sociol- ogy of science, technology, and medicine. Required of all students in the Science Studies Program. Prerequisites: HIGR 238 is a prerequisite for HIGR 241; enrollment in Science Studies Program or instructor's permission.

HIGR 242. Topics in the History of Earth and Life Sciences (4) Intensive study of specific problems in the history of the life sciences and earth sciences, ranging in period from the Renaissance to the twenty-first century. May be repeated for credit as topics will vary annually. Prerequisites: graduate standing and department stamp required.

HIGR 243. Historical Scholarship in Technology (4) An introduction to the historiography of technology. This reading seminar provides an overview of scholarly approaches to the history of technology by critically examining classic and contemporary works in the field. Prerequisite: graduate standing or consent of instructor.

HIGR 244. Introduction to Sound Studies (4) Study and discussion of classic and recent scholarship on sound production and cultures of listening. Emphasizes historical literature but also includes works in literary studies, art history, music, and other fields. Prerequisite: graduate standing or consent of instructor.

HIGR 245A-B-C. Historical Scholarship on Latin American History (4-4-4) Introduction to the literature of Latin American history. A three-quarter sequence of readings and discussions taught each quarter by members of the staff required for all beginning students for a graduate degree specializing in Latin American history; open and strongly recommended to other students using Latin American history as a sec- ondary field for a graduate degree. HIGR 245A covers the colonial period, from conquest to independence to today; HIGR 245B covers South America from independence to today; HIGR 245C covers Mexico, Cuba, and Central America from independence to today. The three quarters need not be taken in sequence. Reading knowledge of Spanish is required.

HIGR 247A-B. Research Seminar in Colonial Latin America (4-4) A two-quarter course involving readings and research on sixteenth- through eighteenth-century Latin America. Students are expected to compose a paper based on original research that is due in the second quarter. Reading knowledge of Spanish required. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter.

HIGR 248A-B. Research Seminar in Latin America, National Period (4-4) A two-quarter course involving readings and research; the first quarter is devoted to the nineteenth and the second quarter to the twentieth centuries. Students are expected to compose a paper based on original research that is due in the second quarter. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter. Reading knowledge of Spanish and/or Portuguese is helpful but not required.

HIGR 252. History, Social Evolution, and Intellectuals in the Andes: Mariátegui, Haya de la Torre, and Arguedas (4) The course will study three major twentieth-century inter- preters of Andean history and society: Mariátegui is Latin America’s most original social socialist intellectual; Haya de la Torre is the founder of Peru’s most important party; and Arguedas was the most profound interpreter of the role of Indian peasants in the Andean nations.

HIGR 255. The Literary History of the Ancient Near East (4) An introduction to the bibliography, methodology, and an- ciliary disciplines for the study of ancient Near East, with readings and discussion on selected topics within the field. May be repeated for credit, topic will vary year to year.

HIGR 257A. Historical Scholarship on Modern Middle East, Eighteenth to Twentieth Century (4) Readings in the historiographical literature on the late Ottoman Empire (eighteenth to twentieth century). Prerequisite: graduate standing or consent of instructor.

HIGR 257B. Historical Scholarship on Modern Middle East, Colonial Period (4) Readings in the historiographical literature on Middle Eastern states in the colonial period. Prerequisite: graduate standing or consent of instructor.

HIGR 257C. Historical Scholarship on Modern Middle East, Post-Colonial Era (4) Readings in the historiographical literature on the Middle East in the national/post-colonial era. Prerequisite: graduate standing or consent of instructor.

HIGR 260A-B-C. Historical Scholarship on Judaic Studies (4-4-4) Weekly graduate seminar. Faculty and students present results of research. Student research may be towards course work on thesis.

HIGR 265A-B-C. Historical Scholarship on American History (4-4-4) A three-quarter sequence of readings and discussions on the bibliographical and monographic literature of American history from the colonial period to the present. Taught by different members of the staff each quarter, the course is required of all beginning graduate students in American history.

HIGR 267A-B. Research Seminar in United States History (4-4) Readings and discussion in selected areas of American history for advanced graduate students. An IP (in progress) grade will be awarded the first quarter. The second quarter will be devoted to the presentation, discussion, and evaluation of work in progress. A final grade will be awarded at the end of the second quarter. Prerequisite: 267A is a prerequisite for 267B.

HIGR 271. New Research Directions in U.S. History (4) Students will develop skills in presenting and assessing newer research and offering feedback to work in progress by senior students and faculty. Course is required to be taken twice by third-year students and highly recommended for audit by all students in U.S. History. (S/U grades only.)
HIGR 275A. Research Seminar in Middle Eastern History (4)
HIGR 275A is the first quarter of a two-quarter research seminar in Middle Eastern history. Seminar topics will vary. Reading knowledge of Arabic or Turkish is expected. A paper, based on original research, will be due at the end of the second quarter. Final grade will not be given until the end of the second quarter. Prerequisite: graduate standing or consent of instructor.

HIGR 275B. Research Seminar in Middle Eastern History (4)
HIGR 275B is the second quarter of a two-quarter research seminar in Middle Eastern history. Seminar topics will vary. Reading knowledge of Arabic or Turkish is expected. A paper, based on original research, will be due at the end of the quarter. Final grade will be awarded for HIGR 275A and B at the end of the second quarter. Prerequisites: 275A and graduate-standing or consent of instructor.

HIGR 295. Thesis Seminar (4)
For students advanced to candidacy to the doctorate. Discussion, criticism, and revision of drafts of chapters of theses and of work to be submitted for publication.

HIGR 298. Directed Reading (1–12)
Guided and supervised reading in the literature of the several fields of history. This course may be repeated for an indefinite number of times due to the independent nature of the content of the course. (S/U grades permitted.)

Independent work by graduate students engaged in research and writing of doctoral theses. This course may be repeated for an indefinite number of times due to the independent nature of thesis writing and research. (S/U grades only.)

HIGR 500. Apprentice Teaching in History (1–4)
A course in which teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty: handling of discussions, preparation and grading of examinations and other written exercises, and student relations. (S/U grades only.)
a broad spectrum of issues in human development: from brain and perceptual development, to reasoning and problem solving, to social interaction and the evolution of cultural systems. The Human Development Program unifies and coordinates the excellent research and teaching resources currently available on campus in this area and profiles the factors that influence the ways in which humans develop and change.

Human development is a very large field, but there is a set of basic questions which serve to define and integrate it: What underlies the development of human knowledge? To what extent is the capacity to know, indeed the concepts themselves, encoded in the genes? How is the role of learning and environmental influences accounted for? How do we learn? What are the ways in which children become competent participants in their social groups? What is the origin and nature of social interaction and organization? The study of human development has become increasingly central to a range of important issues affecting infants, young children, and adolescents, as well as the changing structure of the American family and public policy on children and education. An understanding of the processes that underlie human development is crucial to our evaluation of these issues and to our ability to offer avenues for remediation of the attendant problems. The three major areas of study within the Human Development Program are: Biological Development, Ontogenetic Development, and Socio-Cultural Development. These areas consider issues that pertain to development of specific neural and cognitive processes and development within a larger social and cultural context.

CAREER GUIDANCE

A degree in human development offers training of special interest to those considering admission to graduate or professional schools and careers in medicine, law, education, counseling, clinical psychology, public health, public policy, public administration, or social work. Students who are interested in these areas are advised to see a Human Development Program advisor for assistance in selecting elective and major courses. A major in human development is designed to impart fundamental skills in critical thinking, comparative analysis, research analysis, and written expression. A human development major can offer preparation for teaching in elementary schools. However, if you are interested in earning a California teaching credential from UC San Diego, contact the Education Studies Program (EDS) for information about prerequisite and professional preparation requirements. It is recommended you contact EDS as early as possible in your academic career.

EDUCATION ABROAD

Students are often able to participate in the UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP) while still making progress towards the major. Students interested in studying abroad should see a Human Development Program advisor to discuss curriculum plans and appropriate courses. It is strongly recommended that students obtain HDP pre-approval for EAP courses that are intended to count toward the major. Information on EAP/OAP is detailed in the Education Abroad Program section of the UC San Diego General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit the Web site at http://programsabroad.ucsd.edu/. Financial aid is applicable and special study abroad scholarships are available.

PREREQUISITES FOR HUMAN DEVELOPMENT MAJORS

A bachelor of arts degree in human development will be given to students who satisfactorily complete the general-education and graduation requirements of Marshall, Muic, Revelle, Roosevelt, Sixth, or Warren College in addition to the Human Development Program requirements. In accordance with UCSD academic regulations, upper-division courses used to satisfy major requirements cannot be applied towards minors (please note there is some overlap permitted for double majors). See college advisor and major advisor for questions and restrictions.

APPLYING FOR THE HDP MAJOR

Students who wish to declare the Human Development Program major must meet premajor requirements and apply for entrance into the major. All lower-division requirements must be fulfilled before applying for the major. All lower-division courses must be completed with a grade of C or better. The cumulative GPA for the eight lower-division courses must equal or exceed 2.75. Students must meet with an HDP advisor and obtain approval to declare the human development major, no later than the second quarter of the student’s junior year.

GRADE REQUIREMENTS FOR THE MAJOR

A minimum grade-point average of 2.0 is required in the major. Students must receive a grade of C– or better in any course counted toward fulfillment of the major requirements. All courses taken to satisfy the program's lower- and upper-division requirements must be taken for a letter grade. HDP 1, HDP 130, HDP 181, and HDP 191 must be taken in residence. No substitutions will be approved.

LOWER-DIVISION REQUIREMENTS

1. Introduction to Human Development: HDP1
2. One statistics course selected from the approved list: PSYC 60, COGS 14, BIEB 100, ECON 120A, POLI 30, or MATH 11
3. One formal skills course selected from the approved list: PHIL 10, PHIL 12, LIGN 17, or one course from the MATH 10 sequence or MATH 20 sequence
4 & 5. Two biological sciences courses selected from the approved list: ANTH 2, BILD 1, BILD 2, BILD 3, BILD 7, BILD 10, BILD 12, BILD 18, BILD 20, BILD 26, COGS 11, COGS 17, PSYC 2
6 & 7. Two social sciences courses selected from the approved list: ANTH 1, ANTH 3, CAT 1, CAT 2, COGN 20, COGS 1, One course from the HILD 7A, B, or C sequence (only one allowed), LIGN 4, LIGN 7, LIGN 8, LIGN 101, MMW 1, MMW 2, PSYC 1, PSYC 3, PSYC 6, PSYC 7, SOCI 1, SOCI 20

THE HUMAN DEVELOPMENT MAJOR

The scientific study of human development focuses on issues of growth, development, and behavioral change across the lifespan. The Human Development Program is interdisciplinary, incorporating courses from the Departments of Anthropology, Biology, Cognitive Science, Communication, Ethnic Studies, History, Linguistics, Literature, Psychology, Sociology, Education Studies Program, and Urban Studies and Planning Program. The curriculum is designed to emphasize the idea of development as an essential perspective from which to understand human behavior. The courses cover
8. One computer literacy course selected from the approved list: MAE 5, COGS 3, COGS 8, COGS 18, CSE 3, CSE 5A, CSE 11

UPPER-DIVISION REQUIREMENTS FOR THE HDP MAJOR

1. Two Methods courses
2. Four Core Series courses
3. Six Development courses
4. HDP 150
 (Full information follows)

A. Methods Courses

1. HDP 181 (Students are encouraged to take this course their junior year.)
2. HDP 191 (Students are encouraged to take this course their junior year.)

B. Core Series Courses

(Four courses selected from the approved list required, one from each domain)

Domain 1: The biological basis of human development
HDP 110. Brain and Behavioral Development
ANBI 111. Advanced Principles of Human Evolution
BIPN 144. Developmental Neurobiology

Domain 2: Ontogenetic—the social-cognitive and linguistic basis of human development (Two required—one from each area)

A. Social-Cognitive Development (One required)
HDP 121/COGS 110. The Developing Mind
HDP 122. Social Development
PSYC 187. Development of Social Cognition

B. Language Development (One required)
HDP 120. Language Development
COGS 156. Language Development
LIGN 171. Child Language Acquisition

Domain 3: The socio-cultural basis of human development
HDP 133. Socio-cultural Foundations of Human Development
ANSC 126. Childhood and Adolescence
HITO 126. History of Childhood

C. Development Courses

(Six courses required; at least one from each area of focus)

Biological Development
ANBI 116. The Evolution of Primate Reproduction
ANBI 140. The Evolution of the Human Brain
ANBI 159. Biological and Cultural Perspectives on Intelligence
ANBI 173. Cognition in Animals and Humans
ANTH 102. Humans are Cultural Animals
BICD 100. Genetics
BICD 130. Embryos, Genes, and Development
BICD 131. Embryology Laboratory
BICD 134. Human Reproduction and Development
BIPN 144. Developmental Neurobiology

COGS 115. Neurological Development and Cognitive Change
COGS 184. Modeling the Evolution of Cognition
PSYC 168. Psychological Disorders of Childhood

Ontogenetic Development
COGS 113. Cognitive Development
COGS 154. Communication Disorders in Children and Adults
COGS 156. Language Development
COHI 100. Introduction to Communication and the Individual
COHI 114. Bilingual Communication
COHI 119. Learning to Read
COHI 121. Literacy, Social Organization, and the Individual

EDS 119/LIGN 119. First and Second Language Learning: From Childhood through Adolescence
LIGN 171. Child Language Acquisition
LIGN 179. Second Language Acquisition
PSYC 101. Introduction to Developmental Psychology
PSYC 136. Cognitive Development
PSYC 146. Language and Conceptual Development
PSYC 156. Cognitive Development in Infancy
PSYC 168. Psychological Disorders of Childhood
PSYC 172. Psychology of Human Sexuality
PSYC 180. Adolescence
PSYC 187. Development of Social Cognition
PSYC 190. Parenting

Socio-Cultural Development
ANBI 159. Biological and Cultural Perspectives on Intelligence
ANSC 125. Gender, Sexuality, and Society
ANSC 126. Childhood and Adolescence
ANSC 127. Discourse, Interaction, and Social Life
COHI 123. Children and Media
EDS 115. Cognitive Development and Education
EDS 117. Language, Culture, and Education
HDP 115/COMT 115. Media and Design of Social Learning Contexts
HDP 135/COMT 116. Practicum in Child Development
LTLW 114. Children's Literature
LTLW 116. Adolescent Literature
PSYC 180. Adolescence
PSYC 190. Parenting
SOCl 117. Language, Culture, and Education
SOCl 116/LIGN 174. Gender and Language in Society
SOCl 129. The Family
SOCl 131. Sociology of Youth
SOCl 159. Special Topics in Organizations and Institutions (Open only when topic is approved for HDP major)
SOCl 161. Sociology of The Life Course
USP 145. Aging—Social and Health Policy Issues

D. HDP 150. Advanced Human Development
(HDP students should enroll in this course in their senior year.)

ADVANCED HUMAN DEVELOPMENT REQUIREMENT HDP 150

Seminar for graduating HDP seniors. Readings and discussion of special topics in human development. Provides advanced-level study on subfields of human development. Topics vary quarterly. Prerequisites: HDP 1, HDP 181, HDP 191, senior standing, and department approval one quarter prior to enrollment.

FIELD RESEARCH REQUIREMENT HDP 191

This course provides students with the opportunity to participate jointly in a research project in conjunction with a mentor/collaborator from a local service site. This applied research experience allows students to design and conduct research projects in a variety of settings ranging from laboratory research settings to service oriented placements. In addition to literature research and a final paper at the end of the quarter, students will participate at an off-campus site for a minimum of four hours per week. Research sites are prearranged one academic year in advance (see the student affairs office or the HDP Web site for enrollment information). Students’ interests and future career plans are considered for site placement. Various research orientations and methodologies are reviewed in class. Prerequisites: HDP 1 and department approval one academic year prior to enrollment.

HONORS IN HUMAN DEVELOPMENT HDP 194A-B-C

The Human Development Program offers an honors option for those students who have demonstrated excellence in the human development major. The honors program allows eligible undergraduates to explore advanced issues in the field through an honors thesis on a topic of their choice and under faculty supervision. In order to be admitted to the honors program, students must have 1) junior standing and 2) maintained a minimum cumulative grade-point average of 3.2, and a 3.5 GPA for courses taken in the human development major. Interested students need to apply for departmental honors in spring quarter of their junior year. Students in the honors program are expected to complete the following additional requirements:

1. An advanced course in statistics or methods design (see the HDP student affairs office for more information).
2. HDP 194A-B-C, a year-long independent research project, which results in an Honors Thesis.
3. Weekly attendance of the Center for Human Development Seminar and participation.

PETITIONING COURSES

There are three circumstances under which petitions to receive credit for courses not explicitly approved for the major will be considered: (1) approved courses are detailed in the UC San Diego General Catalog, HDP section); Requests from transfer students, requests from students planning to study abroad, and exceptional courses identified by a student. In all cases, students are required to submit a petition in writing that clearly describes the course for which they wish to receive HDP major credit, and to attach to the petition as much information as possible about the content of the course (e.g., syllabus, course description, etc.). With the exception of courses petitioned by transfer students, ALL REQUESTS FOR APPROVAL OF COURSES NOT
EXPLICITLY LISTED IN THE UC San Diego General Catalog SHOULD BE SUBMITTED BEFORE THE COURSE IS TAKEN BY THE STUDENT.

Transfers. Students transferring from a community college or other university must petition for HDP credit for courses taken at their previous institution. For students transferring from the California Community College System, articulation agreements for many courses have been developed that facilitate the petition process. Transfer students should make an appointment with an HDP advisor to review courses for which they will most likely receive credit and fill out a written petition for each course. Education Abroad. Students planning to study abroad may receive credit toward the major for courses taken in another country. IT IS STRONGLY RECOMMENDED THAT STUDENTS RECEIVE PRELIMINARY APPROVAL (BEFORE LEAVING THE COUNTRY) FOR COURSES THEY ARE CONSIDERING TAKING DURING THEIR TIME ABROAD. While the preliminary approval does not guarantee that the actual course will be approved, the great majority of courses for which preliminary approval has been obtained are approved when the actual petition is submitted upon the student’s return.

Other courses. Occasionally students identify a UCSD course that has the potential to fulfill an HDP requirement. Students may petition in writing to request credit for such courses. However, it is important to note that very few such petitions are successful, and students are strongly cautioned to petition and receive approval for such a course BEFORE ENROLLING IN THE COURSE.

Note: Courses are not officially approved for credit until the written petition has been approved by the HDP Executive Committee and signed by the HDP director.

THE MINOR PROGRAM

(Courses must be discussed with and approved by a Human Development academic advisor.) A total of seven courses are required to complete a minor in human development. These include Introduction to Human Development (HDP 1), and six developmental courses, one from each major area of study from the developmental course list. All courses for the HDP minor must be taken for a letter grade.

Finish-in-Four Plan

Students interested in a particular career field should see the student affairs office for more specific Finish-in-Four plans for their particular college.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LOWER-DIVISION

HDP 87. Freshman Seminar (1)

This seminar is designed to provide new students with the opportunity to explore an intellectual topic in a small seminar setting. Topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

HDP 98. Directed Group Study (1-2)

Directed group study, on a topic or a field not included in the department curriculum, by arrangement with a faculty member. Topics will vary from quarter to quarter. Pass/Not Pass grades only. Enrollment requires prior consent of the instructor; students must have at least thirty units completed and a minimum 3.0 GPA. Student may enroll for no more than a total of two units in one quarter. Cannot be used towards HDP major credit. Prerequisites: 3.0 GPA and at least thirty units completed.

HDP 99. Independent Study in Human Development (2-4)

Independent study and research under the direction of a human development program, or affiliated, faculty member. Pass/Not Pass only. Cannot be used towards HDP major credit. Prerequisites: lower-division standing, completion of thirty units of UCSD undergraduate study, a minimum UCSD GPA of 3.0, and a completed and approved Special Studies form: UCSD Application for Enrollment Special Studies Courses 97, 98, 99.

UPPER-DIVISION

HDP 110. Brain and Behavioral Development (4)

The purpose of this course is to familiarize students with basic mechanisms of brain and behavioral development from embryology through aging. Multiple levels of analysis will be discussed, including the effects of hormones on behavior, developmental events at the level of cells, structures, and neural systems, and the neural basis of cognition, social, perceptual, and language development.

Prerequisite: HDP 1 or PSYC 101.

HDP 115. Media and Design of Social Learning Contexts (6)

(Same as COMT 115) A combined lecture/lab course, cross-listed in communication and human development. Students attend lecture, write field notes, and spend three hours per week in specially designed after-school setting working with children and designing new educational media and producing special projects. Prerequisite: HDP 1 or COHI 100. (F,W,S)

HDP 120. Language Development (4)

Examination of children’s acquisition of language from babbling to the formation of sentences. Topics covered include: pre-linguistic gestures, relationships between babbling and sound systems, speech perception, linking words with objects, rule overgeneralization, bilingualism, nature vs. nurture, individual differences, cultural differences. Prerequisite: HDP 1.

HDP 121. The Developing Mind (4)

(Same as COGS 110) This course examines changes in thinking and perceiving the physical and social world from birth through childhood. Evidence of significant changes in encoding information, forming mental representations, and solving problems is culled from psychological research, cross-cultural studies, and cognitive science. Prerequisite: HDP 1 or COGS 1.

HDP 122. Social Development (4)

This course covers topics in social development research. Content will address general principles such as the mutual influences of caregivers and children upon each other and the interplay of person and context. Discussion areas will include attachment, parenting styles, gender differences, aggression, social cognition, social components of achievement motivation, and development of conscience. Prerequisite: HDP 1.

HDP 133. Socio-cultural Foundations of Human Development (4)

This course will provide students with an understanding of the social and cultural foundations of human development. The topics will be explored with both national and international comparisons from infancy through adolescence. Prerequisite: HDP 1 or PSYC 1.

HDP 135. Practicum in Child Development (6)

(Same as COMT 116) A combined lecture and laboratory course for students in psychology, communication, and human development. Student backgrounds should include a background in general psychology or communication. Students are expected to spend four hours a week in a supervised practical after-school setting at one of the community field sites involving children. Additional time will be devoted to readings and class prep, as well as six hours a week transcribing field notes and writing a paper on some aspect of the fieldwork experience as it relates to class lectures and readings. Prerequisite: HDP 1 or COHI 100 or PSYC 101. (F,W,S)

HDP 150. Advanced Human Development (4)

Seminar for graduating HDP seniors. Readings and discussion of special topics in human development. Provides advanced-level study on subfields of human development. Topics vary quarterly. Prerequisites: HDP 1, HDP 181, HDP 191, senior standing, and department approval. (F,W,S)

HDP 160. Special Topics Seminar in Human Development (4)

Special topics in human development are discussed. (May repeat when topics vary.) Prerequisite: department approval.

HDP 181. Experimental Projects in Human Development Research (6)

This laboratory course in human development is designed around a variety of intensive experimental projects. With lectures providing background information on research methods and child development, each assignment will include data collection and/or analysis, and a written laboratory report. Prerequisites: HDP 1, Statistics, and must be a declared HDP major. (F,W,S)

HDP 191. Field Research in Human Development (6)

This course combines lectures on research methodology (three hours/week) with an applied field research experience (four hours/week) conducted at a pre-approved study site. Required: Completion of a field notebook, review paper, oral presentation, and final paper. Prerequisites: HDP 1. Students must submit the pre-enrollment questionnaire one academic year prior to enrollment. See HDP Web site for details. (F,W,S)

HDP 193. Advanced Research in Human Development (4)

Specialized research project under the direction of a human development affiliated faculty member. May be taken for one or two quarters of credit. Prerequisites: declared HDP major, overall GPA of 2.8, nine units completed, three HDP core courses completed, and consent of instructor.

HDP 194A-B-C. Honors Thesis (4-4-4)

Students will take part in a weekly research seminar. In addition, they will plan and carry out a three-quarter research project under the guidance of a faculty member. The project will form the basis for their senior honors thesis. Prerequisites: overall GPA of 3.2, and a 3.5 GPA for courses taken in the human development major; an advanced course in statistics or experimental design, and consent of instructor.

HDP 195. Instructional Apprentice in Human Development (4)

Introduction to teaching within the discipline of human development. Students will attend lecture, be responsible for assisting the instructor with course preparation, and will lead a discussion section of one of the lower-division courses in the human development program. Limited to upper-division students majoring in human development with consent of instructor. Pass/Not Pass only. Prerequisites: Declared HDP major, overall GPA of 3.0, 90 units completed, and consent of instructor.

HDP 199. Independent Study in Human Development (4)

Independent study and research under the direction of a faculty member. Pass/Not Pass only. Prerequisites: consent of the instructor, completion of at least ninety undergraduate units with a minimum of 2.5 GPA, and a completed and approved Special Studies Form.
Humanities

OFFICE: Galbraith Hall, Room 180, Revelle College
http://humanities.uscd.edu

The Humanities Program offers interdisciplinary courses in history, philosophy, and literature, with a focus on major aspects of the Western humanistic tradition. In these courses, students examine the development of a wide variety of ideas and forms of expression that exert a major influence on modern America. Through lectures and class discussions, and through the writing of essays, students learn to interpret literary, historical, and philosophical texts and to conduct independent critical assessments of documents and ideas.

The sequence of courses, Humanities 1 through 5, meets the humanities and writing requirement of Revelle College. Instruction in university-level writing is part of all five courses, but students in Humanities 1 and 2 (six units each) receive intensive writing instruction.

Students must have satisfied the UC Entry Level Writing requirement before registering for any part of the humanities sequence. Humanities 1 and 2 must be taken before Humanities 3–5.

For detailed description of the Revelle College humanities requirement, see “Revelle College, General-Education Requirements, Humanities.”

THE HUMANITIES MINOR

The humanities minor consists of at least seven courses chosen from the listings of the Departments of History, Philosophy, Literature, Visual Arts, Music, and Theatre. All seven courses may be selected from the upper-division offerings, but at least five upper-division courses must be included. Students for whom Humanities 1–5 fulfill general-education requirements may use two of these courses towards fulfillment of requirements for the humanities minor.

For students who entered UC San Diego before January 1, 1998, the required number of courses for the minor is six courses, at least three of which must be upper-division.

Courses selected for the minor must be selected from the offerings of more than one department. They must concern themselves with more than one historical, national, or ethnic culture; and they must offer broad treatment of centrally important topics in the humanities. Thus, a course on the history of the United States since the Civil War would not be appropriate for the humanities minor, while a course in the history of California would not.

Here are some examples of study lists appropriate for the present humanities minor:

Example 1
- History HILD 2AB. United States
- History HILD 11. East Asia and the West 1279–1911
- History HIEU 143. European Intellectual History, 1870–1945
- Literature LTEA 110B: Modern Chinese Fiction in Translation
- Philosophy 160. Ethical Theory

Example 2
- Philosophy 177. Philosophy and Literature
- Theatre and Dance TDHT 116. Old Myths in New Films

Example 3
- Humanities HUM 1. The Foundations of Western Civilization: Israel and Greece
- Humanities HUM 2. Rome, Christianity and the Middle Ages
- Literature LTEN 145. The English Novel in the Twentieth Century
- Literature LTEN 146. Women and English/American Literature
- Literature LTEN 101. The Bible: The Narrative Books

Students should review their plans for the minor with the humanities advisor as well as with the advisors in their college. Before undertaking the minor, students must submit a study list for approval to the humanities office.

THE HUMANITIES MAJORS

Normally, students interested in majoring in humanities must choose a specific major in the humanities departments, i.e., history, literature, or philosophy. But students from Revelle and Muir Colleges may request to graduate with an approved individual/special project major in the humanities.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LOWER-DIVISION

1. The Foundations of Western Civilization: Israel and Greece (6)
 - Texts from the Hebrew Bible and from Greek epic, history, drama, and philosophy in their cultural context. Revelle students must take course for letter grade. Prerequisite: satisfaction of the UC Entry Level Writing requirement. (F)

2. Rome, Christianity, and the Middle Ages (6)
 - The Roman Empire, the Christian transformation of the classical world in late antiquity, and the rise of a European culture during the Middle Ages. Representative texts from Latin authors, early Christian literature, the Germanic tradition, and the high Middle Ages. Revelle students must take course for letter grade. Prerequisite: satisfaction of the UC Entry Level Writing requirement. (S)
International Migration Studies Minor

AFFILIATED FACULTY AND STAFF
Marisa Abrajano, Ph.D., Political Science
Robert Alvarez, Ph.D., Ethnic Studies
William Chandler, Ph.D., Political Science
Wayne Cornelius, Ph.D., Political Science, Emeritus
Yen Espiritu, Ph.D., Ethnic Studies
David Fitzgerald, Ph.D., Sociology
John Haviland, Ph.D., Anthropology
April Linton, Ph.D., Sociology
Gordon Hanson, Ph.D., IR/PS and Economics
Zoltan Hajnal, Ph.D., Political Science
David Pedersen, Ph.D., History
Everard Meade, Ph.D., History
William Chandler, Ph.D., Anthropology
Marisa Abrajano, Ph.D., Political Science
Elana Zilberg, Ph.D., Communication

OFFICE: 329 Eleanor Roosevelt College Administration Building
(858) 534-9864
http://roosevelt.ucsd.edu/int-migrat-studies/index.html

THE MINOR

The minor in International Migration Studies is administered by Eleanor Roosevelt College (ERC). It is designed to provide students with an in-depth understanding of the causes, politics, and social consequences of international migration from a broad comparative perspective. This program of study helps to prepare students for a career in research and teaching, immigrant service-providing organizations, government agencies, or law. The unique research and writing opportunities offered by this minor also make it an excellent preparation for graduate school.

This interdisciplinary minor covers a wide range of topics, including the economic, cultural, demographic, and political impacts of immigration; laws and government policies for controlling immigration and refugee flows; ethnic, gender, citizenship, and transnational dimensions of immigration; the integration of immigrant minorities in receiving societies; and immigrant history and literature. Students learn about other countries of immigration (especially in Western Europe and East Asia) in order to place the U.S. experience in comparative perspective.

REQUIREMENTS

The minor consists of a total of seven courses (twenty-eight units). The requirements can be fulfilled by courses at the lower- and upper-division levels or a combination of course work and either field research in immigrant communities or internships with local immigrant service organizations.

For more information about minor requirements, visit http://roosevelt.ucsd.edu/int-migrat-studies/index.html

1. All students in the minor are required to take one lower-division U.S. ethnic diversity course from the following list:

 ANLD 23. Debating Multiculturalism: Race, Ethnicity, and Class in American Societies (4)

 DOC 2. Dimensions of Culture: Justice (6)

2. Students also must take one of the following upper-division overview courses on comparative immigration:

 COHI 175. Special Topics: Transnationalism and Globalization (4) (proposed course)

3. Students complete the minor (twenty more required units) by pursuing one of two separate tracks.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

Track A: Additional Course Work

Students choosing this track will take five additional courses from the following list, four of which must be upper-division. Students in the course work track may not take more than a total of four courses from any one department for this minor.

ANLD 23. Debating Multiculturalism: Race, Ethnicity, and Class in American Societies (4) (if not taken as a required course above)

COHI 114. Bilingual Communication (4)

COHI 175. Special Topics: Communication and the Borders (4)

COCU 164. Representing Race, Nation, and Violence in Multicultural California (4)

COCU 168. Latino Space, Place, and Culture (4)

COCU 175. Advanced Topics in Communication, Culture: A Discussion of Migrant’s Survival Strategies in the Southwest (4)

COCU 175 E00. Advanced Topics in Built Environment: Space, Place, and Culture: The Politics and Poetics of the Latino Barrio (4)

CO 175. Special Topics: Transnationalism and Globalization (4) (proposed course)

ECON 114. Economics of Immigration (4)

ETHN 1A. Introduction to Ethnic Studies: Population Histories of the United States (4) (if not taken as a required course above)

ETHN 1B. Introduction to Ethnic Studies: Immigration and Assimilation in American Life (4) (if not taken as a required course above)

ETHN 116. The United States-Mexico Border in Comparative Perspective (4)

ETHN 118. Contemporary Immigration Issues (4)

ETHN 121. Contemporary Asian-American History (4)

ETHN 122. Asian-American Culture and Identity (4)

ETHN 123. Asian-American Politics (4)

ETHN 144. Bilingual Communities in the U.S.A. (4)

ETHN 151. Ethnic Politics in America (4)

ETHN 189. Special Topics: Chicana/ Latina Identities (4)

ETHN 189. Special Topics: Comparative Vietnamese and Filipino American Identities and Communities (4)

ETHN 189. Special Topics: Work and Family in Immigrant Communities (4)

HIEU 181. Immigration, Ethnicity, and Identity in Contemporary European Society (4)

HIEU 182. The Muslim Experience in Contemporary European Society (4)

HILA 162. Topics in Latin American History: The United States and El Salvador (4)

HILD 7A. Race and Ethnicity in the United States (4) (if not taken as a required course above)

HILD 7B. Race and Ethnicity in the United States (4) (if not taken as a required course above)

HILD 7C. Race and Ethnicity in the United States (4) (if not taken as a required course above)

HUS 124. Asian-American History (4)

HUS 140. Economic History of the United States I (4)

HUS 141. Economic History of the United States II (4)

HUS 167. Topics in Mexican-American History (4)

HUS 180. Immigration and Ethnicity in Modern American Society (4)

LTAM 100. Latino/a Cultures in the United States (4)

LTAM 102. Contemporary Chicano/a-Latino/a Cultural Production: 1960 to Present (4)

LTAM 105. Gender and Sexuality in Latino/a Cultural Production (4)

LTAM 106. Modern Chicana and Mexican Women Writings (4)

LTAM 107. Comparative Latino/a and U.S. Ethnic Cultures (4)

LTAM 109. Cultural Production of the Latino/a Diasporas (4)

LTPS 150A. Early Latino/a-Chicano/a Cultural Production: 1848 to 1960 (4)

LTPS 150B. Contemporary Latino/a-Chicano/a Cultural Production: 1960 to Present (4)

LTPS 151. Topics in Chicano/a-Latino/a Cultures (4)

LTPS 177. Literary and Historical Migrations (4)

LTEN 178. Comparative Ethnic Literature (4)

LTEN 181. Asian-American Literature (4)

POLI 100H. Race and Ethnicity in American Politics (4)
POLI 150A. Politics of Immigration (4)
(if not taken as a required course above)
SOC B 114. Culture and Ethnicity (4)
SOC B 125. Sociology of Immigration (4)
(if not taken as a required course above)
SOC B 127. Immigration, Race, and Ethnicity (4)
SOC B 133. Immigration in Comparative Perspective (4)
SOC C 139. Social Inequality: Class, Race, and Gender (4)
SOC B 127. Immigration, Race, and Ethnicity (4)
SOC B 127. Immigration, Race, and Ethnicity (4)
SOC B 133. Immigration in Comparative Perspective (4)
SOC D 151. Comparative Race and Ethnic Relations (4)
SOC D 169. Citizenship, Community, and Culture (4)
SOC D 175. Nationality and Citizenship (4)
SOC D 183. Minorities and Nations (4)
THHS 111. Hispanic-American Dramatic Literature (4)
USP 135. Asian and Latina Immigrant Workers in the Global Economy (4)

Track B: Field Research or Internship

Students choosing this track will receive intensive training in field research methods appropriate for studying international migration and then conduct field research in immigrant communities or do an academic internship in a local immigrant/refugee service-providing organization.

(A) Field Research Methods, Practicum, and Data Analysis

Students who choose this option will take the following three-course sequence:
Sociology 122A. Field Research Methods for Migration Studies (Fall Quarter)
Sociology 122B. Field Research Practicum (Winter Quarter)
Sociology 122C. Data Analysis/Write-up (Spring Quarter)

These courses provide students with field research methods training and allow them to go to Mexico for two weeks to conduct research in a rural community that sends migrant workers to the United States. They will also analyze and write up the data that is collected. Participants must be proficient in Spanish.

(B) Independent Field Research

Students who choose this option are required to take one upper-division research-methods course from the following:
ETHN 190. Studying Racial and Ethnic Communities
SOC 104. Field Research–Participant Observation
SOC 108A. Survey Research Design

Students will then do an academic internship in a nongovernmental organization or government agency that serves immigrants or refugees in the San Diego/Tijuana area. Internships for up to eight units will be arranged by the UCSD Academic Internship Program (AIP). The remaining units needed to complete the minor will consist of courses from the list under Track A.

(C) Internship

Students who choose this option are required to take one upper-division research-methods course from the following:
ETHN 190. Studying Racial and Ethnic Communities
SOC 104. Field Research–Participant Observation
SOC 108A. Survey Research Design

Students will then do an academic internship in a nongovernmental organization or government agency that serves immigrants or refugees in the San Diego/Tijuana area. Internships for up to eight units will be arranged by the UCSD Academic Internship Program (AIP). The remaining units needed to complete the minor will consist of courses from the list under Track A.

local immigrant community and write a substantial research paper based on this research.
ASSISTANT ADJUNCT PROFESSORS
Tai Ming Cheung, Ph.D.
Lesley McAllister, Ph.D., J.D.
OFFICE: Building 4, Level 1, Robinson Building
Complex

THE MASTER OF PACIFIC INTERNATIONAL AFFAIRS (M.P.I.A.)

REQUIREMENTS FOR ADMISSION

Students interested in pursuing the M.P.I.A. degree program at UCSD’s Graduate School of International Relations and Pacific Studies (IR/PS) must have earned a B.A., or its equivalent, from an institution of comparable standing to the University of California. A minimum grade-point average of 3.0 or better in undergraduate course work or prior graduate study is required for admission. Undergraduate preparation that includes one or more of the following areas is strongly encouraged: the social sciences (specifically economics and political science), quantitative methods (such as calculus and statistics), foreign language, and related area studies courses. The admissions committee looks for students with previous professional employment, a history of meaningful international experience, and demonstrated leadership ability.

Applicants are required to submit the following: an online UCSD application for graduate study (http://graduateapp.ucsd.edu); two official transcripts from each college or university attended; three letters of recommendation; a résumé or curriculum vitae; a personal statement; a Graduate Record Examination (GRE) or Graduate Management Admission Test (GMAT) score report. Test of English as a Foreign Language (TOEFL) scores are also required of international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English. A minimum score of 550 on the paper/pencil version and a minimum score of 213 on the computer-based version of the TOEFL is required. For further details regarding the application process, procedures, and deadlines please visit the IR/PS Web site, http://irps.ucsd.edu, and click on “Programs.”

Orientation tours are available for all prospective applicants who would like further information about the M.P.I.A. program. Tours assist prospective applicants in becoming better acquainted with IR/PS and in understanding how the program might relate to their long-term career goals. To sign up for a tour, please contact the IR/PS Office of Admissions at (858) 534-5914 or e-mail irps-apply@ucsd.edu.

The M.P.I.A. is a two-year, full-time program.

THE M.P.I.A. CURRICULUM

The M.P.I.A. curriculum (ninety-eight units) is made up of a set of core disciplinary and skill-oriented courses (thirty-eight units), a regional specialization (eight units), the foreign language requirement (up to twenty-four units), a professional career track (twenty-four units), and unstructured electives.
encouraged to undertake significant language study prior to coming to IR/PS.

Students on the Country and Regional Studies track are subject to a different foreign language requirement. These students must pass both the speaking and the reading proficiency examination in their selected language. The writing proficiency examination is optional. The minimum required level of proficiency is equivalent to a Foreign Service Institute (FSI) Scale 2+ for Spanish, 2 for Portuguese, and 2- for most other languages.

The proficiency examination is administered by appointment throughout the academic year. Students not following the Country and Regional Studies track may take the exam once free of charge in a language that IR/PS currently provides instructional support. Those students on the Country and Regional Studies track may take the exam twice free of charge, regardless of language selection. Please consult with the IR/PS Student Affairs for additional information.

A variety of language courses are offered by UCSD. IR/PS offers four-unit language courses for international relations professionals in Japanese, Mandarin Chinese, and Spanish at the intermediate or advanced levels. In addition, subject to demand, courses in Bahasa Indonesia or other Pacific Rim languages may be offered. Students electing to study a foreign language where IR/PS instructional support is not offered must secure their own language instruction and funding. Course credit for self-supported language learning may be given upon evaluation and approval of the IR/PS faculty. Please contact the IR/PS Student Affairs for additional information.

Students are placed in foreign language courses based on prior preparation and on the results of a placement test administered during orientation.

Career Tracks

Beyond the core curriculum, the regional specialization, and the foreign language requirement, students are offered an array of career tracks from which to choose. The career tracks provide an opportunity to focus on a specialized professional career path and to work closely with other students and faculty who share similar interests. A career track consists of six courses (twenty-four units). Each track combines some designated requirements and a range of relevant electives from which to choose. All students must complete a career track. A student whose interests do not fall within the existing range of tracks may complete the Self-Design track, and create a tailor-made package of courses in consultation with their faculty advisor. Currently, IR/PS offers the following career tracks:

International Management
International Politics
International Environmental Policy
Public Policy
International Economics
International Development and Non-Profit Management
Country and Regional Studies

Electives

Students may use remaining units to take electives across the range of IR/PS courses in management, political science, economics, regional studies, and language, as well as (with approval) courses offered elsewhere on campus. The number of elective units available to a student will vary, depending on factors such as prior language study. Prospective students are advised to consult the IR/PS Office of Admissions for a full list of elective courses currently offered.

EDUCATION ABROAD PROGRAM

Students are encouraged to participate in the Education Abroad Program (EAP) in their second year of study. Though this may necessitate a third year of study to meet M.P.I.A. requirements, the opportunity provides unparalleled experience in the selected regional study area and language. By petition, certain credits earned through EAP may be applied to the M.P.I.A. degree requirements.

CAREER SERVICES

The IR/PS Career Services office provides students on-going guidance, expertise, and resources to successfully manage their careers. This personalized process begins before school starts with Career Management Orientation, and continues during the two-year program and throughout the students’ careers as alumni.

The Career Services team offers IRPS CAREERS, an online system available twenty-four hours a day, seven days a week, which has a calendar of events, student profiles, online resumes, and a specialized database of employers with job/internship opportunities. Career consultants are available for daily scheduled appointments or quick consultations for resume writing, cover letters, effective job search strategies, interviewing skills (including videotaped mock interviews), labor market trends, job offer evaluation, and negotiation of total compensation packages. Alumni return to campus often for panels, information sessions, and employer interviews.

INTERNSHIPS

Students are strongly encouraged to participate in a variety of internship programs aligned with their career goals in business and industry, federal and state government, and nonprofit and multilateral organizations. The Career Services office works closely with students and alumni to make connections with global employers in the nonprofit, public, and private sectors based on the students’ interests.

To enhance students’ professional skills, IR/PS strongly recommends each student participate in an internship during the summer between the first and second year. Students with unpaid summer internships may receive financial support from IR/PS donors. Internships offer opportunities to explore career options, apply theoretical knowledge to real work situations, and gain experience important to potential future employers.

MASTER OF ADVANCED STUDIES IN INTERNATIONAL AFFAIRS (M.A.S.-I.A.)

REQUIREMENTS FOR ADMISSION

Students interested in pursuing the M.A.S.-I.A. degree program at UCSD’s Graduate School of International Relations and Pacific Studies must have earned a B.A., or its equivalent, from an institution of comparable standing to the University of California and have a minimum of five years of relevant work experience and/or graduate-level studies and relevant international experience including demonstrated proficiency in a regional language.

A minimum grade-point average of 3.0 or better in undergraduate course work or prior graduate study is required for admission. Undergraduate preparation that includes one or more of the following areas is strongly encouraged: the social sciences (specifically economics and political science), quantitative methods (such as calculus and statistics), foreign language, and related area studies courses.

Applicants are required to submit the following: an online UCSD application for graduate study (http://graduateapp.ucsd.edu); two official transcripts from each college or university attended; three letters of recommendation; a résumé or curriculum vitae; a personal statement. Test of English as a Foreign Language (TOEFL) scores are also required of international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English. A minimum score of 550 on the paper/pencil version, a minimum score of 80 for the Internet-based test, and a minimum score of 213 on the computer-based version of the TOEFL is required. For further details regarding the application process, procedures, and deadlines please visit the IR/PS Web site, http://irps.ucsd.edu, and click on “Programs.”

Orientation tours are available for all prospective applicants who would like further information about the M.A.S.-I.A. program. Tours assist prospective applicants in becoming better acquainted with IR/PS’s M.A.S.-I.A. program and in understanding how the program might relate to their long-term career goals. To sign up for a tour, please contact the IR/PS Office of Admissions at (858) 534-5914 or e-mail irps-apply@ucsd.edu.

The M.A.S.-I.A. is a nine-month, full-time course of study.

THE M.A.S.-I.A. CURRICULUM

The M.P.I.A. curriculum (forty-eight units) is made up of two core courses (eight units), a regional specialization (eight units), three M.A.S.-I.A. career track courses (twelve units), four elective courses from the IR/PS curriculum (sixteen units), and a four-unit capstone course.

Core Curriculum

The core curriculum is designed to provide a solid foundation in the study of international affairs and is devoted to the politics and economics of the region. It comprises the following courses:

The Politics of International and National Policy Making (IRCO 481)
The Regional Specialization

The regional specialization is made up of two designated courses on the economy and political system of a student’s chosen country or region. All students must complete a regional specialization, and may choose from among the following five options: Latin America, Japan, Korea, China, and Southeast Asia.

Foreign Language Proficiency

IR/PS considers foreign language competency to be an indispensable skill for international relations professionals. The M.A.S.-I.A. language proficiency requirement may be satisfied in any one of three ways: (a) native speaker ability; (b) completing six quarters (four semesters) of college-level language instruction from UCSD or a comparable institution, with a grade of B or better in the final course; or (c) passing a special IR/PS-administered language exam, which is the equivalent of the final exam administered in the sixth-quarter course in the selected language. The foreign language proficiency requirement may be completed prior to matriculation at IR/PS. Please contact IR/PS Student Affairs for additional information.

Career Tracks

Beyond the core curriculum and the regional specialization, M.A.S.-I.A. students are offered three career tracks from which to choose. The career tracks provide an opportunity to focus on a specialized professional career path and to work closely with other students and faculty who share similar interests. A career track consists of three courses (twelve units). Currently, IR/PS offers the following career M.A.S.-I.A. tracks:

International Security
International Political Economy
International Public Policy

Electives

Students may use remaining units to take electives across the range of IR/PS courses in management, political science, economics, regional studies, and language, as well as (with approval) courses offered elsewhere on campus. Prospective students are advised to consult the IR/PS Office of Admissions for a full list of elective courses currently offered.

THE PH.D. IN ECONOMICS AND INTERNATIONAL AFFAIRS

APPLICATION PROCESS

Applicants who seek admission to the highly competitive joint Ph.D. program must have earned a B.A., or its equivalent, from an institution of comparable standing to the University of California. Preference will be given to students with prior academic records of distinction and to those who have a background in one of the fields of emphasis and/or geographical areas covered by the program. Applicants are required to submit the following: an online UCSD application for graduate study (http://graduateapp.ucsd.edu); two official transcripts from each college or university attended; three letters of recommendation; a résumé or curriculum vitae; a personal statement; a writing sample; a Graduate Record Examination (GRE) score report. Test of English as a Foreign Language (TOEFL) scores are also required of all international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English. A minimum score of 550 on the paper/pencil version and a minimum score of 213 on the computer-based version of the TOEFL is required.

Applicants are required to submit the following: an online UCSD application for graduate study (http://graduateapp.ucsd.edu); two official transcripts from each college or university attended; three letters of recommendation; a résumé or curriculum vitae; a personal statement; a writing sample; a Graduate Record Examination (GRE) score report. A minimum score of 550 on the paper/pencil version and 213 on the computer-based version of the Test of English as a Foreign Language (TOEFL) is required of all international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English.

Candidates must present a dissertation prospectus no later than March of their third year in the doctoral program. They will be examined on their prospectus by their dissertation committee and must complete a dissertation, which makes a substantial and original contribution to knowledge commensurate with the standards of the University of California in order to receive the Ph.D. degree.

THE DOCTORATE OF PHILOSOPHY IN POLITICAL SCIENCE AND INTERNATIONAL AFFAIRS (PH.D.)

REQUIREMENTS FOR ADMISSION

Applicants who seek admission to the highly competitive joint Ph.D. program must have earned a B.A., or its equivalent, from an institution of comparable standing to the University of California. Preference will be given to students with prior academic records of distinction and to those who have a background in one of the fields of emphasis and/or geographical areas covered by the program.

Applicants are required to submit the following: an online UCSD application for graduate study (http://graduateapp.ucsd.edu); two official transcripts from each college or university attended; three letters of recommendation; a résumé or curriculum vitae; a personal statement; a writing sample; a Graduate Record Examination (GRE) score report. A minimum score of 550 on the paper/pencil version and 213 on the computer-based version of the Test of English as a Foreign Language (TOEFL) is required of all international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English.

The minimum criteria required for admission to the extremely selective joint Ph.D. program can be

THE DOCTORATE OF PHILOSOPHY IN POLITICAL SCIENCE AND INTERNATIONAL AFFAIRS (PH.D.)

REQUIREMENTS FOR ADMISSION

Applicants who seek admission to the highly competitive joint Ph.D. program must have earned a B.A., or its equivalent, from an institution of comparable standing to the University of California. Preference will be given to students with prior academic records of distinction and to those who have a background in one of the fields of emphasis and/or geographical areas covered by the program.

Applicants are required to submit the following: an online UCSD application for graduate study (http://graduateapp.ucsd.edu); two official transcripts from each college or university attended; three letters of recommendation; a résumé or curriculum vitae; a personal statement; a writing sample; a Graduate Record Examination (GRE) score report. A minimum score of 550 on the paper/pencil version and 213 on the computer-based version of the Test of English as a Foreign Language (TOEFL) is required of all international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English.

The minimum criteria required for admission to the extremely selective joint Ph.D. program can be
found on the following Web site: http://irps.ucsd.edu/programs/phd-program/apply.htm. Admission is offered to zero to two applicants per year.

THE PH.D. CURRICULUM

Program of Study

The Ph.D. in political science and international affairs prepares students for research careers in political science, with an emphasis in either international policy analysis or comparative policy analysis. The program combines the analytical skills of political science with political economy, institutional analysis, policy analysis (especially economic policy) and regional training, with special attention to East Asia and/or Latin America.

Course Requirements

The Ph.D. curriculum in political science and international affairs is designed to provide students with basic training in the techniques of modern political science, as well as applications to specific policy areas and countries or regions.

Seventeen courses are required prior to advancement to candidacy. There is a common core sequence, consisting of comparative public policy, two courses in comparative politics, two courses in international relations and research design.

Each student must declare a primary field of either international policy analysis (I.P.A.) or comparative policy analysis (C.P.A.), consisting of three specialized courses. There is also a regional focus of five courses. Three additional courses must be taken from a set of electives.

Regional Requirement

The regional focus consists of international relations of Asia Pacific or international relations of the Americas (depending on which region is the student’s primary region), three additional courses in the student’s primary region, and one course in another region offered by either IR/PS or the Department of Political Science are required. By petition, students may count a region other than one of the IR/PS offerings (currently China, East Asia, Japan, Latin America, or South-east Asia) as their primary region.

Language Requirement

All students in the program are required to meet a high standard of proficiency in a foreign language before being advanced to candidacy. The language must be linked to the student’s region.

Seminar Papers

Each student must submit two seminar papers, one in each field. The penultimate draft of each seminar paper must be completed prior to taking the appropriate field exam, and the final draft must be completed by the end of the quarter in which the exam is taken. Both papers must demonstrate knowledge of the student’s regional focus, as well as knowledge of relevant theory in the field. At least one of the papers must also demonstrate knowledge of a substantive policy area, related to the student’s primary focus field.

Comprehensive Examinations

Each student must pass two comprehensive examinations, one in international relations and one in comparative politics. Each exam will be graded by a joint committee consisting of three permanent faculty members, with at least one from political science and at least one from IR/PS.

The primary field exam contains a focus field, which may be either a substantive field of policy analysis (e.g. trade, environment, international finance) or the student’s chosen primary region.

Regardless of focus field, that part of the exam will test the student’s knowledge of theoretical literature and ability to apply it to a policy issue of relevance to the region.

Dissertation

Candidates must present a dissertation prospectus to be examined by their dissertation committee, and must complete a dissertation which makes a substantial and original contribution to knowledge commensurate with the standards of the University of California in order to receive the Ph.D. Degree. The dissertation committee shall consist of four faculty members chosen from the Department of Political Science and IR/PS, with at least one from each unit. A fifth member must be from outside these two departments.

Oral Defense

Students will defend their dissertation at a final oral examination, which will be open to the public.

Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of the fourth year. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

BACHELOR OF ARTS IN INTERNATIONAL STUDIES AND MASTER OF INTERNATIONAL AFFAIRS B.A./M.I.A.

REQUIREMENTS FOR ADMISSION

Students interested in pursuing the B.A./M.I.A. degree program at UCSD’s School of International Relations and Pacific Studies (IR/PS) must be currently enrolled in UCSD’s International Studies (IS) undergraduate major. Students who meet the admissions requirements listed below may apply for admission to the combined degree program prior to receipt of the B.A. degree.

1. Completion of fall and winter quarters of junior year with a minimum overall GPA of 3.00 and a minimum 3.4 GPA in International Studies upper-division course work.
2. Satisfactory completion of the foreign language requirement for the undergraduate International Studies major. The foreign language must be one of the Pacific Rim languages required by IR/PS.

4. Two letters of recommendation from individuals who can attest to the applicant’s academic promise and depth of interest in professional training in international affairs.
5. Students will also be required to complete a noncredit, professional internship in the field of international affairs during the summer prior to matriculation in the M.I.A. degree program.

Applicants will be admitted to the combined degree program on the basis of demonstrated academic excellence in upper-division course work in the International Studies major, Pacific Rim language proficiency, strong support from UCSD faculty in letters of recommendation, international experience, leadership, and community involvement.

THE B.A./M.I.A. CURRICULUM

International Studies (IS) students are required to declare a primary track (eight upper-division courses) and a secondary track (five upper-division courses). In addition, IS majors must successfully complete two upper-division gateway courses (INTL 101 and 102) and a senior research seminar (INTL 190). In addition to these required courses, IS majors admitted to the combined degree program must also complete two quantitative methodology courses (IRCO 453 and 454).

IS majors admitted to the combined degree program will complete all of these requirements for the International Studies degree in either Economics or Political Science in years one through four of their study at UCSD.

B.A. in International Studies–Economics

Economics Primary Track (eight courses)

The following courses are required:

IRCO 401: Managerial Economics
IRCO 403: International Economics
IRCO 420: Accounting
IRCO 421: Finance

In addition, students are required to take four additional Economics courses chosen from the IS-Economics course list or from IR/PS Economics courses, for a total of eight courses.

Political Science Secondary Track (five courses)

The following courses are required:

IRCO 400: Policymaking Processes
IRCO 410: International Politics and Security
IRCO 412: Globalization, the World System, and the Pacific

Two additional courses from the approved IS-Political Science course list or IR/PS electives in regional politics, comparative public policy, or international politics. Of the thirteen track courses, three must focus on one country or region.

B.A. in International Studies–Political Science

Political Science Primary Track (eight courses)

The following courses are required:

IRCO 412: Globalization, the World System, and the Pacific
IRCO 400: Policymaking Processes
IRCO 410: International Politics and Security
Additional Requirements

In the fifth year of the combined degree program, students will complete the requirements for the one-year M.I.A. degree. The M.I.A. requires a minimum of forty-eight units of 400-level course work complete at IR/PS, including a regional specialization (two four-unit courses), a professional career track (six four-unit courses), a capstone requirement (one four-unit course), elective course work (three four-unit courses), and an internship requirement (noncredit). The combined degree program includes the following additional requirements:

1. Language requirement: All International Studies majors must complete a language requirement equivalent to four quarters of undergraduate training in a Pacific Rim language (as defined by IR/PS) prior to admission to the combined degree program. In order to receive the M.I.A. degree at the end of the fifth year, students must complete at least two additional quarters in the same Pacific Rim language, for a total of six quarters. As an alternative to the six-quarter language requirement, students may demonstrate proficiency at the level currently required by IR/PS.

2. All students in the combined degree program will declare a special primary and secondary track in their International Studies major. These combined degree tracks will be Economics (primary track)/Political Science (secondary track) or Political Science (primary track)/Economics (secondary track). Students will complete the existing lower-division requirements for the Economics primary or secondary track (Mathematics 10A-8-C or Mathematics 20A-8-C, Economics 1-2-3).

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

IRPS 87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to 15–20 students, with preference given to entering freshmen.

IRGN 199. Independent Research/Study (2-4)
Independent research/study under the guidance of a faculty member of IR/PS. Prerequisite: consent of under-graduate advising office and instructor.

M.P.I.A. CORE CURRICULUM

IRCO 400. Policy-Making Processes (4)
This course is designed to teach students how to "read" a country's political and economic system. The course will examine how the evolution of different institutional frameworks in the countries of the Pacific region influences the way in which political choices are made. Prerequisite: IR/PS students only.

IRCO 401. Managerial Economics (4)
Survey of basic tools in economics. Examination of how commodity demand is determined, what affects supply of the commodity, how price is determined, when optimal market allocation of resources and failure occur, and basic topics concerning the aggregate economy.

IRCO 403. International Economics (4)
The theory and mechanics of international economics. Included will be such topics as real trade theory, international movements of capital, the effects of trade and capital flows on domestic economies, and policies toward trade and foreign investment.

IRCO 410. International Politics and Security (4)
Development of analytic tools for understanding international relations with applications to contemporary problems such as the environment, nuclear proliferation, human rights, humanitarian interventions, and the roots of conflict and cooperation among countries.

IRCO 412. Globalization, (4)
This course examines globalization and other economic and political factors that shape the international relations of the Pacific Rim. Specific topics include financial market integration, state cooperation and intervention, and case studies of individual countries.

IRCO 420. Accounting (4)
An introduction to financial accounting designed to prepare students to understand their own organizations' international operations and interpret information from outside organizations. The emphasis will be on understanding the
potential uses and limitations of accounting information for various management purposes, and the procedural aspects of accounting will be introduced only to the extent necessary to explicate the basic concepts.

IRCO 421. Finance (4)
This course surveys the financial problems facing managers and analyzes financial institutions, financial instruments, and capital markets. Tools acquired will prepare students to analyze international financial topics such as exchange rate behavior, the management of international risk, and international financing. Prerequisites: IRCO 420, 453, and 454.

IRCO 453. Quantitative Methods II (2)
This course is designed to provide proficiency in quantitative methods that are used for optimization and decision making. The use of spreadsheets is applied to data analysis and problem solving. Statistical theory and regression analysis are introduced.

IRCO 454. Quantitative Methods II (4)
This course covers elements from statistics that are central to business decision-making under uncertainty. In particular, regression analysis and estimation will be applied to problems of forecasting and optimization.

IRCO 460. Managerial Decision Making (4)
This course develops practical decision-making skills useful in a management setting. It stresses identifying relevant information and presenting it effectively. Skills include strategic analysis, negotiation, and application of quantitative models. Prerequisites: IRCO 400, 410, 412, 420, 421, 453 and 454, or consent of instructor.

IRCO 461. Business and Government in the Global Economy (4)
Business and government interaction in the world economy are examined from both public policy and private sector management perspectives. Topics include competitive advantage, the challenging boundaries of private and public, and the influence of private interests on public sector regulation. Prerequisites. IRCO 400, 410, 412, 420, 421, 453, and 454, or consent of instructor.

IRCO 462. Public Policy Workshop (4)
Prerequisite: IRCO 400, 410, 412, 420, 421, 453, and 454, or consent of instructor.

IRCO 463. Strategy and Negotiation (4)
This class introduces the fundamentals of corporate strategy, based on case studies requiring corporate analysis; and the principles of negotiation, based on exercises and class learning. Both sections of this class are highly applied, and require intensive out-of-class preparation and teamwork that help students acquire skills in analytical thinking, strategic action planning, and hands-on negotiations. Prerequisites: IRCO 400, 401, 410, 412, 420, 421, 453, and 454, or consent of instructor.

IRCO 464. The Corporation in the Global Economy: The Interaction of Business and Government (4)
What can countries, firms, and individuals do to position themselves effectively in the world economy? This course uses data and analysis to explore the global division of labor in the production value chain, government policy and the micro-organization of the firm. Prerequisites: IRCO 400, 401, 410, 412, 420, 421, 453, and 454, or consent of instructor.

GENERAL COURSES

Not all general courses are offered each year.

IRGN 400. International Relations of Asia-Pacific (4)
International relations and developing international political economies of nations bordering the Pacific. Topics include: the "Pacific Basin" concept; the U.S. and "hegemonic-stability" theory; legacies of the Korean War and Sino-Soviet dispute; immigration patterns and their consequences; and Japan's foreign policy.

IRGN 401. Ethnic Conflict (4)
Explanations for why ethnic conflicts break out, why they are difficult to resolve, and what effect outside intervention has on them. Introduce students to the major theories of ethnic and internal conflict. Policy debates regarding how the international community can best respond to these conflicts. Prerequisite: admission to program or consent of instructor.

IRGN 402. International Political Economy: Money and Finance (4)
Examination of effects of national policies and international collaboration on public and private international financial institutions in particular. The internationalization of debt crises, economic policy coordination, and the role of international lender of last resort. Prerequisite: IRCO 411 or consent of instructor. Conjoined with Political Science 144D and 262.

IRGN 404. Chinese Politics (4)
This course will analyze post-1949 Chinese politics, including political institutions, the policy making process, and citizen political behavior. Special attention will be given to the prospects for political reform in China.

IRGN 405. U.S.—China Relations (4)
Can the United States and China develop a constructive relationship or are they headed toward a hostile relationship? This course addresses this question by examining the domestic and international influences on the foreign policies of both countries and key issues in the bilateral relationship. Students also do policy projects.

IRGN 406. Financial Institutions (4)
This course analyzes the roles of money and financial institutions in the economy. The first part of the course focuses on microeconomics and the financial system. The topics include money, financial markets, financial intermediaries, banking regulations, and bank runs. The second part of the course focuses on the microeconomics aspects of financial institutions. The topics include financial development, financial liberalization, and their effects on the economy, especially economic growth and development. Prerequisite: IRCO 403 and IRCO 421 or consent of instructor.

IRGN 407. Policy Implementation Process (4)
Course builds on Policy-Making Processes class by focusing on the details of implementation. A case study approach is used to illustrate the process of policy making and implementation. Prerequisite: IRGO 400.

IRGN 408. Internal Conflict after the Cold War (4)
We will examine the process of conflict resolution and state reconstruction. Theoretical approaches discussed will then be applied to three recent case studies: Cambodia, Rwanda, and Bosnia. Policy implications for the international community will be discussed. Prerequisite: IRGO 410.

IRGN 409. Economic Policy in Latin America (4)
This course seeks to enhance the students' understanding of the main policy alternatives open to the largest Latin American countries. Development and stabilization policies are analyzed, emphasizing the current debate between conventional and heterodox policy packages and their impact on decisionmaking. Prerequisites: IRGO 401, 403.

IRGN 410. Corporate Governance (4)
Why do corporate governance systems—the way firms are run, the relationships among managers, stockholders, and workers—differ widely around the world? This course examines the various explanations for these striking differences and the consequences. Prerequisite: graduate level or consent of instructor.

IRGN 411. Business and Management in Japan (4)
This course introduces the main aspects of Japanese business and industrial organization (keiretsu), Japanese management practices, and the representation and influence of business interests in the Japanese political economy.

IRGN 412. International Competitiveness and the Globalized Value Chain (4)
This course explores the strategies countries pursue in the highly competitive world economy. It examines the global value chain and public policy toward education, labor, corporate social responsibilities, free markets and global trade, finance and sharing, and the political process.

IRGN 413. Corporate Strategy and the Environment (4)
This seminar examines the ability of firms to increase shareholder value through improved environmental performance. Topics include product differentiation, environmental regulations, the "Porter hypothesis" and environmental management systems. Readings include case studies and research articles. Prerequisites: IRGO 401, 421, 453, and 454.

IRGN 416. Post-War Politics in Japan (4)
Overview of post-war politics in Japan, including American Occupation reforms, political institutions, major political factors, mass and elite, and political behavior. Special attention will be paid to the issue of Japan's changing democracy.

IRGN 417. Microfinance (4)
Prerequisite: IRGO 421.

IRGN 420. Strategic Marketing Planning (4)
This course develops the microeconomic foundations of market exchange by explicitly examining the marketing details of transactions: demand and product differentiation, incomplete and incorrect information, search costs and promotion costs. It is argued that within this theoretical framework (i.e., model) most observed marketing behavior can be reconciled. The primary objective of this course is to learn to deduce firm and consumer motives from observed behavior. Prerequisites: IRGO 401 and 403, or consent of instructor.

IRGN 422. Investments (4)
Analysis of the risk/return characteristics of different assets as perceived by different investors and their implications for asset management and corporate financial policies. The course focuses on the valuation, use in hedging, and role as components of liabilities that mitigate risk and agency problems in business firms. Prerequisite: IRGO 421.

IRGN 420. Strategic Marketing Planning (4)
Prerequisite: IRGO 421.

IRGN 424. Corporate Finance (4)
The course focuses on the role of government as a regulator of financial markets and as a source of financial support for private sector activities. The course is designed for students with a strong background in finance and economics.

IRGN 429. The Globalization of Production (4)
This course examines how trade policy, information technology, and other factors shape the production strategies of multinational enterprises. Topics include foreign direct investment and the mode of entry into foreign markets, global outsourcing and the globalization of work, and the impact of trade and investment policy on the world location of production. Prerequisites: IRGO 401 and 403, or consent of instructor.

IRGN 431. Fiscal and Monetary Policy (4)
Prerequisite: IRGO 421.

IRGN 431. Fiscal and Monetary Policy (4)
Effects of fiscal and monetary policies on aggregate variables such as output, nominal and real interest rates, price level, and employment. Additional topics include the inflation/ unemployment trade-off, budget deficit, and economic growth.
IRGN 432. Immigration and Immigration Policy (4)
This course examines the role of immigration in the globalization of Pacific Rim economies. Topics include the economic forces behind immigration; the impact of immigration on wages, employment, and industry structure in sending and receiving economies; and the nature, scope, and political economy of immigration policy. Prerequisite: IRCO 401 or consent of instructor.

IRGN 434. Strategic Analysis (4)
This course analyzes competitive interactions, surveying the modern economic analysis of relationships between and within organizations. The foundations of the course are game theory and nonlinear dynamics of information. Topics include bargaining and contracting, principal agent models, and bidding models. Prerequisite: graduate standing or consent of instructor.

IRGN 435. Topics in International Trade (4)
This course develops new analytical models of international trade and examines their relevance for trade policy. Topics include setting trade policy where firms have global market power; the interaction between international trade, innovation, and economic growth; regional economic policy, dynamic industry clusters, and information technology; and new trade theory and the world distribution of income. Prerequisites: IRCO 401 and 403, or consent of instructor.

IRGN 436. Information and Management (4)
This is a seminar course on the use of information by organizations in strategic and tactical decision-making. Actual content varies, and currently includes doing business on the Internet and supply chain management. Prerequisite: IRGN 438 or consent of instructor.

IRGN 437. Policy Design (4)
Course teaches how to make strong, reasoned cases for new policy initiatives. Covers cost-benefit analysis, cost-effectiveness evaluation, multigain analysis, and how these are used in policymaking. Covers tools to predict policy impacts, like drawing on “best practice” and related experiences.

IRGN 438. Management: Analysis and Control (4)
This course provides a comprehensive introduction to the fundamental decisions and trade-offs associated with the control of a firm’s operations function. It analyzes production processes, quality control, inventory and material planning, kanban and just-in-time principles. Prerequisites: IRCO 453 and 454, or consent of instructor.

IRGN 439. Policy Evaluation Research (4)
Research-design class focusing on strategies for evaluating policy effectiveness with data in small quantities. Skills taught: understanding limits of what data say, and using information in the context of qualitative analysis. The concepts taught are similar to those presented in QM3. Prerequisites: IRCO 453 and IRCO 454.

IRGN 440. Managerial Accounting and Control (4)
Focus on planning, managing, controlling and evaluating costs for competitive advantage in global markets. Key topics will include cost structure, cost-based management decision making, strategic cost management, JIT/TOC cost management, and accounting control systems. Prerequisite: IRCO 420 or consent of instructor.

IRGN 443. Economics of Telecommunications (4)
This course will focus on the underlying economics of the telecommunications and public policy rationale of regulations applied to this industry. Both theoretical models and case studies will be used to provide better understanding of the telecommunication marketplace and the nature of competition between service providers in the industry. Prerequisite: IRCO 401 or consent of instructor.

IRGN 444. Product Development (4)
This course examines how high-tech companies develop successful products. Emphasizes interplay between business and technical issues, including marketing, financing, manufacturing, prototyping, testing, and design. Student teams develop novel products, from concept to working prototype, including a business plan for launching the product. Discussion of concurrent engineering, rapid prototyping, industrial design, and other design methodologies.

IRGN 446. Applied Data Analysis and Statistical Decision Making (4)
The goal of the course is to teach how to evaluate quantitative information in business and economics contexts, and to make sound managerial decisions in complex situations. Much of the process for the course will involve statistical software and spreadsheet analysis of data. The course covers various applied multivariate statistical methods beyond basics. Prerequisites: IRCO 453 and 454, or consent of instructor.

IRGN 447. Organizations (4)
A seminar course based on the modern economics of organizations and collective action. Both theoretical models and empirical evidence are used to explore the interplay between different organizational and collective action. Prerequisites: IRCO 453 and 454, or consent of instructor.

IRGN 448. Civil Society and Development (4)
To explore the roles that civil society/NGOs/the third sector can play in developing political, social, and economic progress in developing countries. To consider the strengths and weaknesses, capacities, and limitations of NGOs in developing countries. To provide students with experience in evaluating NGOs and in making professional recommendations to enhance their ability to make a difference. To prepare students to take leadership roles—whether in government, the private sector, or NGOs—in promoting civil-society participation in development.

IRGN 449. Making U.S. Foreign Policy (4)
Analysis of the interests, structure, and procedures of the main executive branch agencies involved in the formulation of U.S. foreign policy, and of the foreign policy process. Case studies and “daily briefings” to prepare students to perform professionally in the foreign policy arena. Prerequisites: IRCO 410 or consent of instructor.

IRGN 451. Economic Development (4)
This course examines comparative patterns of industrialization and agricultural modernization with a focus on certain common features of the modernization process and widely varying endowments, policies, and experiences, of different countries. Prerequisites: IRCO 401 and 403, or consent of instructor.

IRGN 452. Quantitative Methods for Advanced Analysts (4)
This course caters to the needs of those who routinely face a variety of advanced data-analysis challenges, such as international marketing and sales managers, consulting analysts, or international business development and intelligence specialists. Knowledge of introductory optimization and statistics, including linear regression, is assumed. The course is entirely practical in that it is organized around in-depth case studies, requiring students to work extensively with data. Methods covered include cluster, factor, and discriminate analysis, and modeling and simulation.

IRGN 453. Sustainable Development (4)
The course will cover the concept of sustainable development, ways in which sustainable development can be measured, evaluation of environmental damages and benefits, and the role of discounting, and will analyze cases demonstrating failure of the market.

IRGN 454. Current Issues in U.S.- Latin American Relations (4)
Issues to be actively debated include the collective defense of democracy, coping with revolutionary change, counter-narcotics, anti-corruption, international finance, trade, and U.S.- Mexican relations. Students analyze the strengths and weaknesses of U.S. policy and advocate alternative options. Prerequisite: IRCO 410 or consent of instructor.

IRGN 455. Economic Theories of Regional Integration (4)
The first part of the course covers the basic economics of trade among nations with more complicated topics in the theory of preferential trading arrangements, customs unions, and currency unions. In the second part we use the formal theory to compare economic integration in different parts of the world. Prerequisites: IRCO 401 and 403 or consent of instructor.

IRGN 456. Program Design and Evaluation (4)
Introduction to elements of program design and evaluation. Examines principles and guidelines used in creating a program and evaluating its success or failure. International case studies are explored. Students have the opportunity to develop their own program and evaluate projects.

IRGN 457. Cost Benefit Analysis (4)
Examination of public policy analysis, such as cost-benefit analysis and project evaluation, for use in policy formation. Sustainable development will receive particular attention. Case studies emphasizing the environment, agriculture and food, and economic development will be included.

IRGN 458. International Environmental Policy and Politics (4)
This course analyzes multilateral environmental agreements and negotiating positions of key countries on climate change, biodiversity conservation, sustainable development, and other subjects. It explores the challenges countries face to balance economic development objectives with global environmental concerns.

IRGN 459. Conflict Resolution of Environmental Issues (4)
Use of bilateral negotiations (U.S.-Canada), regional organizations (APEC and acid rain in Europe), and United Nations’ specialized agencies (UNEP and WMO) on ozone depletion and climate change) to mediate environmental disputes. Consideration of nontraditional approaches resolving international environmental problems. Prerequisite: graduate standing.

IRGN 460. The Politics of U.S.-Japan Economic Relations (4)
This course will analyze how the domestic politics of each country, their international negotiations, and their interaction concerning economic issues have affected the U.S.-Japan relationship. Both the politics of cooperation and integration, and trade friction and conflict will be addressed in part through study of specific cases.

IRGN 461. Doing Business in China (4)
This course describes the Chinese commercial, organizational, and cultural environment. Case studies of foreign businesses in China are examined, and the opportunities and pitfalls of operation in China are considered. Negotiation with Chinese counterparts is covered through a negotiation exercise. The focus is on mainland China, but some attention is given to business in Hong Kong and Taiwan as well. Students are required to prepare business plans for proposed Chinese ventures.

IRGN 462. Economies in Southeast Asia (4)
This course focuses on the long-run and current economic issues of Southeast Asia. Topics are economic growth, human capital, inequality and poverty, social institutions, the business sector, the financial sector, government, the external sector, and regional and interregional economic relations. For each topic, we will discuss the issues from selected countries in the region in more detail. Prerequisites: IRCO 401 and IRCO 403 or consent of instructor.

IRGN 463. Politics of Southeast Asia (4)
This course provides an introduction to five Southeast Asian countries: Indonesia, Thailand, Malaysia, the Philippines, and Vietnam. The focus will be on national level of political and economic issues in these countries. In addition, a number of region-wide issues will also be examined such as: Chinese business groups and networks; clientelism and corruption; regional trade and investment linkages; democratization; and the implications of political change for economic development. Prerequisite: Graduate standing or consent of instructor.

IRGN 464. Strategies and Skills for Effective Consulting (4)
This course will provide an introduction to the field of consulting. It will focus both on effective consulting strategies and on skills and tools that are helpful in the process. Technical, cultural, economic, and political issues will be considered, as the various aspects of consultant work are examined.
IRGN 465. Management of Non-profit Organizations (4)
Analyzes the particular environment in which non-profit organizations define and achieve their objectives. Management tools are applied to existing non-profits and to student projects.

IRGN 466. Public Finance (4)
Describes prudential investment and expenditure analysis; public budgeting; and assessment of budget priorities.

IRGN 467. Policymaking and Political Economy in Japan (4)
Examines the policymaking process in Japan, the interaction and role of state and non-state actors in shaping Japan’s economy. Analysis and comparison, through case studies of industrial policies (toward high-tech and declining industries), and non-industrial policies and their consequences.

IRGN 470. International Business Strategy (4)
This course analyzes corporate strategies and management issues in their international dimensions. Based on numerous case studies, the class examines the strategic opportunities and problems that emerge when companies transfer corporate skills and competence to other countries.

IRGN 471. Japanese Economy (4)
A broad survey of the Japanese economy, together with in-depth examination of some distinctively Japanese phenomena such as savings behavior, financial structure, industrial organization, and labor markets. Prerequisites: IRCO 401 and 403, or consent of instructor.

IRGN 472. Japanese Corporate Culture (4)
This course examines Japanese culture values and social relations in the context of business organizations. The central focus will be on the integration of individuals into their organizations and on the human relations characteristic of their work environments.

IRGN 473. International Negotiation (4)
This course attempts to reach a broad audience of students who seek in-depth understanding of how states and other international actors attempt to achieve specific objectives through give-and-take of the negotiation process. Cases include Northern Ireland and Middle East peace processes, negotiations leading to Dayton accords, and negotiations over Anti-ballistic Missile Treaty.

IRGN 478. Japanese Foreign Policy (4)
Examines the domestic and strategic sources of Japan’s foreign policy in the postwar era. Unlike IRGN 460, this course emphasizes Japan’s foreign economic policy in regional and global multilateral organizations, and the major security issues it confronts with its Asian neighbors.

IRGN 479. Politics and Institutions in Latin America (4)
Overview of Latin American politics and the “rules of the game,” both formal and informal. Key topics include military rule, presidentialism, and clientelism in the region as a whole, with special emphasis on Argentina, Brazil, Chile, and Mexico.

IRGN 481. Managing Country Risk in the Modern Multinational Corporation (4)
Examines ways to analyze, assess, and reduce country risk.

IRGN 483. Business and Policy in Southeast Asia (4)
Surveys various dimensions of business in Southeast Asia, with particular attention to the policy context. Special focus on technological capabilities of business organizations in Southeast Asia.

IRGN 484. Korean Politics (4)
This course will examine characteristics and distinctive aspects of contemporary Korean society and politics. Emphasis will be placed on continuity and change in social values, political culture and leadership, economic growth and its impact, and democratization and its future prospects. Prerequisite: consent of instructor.

IRGN 485. The Korean Economy (4)
Analytical review of South Korea’s economic performance. Examination of major policy changes (e.g., shifts toward export promotion, heavy and chemical industries promotion); Korea’s industrial structure including the role of large enterprises (chaeboll); role of government; links between Korea and other countries.

IRGN 486. Economic and Social Development of China (4)
This course examines China’s development experience from a generally economic standpoint. Contents include: patterns of growth; Chinese society and economy, geography and resource constraints, impact of the West and Japan; development since 1949 and contemporary problems and options.

IRGN 487. Applied Environmental Economics (4)
This course teaches students how to analyze environmental and natural resource policy issues in developing countries using economic concepts and methods. Weekly spreadsheet exercises based on real-world data provide hands-on practice. Prerequisites: IRCO 401, 453, 454, or consent of instructor.

IRGN 490. Special Topics in Asia Pacific Affairs (4)
A seminar course at an advanced level on a special topic in Asia Pacific international affairs. May be repeated for credit.

IRGN 492. Special Topics in Pacific Studies (2)
A seminar course at an advanced level on a special topic in Pacific Studies.

IRGN 497. Internship (2)
Independent research that draws on an internship with an organization relevant to career track and/or regional specialization. Nature of the required product to be determined by professor supervising the course. May be repeated for credit.

IRGN 498. Directed Group Study (2)
Directed reading in a selected area. The content of each course is to be decided by the professor directing the course with the approval of the student’s faculty advisor. May be repeated for credit.

IRGN 499. Independent Research (2-12)
Independent research under the guidance of a faculty member of IR/PS. May be repeated for credit.

LANGUAGE COURSES

IRLA 400A-B-C. Chinese Language for Professional Proficiency (4-4-4)
This course is designed to enable students at a low-intermediate level of proficiency to maintain and improve their Chinese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisites: IR/PS majors only, or by consent of instructor.

IRLA 401A-B-C. Chinese Language for Professional Proficiency (4-4-4)
This course is designed to enable students at an intermediate level of proficiency to maintain and improve their Chinese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisites: IR/PS majors only, or by consent of instructor.

IRLA 402A-B-C. Chinese Language for Professional Proficiency (4-4-4)
This course is designed to enable students at an advanced-intermediate level of proficiency to maintain and improve their Chinese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisites: IR/PS majors only, or by consent of instructor.

IRLA 410A-B-C. Japanese Language for Professional Proficiency (4-4-4)
This course is designed to enable students at a low-intermediate level of proficiency to maintain and improve their Japanese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisites: IR/PS majors only or by consent of instructor.

IRLA 411A-B-C. Japanese Language for Professional Proficiency (4-4-4)
This course is designed to enable students at an intermediate level of proficiency to maintain and improve their Japanese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisites: IR/PS majors only, or by consent of instructor.

IRLA 412A-B-C. Japanese Language for Professional Proficiency (4-4-4)
This course is designed to enable students at an advanced-intermediate level of proficiency to maintain and improve their Japanese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisites: IR/PS majors only, or by consent of instructor.

IRLA 430A-B-C. Portuguese Language for Spanish Speakers (4-4-4)
This course is designed to enable Spanish-speaking students to acquire proficiency in the Portuguese language through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisites: IR/PS majors only or by consent of instructor.

IRLA 431A-B-C. Second Year Portuguese Language for Spanish Speakers (4-4-4)
A continuation of first-year Portuguese for Spanish speakers. This course is designed to enable Spanish speaking students to be introduced to the level of Portuguese language through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisites: IR/PS majors only or by consent of instructor.

IRLA 440A-B-C. Spanish Language for Professional Proficiency (4-4-4)
This course is designed to enable students at a low-intermediate level of proficiency to maintain and improve their Spanish language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisites: IR/PS majors only or by consent of instructor.

IRLA 441A-B-C. Spanish Language for Professional Proficiency (4-4-4)
This course is designed to enable students at an intermediate level of proficiency to maintain and improve their Spanish language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisites: IR/PS majors only, or by consent of instructor.

IRLA 442A-B-C. Spanish Language for Professional Proficiency (4-4-4)
This course is designed to enable students at an advanced-intermediate level of proficiency to maintain and improve their Spanish language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisites: IR/PS majors only, or by consent of instructor.
I RGN 444A-B-C. Spanish Language for Professional Proficiency (4-4-4)
This course is designed to enable students at a superior level of proficiency to maintain and improve their Spanish language skills through individual training with an instructor. Prerequisites: IR/PS majors only, or by consent of instructor.

I RGN 445A-B-C. Spanish Language for Professional Proficiency (4-4-4)
This course is designed to enable students at a superior level of proficiency to maintain and improve their Spanish language skills through individual training with an instructor. Prerequisites: IR/PS majors only, by consent of instructor.

I RGN 446A-B-C. Bahasa Indonesia for Professional Proficiency (4-4-4)
This course is designed to enable students with basic knowledge and skills of Bahasa Indonesia to further develop communicative skills through a combination of classes, exercises, and other language experiences. Prerequisites: IR/PS majors only or consent of instructor.

I RL 500. Apprentice Teaching of Language (1-4)
This course is designed for graduate students serving as teaching assistants, includes discussion of teaching theories, techniques, and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. Prerequisite: Graduate standing.

PH. D. LEVEL COURSES
IRGN 200. Theory of International Relations: International System (4)
This course examines the concepts of international structure and system in the field of international relations. It covers the literature on realism, neorealism, world systems theory, and other system-level explanations of patterns of international conflict and cooperation, continuity, and change.

IRGN 201. Ethnic Conflict (4)
Explanations for why ethnic conflicts break out, why they are difficult to resolve, and what effect outside intervention has on them. Introduce students to the major theories of ethnic and internal conflict. Policy debates regarding how the international community can best respond to these conflicts. Prerequisite: admission to program or consent of instructor.

Examination of effective policies and international collaboration on public and private international financial institutions, in particular the management of international debt crises, economic policy coordination, and the role of international lender of last resort.

IRGN 204. International Relations of the Pacific (4)
International relations and developing international political economies of nations bordering the Pacific. Topics include the "Pacific Basin" concept; the U.S. and "hegemonic-stability" theory; legacies of the Korean War and Sino-Soviet dispute; immigration patterns and their consequences; and Japan's foreign policy.

IRGN 205. U.S.—China Relations (4)
Can the United States and China manage to develop a constructive relationship or are they headed toward a hostile relationship? This course addresses this question by examining the domestic and international influences on the foreign policies of both countries and key issues in the bilateral relationship. Students also do policy projects.

IRGN 206. Corporate Strategy and the Environment (4)
This seminar examines the ability of firms to increase shareholder value through improved environmental performance. Topics include product differentiation, strategic use of regulations, the "Porter hypothesis," and environmental management systems. Readings include case studies and research articles. Prerequisites: IRGO 401, 421, 453, 454, or consent of instructor.

IRGN 207. Policy Implementation Process (4)
This course builds on the core Policy-Making Processes class by focusing on the role of officials in setting and implementing policy. Ideally, elected officials make policies that unbiased, technically proficient bureaucrats carry out. This course provides some insights into why the real world departs from this. Prerequisite: IRGO 400.

IRGN 209. Strategic Marketing Planning (4)
This course develops the microeconomics foundations of market exchange by explicitly examining the marketing details of transactions: demand and product differentiation, incomplete and incorrect information, search costs and promotion costs. It is argued that within this theoretical framework (i.e., model) most observed marketing behavior can be reconciled. The primary objective of this course is to learn to derive firm and consumer motives from observed behavior. Prerequisites: IRGN 221 and 243, or consent of instructor.

IRGN 210. International Politics and Security (4)
Development of analytic tools for understanding international relations and the dispositions to contemporary problems such as the environment, nuclear proliferation, human rights, humanitarian interventions, and the roots of conflict and cooperation among countries.

IRGN 211. Financial Institutions (4)
This course analyzes the roles of money and financial institutions in the economy. The first part of the course focuses on microeconomics and the financial system. The topics include money, financial markets, financial intermediaries, banking regulations, and bank runs. The second part of the course focuses on the macroeconomics aspects of financial institutions. The topics include financial development and financial liberalization, and their effects on the economy, especially economic growth and development. Prerequisite: graduate level or consent of instructor.

IRGN 212. International Competitiveness and the Globalized Value Chain (4)
This course explores the strategies countries pursue in the highly competitive world economy. It examines the global value chain and public policy toward education, labor, corporate social responsibility, free markets and global trade, finance and shareholding, and the political process.

IRGN 212. The Politics of International Competitiveness (4)
Examination of policy debates concerning international economic relations, what policies promote or encourage effective participation in the international economy, and what political factors support or oppose such policies. Examples drawn from the experiences of the U.S., Japan, Europe, Latin America, and East Asia.

IRGN 213. Risk Management (4)
This course provides an introduction to derivative assets such as options, futures, and swap contracts. The main topics include money, financial markets, financial intermediaries, and bank runs. The second part of the course focuses on the microeconomics aspects of financial institutions. The topics include financial development and financial liberalization, and their effects on the economy, especially economic growth and development. Prerequisite: IRGN 221 and 243, or consent of instructor.

IRGN 214. Corporate Governance (4)
Why do corporate governance systems—the way firms are run, the relationships among owners, investors, stockholders, and workers—differ widely around the world? This course examines the various explanations for these striking differences and the consequences. Prerequisites: Corporate Governance, and Corporate Governance.

IRGN 216. Post War Politics in Japan (4)
Overview of postwar politics in Japan, including American Occupation reforms, political institutions, major political factors, mass and elite, and political behavior. Special attention will be paid to the issue of Japan's changing democracy.

IRGN 217. Microfinance (4)
This course will begin by examining financial markets in poor countries. Investigates how microfinance contracts overcome problems that had previously barred the extension of business credit in many environments. Prerequisite: admission to program or consent of instructor.

IRGN 218. Globalization, the World System, and the Pacific (4)
This course examines globalization and other economic and political factors that shape the international relations of the Pacific Rim. Specific topics include financial market integration, state cooperation and intervention, and case studies of individual countries.

IRGN 221. Managerial Economics (4)
Survey of basic tools in economics. Examination of how commodity demand is determined, what affects supply of the commodity, how price is determined, when optimal market allocation of resources and failure occur, and basic topics concerning the aggregate economy.

IRGN 222. Investments (4)
An analysis of the risk/return characteristics of different assets as perceived by different investors and their implications for security price behavior, emphasizing real world capital market behavior. International aspects include the role of exchange rate risk and international diversification. Prerequisites: IRGO 421, 453, and 454.

IRGN 223. The Globalization of Production (4)
This course examines how trade policy, information technology, and other factors shape the production strategies of multinational enterprises. Topics include foreign direct investment, the mode of entry into foreign markets, global outsourcing and the globalization of work, and the impact of trade and investment policy on the world location of production. Prerequisites: IRGN 221 and IRGN 243, or consent of instructor.

IRGN 224. Corporate Finance (4)
The topics covered are dividend policy and capital structure, options, debt financing, and short and long-term in financial planning. Course format will be mostly lectures with occasional cases. Some international aspects of corporate finance will also be discussed. Prerequisites: IRGN 221, 243, IRGO 420, 421, 453 and 454, or consent of instructor.

IRGN 225. Managing Service Operations (4)
This course covers (1) strategic issues such as service vision, market positioning, growth, and globalization; (2) process design, facility design, and capacity planning; (3) system control and performance measurement; and (4) human resources, information technology, and other service media. Prerequisites: IRGO 460 and either IRGO 438 or consent of instructor.

IRGN 226. Management of Technology (4)
How companies choose and develop new technology. Case studies, lectures by executives. National technology policy, including the roles of intellectual property. This course emphasizes technology strategy at corporate/national level; the Product Development course emphasizes tactics for development teams.

IRGN 227. Organizations (4)
A seminar course based on the modern economics of organization. Covers an eclectic set of readings on a diverse range of organizations, looking at how incentives for collective action are set. Prerequisites: IRGN 221 and 243 or consent of instructor.

IRGN 229. Business and Management in Japan (4)
This course introduces the main aspects of Japanese business and industrial organization (keiretsu), Japanese management practices, and the representation and influence of business interests in the Japanese political economy.

IRGN 231. Fiscal and Monetary Policy (4)
Effects of fiscal and monetary policies on aggregate variables such as output, nominal and real interest rates, price level, and employment. Additional topics include the inflation/unemployment trade-off, budget deficit, and economic growth.

IRGN 232. Immigration and Immigration Policy (4)
This course examines the role of immigration in the globalization of Pacific Rim economics. Topics include the economic forces behind immigration; the impact of immigration on wages, employment, and industry structure in
sending and receiving countries; and the nature, scope, and political economy of immigration policy. Prerequisites: IRCO 401 or consent of instructor.

IRGN 235. Topics in International Trade (4)
This course develops new analytical models of international trade and examines their relevance for trade policy. Topics include setting trade policy where firms have global market power; how trade affects country welfare; and the effect of international trade on innovation, and economic growth; regional economic policy, dynamic industry clusters, and information technology; and new trade theory and the world distribution of income.

IRGN 237. Policy Design (4)
Course teaches how to make strong, reasoned cases for new policy initiatives. Covers cost-benefit analysis, cost-effectiveness analysis, and other evaluation methods. Special emphasis is placed on the use of information technology in policy-making. Covers tools to predict policy impact, like drawing on “best practice” and related experiences.

IRGN 238. Production and Operations Management: Analysis and Control (4)
This course provides a comprehensive introduction to the fundamental decisions and trade-offs associated with the control of a firm’s operations function. It analyzes production processes, quality control, inventory and materials planning, kanban, and just-in-time principles. Prerequisites: IRCO 453 and 454, or consent of instructor.

IRGN 239. Policy Evaluation (4)
Research design and focus on strategies for evaluating policies’ effectiveness with data in small quantities. Skills taught: understanding limits of what data say, and using information optimally. The emphasis is on qualitative analysis. The concepts taught are similar to those presented in OMS. Prerequisites: IRCO 453 and 454.

IRGN 240. Applied Data Analysis and Statistical Decision Making (4)
The goal of the course is to teach how to evaluate quantitative information in business and economics contexts, and to make sound managerial decisions in complex situations. Much of the problems and the course work will involve statistical software and spreadsheet analysis of data. The course covers various applied multivariate statistical methods beyond basics. Prerequisites: IRCO 453 and 454, or consent of instructor.

IRGN 242. Economics of Telecommunications (4)
This course will focus on the underlying economics of the telecommunication market and public policy rationale of regulations applied to this industry. Both theoretical models and case studies will be used to provide better understanding of the telecommunication marketplace and the nature of competition between service providers in the industry. Prerequisite: IRGN 221 or consent of instructor.

IRGN 243. International Economics (4)
The theory and mechanics of international economics. Included will be such topics as real trade theory, international movements of capital, the effects of trade and capital flows on domestic economies, and policies toward trade and foreign investment.

IRGN 244. Product Development (4)
This course examines how high-tech companies develop successful products. Emphasizes interplay between business and technology issues, including marketing, finance, manufacturing, prototyping, testing, and design. Student teams develop novel products, from concept to working prototype, including a business plan for launching the product. Discussion of concurrent engineering, rapid prototyping, industrial design, and other design methodologies.

IRGN 248. Civil Society and Development (4)
To explore the roles that civil society/NGOs/the third sector can play in advancing political, social, and economic progress in developing countries. To consider the strengths and weaknesses, capacities, and limitations of NGOs in developing countries. To provide students with experience in evaluating NGOs and in making professional recommendations to enhance their ability to make a difference. To prepare students to play leadership roles in government, the private sector, or NGOs—in promoting civil-society participation in development.

IRGN 249. Making U.S. Foreign Policy (4)
Analysis of the interests, structure, and procedures of the main executive branch agencies involved in the formulation of foreign policy, and of the roles of Congress, the media, public opinion, and non-governmental actors. Case studies of major foreign policy problems will be used to prepare students to perform professionally in the foreign policy arena. Prerequisite: IRGN 210 or consent of instructor. Suggested: IRGN 211.

IRGN 250. The Politics of U.S.-Japan Economic Relations (4)
This course will analyze how the domestic politics of each country, their international negotiations, and their interaction with other countries have affected the U.S.-Japan relationship. Both the politics of cooperation and integration, and trade friction and conflict will be addressed in part through study of specific cases.

IRGN 251. Economic Development (4)
This course examines comparative patterns of industrialization and agricultural modernization with a focus on certain common features of the modernization process and widely varying endowments, policies, and experiences of different countries. Prerequisites: IRGN 221 and 243, or consent of instructor.

IRGN 252. Quantitative Methods for Advanced Analysts (4)
This course caters to the needs of those who routinely face a variety of advanced data analysis challenges such as international marketing and sales managers, consulting analysts, or international business development and intelligence specialists. Knowledge of introductory optimization and statistics is assumed. The course is entirely practical in that it is organized around in-depth case studies, requiring students to work extensively with data. Methods covered include cluster, factor, and discriminant analysis, and modeling and simulation.

IRGN 256. Program Design and Evaluation (4)
Introduction to elements of program design and evaluation. Examines principles and guidelines used in creating a program and evaluating its success or failure. International case studies are explored. Students have the opportunity to develop their own program and evaluate projects.

IRGN 257. Cost Benefit Analysis (4)
Examination of public policy analysis, such as cost-benefit analysis and project evaluation, for use in policy formation. Sustainable development will receive particular attention. Case studies emphasizing the environment, agriculture and food, and economic development will be included.

IRGN 258. International Environmental Policy and Politics (4)
This course examines multilateral environmental agreements and negotiating positions of key countries on climate change, biodiversity conservation, sustainable development, and other subjects. It explores the challenges countries face to balance economic development objectives with global environmental concerns.

IRGN 259. Conflict Resolution of Environmental Issues (4)
Use of bilateral negotiations (U.S.-Canada), regional organization (ECO and acid rain in Europe), and United Nations’ specialized agencies (UNEP and WMO on ozone depletion and climate change) to mediate environmental disputes. Consideration of various international approaches to resolving international environmental problems.

IRGN 260. Economic and Social Development of China (4)
This course examines China’s development experience from a generally economic standpoint. Contents include: patterns of traditional Chinese society and economy; geography and resource constraints, impact of the Western and Japan; development since 1949, and contemporary problems and options.

IRGN 261. Chinese Politics (4)
This course covers post-1949 Chinese politics, including political institutions, the policy-making process, and citizen political behavior. Special attention will be given to the prospects for political reform in China.

IRGN 263. Political Economy of Southeast Asia (4)
This course provides an introduction to five Southeast Asian countries: Indonesia, Thailand, Malaysia, the Philippines, and Vietnam. The focus will be on national level political and economic issues in these countries. In addition, we will also be examining a number of region-wide issues: Chinese business groups and networks; clientelism and corruption; regional trade and investment linkages; democratization; and the implications of political change for future economic development. Prerequisite: graduate standing or consent of instructor.

IRGN 264. Economies in Southeast Asia (4)
This course focuses on the long-run and current economic issues of Southeast Asia. The topics are economic growth, human capital, inequality and poverty, social institutions, the business sector, the financial sector, government, the external sector, national and regional economic relations. For each topic, we will discuss the issues from selected countries in the region in more detail.

IRGN 265. Management of Non-Profit Organizations (4)
Analyzes the particular environment in which non-profit organizations define and achieve their objectives. Management tools are applied to existing non-profits and to student projects.

IRGN 266. Public Finance (4)
Describes principles of taxation and expenditure analysis; public budgeting; and assessment of budget priorities.

IRGN 270. International Business Strategy (4)
This course analyzes corporate strategies and management issues in their international dimensions. Based on numerous case studies, the class examines the strategic opportunities and problems that emerge when companies transfer corporate skills and competence to other countries.

IRGN 271. Japanese Economy (4)
A broad survey of the Japanese Economy, together with in-depth examination of some distinctively Japanese phenomena such as savings behavior, financial structure, the role of thebanking system, and its effects on aggregate demand, and the implications of political change for future economic development. Prerequisites: IRGN 221 and 243, or consent of instructor.

IRGN 273. Current Issues in U.S.-Latin American Relations (4)
Issues to be actively debated include the collective defense of democracy, coping with revolutionary change, counter-narcotics, anti-corruption, international finance, trade, and U.S.-Mexican and U.S.-Brazilian relations. In each case, students analyze the strengths and weaknesses of current U.S. policy and advocate alternative options. Prerequisite: IRCO 210 or consent of instructor.

IRGN 274. Economic Policy in Latin America (4)
This course seeks to enhance the students’ understanding of the main policy alternatives open to the largest Latin American countries. Development and stabilization policies are analyzed, emphasizing the current debate between conventional and heterodox policy packages and their impact on decision making. Prerequisites: IRGN 221 and 243.

IRGN 276. International Negotiation (4)
This course attempts to reach a broad audience of students who seek in-depth understanding of how states and other international actors attempt to achieve specific objectives through give-and-take of the negotiation process. Cases include Northern Ireland and Middle East peace processes, negotiations leading to Dayton accords, and negotiations over Anti-Ballistic Missile Treaty.

IRGN 278. Japanese Foreign Policy (4)
Examines the domestic and strategic sources of Japan’s foreign policy in the postwar era. Unlike IRGN 460, this course emphasizes Japan’s foreign economic policy in regional and global multilateral organizations, and the major security issues it confronts with its Asian neighbors.

IRGN 281. Managing Country Risk in the International Business Environment (4)
Case studies will be used to provide better understanding of the international marketplace and the nature of competition between service providers in the industry. Prerequisites: IRGN 221 and 243.
IRGN 284. Korean Politics (4)
This course will examine characteristics and distinctive aspects of contemporary Korean society and politics. Emphasis will be placed on continuity and change in social values, political culture and leadership, economic growth and its impact, and democratization and its future prospects. Prerequisite: consent of instructor.

IRGN 285. The Korean Economy (4)
Analytical review of South Korea's economic performance. Examination of major policy changes (e.g., shifts toward export-promotion, heavy and chemical industrial promotion), Korea's industrial structure including the role of large enterprise (chaebol); role of government; links between Korea and other countries.

IRGN 287. Politics and Institutions in Latin America (4)
Overview of Latin American politics and the "rules of the game," both formal and informal. Key topics include military rule, presidentialism, and clientelism in the region as a whole, with special emphasis on Argentina, Brazil, Chile, and Mexico.

IRGN 289. Applied Environmental Economics (4)
This course teaches students how to analyze environmental and natural resource policy issues in developing countries using economic concepts and methods. Weekly spreadsheet exercises based on real-world data provide hands-on practice. Prerequisites: IRCO 453, 454, IRGN 221, or consent of instructor.

IRGN 290. Special Topics in Pacific International Affairs (4)
A seminar course at an advanced level on a special topic in Pacific international affairs. May be repeated for credit.

IRGN 292. Special Topics in Pacific Studies (2)
A seminar course at an advanced level on a special topic in Pacific Studies.

IRGN 298. Directed Group Study (2)
Directed reading in selected area. The content of each course is to be decided by the professor directing the course with the approval of the student's faculty advisor. May be repeated for credit. Prerequisites: graduate standing and consent of faculty advisor.

IRGN 299. Independent Research (2-12)
Independent research under the guidance of a faculty member in IR/PS. May be repeated for credit. Prerequisites: graduate standing and consent of faculty advisor.
International Studies

PROGRAM FACULTY
Eric J. Bakovic, Ph.D., Associate Professor, Linguistics
Prashant Bharadwaj, Ph.D., Assistant Professor, Economics
Suzanne Brenner, Ph.D., Associate Professor, Anthropology
J. Lawrence Broz, Ph.D., Associate Professor, Political Science
Robert Cancel, Ph.D., Associate Professor, Literature
Marsha A. Chandler, Ph.D., Professor, International Relations and Pacific Studies
William Chandler, Ph.D., Professor, Political Science
Ellen T. Comisso, Ph.D., Professor, Political Science
Ann L. Craig, Ph.D., Associate Professor, Political Science
Joseph W. Esherick, Ph.D., Professor, History
Karen E. Ferree, Ph.D., Assistant Professor, Political Science
James H. Fowler, Ph.D., Associate Professor, Political Science
Clark Gibson, Ph.D., Professor, Political Science; Director, International Studies Program
Peter A. Gouveitch, Ph.D., Professor, International Relations and Pacific Studies
Theodore Groves, Ph.D., Professor, Economics
Stephen M. Haggard, Ph.D., Professor, International Relations and Pacific Studies
Gordon H. Hanson, Ph.D., Professor, International Relations and Pacific Studies
Takeo Hoshi, Ph.D., Professor, International Relations and Pacific Studies
Alan C. Houston, Ph.D., Professor, Political Science; Provost, Eleanor Roosevelt College
Christine Hunefeldt, Ph.D., Professor, History; Director, CILAS
Stephanie H. Jed, Ph.D., Associate Professor, Literature
Bennetta W. Jules-Rosette, Ph.D., Professor, Sociology
Miles E. Kahler, Ph.D., Professor, International Relations and Pacific Studies
Hasan Kayali, Ph.D., Associate Professor, History
Todd Kontje, Ph.D., Professor, Literature
Nancy H. Kwak, Ph.D., Assistant Professor, History
David A. Lake, Ph.D., Professor, Political Science
Lisa Lowe, Ph.D., Professor, Literature
Victor V. Magagna, Ph.D., Associate Professor, Political Science
Meguni Naoi, Ph.D., Assistant Professor, Political Science
Nancy G. Postero, Ph.D., Associate Professor, Anthropology
Michael T. Provence, Ph.D., Associate Professor, History
Pamela Radcliff, Ph.D., Associate Professor, History
James E. Rauch, Ph.D., Professor, Economics
Roddy Reid, Ph.D., Professor, Literature
Joel Robbins, Ph.D., Professor, Anthropology
Akos Rona-Tas, Ph.D., Associate Professor, Sociology
Sharon Rose, Ph.D., Associate Professor, Linguistics
Christina J. Schneider, Ph.D., Assistant Professor, Political Science
Lisa R. Shaffer, Ph.D., Adjunct Professor, International Relations and Pacific Studies/Director, Sustainability Solutions Institute
Peter H. Smith, Ph.D., Professor, Political Science
Stefan A. Tanaka, Ph.D., Professor, History
Christina L. Turner, Ph.D., Associate Professor, Sociology
Carlos H. Waisman, Ph.D., Professor, Sociology
Lisa Yoneyama, Ph.D., Associate Professor, Literature
Leon Zamosc, Ph.D., Associate Professor, Sociology

OFFICE: Suite 100, ERC Administration Building
http://isp.ucsd.edu

THE INTERNATIONAL STUDIES PROGRAM

Technology and the forces of cultural and economic integration appear to reduce the distances between societies, which now impinge on one another on many dimensions. At the same time, ethnic, religious, and economic conflicts erupt within and between societies, often in violent form. Both the proximity of other societies and the remaining divides within and between them demand a better understanding of their cultures and institutions. Societies cannot be understood in isolation or at a single point in time, however; they are shaped by global and regional environments—political, military, economic, cultural—and their pasts. Individuals and societies in turn shape those environments as they reinterpreta their histories.

Using different disciplinary lenses, the international studies major explores the interaction between international and national, global and local, contemporary and historical. The program builds on the strengths of existing international specializations at UC San Diego. International relations and comparative politics are established and distinguished fields of political science. The comparative study of societies and cultures lies at the core of sociology and anthropology. Literature and linguistics offer a rich array of courses dealing with languages and traditions outside the English-speaking societies. Area studies programs provide comprehensive understanding of particular countries and regions.

The international studies major provides students with both a firm grounding in a discipline and the flexibility to permit exploration from alternative perspectives. The primary and secondary tracks chosen by each student contain the disciplinary foundations of the major. International studies majors also complete two core courses that serve as gateways to disciplinary approaches and to central international and comparative issues that cut across disciplines. Among these subjects are cultural boundaries and identities, economic and social development, international and regional integration and their effects, the evolution of political and social institutions, and forms of communication and language. A required capstone seminar permits the completion of a research paper in close association with a member of the faculty. International studies majors benefit throughout from the activities and programs of the Institute for International, Comparative, and Area Studies (IICAS), the home for international studies at UCSD.

Education Abroad

Majors in international studies are encouraged to participate in the UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP). Subject to approval by the faculty director of the major, up to six courses taken through EAP/OAP will be accepted for credit toward the major. Students are strongly encouraged to complete INTL 101 and INTL 102 before departure. Students interested in studying abroad should see an international studies program advisor to discuss appropriate courses and programs for their plan of study. Information on EAP/OAP is given in the Education Abroad Program section of the UC San Diego General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit its Web site at http://programsabroad.ucsd.edu. Financial aid can be used for EAP/OAP study, and special study abroad scholarships are also available.

For information on study abroad in the ISP, visit http://isp.ucsd.edu and http://programsabroad.ucsd.edu/pao/pdffiles/newintlabroadmap.pdf.

Careers

International studies attracts students who are interested in a variety of careers, including government and international organizations, international business, non-governmental organizations, journalism, the arts, and the media. Because of its strong disciplinary core, the major also prepares students who wish to pursue graduate degree programs in international affairs or in one of the participating disciplines.

Honors

The Honors Program in International Studies recognizes academic excellence in the major. The Honors Program allows qualified students to complete an honors thesis on a topic of their choice in close collaboration with a member of the UCSD faculty. Students who wish to participate in the Honors Program in International Studies should indicate their interest in the spring quarter of their junior year. Honors program applications are available on the ISP Web site. Applications are due by Monday of the ninth week, the quarter before you enroll in 190H.

Referto http://isp.ucsd.edu/content/is_major/honors.php for additional requirements and information pertaining to the ISP Honors Program.

Requirements for the Honors Program

Candidates for honors in any of the International Studies degrees must meet the following requirements:

• A GPA of 3.5 in courses in the International Studies Major (INTL 101, 102, primary track, and secondary track courses)

• Completion of INTL 190H: Senior Honors Seminar in International Studies.

• Completion of a senior honors thesis (INTL 196H). On the recommendation of the student’s instructor in INTL 190H and with the approval of the director of the International Studies program, qualified students will enroll in INTL 196H:
Directed Thesis Research (4 units) and complete a senior honors thesis under the direction of a member of the International Studies faculty. The thesis must reflect a research project that is substantially broader in scope and that includes more original research than the research paper required of all International Studies students in INTL 190.

Criteria for “Distinction,” “High Distinction,” and “Highest Distinction”

- Students must maintain a 3.5 GPA in the major to graduate with distinction.
- Each student whose honors thesis also earns a grade of A– shall be entitled to the designation “with distinction.”
- Each student whose honors thesis earns a grade of A shall be entitled to the designation “with high distinction.”
- Each student whose honors thesis earns a grade of A+ shall be entitled to the designation “with highest distinction.”

Please refer to the International Studies Program Web site for additional requirements.

THE INTERNATIONAL STUDIES MAJOR

A student who satisfactorily completes the general-education requirements of Muir, Revelle, Marshall, Warren, Roosevelt, or Sixth College in addition to the international studies requirements described below will be awarded one of the following bachelor of arts degrees based upon selection of the primary track:

International Studies—Anthropology
International Studies—Economics
International Studies—History
International Studies—Linguistics
International Studies—Literature
International Studies—Political Science
International Studies—Sociology

All upper-division courses applied to the requirements of the major must be taken for a letter grade. A 2.0 grade-point average is required in the major, and students must earn at least C– in each course counted for the major. Transfer students should see the international studies advisor to determine whether courses taken elsewhere satisfy international studies program requirements.

LOWER-DIVISION REQUIREMENTS

Foreign language (four quarters of college-level language or equivalent proficiency).

Students majoring in international studies are required to demonstrate basic proficiency in a modern foreign language by completing four quarters of foreign language instruction (or equivalent) with a passing grade. Students may also complete this requirement by demonstrating advanced language ability on a proficiency exam.

College-level language study is a prerequisite for study abroad in most non-English speaking countries and enhances understanding of those societies. Students who plan to study abroad in non-English speaking countries may need to take additional language classes, and they will need to take all language courses for letter grades.

Students should make substantial progress toward fulfilling college general-education requirements and the foreign language requirement of the international studies major before beginning the core sequence of the international studies major.

UPPER-DIVISION REQUIREMENTS

The upper-division requirements for a major in international studies are:

1. Two core courses (INTL 101 and INTL 102)
2. A capstone seminar (INTL 190)
3. Eight 4-unit, upper-division, non-language courses in a primary track
4. Four 4-unit, upper-division, non-language courses in a secondary track (different from primary track)

Core Courses

Two core courses (INTL 101 and INTL 102) provide an intellectual gateway to central issues and disciplinary approaches in international studies. Students may begin the sequence with either course. Sophomore status is a prerequisite for both courses.

INTL 101. Culture and Society in International Perspective (4)
INTL 102. Economics, Politics, and International Change (4)

Capstone Seminar

All majors will complete the capstone seminar during their senior year. Students are required to complete a research paper for this course. INTL 190. Seminar in International Studies (4)

Regional Requirement

Of the thirteen track courses (eight primary and five secondary), three courses must concentrate on one country or region outside the United States to complete the International Studies Program regional requirement.

Departments Offering Both Primary and Secondary Tracks

Anthropology

Primary Track: Students are required to take at least one course from the following:

ANTH 101. Foundations of Social Complexity
ANTH 102. Human Evolution
ANTH 103. Sociocultural Anthropology

The remaining upper-division courses should be selected from the Anthropology: Sociocultural (ANSC) and Archaeology (ANAR) listings. Up to two approved courses from Anthropology: Biological Anthropology (ANBI) can also be counted toward the major with the approval of the international studies program advisor.

Secondary Track: Students are encouraged to take ANTH 101 and 103; all other courses should be from the ANTH, ANSC, or ANAR series; one course from the ANBI series will be accepted for credit by petition.

Economics

Primary and Secondary Tracks: Both primary and secondary track IS majors must satisfy the following six lower-division department requirements with a C– or better:

Calculus. Mathematics 10A-B-C or Mathematics 20A-B-20C and Economics 1, 2, 3

Upper-division courses may be selected from

Economics 100A-B-C. Microeconomics
Economics 110A-B. Macroeconomics
Economics 120A-B-C. Econometrics
Economics 101. International Trade
Economics 103. International Monetary Relations
Economics 114. Economics of Immigration
Economics 116. Economic Development
Economics 117. Economic Growth
Economics 125. Demographic Analysis and Forecasting
Economics 131. Economics of the Environment
Economics 132. Energy Economics
Economics 133. International Environmental Agreements
Economics 144. Economics of Conservation
Economics 145. Economics of Ocean Resources
Economics 161. Global Integration of Latin America
Economics 162. Economics of Mexico
Economics 163. Japanese Economy
Economics 165. Middle East Economics

Both primary and secondary track majors must take at least two of the following courses:

Economics 101. International Trade
Economics 103. International Monetary Relations
Economics 114. Economics of Immigration
Economics 116. Economic Development
Economics 117. Economic Growth
Economics 125. Demographic Analysis and Forecasting
Economics 131. Economics of the Environment
Economics 132. Energy Economics
Economics 133. International Environmental Agreements
Economics 144. Economics of Conservation
Economics 145. Economics of Ocean Resources
Economics 161. Global Integration of Latin America
Economics 162. Economics of Mexico
Economics 163. Japanese Economy
Economics 165. Middle East Economics

At least one of the above must be Economics 101, 103, or 116.

History

Primary Track: At least six of eight courses must be taken in any of the following categories:

History of Africa (HIAF)
History of Europe (HIEU)
History of East Asia (HIEA)
History of the Near East (HINE), with the exception of HINE 151, 152, 153
History of Latin America (HILA)
History of Science (HISC)
History of Religion (HIRE) and/or History Topics (HIITO), except HIITO 194–199

Up to two courses may be taken in History of the United States (HIUS).

Secondary Track: All courses must be taken in non-U.S. history.

Linguistics

Primary Track: Eight upper-division courses in linguistics, which must include LIGN 101 (Introduction to the Study of Language) and at least three courses from the following list:
- LIGN 105. Law and Language
- LIGN 108. Languages of Africa
- LIGN 141. Language Structures
- LIGN 142. Language of Typology
- LIGN 143. Structure of Spanish
- LIGN 145. Pidgins and Creoles
- LIGN 174. Gender and Language in Society
- LIGN 175. Sociolinguistics
- LIGN 176. Language of Politics and Advertising
- LIGN 177. Multilingualism

At most, one of the eight courses can be LIGN 199 (Independent Study in Linguistics) by petition.

Secondary Track: Five upper-division courses in linguistics, which must include LIGN 101 (Introduction to the Study of Language) and at least two courses from the list above. At most, one of the five courses can be LIGN 199 (Independent Study in Linguistics) by petition.

Literature

Primary Track: Eight upper-division courses may be selected from the following:
- Literatures in English (LTEN)
- LTEN 188. Contemporary Caribbean Literature
- LTEN 189. Twentieth-Century Postcolonial Literatures
- Literatures of the World (LTWL)
- LTWL 140. Novel and History in the Third World
- LTWL 141. Islam and Modernity
- LTWL 149. The Last Turn of the Century in the West
- LTWL 150. Modernity and Literature
- LTWL 152. Introduction to Islam
- Literature/Cultural Studies (LTCS)
- LTCS 133. Globalization and Culture
- LTCS 140. Subaltern Studies in Context
- LTCS 141. Race and Empire
- LTCS 145. National Cultures in Colonial and Postcolonial Contexts

And all courses listed under:
- African Literatures (LTAF)
- Literatures in Chinese (LTCH)
- East Asian Literatures (LTEA)
- European and Eurasian Literature (LTEU) with exception of LTEU 100, 102, 105
- Literatures in French (LTFR) with exception of LTFR 160
- Literatures in German (LTGM)
- Literatures in Italian (LTIIT) with exception of LTIIT 161
- Korean Literature (LTKO)
- Literatures in Portuguese (LTPR)
- Russian Literature (LTRU) with exception of LTRU 104 A, B, C
- Literatures in Spanish (LTSP) with exception of LTSP 150, 151, 152, 153, 154, 160, 162, 166

With approval of the undergraduate advisor, students may take up to two theory or methods courses selected from Literature/Theory (LTTH) courses LTTH 110, LTTH 115, or LTTH 150, and from among the Literature/Cultural Studies (LTCS) courses LTCS 100, LTCS 102, or LTCS 120.

Secondary Track: Five courses selected from the above.

Political Science

Primary Track: Eight courses selected from the following. All courses numbered POLI 120 through POLI 159:
- Comparative Politics: POLI 120A through POLI 139A
- International Relations: POLI 140A through POLI 159

Up to three courses may be from the following subfields:
- American Politics: POLI 100A through POLI 108
- Political Theory: POLI 110A through 119A
- Policy Analysis: POLI 160AA through 168
- Research Methods: POLI 170A and POLI 181

Secondary Track: Five upper-division courses selected from courses numbered POLI 120 through POLI 159 (see above); one of the five courses may be selected from the following subfields:
- American Politics: POLI 100A through POLI 108
- Political Theory: POLI 110A through 119A
- Policy Analysis: POLI 160AA through 168
- Research Methods: POLI 170A and POLI 181

Sociology

Primary Track: Eight upper-division courses selected from the following list:
- SOCI 110E. Human Rights–Principles and Problems
- SOCI 111F. Human Rights–Practices and Cases
- SOCI 125. Sociology of Immigration
- SOCI 133. Immigration in Comparative Perspective
- SOCI 134. The Making of Modern Medicine
- SOCI 136E. Sociology of Mental Illness: An Historical Approach
- SOCI 136F. Sociology of Mental Illness in Contemporary Society
- SOCI 148. Political Sociology
- SOCI 156. Sociology of Religion
- SOCI 157. Religion in Contemporary Society
- SOCI 158. Islam in the Modern World
- SOCI 162R. Religion and Popular Culture in East Asia
- SOCI 163. Migration and the Law
- SOCI 169. Citizenship, Community, and Culture
- SOCI 175. Nationality and Citizenship
- SOCI 176. War and Society
- SOCI 177. International Terrorism
- SOCI 178. The Holocaust
- SOCI 179. Social Change
- SOCI 180. Social Movements and Social Protest
- SOCI 181. Modern Western Society
- SOCI 182. Ethnicity and Indigenous Peoples in Latin America
- SOCI 183. Minorities and Nations
- SOCI 185. Globalization and Social Development
- SOCI 187. African Societies through Films SOCI 188D. Latin America: Society and Politics
- SOCI 188E. Community and Social Change in Africa
- SOCI 188F. Modern Jewish Societies and Israeli Society
- SOCI 188G. Chinese Society
- SOCI 188J. Change in Modern South Africa
- SOCI 189. Special Topics in Comparative-Historical Sociology

Note: SOCI 189 must be preapproved by program advisor.

Secondary Track: Five upper-division courses selected from the above lists.

DEPARTMENTS AND PROGRAMS OFFERING ONLY SECONDARY TRACKS

Communication

Course Prerequisites: Must take COGN 20 for a letter grade to enroll in upper-division courses.

Secondary Track: Five courses selected from the following lists:
- Communication as a Social Force (COSF)
- COSF 100. Introduction to Communication as a Social Force
- COSF 123. Communication, Dissent, and Social Movements
- COSF 124. Black Women, Feminism, and the Media
- COSF 140A. Comparative Media Systems: Asia
- COSF 140B. Comparative Media Systems: Europe
- COSF 140C. Comparative Media Systems: Latin America and the Caribbean
- COSF 159. Work and Industry in the New Information Economy
- COSF 160. Political Economy/Global Consumer Culture
- COSF 161. Global Economy and National Identity
- COSF 181. Political Economy of International Communications
- COSF 183. The Politics of World Music
- COSF 184. The Mass Media and Politics in Africa
- COSF 185. Gender, Labor, and Culture in the Global Economy
- Communication and Culture (COCU)
- COCU 110. Cinema in Latin America
- COCU 126. African Cinema
- COCU 130. Tourism: Global Industry and Cultural Form
- COCU 131. Cinema of the Cuban Revolution
- COCU 162. Popular Culture
- COCU 179. Colonialism and Culture
- Communication and Human Information Processing (COHI)
- COHI 114. Bilingual Communication
- COHI 115. Education and Global Citizenship
- COHI 121. Literacy, Social Organization, and the Individual
- COHI 135. Language and Globalization
Area Studies Secondary Tracks

Five upper-division courses in a single area studies program selected from the following list of programs:
- African Studies
- Chinese Studies
- German Studies
- Italian Studies
- Japanese Studies
- Latin American Studies
- Middle East Studies
- Russian and Soviet Studies
- Third World Studies

Course lists can be found in the UC San Diego General Catalog. All courses must be four-unit, upper-division, non-language courses, taken for a letter grade C– or better. Please contact ISP academic advisor with questions.

Students seeking a broader regional focus (e.g., European or East Asian Studies) may elect to combine courses from area studies programs dealing with that region. Courses must be preapproved prior to enrolling.

INTEGRATED BACHELOR OF ARTS/MASTER IN INTERNATIONAL AFFAIRS

The International Studies Program and the School of International Relations and Pacific Studies have collaborated to create a combined five-year Bachelor of Arts/Master of International Affairs program (B.A./M.I.A.). The combined program is designed specifically for selected UCSD undergraduate majors in international studies who seek advanced training for leadership positions in the Pacific Rim community. In addition to serving the needs of UCSD undergraduate students, the program provides a societal benefit by providing students with advanced training that is suitable for a wide array of careers in government, industry, nonprofit institutions, and other organizations involved in the international affairs of the Pacific Rim.

The B.A./M.I.A. program retains and builds on the interdisciplinary core of the existing international studies degree and adds to it the professional training of a new one-year Master of International Affairs professional degree (year five of the combined program). This streamlined program will permit undergraduates to incorporate graduate-level courses into their final year of the international studies major. The combined degree program will provide an interdisciplinary program of study in the International Studies Program during the first four years. It is expected that up to ten undergraduate students will be accepted into this program each year.

The structure of the program is as follows:

Years 1–3

Undergraduate lower- and upper-division course work; general-education, language courses, INTL courses, major prerequisites, and half the undergraduate track courses.

Year 4

Students are still undergraduates, but the majority of course work is completed at IR/PS at the graduate level; at end of year 4, students graduate with a B.A. in International Studies.

Summer

Required summer internship between years 4 and 5.

Year 5

Students enter IR/PS and complete remaining graduate course work; upon successful completion, they graduate with a Master of International Affairs (M.I.A.) at end of year 5.

Please note: This program is only open to students whose two tracks are economics and political science, in either order.

Students apply to the program at the end of winter quarter in year 3. Acceptance is tentative until successful completion of year 4 and the required summer internship; student is then officially accepted into the M.I.A. program and begins to pay professional fees.

The B.A./M.I.A. Program is much more rigidly structured than the regular IS major. Students will need to meet frequently with the International Studies Program academic advisor from their first year onward to ensure proper course selection each quarter.

The approved course list for the B.A./M.I.A. Program is slightly different than the list for the regular IS major. Please be sure to consult the appropriate list to find approved courses.

Students must study a Pacific Rim foreign language for this program because the language must match the IR/PS region of specialization during the fifth year. Consult the ISP Web site for a complete list of approved B.A./M.I.A. languages and their corresponding IR/PS regions.

Students must complete a minimum of four quarters of a Pacific Rim foreign language in order to meet the B.A. requirement. Two additional quarters are required for the M.I.A. It is recommended (but not required) that students complete all six quarters at the undergraduate level.

Students choosing to satisfy their language requirement by taking six quarters of course work must earn a grade of C– or better in the fifth quarter and a grade of B or better in the sixth quarter.

For additional information about the B.A./M.I.A. program, please visit our Web site at http://isp.ucsd.edu. For application information and admissions criteria, please visit https://graduateapp.ucsd.edu.

THE INTERNATIONAL STUDIES MINOR

The international studies minor is designed to offer students an introduction to the interdisciplinary investigation of other societies and the forces of global integration and conflict. To receive a minor in international studies, a student must complete seven four-unit courses (twenty-eight units).

(A) LANGUAGE REQUIREMENT

All minors must demonstrate basic proficiency in a modern foreign language by completing four quarters of foreign language instruction (or equivalent). Students may also complete this requirement by demonstrating advanced language ability on a proficiency exam. Students completing the language requirement through waiver (700 or better on SAT II language exam or if you attended high school outside the U.S.) or proficiency will fulfill the language component of the minor by completing one of these requirements but no course credit will be applied toward the seven courses required for the minor.

Up to two courses in foreign language can be included in the seven courses required for the minor. These may be lower-division courses but must be taken for a C– or better to apply. The remaining five courses must be upper-division courses in the humanities and social sciences. (See below)

(B) ADDITIONAL COURSE REQUIREMENTS

1. All minors must take INTL 101 and INTL 102. INTL 101 and 102 may be taken in any order and are offered during different quarters throughout the academic year. You can enroll in INTL 101 and INTL 102 on WebReg if you have sophomore standing and are declared in the IS major or minor program. If you do not meet these requirements and wish to add INTL 101 or 102, contact the International Studies Advising Office. INTL 101 and 102 are gateway courses and should be taken in the sophomore or junior year.

2. The remaining three to five courses (depending on the number of language courses applied to the minor) must be distributed in two broad areas (tracks). Specifically, students must take at least one course in each of two tracks:

 - Track 1. Economics, Politics, and International Change
 - Track 2. Culture and Society in International Perspective

 (See course listings for each track.)

3. The minor must include courses from at least two departments.

4. All courses applied to the minor (including applicable language courses) must receive a letter grade of C– or better.

5. Minors in international studies are encouraged to participate in the UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP). Subject to approval by the IS faculty director, up to three courses taken through EAP/OAP or at another university will be accepted for credit toward the minor.

TRACKS IN THE INTERNATIONAL STUDIES MINOR

Track 1: Economics, Politics, and International Change

- Communication
 - COSF 123. Communication, Dissent, and Social Movements
 - COSF 159. Work and Industry in the New Information Economy
 - COSF 160. Political Economy/Global Consumer Culture
 - COSF 161. Global Economy and National Identity
 - COSF 181. Political Economy of International Communications

Track 2: Culture and Society in International Perspective

- Modern Languages and Literatures
 - COSF 101. Russian and Soviet Studies
 - COSF 110. Chinese Studies
 - COSF 120. Japanese Studies
 - COSF 130. Italian Studies
 - COSF 140. Third World Studies
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIEU 113</td>
<td>Rule, Conflict, and Dissent in the Middle Ages</td>
</tr>
<tr>
<td>HIEU 115</td>
<td>The Pursuit of the Millennium</td>
</tr>
<tr>
<td>HIEU 118</td>
<td>Americanization of Europe</td>
</tr>
<tr>
<td>HIEU 120</td>
<td>The Renaissance in Italy</td>
</tr>
<tr>
<td>HIEU 124</td>
<td>The City in Italy</td>
</tr>
<tr>
<td>HIEU 125</td>
<td>Reformation Europe</td>
</tr>
<tr>
<td>HIEU 127</td>
<td>Sport in the Modern World</td>
</tr>
<tr>
<td>HIEU 129</td>
<td>Paris, Past and Present</td>
</tr>
<tr>
<td>HIEU 130</td>
<td>Europe in the Eighteenth Century</td>
</tr>
<tr>
<td>HIEU 133</td>
<td>Gender in Antiquity and the Early Medieval Mediterranean</td>
</tr>
<tr>
<td>HIEU 136A</td>
<td>European Society and Social Thought, 1688–1870</td>
</tr>
<tr>
<td>HIEU 136B</td>
<td>European Society and Social Thought, 1870–1919</td>
</tr>
<tr>
<td>HIEU 142</td>
<td>European Intellectual History, 1780–1870</td>
</tr>
<tr>
<td>HIEU 143</td>
<td>European Intellectual History, 1870–1945</td>
</tr>
<tr>
<td>HIEU 145</td>
<td>The Holocaust as Public History</td>
</tr>
<tr>
<td>HIEU 147</td>
<td>The History of Women in Europe: Middle Ages to the Early Modern Era</td>
</tr>
<tr>
<td>HIEU 148</td>
<td>The History of Women in Europe: The Enlightenment to the Victorian Age</td>
</tr>
<tr>
<td>HIEU 149</td>
<td>History of Women in Europe: 1870 to the Present</td>
</tr>
<tr>
<td>HIEU 152</td>
<td>The Worst of Times: Everyday Life in Authoritarian and Dictatorial Societies</td>
</tr>
<tr>
<td>HILA 115</td>
<td>The Latin American City, a History</td>
</tr>
<tr>
<td>HILA 121</td>
<td>History of Brazil</td>
</tr>
<tr>
<td>HINE 100</td>
<td>The Ancient Near East and Israel</td>
</tr>
<tr>
<td>HINE 104</td>
<td>The Bible and the Near East: The Primary History</td>
</tr>
<tr>
<td>HINE 106</td>
<td>The Bible and the Near East: The Writings</td>
</tr>
<tr>
<td>HIRE 110</td>
<td>The Middle East before Islam</td>
</tr>
<tr>
<td>HIRE 115</td>
<td>Women in Chinese Religions</td>
</tr>
<tr>
<td>HIRE 120</td>
<td>Buddhist Thought and Practice</td>
</tr>
<tr>
<td>HISC 100</td>
<td>The Discovery of Deep Time</td>
</tr>
<tr>
<td>HISC 101A</td>
<td>Science in the Greek and Roman World</td>
</tr>
<tr>
<td>HISC 101B</td>
<td>Medieval Science in the Latin West, ca. 500–1500</td>
</tr>
<tr>
<td>HISC 101C</td>
<td>Early Modern Science</td>
</tr>
<tr>
<td>HISC 102</td>
<td>Technology in World History</td>
</tr>
<tr>
<td>HISC 103</td>
<td>Gender and Science in Historical Perspective</td>
</tr>
<tr>
<td>HISC 104</td>
<td>History of Popular Science</td>
</tr>
<tr>
<td>HISC 105</td>
<td>History of Environmentalism</td>
</tr>
<tr>
<td>HISC 106</td>
<td>The Scientific Revolution</td>
</tr>
<tr>
<td>HISC 107</td>
<td>The Emergence of Modern Science</td>
</tr>
<tr>
<td>HISC 108</td>
<td>Science and Technology in the Twentieth Century</td>
</tr>
<tr>
<td>HISC 110</td>
<td>Science in China and the West from Ancient Times to the Seventeenth Century</td>
</tr>
<tr>
<td>HISC 111</td>
<td>Origins of the Atomic Age</td>
</tr>
<tr>
<td>HITO 100</td>
<td>Religious Traditions: Ancient Near Eastern Religions</td>
</tr>
<tr>
<td>HITO 102</td>
<td>Religious Traditions: East Asian Religious Traditions</td>
</tr>
<tr>
<td>HITO 104</td>
<td>The Jews and Judaism in the Ancient and Medieval Worlds</td>
</tr>
<tr>
<td>HITO 105</td>
<td>The Jews and Judaism in the Modern World</td>
</tr>
<tr>
<td>HITO 126</td>
<td>A History of Childhood</td>
</tr>
<tr>
<td>LIGN 141</td>
<td>Language Structures</td>
</tr>
<tr>
<td>LIGN 142</td>
<td>Language of Typology</td>
</tr>
<tr>
<td>LIGN 143</td>
<td>Structure of Spanish</td>
</tr>
<tr>
<td>LIGN 145</td>
<td>Pidgins and Creoles</td>
</tr>
<tr>
<td>LIGN 175</td>
<td>Sociolinguistics</td>
</tr>
<tr>
<td>LIGN 176</td>
<td>Language of Politics and Advertising</td>
</tr>
<tr>
<td>Literature</td>
<td></td>
</tr>
<tr>
<td>Literature in English (LTEN):</td>
<td></td>
</tr>
<tr>
<td>LTEN 188</td>
<td>Contemporary Caribbean Literature</td>
</tr>
<tr>
<td>LTEN 189</td>
<td>Twentieth-Century Postcolonial Literatures</td>
</tr>
<tr>
<td>Literature of the World (LTWL):</td>
<td></td>
</tr>
<tr>
<td>LTWL 140</td>
<td>Novel and History in the Third World</td>
</tr>
<tr>
<td>LTWL 141</td>
<td>Islam and Modernity</td>
</tr>
<tr>
<td>LTWL 149</td>
<td>The Last Turn of the Century in the West</td>
</tr>
<tr>
<td>LTWL 150</td>
<td>Modernity and Language</td>
</tr>
<tr>
<td>LTWL 152</td>
<td>Introduction to Islam</td>
</tr>
<tr>
<td>Literature/Cultural Studies (LTCS):</td>
<td></td>
</tr>
<tr>
<td>LTCS 133</td>
<td>Globalization and Culture</td>
</tr>
<tr>
<td>LTCS 140</td>
<td>Subaltern Studies in Context</td>
</tr>
<tr>
<td>LTCS 141</td>
<td>Race and Empire</td>
</tr>
<tr>
<td>LTCS 145</td>
<td>National Cultures in Colonial and Postcolonial Contexts</td>
</tr>
<tr>
<td>And all courses listed under</td>
<td></td>
</tr>
<tr>
<td>African Literatures (LATF)</td>
<td></td>
</tr>
<tr>
<td>Literatures in Chinese (LTCH)</td>
<td></td>
</tr>
<tr>
<td>East Asian Literatures (LTEA)</td>
<td></td>
</tr>
<tr>
<td>European and Eurasian Literature (LTEU) with exception of LTEU 100, 102, 105</td>
<td></td>
</tr>
<tr>
<td>Literatures in French (LTFR) with exception of LTFR 160</td>
<td></td>
</tr>
<tr>
<td>Literatures in German (LTGM)</td>
<td></td>
</tr>
<tr>
<td>Literatures in Italian (LLIT) with exception of LLIT 161</td>
<td></td>
</tr>
<tr>
<td>Korean Literature (LTKO)</td>
<td></td>
</tr>
<tr>
<td>Literatures in Portuguese (LTPR)</td>
<td></td>
</tr>
<tr>
<td>Russian Literature (LTRU) with exception of LTRU 104, A, B, C</td>
<td></td>
</tr>
<tr>
<td>Literatures in Spanish (LTS) with exception of LTS 150, 151, 152, 153, 154, 160, 162, 166</td>
<td></td>
</tr>
<tr>
<td>With approval of the undergraduate advisor, students may take up to two theory or methods courses selected from Literature/Theory (LLTH) courses LLTH 110, LLTH 115, or LLTH 150, and from among the Literature/Cultural Studies (LTCS) courses LTCS 100, LTCS 102, or LTCS 120.</td>
<td></td>
</tr>
<tr>
<td>Sociology/SOCI 111E. Human Rights—Principles and Problems</td>
<td></td>
</tr>
<tr>
<td>SOCI 111F. Human Rights—Practices and Cases</td>
<td></td>
</tr>
<tr>
<td>SOCI 125. Sociology of Immigration</td>
<td></td>
</tr>
<tr>
<td>SOCI 133. Immigration in Contemporary Perspective</td>
<td></td>
</tr>
<tr>
<td>SOCI 134. The Making of Modern Medicine</td>
<td></td>
</tr>
<tr>
<td>SOCI 136E. Sociology of Mental Illness: An Historical Approach</td>
<td></td>
</tr>
<tr>
<td>SOCI 148. Political Sociology</td>
<td></td>
</tr>
<tr>
<td>SOCI 156. Sociology of Religion</td>
<td></td>
</tr>
<tr>
<td>SOCI 157. Religion in Contemporary Society</td>
<td></td>
</tr>
<tr>
<td>SOCI 158. Islam in the Modern World</td>
<td></td>
</tr>
<tr>
<td>SOCI 162R. Religion and Popular Culture in East Asia</td>
<td></td>
</tr>
<tr>
<td>SOCI 163. Migration and the Law</td>
<td></td>
</tr>
<tr>
<td>SOCI 169. Citizenship, Community, and Culture</td>
<td></td>
</tr>
<tr>
<td>SOCI 175. Nationality and Citizenship</td>
<td></td>
</tr>
<tr>
<td>SOCI 176. War and Society</td>
<td></td>
</tr>
<tr>
<td>SOCI 177. International Terrorism</td>
<td></td>
</tr>
<tr>
<td>SOCI 178. The Holocaust</td>
<td></td>
</tr>
<tr>
<td>SOCI 179. Social Change</td>
<td></td>
</tr>
<tr>
<td>SOCI 180. Social Movements and Social Protests</td>
<td></td>
</tr>
<tr>
<td>SOCI 181. Modern Western Society</td>
<td></td>
</tr>
<tr>
<td>SOCI 182. Ethnicity and Indigenous Peoples of Latin America</td>
<td></td>
</tr>
<tr>
<td>SOCI 183. Minorities and Nations</td>
<td></td>
</tr>
<tr>
<td>SOCI 185. Globalization and Social Development</td>
<td></td>
</tr>
<tr>
<td>SOCI 187. African Societies Through Films</td>
<td></td>
</tr>
<tr>
<td>SOCI 188D. Latin America: Society and Politics</td>
<td></td>
</tr>
<tr>
<td>SOCI 188E. Community and Social Change in Africa</td>
<td></td>
</tr>
<tr>
<td>SOCI 188F. Modern Jewish Societies and Israeli Society</td>
<td></td>
</tr>
<tr>
<td>SOCI 188G. Chinese Society</td>
<td></td>
</tr>
<tr>
<td>SOCI 188J. Change in Modern South Africa</td>
<td></td>
</tr>
<tr>
<td>SOCI 189. Special Topics in Comparative-Historical Sociology</td>
<td></td>
</tr>
<tr>
<td>Note: SOCI 189 must be preapproved by program advisor.</td>
<td></td>
</tr>
</tbody>
</table>

Upper-Division

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTL 101</td>
<td>Culture and Society in International Perspective (4)</td>
</tr>
<tr>
<td>INTL 102</td>
<td>Economics, Politics, and International Change (4)</td>
</tr>
<tr>
<td>INTL 109</td>
<td>Seminar in International Studies (4)</td>
</tr>
<tr>
<td>INTL 190H</td>
<td>Honors Seminar in International Studies (4)</td>
</tr>
</tbody>
</table>

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.
INTL 196H. International Studies Honors Program (4)
Open only to seniors who have completed INTL 190H.
Completion of an honors thesis under the supervision of a
member of the International Studies faculty. **Prerequisites:**
International Studies major with 3.5 GPA; department
stamp; senior standing; INTL 190H; consent of instructor.
ITALIAN STUDIES

PROFESSORS
John Marino, Ph.D., History
Carol Plantamura, M.F.A., Emerita, Music
Janet Smarr, Ph.D., Theatre and Dance
Robert Westman, Ph.D., History

ASSOCIATE PROFESSORS
Nancy Caciola, Ph.D., History
Jack Greenstein, Ph.D., Visual Arts
Stephanie Jed, Ph.D., Literature
Pamela Radcliff, Ph.D., History
Pasquale Verdicchio, Ph.D., History

LECTURER
Adriana de Marchi Gherini, Ph.D., Literature

OFFICE:
History Undergraduate Advising
Humanities and Social Sciences Building, Fifth Floor
Muir College
http://history.ucsd.edu/programs/caesar-programs/italian-stud/index.html

Italian studies is an interdisciplinary program in the language, literature, history, theater, music, and art of Italy. Italian studies coordinates the resources of the Departments of History, Literature, Music, Theatre and Dance, and Visual Arts, and offers students the opportunity to design a major, leading to a B.A., around the course offerings of these five departments. Students in Italian studies are encouraged to participate in the University of California Education Abroad Program (EAP), which is affiliated with the Universities of Padua, Trento, and Bologna: this provides the possibility of a junior year abroad, including both language courses and courses dealing with various aspects of Italian studies. EAP credits may be transferred back to UC San Diego to coordinate with on-campus offerings.

THE MAJOR PROGRAM

A major in Italian studies consists of a choice of twelve upper-division courses in literature, history, music, theatre, and visual arts approved for the program and listed below. Courses in other areas of Italian studies taken abroad or on our campus may also apply. At least three areas must be represented in the student's program of study. The particular courses making up each student's major will be selected in consultation with the program advisor. The study of Dante (LTIT 115) is considered central for all Italian studies majors.

THE MINOR PROGRAM

A minor in Italian studies consists of seven upper-division courses from among those listed below (at least three areas must be represented). Credit from the EAP program may be applied toward the minor.

UPPER-DIVISION/ITALIAN STUDIES COURSES

For description of courses listed below, see appropriate departmental listing.

LITERATURE

LTIT 1A-B-C. The Language of Italian Culture
LTIT 100. Introduction to Literatures in Italian
LTIT 110. Selected Topics in Italian Literature
(may be repeated for credit as topics vary)
LTIT 115. Medieval Studies
LTIT 122. Studies in Modern Italian Culture
LTIT 137. Studies in Modern Italian Prose
LTIT 143. Major Italian Authors
LTIT 161. Advanced Stylistics and Conversation
LTIT 192. Senior Seminar in Literatures in Italian
LTIT 196. Honors Thesis
LTIT 198. Directed Group Study
LTIT 199. Special Studies

Note: Students must complete the following prerequisites for all upper-division work in Italian literature:
1. Linguistics/Italian 1A-B-C, or LTIT 1A-B-C
2. Literature/Italian 2A-B, 50

VISUAL ARTS

122CN. Defining High Renaissance Art
122D. Michelangelo
128B. Topics in Early Modern Art History (when on Italian topic)
129B. Seminar in Early Modern Art History (when on Italian topic)

HISTORY (HIEU)

113. Rule, Conflict, and Dissent in the Middle Ages
122. Politics, Italian Renaissance Style
199. Independent Study in European History

The following courses may be applied to the major or minor, when 50 percent or more of the course focus is on Italian topics:
Music 113
THHS 101

Additional courses counting toward a major in Italian studies are offered on a year-to-year basis. As these often cannot be listed in the catalog in advance, interested students should consult the program faculty for an up-to-date list.
Japanese Studies

THE MAJOR

A. LOWER-DIVISION REQUIREMENT (9 COURSES)

1. Japanese language: two years lower-division or the transferred equivalent:
 - Japanese Studies 10A-B-C
 - Japanese Studies 20A-B-C

2. The remaining three courses must be chosen from among the following:
 a. East Asian History: HILD 10-11-12
 b. Eleanor Roosevelt College students may petition to use MMW Courses 2 and 5.

B. UPPER-DIVISION REQUIREMENT (12 COURSES)

1. Japanese language: six upper-division language courses or the transferred equivalent from
 - Japanese Studies 100A-B-C
 - Japanese Studies 130A-B-C
 - Japanese Studies 140A-B-C
 - Japanese Studies 150A-B-C

 Students may petition to include three upper-division language courses taken abroad under EAP or OAP.

2. Japanese Studies 190 (JAPN 190): Selected Topics in Contemporary Japanese Studies. This is a seminar-style course focusing on selected topics in contemporary interdisciplinary studies of Japan. Prerequisite: upper-division standing; student must complete a minimum of one upper-division Japanese studies approved course, or consent of instructor.

3. The remaining five courses must be taken from two or more different disciplines.
 a. Students may petition to include two non-language upper-division courses taken abroad under EAP or OAP.
 b. Students may include one 199.

4. All upper-division courses must be taken for a letter grade, with the exception of JAPN 199.

5. The language requirement can be waived by demonstrating the equivalent proficiency through exam. The required number of courses must be fulfilled by taking other non-language, upper-division courses.

C. HONORS PROGRAM

1. Junior standing or higher.
2. A GPA of 3.5 or better in the major.
3. Overall GPA of 3.2 or better.
4. Completion of at least four upper-division non-language courses approved by the Program in Japanese Studies.
5. Recommendation of a faculty sponsor familiar with the student's work.

Students who qualify for honors take a two-quarter sequence Japanese Studies 196A-B (fall and winter quarters preferred) of directed study during which they define a research project, carry out the research, and complete an honors thesis.

The completed honors thesis will be evaluated by a committee consisting of the student’s thesis advisor and one other faculty member appointed by the Program in Japanese Studies director.

THE MINOR

A minor in Japanese studies consists of at least fifteen units of Japanese language (lower- or upper-division) and at least sixteen units of upper-division non-language course work taken from two or more departments. Students may use one non-language course taken abroad. All courses to be used for the minor must be approved by the Program in Japanese Studies and must be taken for a letter grade. Beginning in fall 2010, students who declare for the Japanese studies major and minor will be allowed no more than one course with a D grade to count towards the program requirement. This new requirement will not apply to students who declared their major or minor prior to fall 2010. Students who are already beyond first- and second-year language levels will be placed in one of our upper-division Japanese language courses, written Japanese (100A-B-C), Third-Year Japanese (130A-B-C), Fourth-Year Japanese (140A-B-C), or Advanced Japanese (150A-B-C), and will be required to take four upper-division language courses and three upper-division non-language courses. The language requirement can be waived by demonstrating the equivalent proficiency through exam. The required number of courses must be fulfilled by taking other non-language, upper-division courses.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

All graduate-level courses require permission of the instructor for undergraduate students. Course titles may vary from year to year.

Courses with asterisk can be approved as Japanese Studies courses when more than 33 percent of the course content concerns Japan.

HISTORY

HIEA 111. Japan: Twelfth through Mid-Nineteenth Century
HIEA 112. Japan: from Mid-Nineteenth Century through U.S. Occupation
HIEA 113. The Fifteen-Year War in Asia and the Pacific
HIEA 114. Postwar Japan
HIEA 115. Social and Cultural History of Twentieth-Century Japan
HIEA 116. Japan-U.S. Relations
HIEA 117. Ghosts in Japan
HIEA 119 Religion and Pop Culture in East Asia (Same as SOC/B 162R)
HIEA 160. Colloquium on Modern Japanese History

JAPANESE STUDIES

JAPN 190. Selected Topics in Contemporary Japanese Studies
LANGUAGE

(Students who have prior preparation of Japanese language are placed in language courses based on the results of a placement exam or an oral interview with an instructor. Students who have lived in Japan, or use Japanese at home are required to take a placement exam administered prior to the beginning of the fall quarter. Contact the Japanese Studies office for more information.)

10A-B-C. First-Year Japanese
(No prior study of Japanese language is required for 10A.)
Prerequisite for B and C: previous course or consent of instructor.

20A-B-C. Second-Year Japanese
Prerequisite: previous course or consent of instructor.

100A-B-C. Japanese for Bilingual Speakers I
(These courses are for those students who have a high level of speaking proficiency in Japanese but no or little reading and writing abilities.) Prerequisite for A: consent of instructor. Prerequisite for B and C: previous course or consent of instructor.

130A-B-C. Third-Year Japanese
Prerequisite: previous course or consent of instructor.

140A-B-C. Fourth-Year Japanese
Prerequisite: previous course or consent of instructor.

150A-B-C. Advanced Japanese
Prerequisite: previous course or consent of instructor.

ECONOMICS

ECON 163. Japanese Economy

LITERATURE

LTEA 130. Earlier Japanese Literature in Translation
(Quarter offerings will vary among A. General Literature; B. Poetry; C. Prose Fiction; D. Drama; and E. Essays, travelogues, diaries, etc.)

LTEA 132. Later Japanese Literature in Translation
(Quarter offerings will vary among A. General Literature; B. Poetry; C. Prose Fiction; D. Drama and Film; and E. Essays, criticism, etc.)

LTEA 134. A Single Japanese Author (in translation)
LTEA 136. Special Topics in Japanese Literature
*LTWL 155. Gender Studies
*LTCS 110. Popular Culture
*LTCS 115. Performance Culture
*LTCS 118. Comedy
*LTCS 120. Historical Perspectives on Culture
*LTCS 125. Cultural Perspectives on Immigration and Citizenship
*LTCS 130. Gender, Race, Ethnicity/Class, and Culture
*LTCS 131. Topics in Queer Cultures/Queer Subcultures
*LTCS 132. Special Topics in Social Identities and the Media
*LTCS 133. Globalization and Culture
*LTCS 135. Interdisciplinary Approaches to Lesbian, Gay, Bisexual, and Transgender Studies
*LTCS 141. Special Topics in Race and Empire
*LTCS 145. National Cultures in Colonial and Postcolonial Contexts
*LTCS 150. Topics in Cultural Studies
*LTCS 160. Cultural Studies Approaches to Popular Music

*MUSIC

(Check with program office as to whether these courses may be used toward a Japanese studies minor.)

MUS 111. World Music
*MUS 116. Popular Music Studies Seminar
MUS 211. Seminar in World Music

POLITICAL SCIENCE

POLI 113B. Chinese and Japanese Political Thought I
POLI 113C. Chinese and Japanese Political Thought II
POLI 132B. Modernity and Identity in East Asia
POLI 133A. Japanese Politics: A Developmental Perspective
POLI 133D. Japanese Foreign Policy
POLI 133G. Postwar U.S.-Japan Relations

SOCIOLOGY

SOC/D 158J. Religion and Ethics in China and Japan
SOC/B 162R. Religion and Popular Culture in East Asia (same as HIEA 119)

THEATRE AND DANCE

TDGE 126. Storytelling and Design in Animation

VISUAL ARTS

VIS 127N. Twentieth-Century Art in China and Japan
VIS 127P. Arts of Japan
VIS 128D. Topics/Non-Western Art History Japanese Painting and Prints

GRADUATE SCHOOL OF INTERNATIONAL RELATIONS AND PACIFIC STUDIES

IRGN 400. International Relations of Asia—Pacific
IRGN 411. Business and Management in Japan
IRGN 416. Postwar Politics in Japan
IRGN 471. Japanese Economy
Judaic Studies

PH.D. IN ANTHROPOLOGY

The Department of Anthropology offers graduate training in social, cultural, and psychological anthropology, as well as in anthropological archaeology and biological anthropology. In conjunction with the Judaic Studies Program, students may concentrate in Near Eastern archaeology with a focus on Israel and Jordan. Students pursuing anthropological archaeology are expected to take required courses in anthropology and engage in field research.

Archaeology

Since 1993, the Judaic Studies Program has sponsored major archaeological excavations in Israel's northern Negev desert. Shortly after the peace treaty was formalized between Israel and Jordan, the program began a long-term archaeological field program in the Jabal Hamrat Fidan Region (JHF) of southern Jordan. The project aims at studying the influence of early procurement and metallurgy on social change from the Neolithic period through the Iron Age. UC San Diego graduate students play an active role in the fieldwork and laboratory studies of material from these excavations. Qualified students are encouraged to use these data as part of their doctoral studies. In 2006, the UCSD Judaic Studies Program will join in several excavations along the Wadi al-Guwayb and Wadi al-Jariyeh in southern Jordan. This is part of the UCSD Fall Session Middle East Field School.

The Judaic Studies Program supports a state-of-the-art archaeological laboratory in the Social Sciences Building. A wide range of digital-based technologies is used for archaeological data and image processing that are linked through the Internet. Labs for processing pottery, stone tools, and other materials are available for student use.

THE M.A. IN JUDAIC STUDIES

The M.A. in Judaic studies, offered under the auspices of the Department of History, is an interdisciplinary program permitting the student to select courses primarily in history and literature, but also in anthropology, political science, sociology, and philosophy.

FELLOWSHIPS

Four fellowships are available for Ph.D. students. These include

The Dita and Erwin Gumpel Judaic Studies Endowed Fellowship
The University Fellowship
The Wexler Family Judaic Studies Fellowship Fund in honor of David Noel Freedman

Teaching assistantships are available in the Revelle College Humanities/Writing Program and in other writing programs and departments. Dissertation fellowships may be awarded to doctoral students at the dissertation stage of their studies. Funds are also available for support of travel to archaeological excavations. Students are also eligible for research-travel funds to other campus libraries of the University of California, as well as for grants that permit research in archives and libraries elsewhere. Students who deliver papers at scholarly conferences may also receive financial support for their participation.

Publications

The program produces a series of volumes: Biblical and Judaic Studies, from the University of California, San Diego (published by Eisenbrauns Winona Lake, USA). The Anchor Bible (Commentary, Reference Library, and Dictionary) is edited by David Noel Freedman at UCSD. The series Approaches to...
Application Procedures

The deadline for applications is January 9. For further information contact
University of California, San Diego
GRADUATE PROGRAM, JUDAIC STUDIES 0104
9500 Gilman Dr. # 0104
La Jolla, CA 92037-0104
E-mail: dwagner@ucsd.edu

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010-11, please contact the department for more information.

Following are course offerings in this area.

For descriptions of the courses listed below, refer to the appropriate department's section of the catalog.

Judaic Studies 1. Beginning Hebrew (4)
Acquisition of basic vocabulary, fundamentals of Hebrew grammar, conversation, and reading.

Judaic Studies 2. Intermediate Hebrew (4)
Continued study of vocabulary and grammar, emphasis on fluency in conversation, and reading.

Judaic Studies 3. Intermediate Hebrew, Continued (4)
Vocabulary, grammar, conversation, introduction to literary and nonliterary texts.

Judaic Studies 100. Introduction to Hebrew Bible (4)
An introduction to the Hebrew Bible focusing on the first five books, the Torah.

Judaic Studies 101. Introduction to Hebrew Texts (4)
Reading and analysis of texts from Biblical through modern authors, study of advanced vocabulary and grammar. Course taught in Hebrew and in English.

Judaic Studies 102. Intermediate Hebrew Texts (4)
Further reading and analysis of Hebrew literature from a range of periods. Advanced grammar and vocabulary. Course taught in Hebrew and in English.

Judaic Studies 103. Advanced Hebrew Texts (4)
Synthesis of fluency, reading, and grammatical skills. Reading of texts from a range of periods.

Judaic Studies 110. Introduction to Judaism (4)
An introductory survey of Jewish history, literature, and culture from antiquity to contemporary times. Topics include sacred texts, the variety of groups and views of Judaism, the historical and geographical movements of the Jewish people, and the intersection of religion, ethnicity, and culture.

Judaic Studies 111. Topics in Judaic Studies (4)
Study of a particular period, theme, or literature in Jewish civilization.

Judaic Studies 120. Topics in Zionism: Israelis and Palestinians: Two Cultures in Conflict (4)
This course examines Israeli culture, Palestinian culture, and the conflict between them. We will discuss what is distinct about each culture, how they are different, how they are similar, their histories, and what influences the relationship/conflict between them. Prerequisite: upper-division standing or consent of instructor.

Judaic Studies 196A. Judaic Studies Honors Course (4)
First quarter of honors thesis research for students accepted into honors program. Research is conducted under the supervision of a faculty member selected with the approval of the director of the Judaic Studies Program. Prerequisites: admission to Judaic Studies Honors Program; previous enrollment in Judaic Studies 196A; JUDA 100, JUDA 103, HITO 104, HITO 105; upper-division electives in Judaic Studies; at least junior standing; overall 3.3 GPA; 3.5 in Judaic Studies.

Judaic Studies 196B. Judaic Studies Honors Course (4)
Second quarter of honors thesis research for students accepted into honors program. Research is conducted under the supervision of a faculty member selected with the approval of the director of the Judaic Studies Program. Prerequisites: admission to Judaic Studies Honors Program; previous enrollment in Judaic Studies 196A; JUDA 100, JUDA 103, HITO 104, HITO 105; upper-division electives in Judaic Studies; at least junior standing; overall 3.3 GPA; 3.5 in Judaic Studies.

Judaic Studies 198. Directed Group Study in Judaic Studies (1-4)
Directed group study on a topic not generally included in the regular curriculum. Student must make arrangements with individual faculty members. (P/NP only)

Judaic Studies 199. Independent Study in Judaic Studies (1-4)
Independent study on a topic not generally included in the regular curriculum. Student must make arrangements with individual faculty members. (P/NP only)

ANLD 3. World Prehistory (4)
ANGL 100. Special Topics in Socio-Cultural Anthropology: Law, Religion, and Politics in Israel (4)
ANGL 142. Pastoralism in Archaeological Ethnographic Perspective (4)
ANGN 181. Foundations of Archaeology (4)
ANGN 183. Chiefdoms, States, and the Emergence of Civilizations (4)
ANPR 194. Archaeological Field School (4)
ANRG 116. Archaeology of the Holy Land: Prehistory (4)
ANRG 150. The Rise and Fall of Ancient Israel (4)
ANRG 162. Peoples of the Middle East (4)
ANRG 286. Archaeology, Anthropology and the Bible—Foundations, Data, and Debate
HIGR 260A-B-C. Seminar in the Judaic Studies (4-4-4)
HIGR 264. Topics in Pre-Islamic Jewish History (4)
HIGR 295. Thesis Seminar (4)
HIGR 298. Directed Reading (1-12)
HIGR 299. Ph.D. Thesis Direction (1-12)
HIGR 500. Apprentice Teaching (1-40)
HIGR 298. Directed Reading (1-12)
HIGR 295. Thesis Seminar (4)
HIGR 299. Ph.D. Thesis Direction (1-12)
HIGR 500. Apprentice Teaching (1-40)

HINE 100. The Ancient Near East and Israel (4)
HINE 101. Seminar in the Hebrew Bible (4)
HINE 102. The Jews in Their Homeland in Antiquity (4)
HINE 103. The Jewish Diaspora in Antiquity (4)
HINE 104. The Bible and the Ancient Near East: The Primary History (4)
HINE 105. The Bible and the Near East: The Prophets (4)
HINE 106. The Bible and the Near East: The Writings (4)
HINE 108. The Middle East before Islam (4)
HINE 109. Learning to Read Biblical Hebrew (4)
HINE 110. History of the Islamic Middle East (4)
HINE 116. The Middle East in the Age of European Empires (1798 to 1914) (4)
HINE 118. The Middle East in the Twentieth Century (4)
HINE 151A/251A. Introduction to Aramaic Language (4)
HINE 151B/251B. Introduction to Aramaic Dialects (4)
Prerequisite: previous course.
HINE 151C/251C. Introduction to Aramaic Dialects (4)
Prerequisite: previous course.
HINE 152A/252A. The Evolution of the Northwest Semitic Dialects (4)
Prerequisite: knowledge of at least one Semitic language; a course in general linguistics also desirable.
HINE 152B/252B. Introduction to Ugaritic (4)
Prerequisite: previous course.
HINE 152C/252C. Advanced Ugaritic (4)
Prerequisite: previous course.
HINE 153A/253A. Introduction to Akkadian Language and Mesopotamian Culture (4)
HINE 153B/253B. Continued Akkadian Language (4)
Prerequisite: previous course.
HINE 153C/253C. Advanced Akkadian Language (4)
Prerequisite: previous course.
HINE 161/261. Seminar in the Hebrew Bible (4)
HINE 166/266. Nationalism in the Middle East (4)
HINE 170/270. Special Topics in Jewish History (4)
HINE 181/281. Problems in Hebrew Manuscripts (4)
HINE 186/286. Topics in Middle Eastern History (4)
HINE 199. Independent Study in Near Eastern History (4)
HITO 104. The Jews and Judaism in the Ancient and Medieval Worlds (4)
HITO 105. The Jews and Judaism in the Modern World (4)
HITO 106. How Jewish Women Lived in Modern Times (4)

Humanities 1. The Foundations of Western Civilization: Israel and Greece (6)
LTCO 212. Studies in the Hebrew Bible (4)
LTEU 105. Medieval Studies: Crusade, Conquest, Conversion in Medieval Literature (4)
LTNE 101. Bible: The Narrative Books (4)
LTNE 102. Bible: The Prophetic Books (4)
LTNE 103. Bible: The Poetic Books (4)
LTLW 115. Contemporary Literature/Italy and Holocaust: Jewish Experience in Literature (4)
LTLW 134. A Cultural History of American Jewry (4)
LTLW 138. Critical Religion Studies (4)
LTLW 148. Yiddish Literature in Translation (4)
LTLW 198. Directed Group Study (4)
LTLW 199. Special Studies (4)

Courses cross-listed as LTNE and LTLW may be taken as Hebrew literature by students proficient in the language or as general literature by students without knowledge of Hebrew.

Music II. Folk Music Klezmer Music (4)
Philosophy 185. Philosophy of Religion (4-4)
Political Science 121. Government and Politics of the Middle East (4)
Political Science 121B. Politics in Israel (4)
Political Science 138D. The Arab-Israeli Conflict (4)
Sociology/C 156. Sociology of Religion (4)
Sociology/C 157. Religion in Contemporary Society (4)
Sociology/D 178. The Holocaust (4)
Sociology/D 188F. Modern Jewish Societies and Israeli Society (4)
Language and Communicative Disorders

PROFESSORS
Farrell Ackerman, Ph.D., Linguistics
Ursula Bellugi, Ed.D., Adjunct/Psychology
Jeff Elman, Ph.D., Cognitive Science
Eric Halgren, Ph.D., Radiology
Mark Krichesky, M.D., Clinical Neurosciences
Marta Kutas, Ph.D., Cognitive Science
Rachel Mayberry, Ph.D., Linguistics
John Moore, Ph.D., Linguistics
Farrell Ackerman, Ph.D., Communicative Language and
Gedeon Deak, Ph.D., Cognitive Science
Keith Rayner, Ph.D., Psychology
Victor Ferreira, Ph.D., Psychology
ASSOCIATE PROFESSORS
Leslie Carver, Ph.D., Psychology
Seana Coulson, Ph.D., Cognitive Science
Gedeon Deak, Ph.D., Cognitive Science
John Moore, Ph.D., Linguistics
Doris Trauner, M.D., Neurosciences/Pediatrics
ASSOCIATE RESEARCH SCIENTIST
Jeanne Townsend, Ph.D., Neurosciences
OFFICE: Cognitive Science Building, Room 266
Mail Code: 0526
(619) 594-6775, or http://slhs.sdsu.edu/phdmain.php

THE JOINT DOCTORAL PROGRAM
San Diego State University (SDSU) and the
University of California, San Diego (UCSD),
offer jointly a doctoral program in Language and
Communicative Disorders. The program's focus is the
interdisciplinary study of language and communica-
tive disorders. A major emphasis of the program is to
apply techniques developed in cognitive science and
neuroscience to the study of language and language
disorders. The program involves study and research
in normal language (including sign languages of
the deaf and language impairments), and in the
neural bases of language use and language loss.
Participating faculty have research interests in a
wide range of issues in processes of language
development, language and aging, multilingualism,
language disorders, assessment, and intervention.
Graduates of the program will be qualified to serve
as faculty in university programs in a variety of
disciplines, and to provide leadership in research
and health services. The doctoral program faculty
at UCSD are an interdisciplinary group from the
Departments of Cognitive Science, Communication,
Linguistics, Neurosciences, and Psychology. The
doctoral program faculty at SDSU are members of the
School of Speech, Language and Hearing Sciences
and the Departments of Linguistics and Psychology.
The program is coordinated by the doctoral program
coordinators at each campus, in conjunction with an
Executive Committee comprising three faculty from
each campus appointed by the Graduate Deans from
each campus.

The program is innovative in that many of the
requirements are designed to function as a model
of professional preparation specifically incorporating
activities in which a successful teacher and
researcher must engage after obtaining the Ph.D.:
students will be required to participate in interdisci-
niplinary research throughout the program, learn
about the nature and ethics of research, prepare
grant proposals, write manuscripts, and will gain
experience in oral presentations and teaching.
Graduates from the program will be well prepared
for the rigors of an academic/research career. The
doctoral program in Language and Communicative
Disorders, being interdisciplinary, draws from a
variety of undergraduate disciplines including com-
municative disorders, psychology, cognitive science,
linguistics, engineering, and other related sciences.
Students should have preparation in mathematics,
statistics, and biological sciences. Background in neuroscience and/or language
sciences, or language disorders is helpful, but not
required for admission.

By the end of the first year, all students will select
a major field of emphasis by choosing one of three
concentrations. The Adult Language concentra-
tion is intended to provide intensive education
in communicative disorders in adults. Students in
this concentration will also develop expertise in
the study of language processing in normal adults.
The Child Language concentration is intended to
provide specialized education in childhood (birth to
adolescence) communicative disorders. Students in
this concentration will also achieve competence in
developmental psycholinguistics emphasizing lan-
guage acquisition in normally developing children.
The Multilingualism concentration is intended to
provide education in cross-linguistic, ethnographic,
and other comparative studies of communicative
disorders in children and/or adults, including those
associated with bilingualism and second-language
acquisition (including acquisition of sign language
in deaf individuals). All students will be required to
take some courses in each of the three concentra-
tions. In addition, each student will elect a methods
minor, applying one of the new technologies of
cognitive neuroscience to research on language
and communicative disorders. These may include
computer-controlled studies of language processing
in real-time functional brain imaging (including
event-related brain potentials and/or functional
magnetic resonance imaging), or neural-network
simulations of communicative disorders.

The program is designed as a five-year cur-
riculum, based on a twelve-month academic year.
Students will be admitted to the doctoral program
only in the fall semester/quarter. Information regard-
ing admission is found in the current edition of the
Bulletin of the Graduate Division of San Diego State
University. To receive an application for admission,
contact: SDSU/UCSD Joint Doctoral Program in
Language and Communicative Disorders, San Diego
State University, 5500 Campanile Drive, San Diego,
CA 92182-1518, (619) 594-6775, or http://slhs.sdsu,
edu/phdmain.php.

Required courses include the Tools requirement
two courses in statistics/research design, a course
in neuroanatomy and physiology, a course in
language structure and theory and a professional
survival skills course), the Foundations require-
ment (three courses on normal language and
three courses on disorders of language) and the
Electives requirement (at least five courses, with a
minimum of three courses related to the chosen
concentration, chosen from a broad list of approved
options from Cognitive Science, Communication,
Computer Science, Linguistics, Neurosciences, and
Psychology). Consult with advisor for approved list
of elective courses. The five required electives must be
approved by the student's advisor and the Doctoral
Program Coordinators. In addition to their course
requirements, students are required to complete
three laboratory rotations in different research
methodologies (each lasting a minimum of one
quarter), two research projects (first year and second
year), a qualifying examination for advancement to
candidacy, and a dissertation proposal in the form
of grant proposal to one of the public agencies that
funds research in communicative disorders.

PH.D. TIME LIMIT POLICIES
Students must be advanced to candidacy by
the end of four years. Total university support cannot
exceed seven years. Total registered time at UCSD
cannot exceed eight years.

COURSES
For course descriptions not found in the UC San
Diego General Catalog, 2010–11, please contact the
department for more information.

(See individual departments for details; for
courses available at SDSU, see SDSU Graduate
Catalogue.)

TOOLS REQUIREMENT
Quantitative Methods in Psychology 201A-B-C
Ethics and Survival Skills in Academia
Cognitive Science 241
Systems Neuroscience
Cognitive Science 201 or
Basic Neurology SOMC 205
Foundations: Theories and Methods in the Study of
Cognitive Phenomena
Cognitive Science 203 or
Introduction to Grammatical Theory (Linguistics
221A) and
Introductory Phonology (Linguistics 211A)

FOUNDATIONS REQUIREMENT
Special Topics in Psycholinguistics
Psychology 244

ELECTIVES
COGNITIVE SCIENCE
200: Cognitive Science Seminar
202: Foundations: Computational Modeling of
Cognition
211A-B-C: Research Methods in Cognitive Science
213: Issues in Cognitive Development

2010-2011 UC SAN DIEGO GENERAL CATALOG • LANGUAGE AND COMMUNICATIVE DISORDERS 1
260: Seminar on Special Topics
272: Topics in Theoretical Neurobiology
273: Biological Basis of Attention

COMMUNICATION
200A: Communication as Social Force
200B: Communication and Culture
200C: Communication and the Individual
201B: Ethnographic Methods for Communication Research
201C: Discourse Analysis

LINGUISTICS
211A: Introductory Phonology
221A: Introduction to Grammatical Theory
225: Topics in Syntax
270: Psycholinguistics
272: Topics in Neurolinguistics
278: Research in Second Language Acquisition

PSYCHOLOGY
218A-B: Cognitive Psychology
222: Biological Psychology
236: Substance Abuse
244: Special Topics in Psycholinguistics
252: Seminar on Cognitive Neuroscience

COMPUTER SCIENCE AND ENGINEERING
250A-B: Artificial Intelligence
253: Neural Networks
256: Statistical Natural Language Processing
258A: Cognitive Modeling

NEUROSCIENCES
243: Physiological Basis of Human Information
263: Developmental Neuroscience

PHILOSOPHY
234: Philosophy of Language

1 Students who use this course to fulfill the Tools requirement may not use this as an elective.
Languages

Students wishing to major or minor in a foreign language or enroll in language courses should go to the following sections of this catalog:

- Departments of History, Linguistics, and Literature
- Programs in Chinese Studies, Japanese Studies, Judaic Studies, and Latin American Studies
- School of International Relations and Pacific Studies (IR/PS)

For additional information and a chart listing languages offered at UC San Diego, go to the Language Web site at http://www.ucsd.edu/current-students/academics/languages/index.html on TritonLink.
Latin American Studies

PROFESSORS
Guillermo D. Algaze, Ph.D., Professor, Anthropology
Robert R. Alvarez, Ph.D., Professor, Ethnic Studies
Eric J. Bakovic, Ph.D., Associate Professor, Linguistics
John D. Blanco, Ph.D., Associate Professor, Literature
Geoffrey Brasswell, Ph.D., Associate Professor, Anthropology
Kimberley C. Brouwer, Ph.D., Assistant Adjunct Professor, Family and Preventative Medicine
Robert Cancel, Ph.D., Associate Professor, Literature
Jaime Concha, Ph.D., Professor, Literature
Wayne A. Cornelius, Ph.D., Professor, Political Science
Peter Cowhey, Ph.D., Professor, International Relations and Pacific Studies
Ann Craig, Ph.D., Associate Professor, Political Science
Thomas Csordas, Ph.D., Professor, Anthropology
Teddy Cruz, Ph.D., Associate Professor, Visual Arts
Scott Desposato, Ph.D., Assistant Professor, Political Science
Ricardo Dominguez, M.F.A., Assistant Professor, Visual Arts and Culture
Paul W. Drake, Ph.D., Professor, Political Science
Richard Feinberg, Ph.D., Professor, International Relations and Pacific Studies
David Fitzgerald, Ph.D., Assistant Professor, Sociology
Ross H. Frank, Ph.D., Associate Professor, Ethnic Studies
Richard Garfein, Ph.D., Associate Adjunct Professor, Family and Preventive Medicine
Rosemary George, Ph.D., Associate Professor, Literature
Brian Goldfarb, Ph.D., Associate Professor, Communication
Paul S. Goldstein, Ph.D., Associate Professor, Anthropology
Grant Goodall, Ph.D., Professor, Linguistics
David Gutierrez, Ph.D., Professor, History
Stephan Haggard, Ph.D., Professor, International Relations and Pacific Studies
Daniel Hallin, Ph.D., Professor, Communication
Gordon Hanson, Ph.D., Professor, International Relations and Pacific Studies
John Haviland, Ph.D., Professor, Anthropology
Ariana Hernandez-Reguant, Ph.D., Assistant Professor, Communication
Louis Hock, M.F.A., Professor, Visual Arts
Jorge Huerta, Ph.D., Professor, Theatre and Dance
Christine Hunefeldt, Ph.D., Professor, History, Director
Stephanie Jed, Ph.D., Associate Professor, Literature
Sara Johnson, Ph.D., Assistant Professor, Literature
Milos Kokotovic, Ph.D., Associate Professor, Literature
Andrew Lakoff, Ph.D., Associate Professor, Sociology
April Linton, Ph.D., Assistant Professor, Sociology
David Mares, Ph.D., Professor, Political Science
Jorge Mariscal, Ph.D., Professor, Literature
Luis Martin-Cabrera, Ph.D., Assistant Professor, Literature
Keith McNeal, Ph.D., Assistant Professor, Anthropology
Everard Meade, Ph.D., Assistant Professor, History
Hugh Mehan, Ph.D., Professor, Sociology

Mario Molina, Ph.D., Professor, Chemistry and Biochemistry
Natalia M. Molina, Ph.D., Associate Professor, Ethnic Studies
Michael Montene, Ph.D., Professor, History
John C. Moore, Ph.D., Professor, Linguistics
Marc-Andreas Muendler, Ph.D., Assistant Professor, Economics
Elizabeth Newsome, Ph.D., Associate Professor, Visual Arts
Rafael Nunez, Ph.D., Associate Professor, Cognitive Science
Ruben Ortiz-Torres, M.F.A., Professor, Visual Arts
Max Parra, Ph.D., Associate Professor, Literature
David Pedersen, Ph.D., Assistant Professor, Anthropology
Sandra Pedregal, M.A., Lecturer, International Relations and Pacific Studies
Nolan E. Penn, Ph.D., Professor Emeritus, Psychiatry
Keith Pizzoli, Ph.D., Lecturer, Urban Studies Program
Beatrice Pita, Ph.D., Lecturer, Literature
Nancy Grey Postero, Ph.D., Associate Professor, Anthropology
Mirle Bussel Rabinowitz, Ph.D., Lecturer, Urban Studies Program
Pamela Radcliff, Ph.D., Associate Professor, History
James E. Rauch, Ph.D., Professor, Economics
Vivian Reznik, M.D., Professor, Pediatrics
David Ringrose, Ph.D., Professor Emeritus, History
Sebastian Saiegh, Ph.D., Assistant Professor, Political Science
Lisa Sánchez, Ph.D., Assistant Professor, Ethnic Studies
Marta Sánchez, Ph.D., Professor Emeritus, Literature
Rosaura Sánchez, Ph.D., Professor, Literature
Matthew Shugart, Ph.D., Professor, International Relations and Pacific Studies
Dean Sidelinger, M.D., Assistant Adjunct Professor, Pediatrics
Denise Ferreira da Silva, Ph.D., Associate Professor, Ethnic Studies, Program Director
Harold Simon, M.D., Professor Emeritus, Family and Preventive Medicine
Peter H. Smith, Ph.D., Professor, Political Science
SteFFanie Straitheen, Ph.D., Professor, Family and Preventive Medicine
Roberto Tejada, Ph.D., Associate Professor, Visual Arts
Eric Van Young, Ph.D., Professor, History
Olga A. Vásquez, Ph.D., Associate Professor, Communication
Carlos Waisman, Ph.D., Professor, Sociology
Daniel Widener, Ph.D., Assistant Professor, History
Winifred Woodhull, Ph.D., Associate Professor, Literature
Christopher Woodruff, Ph.D., Associate Professor, International Relations and Pacific Studies
Kathryn Woolard, Ph.D., Professor, Anthropology
León Zamosc, Ph.D., Associate Professor, Sociology
Ana Celía Zentella, Ph.D., Professor Emerita, Ethnic Studies
Elana Zilberg, Ph.D., Assistant Professor, Communication
Maria Zuniga, Ph.D., Assistant Adjunct Professor, Pediatrics

AFFILIATED ACADEMIC STAFF
Harold Colson, M.L.S., Librarian, International Relations and Pacific Studies
Karen Lindvall-Larson, M.L.S., Librarian, Geisel Library

THE LATIN AMERICAN STUDIES PROGRAM
UC San Diego’s program in Latin American studies has attained national and international distinction for its excellence in teaching, research, and public service. Each year its faculty offers approximately 100 Latin America-related courses in fourteen academic departments, and the Latin American Studies Program offers three interdisciplinary degrees:

- Bachelor of arts in Latin American Studies
- Minor in Latin American Studies
- Master of arts in Latin American Studies

Latin American studies at UCSD offers distinct advantages:

- At the undergraduate level, students may take elective courses on Latin American topics or pursue a minor or a B.A. degree in Latin American Studies. At the graduate level, students can obtain a M.A. degree in Latin American studies. In addition, various doctoral programs in academic departments across the social sciences and humanities offer a regional focus on Latin America.

- Latin American studies integrates teaching, research, and policy analysis, encouraging students to develop interdisciplinary perspectives and to work actively with faculty on research projects and conferences.

- Students participate in the activities of an outstanding array of research and teaching organizations, including the Center for Iberian and Latin American Studies, the Center for U.S.-Mexican Studies, the Graduate School of International Relations and Pacific Studies, the Center for Comparative Immigration Studies, and the Institute of the Americas. The Center for Iberian and Latin American Studies (CILAS) sponsors multidisciplinary colloquia, conferences, projects, and publications. CILAS also awards fellowships and grants each year to promising graduate students.

- Students are encouraged to interact with visiting Latin American scholars and to participate in Latin America-related internships, seminars, clubs, foreign exchange programs, and other extracurricular activities.

- Students at UCSD have access to one of the largest and fastest-growing library collections on Latin America in the United States.

Degree programs in Latin American studies are supervised by an interdisciplinary faculty group under the direction of the director and program director of the Center for Iberian and Latin American Studies.
THE CURRICULAR PROGRAM

UNDERGRADUATE MAJOR IN LATIN AMERICAN STUDIES

The bachelor of arts in Latin American studies blends coverage of methodological and theoretical approaches to the study of Latin America with a broad foundation in the humanities and social sciences. Students receiving this degree will be prepared for private and government employment or for graduate training; the major also provides a valuable supplement for those who subsequently pursue professional degrees in business, law, engineering, medicine, or other fields.

To satisfactorily complete the B.A. degree, students must take a broad range of courses from at least three of UCSD’s humanities and social science departments. The collection of courses should be structured so as to provide both depth in a special area of study and breadth across the broader field. Students must also demonstrate proficiency in Spanish.

All students entering the major must enroll in LATI 50 “Introduction to Latin America,” an interdisciplinary course that prepares majors to build a coherent curriculum on Latin America. During the senior year, all B.A. candidates are required to successfully complete LATI 190, a writing seminar. This course will culminate in the preparation of an interpretive paper based on the secondary analysis of existing scholarly research (approximately twenty to forty pages in length). As part of the overall requirements, students are strongly encouraged to enroll in four credits of Individual Study (LATI 199) with a member of the Latin Americanist faculty, who will serve as the student’s principal advisor.

All upper-division courses applied to the requirements of the major must be taken for a letter grade. No more than five courses from one department will count for credit. At least three courses must be from one department.

Students majoring in Latin American studies are also urged to minor in a core discipline such as anthropology, economics, history, literature, political science, or sociology. In summary, the requirements for the bachelor of arts in Latin American studies are:

Lower-Division Requirements

1. The equivalent of at least two years of college-level language instruction in Spanish, comparable to satisfactory completion of Literature/Spanish 2C; students who satisfy this requirement are strongly encouraged to study Portuguese.
2. LATI 50: Introduction to Latin America

Upper-Division Requirements

1. Eleven upper-division courses selected from the approved interdisciplinary course list for Latin American studies as follows:
 a. Course work must be in at least three departments.
 b. At least three courses must be from one department.
 c. No more than five courses from one department will count for credit.
 d. At least two courses must concentrate exclusively on periods earlier than the twentieth century.
2. Enrollment in the four-credit Senior Seminar (LATI 190), usually to be taken in the winter quarter of the senior year; satisfactory completion of a substantial paper is required of all graduating majors.
3. Maintain a 2.0 grade-point average, earning at least a C– in each course counting for the major. With the sole exception of LATI 199, all courses must be taken for a letter grade.

HONORS IN LATIN AMERICAN STUDIES

The Latin American Studies Program offers an Honors Program for students who demonstrate excellence in the major. In order to receive Honors in Latin American Studies a student must:
1. Satisfy all lower-division requirements of the major program;
2. Complete nine upper-division courses selected from the Approved Interdisciplinary Course List for Latin American Studies as follows:
 a. Course work must be in at least three departments.
 b. At least three courses must be from one department.
 c. No more than five courses from one department will count for credit.
 d. At least two courses must concentrate exclusively on periods earlier than the twentieth century.
3. Complete a three-course sequence in the senior year consisting of Individual Study, the Senior Seminar, and the Honors Seminar (LATI 199, 190, and 191, respectively);
4. Produce an original thesis based on primary research under the direction of a mentor selected from the Latin Americanist faculty, and defend this thesis during the spring quarter before an interdisciplinary faculty committee; and
5. Maintain a minimum GPA of 3.5 in the major.

UNDERGRADUATE MINOR IN LATIN AMERICAN STUDIES

The Latin American studies minor allows students to explore interdisciplinary approaches to a significant world region while pursuing a major in an academic discipline. To complete the program, students take at least seven classes (twenty-eight units) in Latin American studies, five (twenty units) of which must be upper-division. These courses need to be approved Latin American studies classes from the humanities and social sciences. All classes need to be taken for a letter grade and satisfactorily completed.

1. Course work must be in at least three departments.
2. A student needs to be LATI 50, which is offered once per year.
3. One course needs to fulfill the language requirement, which should be the culmination of at least two years of college-level language instruction in Spanish or Portuguese. This course can be fulfilled in the following ways:
 • LTSP 2C for non-native speakers
 • LTSP 2D for native speakers
 • LTSP 50 or above
 • A UCSD-approved Spanish/Portuguese education-abroad course

EDUCATION ABROAD

Students in Latin American studies are encouraged to participate in the Education Abroad Program (EAP) in Brazil, Chile, Costa Rica, or Mexico, or in other study abroad programs offered by the Opportunities Abroad Program (OAP). Subject to approval by petition after courses have been completed (based on syllabi and course work), courses taken through EAP/OAP will be accepted for credit toward the major or minor. The equivalent of six UCSD upper-division courses can be petitioned for credit toward the major, and a maximum of two UCSD upper-division courses can be petitioned for credit toward the minor.

Students interested in studying abroad should see the Latin American studies student affairs coordinator to discuss appropriate courses and programs for their plan of study before they leave. They should also visit the following Web site: http://pao.ucsd.edu/academic/CILASabroad.htm. Information on EAP/OAP is given in the “Education Abroad Program” section of the UC San Diego General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit its Web site at http://pao.ucsd.edu. Financial aid can be used for EAP/OAP study, and special study-abroad scholarships are also available.

MASTER OF ARTS IN LATIN AMERICAN STUDIES

The master of arts in Latin American studies is designed for students who seek to integrate a broad range of disciplinary approaches to a world region of growing international significance. Upon graduation, most students pursue additional advanced degrees in academic or professional fields; others proceed to careers in the private sector, in international organizations, or in government.

To qualify for admission, students must have a B.A. with a grade-point average of at least 3.5 on a 4.0 scale for the final two years of undergraduate study plus satisfactory scores on the Graduate Record Examination.

To receive the master of arts in Latin American studies, a student must:
1. Demonstrate foreign language competence in Spanish or Portuguese.
2. Maintain a 3.0 GPA in forty units of course work (about ten courses) to be completed as follows:
 a. Complete the Latin American Studies Basic Seminar Sequence: twelve units must be taken in the required Core Seminar in Latin American Studies (LATI 200, four units), four units in approved theory seminar, and four units in approved methodology seminar.
 b. Courses must be completed in at least three fields, with no more than sixteen units in any
one department. Students are encouraged to include four units of independent research (LATI 299) for work on the master’s thesis.

c. At least sixteen units must be taken in upper-division, graduate-level courses and up to sixteen units may be taken in upper-division, graduate-level courses.

3. Successfully complete either a comprehensive exam or master’s thesis.

M.A. students have the option to upgrade upper-division, undergraduate-level courses to graduate-level courses (contact the Latin American studies student affairs coordinator for information on requirements and procedures). To convert an undergraduate-level course (100 level) into a 298 graduate-level course, a student must attend all of the course meetings and incorporate a component of additional, graduate-level research work, upon arrangement with the faculty member teaching the course (a special form describing the supplementary work must be filled by the student and approved by the instructor and CLAS’ academic coordinator). In all such cases, the supplementary work should (a) increase the amount of reading to match the regular reading expectations of a graduate seminar, (b) include additional meeting time with the professor for a graduate-level discussion of the material, and (c) require the student to write a research paper (which would generally be on the order of fifteen to twenty pages).

DISCIPLINARY AND THEMATIC CONCENTRATIONS

M.A. students in Latin American studies who are interested in specific disciplines or research topics may apply for a disciplinary or thematic concentration. Currently students may choose from concentrations in cultural studies, gender studies, international migration, history, and sociology. In addition to the general requirements for all candidates applying for admission to the Master of Arts in Latin American studies, applicants to a concentration must submit a statement explaining their intellectual and career interests in that specific area of study. Applications from new students will be considered for the fall quarter. Current students in the Latin American studies master’s program may apply in the spring quarter of their first year. M.A. students who were previously enrolled as undergraduates at UCSD will not be allowed to repeat courses for credit toward the concentration. In all cases there are alternatives, and those students will be expected to take other classes to fulfill the requirements.

GENERAL CONCENTRATION REQUIREMENTS

To receive the master of arts in Latin American studies with a concentration, a student must

1. Demonstrate foreign language competence in Spanish or Portuguese.

2. Maintain a 3.0 GPA in forty units of course work (about ten courses) to be completed as follows:

 a. Complete the Latin American Studies Basic Seminar Sequence: twelve units must be taken in the required Core Seminar in Latin American Studies (LATI 200, four units), four units in approved theory seminar, and four units in approved methodology seminar.

 b. Complete sixteen units within the specifications of the concentration (as specified below). All of the concentration units must be taken at the graduate level (200 level), and a maximum of two undergraduate-level courses (100 level) may be upgraded to graduate-level 298 courses.

 c. Complete twelve units of general electives within the specification of the concentration (as specified below). At least 50 percent of the general elective units must be taken at the graduate level (200 level).

3. Successfully complete a master’s thesis on a topic relevant to the area of concentration.

CONCENTRATION IN CULTURAL STUDIES

To receive the master of arts degree in Latin American studies (cultural studies), a student must complete the following units as concentration course work and general electives:

1. Two seminars (eight units) from the approved list of core seminars. These may be used to satisfy the theory and methodology requirements of the LAS M.A. program (ETHN 259, ETHN 260, HIGR 200, HIGR 205, HIGR 207, HIGR 247A-B, HIGR 248A-B, HIGR 252, LTCS 201, LTCS 210, LTCS 225, LTCS 250, LTCS 255, LTSP 272, LTSP 275, VIS 259).

3. The selection of these seminars and courses must be formally approved by the student’s personal advisor (by signing the student’s graduate student general petition form). With approval from his/her advisor, however, students in the cultural studies concentration may take other seminars and courses that do not appear in the approved list, provided that the content of the work that they do is directly related to Latin American issues, topics, or themes.

4. General Electives: The remaining twelve units must be taken as follows: two courses from the Approved List of Courses on Latin America (eight units), and one course of Directed Reading or Independent Research (298 or 299, four units).

CONCENTRATION IN GENDER STUDIES

To receive the master of arts degree in Latin American studies (gender studies), a student must complete the following units as concentration course work and general electives:

1. One general theoretical course in gender studies (four units in any of the following: ANGR 244, CGS 100, CGS 101, CGS 104, CGS 112, COCU 132, COCU 139, ETHN 256, LTCS 250, SOCB 118, SOCC 132, SOCC 267).

2. One course in feminist theory (four units in any of the following: CGS 103, COCU 138, HIGR 205, POLI 116A, POLI 217).

3. One course focused on gender studies in Latin America (four units in any of the following: ETHN 129, ETHN 148, HILA 261, LTAM 105, LTAM 106, LTSP 175, POLI 134P, USP 135).

4. One course of directed reading (298, four units), taken with a faculty member affiliated with the CGS Program, focused on a topic relevant to Latin American gender studies.

5. General Electives: The remaining twelve units must be taken as follows: one course from the approved list of courses on Latin America (four units), four units of directed reading (298), and four units of independent research (299).

CONCENTRATION IN HISTORY

To receive the master of arts degree in Latin American studies (history), a student must complete the following units as concentration course work and general electives:

1. A required research seminar sequence in Latin American history (eight units in any of the following: HIGR 245A-B-C, HIGR 247A-B, or HIGR 248A-B).

3. General Electives: The remaining twelve units must be taken in departments other than the Department of History as follows: one course from the approved list of courses on Latin America (four units), four units of directed reading (298), and four units of independent research (299).

CONCENTRATION IN INTERNATIONAL MIGRATION

To receive the master of arts degree in Latin American studies (international migration), a student must complete the following units as concentration course work and general electives:

1. One course focused on economic and social factors in international migration (four units in any of the following: ECON 114, ETHN 118, ETHN 131,
ETHN 134, HIUS 159, IRGN 490, POLI 248, SOCG 282).

2. One course focused on Immigration Policy (4 units in any of the following: POLI 150, POLI 236, IRGN 490).

3. One course focused on Latin American international migration (four units in any of the following: COHI 175, ETHN 189, HIUS 180, HIUS 186, IRGN 490, LTAM 109, JTS 177).

4. One course of directed reading (four units in a 298 course, focused on a topic relevant to Latin American migratory movements).

5. General Electives: The remaining twelve units must be taken as follows: one course from the approved list of courses on Latin America (four units), four units of directed reading (298), and four units of Independent Research (299).

CONCENTRATION IN SOCIOLOGY

To receive the master of arts degree in Latin American studies (sociology), a student must complete the following units as concentration course work and general electives:

1. One seminar in classical sociological theory (four units in SOC 201A or SOC 201B).

2. One seminar in sociological research methods (four units in any of the following: SOC 203, SOC 250, SOC 205, SOC 206, SOC 207, SOC 227).

3. One core sociological field seminar (four units in any of the following: SOC 212, SOC 216, SOC 222, SOC 226, SOC 234, SOC 244, SOC 264, SOC 267).

4. One sociology course or seminar focused on Latin America (four units in any of the following: SOCD 182, SOCD 188D, SOCG 258).

5. General Electives: The remaining twelve units must be taken in departments other than the Department of Sociology as follows: one course from the approved list of courses on Latin America (four units), four units of directed reading (298), and four units of independent research (299).

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LATI 1A. Zapotec Conversation and Analysis I (4)
Presentation and practice of the grammatical structures of Valley Zapotec, an indigenous language from Mexico. Course focuses on listening, speaking, and writing. Students gain basic knowledge of grammatical principles in order to understand the structure and rules of the language.

LATI 1B. Zapotec Conversation and Analysis II (4)
Presentation and practice of the grammatical structures of Valley Zapotec, an indigenous language from Mexico. Course teaches comprehensive vocabulary through listening, speaking, reading, and writing activities. Course also focuses on oral proficiency/grammar, including verb conjugation and other grammatical structures. Prerequisite: LATI 1A.

LATI 1C. Zapotec Conversation and Analysis III (4)
Presentation and practice of the grammatical structures of Valley Zapotec, an indigenous language from Mexico. Course gives students an advanced understanding of written and spoken Valley Zapotec through reading, conversation, group presentations, and composition. Prerequisite: LATI 1B.

LATI 50. Introduction to Latin America (4)
Interdisciplinary overview of society and culture in Latin America—including Mexico, the Caribbean, and South America: legacies of conquest, patterns of economic development, changing roles of women, expressions of popular culture, cycles of political change, and U.S.-Latin American relations.

LATI 50XL. Foreign Language Discussion—Introduction to Latin America (1)
Students will exercise advanced foreign language skills to discuss materials and the correspondingly numbered Latin American Studies courses in English. Course is taught by the course instructor, has no final exam, and does not affect the grade in the core course, LATI 50.

LATI 87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to 15 to 20 students, with preference given to entering freshmen.

LATI 120/220. Special Topics in Latin American Studies (1-4)
A course designed to cover various aspects and various disciplines of Latin American Studies.

LATI 190. Senior Seminar (4)
Research seminar on selected topics in the study of Latin America; all students will be required to prepare and present independent research papers. (Honors students will present drafts of senior research theses, of no less than fifty pages in length; non-honors students will present final versions of analytical papers of approximately twenty-five to forty pages in length.) Prerequisites: satisfactory completion of LATI 50 and a working knowledge of Spanish.

LATI 191. Honors Seminar (4)
Independent reading and research under direction of a member of the faculty group in Latin American Studies; goal is to provide honors students with an opportunity to complete senior research thesis (to be defended before three-person interdisciplinary faculty committee). Prerequisites: successful completion of LATI 50, working knowledge of Spanish; minimum GPA of 3.5 in the major.

LATI 199. Individual Study (4)
Guided and supervised reading of the literature on Latin America in the interdisciplinary areas of anthropology, communications, economics, history, literature, political science, and sociology. For students majoring in Latin American Studies, reading will focus around potential topics for senior papers; for honors students in Latin American Studies, reading will culminate in formulation of a prospectus for the research thesis. Prerequisites: LATI 50 and working knowledge of Spanish.

LATI 200. Core Seminar on Interdisciplinary Research and Methodology in Latin American Studies (4)
A team-taught course wherein members of the faculty group in Latin American Studies present diverse disciplinary and thematic approaches to the region. Topics vary from year to year. Grades are based on discussions and on a series of analytical papers. Prerequisite: enrollment in the master's degree program in Latin American Studies or permission of instructor.

LATI 210A-B. Latin American Library Resources and Research Methodology (2-2)
A detailed survey of major research methods and resources for the study of Latin America. Both conventional library materials and those available electronically will be explored. Skills will transfer to any major research library. Various methodologies will also be explored in relation to the students' individual projects. A critical review, annotated bibliography, and a statement of research methodology, related to any proposed topics, will be required. Not offered in 2009–10.

LATI 298. Directed Reading (1-12)
Guided and supervised reading of the literature of the several areas included in the interdisciplinary fields of anthropology, communications, economics, history, literature, political science, and sociology. Prerequisite: graduate standing in Latin American Studies.

LATI 299. Independent Research (1-12)
Independent work by graduate students engaged in thesis research and writing under the direct supervision of a faculty advisor.

LATI 500. Teaching Apprenticeship (1-4)
The course is designed for teaching assistants to learn effective teaching methods through supervision and mentorship by the faculty. Students will learn handling of discussions; preparation and grading of examinations and other written exercises; and student relations.

COURSES THAT SATISFY UNDERGRADUATE/GRADUATE DEGREE REQUIREMENTS IN LATIN AMERICAN STUDIES

Approved Interdisciplinary Courses: The following is a list of courses available in UCSD departments that are approved to satisfy the requirements of the major, minor, and master's in Latin American studies. Please note that these courses may not be offered every quarter or year and new courses may be added. Check the current Schedule of Classes or the Latin American studies Web site (http://orpheus.ucsd.edu/las) for updated information.

The Departments of Linguistics and Literature and the Graduate School of International Relations and Pacific Studies offer language courses in Spanish and Portuguese. Language courses do not count toward the course requirements for Latin American studies degrees.

ANTHROPOLOGY

ANAR 100. Special Topics in Anthropological Archaeology (when Latin American content)

ANAR 153. The Mysterious Maya

ANAR 154. Aztecs and Their Ancestors

ANAR 155. Study Abroad: Ancient Mesoamerica

ANAR 156. The Archaeology of South America

ANAR 156-XL. The Archaeology of South America (FLD)

ANAR 157. Early Empires of the Andes: The Middle Horizon

ANAR 157-XL. The Andean Middle Horizon (FLD)

ANAR 158. The Inca: Empire of the Andes

ANSC 100. Special Topics in Socio-Cultural Anthropology

ANSC 125. Gender, Sexuality, and Society

ANSC 131. Urban Cultures in Latin America

ANSC 131-XL. Foreign Language Discussion—Urban Cultures in Latin America

ANSC 132. Modernity in Brazil

ANSC 133. Indigenous Peoples of Latin America

ANTH 269. Current Readings in Latin America

COMMUNICATION

COCU 110. Cinema in Latin America: Visions of a Continent in Transition

COCU 131. Cinema of the Cuban Revolution
COHI 114. Bilingual Communication
COHI 114. Bilingual Communication
COSF 140C. Comparative Media Systems: Latin America and the Caribbean

ECON 114. Economics of Immigration
ECON 161. Latin American Economic Development
ECON 162. Economics of Mexico

ETHNIC STUDIES
ETHN 116. The United States-Mexico Border in Comparative Perspective
ETHN 117. Organic Social Movements
ETHN 118. Contemporary Immigration Issues
ETHN 119. Race in the Americas
ETHN 129. Asian and Latina Immigrant Workers in the Global Economy
ETHN 130. Social and Economic History of the Southwest I
ETHN 131. Social and Economic History of the Southwest II
ETHN 132. Chicano Dramatic Literature
ETHN 133. Hispanic American Dramatic Literature
ETHN 133A. Early Latino/a-Chicano/a Cultural Production, 1848–1960
ETHN 135B. Early Latino/a-Chicano/a Cultural Production, 1960–Present
ETHN 136. Topics in Chicano/a-Latino/a Cultures
ETHN 136B. Early Latino/a-Chicano/a Cultural Production: 1960 to Present

HILA 100. Latin American Colonial Transformation
HILA 101. Latin American Independence 1810–1898
HILA 102. Latin America in the Twentieth Century
HILA 103. Revolution in Modern Latin America
HILA 104. Modern U.S.-Latin America Relations
HILA 112. Economic and Social History of the Andean Region
HILA 113. Lord and Peasant in Latin America
HILA 114. Dictatorship in Latin America
HILA 115. Latin American City, A History
HILA 120. History of Argentina
HILA 121. History of Brazil
HILA 122. Cuba: From Colony to Socialist Republic
HILA 126. From Columbus to Castro: Caribbean Culture and Society
HILA 127. History, Culture, and Power

HILA 131. History of Mexico
HILA 132. History of Contemporary Mexico
HILA 161/261. History of Women in Latin America
HILA 162/262. Special Topics in Latin American History
HILA 163/263. History of Chile 1880–Present
HILA 164/264. Women's Work and Family Life in Latin America
HILA 167/267. Historical Scholarship on Latin American History
HILA 168/268. Historical Scholarship on Latin American History
HILA 169/269. Historical Scholarship on Latin American History
HILA 170/270. Topics in Latin American History, 1820–1910
HILA 171/271. Special Topics in Latin American History since 1910
HILA 172/272. History of Mexico
HILA 173/273. History of Mexico
HILA 174/274. History of Mexico
HILA 175/275. History of Mexico
HILA 176/276. History of Mexico
HILA 177/277. History of Mexico
HILA 178/278. History of Mexico
HILA 179/279. History of Mexico
HILA 180/280. Special Topics in Chicano/a-Latino/a Studies

INTERNATIONAL RELATIONS AND PACIFIC STUDIES
IRGN 409. Economic Policy in Latin America
IRGN 454. Current Issue/U.S.-Latin American Relations
IRGN 476. Doing Business in Latin America
IRGN 477. Latin American Politics
IRGN 479. Politics and Institutions in Latin America
IRGN 490. Special Topics (with Latin American content)

LATIN AMERICAN STUDIES
LATI 50. Introduction to Latin America
LATI 50X. Foreign Language Discussion—Introduction to Latin America
LATI 87. Freshman Seminar
LATI 120. Special Topics in Latin American History
LATI 190. Senior Seminar
LATI 191. Honors Thesis Seminar
LATI 199. Independent Study
LATI 200. Core Seminar in Latin American Studies
LATI 220. Special Topics in Latin America
LATI 298. Directed Reading
LATI 299. Independent Research
LATI 500. Teaching Apprenticeship

LITERATURE
LITAM 100. Latino/a Cultures in the United States
LITAM 101. Early Latino/a-Chicano/a Cultures: 1848–1960
LITAM 102. Contemporary Chicano/a-Latino/a Cultural Production: 1960 to Present
LITAM 104. Cultures of the U.S./Mexico Border Region
LITAM 105. Gender and Sexuality in Latino/a Cultural Production
LITAM 106. Modern Chicana and Mexican Women Writings
LITAM 107. Comparative Latino/a and U.S. Ethnic Cultures
LITAM 108. Chicano/a and Latino/a Cultures: Intellectual and Political Traditions
LITAM 109. Cultural Production of the Latino/a Diasporas
LITAM 110. Latin American Literature in Translation
LITAM 111. Contemporary Caribbean Discourse
LITAM 120. Mexican Literature in Translation
LITAM 130. Reading North by South
LITAM 132. The Dark Side of Enlightenment in Spain, America, and the Philippines
LITAM 29. Introduction to Chicano Literature
LITAM 180. Chicano Literature in English
LITAM 188. Contemporary Caribbean Literature
LITSP 50BC. Readings in Latin American Topics
LITSP 107. Literature of the Fifteenth Century
LITSP 119ABC. Cervantes
LITSP 130B. Development of Latin American Literature
LITSP 133. Contemporary Latin American Literature
LITSP 134. Literature of the Southern Cone
LITSP 135A. Mexican Literature Before 1910
LITSP 135B. Modern Mexican Literature
LITSP 136. Andean Literature
LITSP 137. Caribbean Literature
LITSP 140. Latin American Novel
LITSP 141. Latin American Poetry
LITSP 142. Latin American Short Story
LITSP 150B. Early Latino/a-Chicano/a Cultural Production, 1960–Present
LITSP 151. Topics in Chicano/a-Latino/a Cultures
LITSP 153. Chicano/a and Latino/a Poetry
LITSP 154. Latino/a and Chicano/a Literature
LITSP 162. Spanish Language in the United States
LITSP 170. Contemporary Theories of Cultural Production
LITSP 172. Indigenista Themes in Spanish American Literature
LITSP 173. Problems in Spanish and Spanish American Literary History
LITSP 175. Gender, Sexuality, and Culture
LITSP 176. Literature and Nation (when Latin American content)
LITSP 177. Literary and Historical Migrations
LITSP 178. New Latin American Social Movements
LITSP 190. Seminar
LITSP 224. Golden Age Studies
LITSP 252. Studies in Modern Hispanic Literature and Culture
LTSP 258. Spanish American Prose
LTSP 272. Literature and Society Studies
LTSP 275. Latin American Literature/Literary and Cultural Theory Since the 60s

MUSIC
MUS 111. Topics/World Music Traditions (when Latin American content)

POLITICAL SCIENCE
POLI 105A. Latino Politics in the U.S.
POLI 134AA. Comparative Politics of Latin America
POLI 134B. Politics in Mexico
POLI 134D. Selected Topics in Latin American Politics
POLI 134N. Politics in Central America
POLI 145A. International Politics and Drugs
POLI 146A. U.S. and Latin America: Political and Economic Relations
POLI 146E. U.S. and Latin American Relations: Security Issues
POLI 150A. Politics of Immigration
POLI 154. Special Topics in International Relations (when Latin American content)
POLI 181A. Field Research Methods for Migration Studies: Seminar
POLI 181B. Field Research Methods for Migration Studies: Practicum
POLI 181C. Field Research Methods for Migration Studies: Data Analysis
POLI 229. Special Topics: Comparative Politics (when Latin American content)
POLI 230A. The Mexican Political System
POLI 236. Immigration Policy and Politics
POLI 248. Special Topic/International Relations: Latin American Foreign Policy

SOCIOLOGY
SOCC 163. Migration and the Law (when Latin American content)
SOCD 182. Ethnicity and Indigenous Peoples in Latin America
SOCD 185. Globalization and Social Development
SOCD 188D. Latin America: Society and Politics
SOCD 189. Ethnicity in Latin America
SOCG 258. Institutional Change in the Contemporary World; Latin American Societies in a Comparative Perspective

THEATRE AND DANCE
TDMV 140. Beginning Dances of the World
TDMV 141. Advanced Dances of the World
TDMV 142. Latin Dance of the World
THHS 108. Luis Valdez
THHS 110. Chicano Dramatic Literature
THHS 111. Hispanic-American Dramatic Literature
THHS 112. Gay and Lesbian Themes in U.S. Latino Theatre
TDHT 108. Luis Valdez
TDHT 110. Chicano Dramatic Literature
TDHT 111. Hispanic-American Dramatic Literature

TDHT 112. Gay and Lesbian Themes in U.S. Latino Theatre

Urban Studies and Planning
USP 135. Asian and Latina Immigrant Workers in the Global Economy

VISUAL ARTS
VIS 126AN. Pre-Columbian Art of Ancient Mexico and Central America
VIS 126BN. Art and Civilization/Ancient Maya
VIS 126G. Problems in Mesoamerican Art History
VIS 126H. Problems in Ancient Maya Iconography and Inscriptions
VIS 126P. Latin American Art: Modern to Postmodern 1890–1950
VIS 126Q. Latin American Art: Modern to Postmodern 1950–Present
VIS 126R. Latin American Photography
VIS 128CN. Topics in Modern Art History (when Latin American content)
VIS 128DN. Topics in Non-Western Art History (when Latin American content)
VIS 129CN. Special Problems in Modern Art History (when Latin American content)
VIS 129DN. Special Problems in Non-Western Art History (when Latin American content)
VIS 152. Film in the Social Context (when Latin American content)
Law and Society

OFFICE: Interdisciplinary Programs, EBU 3B, Computer Science and Engineering Building, Room 1114, Warren College
http://provost.ucsd.edu/warren/law/

Law and Society is an interdisciplinary minor that emphasizes the complexity and interrelationship of legal, social, and ethical issues in their historical context. Although it is administered by Warren College, it is available to all UC San Diego undergraduate students considering law-related careers or those with a general interest in law as a social institution. The purpose of the program is to enhance students' critical analysis of social and ethical issues related to law and of the legal implications and ramifications of policy and decision-making in their major fields of study. Students examine the role of the legal system and specific legal issues from the perspectives of the social sciences and humanities. Social forces, historical questions, and issues of values will be considered in the context of the legal system. The focus of the minor is on the process of law—how the law both reflects and defines basic social values—and its relation to the political, economic, and social conflicts within society.

The interdisciplinary content of the Law and Society minor offers students the opportunity to examine law-related issues from the perspectives of a broad range of disciplines, including anthropology, communication, critical gender studies, economics, environmental studies, ethnic studies, history, linguistics, philosophy, political science, psychology, sociology, and urban studies and planning.

Students should consult an academic advisor at their college to determine how the Law and Society minor can best meet their college graduation requirements. Minor declarations must be made online using the TritonLink major and minor application.

Students are urged to supplement the Law and Society minor with a law-related internship. The Academic Internship Program offers local placements with lawyers, judges, elected officials, government offices, and public interest groups. In addition, placements are available in Washington, D.C. with senators, representatives, legislative committees, and political action committees.

A number of extracurricular events and programs are also available to students interested in law. Information on these programs and activities is available in the Warren College Interdisciplinary Programs Office, EBU 3B, Computer Science and Engineering Building, Room 1114, Warren College, or call (858) 534-3068. Web site: http://provost.ucsd.edu/warren/law/.

LAW AND SOCIETY MINOR REQUIREMENTS

The minor consists of four required courses and three elective courses. At least five courses must be taken at the upper-division level. To assure an interdisciplinary learning experience, students must include at least one course from each of the following academic departments: history, philosophy, political science, and sociology. Law and Society 101, Contemporary Legal Issues, will count as a history, philosophy, political science, or sociology course according to the departmental affiliation of the instructor. Law and Society 101 may be repeated for credit once (separate topic required), for a maximum total of eight units.

REQUIRED COURSES

1. One of the following two courses: Law and Society 101. Contemporary Legal Issues
 Sociology 50. Introduction to Law and Society
2. Law and Society 101. Contemporary Legal Issues
3. One of the following four courses: History US 150. American Legal History to 1865
 History US 151. American Legal History since 1865
 Political Science 104A. The Supreme Court and the Constitution
 Political Science 104B. Civil Liberties—Fundamental Rights
4. One of the following two courses: Philosophy 168. Philosophy of Law
 Sociology 140. Sociology of Law

ELECTIVES CHosen FROM THE FOLLOWING

- **Anthropology**
 - 100. Topics in Socio-Cultural Anthropology (topic approval required)
- **Communication**
 - 139A–B. Law, Communication, and Freedom of Expression
- **Critical Gender Studies**
 - 106. Gender, Equality, and the Law
 - 107. Gender and Reproductive Rights
 - Dimensions of Culture
- **Economics**
 - 118. Law and Economics: Torts, Property, Crime
 - 119. Law and Economics: Contracts and Corporations
- **Environmental Studies**
 - 110. Environmental Law
- **Ethnic Studies**
 - 152. Law and Civil Rights
- **History of Science**
 - 131. Science, Technology, and Law
- **History Topics**
 - 134. International Law: War Crimes and Genocide
- **History of the United States**
 - 128. African-American Legal History
 - 150. American Legal History to 1865
 - 151. American Legal History since 1865
 - 152A. A Constitutional History of the U.S. to 1865
 - 152B. A Constitutional History of the U.S. since 1865
 - 153. American Political Trials
 - 155A. Religion and Law in American History: Foundations to the Civil War
 - 155B. Religion and Law in American History: Civil War to the Present
 - 169. Topics in American Legal and Constitutional History
- **Law and Society**
 - 101. Contemporary Legal Issues (may be repeated for credit once; separate topic required)
 - 102S. Crimes, Civil Wrongs, and Constitution
- **Linguistics**
 - 105. Law and Language
 - 176. Language of Politics and Advertising
- **Philosophy**
 - 10. Introduction to Logic
 - 12. Logic and Decision Making
 - 162. Contemporary Moral Issues
 - 163. Biomedical Ethics
 - 167. Contemporary Political Philosophy
 - 168. Philosophy of Law
- **Political Science**
 - 13. Power and Justice
 - 40. Introduction to Law and Society
 - 104A. The Supreme Court and the Constitution
 - 104B. Civil Liberties—Fundamental Rights
 - 104C. Civil Liberties—The Rights of Criminals and Minorities
 - 104D. Judicial Politics
 - 104F. Seminar in Constitutional Law
 - 104L. Positive Political Theory of Law
 - 104M. Law and Sex
 - 140A. International Law and Organizations
 - 145A. International Politics and Drugs
 - 150A. Politics of Immigration
- **Psychology**
 - 162. Psychology and the Law
- **Sociology**
 - 50. Introduction to Law and Society
 - 120T. Special Topics in Culture, Language, and Social Interaction (topic approval required)
 - 140. Sociology of Law
 - 140F. Law and the Workplace
 - 141. Crime and Society
 - 142. Social Deviance
 - 144. Forms of Social Control
 - 145. Violence and Society
 - 146. Law Enforcement in America
 - 152. Social Inequality and Public Policy
 - 159. Special Topics in Social Organizations and Institutions (topic approval required)
 - 160E. Law and Culture
 - 163. Migration and the Law
 - 173. Elite Crime
- **Urban Studies and Planning**
 - 124. Land Use Planning

Students may petition to substitute courses in the minor that have substantial legal content. Petitions should be submitted to the Warren College Interdisciplinary Programs Office.
RECOMMENDED INTERNSHIP EXPERIENCE

A law-related internship (AIP 197) is recommended and should be arranged at least one quarter in advance through the Academic Internship Program, Literature Building, Second Floor, http://aip.ucsd.edu/.

FACULTY ADVISORY COMMITTEE

Farrell Ackerman, Professor, Linguistics
Steven Adler, Provost, Earl Warren College; Program Director
Richard Arneson, Professor, Philosophy
Thomas Barton, Professor, California Western School of Law
Michal Belknap, Professor, California Western School of Law; Adjunct Professor, History
Laurence Benner, Professor, California Western School of Law; Visiting Professor, Political Science
Gerald Doppelt, Professor, Philosophy
Richard Finkmoore, Professor, California Western School of Law; Visiting Professor, Environmental Studies
Tal Golan, Associate Professor, History
Robert Horwitz, Professor, Communication
Alan Houston, Professor, Political Science; Provost, Eleanor Roosevelt College
Kwai Ng, Assistant Professor, Sociology
Michael Parrish, Professor, History
Patrick Patterson, Assistant Professor, Sociology
Samuel Rickless, Professor, Philosophy
Sanford Schane, Professor Emeritus, Linguistics
John Skrentny, Professor, Sociology
Glenn Smith, Professor, California Western School of Law; Visiting Professor, Political Science

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

Most course work for the Law and Society minor is listed under the academic department providing instruction. Law and Society 101, described below, is an interdisciplinary course. It may be counted toward minor requirements as either History, Philosophy, Political Science, or Sociology. Further information on Law and Society 101 is available in the Interdisciplinary Programs Office.

UPPER-DIVISION

101. Contemporary Legal Issues (4)
This course will deal in depth each year with a different legal issue of contemporary significance, viewed from the perspectives of political science, history, sociology, and philosophy. Required for students completing the Law and Society minor. May be repeated for credit once, for a maximum total of eight units. Prerequisite: upper-division standing or consent of instructor.

102S. Crimes, Civil Wrongs, and Constitution (4)
Through lectures and discussions on several controversial topics, students are introduced to the subjects taught in the first year of law school. They learn briefing, case analysis, and the Socratic method of instruction, engage in role-playing exercises, and take law-school examinations. Prerequisite: upper-division standing or consent of instructor.
Linguistics

PROFESSORS
Farrell Ackerman, Ph.D.
Grant Goodall, Ph.D.
Andrew Kehler, Ph.D., Chair
Rachel Mayberry, Ph.D.
John C. Moore, Ph.D.

ASSOCIATE PROFESSORS
Amalia Arvanti, Ph.D.
Eric J. Bakovic, Ph.D.
Robert E. Kluender, Ph.D.
Sharon Rose, Ph.D.

ASSISTANT PROFESSORS
Gabriela Caballero, Ph.D.
Ivano Caponigro, Ph.D.
Roger Levy, Ph.D.

PROFESSORS EMERITUS
Matthew Y. C. Chen, Ph.D.
Ronald W. Langacker, Ph.D.
Leonard D. Newmark, Ph.D.
David M. Perlmuter, Ph.D.
Sanford A. Schane, Ph.D.

OFFICE:
3016 Applied Physics and Mathematics Building
Muir College
http://ling.ucsd.edu

In what ways do languages differ, and in what ways are all human languages alike? These are the basic questions that the science of linguistics seeks to answer.

In formulating hypotheses about language it has been found that languages have intricate structure at a number of different levels. Phonetics studies the sounds of speech and how they are produced and perceived. Phonology studies the principles by which the sounds of a language are organized into a system and combined into syllables and larger units. Morphology studies the principles by which smaller units of meaning are combined into words. Syntax is the study of the principles by which words are combined into larger units such as phrases and sentences. Semantics studies meaning—the meanings of words and the ways the meanings of words are related to the meanings of larger units such as the phrase, the sentence, and the discourse. Linguists attempt to discover to what extent the principles at each level vary across languages, and to what extent they are universal.

Because language provides a window into the human mind, linguistics plays a central role in the study of human cognition and figures prominently in the field of cognitive science. We know, for example, that all normal children succeed in learning language relatively quickly at a time when their other cognitive abilities are still developing. The universal properties of human language that linguists discover can be used to provide models of this process, to explain why it occurs so rapidly, and to make specific predictions about the way it unfolds. The results of linguistic research can also be tested directly in experimental studies of how language is represented and processed in the mind (psycholinguistics) and brain (neurolinguistics). Language can also be studied in terms of its function as a cognitive system shared by an entire society; sociolinguistics investigate the ways in which the language we use is affected by our social environment.

The Department of Linguistics offers a series of lower-division courses designed to introduce non-majors to the scientific study of language in the broader perspective of a liberal arts education. These are LIGN 3 (Language as a Social and Cultural Phenomenon), LIGN 4 (Language as a Cognitive System), LIGN 7 (Sign Language and Its Culture), LIGN 8 (Languages and Cultures in America), and LIGN 17 (Making and Breaking Codes). These courses may be used to satisfy the Marshall College disciplinary breadth requirement. Lower-division linguistics courses may be used to satisfy the social sciences requirement at Muir College and Revelle College, and they partially fulfill the requirements for a program of concentration in Warren College. In addition, certain linguistics courses satisfy the American Cultures requirement in Revelle College and the cultural diversity requirement in Muir College and Warren College. LIGN 17 (Making and Breaking Codes) satisfies the Thurgood Marshall Computational Skills requirement in addition to the formal skills requirement in Warren College and in the Human Development Program. This course also satisfies the Structured Reasoning requirement in Sixth College. Students should consult their college advising offices to determine which linguistics courses satisfy these other requirements.

Linguistics courses are relevant to a wide range of fields of study at UC San Diego, including anthropology, cognitive science, communication, computer science, human development, law and society, psychology, and sociology, as well as areas such as African studies, Chinese studies, ethnic studies, Judaic studies, Latin American studies, and others. In some cases certain linguistics courses count toward a major or minor in one of these departments or programs. Students should consult with a faculty advisor in linguistics and the other department or program when deciding on their course of study.

Students are often able to participate in the UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP) while still making progress toward the major. Students considering this option should discuss their plans with the department undergraduate advisor before going abroad. Detailed information on EAP/OAP is found in this catalog under the heading “Education Abroad Program.”

The Department of Linguistics oversees the Linguistics Language Program, which offers basic language instruction in Arabic, ASL, French, German, Italian, Portuguese, and Spanish. Courses from the Language Program satisfy general-education requirements, as well as the Department of Linguistics language requirement. Graduate students who require a reading knowledge of French or German may enroll in LIFR 11 or LIGN 11, respectively. The department also offers language instruction for individuals who grew up in an English-speaking environment while speaking a different language at home (Arabic, Armenian, Cantonese, Hindi, Korean, Persian, Tagalog, and Vietnamese; other languages may be added to this list if student demand is sufficient). Instruction in these languages is designed to raise students’ linguistic and cultural competence to professional levels. Finally, directed self-instruction is available for a wide variety of languages through LIDS 19.

Note: Please check with the department office for updates concerning programs and course offerings.

THE MAJOR PROGRAM

GENERAL REQUIREMENTS

Every linguistics major (except the language studies major) must satisfy the undergraduate language requirement and must successfully complete a minimum of twelve upper-division courses. In addition to the general major, the department offers a set of enriched major programs in various specializations. Except for LIGN 199, no course taken on a Pass/Not Pass basis may be counted toward a linguistics major. No more than one quarter of LIGN 199 may be counted toward a linguistics major. For the general linguistics, language and society, and cognition and language majors, at least six out of the twelve upper-division linguistics courses counted toward the major must be linguistics courses taken in residence at UCSD. For the language studies major, at least six out of the twelve upper division courses counted toward the major must be taken at UCSD, and at least four of these must be linguistics courses that satisfy Part A of the language studies course requirements. A letter grade of C– or better is required for every course counted toward a linguistics major, including courses taken to satisfy the department’s undergraduate language requirement.

REQUIRED LINGUISTICS COURSES

Linguistics 101 is required as an introduction to the field and serves as the prerequisite to certain other courses. Students who choose a linguistics major should enroll in it as early as possible.

Every major program in linguistics (except the language studies major) must include the following required courses covering basic areas of the field:

LIGN 101. Introduction to the Study of Language
LIGN 110. Phonetics
LIGN 111. Phonology I
LIGN 120. Morphology
LIGN 121. Syntax I
LIGN 130. Semantics

Students are advised to take these required courses as early as possible, since the background they provide may be needed for other upper-division linguistics courses. Check individual course listings for prerequisite information.

LINGUISTICS ELECTIVES

LIGN 105. Law and Language
LIGN 108. Languages of Africa
LIGN 119. First and Second Language Learning: From Childhood Through Adolescence

2010-2011 UC SAN DIEGO GENERAL CATALOG • LINGUISTICS 1
LIGN 140. The Structure of American Sign Language
LIGN 141. Language Structures
LIGN 142. Language Typology
LIGN 143. The Structure of Spanish
LIGN 144. Discourse Analysis: American Sign Language and Performing Arts
LIGN 145. Pidgins and Creoles
LIGN 146. Sociolinguistics in Deaf Communities
LIGN 150. Historical Linguistics
LIGN 160. Pragmantics
LIGN 165. Computational Linguistics
LIGN 170. Psycholinguistics
LIGN 171. Child Language Acquisition
LIGN 172. Language and the Brain
LIGN 173. Heritage Languages
LIGN 174. Gender and Language in Society
LIGN 175. Sociolinguistics
LIGN 176. Language of Politics and Advertising
LIGN 177. Multilingualism
LIGN 179. Second Language Acquisition Research

Restricted Courses
LIGN 87. Freshman Seminar (does not count as a linguistics elective)
LIGN 192. Senior Seminar in Linguistics (does not count as a linguistics elective)
LIGN 195. Apprentice Teaching (does not count as a linguistics elective)
LIGN 197. Linguistics Internship
LIGN 199. Independent Study in Linguistics
LIGN 199H. Honors Independent Study in Linguistics

Note to Revelle and Warren students
Revelle: For Revelle College only, the classification of the linguistics major as humanities, natural science, or social science must be determined on the basis of each student’s specific program. The classification of the major program will in turn determine what areas will be acceptable for the noncontiguous minor.

Warren: For Warren College only, any courses taken in departments other than linguistics may not overlap with the student’s outside area(s) of concentration.

UNDERGRADUATE LANGUAGE REQUIREMENT
Linguistics majors must demonstrate proficiency in one foreign language.

Proficiency in a foreign language may be demonstrated in three ways:
1. By passing the reading proficiency examination and the oral interview administered by the Department of Linguistics in French, German, Italian, or Spanish; or
2. By successfully completing a course given at UCSD representing the fourth quarter (or beyond) of instruction in any single foreign language with a grade of C– or better; or
3. By scoring four or greater on the Advanced Placement (AP) exam.

Students are encouraged to satisfy this requirement as early as possible in order to be able to use the language for reference in linguistics courses.

Students with native language competence in a language other than English may petition to have English count as satisfying the proficiency requirement.

GENERAL MAJOR (12 COURSES)
The general major in linguistics requires satisfaction of the undergraduate language requirement and successful completion of twelve upper-division courses:

6 required linguistics courses
LIGN 101
LIGN 110
LIGN 111
LIGN 120
LIGN 121
LIGN 130

5 linguistics electives
1 additional linguistics elective or upper-division course in another department pertaining to the study of language. Courses currently approved to satisfy this requirement include the electives for the cognition and language major (except PSYC 105) and the electives for the language and society major (Note: some of these courses may have prerequisites) or a Heritage Language course offered in the Linguistics Language Program (for example, LIHL 112/LIHL 112X).

SPECIALIZED MAJORS
Every student with a specialized major must consult the faculty advisor in the Department of Linguistics to have approved an individual curricular plan to satisfy the major requirements for the option chosen. Each specialized major requires satisfaction of the undergraduate language requirement and successful completion of upper-division requirements as specified below. The specialization will be reflected in the wording of a degree, e.g., “B.A. in Linguistics (with Specialization in Language and Society).”

Cognition and Language (12 courses)
6 required linguistics courses
LIGN 101
LIGN 110
LIGN 111
LIGN 120
LIGN 121
LIGN 130
4 linguistics electives chosen from
LIGN 145
LIGN 165
LIGN 170
LIGN 171
LIGN 172
LIGN 176
LIGN 179
2 additional courses from linguistics or other departments subject to advisor approval. Courses currently approved to satisfy this requirement include the following. Note: Some of these courses may have prerequisites.

Linguistics
Any upper-division courses (except those used to fulfill requirements A and B).

Anthropology
ANBI 140. The Evolution of the Human Brain
ANBI 159. Biological and Cultural Perspectives on Intelligence
ANBI 173. Cognition in Animals and Humans

Cognitive Science
COGS 101C. Language
COGS 102A. Distributed Cognition
COGS 102B. Cognitive Ethnography
COGS 107C. Cognitive Neuroscience
COGS 108D. Programming Methods for Cognitive Science
COGS 108E. Neural Network Models of Cognition I
COGS 108F. Advanced Programming Methods for Cognitive Science
COGS 151. Analogy and Conceptual Systems
COGS 154. Communication Disorders in Children and Adults
COGS 156. Language Development
COGS 170. Natural and Artificial Symbolic Representational Systems
COGS 184. Modeling the Evolution of Cognition
COGS 191. Laboratory Research

Computer Science and Engineering
CSE 133. Information Retrieval

Philosophy
PHIL 120. Symbolic Logic I
PHIL 134. Philosophy of Language
PHIL 136. Philosophy of Mind
PHIL 150. Philosophy of the Cognitive Sciences

Psychology
PSYC 105. Introduction to Cognitive Psychology
PSYC 118A. Real-Time Examination of Language Processing
PSYC 118B. Real-time Examination of Language Processing
PSYC 119. Psycholinguistics/Cognition Laboratory
PSYC 145. Psychology of Language

Language and Society (12 courses)
6 required linguistics courses
2 appropriate upper-division courses in other departments (especially the Departments of Anthropology, Communication, Cognitive Science, or Sociology), selected in consultation with the faculty advisor for language and society. Courses currently approved to satisfy this requirement include the following. Note: Some of these courses may have prerequisites.

ANSC 122 [formerly known as ANGN 112]. Language, Identity, and Community
ANSC 123 [formerly known as ANGN 149]. Language in Society
COCU 100. Introduction to Communication and Culture
COHI 114. Bilingual Communication
COHI 117. Language, Thought, and the Media
COHI 124. Voice. Deaf People in America
COHI 134. Language and Human Communication
COHI 13. Language and Globalization
ETHN 140. Language and American Ethnicity
ETHN 141. Language, Culture, and Inequality
ETHN 144. Bilingual Communities in the USA
SOCI 117/EDS 117. Language, Culture, and Education
SOCI 118E. Sociology of Language
SOCI 120T. Special Topics in Culture, Language, and Social Interaction
EDS 125. History, Politics, and Theory of Bilingual Education

1 course in sociolinguistics (by approval of the faculty advisor, may be taken in another department). Courses currently approved to satisfy this requirement include the following. Note: some of these courses may have prerequisites:

LIGN 174. Gender and Language in Society
LIGN 175. Sociolinguistics
LIGN 177. Multilingualism

3 linguistics electives. Courses particularly relevant to this specialization are

LIGN 105. Law and Language
LIGN 174. Gender and Language in Society
LIGN 175. Sociolinguistics
LIGN 176. Language of Politics and Advertising
LIGN 177. Multilingualism

LANGUAGE STUDIES MAJOR

Students majoring in language studies must consult with the language studies faculty advisor to approve an individual curricular plan.

The language studies major is designed for students who wish to pursue the study of a particular language from a variety of perspectives. To this end, students will take courses in linguistics and literature, as well as electives in linguistics, literature, culture, and area studies. This major provides preparation for a variety of careers that make use of second language skills. Depending on the elective emphasis, these include international business/law, teaching, translation, interpreting, linguistics, and foreign service. Each language studies major will specialize in one language of concentration. In principle, this could be any language other than English. However, some languages may require that some course work be completed outside UCSD. Hence, it is recommended that language studies majors consider a year abroad. Students whose language of concentration is American Sign Language will need to consult the faculty advisor for individualized requirements; these students may also consider an exchange year at Gallaudet University.

REQUIREMENTS

Lower-division preparation:

- Two years of language instruction in the language of concentration, or equivalent proficiency
- Lower-division prerequisites for upper-division courses in the literature of the language of concentration

Upper-division requirements:

Note: At least two of the upper-division courses must be conducted in the language of concentration. Students are encouraged to increase their academic exposure to their language of concentration by taking one-unit seminars in the language and by participating in the EAP program.

1. 6 upper-division linguistics courses, as follows:
 - LIGN 101. Introduction to Linguistics
 - 3 courses chosen from LIGN 110. Phonetics
 - LIGN 111. Phonology I
 - LIGN 120. Morphology
 - LIGN 121. Syntax I
 - LIGN 130. Semantics
 - LIGN 145. Pidgins and Creoles
 - LIGN 150. Historical Linguistics
 - “Structure of” language of concentration course (e.g., LIGN 143 Structure of Spanish). If no such course is available, the student must consult with the undergraduate advisor regarding a possible substitution.

 One additional upper-division LIGN course.

2. 2 upper-division courses in the literature of the language of concentration

3. 4 additional upper-division courses that deal with general linguistics, the language of concentration (e.g., literature), or the corresponding culture/area studies (e.g., anthropology, economics, history, political science, sociology), subject to approval of the faculty advisor.

 Approved courses for this requirement include the following. Note: Some of these courses may have prerequisites.
 - Linguistics: Any upper-division courses (except those used to fulfill requirement A).
 - Literature: Any upper-division courses related to the language of concentration (except those used to fulfill requirement B).
 - Area Studies: Approved courses are listed by language of concentration; other languages of concentration are possible in principle, but probably require course work outside of UCSD.

Arabic

ANSC 133. Peoples and Cultures of the Middle East
ECON 165. Middle East Economics
HINE 114. History of the Islamic Middle East
HINE 115. Islamic Civilization
HINE 118. The Middle East in the Twentieth Century
HINE 119. Contemporary Middle East Conflicts
HINE 122. Politicization of Religion in the Middle East
POLI 121B. Politics in Israel
RELI 112. Texts and Contexts: The Holy Book in Islam
ASL
COHI 124. Voice. Deaf People in America

Chinese

ANRG 170/ANSC 136. Traditional Chinese Society
ANRG 173/ANSC 137. Chinese Popular Religion
ANSC 136. Traditional Chinese Society

ANSC 137. Chinese Popular Religion
HIEA 120. Classical Chinese Philosophy and Culture
HIEA 121. Medieval Chinese Culture and Society
HIEA 122. Late Imperial Chinese Culture and Society
HIEA 119/SOCB 162R. Religion and Popular Culture in East Asia
HIEA 125. Women and Gender in East Asia
HIEA 126. The Silk Road in Chinese and Japanese History
HIEA 128. History of Material Culture in China
HIEA 129. Faces of the Chinese Past
HIEA 130. End of the Chinese Empire, 1800–1911
HIEA 132. History of the People’s Republic of China
HIEA 133. Twentieth Century China: Cultural History
HIEA 134. History of Thought and Religion in China: Confucianism
HIEA 135. History of Thought and Religion in China: Buddhism
HIEA 136. History of Thought and Religion in China: Daoism
HIEA 137. Women and Family in Chinese History
HIEA 138. Women and the Chinese Revolution
HIEA 162/262. History of Women in China
HIEA 163/263. Cinema and Society in Twentieth-Century China
HIEA 164/264. Seminar in Late Imperial Chinese History
HIEA 165/265. Topics in Medieval Chinese History
HIEA 166/266. Creating Ming Histories
HIEA 167. Special Topics in Modern Chinese History
HIEA 168/268. Topics in Classical and Medieval Chinese History
HIEA 171/271. Society and Culture in Premodern China
POLI 113A. East Asian Thought in Comparative Perspective
POLI 113B. Chinese and Japanese Political Thought I
POLI 113B. Politics in the People’s Republic of China
POLI 131C. The Chinese Revolution
POLI 132B. Politics and Revolution in China and Japan
POLI 132C. Political Development and Modern China
POLI 133D. Political Institutions of East Asian Countries
SOCB 1888 Chinese Society
SOCB 162R/HIEA 119. Religion and Popular Culture in East Asia
VIS 127B. Arts of China
VIS 127C. Arts of Modern China
VIS 127D. Early Chinese Painting
VIS 127E. Later Chinese Painting
VIS 127G. Twentieth-Century Chinese Art
VIS 127N. Twentieth-Century Art in China and Japan

French

HIEU 129. Paris, Past and Present
HIEU 130. Europe in the Eighteenth Century
HIEU 131. The French Revolution: 1789–1814
HIEU 142. European Intellectual History, 1780–1870
POLI 120C. Politics in France
TDHT 105. French Comedy

German

HIEU 130. Europe in the Eighteenth Century
HIEU 132. German Politics and Culture: 1648–1848
HIEU 142. European Intellectual History, 1780–1870
HIEU 143. European Intellectual History, 1870–1945
HIEU 145. The Holocaust as Public History
HIEU 154. Modern German History
HIEU 155. Modern Austria
HIEU 158. Why Hitler? How Auschwitz?
HIEU 172/272. Comparative European Fascism
HIEU 174/274. The Holocaust: A Psychological Approach
HIEU 177. Special Topics in Modern German Thought
PHIL 106. Kent
PHIL 107. Hegel
POLI 120B. The German Political System
POLI 120D. Germany: Before, During, and After Division
SOCI 178. The Holocaust
TDHT 106. Brecht and Beyond

Hebrew
ANRG 150/ANAR 142. The Rise and Fall of Ancient Israel
HIEU 159. Three Centuries of Zionism, 1648–1948
HIEU 176/276. Politics in the Jewish Past
HINE 102. The Jews in Their Homeland in Antiquity
HINE 103. The Jewish Diaspora in Antiquity
HINE 111. Anthropology and the Hebrew Bible
HINE 112A. Great Stories from the Hebrew Bible
HINE 112B. Great Poems from the Hebrew Bible
HINE 161/HINE 261. Seminar in the Hebrew Bible
HINE 162/262. Anthropology and the Hebrew Bible
HINE 170. Special Topics in Jewish History
HINE 181/281. Problems in the Study of Hebrew Manuscripts
HINE 186. Special Topics in Middle Eastern History
POLI 121. Government and Politics of the Middle East
POLI 121B. Politics in Israel
RELI 111. Texts and Contexts: The Holy Book in Christianity and Judaism
SOCI 188F. Modern Jewish Societies and Israeli Society

Italian
HIEU 119. Modern Italy: From Unification to the Present
HIEU 120. The Renaissance in Italy
HIEU 121. Early Modern Italy
HIEU 122. Politics Italian Renaissance Style
HIEU 127/227. Comparative European Fascism
POLI 1201. Politics in Italy
TDHT 104. Italian Comedy
VIS 122AN. Renaissance Art
VIS 122CN. Defining High Renaissance Art
VIS 122D. Michelangelo
VIS 122D. Michelangelo
VIS 122F. Leonardo's La Gioconda

Japanese
ECON 163. Japanese Economy
HIEA 110. Japan Through the Twelfth Century
HIEA 111. Japan: Twelfth to Mid-Nineteenth Centuries
HIEA 112. Japan: From the Mid-Nineteenth Century through the U.S. Occupation
HIEA 113. The Fifteen-Year War in Asia and the Pacific
HIEA 114. Postwar Japan
HIEA 115. Social and Cultural History of Twentieth-Century Japan
HIEA 116. Japan-U.S. Relations
HEA 117. Ghosts in Japan
HIEA 125. Women and Gender in East Asia
HIEA 126. The Silk Road in Chinese and Japanese History
HIEA 160. Colloquium on Modern Japanese History
POLI 113A. East Asian Thought in Comparative Perspective
POLI 113B. Chinese and Japanese Political Thought I
POLI 132B. Politics and Revolution in China and Japan
POLI 132A. Japanese Politics: A Developmental Perspective
POLI 133D. Political Institutions of East Asian Countries
POLI 133E. Public Policy in Japan
VIS 127F. Japanese Buddhist Art
VIS 127N. Twentieth-Century Art in China and Japan
VIS 127P. Arts of Japan
VIS 127Q. Japanese Painting and Prints

Russian
HIEU 134. The Formation of the Russian Empire, 800–1835
HIEU 178. Soviet History
POLI 126AB. Politics and Economics in Eastern Europe
POLI 130AA. The Soviet Successor States
POLI 130AC. Seminar: Post-Soviet Politics
POLI 130AD. The Politics of the Russian Revolution

Spanish
ANAR 156. The Archaeology of South America
ANSC 131. Urban Cultures in Latin America
ANSC 142. Anthropology of Latin America
COCU 131. Cinema of the Cuban Revolution
COCU 168. Latino Space, Place, and Culture
COSF 140C. Comparative Media Systems: Latin America
ANSC 131. Urban Cultures in Latin America

HILA 102. Latin America in the Twentieth Century
HILA 103. Revolution in Modern Latin America
HILA 104. Modern U.S.–Latin American Relations
HILA 108. Economic History: Continuity and Change in Latin America
HILA 112. Economic and Social History of the Andean Region
HILA 113. Lord and Peasant in Latin America
HILA 114. Dictatorship in Latin America
HILA 115. The Latin American City, A History
HILA 120. History of Argentina
HILA 121. History of Brazil
HILA 122. Cuba: From Colony to Socialist Republic
HILA 124A. History of Women and Gender in Latin America
HILA 126. From Columbus to Castro: Caribbean Culture and Society
HILA 127. History, Culture, and Power
HILA 131. A History of Mexico
HILA 132. A History of Contemporary Mexico
HILA 161. History of Women in Latin America
HILA 162. Special Topics in Latin American History
HILA 163/263. The History of Chile, 1880–Present
HILA 164/264. Women's Work and Family Life in Latin America
HILA 167/267. Scholarship on Latin American History in the Colonial Period
HILA 168/268. Scholarship on Latin American History in the Nineteenth Century
HILA 169/269. Scholarship on Latin American History in the Twentieth Century
LATI 120. Special Topics in Latin American Studies
TDHT 110. Chicano Dramatic Literature
TDHT 111. Hispanic-American Dramatic Literature
POLI 134AA. Comparative Politics of Latin America
POLI 134B. Politics in Mexico
POLI 134D. Selected Topics in Latin American Politics
POLI 134I. Politics in the Southern Cone of Latin America
POLI 134N. Politics in Central America
POLI 146A. The U.S. and Latin America: Political and Economic Relations
SOCI 151M. Chicanos in American Society
SOCI 182. Ethnicity and Indigenous Peoples in Latin America
SOCI 188D. Latin America: Society and Politics
VIS 125F. Latin American Film
VIS 126P. Latin American Art: Modern to Postmodern, 1890–1950
VIS 126Q. Latin American Art: Modern to Postmodern, 1950–Present
VIS 126R. Latin American Photography

HONORS PROGRAM

The department offers an honors program for outstanding students. Those students who have a 3.75 GPA in linguistics (3.25 overall) at the end of their junior year are eligible to participate. Students interested in participating in the honors program should consult with their department advisor.
admission to the program requires nomination by the advisor and approval of the department faculty. The honors program requires that two graduate linguistics courses be taken as part of the twelve required courses for the major, and further requires one quarter of LIGN 199H. During one of the two graduate courses, the student, in consultation with the instructor and a faculty advisor, will begin a substantial research project which will be continued during the quarter of 199H and will culminate in an honors paper. Responsibility for proposing possible projects and completing necessary paperwork rests with the student. Upon successful completion of the requirements the designation “with distinction,” “with high distinction,” or “with highest distinction” will appear on the student’s diploma.

INDEPENDENT STUDY AND DIRECTED GROUP STUDY IN LINGUISTICS FOR MAJORS

Upon presentation of a written study proposal or project, and with the consent of the instructor and the advisor, linguistics majors with at least a 3.5 GPA in the major courses may request permission to undertake independent study in linguistics (LIGN 199). No more than one such course (to be taken Pass/Not Pass) may count toward the major.

THE MINOR PROGRAM

The Linguistics minor consists of LIGN 101, plus six additional courses in linguistics, at least four of which must be upper-division.

For all courses counted toward the linguistics minor, the student must receive letter grades of C– or better. Courses counted toward the minor may not be taken on a Pass/Not Pass basis, except LIGN 199. Only one quarter of LIGN 199 may be counted toward the minor.

The Language Studies minor consists of seven courses, at least five of which must be upper-division:

Literature: One upper-division literature course is required in the language of concentration. This will require proficiency as well as lower-division prerequisites. Therefore, the lower-division courses of the minor may consist of prerequisites for the upper-division literature requirement. American Sign Language students may substitute a non-literature upper-division elective with approval of the faculty advisor.

Linguistics: LIGN 101 is required. In addition students must take a “Structure” of language of concentration course (e.g., LIGN 143 Structure of Spanish). If no such course is available, the student must consult with the undergraduate advisor regarding a possible substitution.

Other: Two additional courses that deal with general linguistics, the language of concentration (e.g., literature), or the corresponding culture, subject to approval of the faculty advisor are required.

THE PH.D. PROGRAM

The UC San Diego Ph.D. program in linguistics offers rigorous training in multiple areas of theoretical linguistics, including syntax, semantics, phonetics, phonology, and morphology. The department is particularly strong in the study of interface areas, including syntax/semantics, phonetics/phonology, and phonology/syntax. Research conducted in a variety of theoretical frameworks is integrated into the graduate curriculum. Students receive a firm foundation in both formal and cognitive/functionalist approaches to syntax and semantics. In phonology, basic training includes segmental and autosegmental phonology, constraint-based phonology, syllable theory, metrical theory, and theories of the phonology-morphology interface. The first two years of graduate study are devoted primarily to gaining a strong background in these core theoretical areas.

This theoretical strength of the department is matched by strength in both language study and experimental science. The range of languages represented in faculty research encompasses American Sign Language (ASL), Caucasian, Chinese, Finno-Ugric, Germanic, Greek, Persian, Romance, Semitic, Slavic, and Uto-Aztec. The departmental concern with the empirical facts of language is reflected in a field methods requirement for graduate students as well as in the graduate student language requirement (conversational ability in one language other than English and reading ability in one language other than English). The department has a tradition of working with native speakers of a wide variety of languages. The department’s language laboratory maintains a library of written and recorded materials permitting independent study of dozens of languages; it also includes computers for self-instruction in French, German, Italian, and Spanish. The Linguistics Language Program (LLP) provides basic foreign language instruction for the entire campus, and many linguistics graduate students are employed as TAs in the program. Aside from providing a source of funding, the LLP provides graduate students with valuable teaching experience.

The department houses laboratories devoted to experimental studies of language with emphasis on phonetics, event related brain potentials (ERPs) computational linguistics, and signed languages. The focus of experimental research in the department is the mutual dependence between mechanisms of language processing and theories of phonology, and syntax. Linguistics graduate students may supplement their theoretical studies with experimental research; in addition to departmental laboratories, graduate students have access to experimental laboratories concerned with language issues in other departments.

The department has a strong commitment to, and is an active and integral part of, the cognitive science and neuroscience communities at UCSD. Most linguistics faculty have joint appointments in the Department of Linguistics and the Cognitive Science Interdisciplinary Ph.D. Program, and participate in the Department of Cognitive Science graduate core course in language (Cognitive Science 201D) as well as in the all-campus Interdisciplinary Program seminar (Cognitive Science 200) on a regular basis. Graduate students in the Cognitive Science Department frequently participate in Linguistics graduate courses, and Linguistics graduate students regularly attend courses in the Cognitive Science Department on neuroscience, child language acquisition, aphasia, neural networks, and semantics and cognition. Linguistics graduate students are eligible to pursue a joint degree in Cognitive Science and Linguistics within the Interdisciplinary Program. Areas of secondary specialization that are especially well represented in the cognitive science community at UCSD and related institutes include child development, connectionist modeling, distributed cognition, language disorders, neuroscience, philosophy, and psycholinguistics.

The department has access to rich informational resources; in addition to the extensive linguistics holdings in the main library, the department maintains a collection of research reports, dissertations, and unpublished papers. Access to the libraries of other universities exists through interlibrary loan.

PREPARATION

Since linguistics is a highly technical and analytic field, linguistics students will find their undergraduate training in mathematics and the natural sciences especially valuable. Undergraduate work in certain of the social sciences and humanities, particularly psychology, anthropology, philosophy and literature, is also good preparation for linguistics. The ideal candidate for admission will have both experience with foreign languages and some knowledge of the fundamentals of contemporary linguistic theory. Students who, upon admission, are deficient either in their formal linguistics preparation or languages will be advised by the department on how to make up the deficiency. New graduate students will be admitted only in the fall of any academic year.

LANGUAGE REQUIREMENTS

A candidate for the Ph.D. degree must demonstrate: (1) Conversational ability in one language other than English. (2) A reading knowledge of any one language other than his or her native language, subject to faculty approval.

REQUIRED COURSES

Candidates for the Ph.D. must pass certain linguistics graduate courses prior to taking the qualifying examination. All graduate students must take a common core of ten courses. These are:

- Three courses in Syntax and Semantics: 221A, 221B, 230
- Three courses in Phonology and Phonetics: 210, 211A, 211B
- One course in Field Methods: 240
- Two courses in Research Methods, selected from 241, 245, and 251 (Note: Although 241 is repeatable, only one instance may count toward this requirement.)
- One course in Research Paper Writing: 293

All required courses (except 293) must be taken for a letter grade.

EVALUATIONS

A graduate student is formally evaluated by the entire faculty at particular stages during the first three years of graduate study. The first evaluation...
(at the end of the third quarter of graduate study) pertains chiefly to performance in courses. The second (or comprehensive) evaluation (at the end of the sixth quarter) determines the student's fitness to continue in the Ph.D. Program. It takes into account performance in course work and ability to engage in original research in one area of linguistics as demonstrated in a research paper. The third evaluation (at the end of the ninth quarter) focuses primarily on a second research paper (which must be in a different area of linguistics from the first).

QUALIFYING EXAMINATION

Candidates for the Ph.D. degree must pass an oral qualifying examination which tests the student's knowledge in the area of specialization. Prior to taking this examination, the student must pass the comprehensive evaluation, satisfy all language requirements, successfully complete all required courses, and demonstrate—through research papers—the ability to carry out independent, dissertation-level research. Students must take the qualifying examination by the end of the fourth year of graduate work.

COLLOQUIUM PRESENTATION

Sometime prior to the thesis defense, a student must present a paper orally at a professional gathering. The colloquium requirement is intended to enable a student to develop the skills necessary for organizing research results for oral presentation. The requirement is generally met by presenting a department colloquium or by presenting a paper at a professional meeting. In either case, a faculty member must certify the acceptability of the presentation.

DISSERTATION

The candidate for the Ph.D. will write a substantial dissertation incorporating the results of original and independent research carried out under the supervision of the doctoral committee. The candidate will be recommended for the doctor of philosophy degree after having made a successful oral defense of the dissertation before the doctoral committee in a public meeting and after having the final version of the dissertation accepted by Geisel Library.

APPRENTICE TEACHING

As part of their preparation for a future academic career, graduate students in linguistics at UCSD are given special opportunities to participate in teaching programs under the supervision of a professor. Depending on qualifications, students may conduct conversation or analysis classes in lower-division language courses (LLP and HLP), or may assist a professor in the teaching of an undergraduate linguistics course.

OTHER DEGREES

Candidates for the Ph.D. who have not previously earned a master's degree may be granted the M.A. in linguistics after: 1) satisfactorily completing twelve required courses (all but LIGN 293 must be taken for a letter grade); 2) passing the comprehensive evaluation at the end of the sixth quarter; and 3) demonstrating a reading knowledge of any language except English, subject to faculty approval. Candidates for the Ph.D. may also be granted the C.Phil. upon completion of all degree requirements other than the dissertation.

DEPARTMENTAL PH.D. TIME LIMIT POLICIES

The time a student takes to complete the Ph.D. depends on a number of factors, including previous preparation and the amount of time spent in teaching or other job commitments. Several policies set an upper limit to the length of the program. All degree requirements other than the dissertation must be completed by the end of the fourth year of graduate work. Total instructional support (TAships, etc.) cannot exceed six years; total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

SPECIALIZATION IN ANTHROPOGENY

This is a transdisciplinary graduate specialization in anthropogeny with the aim of providing graduate students the opportunity to specialize in research and education on explaining the origins of the human phenomenon. The aim is to rectify the absence of existing training programs that provide such a broad and explicitly transdisciplinary approach—spanning the social and natural sciences—and focusing on one of the oldest questions known to humankind, namely, the origins of humans and humanism. This specialization is not a stand-alone program, but aims at providing graduate students who have just embarked on their graduate careers with the opportunity to interact and communicate with peers in radically different disciplines throughout the duration of their Ph.D. projects. Such communication across disciplines from the outset is key to fostering a capacity for interdisciplinary “language” skills and conceptual flexibility.

ADMISSION TO THE SPECIALIZATION

The Linguistics Graduate Program will advertise the specialization to those students in our programs who have an interest in human origins. Qualifying applicants will have the opportunity to enroll for the specialization.

SPECIALIZATION REQUIREMENTS

Students pursuing this specialization will be required to take a series of courses in addition to research rounds over four years of study. It is advised that students begin their course work in their second year.

1. Course work: Introduction to Anthropogeny (BIOM 225) and Advanced Anthropogeny (BIOM 229) are each taken once, in the winter and spring of the students second year. Current Topics in Anthropogeny (BIOM 218) is to be taken every quarter for four years.

2. Research Rounds: Monthly seminars during which all participating students talk about their respective research.

QUALIFYING EXAMINATION

Linguistics students in the anthropogeny specialization must meet the departmental requirement for advancement to candidacy. In addition, students must meet internal deadlines, mentoring provisions, and proposal standards of the anthropogeny specialization track.

DISSERTATION

Ph.D. students must complete a dissertation, which meets all requirements of the home program. In addition, it is expected that the Ph.D. dissertation is broadly related to human origins and will be interdisciplinary in nature.

TIME LIMITS

It is expected that students will retain the same time to degree as students not pursuing this specialization. Additional course load consists only of two regular courses (two quarters twenty lectures each). The third proposed course takes place only three times a year from Friday noon to Saturday evening.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

Note: Not all courses are offered every year. It is essential that students consult the linguistics advisor when planning their degree programs.

LINGUISTICS

LOWER DIVISION

3. Language as a Social and Cultural Phenomenon (4)
 The role of language in thought, myth, ritual, advertising, politics, and the law. Language variation, change, and loss; multilingualism, pidginization and creolization; language planning, standardization, and prescriptivism; writing systems. Prerequisite: none.

4. Language as a Cognitive System (4)
 Fundamental issues in language and cognition. Differences between animal communication, sign systems, and human language; origins and evolution of language; neural basis of language; language acquisition in children and adults. Prerequisite: none.

5. The Linguistics of Invented Languages (4)
 Introduction to the study of language through the investigation of invented languages, whether conscious (Elvish, Klingon, Esperanto) or unconscious (creoles, twin/sibling languages). Students will participate in the invention of a language fragment. Topics discussed include language structure, history, culture, and writing systems. Prerequisite: none.

7. Sign Language and Its Culture (4)
 Deaf history since the eighteenth century. The structure of American Sign Language and comparison with oral languages. ASL poetry and narrative and Deaf people's system of cultural knowledge. Basic questions concerning the nature of language and its relation to culture. Prerequisite: none.

8. Languages and Cultures in America (4)
 Language in American culture and society. Standard and non-standard English in school, media, pop-culture, politics; bilingualism and education; cultural perception of language issues over time; languages and cultures in the "melting pot," including Native American, Hispanic, African-American, Deaf. Prerequisite: none.
17. Making and Breaking Codes (4)
A rigorous analysis of symbolic systems and their interpre-
tations. Students will learn to encode and decode infor-
mation using progressively more sophisticated methods;
topics covered include ancient and modern phonetic
writing systems, hieroglyphics, computer languages, and
ciphers (secret codes). Prerequisite: none.

87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide
new students with the opportunity to explore an intellectual
topic with a faculty member in a small seminar setting.
Freshman seminars are offered in all campus departments
and understand, how language changes, and how it is
learned. Prerequisite: none.

105. Law and Language (4)
The interpretation of language in understanding the law:
1) the language of courtroom interaction (hearsay, jury
instructions); 2) written legal language (contracts, ambi-
guity, legal fictions); 3) language-based issues in the law
(First Amendment, libel and slander). Prerequisite: none.

108. Languages of Africa (4)
Africa is home to an astonishing variety of languages.
This course investigates the characteristics of the major
language families as well as population movements and
language contact, and how governments attempt to
regulate language use. Prerequisite: none.

110. Phonetics (4)
The study of the sounds which make up human language.
How sounds are physically produced; acoustics of speech
perception; practical training in translating speech signals
into written form and in interpreting computerized speech
signs. Prerequisite: LIGN 101, concurrent enrollment in
LIGN 101, or consent of instructor.

111. Phonology (I) (4)
Why does one language sound different from another?
This course analyzes how languages organize sounds into
different patterns, how those sounds interact, and how they
fit into larger units, such as syllables. Focus on a wide variety of
languages and problem-solving. Prerequisite: LIGN 101.

119. First and Second Language Learning: From Childhood through Adolescence (4)
(Same as ED5 119) An examination of how human language
ability develops and changes over the first two decades of life, including discussion of factors that may
affect this ability. Prerequisite: upper-division standing or
consent of instructor.

120. Morphology (4)
How do some languages express with one word complex
meanings that English needs several words to express?
Discovery of underlying principles of word formation
through problem-solving and analysis of data from a wide
variety of languages. Prerequisite: LIGN 101 or consent
of instructor.

121. Syntax I (4)
What universal principles determine how words combine
into phrases and sentences? Introduction to research
methods and results. Emphasis on how arguments in
problem-solving can be used in the development of
theories of language. Prerequisite: LIGN 101 or consent
of instructor.

130. Semantics (4)
Introduction to the formal study of meaning. What is the
meaning of a word? What is the meaning of a sentence?

Which role does the context play in determining linguistic
meaning? Prerequisite: LIGN 101 or consent of instructor.

140. The Structure of American Sign Language (4)
Examination of ASL phonetics, phonology, morphology,
syntax, semantics. Including linguistic facial expressions
and uses of physical space in verb agreement, aspectual
morphology, and classifier constructions. Discussion of
sound patterns, word forms and word meanings, and
syntactical linguistics, in which we study natural language
language processing negativity, slow anterior negative
ERP components and their MEG correlates: N400, N400-
consent of instructor.

141. Language Structures (4)
Detailed investigation of the structure of one or more
descriptions. May be repeated for credit as topics vary.
Prerequisite: LIGN 101 or consent of instructor.

142. Language Typology (4)
The systematic ways languages differ. Cross-linguistics
studies of specified topics (e.g., word order, agreement,
case, switch reference, phonological systems, and rule
types, etc.) in an effort to develop models of language
variation. Prerequisite: LIGN 101 or consent of instructor.

143. The Structure of Spanish (4)
Surveys aspects of Spanish phonetics, phonology, mor-
phology, and syntax. Topics include dialect differences
between Latin American and Peninsular Spanish (both from
a historical and contemporary viewpoint), gender classes,
verbal morphology, and clause structure. Prerequisite:
LIGN 101 or consent of instructor.

144. Discourse Analysis: American Sign
Language and Performing Arts (4)
A discourse-centered view of ASL verbal arts: rhyme,
meter, rhythm, handedness, non-manual signals,
and spatial mapping; creation of scene and mood; proper-
ties of character, dialogue, narration, and voice; cultural
tropes; poetic constructions in everyday genres; transcrip-
tion, body memory and performance. Prerequisites: LUSL
1C/1CX or consent of instructor.

146. Sociolinguistics in Deaf Communities (4)
An examination of sociolinguistic research on Deaf com-
munities throughout the world, including: sociohistorical
contexts for phonological, lexical and syntactic variation,
contact between languages, multilingualism, language
policies and planning, second language learning, language
attitudes, and discourse analysis of specific social contexts.
Course will be conducted in ASL. Prerequisite: LUSL
1C/1CX or consent of instructor.

150. Historical Linguistics (4)
Language is constantly changing. This course investigates
the nature of language change, how to determine a lan-
guage's history, its relationship to other languages, and
the search for common ancestors or “proto-language.”
Prerequisite: LIGN 101 or consent of instructor.

155. Evolution of Language (4)
History of thought on language origins, genetic, neural,
anatomical, and gestural theories of language evolution
in relation to prior hominid and other species, the role
of generational differences in language acquisition, and
computational models. Prerequisite: upper-division stand-
ing or consent of instructor.

160. Computational Linguistics (4)
An introduction to the context-dependent aspects of
language meaning. Topics include given versus new
information, Gricean maxims and rules of conversation,
premise, implicature, reference and cognitive sta-
tus, discourse coherence and structure, and speech acts.
Prerequisite: LIGN 101 or consent of instructor.

165. Computerizedlinguistics (4)
An introduction to the fundamental concepts of compu-
tational linguistics, in which we study natural language
syntactic and semantics from an interpretation perspective,
describe methods for programming computer systems to
perform such interpretation, and survey applications of
computational linguistics technology. Prerequisite: none.

170. Psycholinguistics (4)
The study of how humans learn, represent, comprehend,
and produce language. Topics include visual and auditory
recognition of words, sentence comprehension, reading,
and sentence production, language acquisition, neural repre-
sentation of language, bilingualism, and language disor-
ders. Prerequisite: LIGN 101, or upper-division standing,
or consent of instructor.

171. Child Language Acquisition (4)
A central cognitive, developmental model is how children
learn their first language. Overview of research in the learn-
ing of sound systems, word means, and word combinations. Exploration of the relation between
cognitive and language development. Prerequisite:
LIGN 101, or upper-division standing, or consent of instructor.

172. Language and the Brain (4)
The mind/body problem, basic neuroanatomy and neuro-
physiology, cerebral lateralization, origins and evolution
of language, aphasia, magnetic resonance imaging (MRI),
and event-related potentials (ERPs). Prerequisite:
LIGN 101, or upper-division standing, or consent of instructor.

173. Heritage Languages (4)
A heritage language (HL) is a language that an individual
has some knowledge of due to childhood exposure. Topics:
HL imperfect language competence, bilinguals vs. HL
speakers, language loss, re-learning of HLS, panellars across
HLs, teaching of HLS, language planning. Prerequisite:
upper-division standing or consent of instructor.

174. Gender and Language in Society (4)
(Same as SOCI 116.) This course examines how language
contributes to the social construction of gender identities,
and how gender impacts language use and ideologies.
Topics include the ways language and gender interact
across the life span (especially childhood and adolescence);
within ethnolinguistic minority communities; and across
cultures. Prerequisite: LIGN 101, or upper-division stand-
ing or consent of instructor.

175. Sociolinguistics (4)
The study of language in its social context, with em-
phasis on the different types of linguistic variation and
the principles underlying them. Dialects; registers; sex-
based linguistic differences; factors influencing linguistic
choice; formal models of variation; variation and change.
Prerequisite: LIGN 101, or upper-division standing,
or consent of instructor.

176. Language of Politics and Advertising (4)
How can we explain the difference between what is liter-
ally said versus what is actually conveyed in the language
of law, politics, and advertising? How people's ordinary
command of language and their reasoning skills are used
to manipulate them. Prerequisite: none.

177. Multilingualism (4)
Official and minority languages, pidgins and Creoles, lan-
guage planning, bilingual education and literacy, code
switching, and language attrition. Prerequisite: LIGN
101, or upper-division standing, or consent of instructor.

179. Second Language Acquisition Research (4)
This course will investigate topics in second language ac-
quision including the critical period, the processing and
neural representation of language in bilinguals, theories of
second language acquisition and creolization, exceptional
language learners, and parallels with first language acquisi-
tion. Prerequisite: LIGN 101, or upper-division standing,
or consent of instructor.

180. Language Representation in the Brain (4)
The mind/body problem, modularity, basic neuroanatomy,
cerebral lateralization, re-evaluation of classical language
areas, aphasia, dyslexia, the KE family and F0X2 gene,
mirror neurons, sign language, brain development, cortical
plasticity, and localization studies of language process-
ing (electrical stimulation, MEG, fMRI, and PET). Students
may not receive credit for both LIGN 172 and LIGN 180.
Prerequisite: LIGN 101, or upper-division standing,
or consent of instructor.

181. Language Processing in the Brain (4)
Modularity and models of language processing, basic
neuroanatomy, neurophysiology, EEG/MEG, event-related
brain potentials (ERPs), cross-linguistic functional significance of
ERP components and their MEG correlates: N400, N400-
700, lexical processing negativity, slow anterior negative
potentials, (early) left anterior negativity, and late positivity.
Prerequisite: LIGN 101, or upper-division standing, or consent of instructor.

192. Senior Seminar in Linguistics (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in linguistics (at the upper-division level). Senior seminars may be offered more than once with different topics. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: department stamp and/or consent of instructor.

195. Apprentice Teaching (0–4)
Student lead a class section of a lower-division linguistics course. They also attend a weekly meeting on teaching methods. (This course does not count toward minor or major.) May be repeated for credit, up to a maximum of four units. (P/NP grades only.) Prerequisites: consent of instructor, advanced standing.

197. Linguistics Internship (2 or 4)
The student will undertake a program of practical research in a supervised work environment. Topics to be researched may vary, but in each case the course will provide skills for carrying out these studies. Prerequisite: consent of instructor.

199. Independent Study in Linguistics (2 or 4)
The student undertakes a program of research and advanced reading in linguistics under the supervision of a faculty member of the Department of Linguistics. (P/NP grades only.) Prerequisite: consent of instructor. May be repeated for credit.

199H. Honors Independent Study in Linguistics (4)
The student undertakes a program of research and advanced reading in linguistics under the supervision of a faculty member in the Department of Linguistics. (P/NP grades only.) Prerequisite: admission to Honors Program.

GRADUATE

200. Research Forum (2)
A forum for discussion of current issues. (S/U grades only.) May be repeated for credit.

210. Phonetics (4)
This is an introduction to articulatory, acoustic, and auditory phonetics. Major phonetic theories in these areas, and the relationship between phonetics and phonology are discussed. The course also covers experimental design and methodology and provides hands-on experience with laboratory equipment. Prerequisite: none

211A. Introductory Phonology (4)
Introduction to the study of the sound patterns of language. Rules of representation, lexical phonology, segmental processes, autosegmental phonology. Prerequisite: LIGN 110 or consent of instructor.

211B. Nonlinear Phonology (4)
This course will introduce topics in prosodic phonology and morphology, including syllable structure, stress, and redundancy. These topics will be investigated within constraint-based phonology. Prerequisite: LIGN 211A or equivalent.

214. Topics in Phonetics (4)
This course examines recent developments in controversial areas of phonetics. Topics will vary, and will address issues in speech production (articulation; acoustic), speech perception, phonetic theory, and the relationship between phonetics and phonology. Prerequisite: LIGN 210, 211A, 211B, or consent of instructor.

215. Topics in Phonology (4)
Descriptive and theoretical problems in phonology. Discussion of work in progress and/or theoretical consequences of alternative analyses. May be repeated for credit when topics vary.

211A. Introduction to Grammatical Theory (4)
This course introduces basic syntactic phenomena and argumentation via the Government and Binding Theory of the 1980s. The phenomena, including NP-Movement, Binding, and Wh-Movement, have been important in the development of Generative Grammar and remain central to current generative frameworks.

221B. Introduction to Grammatical Theory (4)
This course continues to develop Principles and Parameters Theory, as introduced in 221A. It concentrates on A-bar dependencies and the Binding Filipy. Focus will be on testing theoretical proposals and understanding the role of theoretical alternatives, underlying assumptions, and the empirical results upon which these theoretical proposals are based.

222. Current Issues in Principles and Parameters Theory (4)
This course continues to develop developments in Principles and Parameters Theory. Topics include fundamental work that led to the Minimalist Program and more recent developments in this tradition. May be repeated for credit when topics vary.

224. Lexicalist Theories of Grammar (4)
Introduction to conceptual issues and representational apparatus of lexicalist theories of language. Focus on empirical argumentation from numerous languages for lexicalist assumptions. Particular attention to lexical semantics, morphology, and syntax.

225. Topics in Syntax (4)
Descriptive and theoretical problems in syntactic analysis. Theoretical and computational aspects of alternative analyses. May be repeated for credit when topics vary.

230. Semantics (4)
Theories of semantic structure. The relation of meaning to grammar, and how it is to be accommodated in an overall model of linguistic organization. The application of formal semantics to the description of natural language.

235. Topics in Semantics (4)
Advanced material in special areas of the study of meaning and its relation to formal aspects of human language. As subject matter varies, the course may be repeated for credit.

236. Language Universals and Linguistic Typology (4)
Introduction to the typological study of language, contrasting alternative approaches to research in language universals. Main topics covered: cross-linguistic approach to language study (sampling, universal generalizations, hierarchies); explanation of language universals; the role of cross-linguistic analyses in linguistic theory.

238. Topics in Cognitive Linguistics (0–4)
(Same as Cognitive Science 238) Basic concepts, empirical findings, and recent developments in cognitive and functional linguistics. Language viewed dynamically in relation to conceptualization, discourse, meaning construction, and cognitive processing. As topics vary, may be repeated for credit.

240. Field Methods (4)
Techniques of discovering the structure of a language through elicitation of data from native speaker consultants. Phonemic, morphemic, and syntactic analysis. Prerequisite: LIGN 110 or equivalent.

241. Fieldwork (4)
Fieldwork continuing the research of the previous quarter; student-directed elicitations on topics of interest. Prerequisite: LIGN 240.

242. Discourse Interpretation (4)
A graduate course examining discourse interpretation from a computational perspective. Theoretically principled algorithms for resolving pronominal and other types of reference. Techniques for representing discourse, meaning construction, and discourse coherence. Methods for recovering the structure of a discourse and determining its coherence.

245. Computational Corpus Linguistics (4)
Introduction to computational corpus tools for performing empirically-grounded linguistic investigations. Annotated and unannotated corpora, corpus annotation systems. Searching using regular expressions, UNIPAC tools. The PERL programming language. Publically-available language processing systems.

247. Topics in Pragmatics (4)
Advance material covering particular topics relating to the theoretical analysis of the pragmatics of natural languages. May be repeated for credit when topics vary. Prerequisite: consent of instructor.

248. Morphology (4)
Theories of word structure are examined and confronted with data from a variety of languages. Topics may include: the distinction between derivational and inflectional morphology, the morphology/phonology interface, and the morphology/syntax interface. May be repeated for credit when topics vary.

251. Probabilistic Methods in Linguistics (4)
Probabilistic approaches to language knowledge, acquisition, and use. Quantitative analysis of linguistic data. Quantitative models in linguistic theory. Covers basic probability theory and tools of statistical analysis for language, including linear regression, ANOVA, generalized linear models (e.g., logistic regression), data visualization. Familiarity with probability theory highly encouraged.

256. Statistical Natural Language Processing (4)
(Same as CSE 256) Introduction to modern statistical approaches to natural language processing: part-of-speech tagging, word-disambiguation and parsing, using Markov models, hidden Markov models, and probabilistic context-free grammars. Recommended Prerequisite: one of LIGN 165, LIGN 245, CSE 151, CSE 250A, CSE 254. Prerequisite: graduate standing or consent of instructor.

265. Topics in Computational Linguistics (4)
Advanced topics in computational linguistics of current interest. Subjects will vary, and may include computational morphology, syntax, semantics, discourse, psycholinguistics, or language change. May be repeated for credit. Prerequisites: none.

270. Psycholinguistics (4)
Issues of natural language processing in relation to one or more of the following levels of linguistic analysis: phonetics, phonology, the lexicon, morphology, syntax, semantics, information structure, or discourse. May be repeated for credit when topics vary.

272. Topics in Neurolinguistics (4)
Issues of language representation and neural instantiation that arise in studies of neural imaging, language disorders, multilingualism and second language acquisition, animal communication, and the origins and evolution of language. May be repeated for credit when topics vary.

274. Computational Psycholinguistics (4)
Investigation of problems in psycholinguistics—the study of how humans learn, represent, comprehend, and produce language—from a computational perspective. Research articles readings covering word-level, sentence-level, and discourse-level processing. Prior background in psycholinguistics and/or computational linguistics highly recommended.

278. Research in Second Language Acquisition (4)
This will investigate topics in second language acquisition including the critical period, the processing and neural representation of language in bilinguals, theories of second language acquisition and creolization, exceptional language learners, and parallels with first language acquisition.

279. Topics in Language Acquisition (4)
Language acquisition is central to theories about human development, cognition, brain organization, and language origins and change. Topics include the role of input and critical periods on language outcome and processing, neural organization, and sign language creation. Prerequisite: none.

280. Sign Language Research (4)
An overview of sign language research in terms of how it informs language theory. Topics include the structure of ASL acquisition, psycholinguistic and neurolinguistic processing of sign language in comparison to spoken language, critical period effects, and language evolution. Prerequisite: Graduate standing of consent of instructor.
COURSES

LANGUAGE

OFFICE: Linguistics Language Program Office, 3016 Applied Physics and Mathematics Building, Muir College

Students are placed in foreign language courses based on prior preparation and, for French, German, Italian, and Spanish, on the results of a placement test. Information on taking the placement exam is available at http://ling.ucsd.edu/language/placement-test.html or at the Linguistics Language Program Office (3016 Applied Physics and Mathematics Building). For placement in Arabic, American Sign Language, or Portuguese contact the Linguistics Language Program Office (3016 Applied Physics and Mathematics Building).

Conversation sections (Linguistics 1A-1B-1C-1D) consist of small tutorial meetings, plus reading and assigned laboratory work. Analysis sections (Linguistics 1AX-1BX-1CX-1DX) consist of presentations and practice of grammatical structures, discussion sections, assigned laboratory work, and outside reading. Each course in the 1A-1B-1C-1D series must be taken concurrently with the corresponding course in the 1AX-1BX-1CX-1DX series.

Heritage Language courses are offered in Arabic, Armenian, Cantonese, Filipino, Hindi, Korean, Persian, and Vietnamese. These courses are designed for students with a background in the language who want to improve their oral and written expression.

Linguistics 11 courses are self-instructional: intended for reading the language for scholarly purposes. They are particularly aimed at graduate students preparing to fulfill French or German reading requirements.

Linguistics 19 courses, offered in more than sixty languages, are designed for self-instructional study at an introductory level. Students may enroll for two or four units of credit. For some languages, depending on the availability of suitable materials, the course may be repeated for credit.

AMERICAN SIGN LANGUAGE

Linguistics/American Sign Language (LISL)

1A. American Sign Language Conversation (2.5)
Small tutorial meetings with a signer of American Sign Language (ASL). Conversational practice organized around common everyday communicative situations. Must be taken with LISL 1AX. Prerequisite: no prior study of ASL.

Linguistics/American Sign Language (LISL)

1AX. Analysis of American Sign Language Conversation (2.5)
Study of American Sign Language (ASL) and analysis of its syntactic, morphological, and phonological features. Readings and discussions of cultural information. The course is taught entirely in ASL. Must be taken with LISL 1A. Prerequisite: no prior study of ASL.

Linguistics/American Sign Language (LISL)

1B. American Sign Language Conversation (2.5)
Small tutorial meetings with a signer of American Sign Language (ASL). Conversational practice organized around common everyday communicative situations. Must be taken with LISL 1A. Prerequisite: no prior study of ASL.

Linguistics/American Sign Language (LISL)

1C. American Sign Language Conversation (2.5)
Small tutorial meetings with a signer of American Sign Language (ASL). Conversational practice organized around common everyday communicative situations. Must be taken with LISL 1C. Prerequisites: LISL 1A with a grade of C– or better, or equivalent and LISL 1AX with a grade of D or better, or equivalent.

Linguistics/American Sign Language (LISL)

1DX. Analysis of American Sign Language Conversation (2.5)
Study of American Sign Language (ASL) and analysis of its syntactic, morphological, and phonological features. Readings and discussions of cultural information. The course is taught entirely in ASL. Must be taken with LISL 1D. Prerequisite: no prior study of ASL.

Linguistics/American Sign Language (LISL)

1CX. Analysis of American Sign Language Conversation (2.5)
Study of American Sign Language (ASL) and analysis of its syntactic, morphological, and phonological features. Readings and discussions of cultural information. The course is taught entirely in ASL. Must be taken with LISL 1C. Prerequisites: LISL 1B with a grade of C– or better, or equivalent and LISL 1BX with a grade of D or better, or equivalent.

Language courses are intended for students preparing to fulfill French or German reading requirements.

Linguistics/American Sign Language (LISL)

1D. American Sign Language Conversation (2.5)
Small conversation sections taught entirely in American Sign Language. Emphasis on signing fluency and greater cultural awareness. Practice of the principal language functions needed for successful communication. Must be taken in conjunction with LISL 1DX. Successful completion of LISL 1D and LISL 1DX satisfies the requirement for language proficiency in Eleanor Roosevelt and Revelle Colleges. Prerequisites: LISL 1C with a grade of...
ARABIC

See also Linguistics/Heritage Language Program.

Linguistics/Arabic (LIAB) 1A.
Arabic Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIAB 1AX. Prerequisite: no prior study of Arabic.

Linguistics/Arabic (LIAB) 1AX.
Analysis of Arabic (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. This course is taught entirely in Arabic. Must be taken in conjunction with LIAB 1A. Prerequisite: LIAB 1B with a grade of C– or better, or equivalent and LIAB 1BX with a grade of D or better, or equivalent.

Linguistics/Arabic (LIAB) 1BX.
Analysis of Arabic (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. This course is taught entirely in Arabic. Must be taken in conjunction with LIAB 1AX. Prerequisite: LIAB 1A with a grade of C– or better, or equivalent and LIAB 1AX with a grade of D or better, or equivalent.

Linguistics/Arabic (LIAB) 1C.
Arabic Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIAB 1CX. Prerequisite: LIAB 1B with a grade of C– or better, or equivalent and LIAB 1BX with a grade of D or better, or equivalent.

Linguistics/Arabic (LIAB) 1CX.
Analysis of Arabic (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. This course is taught entirely in Arabic. Must be taken in conjunction with LIAB 1C. Prerequisite: LIAB 1B with a grade of C– or better, or equivalent and LIAB 1BX with a grade of D or better, or equivalent.

Linguistics/Arabic (LIAB) 1D.
Arabic Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIAB 1D. Successful completion of LIAB 1D and 1DX satisfies the requirement for language proficiency in Revelle and Eleanor Roosevelt Colleges. Prerequisites: LIAB 1C with a grade of C– or better, or equivalent and LIAB 1CX with a grade of D or better, or equivalent.

Linguistics/Arabic (LIAB) 1EX.
Analysis of Arabic (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. This course is taught entirely in Arabic. Must be taken in conjunction with LIAB 1D. Successful completion of LIAB 1D and 1DX satisfies the requirement for language proficiency in Revelle and Eleanor Roosevelt Colleges. Prerequisites: LIAB 1C with a grade of C– or better, or equivalent and LIAB 1CX with a grade of D or better, or equivalent.

Linguistics/Arabic (LIAB) 1CX.
Analysis of Arabic (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. This course is taught entirely in Arabic. Must be taken in conjunction with LIAB 1D. Successful completion of LIAB 1D and 1DX satisfies the requirement for language proficiency in Revelle and Eleanor Roosevelt Colleges. Prerequisites: LIAB 1C with a grade of C– or better, or equivalent and LIAB 1CX with a grade of D or better, or equivalent.

Linguistics/Arabic (LIAB) 1DX.
Analysis of Arabic (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. This course is taught entirely in Arabic. Must be taken in conjunction with LIAB 1D. Successful completion of LIAB 1D and 1DX satisfies the requirement for language proficiency in Revelle and Eleanor Roosevelt Colleges. Prerequisites: LIAB 1C with a grade of C– or better, or equivalent and LIAB 1CX with a grade of D or better, or equivalent.

Linguistics/Arabic (LIAB) 1D.
Arabic Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIAB 1D. Successful completion of LIAB 1D and 1DX satisfies the requirement for language proficiency in Revelle and Eleanor Roosevelt Colleges. Prerequisites: LIAB 1C with a grade of C– or better, or equivalent and LIAB 1CX with a grade of D or better, or equivalent.

Linguistics/Arabic (LIAB) 1E.
Arabic Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIAB 1CX. Prerequisites: LIAB 1D with a grade of C– or better, or equivalent, and LIAB 1DX with a grade of D or better, or equivalent.

Linguistics/Arabic (LIAB) 1E.
Arabic Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIAB 1C. Prerequisite: LIAB 1B with a grade of C– or better, or equivalent and LIAB 1AX with a grade of D or better, or equivalent.

Linguistics/Arabic (LIAB) 1A.
Heritage Language Program. (Offered in Summer Session only.)

FRENCH

See also Linguistics/Heritage Language Program.

Linguistics/French (LIFR) 1A.
French Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIFR 1AX. Prerequisite: no prior study of French.

Linguistics/French (LIFR) 1AX.
Analysis of French (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. This course is taught entirely in French. Must be taken in conjunction with LIFR 1A. Prerequisite: LIFR 1B with a grade of C– or better, or equivalent and LIFR 1BX with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 1BX.
Analysis of French (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. This course is taught entirely in French. Must be taken in conjunction with LIFR 1A. Prerequisite: LIFR 1B with a grade of C– or better, or equivalent and LIFR 1AX with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 1CX.
Analysis of French (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in French. Must be taken in conjunction with LIFR 1A. Prerequisite: no prior study of French.

Linguistics/French (LIFR) 1C.
French Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIFR 1AX. Prerequisite: LIFR 1B with a grade of C– or better, or equivalent and LIFR 1BX with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 1C.
Heritage Language Program. (Offered in Summer Session only.)

Linguistics/French (LIFR) 1CX.
Analysis of French (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in French. Must be taken in conjunction with LIFR 1C. Prerequisite: LIFR 1B with a grade of C– or better, or equivalent and LIFR 1BX with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 1D.
French Conversation (2.5)
Small conversation sections taught entirely in French. Emphasis on speaking, reading, writing, and culture. Prerequisite: the language functions needed for successful communication. Must be taken in conjunction with LIFR 1CX. Prerequisite: LIFR 1C with a grade of C– or better, or equivalent and LIFR 1CX with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 1C.
Heritage Language Program. (Offered in Summer Session only.)

Linguistics/French (LIFR) 1B.
French Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIFR 1AX. Prerequisite: LIFR 1B with a grade of C– or better, or equivalent and LIFR 1BX with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 1BX.
Analysis of French (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in French. Must be taken in conjunction with LIFR 1A. Prerequisite: LIFR 1B with a grade of C– or better, or equivalent and LIFR 1AX with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 1A.
French Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIFR 1AX. Prerequisite: LIFR 1B with a grade of C– or better, or equivalent and LIFR 1BX with a grade of D or better, or equivalent.

Linguistics/Espenato (LIEO) 5AS.
Fundamentals of Esperanto I (5)
A communicative introduction to Esperanto for students, with no prior exposure, with attention to listening comprehension, conversation, reading, writing, and grammar analysis. (Offered in Summer Session only.)

Linguistics/Espenato (LIEO) 5BS.
Fundamentals of Esperanto II (5)
A course to increase the proficiency level of students who have completed LIEO 5AS or who are at an equivalent level. Attention to listening comprehension, conversation, reading, writing, and grammar analysis. Prerequisite: LIEO 5AS or consent of instructor. (Offered in Summer Session only.)

Linguistics/Espenato (LIEO) 5CS.
Fundamentals of Esperanto III (5)
A course to increase the proficiency level of students who have completed LIEO 5BS or who are at an equivalent level. Attention to listening comprehension, conversation, reading, writing, and grammar analysis. Prerequisite: LIEO 5BS or consent of instructor. (Offered in Summer Session only.)
Linguistics/French (LIFR) 1DX.
Analysis of French (2.5)
Practice of the grammatical functions indispensable for comprehensive communication in the language. The course is taught entirely in French. Must be taken in conjunction with LIFR 1DX, Successful completion of LIFR 1DX satisfies the requirement for language proficiency in Eleanor Roosevelt and Revelle Colleges. Prerequisite: LIFR 1C with a grade of C– or better, or equivalent and LIFR 1CX with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 11.
Elementary French Reading (2–4)
A self-instructional program designed to prepare graduate students to meet reading requirements in French. After a one-week introduction to French orthography/sound correspondence, students work with a self-instructional textbook. Mid-term and final examinations. (F,W,S)

Linguistics/French (LIFR) 5A, 5B, 5C, 5D.
Fundamentals of French (5)
This course concentrates on those language skills essential for communication: listening comprehension, conversational, reading, writing, and grammar analysis. UCSD students: LIFR 5A is equivalent to LIFR 1A/1AX, LIFR 5B to LIFR 1B/1BX, LIFR 5C to LIFR 1C/1CX, and LIFR 5D to LIFR 1D/1DX. Enrollment is limited. Prerequisite: None for 5A; for 5B, two or more years of French in high school or the first semester of college-level French. (Offered in Summer Session only.) See also “Department of Literature.”

GERMAN

Linguistics/German (LIGM) 1A.
German Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIGM 1AX. Prerequisite: no prior study of German.

Linguistics/German (LIGM) 1AX.
Analysis of German (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in German. Must be taken with LIGM 1A. Prerequisite: no prior study of German.

Linguistics/German (LIGM) 1B.
German Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIGM 1BX. Prerequisites: LIGM 1A with a grade of C– or better, or equivalent and LIGM 1AX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 1BX.
Analysis of German (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in German. Must be taken with LIGM 1B. Prerequisites: LIGM 1A with a grade of C– or better, or equivalent and LIGM 1AX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 1C.
German Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIGM 1CX. Prerequisites: LIGM 1B with a grade of C– or better, or equivalent and LIGM 1BX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 1CX.
Analysis of German (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in German. Must be taken with LIGM 1C. Prerequisites: LIGM 1B with a grade of C– or better, or equivalent and LIGM 1BX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 1D.
German Conversation (2.5)
Small conversation sections taught entirely in German. Emphasis on speaking, reading, writing, and culture. Practice of the language functions needed for successful communication. Must be taken in conjunction with LIGM 1D. Successful completion of LIGM 1D and LIGM 1DX satisfies the requirement for language proficiency in Eleanor Roosevelt and Revelle Colleges. Prerequisites: LIGM 1C with a grade of C– or better, or equivalent and LIGM 1CX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 1DX.
Analysis of German (2.5)
Practice of the grammatical functions indispensable for comprehensive communication in the language. The course is taught entirely in German. Must be taken in conjunction with LIGM 1D. Successful completion of LIGM 1D and LIGM 1DX satisfies the requirement for language proficiency in Eleanor Roosevelt and Revelle Colleges. Prerequisites: LIGM 1C with a grade of C– or better, or equivalent and LIGM 1CX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 11.
Elementary German Reading (2–4)
A self-instructional program designed to prepare graduate students to meet reading requirements in German. After a one-week introduction to German orthography/sound correspondence, students work with a self-instructional textbook. Mid-term and final examinations. (F,W,S)

Linguistics/German (LIGM) 5A, 5B, 5C, 5D.
Fundamentals of German (5)
This course concentrates on those language skills essential for communication: listening comprehension, conversational, reading, writing, and grammar analysis. UCSD students: LIGM 5A is equivalent to LIGM 1A/1AX, LIGM 5B to LIGM 1B/1BX, LIGM 5C to LIGM 1C/1CX, and LIGM 5D to LIGM 1D/1DX. Enrollment is limited. Prerequisites: none for 5A; for 5B, two or more years of German in high school or the first semester of college-level German. (Offered in Summer Session only.) See also “Department of Literature.”

GREEK

See “Department of Literature.”

HEBREW

See “Judaic Studies.”

See also Linguistics “Directed Study.”

HERITAGE LANGUAGE PROGRAM

“Heritage” or “incomplete” language acquisition refers to the situation of individuals who are exposed to a language used in their environment during childhood that they may learn to understand or even speak to some degree, but never fully acquire. The idea behind the department’s innovative Heritage Language Program is that such individuals have a set of skills, competencies, and needs that are distinct from those of both native speakers learning to read and write the language for the first time, and also non-native learners who may study it as a foreign language during adulthood. These individuals therefore require a different type of language instruction, one that builds on and enhances the linguistic skills they already possess, and amplifies their cultural competence and literacy. The Heritage Language Program allows students to work towards developing higher levels of proficiency in order to pursue personal and professional goals.

Linguistics/Filipino for Filipino Speakers (LIHL) 112 (4)
For students who already comprehend informal spoken Filipino but wish to improve their communicative and sociocultural competence and their analytic understanding of language functions for oral communication, reading, writing, and culture; dialect and language style differences; structure and history of Filipino. Some speaking ability in Filipino recommended. Prerequisite: upper-division standing or consent of instructor.

Linguistics/Advanced Filipino for Filipino Speakers (LIHL) 132 (4)
Instruction stresses language functions required for advanced oral communication, reading, writing, and cultural understanding in professional contexts. High-level vocabulary and texts; dialect differences and formal language styles (registers). Advanced structural analysis and history of Filipino. Prerequisite: upper-division standing or consent of instructor.

Linguistics/Armenian for Armenian Speakers (LIHL) 113 (4)
For students who already comprehend informal spoken Armenian but wish to improve their communicative and sociocultural competence and their analytic understanding of language functions for oral communication, reading, writing, and culture; dialect and language style differences; structure and history of Armenian. Some speaking ability in Armenian recommended. Prerequisite: upper-division standing or consent of instructor. (Not offered in 2010–11.)

Linguistics/Advanced Armenian for Armenian Speakers (LIHL) 133 (4)
Instruction stresses language functions required for advanced oral communication, reading, writing, and cultural understanding in professional contexts. High-level vocabulary and texts; dialect differences and formal language styles (registers). Advanced structural analysis and history of Armenian. Prerequisite: upper-division standing or consent of instructor. (Not offered in 2010–11.)

Linguistics/Vietnamese for Vietnamese Speakers (LIHL) 114 (4)
For students who already comprehend informal spoken Vietnamese but wish to improve their communicative and sociocultural competence and their analytic understanding of language functions for oral communication, reading, writing, and culture; dialect and language style differences; structure and history of Vietnamese. Some speaking ability in Vietnamese recommended. Prerequisite: upper-division standing or consent of instructor.

Linguistics/Advanced Vietnamese for Vietnamese Speakers (LIHL) 134 (4)
Instruction stresses language functions required for advanced oral communication, reading, writing, and cultural understanding in professional contexts. High-level vocabulary and texts; dialect differences and formal language styles (registers). Advanced structural analysis and history of Vietnamese. Prerequisite: upper-division standing or consent of instructor.

Linguistics/Korean for Korean Speakers (LIHL) 115 (4)
For students who already comprehend informal spoken Korean but wish to improve their communicative and sociocultural competence and their analytic understanding of language functions for oral communication, reading, writing, and culture; dialect and language style differences; structure and history of Korean. Some speaking ability in Korean recommended. Prerequisite: upper-division standing or consent of instructor.

Linguistics/Advanced Korean for Korean Speakers (LIHL) 135 (4)
Instruction stresses language functions required for advanced oral communication, reading, writing, and cultural understanding in professional contexts. High-level vocabulary and texts; dialect differences and formal language styles (registers). Advanced structural analysis and history of Korean. Prerequisite: upper-division standing or consent of instructor.
Linguistics/Arabic for Arabic Speakers (LIHL) 116 (4)
For students who already comprehend informal spoken Arabic but wish to improve their communicative and sociocultural competence and their analytic understanding. Language functions for oral communication, reading, writing, and culture; dialect and language style differences; structure and history of Arabic. Some speaking ability in Arabic recommended. Prerequisite: upper-division standing or consent of instructor.

Linguistics/Advanced Arabic for Arabic Speakers (LIHL) 136 (4)
Instruction stresses language functions required for advanced oral communication, reading, writing, and cultural understanding in professional contexts. High-level vocabulary and texts; dialect differences and formal language styles (Registers). Advanced structural analysis and history of Arabic. Prerequisite: upper-division standing or consent of instructor.

Linguistics/Persian for Persian Speakers (LIHL) 117 (4)
For students who already comprehend informal spoken Persian but wish to improve their communicative and sociocultural competence and their analytic understanding. Language functions for oral communication, reading, writing, and cultural understanding in professional contexts. High-level vocabulary and texts; dialect differences and formal language styles (Registers). Advanced structural analysis and history of Persian. Some speaking ability in Persian recommended. Prerequisite: upper-division standing or consent of instructor.

Linguistics/Advanced Persian for Persian Speakers (LIHL) 137 (4)
Instruction stresses language functions required for advanced oral communication, reading, writing, and cultural understanding in professional contexts. High-level vocabulary and texts; dialect differences and formal language styles (Registers). Advanced structural analysis and history of Persian. Prerequisite: upper-division standing or consent of instructor.

Linguistics/Cantonese for Cantonese Speakers (LIHL) 118 (4)
For students who already comprehend informal spoken Cantonese but wish to improve their communicative and sociocultural competence and their analytic understanding. Language functions for oral communication, reading, writing, and culture; dialect and language style differences; structure and history of Cantonese. Some speaking ability in Cantonese recommended. Prerequisite: upper-division standing or consent of instructor. (Not offered in 2010–11.)

Linguistics/Advanced Cantonese for Cantonese Speakers (LIHL) 138 (4)
Instruction stresses language functions required for advanced oral communication, reading, writing, and cultural understanding in professional contexts. High-level vocabulary and texts; dialect differences and formal language styles (Registers). Advanced structural analysis and history of Cantonese. Prerequisite: upper-division standing or consent of instructor.

Linguistics/Hindi for Hindi Speakers (LIHL) 119 (4)
For students who already comprehend informal spoken Hindi but wish to improve their communicative and sociocultural competence and their analytic understanding. Language functions for oral communication, reading, writing, and culture; dialect and language style differences; structure and history of Hindi. Some speaking ability in Hindi recommended. Prerequisite: upper-division standing or consent of instructor. (Not offered in 2010–11.)

Linguistics/Advanced Hindi for Hindi Speakers (LIHL) 139 (4)
Instruction stresses language functions required for advanced oral communication, reading, writing, and cultural understanding in professional contexts. High-level vocabulary and texts; dialect differences and formal language styles (Registers). Advanced structural analysis and history of Hindi. Prerequisite: upper-division standing or consent of instructor. (Not offered in 2010–11.)

HINDI
See also Linguistics/Heritage Language Program.

Linguistics/Hindi (LIHL) 1A. Hindi Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIHL 1AX. Prerequisite: no prior study of Hindi. (Not offered in 2010–11.)

Linguistics/Hindi (LIHL) 1AX. Analysis of Hindi (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in Hindi. Must be taken with LIHL 1A. Prerequisite: no prior study of Hindi. (Not offered in 2010–11.)

Linguistics/Hindi (LIHL) 1BX. Analysis of Hindi (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIHL 1A. Prerequisite: no prior study of Hindi. (Not offered in 2010–11.)

Linguistics/Hindi (LIHL) 1C. Hindi Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIHL 1CX. Prerequisite: LIHL 1A with a grade of C– or better, or equivalent and LIHL 1AX with a grade of D or better, or equivalent. (Not offered in 2010–11.)

Linguistics/Hindi (LIHL) 1CX. Analysis of Hindi (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in Hindi. Must be taken in conjunction with LIHL 1A. Prerequisite: no prior study of Hindi. (Not offered in 2010–11.)

Linguistics/Hindi (LIHL) 1BX. Analysis of Hindi (2.5)
Smallconversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIHL 1A. Prerequisite: LIHL 1A with a grade of C– or better, or equivalent and LIHL 1AX with a grade of D or better, or equivalent. (Not offered in 2010–11.)

Linguistics/Hindi (LIHL) 1D. Hindi Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIHL 1DX. Prerequisite: LIHL 1A with a grade of C– or better, or equivalent and LIHL 1AX with a grade of D or better, or equivalent. (Not offered in 2010–11.)

Linguistics/Hindi (LIHL) 1DX. Analysis of Hindi (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. This course is taught entirely in Hindi. Must be taken in conjunction with LIHL 1D. Prerequisite: LIHL 1A with a grade of C– or better, or equivalent and LIHL 1AX with a grade of D or better, or equivalent. (Not offered in 2010–11.)

Linguistics/Hindi (LIHL) 1E. Hindi Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIHL 1EX. Prerequisite: LIHL 1A with a grade of C– or better, or equivalent and LIHL 1AX with a grade of D or better, or equivalent. (Not offered in 2010–11.)

ITALIAN

Linguistics/Italian (LIIT) 1A. Italian Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIIT 1AX. Prerequisite: no prior study of Italian.

Linguistics/Italian (LIIT) 1AX. Analysis of Italian (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in Italian. Must be taken with LIIT 1A. Prerequisite: no prior study of Italian.

Linguistics/Italian (LIIT) 1B. Italian Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIIT 1BX. Prerequisite: LIIT 1A with a grade of C– or better, or equivalent and LIIT 1AX with a grade of D or better, or equivalent. (Not offered in 2010–11.)

Linguistics/Italian (LIIT) 1BX. Analysis of Italian (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in Italian. Must be taken with LIIT 1A. Prerequisite: LIIT 1A with a grade of C– or better, or equivalent and LIIT 1AX with a grade of D or better, or equivalent.

Linguistics/Italian (LIIT) 1C. Italian Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIIT 1CX. Prerequisite: LIIT 1B with a grade of C– or better, or equivalent and LIIT 1BX with a grade of D or better, or equivalent.

Linguistics/Italian (LIIT) 1CX. Analysis of Italian (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in Italian. Must be taken with LIIT 1C. Prerequisite: LIIT 1B with a grade of C– or better, or equivalent and LIIT 1BX with a grade of D or better, or equivalent.

Linguistics/Italian (LIIT) 1DX. Analysis of Italian (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIIT 1DX. Prerequisite: LIIT 1C with a grade of D or better, or equivalent.

Linguistics/Italian (LIIT) 1EX. Analysis of Italian (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIIT 1EX. Prerequisite: LIIT 1C with a grade of D or better, or equivalent.

JAPANESE
See also "Department of Literature."

LATIN
See also "Department of Literature."

PORTUGUESE

Linguistics/Portuguese (LIPO) 1A. Portuguese Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Emphasis on the language and culture of Brazil. Must be taken in conjunction with LIPO 1AX. Prerequisite: no prior study of Portuguese.

Linguistics/Portuguese (LIPO) 1AX. Analysis of Portuguese (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in Portuguese. Must be taken in conjunction with LIPO 1A. Prerequisite: no prior study of Portuguese.

Linguistics/Portuguese (LIPO) 1B. Portuguese Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIPO 1BX. Prerequisite: LIPO 1A with a grade of C– or better, or equivalent and LIPO 1AX with a grade of D or better, or equivalent.
vocabulary-building, reading, and culture. Emphasis on the language and culture of Brazil. Must be taken in conjunction with LIPO 1BX. Prerequisites: LIPO 1A with a grade of C– or better and LIPO 1AX with a grade of D or better, or equivalent.

Linguistics/Portuguese (LIPO) 18X. Analysis of Portuguese (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and reading. The course is taught entirely in Portuguese. Must be taken in conjunction with LIPO 1B. Prerequisites: LIPO 1A with a grade of C– or better and equivalent and LIPO 1AX with a grade of D or better, or equivalent.

Linguistics/Portuguese (LIPO) 1C. Portuguese Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary-building, reading, and culture. Emphasis on the language and culture of Brazil. Must be taken in conjunction with LIPO 1CX. Prerequisites: LIPO 1B with a grade of C– or better or equivalent and LIPO 1BX with a grade of D or better, or equivalent.

Linguistics/Portuguese (LIPO) 1DX. Analysis of Portuguese (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and reading. The course is taught entirely in Portuguese. Must be taken in conjunction with LIPO 1C. Prerequisites: LIPO 1B with a grade of C– or better or equivalent and LIPO 1BX with a grade of D or better, or equivalent.

Linguistics/Portuguese (LIPO) 1D. Portuguese Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIPO 1DX. Successful completion of LIPO 1D and LIPO 1DX satisfies the requirement for language proficiency in Revelle and Eleanor Roosevelt Colleges. Prerequisites: LIPO 1C with a grade of C– or better, or equivalent and LIPO 1CX with a grade of D or better, or equivalent.

Linguistics/Portuguese (LIPO) 115. Intermediate Brazilian Portuguese for the Social Sciences: Social Movements (2.0)
Conducted entirely in Portuguese. Course aims to improve oral language skills through discussions of social science topics, with emphasis on political and social movements in contemporary Brazil. Course materials may encompass televised news broadcasts, newspapers and periodicals. Prerequisites: LIPO 1D and 1DX or equivalent by consent of instructor.

Linguistics/Portuguese (LIPO) 17. Intermediate Brazilian Portuguese for the Social Sciences: Ethnicity (2.0)
Conducted entirely in Portuguese. Course aims to improve oral language skills through discussions of social science topics, with emphasis on the role of ethnicity in contemporary Brazil. Course materials may encompass televised news broadcasts, newspapers and periodicals. Prerequisites: LIPO 1D and 1DX or equivalent by consent of instructor.

Linguistics/Portuguese (LIPO) 18. Analysis of Portuguese (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and reading. The course is taught entirely in Portuguese. Must be taken in conjunction with LIPO 1B. Prerequisites: LIPO 1A with a grade of C– or better and equivalent and LIPO 1AX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 1A. Spanish Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LISP 1AX. Prerequisite: no prior study of Spanish.

Linguistics/Spanish (LISP) 1CX. Analysis of Spanish (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and reading. The course is taught entirely in Spanish. Must be taken with LISP 1A. Prerequisite: no prior study of Spanish.

Linguistics/Spanish (LISP) 1B. Spanish Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LISP 1BX. Prerequisites: LISP 1A with a grade of C– or better, or equivalent and LISP 1AX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 18X. Analysis of Spanish (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and reading. The course is taught entirely in Spanish. Must be taken with LISP 1B. Prerequisites: LISP 1A with a grade of C– or better, or equivalent and LISP 1AX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 1C. Spanish Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LISP 1CX. Prerequisites: LISP 1B with a grade of C– or better, or equivalent and LISP 1BX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 115. Intermediate Brazilian Portuguese for the Social Sciences: Social Movements (2.0)
Conducted entirely in Portuguese. Course aims to improve oral language skills through discussions of social science topics, with emphasis on political and social movements in contemporary Brazil. Course materials may encompass televised news broadcasts, newspapers and periodicals. LISP 15 is offered fall quarter only, LISP 16 is offered winter quarter only, and LISP 17 is offered spring quarter only. Each course may be taken one time and need not be taken in sequence. Prerequisites: LISP 1DX/DX or at least three semesters/four quarters of college Spanish or by permission of the instructor.

Linguistics/Spanish (LISP) 15, 16, 17. Intermediate Spanish for the Social Sciences (2)
Conducted entirely in Spanish. Course aims to improve oral language skills through discussions of social science topics, with emphasis on political events and current affairs. Course materials encompass televised news broadcasts, newspapers and periodicals. LISP 15 is offered fall quarter only, LISP 16 is offered winter quarter only, and LISP 17 is offered spring quarter only. Each course may be taken one time and need not be taken in sequence. Prerequisites: LISP 1DX/DX or at least three semesters/four quarters of college Spanish or by permission of the instructor.

Linguistics/Spanish (LISP) 19. Directed Study-Linguistics (2–4)
Introductory-level study of a language in the language laboratory on a self-instructional basis. Depending on the availability of appropriate study materials, the course may be taken in blocks of two or four units of credit and may be repeated up to the total number of units available for that language.

Linguistics/Spanish (LISP) 5A, 5B, 5C. 5D. Fundamentals of Spanish (5)
This course concentrates on those language skills essential for communication: listening comprehension, conversation, reading, writing, and grammar analysis. UCSD students: LISP 5A is equivalent to LISP 1A/1AX, LISP 5B to LISP 5B/5BX, LISP 5C to LISP 1C/1CX and LISP 5D to LISP 1D/1DX. Enrollment is limited. Prerequisites: none for 5A; for 5B, 5C or two or more years of Spanish in high school or the first semester of the first quarter of college-level Spanish. (Offered in Summer Session only.)
Shelley Streeby, Ph.D., American Literature
Nicole Tonkovich, Ph.D., American Literature
Pasquale Verdicchio, Ph.D., Italian and Comparative Literature
Don Edward Wayne, Ph.D., English Literature
Winifred Woodhill, Ph.D., French Literature
Lisa Yoneyama, Ph.D., Japanese Studies and Cultural Studies

ASSISTANT PROFESSORS

Dennis Childs, Ph.D., African American Literature and Culture
Fatima El-Tayeb, Ph.D., African Diaspora and Transnational Studies, Film, Gender Studies
Amelia Glaser, Ph.D., Slavic and Comparative Literature
Sara E. Johnson, Ph.D., Comparative Literature
Dayna Kalleres, Ph.D., Early Christian Literature and Religious Studies
Margaret Loose, Ph.D., English Victorian Literature and Culture
Luis Martin-Cabrera, Ph.D., Spanish Peninsular and Latin American Literature
Babak Rahimi, Ph.D., Islamic and Religious Studies
Anna Joy Springer, M.F.A., Creative Writing and Literary Arts
Megan E. Westling, Ph.D., U.S. Literatures

PROFESSORS EMERITI

Ronald S. Berman, Ph.D.
Carlos Blanco-Aguinaga, Ph.D.
Charles R. Cooper, Ph.D.
Abraham J. Dijkstra, Ph.D.
Margit Frenk, Ph.D.
Abraham J. Dijkstra, Ph.D.
Charles R. Cooper, Ph.D.
Carlos Blanco-Aguinaga, Ph.D.

ASSOCIATE PROFESSORS

Jack Behar, Ph.D.
David K. Crowne, Ph.D.
Thomas K. Dunseath, Ph.D.
Fred V. Randel, Ph.D.
Marta E. Sanchez, Ph.D.
Cynthia Walk, Ph.D.

LECTURERS

Charles Chamberlain, Ph.D., Classical Languages and Literature, Writing
Adriana deMarchi-Gherini, Ph.D., Italian Language and Literature
Leslie Collins Edwards, Ph.D., Classical Languages and Literature
Melvyn Freilicher, C.Phil., Writing
John Granger, Ph.D., Writing
Jeyseon Lee, Ph.D., Korean Language
Beatrice Pita, Ph.D., Spanish Language and Latin American Literature

Catherine Ploye, Ph.D., French Language and Literature
Stephen Potts, Ph.D., American and Popular Literature
Rebecca Wells, C.Phil., Russian Language and Literature
Elliot Wirsing, Ph.D., Classical Languages and Literature

ADMINISTRATIVE OFFICE:
130 Literature Building, (858) 534-4618

GRADUATE OFFICE:
139/140 Literature Building, (858) 534-3217

UNDERGRADUATE OFFICE:
110 Literature Building, (858) 534-3210

The Department of Literature at UC San Diego is unique both conceptually and structurally in that it combines all literary study in a single department, enabling students to concentrate on single-language or national literatures, while at the same time facilitating student engagement in dialogue across literatures and languages. The department also houses undergraduate and graduate study in the craft and theory of creative writing. The department brings together writers, teachers, scholars, and students of several different languages and literatures, uniting them by the nature of the studies they pursue. This lends a comparative aspect to both undergraduate and graduate programs, which lead to the bachelor of arts, master of fine arts, the candidate in philosophy, and doctor of philosophy degrees. All students must show knowledge of a foreign literature by doing upper-division or graduate work in that literature in the original language. Courses are offered not only in the literatures themselves but in the theoretical aspects of literature and—often in cooperation with other departments—in the relationship of literary study to other disciplines such as philosophy, visual arts, music, sociology, history, psychology, linguistics, and communication. With special permission, undergraduates may take graduate courses for credit, and graduate students may also take undergraduate courses for credit.

The UCSD Library’s Mandeville Department of Special Collections offers the undergraduate and graduate literature student an excellent range of resources, including single-author collections, rare and out-of-print books, tapes, maps, and historical archives. Of special interest are the Southworth Collection of Spanish Civil War materials, the Hill Collection of South Pacific Voyages, the Don Cameron Allen Renaissance collection, and the Archive for New Poetry. Within the latter collection are an extensive series of single-author archives, including the papers of Paul Blackburn, Donald Allen, Lew Welch, Charles Reznikoff, Joanne Kyger, Jerome Rothenberg, and others. The Archive for New Poetry is one of the largest collections of contemporary poetry in the United States. Graduate students also have access, facilitated by travel grants, to all other University of California research collections.

Literature majors in languages are trained

• To write effectively, marshalling textual evidence in their engagement with complex and diverse

2010-2011 UC SAN DIEGO GENERAL CATALOG • LITERATURE
ideas.

- To read texts and other cultural productions in a nuanced manner, sensitive to factors of historical context and aesthetic form.
- To develop a critical vocabulary and framework that will promote and facilitate their engagement with texts.
- To work at an advanced level in a second language/literature.
- To lead, evaluate, and apply secondary sources to their analyses of primary texts.
- To develop a lifelong appreciation of the subtleties of cultural texts and the ongoing need to engage with and evaluate their meanings.

Literature majors in writing are trained

- To write clear expository prose.
- To work at an advanced level in a second language/literature, including the ability to complete at least one upper division course in literature, film, etc. taught exclusively in that language.
- To produce original works of fiction, poetry, or nonfiction.
- To demonstrate in-depth familiarity with the literary history of their chosen genre, including canonical and alternative texts across some breadth of time.
- To develop a critical vocabulary for understanding, discussing, and evaluating literary techniques and aesthetic arguments while honing editorial skills.
- To become active, sophisticated, articulate consumers and producers of a variety of texts.

CAREERS FOR LITERATURE MAJORS

Literature majors develop skills and perspectives that prepare them for careers in education and numerous other professions. The writing, analytical, and cultural breadth of majors makes them attractive as preparation for professional schools as well as advanced graduate studies. A degree in literature provides a strong background for the LSAT and law school. Medical schools seek out students who are prepared not only in the sciences, but also in the humanities and writing. The business world seeks college-trained English majors, and international corporations actively recruit students with a specialty in French, German, Italian, Russian, or Spanish. Literature majors’ skills also prepare them for work in advertising, editing, publishing, journalism, communications, mass media, and other professions where writers and editors are in demand. The knowledge of a second language and culture provides literature majors with a decided career advantage.

SECONDARY SCHOOL ENGLISH TEACHING

The literature department offers an excellent preparation for teaching English/ESL in secondary schools. Suggested majors include Literatures of the World, Literatures in English, and Literature/Writing. If you are interested in receiving a California teaching credential from UC San Diego, contact Education Studies (EDS) for information about prerequisites and professional preparation requirements. Please consult EDS and the literature department early in your academic career to plan an appropriate literature curriculum.

THE UNDERGRADUATE PROGRAM

THE MAJOR IN LITERATURE

There are ten majors available to students within the Department of Literature: Literatures in Cultural Studies, English, French, German, Italian, Russian, Spanish, Literatures of the World, Writing, and the composite major in two literatures. Requirements vary from major to major as described below. Once a student has decided upon a major in literature, he or she is required to meet regularly with an advisor in the Department of Literature. Worksheets defining major requirements are available in the literature undergraduate office to help students organize their course work.

All departmental courses taken to satisfy the requirements of the literature major, including courses in the secondary literature, must be taken for a letter grade. No grade below C– is acceptable for a course taken in the major.

At least six of the upper-division courses for the major, including a minimum of four in the primary literature, must be taken at UCSD.

Lower-Division Preparation

Lower-division requirements vary, depending on the literature major in which the student elects to concentrate. However, the department strongly recommends that, as part of the freshman/sophomore course work, students who have chosen or are considering a major in literature begin an appropriate lower-division language sequence in the Departments of Linguistics or Literature as preparation for upper-division course work in a foreign language and literature. All literature majors require knowledge of a second language.

Secondary Literature

All students majoring in literature must study a secondary literature, that is, a literature in a language different from that of their primary literature. The range of secondary literatures includes ASL, Classical Greek, Hebrew, and Latin, as well as the previously mentioned French, German, Italian, Russian, Spanish, and for those concentrating in a foreign literature, English is also an option. Students will satisfy this requirement by taking three courses in the secondary literature, given substantially in the native language. At least one of these courses must be upper-division. Students should see an advisor to confirm the selection of the specific courses that will be taken to satisfy both the lower-division and the upper-division components of the secondary literature requirement.

The lower-division component within the secondary literatures may be satisfied by: American Sign Language 1D/1DX and 1E; French (LTFR) 2B and either 2C or 50; German (LTGM) 2B and 2C; Hebrew (JUDA) 2 and 3 (see “Judica Studies”); Italian (LTIIT) 2B and 50; Greek (LTKG) 2 and 3; Latin (LTLA) 2 and 3; Russian (LTRU) 2B and 2C; two courses from Spanish (LTS) 50A-50B-50C. For majors other than literatures in English, two courses from English (LTEN) 21-22-23-25-26-27-28-29-60 are applicable. Literatures of the World and writing courses may not be applied toward the English secondary literature requirement.

Note: World Literature (LTWL) courses taught in English do not apply unless there is a foreign-language discussion section and materials are available in the foreign language. World Literature courses whose primary focus is U.S. literature may apply toward requirements in literatures in English. Alternative secondary literatures are subject to approval and petition.

Upper-division courses in the secondary literature are counted as part of the total number of upper-division courses required for the major when possible. Students are free to choose from any of the upper-division offerings in their secondary foreign literature. Special studies courses (198s and 199s) cannot be used to satisfy upper-division secondary literature requirements.

All departmental courses taken to satisfy the requirements of the literature major, including courses in the secondary literature, must be taken for a letter grade. No grade below C– is acceptable for a course taken in the major.

At least six of the upper-division courses for the major, including a minimum of four in the primary literature, must be taken at UCSD.

Writing Component in Literature Courses

It is the departmental expectation that students in lower-division courses will write a minimum of 2,500 words per course. In upper-division courses the minimum requirement is 4,000 words per course.

Honors Program

The department offers a special program of advanced study for outstanding undergraduates majoring in literature. Admission to this program requires an overall GPA of 3.5 and a literature major GPA of 3.7 at the beginning of the senior year. Students meeting these requirements will be sent, during the middle of fall quarter, an invitation to participate in the program. Interested students who anticipate that they will not meet the established criteria may petition to participate in the program by submitting a personal statement and a five-page example of their writing by the end of the third week of fall quarter. During the winter quarter of their senior year, all honors students enroll in the honors seminar (LTWL 191), which aims to deepen their understanding of the issues of theory and method implied in the study of literature. This seminar lays the groundwork for an honors thesis, written in spring quarter (LT_ 196), each under the supervision of a faculty member who specializes in the literature of the student’s primary concentration. The Honors Program concludes with an oral examination of each honors candidate by a faculty committee.
which is charged with recommending whether departmental honors are warranted and, if so, which degree of honors will appear on the student’s transcript and diploma. Students from this program will also be recommended for the Burkhart and Williams Prizes, which are awarded at graduation for outstanding achievement in the literature major. The honors seminar and thesis course may be applied toward the primary concentration in the literature major, if applicable. For Literature/Writing majors, the honors seminar is considered to be equivalent to a writing workshop.

Special Studies

These upper-division independent study opportunities are intended for advanced students, able to work on their own, and interested in a topic not normally covered by departmental offerings.

Students with upper-division standing, a departmental GPA of at least 3.0, an overall GPA of at least 2.5, and completion of lower-division prerequisites in the subject, are eligible to take special studies courses (198s and 199s). Those not satisfying these criteria may, with justification supported by the proposed special studies instructor, petition for an exception to the regulation. 198s and 199s require at least 4,000 words of writing or an equivalent project as determined by the instructor. Information and Special Studies Enrollment forms are available in the literature undergraduate office. Enrollment requires departmental approval. Special studies courses may not be taken for a grade. These courses may not be used to satisfy upper-division requirements for majors or minors.

Study Abroad

Study abroad can significantly enhance a student’s major, particularly in ways in which it relates to international issues. Literature students are encouraged to study abroad before their senior year. Students who take Education Abroad Program or Opportunities Abroad Program (EAP/OAP) courses in a country appropriate to their major may use up to five upper-division courses to satisfy major requirements and up to three toward a minor. For composite majors in literature, six courses from abroad may apply, with no more than four toward either one of the two concentrations. These must be approved by the department after they have been entered on the student’s official record at UCSD. The approval process is described in a handbook on receiving transfer credit, available in the Literature Undergraduate Office. Before leaving to study abroad, students should meet with an advisor to identify which EAP courses are appropriate to fulfill the major or minor requirements.

Information on EAP/OAP is given in the “Education Abroad Program” section of the UC San Diego General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit its Web site at http://programsabroad.ucsd.edu/. Financial aid can be used for EAP/OAP study, and special study-abroad scholarships are also available.

INDIVIDUAL PROGRAMS

Literature/Cultural Studies

Literatures in English
Literatures in French
Literatures in German
Literatures in Italian
Literatures in Russian
Literatures in Spanish
Literatures of the World
Literature/Writing
Composite Major

INDIVIDUAL PROGRAM REQUIREMENTS

Primary Concentration in Cultural Studies

The Literature/Cultural Studies major aims to provide students with broad cultural literacy and critical thinking skills—in language, visual media, social practices, and theories of interpretation—which are basic, necessary cornerstones of a humanities education. With four focus areas—visual culture, popular cultures, culture and globalization, and social identities—the undergraduate major in Literature/Cultural Studies, on the one hand, offers literacy in a range of traditional and modern cultural forms (from literature and texts, to film, art, and visual culture) and methods for interpreting these cultural forms, and on the other hand, prepares students to engage with a society whose “culture” is, and will become increasingly, diverse, international, and multilingual.

1. Three lower-division courses:
 a. LTCS 50 and 52
 b. Third course may be selected from: LTEN 25, 26, 27, 28, 29, 60; LTWL 4A-B-C-D-F-M; TW 21-22-23-24-25-26; or LTWL 19A-B-C.

2. Six upper-division LTCS courses (one of each from the four a–d focus areas):
 a. Reading Visual Culture: LTCS 170, 171, 172, 173
 b. Popular Cultures: LTCS 110, 111, 114, 118
 c. Culture and Globalization: LTCS 125, 133, 140, 141, 145
 d. Social Identities: LTCS 130, 131, 132, 135

 Note: At least one upper-division LTCS methods course is recommended and will fulfill the upper-division requirement: LTCS 100, 102, 120, 155.

3. Three courses in a secondary literature, that is, a literature taught in a language other than English. At least one of these courses must be upper-division. Upper-division courses taken to satisfy the secondary literature requirement may be counted as part of the twelve upper-division courses. Special studies courses (198s and 199s) do not apply to the secondary literature requirement. See “Secondary Literature,” above.

4. The remaining upper-division electives, to total twelve upper-division courses, can be drawn from these existing Department of Literature courses:
 a. Literature in English: LTEN 150, 160, 178, 180, 181, 183, 184, 185, 186, 187, 188, 189
 b. Literatures in French: LTRF 145, 164, 170
 c. Literatures in Italian: LTI 122, 140, 150
 d. Literatures in Korean: LTKO 100
 e. Literatures in Spanish: LTSP 123, 137, 150A, 150B, 154, 170, 174, 175, 176, 177

Primary Concentration in a Foreign Literature

Literatures in French

1. Nine upper-division courses as follows:
 a. LTRF 115-116, Themes in French Intellectual and Literary History.
 b. Seven additional upper-division courses in French literature, including at least one course in each of the following periods: seventeenth or eighteenth century; nineteenth century; and twentieth century.

2. Three courses in a secondary literature, that is, a literature taught in a language other than French. At least one of these courses must be upper-division. Special studies courses (198s and 199s) and courses in foreign literatures which are taught in French do not apply to the secondary literature requirement. See “Secondary Literature,” above.

3. Upward-division electives chosen from Department of Literature offerings to make a total of twelve upper-division courses.

Primary Concentration in Literatures in English

1. Six lower-division courses:
 a. LTEN 21, 22, 23, 25, and 26
 b. One of the following: LTEN 27, 28, or 29

2. Nine upper-division courses from literatures in English offerings, including a course from each of the following four a–d categories:
 a. British Literature before 1660
 b. British Literature after 1660
 c. U.S. Literature before 1860
 d. U.S. Literature after 1860

3. One course in world Anglophone literature(s) with focus other than British or U.S. literatures.

4. One upper-division course in the history of criticism or in literary/cultural theory and methods from among the following: LTTH 110; LTTH 115; or LTC 100.

5. Three courses in a secondary literature, that is, a literature taught in a language other than English. At least one of these courses must be upper-division. Upper-division courses taken to satisfy the secondary literature requirement may be counted as part of the twelve upper-division courses. Special studies courses (198s and 199s) do not apply to the secondary literature requirement. See “Secondary Literature,” above.

6. Upper-division elective chosen from Department of Literature offerings to make a total of twelve upper-division courses.
Literatures in German

1. Nine upper-division courses in German literature. Two of these should be in literature written before the year 1850.
2. Three courses in a secondary literature, that is, a literature taught in a language other than German. At least one of these courses must be upper-division. Special studies courses (198s and 199s) and courses in foreign literatures taught in German do not apply to the secondary literature requirement. See "Secondary Literature," above.
Upper-division electives chosen from Department of Literature offerings to make a total of twelve upper-division courses.

Literatures in Italian

1. Nine upper-division courses in Italian literature as follows:
 a. LTIT 100, Introduction to Italian Literature
 b. LTIT 115, Medieval Studies
 c. LTIT 161, Advanced Stylistics and Conversation
 d. One course in Italian North American Culture
 e. Five additional upper-division courses in Italian literature taught in Italian
2. Three courses in a secondary literature, that is, a literature taught in a language other than Italian. At least one of these courses must be upper-division. Special studies courses (198s and 199s) and courses in foreign literatures taught in Italian do not apply to the secondary literature requirement. See "Secondary Literature," above.
3. Upper-division electives chosen from Department of Literature offerings to make a total of twelve upper-division courses.

Literatures in Russian

1. LTRU 1A-B-C and 2A-B-C or their equivalent.
2. Twelve upper-division courses in Russian:
 a. LTRU 104A-B-C
 b. LTRU 110A-B-C
 c. Six additional upper-division courses in Russian literature
3. Three courses in a secondary literature, that is, a literature taught in a language other than Russian. At least one of these courses must be upper-division. Special studies courses (198s and 199s) and courses in foreign literatures taught in Russian do not apply to the secondary literature requirement. See "Secondary Literature," above.
Students in the Russian literature major are encouraged to participate in the Education Abroad Program (EAP) in Moscow and to investigate other options for foreign study through the Opportunities Abroad Program (OAP). By petition, credits earned through EAP/OAP can fulfill UCSD degree and major requirements.

Literatures in Spanish

1. Two lower-division Spanish literature courses, as indicated:
 a. LTSP 50A, Peninsular Literature
 b. Either LTSP 50B or LTSP 50C, Latin American Literature
2. Nine upper-division courses as follows:
 a. One course in Spanish Peninsular literature before 1900: LTSP 100, 107, 115, 119AB, 119C, 122, or the following topics course when the topic is pre-twentieth-century literature: LTSP 123
 b. One course in Latin American literature before 1900: LTSP 116, 135A, or any of the following regional, genre, or topics courses when the topic is pre-twentieth-century literature: LTSP 134, 136, 137, 138, 140, 141, 142, 171, 173, 174, 175, 176, 177, 178
 c. Seven additional upper-division courses in Spanish, Latin American, and/or Chicano literature (taught in Spanish)
3. Three courses in a secondary literature, that is, a literature taught in a language other than Spanish. At least one of these courses must be upper-division. Special studies courses (198s and 199s) and courses in foreign literatures taught in Spanish do not apply to the secondary literature requirement. See "Secondary Literature," above, for applicable lower-division courses.
4. Upper-division electives from Department of Literature offerings, whether in Spanish or in another literature, to make a total of twelve upper-division courses.
 Students majoring in Spanish can choose to concentrate on either Spanish or Latin American literature. All students, however, are encouraged to take courses in the various national literatures as well as in Chicano literature for a broad background in Spanish language literatures.
 Students not having a solid linguistic base in Spanish are advised to take intermediate language courses from the LTSP 2 and 50 sequences for additional review of Spanish grammar, development of writing skills, and introduction to literary analysis. Only LTSP 50A and either 50B or 50C, however, can count towards the major.

Primary Concentration in Literatures of the World

The major in Literatures of the World allows students to expand the focus of their work beyond a single-language literature. They plan an individual program with options in regional studies (for example, Europe, the Americas, East Asia, Africa, Near East) and topical studies (for example, genre, period, gender, ethnic literature, literature and the visual arts, cultural studies, writing, Third World studies) as well as the single-language literatures.
1. Lower-division (three courses):
 A three-course sequence in literature chosen from any section in literature.
 Students can combine courses in an original national language/literature with courses in translation to satisfy this requirement, such as LTFR 2A and 2B plus LTWL 4A (Film and Fiction in Twentieth-Century Societies: French). Students may use either the Revelle College Humanities sequence (HUM 1–5) or Eleanor Roosevelt College’s Making of the Modern World (MMW 1–6) to satisfy the lower-division sequence for the LTWL major.
2. Upper-division (twelve courses):
 a. Six courses in a regional or single-language literature, to be taken in the original language(s) or in translation
 b. Four courses focused on a topic or another regional or single-language literature
 c. Two courses in non-European and non-U.S. literature; if satisfied under group (a) or group (b), any other two literature courses may be substituted.
3. Three courses in a secondary literature, that is, a literature taught in a language different from that of the primary literature. At least one of these courses must be upper-division. Upper-division courses taken to satisfy the secondary literature requirement may be counted as part of the twelve upper-division courses for the major and may, where appropriate, be applied to requirements in Group B or C. Students should see an advisor when selecting specific courses that will be taken to satisfy this requirement. Special studies courses (198s and 199s) and courses in foreign literatures taught in translation do not apply to the secondary literature requirement. See "Secondary Literature," above, for applicable lower-division courses.
 At least two of the required twelve upper-division courses must be in literature written before 1850. No more than four courses in literature/writing (LTWR) may be taken as part of the world literatures major, and these will generally apply to Group 2b.

Primary Concentration in Writing

The writing major is designed to provide direct experience in writing fiction, nonfiction, and poetry as well as engage the student writer in both the world of "writing culture”—public readings, publication, and the media—and literary theory and practical critique. An indispensable feature of this program is that it engages students with one another’s work, both critically and communally. Writing majors will move through a sequence of courses within (and between) genres in order to develop their own style and confidence in the work of writing and critique. Students who are interested in teaching writing will find this major an opportunity both for writing extensively and dealing critically with the act of written composition. The major requirements are as follows:
1. LTWR 8A, 8B, and 8C.
2. Three lower-division courses:
 a. LTEN 26
 b. Any two of the following: LTEN 21, 22, 23, 25, 27, 28, 29; TWS 21, 22, 23, 25, 26
 c. Twelve upper-division courses:
 3. Six upper-division courses in Literature/Writing from the writing workshop sequence (LTWR 100–129). These workshops may be repeated for credit (see course listing for number of times workshops may be repeated), but the requirement should show a range of writing experience in at least two major writing types. No other courses may be substituted for this basic requirement of six upper-division workshops.
a. One course from the group numbered LTWR 140–148.
b. Five upper-division electives chosen from Department of Literature offerings, excluding LTWR 100–148 courses.

4. Three courses in a secondary literature, that is, a literature taught in a language other than English. At least one of these courses must be upper-division. Students should see an advisor when selecting specific courses that will be taken to satisfy this requirement. Special studies courses (198s and 199s) and courses in foreign literatures which are taught in English translation do not apply to the secondary literature requirement. See “Secondary Literature,” above.

Composite Major in Literature

The composite major in literature permits a student to develop a solid foundation in two literatures while remaining within one department. Because the UCSD Department of Literature houses literatures that are divided among different departments at most universities, our composite major allows students to coordinate their studies with a single, closely-knit group of faculty, and to arrange their program without repeating different sets of major requirements. (For example, since a composite major necessarily combines literatures written in two different languages, it automatically fulfills the secondary language requirement for the literature major.) Students pursuing a composite major work closely with an advisor to plan a program of study that meets the following requirements:

1. Students will select two literatures of concentration (Literature 1 and Literature 2).
 a. One of the literatures must be in a language other than English.
 b. Both concentrations, however, can be in non-English literatures; thus a student can choose English and French, for example, or Russian and Spanish, French and Italian, German and Latin, Spanish and English, etc., but not Literatures of the World or Literature/Writing.

2. Students will meet all lower-division major requirements for each of the two literatures of concentration. See specific “Primary Concentration” listings above: English, Spanish, and Russian, for example, all have lower-division requirements for the major.

3. Students will take eight upper-division courses in each of the two selected literatures of concentration for a total of sixteen upper-division courses.
 a. These must satisfy the upper-division course requirements for each of the two majors. Thus, for example, if one of the concentrations is English, the student must include courses from each of the four stipulated categories; if one of the concentrations is Spanish, upper-division courses must include LTSP 130A and 130B.
 b. Beyond the upper-division requirements for each literature of concentration (Literature 1 and Literature 2), students will take a sufficient number of elective courses in each of the two literatures of concentration to make a total of eight upper-division courses in each chosen concentration.

Double Major within the Department of Literature in Literature/Writing and Another Literature

Students who wish to major both in Literature/Writing and in literature (any section) should see the department for information regarding appropriate double major requirements. Generally, all requirements for each major must be completed, though the secondary literature and two upper-division courses, where appropriate, may overlap from one major to the other.

Students must submit a double major petition for approval by the department and the student’s provost office.

The Minor in Literature

The department offers a wide range of possibilities for noncontiguous minors. The options include courses in a single regional or national literature, courses in more than one literature, and a combination of language and literature courses. The minors require seven courses. All courses taken to complete a literature minor must be taken for a letter grade. No grade below C– is acceptable. Advanced Placement (AP) credit will not satisfy minor requirements. Please see the department undergraduate office for specific minor requirements.

- A minor in literature will consist of seven courses as described below.
- French, German, Greek, Italian, Latin, Russian, or Spanish literature: seven courses, at least four of which must be upper-division in the same literature.
- Literatures in English, Literatures of the World, and Literature/Writing: seven courses, at least five of which must be upper-division.
- Lower-division courses applicable toward minors: English—LTEN 21, 22, 23, 25, 26, 27, 28, 29, 60 French—LTFR 2A-B-C, 50 German—LTGM 2A-B-C Greek—LTGK 1, 2, 3 Hebrew—JUDA 1, 2, 3 (see “Judaic Studies”) Italian—LITIT 2A-B, 50 Latin—LTLA 1, 2, 3 Russian—LTRU 2A-B-C Spanish—LTSP 2A-B-C-D-E, 50A-B-C Writing—LTWR 8A-B-C Literatures of the World—seven literature courses, at least five of which must be upper-division—usually 1) a two- or three-course lower-division sequence and 2) five upper-division courses with a single unifying theme. Students may use either the Revelle College Humanities sequence (HUM 1–5) or Eleanor Roosevelt College’s Making of the Modern World (MMW 1–6) to satisfy the lower-division sequence for the LTWL minor.

Writing minor—seven courses, at least five of which must be upper-division. The minimum of five upper-division courses must cover at least two major writing genres, with course work chosen from writing courses (LTWR) numbered 100 through 148.

Please see the department for further information and specifics regarding minors in literature.

The Graduate Program

Doctoral Degree Program

The department offers a single Ph.D. in literature with concentrations in any of the fields in which members of the department do research. The C.Phil. (Candidate in Philosophy) is conferred upon all students who pass the qualifying examination and are advanced to candidacy. Ph.D. students in the doctoral program may also qualify for the M.A. upon completion of their qualifying examinations. Applicants seeking only an M.A. degree are not accepted.

Admission

The following are requirements for admission to graduate study in literature:

1. A baccalaureate or a master’s degree with a major in literature or a related field. Official transcripts required.
2. Satisfactory scores on the Graduate Record Examination (GRE) achieved within the past three calendar years. The Subject Test is not required.
3. Satisfactory score on the Test of English as a Foreign Language (TOEFL) achieved with the past two calendar years is required for international applicants.
4. Competence in reading, understanding and interpreting both literary and critical texts as well as the ability to follow seminar discussions in a second language and, for comparative literature students, in a third language as well.
5. Writing sample (twenty-five page minimum) required for all applicants.

Completed applications and supporting materials must be received by the deadline posted on the department Web site (http://literature.ucsd.edu) for admission to the following fall quarter. Those planning to apply should take the GRE/TOEFL far enough in advance so that the scores will be available to the admissions committee in December.

Please refer to the department Web site (http://literature.ucsd.edu) for specific guidelines.

Course of Study

Formal study begins with coursework including a three-quarter introductory sequence (Literature/Theory 200A-B-C) which has an interdisciplinary and theoretical emphasis. During the first three years, the course of study will include at least four seminars in one literature and two in another (students in comparative literature must take at least one seminar in a third literature); at least four seminars drawn from offerings in literary theory, the second or a third literature, cultural studies, comparative literature, or composition studies; and five additional seminars open entirely to the student’s choice (four for students in comparative literature). Such “open”
seminars should generally be related to the intended dissertation field. At most, two seminars offered in other campus departments may be substituted for any of the latter group, with the advisor's permission. Students must also fulfill a historical breadth requirement by completing two seminars dealing with texts or cultural practices prior to 1800. For students with M.A. degrees the initial three-year sequence may be reduced, depending on previous course work and on the students' plans for doctoral study.

Students in comparative literature must take four of the above-described seminars in comparative literature or in other sections, provided that they be clearly comparative in nature. Comparative literature seminars taken for the first, second, or third literature requirement must be substantially focused upon the relevant language and deal with materials in the original.

Students wishing to take these courses in a literature for which seminars are not regularly offered may substitute independent study courses (298) or undergraduate courses enhanced by additional assignments. To do so, students must demonstrate through prior course work that they have already attained graduate-level competency in the literature and language in question. Approval from the comparative literature graduate advisor and the director of Graduate Studies must be obtained.

The third year is spent taking seminars and preparing for the qualifying examinations. During this year, students will register for two four-unit independent study courses (298). The first will be used to prepare reading lists for the subject-area qualifying examinations and the second will focus on the long paper required for the qualifying examinations. The qualifying examination is usually taken during the ninth quarter of enrollment. It must be completed by the end of the tenth quarter. The fourth, fifth, and sixth years will be devoted to preparation of the dissertation.

Students may write dissertations in any of the fields in which members of the department do research. These fields may include English, American, French, German, Italian, Greek, Latin, Spanish, Chinese, Japanese, Russian, Chicano, Asian-American, and African-American literature, comparative literature, literary theory, women's studies, cultural studies, early modern studies, and composition studies.

Language Requirements
Graduate students are expected to read literary and secondary texts and to follow seminar discussions or lectures in a second language (a language other than the one in which the literature of their intended specialization is written). Students in comparative literature should have in-depth knowledge of a second and third language.

To satisfy the language requirements, students must demonstrate language proficiency via completion of two graduate seminars in the literature of the second language. In addition, comparative literature students must complete one seminar in the literature of the third language. With the approval of the director of Graduate Studies, students may satisfy the language requirement by substituting an upper-division undergraduate course enhanced by additional assignments (grade of A must be received). If upper-division courses are not available, students may take independent study courses (298) in the language. These options are only allowed when there is no graduate seminar offered in the chosen language.

Students must pass an examination in reading, interpretation, and translation in each of the two or three in the case of comparative literature) courses taken to satisfy the second language requirement. The language requirements must be satisfied prior to the qualifying examination.

Advancement to Candidacy
Students should choose a Ph.D. advisor no later than the first quarter of the third year. The advisor, in consultation with the student, will form a qualifying examination committee. The student and the qualifying examination committee will jointly determine the nature of the long research paper, (approximately thirty pages) and the two areas of specialization on which the student will be examined in writing. After satisfactory completion of the paper and the written examinations, the student will take a two-hour oral examination. On passing the oral examination, the student is declared eligible for advancement to candidacy for the Ph.D. The C. Phil. degree is conferred upon successful advancement. Students may also be eligible for the M.A. degree upon advancement, if no previous graduate degrees have been awarded.

Students whose preparation for the qualifying examinations or whose performance during the course of the qualifying examinations is deemed unsatisfactory, will not be permitted to continue in the graduate program.

Teaching
The department requires that each Ph.D. student participate in apprentice teaching before the completion of the degree; the minimum amount required is equivalent to the duties expected of a half-time teaching assistant for three academic quarters. This teaching involves conducting, with the guidance and support of a supervising professor, discussion sections and related activities in a variety of freshman and sophomore courses. Academic credit is granted for the training given under the apprentice teaching program.

Grading
The only grading option for literature graduate courses is Satisfactory/Unsatisfactory (S/U). Students receive written evaluations of their performance in seminars. Upper-division undergraduate courses must be taken for a letter grade; students must receive a grade of A to maintain acceptable graduate status and continuation of funding.

DEPARTMENTAL PH.D. TIME LIMIT POLICIES
Students must be advanced to candidacy by the tenth quarter of study. Departmental normative time is six years. Total registered time at UC San Diego cannot exceed eight years.

FINANCIAL SUPPORT
Ph.D. students entering the program with a B.A. may be supported (either by employment or fellowships) for six years. Students who have an M.A. and have been given transfer credit may be supported for five years. Such support depends upon the funds available, the number of students eligible, and the rate of progress.

MASTER'S DEGREE PROGRAM
The requirement for the M.A. degree is completion of forty-eight total units distributed as follows:
1. LITH 200A, 200B, 200C (twelve units). A required introductory theory sequence generally taken during the first year in the Ph.D. program.
2. Twenty-eight units of graduate seminars. Students may take a maximum of twelve units of enhanced upper-division course work, when graduate seminars are not available in student's specialization. A maximum of eight units may be taken outside of the Department of Literature.
 • Sixteen units of course work in primary literature of concentration.
 • Eight units of course work in secondary literature (in a language other than that of the student's principal concentration).
 • Four units of course work open to the student's choice.
3. Eight units of guided research (LTXX 298), culminating in an acceptable written and oral comprehensive examination.

Although Ph.D. students sometimes elect to terminate their studies in our department with a master's degree, we do not admit students to a master's degree program in literature.

Master of Fine Arts Program
The Master of Fine Arts (M.F.A.) in Writing is a two-year residency program that offers a degree in the areas of fiction and poetry, and is designed for students who are interested in innovative and interdisciplinary approaches to narrative and poetics. The program is also distinguished by its commitment to community building, alternative forms of literary distribution, and transborder exchange.

The M.F.A. Program is small, with typically eight new students admitted each year. The intimate nature of the program allows students to work very closely with the writing faculty, as well as to receive support in the form of research assistantships and/or teaching assistantships.

The M.F.A. in Writing is part of the Department of Literature, which also offers a doctoral program in literature that emphasizes cultural studies, gender studies, postcoloniality, and critical theory. The M.F.A. Program co-exists with a thriving undergraduate creative writing major, and benefits from a long-established reading series and the university's Archive for New Poetry, which holds the papers of George Oppen, Lyn Hejinian, Susan Howe, Alice Notley, James Schuyler, Ron Silliman, and many other important figures. With strong ties to the Departments of Visual Arts, Theatre and Dance, Communication, and Music, and situated at one of the top-rated science campuses in the country, the program encourages...
its students to generate writing informed by other disciplines and media. In recognition of the diverse community we serve, our location on the border with Mexico, and the resources offered by our faculty, we look forward to offering bilingual workshops in Spanish and English as the program develops.

The M.F.A. Program in Writing offers students a unique opportunity to develop as writers in a community that integrates a multiplicity of collaborative, interdisciplinary, and theoretical approaches by which to complete a literary project.

Program

The Graduate Program in Writing is a two-year program. The M.F.A. degree is awarded upon the satisfactory completion of at least six quarters of registration, seventy-two units of required course work, a preliminary reading or presentation after the first year, a completed manuscript or project, and a final reading or presentation.

1. Four-unit course in Writing and Theory.
2. Four-unit course in Modern Art Movements and Aesthetics.
3. Twelve units of graduate seminars (or upper-division course in literature or guided independent study) in Literature.
4. Twenty units of writing workshops within a specific genre or in a combination of genres.
5. Four to twelve units of graduate-level courses in either an art practice or theory outside of the writing program. This could be in visual arts, music, or theatre, or in graduate seminars offered by the Department of Literature in a language other than English.
6. Eight to twelve units of guided research culminating in an acceptable manuscript of poetry, fiction, or creative nonfiction (which may include collaboration with other genres or media). A discussion of no more than one hour follows submission of the manuscript.
7. Twelve units of apprentice teaching and/or research assistantship at UCSD.

Additional program information available on the department Web site (http://literature.ucsd.edu/grad/mfawriting/).

Admission

The following are requirements for admission to the M.F.A. program:

1. A baccalaureate degree from an accredited institution of higher education, with training comparable in standard and content to that provided by the University of California. Official transcripts are required.
2. Satisfactory score on the Test of English as a Foreign Language (international applicants only).
3. Writing sample.
4. Three letters of recommendation.

Additional information is available on the department Web site (http://literature.ucsd.edu/grad/mfawriting/). Completed applications and support-
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

PREREQUISITES: None.

LTC 98. Directed Group Studies (4) Directed group study on a topic or in a field not included in the regular department curriculum by special arrangement for undergraduate students. (P/NP only.) Prerequisites: lower-division standing, completion of at least thirty units of undergraduate study at UCSD, minimum 3.0 GPA at UCSD, consent of instructor, and completed and approved Special Studies form.

UPPER-DIVISION

PREREQUISITE: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTC 100. Theories and Methods in Cultural Studies (4) Readings and discussion of the major theoretical texts that have framed work in cultural studies, with particular emphasis on those drawn from critical theory, studies in colonialism, cultural anthropology, feminism, semiotics, gay/lesbian studies, historicism, and psychoanalytic theory.

LTC 102. Practicing Cultural Studies (4) Survey and application of methods central to cultural studies as a critical social practice, examining the relationship between cultural studies and social transformation. Students will study varieties of material culture, and experiment with techniques of reading, interpretation, and intervention.

LTC 110. Popular Culture (4) A reading of recent theory on popular culture and a study of the major texts dealing with popular cultural practices, both contemporary and noncontemporary, as sites of conflict and struggle. Repeatable for credit when topics vary.

LTC 111. Special Topics in Popular Culture in Historical Context (4) Exploration of forms of popular culture in different historical and geographical contexts. Topics may include: folklore, dime novels and other types of popular literature, racial performances, popular religions, theatrical melodrama, photojournalism, and early film. Repeatable for credit when readings and focus vary.

LTC 115. Performance Culture (4) An investigation of different types of performances such as theater and the genres ranging from melodrama and minstrelsy to various cultural rituals and speech acts. From the perspective of literary studies, performance studies, postcolonial theory, ethnography and theatre history, the course explores race, gender, sexuality, and nation through performance.

LTC 118. Comedy (4) Comedy in fiction and film from ancient times to contemporary, including the Bible, Aristophanes, Shakespeare, and modern writers and film makers.

LTC 120. Historical Perspectives on Culture (4) The course will explore the relation among cultural production, institutions, history, and ideology during selected historical periods. In considering different kinds of texts, relations of power and knowledge at different historical moments will be discussed. Repeatable for credit when topics vary.

LTC 125. Cultural Perspectives on Immigration and Citizenship (4) Introduction to the studies of cultural dimensions of immigration and citizenship. Examines the diverse cultural texts—literature, law, film, music, the televised images, etc., that both shape and are shaped by immigration and the idea of citizenship in different national and historical contexts.

LTC 130. Gender, Race/Ethnicity, Class, and Culture (4) The course will focus on the representation of gender, ethnicity, and class in cultural production in view of various contemporary theories of race, sex, and class. Repeatable for credit when topics vary.

LTC 131. Topics in Queer Cultures/ Queer Subcultures (4) This course examines the intersection of sex, sexuality, and popular culture by looking at the history of popular representations of queer sexuality and their relation to political movements for gay and lesbian rights. Repeatable for credit when readings and focus vary.

LTC 132. Special Topics in Social Identities and the Media (4) A study of media representation and various aspects of identity, such as gender, sexuality, race, ethnicity, social class, culture, and geopolitical location. Students will consider the various media of film, television, alternative, video, advertising, music, and the Internet. Repeatable for credit when readings and focus vary.

LTC 133. Globalization and Culture (4) Studies of cultural dimensions of immigration and citizenship. This course examines the diverse cultural texts—literature, law, film, music, the televised images, etc., that both shape and are shaped by immigration and the idea of citizenship in different national and historical contexts.

LTC 135. Interdisciplinary Approaches to Lesbian, Gay, Bisexual, and Transgender Studies (4) Introduction to interdisciplinary examination of human sexuality and, especially, lesbian, gay, bisexual, and transgender identities and desires. Juxtaposes perspectives from humanities, social sciences, and natural sciences. Introduces queer theory to understand sexuality in relation to phenomena such as government, family, culture, medicine, race, gender, and class.

LTC 141. Special Topics in Race and Empire (4) The role of race and culture within the history of empires; may select a single empire for consideration, such as France, Britain, U.S., or Japan, or choose to examine the role of race and culture in comparative histories of colonialism. Repeatable for credit when readings and focus vary.

LTC 145. National Cultures in Colonial and Postcolonial Contexts (4) Studies of emergence of national cultures under colonial rule and their transformations in the process of decolonization. Investigation of ideological constructions of such cultural institutions as modern national language, national history and historiography, national literary canon, and folk literature and culture.

LTC 150. Topics in Cultural Studies (4) The course will examine one or more forms of cultural production or cultural practice from a variety of theoretical and historical perspectives. Topics may include: contemporary debates on culture, genres of popular music/fiction/film, AIDS and culture, the history of sexuality, subcultural styles, etc. Repeatable for credit when topics vary.

LTC 160. Cultural Studies Approaches to Popular Music (4) An investigation of different types of popular music genres, cultures, and practices such as hip hop, punk rock, R&B, jazz, country, and dance music cultures. From the perspective of ethnography and cultural and performance studies, the course will cover race, gender, sexuality, and the negotiations of local, as well as national communities and subcultures via popular music.

LTC 165. Special Topics: The Politics of Food This course will examine the representation and politics of food in literary and other cultural texts. Topics may include: food and poverty, the fast food industry, controversy about seed, sustainable food production, myths about hunger, eating and epistemology, aesthetics, etc. Repeatable for credit up to three times when topics vary.

LTC 170. Visual Culture (4) The course will focus on visual practices and discourses in their intersection and overlap, from traditional media, print, and photography to film, video, TV, computers, medical scanners, and the Internet.

LTC 171. Topics in Television and Popular Media (4) Examining the relationship between television and national culture, students will study the emergence of TV as a domestic technology, the history of race and gender in television programming, and the global politics of television distribution. Repeatable for credit when readings and focus vary.

LTC 172. Special Topics in Screening Race/ Ethnicity, Gender and Sexuality (4) Exploring both Hollywood and international filmmaking, an exploration of screen representations with attention to race/ethnicity, gender, and sexuality in different historical and linguistic contexts. Historical periods may extend from silent, through wartime and cold war, to contemporary era of globalization. Repeatable for credit when readings and focus vary.

LTC 173. Topics in Violence and Visual Culture (4) This course focuses on the critical study of representations of violence, such as war, genocide, sexual violence, and crime, across a range of media, including literature, film, photography, and other forms of visual culture. Repeatable for credit when readings and focus vary.

LTC 192. Senior Seminar in Literatures in Cultural Studies (1) The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-level/advanced level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: department stamp and/or consent of instructor.

LTC 199. Special Studies (2 or 4) Individual reading in an area not covered in courses currently offered by the department. (P/NP only.) Prerequisite: permission of the department.

GRADUATE

PREREQUISITE: graduate standing or consent of instructor.

LTC 201. Theories and Methods of Analysis in Cultural Studies (4) Contemporary theories of cultural studies. The seminar will concentrate on major interpretative approaches drawn from several areas of cultural and political analysis, including historicalism, Marxist theory, feminism, structuralism, psychoanalytic theory, semiotics, postmodernist studies, gay and lesbian studies, and others. The particular focus and approach may vary. Repeatable for credit.

LTC 210. History and Culture (4) This seminar will focus on the cultural practices of a particular historical period as a means of analyzing the relation between culture/ideology and economic and political modes of production and domination. Topic, historical period, and theoretical approach may vary. Repeatable for credit.

LTC 220. Film/TV/Video Studies (4) The seminar will concentrate on genres or subgenres within film/TV/video studies or on a stand of film TV/video theory. Possible topics may include: horror film, melodrama, sitcoms/soap operas/talk shows, music videos, black or queer cinema, etc. Repeatable for credit.

LTC 222. Topics in Theory and History of Film (4) This course will consider various theoretical approaches to film texts (historical-materialist, historicism, psychoanalytic, semiotic) as well as the history of film, the political economy of film production and distribution, exhibition practices,
and spectatorship in national and transnational contexts. Repeatable for credit when topics vary.

LTEN 225. Interdisciplinary and Historical Analysis of Cultural Texts (4)
The seminar will focus on a particular historical period and examine a variety of cultural texts vis-a-vis related historical, economic, political, and sociological discourses. The conjunction and disjunction of approaches will be explored in relation to specific texts. Repeatable for credit.

LTEN 250. Topics in Cultural Studies (4)
This seminar will be organized around any of various topic areas relating to cultural studies. These might include studies in colonialism, historicism, gender, sexuality, social institutions, popular culture, subaltern practices, etc. May be repeated for credit as topics vary.

LTEN 255. Cultural Studies, Colonialism, and Decolonialism (4)
This course considers different approaches to the study of colonialism in a variety of national contexts. Educational, legal, religious, military, and cultural apparatuses of colonialism, theories of decolonization, the “postcolonial” and feminist critiques of “modernity”/modernization will also be studied. May be repeated for credit when topics vary.

LTEN 256. Cultural Studies of Technoscience (4)
The course will explore work in cultural studies, feminist studies, and queer theory of scientific practices altering social relations, cultural identities, and conceptions of “nature.” Topics may include the AIDS pandemic, genetic research, electronic communities, reproductive technologies, and other topics. May be repeated for credit when topics vary.

LTEN 260. National Cultures (4)
Selected topics on the construction of national cultural identities. Investigation of the dynamics of canon formation and nation building in specific historical contexts. May be repeated for credit when topics vary.

LTEN 296. Research Practicum (1–12)
Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit.

LTEN 297. Directed Studies: Reading Course (1–12)
This course may be designed according to an individual student’s needs when seminar offerings do not cover subjects, genres, or authors of interest. No paper required. The 297 courses do not count toward the seminar requirement. Repeatable for credit.

LTEN 298. Special Projects: Writing Course (1–12)
Similar to 297. No paper is required. Papers are usually on subjects not covered by seminar offerings. Up to two 298s may be applied toward the twelve-seminar requirement of the doctoral proResearch toward the dissertation. Open only to Ph.D. students who have advanced to candidacy. Repeatable for credit.

LITERATURES IN ENGLISH

LOWER-DIVISION

LTEN 21. Introduction to the Literature of the British Isles: Pre-1660 (4)
An introduction to the literature written in English in Britain before 1660, with a focus on the interaction of text and history.

LTEN 22. Introduction to the Literature of the British Isles: 1660–1832 (4)
An introduction to the literature written in English in Britain and Ireland between 1660 and 1832, with a focus on the interaction of text and history.

LTEN 23. Introduction to the Literature of the British Isles: 1832–Present (4)
An introduction to the literature written in English in Britain, Ireland, and the British Empire (and the former British Empire) from 1832 to the present, with a focus on the interaction of text and history.

LTEN 25. Introduction to the Literature of the United States, Beginnings to 1865 (4)
An introduction to the literatures written in English in the United States from the beginnings to 1865, with a focus on the interaction of text and history.

LTEN 26. Introduction to the Literature of the United States, 1865 to the Present (4)
An introduction to the literatures written in English in the United States from 1865 to the present, with a focus on the interaction of text and history.

LTEN 27. Introduction to African American Literature (4)
A lecture/discussion course that examines a major topic or theme in African American literature as it is developed over time and across the literary genres of fiction, poetry, and belles lettres. A particular emphasis of the course is how African American writers have adhered to or departed from conventional definitions of genre.

LTEN 28. Introduction to Asian American Literature (4)
This course provides an introduction to the study of the history, communities, and cultures of different Asian-American people in the United States. Students will examine different articulations, genres, conflicts, narrative forms, and characterizations of the varied Asian experience.

LTEN 29. Introduction to Chicano Literature (4)
This course provides an introduction to the literary production of the population of Mexican origin in the United States. Students will examine a variety of texts dealing with the historical (social, economic, and political) experiences of this heterogeneous population.

LTEN 60. Topics in Ethnic American Literature (4)
A lecture and discussion course that critically examines the literary and cultural production emerging out of racialized, ethnic, and immigrant communities in the United States. Course may include fiction, poetry, novels, plays, popular culture, and film.

LTEN 87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

PREREQUISITE: none.

UPPER-DIVISION

PREREQUISITE: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTEN 104. Literatures of Medieval England (4)
Lecture/discussion course focusing on literature written in England before 1500. Topics may include themes (e.g., gender, social critique) or focus on specific genre (drama, romance, religious literature). May be repeated for credit when topics vary.

LTEN 107. Chaucer (4)
A study of Chaucer’s poetic development, beginning with The Book of the Duchess and The Parliament of Fowls, including Troilus and Criseyde, and concluding with substantial selections from The Canterbury Tales.

LTEN 110. The Renaissance: Themes and Issues (4)
Major literary works of the Renaissance, an exciting period of social and cultural transformation in England as elsewhere in Europe. Topics may include a central theme (e.g., humanism, reformation, revolution), a genre (e.g., pastoral), or comparison with other arts and sciences.

LTEN 112. Shakespeare I: The Elizabethan Period (4)
A lecture/discussion course exploring the development of Shakespeare’s dramatic powers in comedy, history, and tragedy, from the early plays to the middle of his career. Dramatic forms, themes, characters, and styles will be studied in the contexts of Shakespeare’s theatre and his society.

LTEN 113. Shakespeare II: The Jacobean Period (4)
A lecture/discussion course exploring the rich and varied achievements of Shakespeare’s later plays, including the major tragedies and late romances. Dramatic forms, themes, characters, and styles will be studied in the contexts of Shakespeare’s theatre and his society.

LTEN 114. Shakespeare III: Stage, Film, and Television (4)
A lecture/discussion/laboratory course involving the close study of six to eight plays representative of Shakespeare’s artistic career with particular emphasis upon the interrelation of Elizabethan plays and the stage and the critical implications of transposing plays to film and television. (Generally offered in summer session only.)

LTEN 115A. The Sixteenth Century: Themes and Issues (4)
Selected topics concerned with sixteenth-century English literature as a whole.

LTEN 117A. The Seventeenth Century: Themes and Issues (4)
Selected topics in English literature during a period of social change, religious controversy, emergence of the “New Science”, and the English Civil War. Readings chosen from writers including Jonson, Donne, Bacon, Milton, Marvell, and Dryden, among others. Repeatable for credit.

LTEN 118. Milton (4)
A critical examination of the major works, including Paradise Lost, by an author who was both a central figure in English political life in a revolutionary age and, in the view of most critics, the greatest non-anticlimactic poet in the English language. The course will study his poetic development in a variety of historical contexts.

LTEN 119. Restoration Literature (4)
The literature of a period following twenty years of civil war and revolution which saw the reopening of theatres and the rise of the professional writer. Topics may include Restoration comedy and tragedy; satire; neoclassical literary theory.

LTEN 120A. The Eighteenth Century: Themes and Issues (4)
Selected topics in English literature during an age of satiric writing, the shift from neoclassicism to romanticism, the emergence of the novel, and the expansion of the reading and writing public among the middle class and women. Writers such as Defoe, Pope, Swift, Richardson, Johnson, Burns, Wolstonecraft. May be repeated for credit when topics vary.

LTEN 124. The Nineteenth Century: Themes and Issues (4)
Selected topics in nineteenth-century British literature and culture, drawing on both romantic and Victorian periods: e.g., relationships between literature and imperialism, social and political debate, gender issues, religion, or science; or continuities between romantic and Victorian authors.

LTEN 125A. Romanticism: Themes and Issues (4)
Selected topics concerned with the romantic period as a whole.

LTEN 125B. First Generation Romantic Poets (4)
The poets who came of age during the French Revolution and who inaugurated literary modes that continue in our own time: Wordsworth, Coleridge, Blake, and their contemporaries.

LTEN 125C. Second Generation Romantic Poets (4)
Byron, Keats, Shelley, and their contemporaries.

LTEN 127A. The Victorian Period: Themes and Issues (4)
Selected topics concerned with Victorian literature as a whole.

LTEN 127B. Victorian Poetry (4)
Tennyson, Browning, Arnold, Clough, Hopkins, and their contemporaries.

LTEN 130. Modern British Literature (4)
Selected topics concerned with modern British literature; study of various authors, issues, and trends in literatures of the British Isles from the mid-1850s through the end of
the twentieth century. Repeatable for credit when topics vary. (Replaces the former LTEN 130A and 130B)

LTEN 132. Modern Irish Literature (4)
The Irish Revival and its aftermath: Yeats, Synge, O’Casey, Joyce, Beckett, and their contemporaries. Repeatable for credit when topics vary.

LTEN 134. Twentieth-Century British Poetry (4)
Survey of many poets of the United Kingdom including Scotland and Ireland. Included: War poems (1914–18, 1940–45), 30’s poems of social commitment, the Movement (1950s), recent postmodern figures (Hughes, Pynne).

LTEN 140. The Early Nineteenth-Century British Novel (4)
Includes the work of Jane Austen, Charlotte Bronte, Emily Bronte, Mary Shelly, and Charles Dickens.

LTEN 141. The High Victorian Novel (4)
Dickens, Thackeray, Trollope, Charlotte Bronte, Emily Bronte.

LTEN 142. The End of Victorianism (4)
The work of Robert Louis Stevenson, H.G. Wells, Thomas Hardy, Rudyard Kipling, and Joseph Conrad.

LTEN 143. The English Novel in the Eighteenth Century (4)
This course studies the writing of the novel in the eighteenth century. The focus of the course may be an introduction to selected major writers and texts, or a particular issue or problem in the literary and social history of the novel. May be repeated for credit when topics vary.

LTEN 144. The English Novel in the Nineteenth Century (4)
This course studies the writing of the novel in English during the nineteenth century. The focus of the course may be a survey of the nineteenth century (an introduction to selected major writers and texts), or a particular issue or problem in the literary and social history of the novel. May be repeated for credit when topics vary.

LTEN 145. The English Novel in the Twentieth Century (4)
This course studies the writing of the novel in English during the twentieth century. The focus of the course may be an introduction to selected major writers and texts, or a particular issue or problem in the literary and social history of the novel. May be repeated for credit when topics vary.

LTEN 146. Women and English/ American Literature (4)
Selected topics concerning women and anglophone literature. Topics include women writers, the literary representation of women, and women as readers. May be repeated for credit when topics vary.

LTEN 148. Genres in English and American Literature (4)
An examination of one or more genres in English and/or American literature, for example, satire, utopian fiction, autobiography, landscape poetry, the familiar essay. May be repeated for credit as topics vary.

LTEN 149. Themes in English and American Literature (4)
A consideration of one of the themes that recur in many periods of English or American literature, for instance, love, politics, the role of women in society. May be repeated for credit as topics vary.

LTEN 150. Gender, Text, and Culture (4)
This course will explore representations of the sexes and of their interrelationship in various forms of written production during different phases of English history. Emphasis will be placed upon connections of gender and of literature to other modes of social belief, experience, and practice. Repeatable for credit when topics vary.

LTEN 151. Topics: Literature and the Environment (4)
This course will explore the vital relationship between literature and the environment, investigating how literary representations of the land and/or its nonhuman inhabitants at different historical periods have influenced attitudes toward the natural world. May be taken for credit three times as topics vary.

LTEN 152. The Origins of American Literature (4)
Studies in American writing from the Puritans to the early national period (1620–1830), with emphasis on the thrust and continuity of American culture, social and intellectual, through the beginnings of major American writing in the first quarter of the nineteenth century.

LTEN 153. The Revolutionary War and the Early National Period in U.S. Literature (4)
A critical examination of how writing of various kinds—political, philosophical, and literary—functioned in the construction of the political body of the new American republic and the self-conception of its citizens.

LTEN 154. The American Renaissance (4)
A study of some of the chief works, and the linguistic, philosophical, and historical attitudes informing them, produced by such authors as Emerson, Hawthorne, Melville, Dickinson, and Whitman during the period 1836–1865, when the role of American writing in the national culture becomes an overriding concern.

LTEN 155. Interactions Between American Literature and the Visual Arts (4)
An exploration of the parallels between the work of individual writers, or movements, in American literature and the style and content of the work of certain visual artists. The writers studied are always American; the artists or art movements may represent non-American influences upon these American writers. May be repeated for credit as topics vary.

LTEN 156. American Literature from the Civil War to World War I (4)
A critical examination of works by such authors as Mark Twain, Henry James, Kate Chopin and Edith Wharton, who were writing in an age when the frontier was conquered and American society began to experience massive industrialization and urbanization.

LTEN 158. Modern American Literature (4)
A critical examination of American literature in several genres produced between the turn of the century and World War II. Attention will be given to historical and cultural contexts for defining American modernism. Repeatable for credit when topics vary.

LTEN 159. Contemporary American Literature (4)
A critical examination of American literature in several genres produced since World War II. Attention will be given to historical and cultural contexts for defining American postmodernism. Repeatable for credit when topics vary.

LTEN 160. Ideas and Photographic Images in American Literature (4)
Relate the history of photography in America to the history of ideas in American culture. It assumes that photographers think in images and through their images participate in cultural discourse. Repeatable for credit when topics vary.

LTEN 172. American Poetry II—Whitman through the Modernists (4)
Reading and interpretation of American poets from Whitman through the principal modernists—Pound, H.D., Eliot, Moore, Stevens, and others. Lectures will set the appropriate context in sociocultural and literary history.

LTEN 174. American Fiction II—Since Middle James (4)
Reading and interpretation of American fiction from Henry James through the principal modernists—Fitzgerald, Stein, Welty, Faulkner, and others. Lectures will set the appropriate context.

LTEN 175A. New American Fiction—Post-World War II to the Present (4)
Reading and interpretation of American fiction from the mid-1940s to the present. Lectures will set the appropriate context in sociocultural and literary history. May be repeated for credit when topics vary.

LTEN 175B. New American Poetry—Post-World War II to the Present (4)
Reading and interpretation of American poets whose work has made its major impact since the last war, for instance Charles Olson, Robert Creeley, Denise Levertov, Adrienne Rich, Allen Ginsberg, Frank O’Hara, and John Ashbery. Lectures will set the appropriate context in sociocultural and literary history. May be repeated for credit as topics vary.

LTEN 176. Major American Writers (4)
A study in depth of the works of major American writers. May be repeated for credit as topics vary.

LTEN 177. California Literature (4)
Reading and interpretation of such novelists as London, Norris, Steinbeck, West, and Didion and such poets as Jeffers, Rexroth,Everson, Duncan, and Snyder. May be repeated for credit as topics vary.

LTEN 178. Comparative Ethnic Literature (4)
A lecture-discussion course that juxtaposes the experience of two or more U.S. ethnic groups and examines their relationship with the dominant culture. Students will analyze a variety of texts representing the history of ethnicity in this country. Topics will vary.

LTEN 180. Chicano Literature in English (4)
Introduction to the literature in English by the Chicano population, the men and women of Mexican descent who live and write in the United States. Primary focus on the contemporary period.

LTEN 181. Asian American Literature (4)
Selected topics in the literature by men and women of Asian descent who live and write in the United States. Repeatable for credit when topics vary.

LTEN 182. African-American Humor (4)
African-American humor has historically been divided, consisting of that created by and for a black audience, and that performed for a white audience. We will investigate the origins of this division, and the ways in which African-American humor has shaped African American culture, from ca. eighteenth century to today.

LTEN 183. African American Prose (4)
Analysis and discussion of the novel, the personal narrative, and other prose genres, with particular emphasis on the developing characteristics of African American narrative and the cultural and social circumstances that influence their development.

LTEN 184. African American Poetry (4)
Close reading and analysis of selected works of African American poetry as they reflect styles and themes that recur in the literature.

LTEN 185. Themes in African American Literature (4)
An intensive examination of a characteristic theme, special issue, or period in African American literature. May be repeated for credit when topics vary.

LTEN 186. Literature of the Harlem Renaissance (4)
The Harlem Renaissance (1917–39) focuses on the emergence of the “New Negro” and the impact of this concept on black literature, art, and music. Writers studied include Claude McKay, Zora N. Hurston, and Langston Hughes. Special emphasis on new themes and forms.

LTEN 187. Black Music/Black Texts: Communication and Cultural Expression (4)
Explores roles of music as a traditional form of communication among Africans, Afro-Americans, and West-Indians. Special attention given to poetry of black music, including blues and other forms of vocal music expressive of contemporary political attitudes.

LTEN 188. Contemporary Caribbean Literature (4)
This course will focus on contemporary literature of the English-speaking Caribbean. The parallel development and contrasts of this Third World literature with those of the Spanish- and French-speaking Caribbean will also be explored.

LTEN 189. Twentieth-Century Postcolonial Literatures (4)
The impact of British colonialism, national independence movements, postcolonial cultural trends, and women’s magazines on the global production of literary texts in English. Course is organized by topic or geographical/historical location. May be repeated for credit when topics vary.
LTEN 190. Seminars (4)
These seminars are devoted to a variety of special topics, including the works of single authors, genre studies, problems in literary history, relations between literature and the history of ideas, literary criticism, literature and society, and the like. The student may enroll in more than one section in a single quarter.

LTEN 192. Senior Seminar in Literatures in English (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: department stamp and/or consent of instructor.

LTEN 196. Honors Thesis (4)
Senior thesis research and writing for students who have been accepted for the Literature Honors Program and who have completed LTWL 191. Oral exam. Prerequisites: department approval.

LTEN 198. Directed Group Study (4)
Research seminars and research, under the direction of a member of the faculty. May be repeated for credit three times. (P/NP grades only). Prerequisite: department approval.

LTEN Special Studies (2 or 4)
Tutorial; individual guided reading in an area not normally covered in courses. May be repeated for credit three times. (P/NP grades only). Prerequisite: department approval.

GRADUATE
Prerequisite: graduate standing or consent of instructor.

LTEN 214. Topics in Middle English Literature (4)
Consideration of one or more major figures, texts, or trends in Middle English literature. May be repeated for credit as topics vary.

LTEN 222. Elizabethan Studies (4)
Selected topics in the study of literary, dramatic, and other Elizabethan cultural texts. Emphasis will be upon articulations among a range of discourses, practices, and institutions. May be repeated for credit when topics vary.

LTEN 231. Restoration and Eighteenth-Century English Literature (4)
Consideration of one or more figures, texts, or trends in Restoration and eighteenth-century English literature, including Dryden, Pope, Swift, the early novel, satire. May be repeated for credit as topics vary.

LTEN 243. Early American Literature and Culture (4)
Consideration of one or more major figures, texts, or trends in Colonial and/or Revolutionary period American Literature, in particular, the relationship between literature and culture.

LTEN 245. Nineteenth-Century American Studies (4)
Consideration of some of the principal writers and movements in nineteenth-century American literature. May be repeated for credit as topics vary.

LTEN 246. Victorian Literature (4)
Consideration of one or more major figures, texts, or trends in the Victorian period. May be repeated for credit as topics vary.

LTEN 252. Studies in Modern American Literature and Culture (4)
Consideration of one or more major figures, texts, or trends in American literature, in particular the relationship between literature and culture. May be repeated for credit as topics vary.

LTEN 254. Topics in U.S. Minority Literatures and Cultures (4)
Consideration of one or more topics in “minority” traditions of cultural production in the United States, with an emphasis on the relationship among history, politics, and culture. May be repeated for credit as topics vary.

LTEN 255. Studies in Anglo-American Modernism (4)
A seminar on general topics relating to the study of modernism, utilizing cross-cultural, transnational approaches. Although individual literary texts may provide the focus, this seminar will investigate theoretical and methodological issues relating to modernist cultural studies in general.

LTEN 256. Postcolonial Discourses (4)
A survey of selected responses to imperialism and colonialism as presented in cultural texts produced by colonized or once-colonized peoples. Related issues to be examined: gender dynamics, class, representing others, mimicry, language, cultural theory, and the politics of literary genres. May be repeated for credit when topics vary.

LTEN 258. Studies in Anglophone African and/or African Diaspora Literature and Culture (4)
Consideration of one or more major figures, texts, performance or trends in literature and culture of Africa and/or the African Diaspora. Various theories and methodological approaches are applied to the representations being studied. Repeatable for credit as topics vary.

LTEN 259. Transnational Literary Studies (4)
New developments in the study of literature in diverse frameworks, including but not limited to: globalization, queer theory, diaspora studies, environmentalism, world literary systems, international literary awards, transnational feminism, literary markets, human rights discourse, and translation studies.

LTEN 271. Genres in English (4)
Consideration of one or more genres present in English and/or American literature; for instance, the ballad, landscape poetry, comedy, satire, the familiar essay. May be repeated for credit when topics vary.

LTEN 272. Cultural Traditions in English (4)
The study of writing produced over an extended period of time by members of an identifiable cultural formation as defined, e.g., by political/social ideology, class, religion, ethnicity, or sexual preference. May be repeated for credit when topics vary.

LTEN 281. Practicum in Literary Research and Criticism (4)
This course will focus on strategies for framing, organizing, and drafting projects in literary research. Students will study and apply various forms of literary methodology and will learn about recent developments in bibliography, textual editing, and research. May be repeated twice for credit as topics vary.

LTEN 295. M.A. Thesis (1–8)
Research for the master's thesis. Opened for repeated registration. Prerequisite: must be enrolled in M.A. program.

LTEN 296. Research Practicum (1–12)
Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous graduate seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit.

LTEN 297. Directed Studies: Reading Course (1–12)
Research for the master's thesis. Opened for repeated registration. Repeatable for credit.

LTEN 298. Special Projects: Writing Course (1–12)
Similar to a 297, but a paper is required. Papers are usually on subject not covered by seminar offerings. Up to two 298s may be applied toward the twelve-seminar requirement of the doctoral program. Repeatable for credit.

LTEN 299. Dissertation (1–12)
Research for the dissertation. Offered for repeated registration. Open only to Ph.D. students who have advanced to candidacy.

LITERATURES IN FRENCH

LOWER-DIVISION

Language and Literature Courses
Ordinarily, students entering the French literature program elect one of the following sequences: LTFR 2A, 2B, and 2C; or 2A, 2B, and 50.

LTFR 2A. Intermediate French I (5)
First course in a three-quarter sequence designed to prepare students for upper-division French courses. The course is taught entirely in French and emphasizes the development of reading ability, listening comprehension, and conversational and writing skills. Basic techniques of literary analysis. Prerequisites: LTFR 1C/1CX or its equivalent, score of 3 on French language AP exam or consent of instructor.

LTFR 2B. Intermediate French II (5)
Second course in a three-quarter sequence designed to prepare students for upper-division French courses. The course is taught entirely in French and emphasizes the development of reading ability, listening comprehension, and conversational and writing skills. Basic techniques of literary analysis. Prerequisites: LTFR 2A or its equivalent, score of 4 on French language or score of 3 on French literature AP exams or consent of instructor.

LTFR 2C. Intermediate French III: Composition and Cultural Contexts (4)
Designed to improve writing and conversational skills. Develop written expression in terms of organization or ideas, structure, vocabulary. Grammar review. Discussions of contemporary novel and film. May be taken in lieu of LTFR 50 as a prerequisite for upper-division courses. Prerequisites: LTFR 2B or its equivalent, score of 5 on French language or score of 4 on French literature AP exams or consent of instructor.

LTFR 21. Conversation Workshop I (1)
Designed to allow students to practice and develop their oral skills by expanding the vocabulary necessary to discuss abstract ideas and by building up the confidence necessary to participate in literary classes. Prerequisites: LTFR 1C/1CX or 1D/1DX or LTFR 2A or LTFR 2B or LTFR 2C or LTFR 50 or consent of instructor.

LTFR 31. Conversation Workshop II (1)
A one-credit, one-class-a-week course to develop and maintain oral skills at an advanced level by discussing current cultural issues of the francophone world. Prerequisite: LTFR 2B or consent of instructor.

LTFR 50. Intermediate French III: Textual Analysis (4)
Third course in a three-quarter sequence designed to prepare students for upper-division French courses. The course is taught entirely in French and emphasizes the development of reading ability, listening comprehension, and conversational and writing skills. It also introduces the student to basic techniques of literary analysis. Prerequisites: LTFR 2B or its equivalent, score of 5 on French language AP exam, or consent of instructor.

LTFR 60A. French for Reading Knowledge I (2)
A course designed for undergraduate and graduate students interested in developing reading skills only. No previous knowledge of French required. Texts are taken primarily from the humanities and social sciences.

LTFR 60B. French for Reading Knowledge II (2)
A continuation of the course for undergraduate and graduate students interested in developing reading skills only. No previous course work in French required, though recommended. Texts are taken primarily from the humanities and social sciences.

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor. All upper-division courses are taught in French. Additional prerequisites may be specified below.
Students are strongly encouraged to take LTFR 115 and 116 before enrolling in other upper-division French literature courses.

LTFR 115. Themes in Intellectual and Literary History (4)
Course in a two-quarter sequence designed as an introduction to French literature and literary history. Each quarter will center on a specific theme or problem. It is recommended that majors whose primary literature is French take this sequence as early as possible. Prerequisite: LTFR 50 or LTFR 2C.

LTFR 116. Themes in Intellectual and Literary History (4)
Course in a two-quarter sequence designed as an introduction to French literature and literary history. Each quarter will center on a specific theme or problem. It is recommended that majors whose primary literature is French take this sequence as early as possible. Prerequisite: LTFR 50 or LTFR 2C.

LTFR 121. The Middle Ages and the Renaissance (4)
Major literary works of the Middle Ages and Renaissance as seen against the historical and intellectual background of the period. Medieval texts in modern French translation. May be repeated for credit as topics vary. Prerequisite: LTFR 115 or 116.

LTFR 122. Eighteenth Century (4)
Major literary works and problems of the eighteenth century. May be repeated for credit as topics vary. Prerequisite: LTFR 115 or 116.

LTFR 124. Nineteenth Century (4)
Major literary works of the nineteenth century. May be repeated for credit as topics vary. Prerequisite: LTFR 115 or 116.

LTFR 125. Twentieth Century (4)
Major literary works and problems of the twentieth century. May be repeated for credit as topics vary. Prerequisite: LTFR 115 or 116.

LTFR 141. Topics in Literatures in French (4)
Examines one or more periods, themes, authors, and approaches in French literature. Topics will vary with instructor. May be repeated for credit. Prerequisite: LTFR 115 or 116.

LTFR 142. Topics in Literary Genres in French (4)
An examination of one or more major or minor genres of French literature: for example, drama, novel, poetry, satire, prose poem, essay. Prerequisite: LTFR 115 or 116.

LTFR 143. Topics in Major Authors in French (4)
A study in depth of the works of a major French writer. Recommended for students whose primary literature is French. May be repeated for credit as topics vary. Prerequisite: LTFR 115 or 116.

LTFR 144. Topics in Literature and Ideas in French (4)
This course will center on writers or movements of international, literary, cultural, or ideological significance. May be repeated for credit when topics vary. Prerequisite: LTFR 115 or 116.

LTFR 145. Contemporary Thought in French (4)
Presentation of major currents and debates in contemporary philosophy, linguistics, psychoanalysis, anthropology, and social and feminist theory that have led to major changes in French culture and literary studies. Prerequisite: LTFR 115 or 116.

LTFR 164. Topics in Modern French Culture (4)
A course on changing topics such as France during the 60s, contemporary social and cultural structures (the school system, economy, political parties), myths of America in France, etc. May be repeated for credit as topics vary. Prerequisite: LTFR 115 or 116.

LTFR 170. Topics in French Film (4)
May include close analysis of films made in the French-speaking world from 1895 to the present; study of film theory, history, criticism; social contexts of films’ emergence and changing contexts of reception; particular movements, styles, or individual directors’ work. Prerequisite: LTFR 115 or 116.

LTFR 192. Senior Seminar in Literatures in French (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: department stamp and/or consent of instructor.

LTFR 196. Honors Thesis (4)
Senior thesis research and writing for students who have been accepted for the Literature Honors Program and who have completed LTWL 191. Oral exam. Prerequisite: department approval.

LTFR 198. Directed Group Study (4)
Research seminars and research, under the direction of a member of the faculty. (P/NP grades only) Prerequisite: department approval.

LTFR 199. Special Studies (2 or 4)
Tutorial; individual guided reading in areas of French literature not normally covered in courses. (P/NP grades only) Prerequisite: departmental approval.

GRADUATE

LTFR 240. Topics in French Literature (4)
An examination of one or more major topics in French literature. May be repeated for credit when topics vary.

LTFR 295. M.A. Thesis (1–8)
Research for the master’s thesis. Opened for repeated registration up to eight units. Prerequisite: must be enrolled in M.A. program.

LTFR 296. Research Practicum (1–12)
Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous graduate seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit.

LTFR 297. Directed Studies: Reading Course (1–12)
This course may be designed according to an individual student’s needs when seminar offerings do not cover subjects, genres, or authors of interest. No paper required. The 297 courses do not count toward the seminar requirement. Repeatable for credit.

LTFR 298. Special Projects: Writing Course (1–12)
Similar to a 297, but a paper is required. Papers are usually on subjects not covered by seminar offerings. Up to two 298s may be applied toward the twelve-semester requirement of the doctoral program. Repeatable for credit.

LTFR 299. Dissertation (1–12)
Research for the dissertation. Offered for repeated registration. Open only to Ph.D. students who have advanced to candidacy.

LITERATURES IN GERMAN

LOWER-DIVISION

Language and Literature Courses

LTGM 2A. Intermediate German I (5)
LTGM 2A follows the basic language sequence of the Department of Linguistics and emphasizes the development of reading ability, listening comprehension, and conversational and writing skills. The course includes grammar review and class discussion of reading and audio-visual materials. Specifically, the course prepares students for LTGM 2B and 2C. Prerequisite: LTGM 1C/1X or its equivalent or score of 3 on AP German language exam or consent of instructor.

LTGM 2B. Intermediate German II (5)
LTGM 2B is a continuation of LTGM 2A for those students who intend to practice their skills in reading, listening, comprehension, and writing on a more advanced level. The literary texts are supplemented by readings from other disciplines as well as audio-visual materials. Prerequisite: LTGM 2A or score of 4 on AP German language exam or consent of instructor.

LTGM 2C. Intermediate German III (4)
A course designed for students who wish to improve their ability to speak and write German. Students will read and discuss a variety of texts and films, and complete the grammar review begun in 2A. 2C emphasizes speaking, writing, and critical thinking, and prepares students for upper-division course work in German. Prerequisite: LTGM 2B or equivalent or score of 5 on AP German language exam or consent of instructor.

LTGM 60A. German for Reading Knowledge I (2)
A program for graduate and undergraduate students interested in developing reading skills only. No previous knowledge of German required. Texts are taken primarily from the humanities and social sciences, and include selections from publishers’ catalogs, scholarly articles, and books.

LTGM 60B. German for Reading Knowledge II (2)
A continuation of the program for graduate and undergraduate students interested in developing reading skills only. No previous knowledge of German required, though recommended. Texts are taken primarily from the humanities and social sciences and include selections from publishers’ catalogs, scholarly articles, and books.

UPPER-DIVISION

PREREQUISITE: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTGM 100. German Studies I: Aesthetic Cultures (4)
This course offers an overview of German aesthetic culture in its various forms (literature, film, art, music, and architecture) and methods of analysis. Materials will explore the diversity of aesthetic production from the eighteenth century to the present.

LTGM 101. German Studies II: National Identities (4)
This course offers an overview of issues in contemporary and historical German cultures. How has national identity been constructed in the past? What does it mean to be a German in the new Europe? Materials include fiction, historical documents, films, and the Internet.

LTGM 123. Eighteenth-Century German Literature (4)
Major literary works, authors, or movements of the eighteenth century. May be repeated for credit as topics vary.

LTGM 126. Twentieth-Century German Literature (4)
The development of major forms and modes of German literary prose. May be repeated for credit as topics vary.

LTGM 130. German Literary Prose (4)
The development of major forms and modes of German literature. May be repeated for credit as topics vary.

LTGM 131. German Dramatic Literature (4)
The development of the drama in German. May be repeated for credit as topics vary.

LTGM 132. German Poetry (4)
The development of major forms and modes of German verse. May be repeated for credit as topics vary.

LTGM 190. Seminars in German Culture (4)
These seminars are devoted to a variety of special topics, including the works of single authors, genre studies, problems in literary history, relations between literature and the history of ideas, literary criticism, literature and society, and the like. May be repeated for credit as topics vary.

LTGM 192. Senior Seminar in Literatures in German (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small
group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisite: department stamp and/or consent of instructor.

LTGM 196. Honors Thesis (4)
Senior thesis research and writing for students who have been accepted for the Literature Honors Program and who have completed LTWL 191. Oral exam. Prerequisite: department approval.

LTGM 198. Directed Group Study (4)
Research seminars and research, under the direction of a member of the faculty. May be repeated for credit. (P/NP grades only.) Prerequisite: department approval.

LTGM 199. Special Studies (2 or 4)
Tutorial; individual guided reading in areas of German literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisite: department approval.

GRADUATE

PREREQUISITE: graduate standing or consent of instructor.

LTGM 242. Nineteenth-Century German Literature (4)
Consideration of one or more major figures, texts, or trends in nineteenth-century German literature. Topic varies. May be repeated for credit.

LTGM 272. Genres, Trends, and Forms (4)
Seminars on literary genres, trends, movements, schools, and on aspects of literary forms and structures in any given era or over a certain period of time. May be repeated for credit as topics vary.

LTGM 295. M.A. Thesis (1)
Research for the master’s thesis. Opens for repeated registration up to eight units. Prerequisite: must be enrolled in M.A. program.

LTGM 296. Research Practicum (1–12)
Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous graduate seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit.

LTGM 297. Directed Studies: Reading Course (1–12)
This course may be designed according to an individual student’s needs when seminar offerings do not cover subjects, genres, or authors of interest. No paper required. The 297 courses do not count toward the seminar requirement. Repeatable for credit.

LTGM 298. Special Projects: Writing Course (1–12)
Similar to a 297, but a paper is required. Papers are usually on subjects not covered by seminar offerings. Up to two 298s may be applied toward the twelve-seminar requirement of the doctoral program. Repeatable for credit.

LTGM 299. Dissertation (1–12)
Research for the dissertation. Offered for repeated registration. Open only to Ph.D. students who have advanced to candidacy.

GREEK LITERATURE

(See also listings under “Classical Studies.”)

LOWER-DIVISION

LTGK 1. Beginning Greek (4)
Study of ancient Greek, including grammar and reading.

LTGK 2. Intermediate Greek (II) (4)
Continuation of study of ancient Greek, including grammar and reading. Prerequisite: LTGK 1 or equivalent.

LTGK 3. Intermediate Greek (III) (4)
Continuation of study of ancient Greek, including grammar and reading of texts. Prerequisites: LTGK 1 and 2 or equivalent.

UPPER-DIVISION

PREREQUISITE: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTGK 101. Greek Composition (4)
Greek prose composition. Corequisites: student must be concurrently enrolled in upper-division Literature/Greek course numbered 110 or above.

LTGK 110. Archaic Period (4)
Readings, in Greek, of texts from the archaic period. May be repeated for credit as topics vary. Prerequisites: LTGK 1, 2, 3 or equivalent.

LTGK 112. Homer (4)
Readings from the works of Homer. Prerequisites: LTGK 1, 2, 3 or equivalent.

LTGK 113. Classical Period (4)
Readings, in Greek, of texts from the fifth and fourth centuries B.C. May be repeated for credit as topics vary. Prerequisites: LTGK 1, 2, 3 or equivalent.

LTGK 118. Hellenistic Period (4)
Reading, in Greek, of texts from Hellenistic period. Prerequisites: LTGK 1, 2, 3 or equivalent.

LTGK 120. Topics in New Testament Greek (4)
Readings, in Greek, in the Greek New Testament. May be repeated for credit as topics vary. Prerequisites: LTGK 1, 2, 3 or equivalent.

LTGK 130. Tragedy (4)
Readings, in Greek, of one or more of the works of the classical tragedians Aeschylus, Sophocles, and Euripides. May be repeated for credit as topics vary. Prerequisites: LTGK 1, 2, 3 or equivalent.

LTGK 131. Comedy (4)
Readings, in Greek, of one or more of the works of Aristophanes. May be repeated for credit as topics vary. Prerequisites: LTGK 1, 2, 3 or equivalent.

LTGK 132. History (4)
Readings, in Greek, in the works of the ancient historians, including Herodotus, Thucydides, Xenophon, and others. May be repeated for credit as topics vary. Prerequisites: LTGK 1, 2, 3 or equivalent.

LTGK 133. Prose (4)
Readings, in Greek, in the works of ancient prose writers. May be repeated for credit as topics vary. Prerequisites: LTGK 1, 2, 3 or equivalent.

LTGK 135. Lyric Poetry (4)
Readings, in Greek, of the works of the ancient lyric poets. May be repeated for credit as topics vary. Prerequisites: LTGK 1, 2, 3 or equivalent.

LTGK 192. Senior Seminar in Literatures in Greek (I)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in Literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisite: department stamp and/or consent of instructor.

LTGK 198. Directed Group Study (4)
Directed group study in areas of Greek literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisite: department approval.

LTGK 199. Special Studies (2 or 4)
Tutorial; individual guided reading in areas of Greek literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisite: department approval.

GRADUATE

PREREQUISITE: graduate standing or consent of instructor.

LTGK 297. Directed Studies (1–12)
Guided and supervised reading in a broad area of Greek literature. Offered for repeated registration.

LTGK 298. Special Projects (4)
Treatment of a special topic in Greek literature. Offered for repeated registration.

HEBREW LITERATURE

Please see “Near Eastern Literatures” under “Literatures of the World.”

LITERATURES IN ITALIAN

LOWER-DIVISION

(See “Department of Linguistics” for other course offerings in first-year Italian.)

LTIT 1A. The Language of Italian Culture I (4)
A beginning course in Italian language based on cultural texts: a short novel, folk music lyrics. Preparation for the second-year Italian literature/language sequence. Prerequisite: LTIT 1B or consent of instructor.

LTIT 1B. The Language of Italian Culture II (4)
A continued study of the elements of Italian conversation and grammar based on cultural texts: an opera libretto, a short mystery, short movies. Prerequisite: LTIT 1A or consent of instructor.

LTIT 1C. The Language of Italian Culture III (4)
Further study of Italian conversation and grammar based on cultural texts: a novel, folk music lyrics. Preparation for the second-year Italian literature/language sequence. Prerequisite: LTIT 1B or consent of instructor.

LTIT 2A. Intermediate Italian I (5)
A second-year course in Italian language and literature. Conversation, composition, grammar review, and an introduction to literary and nonliterary texts. Prerequisite: LTIT 1C or LIIT 1CX or its equivalent or a score of 3 on AP Italian Language and Culture Exam or placement result of 3 or 4 on the Language Placement Exam—Italian or consent of instructor.

LTIT 2B. Intermediate Italian II (5)
Continuation of second-year Italian language and literature. Reading, writing, conversation, grammar review, and an introduction to literary genres and contemporary Italian culture and society. Prerequisite: LTIT 2A or its equivalent, or consent of instructor, or a score of 4 on the AP Italian Language and Culture exam.

LTIT 50. Advanced Italian (4)
This course constitutes the sixth and final quarter of the Italian language sequence. It offers an intensive study of Italian grammar, drills in conversation and composition, and readings in modern Italian literature. Prerequisite: LTIT 2A and 2B, or consent of instructor.

UPPER-DIVISION

PREREQUISITE: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTIT 100. Introduction to Literatures in Italian (4)
Reading and discussion of selections from representative authors. Review of grammar as needed. May be repeated for credit three times when topics vary. Prerequisite: LTIT 50 or its equivalent, or consent of instructor, or a score of 5 on the AP Italian Language and Culture exam.

2010-2011 UC SAN DIEGO GENERAL CATALOG • LITERATURE 13
LTIT 110. Italian Literature (4)
Topics in Italian literature: regional, historic, thematic. Texts will be read in Italian. May be repeated for credit when topics vary. **Prerequisite:** LTIT 100.

LTIT 113. Love, War, and Conquest in the Italian Renaissance (4)
A critical reading of Italian Renaissance texts with special attention to those themes, forms, and ideological conflicts still operative in today's culture. May be repeated for credit when topics vary.

LTIT 115. Medieval Studies (4)
Studies in medieval culture and thought with focus on one of the “three crowns” of Italian literature: Dante, Boccaccio, or Petrarch. May be repeated for credit when course content varies.

LTIT 122. Studies in Modern Italian Culture (4)
Politics, literature, and culture issues of twentieth-century Italy. May be repeated for credit when topics vary. **Prerequisite:** LTIT 50.

LTIT 137. Studies in Modern Italian Prose (4)
A study of the chief modern Italian prosatori, including D’Annunzio, Calvino, Pavese, Pasolini, etc.

LTIT 143. Major Italian Authors (4)
A study in depth of the works of a major Italian author. May be repeated for credit when topics vary. **Prerequisite:** LTIT 100 or consent of instructor.

LTIT 161. Advanced Stylistics and Conversation (4)
Analysis of Italian essays, journalism, literature. Intensive practice in writing and Italian conversation. **Prerequisite:** LTIT 100 or consent of instructor.

LTIT 192. Senior Seminar in Literatures in Italian (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. **Prerequisite:** department stamp and/or consent of instructor.

LTIT 196. Honors Thesis (4)
Senior thesis research and writing for students who have been accepted for the literature honors program and who have completed LTWL 191. Oral examination. **Prerequisite:** department approval.

LTIT 198. Directed Group Study (4)
Directed group study in areas of Italian literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) **Prerequisite:** department approval.

LTIT 199. Special Studies (2 or 4)
Tutorial; individual guided reading in areas of Italian literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) **Prerequisite:** department approval.

KOREAN LITERATURE

LTKO 1A. Beginning Korean: First Year I (5)
Students develop beginning-level skills in the Korean language, beginning with an introduction to the writing and sound system. The remainder of the course will focus on basic sentence structures and expressions. **Prerequisite:** placement test required.

LTKO 1B. Beginning Korean: First Year II (5)
Students develop beginning-level skills in the Korean language, beginning with an introduction to the writing and sound system. The remainder of the course will focus on basic sentence structures and expressions. **Prerequisite:** LTKO 1A.

LTKO 1C. Beginning Korean: First Year III (5)
Students develop beginning-level skills in the Korean language, beginning with an introduction to the writing and sound system. The remainder of the course will focus on basic sentence structures and expressions. **Prerequisite:** LTKO 1B.

LTKO 2A-B-C. Intermediate Korean: Second Year I-II-III (5-5-5)
This course will help students develop intermediate-level skills in the Korean language. Upon completion of this course, students are expected to have good command of Korean in various daily conversational situations. **Prerequisites:** LTKO 1C or placement test for 2A; 2B is prerequisite for 2B or 2C.

LTKO 3. Advanced Korean: Third Year (5)
This course will help students develop advanced-level skills in the Korean language. Upon completion of this course, students are expected to have good command of Korean in various formal settings and to understand daily news broadcasts/newspapers. **Prerequisites:** LTKO 2C or placement test and consent of instructor.

LTKO 50. Intermediate Readings and Composition (4)
Designed to enhance reading and writing skills. We will read and discuss a variety of materials, including newspaper and magazine articles, short essays, and prose fiction. Writing exercises will stress improving students’ ability to express themselves as well as their critical responses to reading. **Prerequisites:** LTKO 2C and/or recommendation of instructor.

UPPER-DIVISION

LTLA 1. Beginning Latin (4)
Study of Latin, including grammar and reading. **Prerequisite:** LTLA 1, 2, 3 or equivalent.

LTLA 2. Intermediate Latin I (4)
Study of Latin, including grammar and reading. **Prerequisite:** LTLA 1 or equivalent.

LTLA 3. Intermediate Latin II (4)
Study of Latin, including grammar and reading. **Prerequisite:** LTLA 2 or equivalent.

LTLA 4. Intensive Elementary Latin (12)
Equivalent of LTLA 1, 2, and 3. Given in summer session only.

UPPER-DIVISION

LTLA 100. Introduction to Latin Literature (4)
Reading and discussion of selections from representative authors of one or more periods. Review of grammar as needed. **Prerequisite:** LTLA 3 or equivalent.

LTLA 111. Pre-Augustan (4)
Readings, in Latin, of authors of the pre-Augustan period. May be repeated for credit as topics vary. **Prerequisites:** LTLA 1, 2, 3 or equivalent.

LTLA 114. Vergil (4)
Readings from the works of Vergil. **Prerequisites:** LTLA 1, 2, 3 or equivalent.

LTLA 116. Silver Latin (4)
Readings, in Latin, of the works of Roman writers of the Silver Age. **Prerequisites:** LTLA 1, 2, 3 or equivalent.

LTLA 131. Epic (4)
Readings in Latin of the works of Roman epic poets. **Prerequisites:** LTLA 1, 2, 3 or equivalent.

LTLA 134. History (4)
Readings, in Latin, of the works of Roman historians. May be repeated for credit as topics vary. **Prerequisites:** LTLA 1, 2, 3 or equivalent.

LTLA 135. Drama (4)
Readings, in Latin, of works of Latin dramatists. Repeatable for credit when topics vary. **Prerequisite:** LTLA 3 or equivalent; LTLA 100 recommended.

LTLA 192. Senior Seminar in Literatures in Latin (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. **Prerequisites:** department stamp and/or consent of instructor.

LTLA 198. Directed Group Study (4)
Directed group study in areas of Latin Literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) **Prerequisite:** department approval.

LTLA 297. Directed Studies (1-12)
Guided and supervised reading in a broad area of Latin literature. Offered for repeated registration.

LTLA 298. Special Projects (4)
Treatment of a special topic in Latin literature. Offered for repeated registration.
PORTUGUESE LITERATURE

LOWER-DIVISION

LTRP 2A. Intermediate Portuguese I: Foundations (5)
Intermediate course in Portuguese language, emphasizing the development of verbal communication, listening comprehension, and reading and writing skills. Conducted in Portuguese, it includes reviews of grammar and vocabulary, weekly compositions, and class discussions. Prerequisite: LTPP 1/1C/1X or 1D/1DX or the equivalent or consent of instructor.

LTRP 2B. Intermediate Portuguese II: Readings and Composition (5)
Continuation of LTRP 2A. Conducted in Portuguese, this course reviews major grammatical points with an emphasis on critical reading and the interpretation of Portuguese-language texts through class discussions, vocabulary development, and written compositions. Prerequisite: LTRP 2A or equivalent or consent of instructor.

LTRP 2C. Intermediate Portuguese III: Cultural Topics and Composition (4)
Continuation of LTRP 2B. This course emphasizes writing and verbal communication skills. It includes discussions of cultural topics, grammatical reviews, and composition writing, further developing students’ abilities to comprehend and interpret articles, essays, and longer pieces of fictional/nonfictional texts. Prerequisite: LTRP 2B or equivalent or consent of instructor.

LTRP 50. Topics in Brazilian Literature in Portuguese (4)
Introductory Portuguese language and literature course designed especially for speakers of Spanish. Will build on students’ knowledge of Spanish, enabling them to acquire competence in language structures of Portuguese and introducing them to Brazilian texts in Portuguese.

RUSSIAN LITERATURE

LOWER-DIVISION

LTRU 1A-B-C. First-Year Russian (5-5-5)
First-year Russian, with attention to reading, writing, and speaking. Prerequisite: LTRP 2A-B-C.

LTRU 2A-B-C. Second-Year Russian (5-5-5)
Second-year Russian grammar, with attention to reading, writing, and speaking. Prerequisites: LTRU 1A-B-C or equivalent.

UPPER-DIVISION

PREREQUISITE: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

Note: Many Russian literature courses are cross-listed as courses in European and Eurasian Literatures (LTEU). Lectures and discussions are conducted in English, and students may choose whether to do the reading and writing assignments in translation, in which case they should enroll for the course under its LTEU rubric, or in Russian, in which case they should enroll under the LTRU rubric. Other courses are offered in English translation with one-unit Foreign Language Discussion Sections (XL course number suffix) for students who wish to read and discuss some or all of assignments in Russian.

LTRU 104A-B-C. Advanced Practicum in Russian (4-4-4)
Development of advanced skills in reading, writing, and conversation. Course based on written and oral texts of various genres and styles. Individualized program to meet specific student needs. Prerequisite for 104A: LTRU 2C or equivalent.

LTRU 110A-B-C. Survey of Russian and Soviet Literature in Translation, 1800–Present (4-4-4)
A study of literary works from Pushkin to the present. LTRU 110A is not a prerequisite for LTRU 110B, and LTRU 110B is not a prerequisite for LTRU 110C.

LTRU 110A. 1800–1860
LTRU 110B. 1860–1917
LTRU 110C. 1917–present

LTRU 123. Single Author in Russian Literature in Translation (4)
Study of the works of a single Russian author. May be repeated for credit as topics vary.

LTRU 150. Russian Culture (4)
An introduction to Russia’s past and present through the cross-disciplinary study of literature, the visual and performing arts, social and political thought, civic rituals, popular entertainments, values and practices from 1825 to the present. Prerequisite: upper-division standing.

LTRU 150XL. Russian Culture: The Modern Period—Foreign Language Discussion Section (1)
Students will exercise advanced Russian language skills to read and discuss materials in LTRU 150. This section is taught by the course professor, has no final examination, and does not affect the student’s grade in the parent course. Prerequisites: co-registration in LTRU 150; four quarters of Russian language study or the equivalent.

LTRU 192. Senior Seminar in Literatures in Russian (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: departmental stamp and/or consent of instructor.

LTRU 198. Directed Group Study (4)
Directed group study in areas of Russian literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only). Prerequisites: upper-division standing and permission of department.

LTRU 199. Special Studies (2 or 4)
Tutorial; individual guided reading in areas of Russian literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only). Prerequisites: upper-division standing and permission of department.

LITERATURES IN SPANISH

LOWER-DIVISION

Language and Literature Courses

Students entering the Spanish language/literature program must have completed one year of college-level Spanish (Linguistics/Spanish 1C/1X) or its equivalent at another institution or have the consent of the instructor. Ordinarily, students take LTSP 2A, 2B, 2C, and one or more courses from the 50 sequence. Native speakers are encouraged to take LTSP 2D, 2E.

LTRP 2A. Intermediate Spanish I: Foundations (5)
Course is taught in Spanish, emphasizing the development of reading ability, literary comprehension, and writing skills. It includes grammar review, weekly compositions, and class discussions. Successful completion of LTSP 2A satisfies the requirement for language proficiency in Revelle College. Prerequisite: completion of LISP 1C/1X or LISP 1D/1DX or the equivalent or score of 3 on AP Spanish language exam—Spanish, or consent of instructor.

LTRP 2B. Intermediate Spanish II: Readings and Composition (5)
Review of major points of grammar with emphasis on critical reading and interpretation of Spanish texts through class discussions, vocabulary development, and written compositions. It is a continuation of LTSP 2A. Prerequisites: LTSP 2A or score of 4 on AP Spanish language or 3 on AP Spanish literature exams or consent of instructor.

LTRP 2C. Intermediate Spanish III: Cultural Topics and Composition (4)
Continuation of LTSP 2B, with special emphasis in writing and translation. It includes discussion of cultural topics as well as grammar review and composition, further developing the ability to read articles, essays, and longer pieces of fiction/nonfictional texts. Prerequisites: LTSP 2B or equivalent or score of 5 on AP Spanish language or 4 on AP Spanish literature exams or consent of instructor.

LTRP 2D. Intermediate/Advanced Spanish: Spanish for Bilingual Speakers (4)
Spanish for native speakers. Designed for bilingual students seeking to become biliterate. Reading and writing skills stressed with special emphasis on improvement of written expression and problems of grammar and orthography. Prepares native speakers with little or no formal training in Spanish for more advanced courses. Prerequisite: native speaking ability and/or recommendation of instructor.

LTRP 2E. Advanced Readings and Composition for Bilingual Speakers (4)
Second course in a sequence designed for bilingual students seeking to become biliterate. Special emphasis given to improvement of written expression, grammar, and orthography. Prepares bilingual students with little or no formal training in Spanish for more advanced course work. Prerequisites: LTSP 2D and/or recommendation of instructor.

LTRP 21. Conversation Workshop I (1)
Allows students with a basic grounding in Spanish to discuss a variety of topics related to literary and cultural issues. Vocabulary development, use of idiomatic expression, and advancement of oral proficiency in Spanish. May be taken as an adjunct to lower-division LTSP courses. Recommended for students planning to study abroad. Prerequisite: LISP 1C/1X or LISP 1D/1DX or LTSP 2A or 2B or 2C or 2D or 2E or 50A or 50B or 50C.

LTRP 31. Conversation Workshop II (1)
Enhances intermediate/advanced students’ command of spoken Spanish through debates on literary and cultural issues as well as the formulation and expression of thoughts in Spanish. May be taken as an adjunct to lower- and upper-division LTSP courses. Recommended for students planning to study abroad. Prerequisite: LISP 1C/1X or LISP 1D/1DX or LTSP 2A or 2B or 2C or 2D or 2E or 50A or 50B or 50C.

LTRP 41. Conversation and Orthography Workshop (1)
The workshop format of this course allows students to attain a stronger command of skills in matters of Spanish orthography, spelling, punctuation, and accent rules. May be taken as an adjunct to lower- or upper-division LTSP courses. Recommended for students planning to study abroad. Prerequisite: LISP 1C/1X or LISP 1D/1DX or LTSP 2A or 2B or 2C or 2D or 2E or 50A or 50B or 50C.

LTRP 50A. Readings in Peninsular Literature (4)
An introduction to Peninsular literature, this course offers a selection of authors and genres, introducing students to literary analysis through reading extensive texts in Spanish. Two or more quarters of LTSP 50 are suggested before proceeding to upper-division courses. Prerequisites: LTSP 2C or 2D or 2E or the equivalent.

LTRP 50B. Readings in Latin American Literature (4)
An introduction to Latin American literature, this course offers a selection of authors and genres, introducing students to literary analysis through reading extensive texts in Spanish. Two or more quarters of LTSP 50 are suggested before proceeding to upper-division courses. Prerequisites: LTSP 2C or 2D or 2E or the equivalent.

LTRP 50C. Readings in Latin American Topics (4)
An introduction to major topics in Latin American literature, this course focuses on the literature of a particular
Cultural Production (4)

LTSP 115. Early Modern Spanish Cultural Production (4)
Study of writing and/or spectacle in Spain in the sixteenth and seventeenth centuries. Close reading of texts and analysis of ideological and historical context. Topics may include the comedia (public theatre), religious drama, poetry, or early narrative forms such as the picaresque novel. Repeatable for credit when topics vary. Prerequisite: LTSP 150A or consent of instructor.

LTSP 116. Representations of Spanish Colonialism (4)
Analysis of selected materials that represent the cultural and political relationship between Spain and its colonies. Close reading of literary texts and historical documents. Specific periods covered will fall between the origins of empire in the early sixteenth century to the demise of imperial Spain in 1898; topics may include cultural exchanges between Spain and Latin America, the Philippines, and the U.S. Southwest. Repeatable for credit as topics vary. Prerequisite: LTSP 50A.

LTSP 119AB. Cervantes: Teatro y Novelas (4)
Study of Cervantes’s innovations in the short narrative form and theatrical production during the late sixteenth and early seventeenth centuries. Special attention to textual structures and ideological elements such as gender, religion, and early modern conceptions of ethnicity, “race,” and nation. This course fulfills the Cervantes requirement for Spanish literature majors. Prerequisites: LTSP 50A and 50B or SOC or consent of instructor.

LTSP 119C. Cervantes: Don Quijote (4)
Close reading of the 1605s and 1615s texts with special attention to the social and cultural background of the early seventeenth century in Spain. Prerequisites: LTSP 50A and either 50B or SOC.

LTSP 122. The Romantic Movement in Spain (4)
This course will explore the historical context of the emergence of a Romantic movement in Spain, particularly the links between Romanticism and liberalism. Major Romantic works in several genres will be studied in depth. Prerequisite: upper-division standing or consent of instructor.

LTSP 123. Topics in Modern Spanish Culture (4)
Investigation of selected topics concerning Spanish cultural production after 1800. Topics might focus on a genre (film, popular novel, theater) or on the transformations of a theme or metaphor (nation, femininity, the uncanny). Repeatable for credit as topics vary. Prerequisite: LTSP 50A.

LTSP 125. Spanish Modernisms (4)
Analysis and discussion of forms, movements, and issues arising in Spanish culture between 1898 and 1936 in relation to the loss of empire, accelerating modernization and new social movements. Repeatable for credit as topics vary. Prerequisite: LTSP 50A.

LTSP 129. Spanish Writing after 1939 (4)
Analysis and discussion of literary production during and after the Franco dictatorship. May focus on specific genres, sub-periods, or issues. Repeatable for credit as topics vary. Prerequisite: LTSP 50A.

LTSP 130A. Development of Spanish Literature (4)
An introduction to the major movements and periods in Spanish literary history, centered on close reading of representative texts, but aimed at providing a sense of the scope of Spanish literature and its relation to the course of Spain’s cultural and social history. This course is required of all Spanish literature majors. It is strongly recommended that this course be taken before any other upper-division Spanish literature course. Prerequisites: LTSP 50A and either 50B or SOC.

LTSP 130B. Development of Latin American Literature (4)
An introduction to major movements and periods in Latin American literature, centered on a study of key works from pre-Columbian to the present time. Texts will be seen within their sociohistorical context and in relation to main artistic trends of the period. This course is required of all Spanish literature majors. It is strongly recommended that this course be taken before any other upper-division Latin American literature course. Prerequisites: LTSP 50A and either 50B or SOC.

LTSP 133. Contemporary Latin American Literature (4)
A study of the major literary works and problems in Latin America from 1900 to the present as seen against the historical context of the period. Repeatable for credit as topics vary. Prerequisite: LTSP 50B or SOC.

LTSP 134. Literature of the Southern Cone (4)
Study of movements, traditions, key authors, or major trends in Argentina, Paraguayan, Uruguayan, and Chilean literature, such as gauchy poetry, the novelist poet, modern urban narratives, and the Borges School, etc. Repeatable for credit as topics vary. Prerequisite: LTSP 50B or SOC.

LTSP 135A. Mexican Literature before 1910 (4)
Explores the relationships among cultural production, politics, and social changes in Mexico before the 1910 Revolution, specifically the roles of intellectuals and popular culture in nation-building and modernization. Readings may include didactic literature and historiographic writings, forms of popular discourse, as well as novels and poetry. Repeatable for credit as topics vary. Prerequisite: LTSP 50B or SOC.

LTSP 135B. Modern Mexican Literature (4)
Study of popular novels, movements, traditions, key authors, or major trends in modern Mexican literature. May be repeated for credit as topics vary. Prerequisite: LTSP 50B or SOC.

LTSP 136. Andean Literatures (4)
Study of movements, traditions, key authors, or major trends in Peruvian, Ecuadorian, and Bolivian literatures, such as indigenismo, urban narrative, and the works of authors such as Valdez, Icaza, Arguedas, Vargas Llosa. Repeatable for credit as topics vary. Prerequisite: LTSP 50B or SOC.

LTSP 137. Caribbean Literature (4)
Study of movements, traditions, key authors, or major trends in Caribbean literature in Spanish, such as the romantic movement, the literature of independence, the essay tradition, Afro-Antilllean literature, the historical novel. May be repeated for credit as topics vary.

LTSP 138. Central American Literature (4)
Study of movements, traditions, key authors, or major trends in the literatures of Guatemala, El Salvador, Nicaragua, Honduras, Costa Rica, and Panama, such as the anti-imperialist novel, indigenismo, guerrilla poetry, and testimonio. Repeatable for credit as topics vary. Prerequisite: LTSP 50B or SOC.

LTSP 140. Latin American Novel (4)
A study in depth of selected novelists of Latin America. May be organized around a specific theme or idea which is traced in its development through the narratives. Course may be repeated for credit when topics vary. Prerequisite: LTSP 50B or SOC.

LTSP 141. Latin American Poetry (4)
A critical study of some of the major poets of Latin America, focusing on the poet’s central themes, the evolution of poetic style, and the significance of the poetry to the historical context. May be repeated as topics vary. Prerequisite: LTSP 50B or SOC.

LTSP 142. Latin American Short Story (4)
Readings and interpretation of the Latin American short story. Focus is primarily nineteenth and/or twentieth century. May be repeated for credit as topics vary. Prerequisite: LTSP 50B or SOC.

LTSP 150A. Early Latino/a-Chicano/a Cultural Production: 1848 to 1960 (4)
Cross-disciplinary study of nineteenth- and early twentieth-century Latino/a-Chicano/a literature, folklore, music, testimony, or other cultural practices. Specific periods covered will fall between the immediate aftermath of the Treaty of Guadalupe Hidalgo to the Cuban revolution. Repeatable for credit when topics vary. Prerequisite: LTSP 50B or SOC.

LTSP 150B. Contemporary Chicano/a-Latino/a Cultural Production: 1960 to Present (4)
Cross-disciplinary study of late twentieth-century Latino/a-Chicano/a literature, the visual and performing arts, film, or other cultural practices. Specific periods covered will fall between the Kennedy years to the era of neoliberalism and the creation of “Hispanic” or Latino/a identities. Repeatable for credit as topics vary. Prerequisite: LTSP 50B or SOC.

LTSP 151. Topics in Chicano/a-Latino/a Cultures (4)
Cross-disciplinary study of late twentieth-century Chicano/a-Latino/a literature, the visual and performing arts, film, or other cultural practices. Representative areas of study are social movements, revolution, immigration, globalization, gender and sexuality, cultures of the U.S.-Mexico border, and Chicano/a-Mexican/a literary relations. Repeatable for credit as topics vary. Prerequisite: LTSP 50B or SOC.

LTSP 153. Chicano/a and Latino/a Poetry (4)
A study of themes and issues in the poetic production of Latino communities in the U.S. Every effort will be made to select texts in Spanish but some may be bilingual. Repeatable for credit as topics vary. Prerequisite: LTSP 50B or SOC.

LTSP 154. Latino/a and Chicano/a Literature (4)
This course will study the representation of a variety of social issues (immigration, racism, class differences, violence, inter/intra-ethnic relations, etc.) in works written in Spanish by Latina/o and Chicano/a writers. Repeatable for credit as topics, texts, and historical periods vary. Prerequisite: LTSP 50B or SOC.

LTSP 156. Spanish Phonetics (4)
A comparative study of the English and Spanish phonetic systems. Includes a study of the organs of articulation, manner of articulation stress and intonation patterns, as well as phrasal variations in both. Prerequisites: upper-division standing, LTSP 50A or SOC or consent of instructor.

LTSP 162. Spanish Language in the United States (4)
A sociolinguistic study of the popular dialects in the U.S.A. and their relation to other Latin American dialects. The course will cover phonological and syntactic differences between the dialects as well as the influence of English on the Southwest dialects.
GROUP SETTING TO EXPLORE AN INTELLECTUAL TOPIC IN LITERATURE (AT 36X111)

LTSP 166. Creative Writing (4)
A workshop designed to foster and encourage writing in Spanish of students working on short forms of fiction. The workshop will include discussions of techniques and intensive writing. Prerequisites: completion of LTSP 50A-B-C or consent of instructor.

LTSP 170. Contemporary Theories of Cultural Production (4)
Selected readings in recent cultural and literary theory. Students will be exposed to a variety of methodologies drawn from the Latin American, European, and U.S. traditions. Final project consists of a practical “application” of a method or methods to a specific cultural object. This course is recommended for students who plan to pursue graduate work in literature. Prerequisite: LTSP 50A or 50B or 50C.

LTSP 171. Studies in Peninsular and/or Latin American Literature and Society (4)
Focus on the interaction between literary expression and the study of society, covering issues such as the sociology of literature, the historical novel, literature and social change, the writer as the intellectual. May be repeated for credit as topics vary.

LTSP 172. Indigenista Themes in Latin American Literature (4)
Study of the literary modes by which nineteenth- and twentieth-century authors have interpreted the themes of indigenous survival and resistance in Latin America, primarily in Mexico and the Andean region. May be repeated for credit as topics vary. Prerequisite: LTSP 50B or 50C.

LTSP 173. Problems in Spanish and Latin American Literary History (4)
Study of the issues involved in understanding the development process of literary expression; the problem of genre; the relation of literature to social institutions; the function of literary influence and tradition; the relation of popular and print cultures. May be repeated for credit as topics vary. Prerequisite: LTSP 50A or 50B or 50C.

LTSP 174. Topics in Culture and Politics (4)
Study of the relationships between cultural production (literature, film, popular cultures), social change, and political conflict, covering topics such as colonialism, imperialism, modernization, social movements, dictatorship, revolution. Repeatable for credit as topics vary. Prerequisite: LTSP 50A or 50B or 50C.

LTSP 175. Gender, Sexuality, and Culture (4)
This course will examine issues of gender, sexuality, and culture in Spanish, Latin American, and/or Chicana/o literatures. Repeatable for credit as topics, texts, and historical periods vary. Prerequisite: LTSP 50A or 50B or 50C.

LTSP 176. Literature and Nation (4)
Study of literature as a means through which the nation has been imagined and as a site of debates over national identity and citizenship. Course materials may focus on Spain and/or Latin America. Repeatable for credit as topics vary. Prerequisite: LTSP 50A or 50B or 50C.

LTSP 177. Literary and Historical Migrations (4)
This course will focus on a variety of Latin American and/or Spanish intra- and inter-national migrations throughout the world and on the literature produced by these exiles or immigrants. Repeatable for credit as topics, texts, and historical periods vary. Prerequisite: LTSP 50A or 50B or 50C.

LTSP 178. Latin American Social Movements (4)
Course will examine the historical context and cultural production associated with social movements in Latin America. Repeatable for credit as regions, constituencies, and historical periods vary. Prerequisite: LTSP 50A or 50B or 50C, or consent of instructor.

LTSP 192. Senior Seminar in Literatures in Spanish (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: department stamp and/or consent of instructor.

LTSP 196. Honors Thesis (4)
Senior thesis research and writing for students who have been accepted for the Literature Honors Program and who have completed LTWL 191. Oral Exam. Prerequisite: department approval.

LTSP 198. Directed Group Study in Spanish Literature (4)
Research seminars and research, under the direction of a member of the faculty. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and department approval.

LTSP 199. Special Studies (2 or 4)
Tutorial. Individual guided reading in areas of Spanish literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and department approval.

GRADUATE

PREREQUISITE: graduate standing or consent of instructor.

LTSP 224. Golden Age Studies (4)
Consideration of one or more major figures, texts, trends, or problems in Spanish Golden Age studies. May be repeated for credit as topics vary.

LTSP 252. Topics in Modern Spanish Literature and Culture (4)
Major trends and figures considered in the context of late nineteenth- and twentieth-century Spanish culture. May be repeated for credit as topics vary.

LTSP 258. Spanish American Prose (4)
Consideration of one or more major figures, texts, trends, or problems in Spanish American prose. May be repeated for credit as topics vary.

LTSP 272. Literature and Society Studies (4)
Special topics in critical practice involving social and economic historical perspectives. May be repeated for credit as topics vary.

LTSP 275. Latin American (ist) Literary and Cultural Theories Since the 1960s (4)
A historical survey of late twentieth-century literary and cultural criticism in and about Latin America, focusing on questions of political economy and periodization, cultural heterogeneity and transculturation, gender and sexuality, and the relationships between literary, popular, and mass cultures.

LTSP 295. M.A. Thesis (1–8)
Research for the master’s thesis. Open for repeated registration up to eight units. (S/U grades only.)

LTSP 296. Research Practicum (1–12)
Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous graduate seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit.

LTSP 297. Directed Studies: Reading Course (1–12)
This course may be designed according to an individual student’s needs when seminar offerings do not cover subjects, genres, or authors of interest. No paper required. The 297 courses do not count toward the seminar requirement. Repeatable for credit.

LTSP 298. Special Projects: Writing Course (1–12)
Similar to a 297, but a project is required. Papers are usually on subjects not covered by seminar offerings. Up to two 298s may be applied toward the twelve-seminar requirement of the doctoral program. Repeatable for credit.

LTSP 299. Dissertation (1–12)
Research for the dissertation. Offered for repeated registration. Open only to Ph.D. students who have advanced to candidacy.

LITERATURE/THEORY

Courses in theory may apply to various literature majors. Please consult your advisor.

Additional theory courses are offered in the various department sections. See quarterly course descriptions in the Department of Literature office, first floor LIT building.

UPPER-DIVISION

PREREQUISITE: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTH 110. History of Criticism (4)
A critical and interpretive review of some of the major documents in criticism from the classical period to the present time.

LTH 115. Introduction to Critical Theory (4)
A critical review of major contemporary theories of the nature of literature, its sociocultural function, and appropriate modes of evaluation.

LTH 150. Topics in Critical Theory (4)
Selected topics in critical theory such as: a particular mode of literary theory; comparative study of theories of text and image; a problem or theme in the history of theory; issues involved in the relationship between fiction and other discourses (science, law, history, philosophy, music). Repeatable for credit when topics vary.

LTH 198. Directed Group Study (4)
Directed group study, under the guidance of a member of the faculty, in an area not covered in courses currently offered by the department (P/NP only).

LTH 199. Special Studies (2 or 4)
Individual reading in an area not covered in courses currently offered by the department. (P/NP only).

GRADUATE

PREREQUISITE: graduate standing or consent of instructor.

LTH 200A. Text/Culture/Critical Practice (4)
An introduction to theories and practices of literary and cultural criticism. Topics may vary, but emphasis will be on terminology, methods of readings, modes of interdisciplinary analysis and argumentation, recent debates on questions of theory, history, textual scholarships, etc. Prerequisites: registered doctoral student in literature and department stamp.

LTH 200B. Problems in Contemporary Literary Theory (4)
The focus is feminist literary/cultural theories and their relations with major contemporary theoretical discourses (e.g., psychoanalysis, poststructuralism, and various forms of historicism). Prerequisites: LTH 200A, registered doctoral student in literature, and department stamp.

LTH 200C. Cultural Perspectives and Cultural Criticism (4)
Literary and cultural relations between the First and Third Worlds, colonialism and neo-colonialism, orality and literacy, construction of ethnicity, formation of canon, and popular culture and the market. Prerequisites: LTH 200B, department stamp, and registered doctoral student in literature.

LTH 201. Contemporary Theoretical Debates and Critical Discourses (4)
An introduction to a wide range of theoretical and methodological issues, schools of thought, and interpretative styles in contemporary literary studies. Required of all M.A. students in the Department of Literature, normally in their first quarter in the program. Prerequisite: admission to the M.A. program in the Department of Literature or consent of instructor.
LTHH 220. Theories of Literary Criticism (4)
Close study of any of the several bodies of literary theory currently applied to literary criticism: psychoanalytic, Marxist, historicist, semiotic, feminist, hermeneutic, reader-response, among others. May be repeated for credit when topics vary.

LTHH 250. Writing and Theory (4)
An overview of issues in modern critical theory as they pertain to writers. Will focus on issues of textuality, cultural forms, and aesthetics as they impact the process and meaning of writing. Prerequisite: department approval.

LTHH 255. Modern Art Movements and Aesthetics (4)
An introduction to modernist aesthetics with a focus on art and literary movements. Particular attention to be placed on relationships between modern literary movements (realism, imagism, surrealism) and their counterparts in visual arts, music, dance, and theater, and the ways in which literary movements are components of or responses to issues of political and social identity. Prerequisite: department approval.

LTHH 296. Research Practicum (1–12)
Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous graduate seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit.

LTHH 297. Directed Studies: Reading Course (1–12)
This course may be designed according to an individual student’s needs when seminar offerings do not cover subjects, genres, or authors of interest. No paper required. The 297 courses do not count toward the seminar requirement. Repeatable for credit.

LTHH 298. Special Projects: Writing Course (1–12)
Similar to a 297, but a paper is required. Papers are usually on subjects not covered by seminar offerings. Up to two 298s may be applied toward the twelve-seminar requirement of the doctoral program. Repeatable for credit.

LTHH 299. Dissertation (1–12)
Research for the dissertation. Offered for repeated registration. Open only to Ph.D. students who have advanced to candidacy.

LITERATURES OF THE WORLD

AFRICAN LITERATURES
Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTAH 110. African Oral Literature (4)

LTAH 120. Literature and Film of Modern Africa (4)
This course traces the rise of modern literature in traditional African societies disrupted by the colonial and neocolonial experience. Contemporary films by African and Western artists will provide an additional insight into the complex social images of the continent.

LITERATURES OF THE AMERICAS
Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

Foreign language discussion sections (XLS) may be offered in conjunction with courses taught in translation. Students enrolled in these joint courses may use them to fulfill major, minor, and secondary literature requirements. Please see the undergraduate office for further information.

LTHH 87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate majors. The number and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

LTHH 100. Latino/a Cultures in the United States (4)
An introductory historical and cultural overview of the various Latino/a populations in the U.S. with a study of representative cultural texts.

LTHH 101. Early Latino/a-Chicano/a Cultures: 1848–1960 (4)
A cross-disciplinary study of nineteenth- and early twentieth-century Latino/a-Chicano/a literature, the visual and performing arts, and other cultural practices. May be repeated for credit as topics vary.

LTHH 102. Contemporary Chicano/a-Latino/a Cultural Production: 1960 to Present (4)
A cross-disciplinary study of late twentieth-century Latino/a-Chicano/a literature, the visual and performing arts, and other cultural practices. May be repeated for credit as topics vary.

LTHH 105. Gender and Sexuality in Latino/a Cultural Production (4)
A study of the construction of differences in gender and sexual orientation in Latino/a-Chicano/a literature and other cultural production with an emphasis on examining various theoretical/ideological perspectives on these issues. May be repeated for credit as topics vary.

LTHH 106. Modern Chicana and Mexican Women Writings (4)
A study of themes and issues in the writings of Chicana and Mexican women with a view toward establishing connections while recognizing national and cultural differences between the two. May be repeated for credit as topics vary.

LTHH 107. Comparative Latino/a and U.S. Ethnic Cultures (4)
A comparative and intersecting study of Latino/a and other U.S. ethnic cultures. Literary texts will be viewed as “windows” into real time and spaces where cultures meet and mix. May be repeated for credit as topics vary.

LTHH 108. Chicano/a and Latino/a Cultures: Intellectual and Political Traditions (4)
The course will center on Chicano/a-Latino/a writers and movements of literary, intellectual, cultural, or political significance. Texts may be read in the original language or in English. May be repeated for credit as topics vary.

LTHH 109. Cultural Production of the Latino/a Diasporas (4)
A study of the cultural production of Latino/a immigrant groups with a focus on the literary representation of homeland, national culture, and the forces that led to migration. May be repeated for credit as topics vary.

LTHH 110. Latin American Literature in Translation (4)
Reading of representative works in Latin American literature with a view to literary analysis (form, theme, meaning), the developmental processes of the literature, and the many contexts: historical, social, cultural. Texts may be read in English. May be repeated for credit as topics vary.

LTHH 111. Comparative Caribbean Discourse (4)
Comparative survey of Caribbean literatures from the Spanish, French, English, and Dutch. Caribbean literary texts trace historical paradigms including the development of plantation slavery, emancipation, the quest for nationhood, migration, and transnational identities. Films and music may complement discussion.

LTHH 130. Reading North by South (4)
An analysis of the readings and appropriations of European and U.S. traditions by Latin American, Caribbean, and Filipino writers. The course addresses philosophies, ideologies, and cultural movements and explores the specific literary strategies used by authors in constructing their particular “cosmovision.”

LTHH 132. The Dark Side of Enlightenment in Spain, the Americas, and the Philippines (4)
This course deals with the cultural production of Spain, the Philippines, Latin America, and the U.S. to examine views (both optimistic and pessimistic) on the Enlightenment as a mode of conducting scientific investigation of nature, constituting forms of government, and imagining the future. May be repeated for credit as topics vary.

LTHH 140. Topics in Culture and Politics (4)
Study of the relationships between cultural production (literature, film, popular culture), social change, and political conflict, covering topics such as colonialism, imperialism, modernization, social movements, dictatorship, and revolution. Repeatable for credit when topics vary.

LTHH 192. Senior Seminar in Literatures of the Americas (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: department stamp and/or consent of instructor.

EAST ASIAN LITERATURES
Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

Foreign language discussion sections (XLS) may be offered in conjunction with courses taught in translation. Students enrolled in these joint courses may use them to fulfill major, minor, and secondary literature requirements. Please see the undergraduate office for further information.

LTEA 100A. Classical Chinese Poetry in Translation (4)
A survey of different genres of traditional Chinese poetry from various periods.

LTEA 100B. Modern Chinese Poetry in Translation (4)
A survey of Chinese poetic development from 1918 to 1949.

LTEA 100C. Contemporary Chinese Poetry in Translation (4)
A survey of Chinese poetic development from 1949 to the present.

LTEA 110A. Classical Chinese Fiction in Translation (4)
The course will focus on a few representative masterpieces of Chinese literature in its classical age, with emphasis on the formal conventions and the social or intellectual presuppositions that are indispensable to their understanding. May be repeated for credit when topics vary.

LTEA 110B. Modern Chinese Fiction in Translation (4)
A survey of representative works of the modern period from 1919 to 1949. May be repeated for credit when topics vary.

LTEA 110C. Contemporary Chinese Fiction in Translation (4)
An introductory survey of representative texts produced after 1949, with particular emphasis on the social, cultural, and political changes. May be repeated for credit when topics vary.

LTEA 120A. Chinese Films (4)
A survey of representative films from different periods of Chinese cinematic development. Priority may be given to Chinese Studies majors and Literature majors. Repeatable for credit when topics vary.

LTEA 120B. Taiwan Films (4)
A survey of “New Taiwan Cinema” of the Eighties and Nineties. Priority may be given to Chinese Studies majors and Literature majors. Repeatable for credit when topics vary.
LTEA 120C. Hong Kong Films (4)
An examination of representative works of different film genres from Hong Kong. Priority may be given to Chinese Studies majors and Literature majors. Repeatable for credit when topics vary.

LTEA 132. Later Japanese Literature in Translation (4)
An introduction to later Japanese (kogo) literature in translation. Will focus on several "modern" works, placing their form in the historical context. No knowledge of Japanese required. Repeatable for credit when topics vary.

LTEA 136. Special Topics in Japanese Literature (4)
The course will focus on important problematics of literary studies as they relate to Japan (e.g., "feminism," "modernity," "literary mode of production," "Orientalism and nativism"). No knowledge of Japanese required. May be repeated for credit as topics vary.

LTEA 138. Japanese Films (4)
An introduction to Japanese films. Attention given to representative Japanese directors (e.g., Ozu), form (e.g., anime), genre (e.g., feminist revenge horror), or historical context in which films are produced. Priority may be given to Japanese studies majors and literature majors.

LTEA 140. Modern Korean Literature in Translation from Colonial Period (4)
A survey of modern Korean prose fiction and poetry from the colonial period. Exploration of major issues such as Japanese colonization, rise of left-wing and right-wing nationalism, construction of national culture, and relations between tradition and modernity.

LTEA 141. Modern Korean Literature in Translation from 1945 to Present (4)
A survey of modern Korean prose fiction and poetry from 1945 to the 1990s. Examination of literary representations of national division, the Korean War, accelerated industrialization, authoritarian rule, and the labor/agrarian movements.

LTEA 142. Korean Film, Literature, and Popular Culture (4)
A study of modern Korean society and its major historical issues as represented in film, literature, and other popular cultural media such as TV and music video. We will explore additional issues such as cinematic adaptations of prose fiction, fluid distinctions between popular literature and "serious" literature, and the role of mass media under authoritarian rule.

LTEA 143. Gender and Sexuality in Korean Literature and Culture (4)
A study of constructions of gender and sexuality in pre-modern and modern Korean societies. We will discuss literary works as well as historical and ethnographic works on gender relations, representations of masculinity and femininity, and changing roles of men and women in work and family.

LTEA 144. Korean American Literature and Other Literatures of Korean Diaspora (4)
An examination of the experiences of the Korean diaspora linked to the historical contexts of modern Korea, Japan, the United States, and other countries. We will focus on literature with about Korea and the Korean immigrant experience written in the United States but will also read from and about other Korean diasporic contexts.

LTEA 145. Literature, History, and Colonial and Postcolonial Modernity in Korea (4)
Comparative examination of historiographical and literary representations of major issues such as nationalism, industrialization, class division, gender, and sexuality. Literary re-writings of modern Korean history and recent revisionist historiographical works and trends.

LTEA 151. Readings in Tagalog Literature and Culture I (4)
Course will concentrate on selections of literature, history, and cultural texts (painting, drama, religious artifacts) of the 1896 Philippine revolution and the succeeding U.S. takeover of the Philippines. Intermediate fluency in speaking, reading, and writing Tagalog. Repeatable for credit when topics vary.

LTEA 152A. Topics in Filipino Literature and Culture (Nineteenth Century–World War II) (4)
Surveys the authors, intellectual currents, and cultural politics of Filipino culture from the 1850s to World War II. Topics may include the legacy of Spanish colonialism, European enlightenment, and the emergence of nationalism and socialism, and Filipino literature in English. May be repeated for credit as topics vary.

LTEA 152B. Topics in Filipino Literature and Culture (World War II–Present) (4)
Surveys the authors, intellectual currents, and cultural politics of Filipino culture from World War II to the present. Topics may include the dual lingua franca, the birth of "Filipino-American" literature, the culture of dictatorship, and new approaches to narrative. May be repeated for credit as topics vary.

LTEA 198. Directed Group Study (4)
Research seminars and research, under the direction of a faculty member.

LTEA 199. Special Studies (2 or 4)
Tutorial; individual guided reading in areas not normally covered in courses. (P/NP grades only.)

European and Eurasian Literatures

Lower-Division

LTEU 87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

Upper-Division

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

Foreign language discussion sections (XLS) may be offered in conjunction with courses taught in translation. Students enrolled in these joint courses may use them to fulfill major, minor, and secondary literature requirements. Please see the undergraduate office for further information.

LTEU 105. Medieval Studies (4)
Studies in medieval culture and thought with focus on one of the "three pillars" of Italian literature: Dante, Boccaccio, or Petrarch. May be repeated for credit when course content varies.

Topics to be considered include the age of sensibility, enlightenment, neoclassicism. Attention given to historical and cultural contexts.

LTEU 110. European Romanticism (4)
Attention given to historical and cultural contexts. Topics to be considered include the concept of nature, the reaction to science, the role of the imagination.

LTEU 130. German Literature in Translation (4)
One or more aspects of German literature, such as major authors, the contemporary novel, nineteenth-century poetry, German expressionism. Texts may be read in English or the original language. May be repeated for credit as topics vary.

LTEU 137. Seminars in German Culture (4)
These seminars are devoted to a variety of special topics, including the works of single authors, genre studies, problems in literary history, relations between literature and the history of ideas, literary criticism, literature and society, and the like.

LTEU 139. Marx/Nietzsche/Freud (4)
Intensive examination of the major ideas of all three writers, with special attention to the literary styles and problematic aspects of their work.

LTEU 140. Italian Literature in Translation (4)
One or more periods and authors in Italian literature. Texts will be read in English. May be repeated for credit as topics vary.

LTEU 145. Studies in Modern Italian Poetry (4)
Study of the chief modern Italian poets, including Montale, Ungaretti, and Quasimodo, with attention to long, poetic form and contemporary Italian culture. May be repeated for credit as topics vary.

LTEU 146. Studies in Modern Italian Prose (4)
A study of the chief modern Italian prosatori including D’Annunzio, Calvino, Pasolini, etc. Repeatable for credit.

LTEU 147. Women in Italy (4)
A study of historical, political, and literary texts regarding women and feminism in Italian society.

LTEU 150A-B-C. Survey of Russian and Soviet Literature in Translation, 1800 to the Present (4-4-4)
A study of literary works from Pushkin to the present.

150A. 1800–1860
150B. 1860–1917
150C. 1917–present

LTEU 154. Russian Culture (4)
An introduction to Russia’s past and present through the cross-disciplinary study of literature, the visual and performing arts, social and political thought, civic rituals, popular entertainments, values and practices from 1825 to the present.

LTEU 158. Single Author in Russian Literature in Translation (4)
A study of literary works by a single Russian author. All readings will be in English. May be repeated for credit when authors vary.

LTEU 192. Senior Seminar in European and Eurasian Literatures (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisite: department stamp and/or consent of instructor.

Near Eastern Literatures

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

Foreign language discussion sections (XLS) may be offered in conjunction with courses taught in translation. Students enrolled in these joint courses may use them to fulfill major, minor, and secondary literature requirements. Please see the undergraduate office for further information.

LTNE 101. The Bible: The Narrative Books (4)
Examination of the Biblical accounts in their ancient Near Eastern context. Emphasis will be placed on the literary and archaeological data; consideration of theological issues. Repeatable for credit as topics vary.

Lit erature s o f th e w orld

In both lower- and upper-division world literature courses, texts may be read in English translation.
when necessary, and lectures and discussions are conducted in English.

Foreign language discussion sections (XLS) may be offered in conjunction with courses taught in translation. Students enrolled in these joint courses may use them to fulfill major, minor, and secondary literature requirements. Please see the undergraduate office for further information.

LOWER-DIVISION

LTWL 4A-B-C-D-F-M. Film and Fiction in Twentieth-Century Societies (4)
A study of modern culture and of the way it is expressed and understood in novels, stories, and films. The sequence aims at an understanding of relationship between the narrative arts and society in the twentieth century, with the individual quarters treating fiction and film of the following language groups: 4A French, 4B German, 4C Asian, 4D Italian, 4M multiple national literatures and film, 4F Spanish.

LTWL 19A-B-C. Introduction to the Ancient Greeks and Romans (4-4-4)
An introductory study of ancient Greece and Rome, their literature, myth, philosophy, history, and art.

LTWL 50. Introduction to Literary and Cultural Studies (4)
A preliminary survey of issues and problems raised by literary and cultural studies. Discussion will focus on basic terms in literary analysis (narrative, genre, character, poetics) and on rhetorical techniques for writing advanced expository papers in literary and cultural topics. It is designed for both non-majors and students who anticipate becoming majors in literature who would like a broad-based introduction to the field.

LTWL 87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

LTWL 99. Lower-Division Independent Study (4)
Independent study at the lower-division level, in an area not covered by the department's regular course offerings, under the direction of a member of the Literature Department faculty. Prerequisites: lower-division standing; cumulative 3.0 GPA.

TWS 21-22-23-24-25-26. Third World Literatures (4-4-4-4-4)
(See entry under "Third World Studies" heading.)

The courses in this sequence are equivalent to world literature courses. The sequence satisfies Marshall College general-education requirements.

UPPER-DIVISION

PREREQUISITE: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTWL 100. Mythology (4)
A study of various bodies of myth: their content, form, and meaning. May be repeated for credit as topics vary.

LTWL 102. Women in Antiquity (4)
Selected topics in classical culture, including women and myth, women in Greek and Roman society, and the representation of women in classical literature. May be repeated for credit when topics vary.

LTWL 106. The Classical Tradition (4)
Greek and Roman literature in translation. May be repeated for credit as topics vary.

LTWL 107. Prose Fiction (4)
Aspects of prose fiction. Not confined to a single national literature. Texts may be read in English. May be repeated for credit as topics vary.

LTWL 108. Words and Their Vicissitudes (4)
The history of English and its forebears, focusing on the quirky nature of semantic change in order to equip students with a basis for understanding metaphor, metonymy, and other forms of verbal deviance.

LTWL 110B. Folk and Fairy Tales (4)
A study of folk and fairy tales from various cultures, from the point of view of literary form, psychological meaning, and cultural function. May be repeated for credit as topics vary.

LTWL 111. Medieval Studies (4)
A lecture/discussion course designed to explore a variety of topics in medieval literatures and cultures. Topics may include a genre or combination of genres (e.g., drama, romance, lyric, allegory), or a central theme (e.g., the Crusades or courtly love).

LTWL 114. Children's Literature (4)
A study of literature written for children in various cultures and periods. May be repeated for credit as topics vary.

LTWL 115. Contemporary Literature (4)
A study of novels and authors of the present and recent times. May be repeated for credit as topics vary.

LTWL 116. Adolescent Literature (4)
A study of fiction written for the young adult in various cultures and periods. Consideration will be given to the young adult hero in fiction. May be repeated for credit as topics vary.

LTWL 120. Popular Literature and Culture (4)
A study of various popular forms—such as pop music, cult books, film, fashion, magazines, graphic arts—within a broader cultural context. Focus may be on a particular genre (e.g., best sellers) or era (e.g., the sixties). May be repeated for credit when topics vary.

LTWL 122. Fantasy (4)
Reading and analysis of various works that fall into several categories of the fantastic—e.g., heroic, gothic, irrational, postmodern—with particular attention to the cultural uses of myth, folklore, and fantasy, and to the psychological and structuralist theories of same. May be repeated for credit when topics vary.

LTWL 123. Vampires in Literature (4)
A study of representations of the vampire through a variety of methodological perspectives with an emphasis on historical context and cultural symbolism.

LTWL 124. Science Fiction (4)
An exploration of the genre—past and present, in literature and the visual media—as a cultural response to scientific and technological change, as modern mythmaking, and as an enterprise serving a substantial fan subculture. May be repeated for credit when topics vary.

LTWL 128. Introduction to Semiotics and Applications (4)
Semiotics, basically a theory of signification, describes the models and conceptual contexts through which meaning is grasped and produced. Background in the history of semiotics and its dominant models.

LTWL 129. Wisdom: The Literature of Authority (4)
What is wisdom? Does wisdom refer to a specific type of discourse; a literary genre; a specific content that holds true transculturally and transtemporally? This class will consider these questions by reading literature from diverse times and places.

LTWL 135. The Buddhist Imaginary (4)
An introduction to the imaginative universe of Indian Buddhism, with a focus on the connection between cosmological models and libidinal practices. In this class we read Buddhist narrative and doctrinal literatures, supplemented by archaeological and art historical artifacts.

LTWL 137. Sanskrit (4)
Study of classical Sanskrit, including grammar and reading.

LTWL 138. Critical Religion Studies (4)
Selected topics, texts, and problems in the study of religion. May be repeated for credit when content varies.

LTWL 139. Gnosticism: The Religious Underground from Late Antiquity to the New Age (4)
A survey of Gnostic currents in religious thought which influenced the Abrahamic traditions of Judaism, Christianity, and Islam and which surfaced periodically as heretical challenges to these mainstream traditions and their doctrinal orthodoxies.

LTWL 140. Novel and History in the Third World (4)
This course sets out to explore the relation between the novel and the “dependent” history of the Third World, contrasting and comparing the uses of history in the European novel as defined in the theoretical analysis of Lukacs with uses of history in the Third World novel. An analysis of major themes and movements common to selected ethnic literature in the United States and national literatures in the Third World.

LTWL 141. Islam and Modernity (4)
A survey of developments in the Islamic world during the period of European colonial domination and its aftermath, with special attention to the works of leading Muslim thinkers (e.g., Sayid Ahmed Khan, Muhammad Abduh, Hasan al Banna, Ruhallah Khomeini, among others).

LTWL 142. Islam: The Origins and Spread of a World Religion (4)
An investigation of the historical and textual beginnings of Islam; the development of the religion in the early Middle Ages; and an examination of the formalization of schools of Islamic law and the confrontation between Sunni and Shi'i versions of praxis. Concludes with the rise of Islamic fundamentalism and the post-Islamic fundamentalism.

LTWL 145. South Asian Religious Literatures: Selected Topics (4)
One or two topics in the religious literature of South Asia will be examined in depth. Repeatable for credit when topics vary.

LTWL 147. Readings in Mahayana Buddhism (4)
Students read and discuss Mahayana Buddhist literature, including sutra and narrative literatures, confessional works, doctrinal treaties, and tantric verse. Recommended: completion of LTWL 129 or LTWL 135.

LTWL 149. The Last Turn of the Century in the West (4)
A multi-media examination of the momentous cultural and intellectual changes that accompanied the last turn of the century (nineteenth-twentieth) in the West. Areas covered include literature, philosophy, visual arts, music, religion, social movements, and scientific thought.

LTWL 150. Modernity and Literature (4)
Explores the various cross-cultural historical, philosophical, and aesthetic ideas which formed the basis of most twentieth-century literature. Literature from the Americas, Europe, Asia, and Africa will be studied through lectures and the reading of texts in English translation. Repeatable for credit when topics vary.

LTWL 151. Religion and Politics (4)
Course surveys the historical and theoretical relationships between religion and politics in contemporary South West Asia, focusing on the interplay of religious movements and politics by looking at countries such as Egypt, Iraq, Israel, Lebanon, Saudi Arabia, Syria, and Turkey.

LTWL 152. Introduction to Islam (4)
An exploration of the history and religion of Islam, with focus on theological debates, mystical traditions, and the rise of Islamic movements in contemporary history will also be discussed.

LTWL 153. Literature, Religion, and Culture in Iran (4)
This interdisciplinary course will explore the relationship between culture and religion in the Persian literature from the Abbasid to postrevolutionary Iranian history.

LTWL 154. Literature: Public Sphere (4)
Course focuses on the contentious notion of “public sphere,” surveying its historical rise and various theoretical
debates in defining the term, ranging from political, social, feminist theories to postcolonial studies.

LTWL 155. Gender Studies (4)
The study of the construction of sexual differences in literature and culture. May be repeated for credit when topics vary.

LTWL 157. Iranian Film (4)
Course sets out to explore the history and theory of Iranian films in the context of the country’s political, cultural, and religious settings since 1945. Students are expected to watch and discuss Iranian films, particularly the post-revolutionary films of Kiarostami and Makhmalbaf.

LTWL 158A. Topics in the New Testament (4)
Literary and socio-historical considerations of the diverse writings that developed into the New Testament. Topics include Jewish origins of the "Jesus movement" within Greco-Roman culture; varying patterns of belief/practice among earliest communities; oral tradition and development of canon.

LTWL 158B. Topics in Early Christian Texts and Cultures (4)
This course investigates the manner in which texts shape religious identities on the individual and communal level in socio-historical and cultural contexts: various topics include portraits of Jesus, saints lives, death and afterlife, martyrdom, demonology, apocalypticism, Christianity, and empire.

LTWL 158C. Topics in Other Christianities (4)
A survey of the Christian texts that comprise the fatalities of the battles defining Christian canon: e.g., apocryphal acts, non-canonical gospels, and "Gnostic" texts. Considers the social communities, theological views, religious identities, and practices reflected in largely forgotten texts.

LTWL 160. Women and Literature (4)
This course will explore the relationship between women and literature, i.e., women as producers of literature, as objects of literary discourse, and as readers. Foreign language texts will be read in translation. May be repeated for credit as topics vary.

LTWL 165. Literature and the Environment (4)
With primarily American (and a couple of English) readings, the course inquires into the relation of human and non-human nature. Topics include wilderness, animals, Native American thought, women in nature, description as a kind of writing, the spirituality of place.

LTWL 166. The Yiddish Novel (4)
Yiddish literature is much more than folksongs and jokes. We will read major American and European works by Nobel laureate I.B. Singer, his brother J. Singer and sister Esther Kreptman, Solome Aleichem, Mendele, Chava Rozenfarb, and others. (In English translation.)

LTWL 167. Russia and the Jewish Imagination from the Enlightenment to the Present (4)
Course explores Russian Jewish literature, from Hassidic tales to Gary Shteyngart's Absurdistan. We will read works translated from Hebrew, Yiddish, and Russian. Written before, during, and since the Soviet period, including literature produced in Russia, Israel, and the U.S.

LTWL 168. Death and Desire in India (4)
This class investigates the link between desire and death in classical and modern Hindu thought. It considers the stories of Hindu deities, as well as the lives of contemporary South Asian men and women, in literature and film.

LTWL 172. Special Topics in Literature (4)
Studies in specialized literary, philosophic, and artistic movements and approaches to literature, literary ideas, historical moments, etc.

LTWL 176. Literature and Ideas (4)
The course will center on writers or movements of international literary, cultural, or ideological significance. The texts studied, if foreign, may be read either in the original language or in English. May be repeated for credit as topics vary.

LTWL 180. Film Studies and Literature: Film History (4)
The study of film history and its effects upon methods of styles in literary history. Repeatable for credit when topics vary.

LTWL 181. Film Studies and Literature: Film Movement (4)
Study of analogies between literary movements and film movements. Repeatable for credit when topics vary.

LTWL 183. Film Studies and Literature: Director's Work (4)
Methods of criticism of author's work applied to the study and analysis of film director's style and work. Repeatable for credit when topics vary.

LTWL 184. Film Studies and Literature: Close Analysis of Filmic Text (4)
Methods of literary analysis applied to the study of shots, sequences, poetics, and deep structure in filmic discourse. Repeatable for credit when topics vary.

LTWL 191. Honors Seminar (4)
Explorations in critical theory and method. This course, designed to prepare students to write an honors thesis, is open only to literature majors invited into the department's Honors Program.

LTWL 192. Senior Seminar in Literatures of the World (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: department stamp and/or consent of instructor.

LTWL 195. Apprentice Teaching (0 or 4)
Undergraduate instructional assistance. Student must (1) prepare reading materials assigned by the professor; (2) lead student discussions; (3) assist professor in grading; and (4) prepare report to professor at conclusion of quarter concerning his/her work.

LTWL 196. Honors Thesis (4)
Senior thesis research and writing for students who have been accepted for the Literature Honors Program and completed LTWL 191. Oral exam. Prerequisite: department approval.

LTWL 198. Directed Group Study (2 or 4)
Research seminars and research, under the direction of faculty member. Prerequisite: department approval.

LTWL 199. Special Studies (2 or 4)
Tutorial; individual guided reading in areas of literature (in translation) not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and department approval.

GRADUATE

LTWL 300. Apprentice Teaching in Literature (2 or 4)
Consideration of pedagogical methods appropriate to undergraduate teaching in literature courses under the supervision of instructor of course. Doctoral students in literature are required to participate in undergraduate teaching for a minimum of twelve units (two to four units per quarter) prior to completion of the Ph.D. degree.

LTWL 301. Apprentice Teaching in Humanities (2 or 4)
Consideration of pedagogical methods appropriate to undergraduate teaching in humanities sequences under the supervision of instructor of course. Doctoral students in literature are required to participate in undergraduate teaching for a minimum of twelve units (two to four units per quarter) prior to completion of the Ph.D. degree.

LTWL 503. Apprentice Teaching in Marshall College (2 or 4)
Consideration of pedagogical methods appropriate to undergraduate teaching in Marshall College courses under the supervision of instructor of course. Doctoral students in literature are required to participate in undergraduate teaching for a minimum of twelve units (two to four units per quarter) prior to completion of the Ph.D. degree.

LTWL 504. Apprentice Teaching in Warren College (2 or 4)
Consideration of pedagogical methods appropriate to undergraduate teaching in Warren College courses under the supervision of instructor of course. Doctoral students in literature are required to participate in undergraduate teaching for a minimum of twelve units (two to four units per quarter) prior to completion of the Ph.D. degree.

LTWL 506. Apprentice Teaching in Roosevelt College (2 or 4)
Consideration of pedagogical methods appropriate to undergraduate teaching in Roosevelt College courses under the supervision of instructor of course. Doctoral students in literature are required to participate in undergraduate teaching for a minimum of twelve units (two to four units per quarter) prior to completion of the Ph.D. degree.

WRITING/LITERATURE

LOWER-DIVISION

LTWR 8A. Writing Fiction (4)
Study of fiction in both theory and practice. Narrative technique studied in terms of subjectivity and atmosphere, description, dialogue, and the editing process will be introduced through readings from the history of the novel and short story. Writing exercises accompany reading assignments. Prerequisite: completion of college writing requirement.

LTWR 8B. Writing Poetry (4)
Study and practice of poetry as artistic and communal expression. Techniques of composition (traditional forms, avant garde techniques, dramatic monologue, performance poetry, and new genre) studied through written and spoken examples of poetry. Writing exercises accompany reading assignments. Prerequisite: completion of college writing requirement.

LTWR 8C. Writing Nonfiction (4)
Study of nonfiction prose in terms of genre and craft. Techniques of composition (journalism, essay, letters, reviews) will be studied through written examples of the genre. Practical imitations and exercises accompany the reading assignments. Prerequisite to upper-division non-fiction prose workshops. Prerequisite: completion of college writing requirement.

UPPER-DIVISION

Departmental approval is required for enrollment in all upper-division literature/writing courses.

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

(See "Department of Theatre and Dance" for course offerings in dramatic writing.)

Prose Fiction, Poetry, Media Workshops

LTWR 100. Short Fiction Workshop (4)
A workshop for students with some experience and special interest in writing fiction. This workshop is designed to encourage regular writing in the short forms of prose fiction and to permit students to experiment with various forms. There will be discussion of student work, together with analysis and discussion of representative examples of short fiction from the present and previous ages. May be taken for credit three times. Prerequisites: LTWR 8A; department approval.
LITERATURE

LITERATURE 101. Writing Fiction in Spanish (4)
A workshop for students with interest in writing fiction in Spanish. Includes discussion of student work, together with analysis and discussion of representative examples of short fiction from the present and previous ages. A working knowledge of Spanish required. May be taken for credit three times. Prerequisites: LTWR 8A; LSTP 50A or 50B; department approval.

LITERATURE 102. Poetry Workshop (4)
A workshop for students with some experience and special interest in writing poetry. This workshop is designed to encourage regular writing of poetry. There will be discussion of student work, together with analysis and discussion of representative examples of poetry from the present and previous ages. May be taken for credit three times. Prerequisites: LTWR 8B; department approval.

LITERATURE 104A. The Novella I (4)
A two-quarter workshop for fiction writers ready to explore a longer form, and committed to developing a single piece over the course of two consecutive quarters. In addition to analyzing student work, we will read and discuss a wide range of published novellas. Two-quarter sequence; students must complete LTWR 104A and LTWR 104B in order to receive final grade in both courses. Prerequisites: LTWR 100; department approval.

LITERATURE 104B. The Novella II (4)
A continuation of LTWR 104A in which fiction writers complete the novella manuscripts they began during the previous quarter. Each student will produce a novella of at least fifty revised pages by the end of the quarter. We will continue to read and discuss published novellas with a particular emphasis on narrative strategy, structure, and revision. Two-quarter sequence; students must complete LTWR 104A and LTWR 104B in order to receive final grade in both courses. Prerequisites: LTWR 100A; department approval.

LITERATURE 106. Science Fiction, Fantasy, and Irrealism Workshop (4)
In this workshop, students will practice skills of narration, characterization, and style with particular attention to the demands of non-realistic genres, especially the challenge of suspending disbelief in fictional environments that defy conventional logic. Readings and lectures will accompany writing exercises. May be taken for credit three times. Prerequisites: LTWR 8A; department approval.

LITERATURE 110. Intercultural Writing Workshop (4)
This course is an introduction to modes of writing from other cultural systems vastly different from the cultural-aesthetic assumptions of Anglo-American writing. While disclosing the limitations of the English language, this course attempts to provide new language strategies for students. May be taken for credit three times. Prerequisites: LTWR 8A, 8B, or 8C; department approval.

LITERATURE 114. Graphic Texts Workshop (4)
From illuminated manuscripts to digital literature, from alphabets to concrete poems, from artists' books to comics, this course explores the histories and techniques of combinatory image/word literary arts. The course may emphasize specific movements or genres. May be taken for credit three times. Prerequisites: LTWR 8A or 8B; department approval.

LITERATURE 115. Experimental Writing Workshop (4)
This workshop explores writing for which the traditional generic distinctions of prose/poetry, fiction/ documentary, narrative/discourse do not apply. Students taking this course will be asked to challenge the boundaries of literature to discover new forms and modes of expression. May be taken for credit three times. Prerequisites: LTWR 8A, 8B, or 8C; department approval.

LITERATURE 119. Writing for Performance (4)
A workshop and survey of experimental approaches to the writing and production of performance works in a range of literary genres. Emphasis will be placed on the integration of written texts with non-verbal elements from the visual arts, theater, and music. Prerequisite: LTWR 8A or 8B; to be determined by quarterly offerings of LTWR 119; department approval.

Nonfiction Prose Workshops

LITERATURE 120. Personal Narrative Workshop (4)
A workshop designed to encourage regular writing of all forms of personal experience narrative, including journals, autobiography, firsthand biography, and firsthand chronicle. Instructor and students will discuss student work as well as published personal narratives. May be taken for credit three times. Prerequisites: LTWR 8A, 8B, or 8C; department approval.

LITERATURE 121. Media Writing Workshop (4)
Workshop focusing on the review, the op-ed piece, the column, the blurb, the profile, the interview, and "content-providing" for Web sites. We'll examine current examples of media writing; students will produce a body of work and critique one another's productions. May be taken for credit three times. Prerequisites: LTWR 8C; department approval.

LITERATURE 122. Writing for the Sciences Workshop (4)
A workshop in writing about science for the public. Students will study and then construct metaphors or analogues which introduce readers to scientific perplexities. Completion of LTWR 8A, 8B, or 8C highly recommended. May be repeated for credit three times. Prerequisite: department approval.

LITERATURE 124. Translation of Literary Texts Workshop (4)
A writing workshop on the theory and practice of literary translation. Students will translate literary texts and workshop with the instructor and other course members. Selected readings include translation theory. May be repeated for credit three times. Prerequisites: LTWR 8A, 8B, or 8C; department approval.

LITERATURE 126. Creative Nonfiction Workshop (4)
A writing, reading, and critical-thinking workshop designed to produce nonfiction pieces that fall outside the limits of the essay form. Included are travel narratives, memoir, and information-based writing that transform their own materials into compelling literature. May be repeated for credit three times. Prerequisites: LTWR 8C; department approval.

LITERATURE 129. Distributing Literature Workshop (4)
Workshop designed to critique and engage the means of distributing literature within culture. Publishing from "zine" through mainstream publication; Web publications; readings and "slams"; publicity and funding; colloquia with writers; politics and literature; and the uses of performance and media. May be taken for credit three times. Prerequisites: LTWR 100, LTWR 102, or LTWR 120; department approval.

Writing Process, Written Discourse, and Writing Pedagogy

These courses are not writing workshop courses like those listed above. Rather, they examine various aspects of writing as a field of study and writing pedagogy. Writing majors who plan to teach writing may be particularly interested in these courses. See the department for applicability of these courses to the writing major requirements.

Note: As of fall 1991, all writing majors are required to take one course chosen from offerings numbered LTWR 140-148 to fulfill one of their upper-division requirements.

LITERATURE 143. Stylistics and Grammar (4)
A course designed to teach students how to write in a variety of genres. Emphasis will be placed on the integration of written texts with non-verbal elements from the visual arts, theater, and music. Prerequisite: LTWR 8A or 8B; department approval.

LITERATURE 144. The Teaching of Writing (4)
Wide reading in current theory and practice of teaching writing in schools and colleges. Careful attention to various models of classroom writing instruction and to different approaches in the individual conference. Students in this course may observe instruction in the UCSD college writing programs or tutor freshman students in those programs. Prerequisite: department approval.

LITERATURE 148. Theory for Writers/Writing for Theory (4)
Hybrid workshop offering writing students a working knowledge of literary theory while exposing literature students to practical techniques from poetry, fiction, and nonfiction to refresh their writing of theoretical nonfiction texts. Discussion of student work and published work. Prerequisite: department approval.

Directed Study and Special Study

LITERATURE 192. Senior Seminar in Literatures in Writing (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level); Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: department stamp and/or consent of instructor.

LITERATURE 195. Apprentice Teaching (4)
Undergraduate instruction assistance. Students will 1) assist TA in editing students' writing for LTWR 8A and 8C during class and outside of class, and 2) prepare a paper and report for the professor at the end of the quarter. Prerequisite: LTWR 144.

LITERATURE 196.Honors Thesis (4)
Senior thesis research and writing for students who have been accepted for the Literature Honors Program and who have completed LTWL 191. Oral exam. Prerequisite: department approval.

LITERATURE 198. Directed Group Study (2 or 4)
Directed group study in areas of writing not normally covered in courses. (P/NP grades only). Repeatable for credit when areas of study vary.

LITERATURE 199. Special Studies (2 or 4)
Tutorial; individual guidance in areas of writing not normally covered in courses. (P/NP grades only). May be taken for credit three times. Prerequisites: upper-division standing and department approval.

GRADUATE

PREREQUISITE: graduate standing or consent of instructor.

LITERATURE 200. Fiction Workshop (4)
A weekly meeting between a faculty member, guest fiction writers, and small group of students for focused discussion of new student writing produced during the time of the workshop. The workshop guides students toward beginning the full-length manuscript that will constitute their M.F.A. project. Prerequisite: department approval.

LITERATURE 202. Poetry Workshop (4)
A weekly meeting between a single faculty member, occasional guest poets, and a small group of M.F.A. students engaged in a discussion of new student work produced during the time of the workshop. There will be assigned readings and some writing exercises to give the course focus. Prerequisite: department approval.

LITERATURE 215. Cross-Genre Workshop (4)
In the generative workshop, writers create intergeneric works and practice unconventional workshopping techniques that function less as editorial roundtables and more as discussions of the relationships between aesthetics and culture. Prerequisite: department approval.

LITERATURE 260. Autoethnographies of Literacy (4)
Designed for public school teachers, this writing seminar concerns ethnographic and autoethnographic studies of "literates" and "illiterates" in the United States.

LITERATURE 271. Theory and Practice of College Writing Instruction (4)
In this course we will explore the implications for writing instruction of current discourse theory and of linguistics (sentence-level and text-level). We will also review research on writing instruction and look carefully at several models of classroom instruction and individual conferencing.
LTWR 272. Research in Composing and Writing Discourse (4)
This course will survey current research on composing and written discourse. It will also explore various problems and issues in designing research studies.

LTWR 282. Writing States (4)
This course will be a cross-genre writing workshop where graduate students in literature with some experience in creative writing can work with other writers and broaden their own practices. The seminar will read selected texts that spur specific writing assignments. Students who already have a new or ongoing writing project can workshop that as an alternative to doing assignments. The group will critique one another’s efforts, each participant creating a twenty-page manuscript. Also at the end of the quarter the students will collectively agree on a project—a reading, performance, video, or publishing project that will document the workshop.

LTWR 295. M.F.A. Thesis (1–12)
Research for master’s thesis. Offered for repeated registration. Open only to M.F.A. students. Prerequisite: department approval.

LTWR 298. Directed Studies: Writing Course (1–12)
This course may be designed according to an individual student’s needs when seminar offerings do not cover subjects, genres, or authors of interest. May be applied toward the guided research or graduate seminar in literature requirement of the M.F.A. program. Repeatable for credit. Prerequisite: department approval.
The Making of the Modern World

OFFICE: Eleanor Roosevelt College, Administration Building
http://roosevelt.ucsd.edu/mmw/

The Making of the Modern World (MMW) is an interdisciplinary, six-course program that provides a broad, global overview of the past from the dawn of human history and early societies (MMW 1) to social, environmental, economic, and political challenges facing the contemporary world (MMW 6). It is designed to encourage students to think historically, comparatively, and in an interdisciplinary manner about both the past and the present. MMW also provides instruction in university-level writing and analysis as students examine and interpret both primary and secondary source material. ERC students entering UC San Diego as freshmen are required to complete the full MMW sequence (six quarters), while transfer students, entering UCSD as upper classmen, are only required to take any three quarters, usually including the transfer specific course MMW 4T. Each course includes lectures, discussion sections, and writing assignments. Courses in the sequence may be taken for a letter grade only. Students in the Making of the Modern World 2 and 3 (offered in winter and spring quarters respectively) fulfill their University of California transscriptive writing requirement by receiving intensive instruction in university-level writing. Subject matter for writing instruction is drawn from or related to course material. Instruction in writing is provided in discussion sessions, which meet twice each week. Each of these two writing-intensive quarters carries six units of credit. Students must have satisfied the university’s Entry Level Writing requirement before enrolling in the Making of the Modern World 2 or 3.

For further details on Eleanor Roosevelt College requirements, see “Eleanor Roosevelt College, General-Education Requirements.”

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

TRADITIONS

1. Prehistory and the Birth of Civilization (4)
This quarter introduces students to what is known about early humans, including the evolution of the human body and the reconstruction of Paleolithic and Neolithic cultures. It examines contemporary hunting-and-gathering and tribal societies and illuminates the complexity of such cultures with respect to mythology and oral tradition, inter-personal relations, and ecological practices. The course will conclude with an analysis of the emergence of large agrarian societies and the earliest great settled communities and civilizations. Three hours of lecture, one hour of discussion. Open to Eleanor Roosevelt College students only. (Letter grade only.) (F)

2. The Great Classical Traditions (6)
An introduction to five major classical civilizations of the ancient world. Equal attention will be given to the ancient Near East, Greece, India, China, and the Roman Republic, all of which have left legacies to the present. The course covers the great early systems of religious and social thought, using an approach that combines history and social science. This course includes intensive instruction in writing expository prose. Three hours of lecture, two hours of writing and discussion sections. Prerequisite: satisfaction of the UC Entry Level Writing requirement. Open to Eleanor Roosevelt College students only. (Letter grade only.) (W)

3. The Medieval Heritage (6)
A survey of the period from about 29 BCE to 1200 CE, this quarter concentrates on the development of China from the Han to the Sung dynasties, the growth and eventual dissolution of the Roman Empire, the development of Christianity, and the rise of Islam. This course includes intensive instruction in university-level writing. Three hours of lecture, two hours of writing and discussion sections. Prerequisite: satisfaction of the UC Entry Level Writing requirement. Open to Eleanor Roosevelt College students only. (Letter grade only.) (S)

TRANSFORMATIONS

4. New Ideas and the Clash of Cultures (4)
An examination of the world from 1200 to 1750, the course focuses on the transition from medieval to modern by addressing philosophical, social, political, economic, and technological changes in Asia, Europe, and Islamic territories. Topics may include the Mongol invasions and their impact; the European Renaissance, Reformation, and Scientific Revolution; Islamic and Chinese empires; exploration and trade; and European expansion into the Americas. Three hours of lecture, one hour of discussion. Prerequisites: satisfaction of the UC Entry Level Writing requirement; successful completion of MMW 2 and/or MMW 3. Open to Eleanor Roosevelt College students only. (Letter grade only.) (F)

4T. Understanding the Premodern World (Transfer Students Only) (4)
This course is designed specifically for transfer students and provides a background to major trends and issues addressed in previous MMW courses. MMW 4T also reviews and strengthens students’ analytical, research, and writing skills. This course helps students adjust to the UCSD environment by preparing them for writing and research for other MMW courses and beyond. A research paper is due at the end of this term. Three hours of lecture, one hour of discussion. Prerequisites: transfer student and satisfaction of the UC Entry Level Writing Requirement. Open to Eleanor Roosevelt College students only. (Letter grade only.) (F)

5. Revolution, Industry, and Empire (4)
A consideration of the great changes in European society from the late eighteenth century to the Russian Revolution, and their impact on the non-Western world. Topics include industrialization, the rise of nationalism and the nation-state, Western imperialism, and the colonial experience. Developments in non-Western countries during this period will be examined from their own internal perspective. Three hours of lecture, one hour of discussion. Prerequisites: satisfaction of the UC Entry Level Writing requirement; successful completion of MMW 2, MMW 3, and/or MMW 4. Open to Eleanor Roosevelt College students only. (Letter grade only.) (W)

6. Twentieth Century and Beyond (4)
The course begins with a consideration of the causes and consequences of World War I, and then looks at the post-war crisis of liberal values and institutions. It addresses the deepening of crisis in the thirties, especially evident in the emergence of ideological politics and extreme nationalism in the context of worldwide depression. This period of crisis provides the background for understanding World War II. Attention is then devoted to the cold war, the competition between capitalism and communism, and the process of decolonization. The course ends with a discussion of the collapse of communism and the emerging world order (or disorder). Three hours of lecture, one hour of discussion. Prerequisites: satisfaction of the UC Entry Level Writing requirement; successful completion of MMW 2, MMW 3, MMW 4, and/or MMW 5. Open to Eleanor Roosevelt College students only. (Letter grade only.) (S)
THE M.B.A. CURRICULUM (NINETY-TWO UNITS)

The M.B.A. curriculum (ninety-two units) is made up of a set of core disciplinary and skill-oriented courses with an emphasis on industry sectors, unstructured electives, and the Professional Seminar. The basic curriculum is the same for the full-time and Flex students.

Industry Sector Emphasis

The Rady School’s M.B.A. is designed to allow students to develop depth in industry sectors of particular interest. Selection of an industry is not required. The program combines a solid core, an integrative course sequence focused on innovation, a strong elective curriculum, a commitment to leadership development, and an emphasis on cutting-edge industry sectors.

Core Curriculum

The core curriculum provides a comprehensive education in the fundamentals of business and management and lays a strong foundation for further study.

Electives

Students may choose from electives in the full range of business and management disciplines, including accounting, finance, management, marketing, operations and information technology, and strategy. In addition, students may, with approval, take graduate courses offered elsewhere on campus. Prospective students are advised to consult the RSM Office of Admissions for a list of planned elective courses.

Professional Seminar

The Professional Seminar is a one-credit course offered each quarter. The seminar brings business leaders and experts to campus to speak to students and provides workshops focused on professional and leadership development and on personal and career effectiveness. The seminar may be taken multiple times for credit.

Internships

Full-time M.B.A. students are strongly encouraged to participate in internships during the summer between the two years of the academic program. Part-time internships are also available during the academic year. Internships are coordinated through M.B.A. Career Connections, the school’s career center.

Executive Mentor Program

The Rady School’s Executive Mentor program matches small groups of M.B.A. students with senior business executives. Mentors work directly with their groups, offering perspective, guidance, and expertise based on their deep experience in business. Mentors help guide M.B.A. students as they map out areas for personal and professional development, gain understanding of career progression and the skills and abilities required for successful leadership, and seek feedback about opportunities and areas of concern.

Career Services

M.B.A. Career Connections, the Rady School’s career center, provides students with expertise, guidance, and resources to successfully manage their careers. Services and resources of M.B.A. Career Connections are available to all M.B.A. students, with some limitations for those sponsored by their employers. For full-time M.B.A. students, the center’s personalized approach to career management begins before the student’s first quarter and continues throughout the program. M.B.A. Career Connections actively works to identify opportunities for students and to enable students to build strong professional networks.

Career services include career assessment, individual career coaching, career fairs, workshops, employer presentations and panels, internship and career employment listings, and on-campus interviews. Specialized M.B.A. career workshops focus on resume writing, interviewing skills (including videotaped mock interviews), effective job search strategies, and job offer evaluation and negotiation.
THE PH.D. IN MANAGEMENT

The Rady School offers a Ph.D. in management designed to prepare graduates for careers in academic research. Only students who intend to pursue a doctorate should apply; the department does not enroll students who seek a master's degree as a terminal degree.

Students with undergraduate preparation in various areas of the social and physical sciences may apply to the program. Students who elect to specialize in management science and finance are required to have additional mathematical knowledge, such as advanced calculus and statistics.

To be considered for admission candidates must:
- Hold an undergraduate degree from an accredited college or university.
- Complete the UCSD Application for Admission with application fee.
- Submit test scores from the Graduate Management Admissions Test (GMAT) or Graduate Record Examination (GRE) taken within five years of the date of application. Official Test of English as a Foreign Language (TOEFL) exam scores are required of applicants whose primary language is not English or who graduate from a university at which the language of instruction was not English.
- Submit two copies of official transcripts from all colleges and universities attended.
- Submit three letters of recommendations that speak to the candidate's potential as a researcher.
- Submit a statement of purpose.
- Take “Mathematics for Economists” from the UCSD economics department prior to the start of the first fall quarter.

Note: At the discretion of the Admissions Committee, personal interviews may be required.

Program instruction includes formal core and domain/methodology course work, directed study in close consultation with faculty in preparation for a research career, and individual research required for the student's dissertation. The core curriculum consists of a mathematics review and two course sequences designed to ensure that students are educated in the fundamentals of economic and social sciences. Individual students may be required to take additional courses depending upon educational background. The domain/methodology course requirement helps the student acquire the deep domain knowledge and methodological skills required to conduct research in his or her areas of interest.

The main Ph.D. requirements are that a student completes the core and elective course work, qualifying examinations, original research papers and presentations, a dissertation acceptable to the doctoral committee, and a final oral examination on the dissertation. Rather than a separate qualifying exam on each topic, students will be required to pass graduate course exams with a cumulative GPA of 3.6. If a student does not have the 3.6 (A-) average, the topic qualifying exams will be required.

Ph.D. students must be in residence a total of six quarters, three of which must be spent in continuous residence at the Rady School on the San Diego campus. A minimum of three quarters of residency must pass between the date of formal advancement to candidacy and the date of the final examination.

Nonresident students who have failed to establish California residency after the first year will be responsible for their own tuition.

Normative time (defined as that period of time in which students under normal circumstances are expected to complete their doctoral program) is four to five years, based on the student's background and progress. The maximum length of time that a student may remain a pre-candidate for the Ph.D. degree is three years. Total university support cannot exceed six years. Total registered time at UCSD cannot exceed seven years.

A detailed description of the Ph.D. program is available on the Internet at http://management.ucsd.edu/grad/ or by contacting the Ph.D. program coordinator at radyphd@ucsd.edu. Residence and other campuswide regulations are described in the graduate studies section of this catalog.

THE ACCOUNTING MINOR

The Rady School of Management's accounting minor is designed to provide students a breadth of understanding of accounting theory, practices, and applications. The minor will appeal to students who envision careers in the accounting profession. Because of accounting's broad application, these careers would span across public accounting firms, corporate accounting departments, and government, nonprofit, and nongovernmental organizations. For many students, this will be their first step in achieving a Certificate in Public Accounting, CPA.

ACCOUNTING MINOR REQUIREMENTS

The accounting minor will consist of seven courses that cover the key accounting principles, processes, and applications. Required courses include two lower-division courses and five upper-division courses:

Lower-Division Courses

MTG 4. Financial Accounting or Econ. 4: Financial Accounting
MTG 5. Managerial Accounting

Upper-Division Courses

MTG 131A. Intermediate Accounting A
MTG 131B. Intermediate Accounting B
MTG 132. Auditing
MTG 135. Federal Taxation—Companies
MTG 136. Advanced Accounting

In order to count toward the minor, all courses must be taken for a letter grade and students must earn a C– or better in each course. Lower-division transfer credits for courses that are clearly equivalent in scope and content to lower-division courses required for the accounting minor will be accepted from regionally accredited United States institutions and from foreign institutions recognized by the Rady School of Management.

C.P.A. Accounting Requirements

A student who completes nine Rady accounting courses (the seven courses required for the minor plus two electives for a total of thirty-six quarter units) will have met the accounting portion of the educational requirement for their C.P.A.
MGTV 134. Federal Taxation—Individuals (4)
Covers theory and practical application of federal income tax regulations for individuals pertaining to gross income, adjusted gross income, itemized deductions, business operations, passive activities, property transactions, deferred taxes, tax avoidance, and reporting standards. Prerequisite: MGT 132.

MGTV 135 Federal Taxation—Companies (4)
Covers the theory and practical application of federal income tax regulations for corporations and other enterprisers pertaining to formulations, annual operations, distributions, liquidations, reorganizations, affiliations, and reporting standards. Prerequisite: MGT 132.

MGTV 136. Advanced Accounting (4)
Covers accounting topics related to consolidated financial statements, variable interest entities, foreign currency translation, segment reporting, and business combinations. Prerequisite: MGT 135.

MGTV 164. Organizational Leadership (4)
Will study alternative organizational structures, their stakeholders and cultures and use in meeting strategic enterprise priorities. Insights into motivation, leadership, decision making, communication styles, and change management. Attention given to what the organization measures, controls, and rewards. Prerequisite: upper-division standing.

MGTV 166. Business Ethics and Corporate Responsibility (4)
Will cover ethical conduct issues for leaders from a wide array of organizations and industries including consideration of differences among global trading partners. The issues impacting corporate responsibility will be examined as will full-cycle cost analysis of products and services. Prerequisite: upper-division standing.

MGTV 172. Business Project Management (4)
Addresses effective practices for management of business projects. Includes both project management processes—scheduling, milestone setting, resource allocation, budgeting, risk mitigation—and human capital management—communication, teamwork, leadership. Also considers requirements for effectively working across functional and organizational boundaries. Prerequisite: upper-division standing.

MGTV 174. Supply Chain and Operations Management (4)
Will cover process design and optimization, inventory control and forecasting, vendor selection and management, operations, planning and management, global distribution techniques, material, labor, and overhead costing, and work-in-process tracking and valuation, quality control along with organizational issues. Prerequisite: upper-division standing.

MGTV 181. Enterprise Finance (4)
Will cover debt and equity financing of the enterprise, the role of commercial banks, venture firms, and investment banks; along with enterprise valuation, cash flow management, capital expenditure decisions, return on investment, economic value added, and foreign currency translation. Prerequisite: upper-division standing.

MGTV 199. Directed Independent Study (4)
Directed individual study or research by special arrangement and under supervision of a faculty member. Prerequisites: consent of instructor and departmental approval; approved Special Studies form.

M.B.A. APPROVED COURSE LIST

MGTV 201. Marketing Strategy (4)
Addresses formulation and implementation of marketing strategy, based on an integrative view of competitive brand strategy over the product life cycle. Provides a framework for developing marketing strategies yielding sustainable competitive advantage based on customer, competitor, industry, and environmental analysis. Prerequisite: admission to degree program or consent of instructor.

MGTV 202. Research for Marketing Decisions (4)
Methods and applications of qualitative and quantitative market research. Instructional methods include problem formulation, research design, questionnaire construction, and sampling to yield the most valuable information, and on the proper use of statistical methods. Prerequisite: admission to degree program or consent of instructor.

MGTV 203. Consumer Behavior (4)
The course identifies the factors that influence the selection and usage of products and services. Students will be introduced to problems/decisions that include evaluating behavior; understanding the consumers' decision process, and strategies to control consumer behavior. Prerequisite: admission to M.B.A. program or consent of faculty.

MGTV 204. Marketing Communications (4)
This course differentiates decisions/principles considered when developing an overall communications and promotion strategy. Key decisions include the promotional mix, the design, implementation and evaluation of communications strategies, and the thinking required to develop a creative strategy. Prerequisite: admission to M.B.A. program or consent of faculty.

MGTV 209. Topics in Marketing (2 or 4)
Introduces advanced topics of special interest in marketing. May be repeated for a maximum of eight credits if the topics are substantially different. Prerequisite: admission to M.B.A. program or consent of faculty.

MGTV 210. Regulation and Innovation (4)
Addresses the complex role of regulation in business innovation. Includes legal issues such as how to structure a business, whether to seek intellectual property protection, and how to raise capital or formulate exit strategies. Prerequisite: core finance course or consent of instructor.

MGTV 211. CEO, the Board of Directors and Corporate Governance (4)
Provides an understanding of relationships among shareholders, managers, and boards. Focuses on the office of the chief executive officer and on the board of directors, including the roles and responsibilities of directors, and the legal, economic, managerial, and psychological issues they confront. Prerequisite: admission to M.B.A. program or consent of instructor.

MGTV 219. Topics in Corporate Governance (2 or 4)
Introduces advanced topics of special interest in corporate governance. May be repeated for a maximum of eight credits if the topics are substantially different. Prerequisite: admission to M.B.A. program or consent of faculty.

MGTV 220. Opportunity and Business Model Analysis (4)
Builds on core management courses and deals with identifying and assessing new technological and product opportunities. Assessment methods and frameworks will be introduced for technologies and opportunities. Various business models to profitably address market opportunities will also be discussed. Prerequisite: core finance course (MGTV 408) or consent of instructor.

MGTV 221. Topics in Innovation (2 or 4)
Advanced topics in business innovation, delivered by lecture, case discussion, and online instruction. Prerequisite: admission to M.B.A. program or consent of instructor.

MGTV 222. Creativity and Innovation (4)
Focuses on fostering and maintaining creativity in entrepreneurial ventures and, more broadly, in general management. Reading materials, cases, classroom, and home exercises will help students understand and be able to use creativity in their own working lives. Prerequisite: admission to M.B.A. program or consent of instructor.

MGTV 223. Topics in International Business (2 or 4)
Introduces advanced topics of special interest in international business (e.g., global supply chain and the rise of Mexican maquiladoras; entrepreneurship in Russia). May be repeated for a maximum of eight credits if the topics are substantially different. Prerequisite: admission to M.B.A. program or consent of faculty.

MGTV 230. Strategic Cost Management (4)
The course details the knowledge and analytical skills necessary to use accounting cost information as a basis for formulating and evaluating corporate strategies. Sessions focus on the principles of strategic positioning analysis, value chain analysis, and cost driver analysis. Prerequisite: admission to M.B.A. program or consent of faculty.

MGTV 239. Topics in Accounting (2 or 4)
Introduces advanced topics of special interest in accounting. May be repeated for a maximum of eight credits if the topics are substantially different. Prerequisite: admission to M.B.A. program or consent of faculty.

MGTV 240. Decision Analysis (4)
Provides practical techniques to help structure decision problems and analyze them quantitatively. Techniques help thinking clearly about objectives, alternatives, consequences, and uncertainties, and enable logical judgments with other types of information. Prerequisite: admission to M.B.A. program or consent of faculty.

MGTV 249. Topics in Decision Sciences (2 or 4)
Introduces advanced topics of special interest in management and decision sciences. May be repeated for a maximum of eight credits if the topics are substantially different. Prerequisite: admission to M.B.A. program or consent of faculty.

MGTV 250. Biotechnology Industry, Structure, and Strategy (4)
Provides a business overview of the life-science industry, its major market segments, financial structure, and financing strategies. Develops an understanding of major industry issues and strategies, including new product development, financing, partnering and alliances, emerging trends, ethical and policy issues. Prerequisite: completion of M.B.A. core curriculum or consent of instructor.

MGTV 251. Topics in Business Strategy (2 or 4)
Advanced topics in business strategy. Instructional methods include face-to-face lecture sessions and case discussions. Prerequisite: admission to M.B.A. program or consent of instructor.

MGTV 259. Global Business Intensive (2)
Introduces advanced topics in global business, with a regional emphasis. Instructional methods include lectures, case presentations, readings, and discussions. A substantial portion of learning outcomes will be met by visiting students.
businesses in another world region, observing operations, and interviewing executives. The visit to the foreign region will typically be one to two weeks and may occur outside the normal academic year. Prerequisites: admission to M.B.A. program or consent of faculty.

MGT 260. Negotiation (4) Examines methods of conflict resolution needed for effective management in a constantly changing business environment. Applies these tools to the broad spectrum of negotiation problems faced by the manager and professional. Includes simulations, role playing, and cases. Prerequisite: admission to M.B.A. program or consent of instructor.

MGT 269. Topics in Organizational Behavior (2 or 4) Introduces advanced topics of special interest in management and organizational behavior. May be repeated for a maximum of eight credits if the topics are substantially different. Instructional methods include face-to-face lecture, case presentations, assigned readings, and online group discussions. Prerequisite: admission to M.B.A. program or consent of faculty.

MGT 270. Project Management (4) Provides management concepts and tools to enable the more effective design, planning, and control of projects. Includes both the qualitative and quantitative aspects of project management. Prerequisite: admission to M.B.A. program or consent of instructor.

MGT 271. Technology Strategy (4) Outlines tools for formulating and evaluating technology strategy. Includes an introduction to the economics of technical change, models of technological evolution, and models of organizational dynamics and innovation. Provides an understanding of how technology firms gain and sustain competitive advantage. Prerequisite: admission to M.B.A. program or consent of instructor.

MGT 272. New Product Development (4) Provides comprehensive analytical coverage of the new-product development process, focusing on the basic tools, methods, and organizational structures used in new-product development and management. Prerequisite: admission to M.B.A. program or consent of instructor.

MGT 273. Supply Chain Management (4) Describes the systems approach to managing the entire flow of information, materials, and services from raw materials suppliers through factories and warehouses to the end customer, which is the key to productivity and competitiveness of manufacturing and service enterprises. Prerequisite: admission to M.B.A. program or consent of faculty.

MGT 279. Topics in Operations and Technology (2 or 4) Introduces advanced topics of special interest in management and value systems. May be repeated for a maximum of eight credits if the topics are substantially different. Instructional methods include face-to-face lecture, case presentations, assigned readings, and online group discussions. Prerequisite: admission to M.B.A. program or consent of faculty.

MGT 280. New Venture Finance (4) Focuses on the financing of new ventures and technological innovation. Includes perspectives of the entrepreneur and the investor, investigating the venture-capital industry and for other technology-driven firms. Develops managerial communication skills. Provides an introduction to case study and to ethical issues confronting managers in technology or science-driven firms. Develops managerial communication skills. Prerequisite: M.B.A. student or departmental stamp.

MGT 407. Marketing (4) By taking an analytical approach to the study of marketing principles, this course provides an understanding of customers and competitors as a basis for developing, pricing, promoting, and distributing goods and services that satisfy customer and organizational objectives. Prerequisite: M.B.A. student or departmental stamp.

MGT 408. Finance (4) Through lecture and online delivery, this course will focus on the strategic management of technology-driven firms, providing an understanding of challenges of finance in start-up and small- and medium-sized enterprises. Prerequisite: M.B.A. student or departmental stamp.

MGT 409. Organizational Strategy and Human Resource Management (4) After identifying characteristics common to technology-driven firms, the implications of living in, managing, and leading such an organization are explored. Covers skills such as leadership of project teams and negotiations. Prerequisite: M.B.A. student or departmental stamp.

MGT 410. Strategy (4) Through lecture and online delivery, this course explores the strategic management of technology-driven firms focusing on the analytical tools and techniques that support strategy formulation and the related managerial skills and decision processes that foster strategy implementation. Prerequisite: M.B.A. “stamp” or departmental stamp.

MGT 412. Lab to Market: Opportunity and Business Model Analysis (4) An integrated examination of competencies needed to transform innovations into profitable market opportunities. Focus on processes to generate ideas, which are viable business opportunities, and evolve them into products and businesses. Prerequisite: M.B.A. student or departmental stamp.

MGT 413. Operations, Information Systems, and Data Analysis (4) Through lecture and online delivery, students will be familiarized with the problems and issues confronting operations managers, and to introduce language, conceptual models, and analytical techniques that are broadly applicable in confronting such problems. Prerequisite: M.B.A. student or departmental stamp.

MGT 414A. Lab to Market Workshop I (4) Through lecture and online delivery, provides broad coverage of leading edge developments in technical and scientific research, with an eye to their potential applicability in business. Provides basis for project-based Lab to Market Workshop II. An IP grade will be awarded at the end of the quarter. Final grade will not be given until the completion of MGT 414B. Prerequisite: M.B.A. student or departmental stamp.

MGT 414B. Lab to Market Workshop II (4) Project-based course, requiring identification and completion of major project assessing potential business value of emerging or potential technology or science. Students work individually or in teams. Periodic class meetings include presentation of interim and final reports. Prerequisite: M.B.A. “stamp” or departmental stamp.

MGT 490A. Special Topics in Marketing (4) Through lecture and online delivery, a course at an advanced level on marketing topics. Will fulfill the required elective for students in Communication and Information Technology Services (CITS) Management track. Prerequisite: M.B.A. student or departmental stamp.

MGT 490B. Special Topics in Marketing (4) Through lecture and online delivery, a course at an advanced level on marketing topics. Will fulfill the required elective for students in Management and the Life Sciences and Health Industries track. Prerequisite: M.B.A. student or departmental stamp.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 208A</td>
<td>Introduction to Management Research A (4)</td>
</tr>
<tr>
<td></td>
<td>This is the first course in a three-course sequence that introduces students</td>
</tr>
<tr>
<td></td>
<td>to the various methodologies and research paradigms employed in management</td>
</tr>
<tr>
<td></td>
<td>research. This course covers fundamentals of empirical research methods,</td>
</tr>
<tr>
<td></td>
<td>including research design, reliability and validity of measurements, theory</td>
</tr>
<tr>
<td></td>
<td>building and hypothesis testing, and some history of science. Prerequisites:</td>
</tr>
<tr>
<td></td>
<td>admission to Management Ph.D. program; others consent of instructor.</td>
</tr>
<tr>
<td>MGT 208B</td>
<td>Introduction to Management Research B (4)</td>
</tr>
<tr>
<td></td>
<td>Sequence introduces students to various management research and methodological</td>
</tr>
<tr>
<td></td>
<td>paradigms, and discusses theory development, building, and validation</td>
</tr>
<tr>
<td></td>
<td>approaches. Students with additional need for mathematical/analytical</td>
</tr>
<tr>
<td></td>
<td>training may be asked to take additional courses that prepare for the rigors</td>
</tr>
<tr>
<td></td>
<td>of the program. Prerequisite: MGT 208A.</td>
</tr>
<tr>
<td>MGT 208C</td>
<td>Introduction to Management Research C (4)</td>
</tr>
<tr>
<td></td>
<td>Sequence introduces students to various management research and methodological</td>
</tr>
<tr>
<td></td>
<td>paradigms, and discusses theory development, building, and validation</td>
</tr>
<tr>
<td></td>
<td>approaches. Students with additional need for mathematical/analytical</td>
</tr>
<tr>
<td></td>
<td>training may be asked to take additional courses that prepare for the rigors</td>
</tr>
<tr>
<td></td>
<td>of the program. Prerequisite: MGT 208B.</td>
</tr>
<tr>
<td>MGT 225.</td>
<td>Behavioral Economics (4)</td>
</tr>
<tr>
<td></td>
<td>Introduction to formal and predictive approaches to incorporating behavioral</td>
</tr>
<tr>
<td></td>
<td>regularities into economic theory. Covers developments in generalizing</td>
</tr>
<tr>
<td></td>
<td>conventional economic models to allow patterns of behavior that appear to</td>
</tr>
<tr>
<td></td>
<td>be common but are paradoxical for conventional models based on assumptions of</td>
</tr>
<tr>
<td></td>
<td>rationality. Prerequisites: MGT 208A-B-C, Econ. 200A-B-C.</td>
</tr>
<tr>
<td>MGT 245.</td>
<td>Theory of Technology and Operations Management (4)</td>
</tr>
<tr>
<td></td>
<td>This course addresses classical operations management models in inventory and</td>
</tr>
<tr>
<td></td>
<td>capacity planning and control leading up to models of supply chain and</td>
</tr>
<tr>
<td></td>
<td>supplier relationships. Prerequisites: MGT 208A-B-C, Econ. 200A-B-C.</td>
</tr>
<tr>
<td>MGT 246.</td>
<td>Research in Management and Technology Strategy (4)</td>
</tr>
<tr>
<td></td>
<td>This course covers the management of technology and innovation emphasizing</td>
</tr>
<tr>
<td></td>
<td>product family design, market segmentation, technology selection, and product</td>
</tr>
<tr>
<td></td>
<td>management. Prerequisites: MGT 208A-B-C, Econ. 200A-B-C.</td>
</tr>
<tr>
<td>MGT 247.</td>
<td>Management and Marketing Science Models (4)</td>
</tr>
<tr>
<td></td>
<td>Fundamentals of analytical models in operations and marketing including</td>
</tr>
<tr>
<td></td>
<td>product positioning models, choice models, pricing models, and distribution</td>
</tr>
<tr>
<td></td>
<td>models. Interactions between the supply and demand in new product issues are</td>
</tr>
<tr>
<td></td>
<td>stressed for managerial decision making about operations and marketing</td>
</tr>
<tr>
<td></td>
<td>variables. Prerequisite: MGT 208C.</td>
</tr>
<tr>
<td>MGT 255.</td>
<td>Psychology and Decision Making (4)</td>
</tr>
<tr>
<td></td>
<td>This course introduces students to theories and research in the field of</td>
</tr>
<tr>
<td></td>
<td>individual judgment and decision making. Topics include judgment under</td>
</tr>
<tr>
<td></td>
<td>uncertainty, the psychology of risk, choice, decision framing, prospect</td>
</tr>
<tr>
<td></td>
<td>theory, mental accounting, context effects, task effects, and regret.</td>
</tr>
</tbody>
</table>

Prerequisites: admission to management Ph.D. program; others consent of instructor.
Marine Biodiversity and Conservation

PROGRAM DIRECTOR
Richard Norris, Ph.D., Professor, Geosciences, SIO

ASSOCIATE DIRECTORS
Josh Graff Zivin, Ph.D., Associate Professor of Economics, IRPS
Theodore Groves, Ph.D., Professor, Department of Economics
Kathryn Mengerink, J.D, Ph.D., Director, Ocean Program, Environmental Law Institute, Lecturer, SIO
Stuart Sandin, Ph.D., Assistant Researcher Marine Ecology, SIO
Jennifer Smith, Ph.D., Assistant Professor, Department of Economics, Senior Scientist, NOAA SWFSC
Dale Squires, Ph.D., Adjunct Professor, Department of Economics, Senior Scientist, NOAA SWFSC

OFFICE: La Jolla Village Professional Center
8950 Villa La Jolla Drive, Suite A212
(858) 534-9161
E-mail: mbc@ucsd.edu
http://mbc.ucsd.edu

The master of advanced studies (M.A.S.) in Marine Biodiversity and Conservation is a unique program of study equipping its graduates with the knowledge they need to improve conservation of marine biodiversity in the world’s most diverse and threatened eco-regions through development of local capacity and science-based management tools. Led by faculty of Scripps Institution of Oceanography (SIO), the program is designed to teach current and future professionals about marine ecosystems from the scientific, economic and policy perspectives, as well as provide important cultural and communication skills. The degree is most appropriate for marine resource managers in all regions of the world, practicing marine science professionals who wish to broaden their understanding and influence in this arena, science policy analysts and advocates, and natural scientists interested in obtaining a more firm grounding in the public policy and economics of marine conservation.

The M.A.S. in Marine Biodiversity and Conservation is a full-time, self-supporting degree program that most students complete in a twelve-month period, mid-June through mid-June each year. The UC San Diego graduate division confers the M.A.S. degree and the Center for Marine Biodiversity and Conservation at SIO is responsible for the academic management of the curriculum. UC San Diego Extension administers the program and provides student advising and career counseling services.

ADMISSION
New students are admitted in the summer (June) of each academic year. Prospective candidates should submit and complete the official UCSD online graduate application for admission, the application fee, one set of official transcripts from each institution attended after high school, three letters of recommendation, and a current résumé or c.v. The GRE/GMAT is not required. Candidates must normally have a minimum of three years of relevant work experience. International applicants must submit official scores from the Test of English as a Foreign Language (TOEFL). The application deadline is January 31 for the summer through spring academic program.

PROGRAM OF STUDY
The full-time degree program is designed to be completed in one year. In the summer session, classes are scheduled five days a week, eight hours a day. In the fall, summer, and spring, students take courses that are held during regularly scheduled university class hours. Students are required to complete forty-eight units of courses, comprising forty core units, including a six-unit capstone project, and eight elective units.

COURSES
For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

CORE CURRICULUM
SIO 295S. Introduction to Marine Biodiversity and Conservation—Seminar (8)
Lectures on ecological, economic, social, and legal issues related to marine biodiversity and case studies on socio-economic and legal issues. Students are expected to attend field trips at sea and to various sites around San Diego County as part of the corequisite course. Students who have taken SIO 295S may not receive credit for SIO 295S. Prerequisite: consent of instructors. Corequisite: SIO 295LS and M.A.S. students only.

SIO 295LS. Introduction to Marine Biodiversity and Conservation—Lab (8)
Laboratory work on major biological taxa, field trips on biodiversity in situ, computer labs for informatic tools. Students are expected to attend field trips at sea and to various sites around San Diego County as part of the course. Students who have taken SIO 295S may not receive credit for SIO 295LS. Prerequisite: consent of instructor. Corequisite: SIO 295S and M.A.S. students only.

SIO 286. Marine Science, Economics, and Policy (4)
This course investigates global issues in marine conservation and potential policy solutions. The approach is interdisciplinary, fast paced, and discussion oriented. Students will become acquainted with sufficient background in marine biology, ecology, marine and conservation economics, international law and policy as preparation for participation in discussion on real-world issues in marine conservation. Topics and instructors change each quarter. Prerequisite: graduate standing or consent of instructor.

MAS MBC students are required to take a minimum of four units of economics, and a minimum four units of a policy/communications course as approved by the MAS MBC program chair.

MBC 296. Capstone Independent Study Project (6)
Building on the knowledge and experience gained from the entire curriculum of the Master’s in Marine Biodiversity and Conservation (M.A.S.-MBC) program, students will design and present a specific marine conservation project. Limited to registered students in MAS-MBC program. Prerequisite: SIO 286. (F,W)

MBC 258. Special Topics/Marine Biology–MBC M.A.S. Forum (1)
Required course for M.A.S.-MBC students will focus on development of M.A.S. Capstone Projects and discussions covering marine conservation issues, including informal student presentations on political, economic, historical, educational, and natural science issues related to conservation and analysis of marine biodiversity. Prerequisites: SIO 295S and SIO 295LS summer courses. Limited to registered students in M.A.S. Marine Biodiversity and Conservation program. (S/U grades only.) Jackson, R. Norris (F,W,S)

Electives. Varies (8)
Students enroll in eight elective units of course work relating to marine biodiversity and conservation issues that are approved by the MAS MBC program chair.

2010-2011 UC SAN DIEGO GENERAL CATALOG • MARINE BIODIVERSITY AND CONSERVATION 1
Materials Science and Engineering Program

PROFESSORS
Sungho Jin, Ph.D., MAE, Program Director
Gustaf Arrenius, Ph.D., Emeritus, SIO
Robert J. Asaro, Ph.D., SE
David J. Benson, Ph.D., MAE
Ami Berkowitz, Ph.D., Emeritus, Physics
John E. Crowell, Ph.D., Chemistry and Biochemistry
Sadik Esener, Ph.D., ECE, NanoEngineering
Yeshaiahu Fainman, Ph.D., ECE
Marye Anne Fox, Ph.D., Chemistry and Biochemistry
Chancellor
Eric Fullerton, Ph.D., ECE
Yuan-Cheng Fung, Ph.D., Emeritus, Bioengineering
David Gough, Ph.D., Bioengineering
Gilbert A. Hegermier, Ph.D., SE
Virtasp Karbhari, Ph.D., SE
John B. Kosmatka, Ph.D., SE, MAE
Sergi Krasheninnikov, Ph.D., MAE
Clifford Kubiak, Ph.D., Chemistry and Biochemistry
S.S. Lau, Ph.D., ECE
Hyam Leffert, Ph.D., Pharmacology
Yu-Hwa Lo, Ph.D., ECE
Huey-Lin Luo, Ph.D., Emeritus, ECE
Eduardo Macagno, Ph.D., Biology
M. Brian Maple, Ph.D., Physics
Xanthippe Markenscoff, Ph.D., MAE
Robert Mattrey, Ph.D., Radiology
Joanna McKittrick, Ph.D., MAE
Marc A. Meyers, Ph.D., MAE, Associate Director, Institute for Mechanics and Materials, NanoEngineering
David R. Miller, Ph.D., Emeritus, MAE
Hidenori Murakami, Ph.D., MAE
Siavouche Nemat-Nasser, Ph.D., MAE, Director, Center of Excellence for Advanced Materials
Vitali F. Nesterenko, Ph.D., MAE
M. Lea Rudee, Ph.D., Emeritus, ECE
Michael J. Sailor, Ph.D., Chemistry and Biochemistry
Geert W. Schmid-Schoenbein, Ph.D., Bioengineering
Ivan K. Schuller, Ph.D., Physics
Jan Talbot, Ph.D., NanoEngineering
Frank E. Talke, Ph.D., MAE, CMRR Endowed Chair
Yitzhak Tor, Ph.D., Chemistry and Biochemistry
Charles W. Tu, Ph.D., ECE
George Tynan, Ph.D., MAE
Kenneth S. Vecchio, Ph.D., Chair, Department of NanoEngineering
Joseph Wang, Ph.D., NanoEngineering
James K. Whitesell, Ph.D., Chemistry and Biochemistry
Edward T. Yu, Ph.D., ECE
Paul Yu, Ph.D., ECE

ASSOCIATE PROFESSORS
Prabhakar Bandaru, Ph.D., MAE
Richard K. Herz, Ph.D., NanoEngineering
Yu Qiao, Ph.D., Structural Engineering

ASSISTANT PROFESSORS
Adah Almutairi, Ph.D., Skaggs School of Pharmacy and Pharmaceutical Sciences
Gaurav Arya, Ph.D., NanoEngineering
Jennifer Cha, Ph.D., NanoEngineering
Karen Christman, Ph.D., Bioengineering
Adam Engler, Ph.D., Bioengineering
Gabriel A. Silva, M.Sc., Ph.D., Bioengineering and Ophthalmology
Michael Tauber, Ph.D., Chemistry and Biochemistry
Shyni Varghese, Ph.D., Bioengineering
Deli Wang, Ph.D., ECE

ADJUNCT PROFESSOR
Martin Haas, Ph.D., Biology

Student Affairs: Engineering Building 2, Room 170
Warren College

http://matsci.ucsd.edu

Materials science and engineering is concerned with the structure, properties, and applications of materials. The university-wide Materials Science and Engineering Program (MSE) at UC San Diego aims to provide fundamental knowledge for understanding of materials with the objective of predicting, modifying, and tailoring the properties of materials to yield enhanced material performance.

The foundations of materials science are the basic sciences of physics, chemistry, mathematics, and engineering principles. The interdisciplinary nature of the program at UCSD is ideally suited to address this requirement. The graduate students in the Materials Science and Engineering Program benefit from the unique and broad combination of faculty members and research facilities existing at UCSD, in the Departments of Mechanical and Aerospace Engineering, Electrical and Computer Engineering, NanoEngineering, Physics, Chemistry and Biochemistry, Bioengineering, Structural Engineering, Scripps Institution of Oceanography, and Scripps Institution of Oceanography as well as the School of Medicine and the Division of Biological Sciences. Students pursuing their M.S. or Ph.D. degree in the MSE Program can have any faculty member from these participating departments and schools in UCSD as their thesis advisor or co-advisor, based on matching of the interests and/or financial support arrangements.

Of particular emphasis within the program are: a study of microstructure-property relationships; design of electronic, superconducting, magnetic, and nano materials for electronic and high-tech device and energy applications; optical and chemical materials for telecom and display applications; biomaterials and medical device materials for biotech applications; experimental investigation and theoretical modeling of the mechanical behavior of materials; and advanced composite materials for civil structures.

THE GRADUATE PROGRAM

The Materials Science and Engineering Program at UC San Diego is interdisciplinary, with participation of faculty members from several departments. Faculty from the following departments participate in the Materials Science and Engineering Program: Mechanical and Aerospace Engineering, Physics, Scripps Institution of Oceanography, Structural Engineering, Electrical and Computer Engineering, NanoEngineering, Chemistry and Biochemistry, Bioengineering, the Division of Biological Sciences, the School of Medicine, and the School of Pharmacy. The director of the program, in consultation with the executive committee, carries out the governance of the program. The executive committee coordinates all affairs of the Materials Science and Engineering Program, including student admissions, degree requirements, graduate courses in materials science given by various participating departments, maintenance of laboratory instructional facilities, seminars, special courses, part-time instructors, and related matters.

Undergraduate preparation for pursuing the M.S. and Ph.D. in materials science and engineering at UCSD would normally include a degree in materials sciences, or in engineering or physical sciences, such as physics, chemistry, biology, geology, and related disciplines. Students are expected to have an adequate mathematics, physics, chemistry, and related basic sciences background, as well as acceptable GPA and GRE scores.

MASTER’S DEGREE PROGRAM

The program offers the M.S. degree in materials science and engineering under both the Thesis Plan I and the Comprehensive Examination Plan II; see “Graduate Studies: Master’s Degree.” The requirements for the M.S. degree are as follows:

1. All students must complete a total of thirty-six units.

2. All students must complete four Mandatory Core Courses and at least two of the six Elective Core Courses:

Mandatory Core Courses
MS 201A-C, MS 227

Elective Core Courses (required to select at least two to fulfill requirements)
MS 205A, MS 251A-B, MS 252, MS 253, PHYS 152A (Physics 211A can replace 152A with advisor’s permission.) See “Courses” for description.

3. Students may include up to twelve units of undergraduate courses. These include the one undergraduate core course, Physics 152A.

4. Enroll in MAT200, as required. See “Courses” for descriptions.

5. Remaining courses to complete the thirty-six unit requirement for the MS degree may be selected from an approved list of graduate courses with the consent of a faculty advisor.

6. Students either complete a thesis (Plan I) or pass a comprehensive examination (Plan II) as described in the “Graduate Studies” section of this catalog.

7. Students must meet all other requirements established by the university.

Students who transfer with some graduate credit or an M.S. from another institution will have their records reviewed by a faculty advisor, and an appropriate individual course of study may be approved.
THE PH.D. PROGRAM

After completing the M.S. degree (or meeting equivalent requirements) and meeting the minimum standard on the comprehensive examination to be admitted to or continue in the Ph.D. program, a student must:

1. Meet all the university's residency and other requirements.

2. Successfully complete three advanced graduate courses (in addition to those required for the M.S. degree) which have been approved by the student's potential dissertation advisor.

3. Enroll in MATS200, as required. See "Courses" for descriptions.

4. Pass the Literature Review Examination. This requirement must be successfully completed within one year after passing the Comprehensive Examination.

5. Pass the Ph.D. Qualifying Examination (Senate Exam) to be advanced to Ph.D. candidacy.

6. Successfully complete and defend a dissertation which, in the opinion of the dissertation committee, contains original work that should lead to publication of at least one significant article in an appropriate refereed journal.

In principle, it should be possible to finish the M.S. degree in three quarters, and a Ph.D. in an additional three years. Ph.D. time limits are as follows:

- Pre-candidacy—four years;
- Support limit—six years;
- Additional three years. Ph.D. time limits are as follows:
 - M.S. degree in three quarters, and a Ph.D. in an additional three years.

THE COMPREHENSIVE EXAMINATION

The examination will consist of twelve questions, two from each of the six core courses. A passing grade is 60 percent for the Master's degree, and 70 percent for the Ph.D. The examination will not exceed six hours in duration. The examination is usually administered the second week in January, and a week after spring quarter finals week in June. Typically, students take the exam after one year of full-time enrollment. This exam may only be retaken once before the end of the second year of study.

THE LITERATURE REVIEW EXAMINATION

The Literature Review Examination tests the student's ability to prepare and present a comprehensive overview of a topic based on existing journal literature. It should be a comprehensive discussion of the literature, scientific theory, problems or theoretical deficiencies, and possible areas of research in some area of materials science and engineering. The topic may be in the general area in which the student plans to pursue his or her thesis research, or it may be in an unrelated field. The topic must be approved by the three faculty member committee in advance of the seminar. The Literature Review Examination is not to be a discussion of the student's research project or their research proposal. A presentation which includes the student's own work which has not been published will constitute a no pass grade. This exam must occur within one year of the student having passed the Comprehensive Examination.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

GRADUATE

200. Graduate Seminar (0)
Each graduate student in the Materials Science and Engineering Program is expected to attend a weekly seminar in materials science or related areas. M.S. students must enroll for three quarters, Ph.D. students for six quarters, as of fall 1995. (S/U grades only.) (F,W,S)

201A. Thermodynamics of Solids (4)
The thermodynamics and statistical mechanics of solids. Basic concepts: equilibrium properties of alloy systems; thermodynamic information from phase diagrams, surfaces, and interfaces, and crystalline defects. Prerequisite: consent of instructor.

201B. Solid State Diffusion and Reaction Kinetics (4)
Thermally activated processes, Boltzmann factor, homogeneous and heterogeneous reactions, solid state diffusion, Fick's laws, diffusion mechanisms, Kirkendall effect, Boltzmann-Matano analysis, high diffusivity paths. Prerequisite: consent of instructor.

201C. Phase Transformations (4)

205A. Imperfections in Solids (4)
Point, line, and planar defects in crystalline solids, including vacancies, self-interstitials, solute atoms, dislocations, stacking faults, and grain boundaries; effects of imperfections on mechanical properties; interactions of dislocations with point defects; strain hardening by micro-obstacles, precipitation, and alloying elements. Prerequisite: consent of instructor.

207. Surface Reactions, Corrosion, and Oxidation (4)

211A. Mechanical Properties (4)
Review of basic concepts in mechanics of deformation; elasticity, plasticity, viscoelasticity, and creep; effects of temperature and strain-rate on inelastic flow; microstructure and mechanical properties; application of basic concepts to selected advanced materials. Prerequisite: consent of instructor. (Cross-listed with MAE 229.)

213A. Dynamic Behavior of Materials I (4)
 Elastic waves in continuum; longitudinal and shear waves. Surface waves. Elastic waves; shock waves. Rankine-Hugoniot relations. Method of characteristics, differential and difference form of conservation equations; dynamic plasticity and dynamic fracture. Shock wave reflection and interaction. Prerequisite: consent of instructor. (F) (Cross-listed with MAE 273A.)

225. Materials for Magnetic Recording (4)
Properties of magnetic materials utilized as magnetic recording media and heads: magnetic structure of oxides and metals; fine particle magnetism; micromagnetic analysis; hysteresis and reversal mechanisms of hard materials; dynamic processes and domain patterns of soft materials; thermal fluctuations; multilayer phenomena; giant magnetoresistance. Prerequisites: undergraduate electromagnetism and solid state physics or consent of instructor. (Cross-listed with ECE 246A.)

227. Structure and Analysis of Solids (4)
Key concepts in the atomic structure and bonding of solids such as metals, ceramics, and semiconductors. Symmetry operations, point groups, lattice types, space groups, simple and complex inorganic compounds, structure/property correlations, structure determination with X-ray diffraction. Ionic, covalent, metallic bonding compared with physical properties. Atomic and molecular orbitals, bands versus bonds, free electron theory. Prerequisite: graduate student or consent of instructor.

236. Advanced Ceramic (4)
Topics include phase equilibria and crystallography, defects and thermodynamics (Kroger-Vink notation), glass science, electrical and ionic transport behavior, Brouwer diagrams, powder synthesis and compaction, sintering theory and grain growth, mechanical, optical, magnetic, electrical properties, fuel cells. Prerequisite: consent of instructor.

240A. Scanning Electron Microscopy and X-Ray Microanalysis (4)
Electron optics, electron-beam-specimen interactions. Image formation in the SEM. The role of specimen and detector in contrast formation. Imaging strategies. X-ray spectral measurements. Qualitative and quantitative microanalysis. Materials specimen preparation. Prerequisite: consent of instructor. The laboratory section will teach the operation of the microscope to conduct material analysis via SEM.

240B. Transmission Electron Microscopy (4)
Operation and calibration of the TEM, lens defects and resolution, formation of images and diffraction patterns, electron diffraction theory (kinematic dynamical), indexing diffraction patterns, diffraction contrast. Quantitative analysis of crystal defects, phase contrast, and specimen preparation. Prerequisite: MS 240A or consent of instructor. The laboratory section will teach the operation of the microscope to conduct material analysis via TEM.

243. Modern Materials Analysis (4)
Analysis of the near surface of materials via ion, electron, and X-ray spectroscopies. Topics to be covered include particle solid interactions. Rutherford Backscattering, secondary ion mass spectroscopy, electron energy loss spectroscopy, particle induced X-ray emission, Auger electron spectroscopy, extended X-ray absorption fine structure and channeling. Prerequisite: consent of instructor. (Cross-listed with ECE 237.)

251A. Electronic and Photonic Properties of Materials (4)
The electronic and optical properties of metals, semiconductors, and insulators. The concept of the band structure. Electronic and lattice conductivity. Type I and Type II superconductivity. Optical engineering using photonic band gap crystals in one-, two-, and three-dimensions. Current research frontiers. Prerequisites: consent of the instructor. (Cross-listed with MAE 265A.)

251B. Magnetic Materials: Principles and Applications (4)
The basis of magnetism: classical and quantum mechanical points of view. Different kinds of magnetic materials. Magnetic phenomena including anisotropy, magnetostriction, domains, and magnetization dynamics. Current frontiers of nano-magnetics research including thin films and particles. Optical, data storage, and biomedical engineering applications of soft and hard magnetic materials. Prerequisites: consent of the instructor. (Cross-listed with MAE 265B.)

252. Biomaterials (4)
This class will cover biomaterials and biomimetic materials. Metal, ceramic, and polymer biomaterials will be discussed. Emphasis will be on the structure-property relationships, biocompatibility/degradation issues and tissue/material interactions. Synthesis and mechanical testing of biomimetic
materials will also be discussed. **Prerequisite:** consent of instructor. (Cross-listed with MAE 266.)

253. Nanomaterials and Properties (4)
This course discusses synthesis techniques, processing, microstructural control, and unique physical properties of materials in nano-dimensions. Topics include nanowires, quantum dots, thin films, electrical transport, electron emission properties, optical behavior, mechanical behavior, and technical applications of nanomaterials. **Prerequisite:** consent of instructor. (Cross-listed with MAE 267.)

Fabrication of Micro-Electro Mechanical Systems (MEMS) by bulk and surface micromachining of single crystal, polycrystal, and amorphous silicon and other materials. Performance issues including electrostatic, magnetic, piezoelectric actuations, residual stresses, deformation. Novel device applications, future trends in smart materials and nano-electro-mechanical (NEMS) systems. **Prerequisite:** consent of instructor. (Cross-listed with MAE 268.)

255. Presentations, Inventions, and Patents (4)
This course covers methodology and skills for oral and written presentations. Topics include preparation of presentation materials, presentation exercise, publication manuscripts, research work proposals, understanding and securing of inventions and intellectual properties, patent applications and licensing. **Prerequisite:** consent of instructor. (Cross-listed with MAE 269.)

256. Energy Materials and Applications (4)
This class will cover the fundamentals/engineering aspects of various energy materials based on metallic, ceramic, semiconductor; and chemical structures and their applications related to solar cells, fuel cells, batteries, fusion energy, and hydrogen storage will be discussed. (Cross-listed with MAE 278.) **Prerequisite:** consent of instructor/department stamp.

257. Polymer Science and Engineering (4)
Quantitative basic understanding of different branches of polymer science varying from polymer chemistry, characterization, thermodynamics, rheological properties, smart materials, self-assembly in biopolymers (natural) and synthetic polymers, and applications of polymers ranging from medicine to structure. (Cross-listed with BENG 242.) **Prerequisite:** graduate standing in bioengineering (BE 75) or materials science (MS 76) or consent of instructor.

258. Medical Device Materials (4)
In this interdisciplinary course, the nature, properties, and applications of various medical device materials will be discussed. The devices include coronary stents, catheters, drug delivery vehicles, and other implant, surgery, or therapeutics related devices. (Cross-listed with MAE 250.)

295. Research Conference (2)
Group discussion of research activities and progress of group members. **Prerequisite:** consent of instructor.

296. Independent Study (4)
Prerequisite: consent of instructor.

299. Graduate Research (1-12)
(S/U grades only.) Subject to the approval of a faculty advisor, students may also choose from the following courses offered by departments participating in the Materials Science and Engineering Program (see the relevant pages of this catalog for descriptions):

MECHANICAL AND AEROSPACE ENGINEERING (MAE)

MAE 229A. Mechanical Properties (4)
MAE 231A. Foundations of Solid Mechanics (4)
MAE 231B. Elasticity (4)
MAE 232A-B-C. Finite Element Methods in Solid Mechanics (4-4-4)
MAE 233A. Fracture Mechanics (4)
MAE 233B. Micromechanics (4)
MAE 238. Stress Waves in Solids (4)
MAE 251. Structure and Analysis of Solids (4)

ELECTRICAL AND COMPUTER ENGINEERING (ECE)

ECE 230A. Solid-State Electronics (4)
ECE 230B. Solid-State Electronics (4)
ECE 230C. Solid-State Electronics (4)
ECE 237. Modern Materials Analysis (4)
ECE 246A. Materials for Magnetic Recording (4)

PHYSICS

Phys. 133/219. Condensed Matter/Materials Science Laboratory (2)
Phys. 211A. Solid-State Physics (5)
Phys. 211B. Solid-State Physics (4)
ASSOCIATE PROFESSORS
Jozsef Balog, Ph.D.
Li-Tien Cheng, Ph.D.
Kiran Kedlaya, Ph.D.
Nitya Kitchloo, Ph.D.
Melvin Leok, Ph.D.
Bo Li, Ph.D.
Cristian Popescu, Ph.D.
Justin D. Roberts, Ph.D.
Daniel S. Rogalski, Ph.D.
Jason Schweinsberg, Ph.D.
Jacob K. Sterbenz, Ph.D.
Glenn Tesler, Ph.D.
Jacques Verstraete, Ph.D.
John J. Wavrik, Ph.D., Emeritus
Ben Weinkove, Ph.D.
Ronghui Xu, Ph.D.

ASSISTANT PROFESSORS
Ery Arias-Castro, Ph.D.
Alina Bucur, Ph.D.
Todd Kemp, Ph.D.
Jiawang Nie, Ph.D.
Dragos Oprea, Ph.D.

SENIOR LECTURERS WITH SECURITY OF EMPLOYMENT
John D. Eggers, Ph.D., Academic Senate Distinguished Teaching Award
Frank B. Thiess, Ph.D., Emeritus

LECTURERS WITH SECURITY OF EMPLOYMENT
Norman A. Shenk, Ph.D., Emeritus
Laura J. Stevens, Ph.D., Emeritus

THE UNDERGRADUATE PROGRAM
The mathematics department offers a wide range of courses in pure and applied mathematics for its majors and for students in other disciplines. The department offers six majors leading to the B.S. degree: mathematics, applied mathematics, mathematics–computer science, joint major in mathematics and economics, mathematics–scientific computation, and probability and statistics, and two leading to the B.A. degree: mathematics-applied science, and mathematics-secondary education. In addition, students can minor in mathematics or mathematics education. The department also has an Honors Program for exceptional students in any of the eight majors. See the sections on major programs and the other areas mentioned above as well as the course descriptions at the end of this section for more specific information about program requirements and the courses offered by the department. You may visit our Web site, http://math.ucsd.edu, for more information, including course Web pages, career advising, and research interests of our faculty.

FIRST-YEAR COURSES
Entering students must take the Mathematics Placement Exam (MPE) prior to orientation unless they have an appropriate score on an AP calculus exam, an appropriate score (600 for Math. 10A; 650 for Math. 20A) on the SAT II Math Level 2 exam, an appropriate score on the International Baccalaureate Higher Level Mathematics Exam, credit by means of a foreign exam (e.g. GCE), or transferable college credit in calculus. The purpose of the MPE is to recommend placement for entering students in Math. 3C, 4C, 10A, or 20A. For more information about the MPE (test dates, test description, sample exams, online practice tests), see the Mathematics Testing and Placement Web site, http://mathtesting.ucsd.edu.

Prerequisites for Math. 3C, 4C, 10A-B-C, 20A-B-C-D-E-F, and 31AH-BH-CH are enforced through TritonLink. Students need to ensure that test scores and transferable college credit are submitted to the Registrar prior to enrollment through WebReg.

Math. 3C is the department’s preparatory course for the Math. 10 sequence, providing a review of algebraic skills, facility in graphing, and working with exponential and logarithmic functions.

Math. 4C is the department’s preparatory course for the Math. 20 sequence, providing a brief review of college algebra followed by an introduction to trigonometry and a more advanced treatment of graphing and functions.

Math. 10A-B-C is one of three calculus sequences. The students in this sequence have completed a minimum of two years of high school mathematics. This sequence is intended for majors in liberal arts and the social and life sciences. It fulfills the mathematics requirements of Revelle College and the option of the general-education requirements of Muir College. Completion of two quarters fulfills the requirement of Marshall College and the option of Warren College and Eleanor Roosevelt College.

The second first-year calculus sequence, Math. 20A-B-C, is taken mainly by students who have completed four years of high school mathematics or have taken a college level precalculus course such as Math. 4C. This sequence fulfills all college level requirements met by Math. 10A-B-C and is required of many majors, including chemistry and biochemistry, bioengineering, cognitive science, economics, mathematics, molecular biology, psychology, MAE, CSE, ECE, and physics. Students with adequate backgrounds in mathematics are strongly encouraged to take Math. 20 since it provides the foundation for Math. 20D-E-F which is required for some science and engineering majors. Note: As of summer 2003, Math. 21C and 21D have been renumbered to Math. 20C and 20D.

Certain transfers between the Math. 10 and Math. 20 sequences are possible, but such transfers should be carefully discussed with an advisor. Able students who begin the Math. 10 sequence and who wish to transfer to the Math. 20 sequence, may follow one of three paths:

1. Follow Math. 10A with Math. 20A, with two units of credit given for Math. 20A. This option is not available if the student has credit for Math. 10B or Math. 10C.

2. Follow Math. 10B with Math. 20B, receiving two units of credit for Math. 20B.

3. Follow Math. 10C with Math. 20B, receiving two units of credit for Math. 20B and two units of credit for Math. 20C.
Credit will not be given for courses taken simultaneously from the Math. 10 and the Math. 20 sequence. The department also offers a three-quarter Honors Calculus sequence in Multivariable Vector Calculus and Linear Algebra. This sequence, Math. 31AH-BH-CH, is designed for well-prepared students who have both a strong aptitude and a deep interest in mathematics and who wish to undertake a challenging series of courses. The sequence has a prerequisite of a score of 5 on the AP Calculus BC exam. These demanding, proof-based courses cover the material in Math. 20F, 20C, and 20E respectively—and entering students with a 5 on the Calculus BC exam should consider starting in the Honors sequence if their major (or minor) program requires them to take, at least, Math. 20A-B-C and 20F. Math. majors who complete the entire three-quarter honors sequence will have also satisfied the requirement of Math. 109 for their major program. They would be able to replace Math. 109 with any four-unit upper-division mathematics elective course.

MAJOR PROGRAMS

The department offers six different majors leading to the B.S. degree: (1) mathematics, (2) applied mathematics, (3) mathematics-computer science, (4) joint major in mathematics and economics, (5) mathematics-scientific computation, and (6) probability and statistics, and two leading to the B.A. degree: (1) mathematics-applied science, and (2) mathematics-secondary education. The specific emphases and course requirements for these majors are described in the following sections. All majors must obtain a minimum 2.0 grade-point average in the upper-division courses used to satisfy the major requirements. Further, the student must receive a grade of C– or better in any course to be counted toward fulfillment of the major requirements. Any mathematics course numbered 100–194 may be used as an upper-division elective. (Note: 195, 196, 197, 198, 199, and 199H cannot be used towards any mathematics major.) All courses used to fulfill the major must be taken for a letter grade. No more than three upper-division courses taken externally from UCSD can be counted towards any major. Special exceptions may be considered via petition.

It is strongly recommended that all mathematics majors review their programs at least annually with a departmental advisor, and that they consult with the Advising Office in AP&M 6016 before making any changes to their programs. Current course offering information for the entire academic year is maintained on the department’s Web page at http://www.math.ucsd.edu. Special announcements are also e-mailed to all majors.

Students who plan to go on to complete a Ph.D. in mathematics should be advised that only the best and most motivated students are admitted. Many graduate schools expect that students will have completed a full sequence of abstract algebra (Math. 100A-B-C) as well as a full sequence of analysis (Math. 140A-B-C). The advanced Graduate Record Exam (GRE) often has questions that pertain to material covered in the last quarter of analysis or algebra. In addition, it is advisable that students consider Summer Research Experiences for Undergraduates.

This is a program funded by the National Science Foundation to introduce students to math research while they are still undergraduates. In their senior year or earlier, students should consider taking some graduate courses so that they are exposed to material taught at a higher level. In their junior year, students should begin to think of obtaining letters of recommendation from professors who are familiar with their abilities.

Note: Math. 20D, E, and F do not need to be taken in order. Math majors are strongly advised to take 20F as early as possible after successfully completing 20C.

EDUCATION ABROAD

Students may be able to participate in the UC Education Abroad Program (EAP) and UC San Diego’s Opportunities Abroad Program (OAP) while still making progress towards the major. Students interested in this option should contact the Programs Abroad Office in the International Center and discuss their plans with the mathematics advising officer before going abroad.

The department must approve courses taken abroad. Information on EAP/OAP can be found in the “Education Abroad Program” section of the UC San Diego General Catalog and the Web site http://pao.ucsd.edu.

MAJOR IN MATHEMATICS

The upper-division curriculum provides programs for mathematics majors as well as courses for students who will use mathematics as a tool in the biological, physical and behavioral sciences, and the humanities.

Required Courses

Lower-Division

1. One of the following sequences:
 a. Calculus: Math. 20A-B-C-D-E-F
 b. Honors Calculus: Math. 31AH-BH-CH, Math. 20D

Upper-Division

2. Mathematical Reasoning: Math. 109 (Note: Students completing Math. 31CH may substitute a four-unit upper-division mathematics elective for Math. 109.)

3. One of the following sequences:
 b. Advanced Calculus: Math. 142A-B and Math. 120A (Math. 140A-B-C recommended for graduate school)

4. One of the following sequences:
 a. Modern Algebra: Math. 100A-B
 b. Modern Applied Algebra: Math. 103A-B and Math. 102 (Math. 100A-B-C recommended for graduate school)

5. Upper-division electives to complete thirteen four-unit courses, chosen from any mathematics course numbered between 100 and 194 (including those taken from the requirements listed above.)

As with all departmental requirements, more advanced courses on the same material may be substituted with written approval from the departmental advisor.

To be prepared for a strong major curriculum, students should complete the last three quarters of the 20 sequence and Math. 109 before the end of their sophomore year. Either Math. 140A-B or 100A-B should be taken during the junior year.

MAJOR IN APPLIED MATHEMATICS

A major in applied mathematics is also offered. The program is intended for students planning to work on the interface between mathematics and other fields.

Required Courses

Lower-Division

1. One of the following sequences:
 a. Calculus: Math. 20A-B-C-D-E-F
 b. Honors Calculus: Math. 31AH-BH-CH, Math. 20D

2. Programming (one of the following):
 a. SE 8A-AL-8 (Intro to Computer Sci: Java)
 b. CSE 11 (Intro to Computer Sci: Java, Accelerated Pace)
 c. MAE 9 (C/C++ Programming)

Upper-Division

3. Mathematical Reasoning: Math. 109 (Note: Students completing Math. 31CH may substitute a four-unit upper-division mathematics elective for Math. 109.)

4. Linear Algebra: Math. 102 or Math. 170A

5. Advanced Calculus: Math. 140A-B or Math. 142A-B

6. One of the following sequences:
 a. Math. 180A-B-C-181A
 b. Math. 180A-181A and any two from Math. 181B-C
 c. Math. 183 or Math. 180A-181A and any three from Math. 170A-B-C-175-179

7. One additional sequence which may be chosen from the list (#6) above or the following list: Math. 110A-120A-130A, 110A-B, 120A-B, 152-184A, 154-184A, 155A-B, 171A-B, 193A-B.

8. Upper-division electives to complete at least thirteen four-unit courses, chosen from any mathematics course numbered between 100 and 194 (including those taken from the requirements listed above) except
 a. Up to twelve units may be taken from outside the department in an approved applied mathematical area. A petition specifying the courses to be used must be approved by an applied mathematics advisor. No such units may also be used for a minor or program of concentration.
 b. MAE 107, Econ. 120A-B-C, cannot be counted toward the thirteen required courses.

To be prepared for a strong major curriculum, students should complete the last three quarters of
the 20 sequence and Math. 109 before the end of their sophomore year.

MAJOR IN MATHEMATICS–SCIENTIFIC COMPUTATION

This major is designed for students with a substantial interest in scientific computation. The program is a specialized applied mathematics program with a concentration in computer solutions of scientific problems.

Required Courses

Lower-Division

1. One of the following sequences:
 a. Calculus: Math. 20A-B-C-D-E-F
 b. Honors Calculus: Math. 31AH-BH-CH, Math. 20D
2. Computer Programming: MAE 9 and (CSE 8A-AL-B or CSE 11)
3. Basic Computation: Math. 15A (or CSE 20) and Math. 15B (or CSE 21) and CSE 12

Upper-Division

4. Mathematical Reasoning: Math. 109 (Note: Students completing Math 31CH may substitute a four-unit upper-division mathematics elective for Math. 109.)
5. Linear Algebra: Math. 102
6. Probability and Statistics: Math. 183 or 180A-181A (Note: No credit for Math. 183 if Math. 180A or 181A taken prior or concurrently.)
7. Analysis: Math. 140A-B or 142A-B
10. Scientific Computing: Math. 179
11. Additional elective upper-division courses to total 15 chosen from the following: Math. 107A-B, 110A-B, 120A-B, 130A-B, 131, 152, 155A-B, 170C, or 175.
 At least 15 upper-division mathematics courses are required for the major, except
 a. Up to 3 upper-division courses may be taken outside the department in an approved scientific computation area in the sciences or engineering. A petition specifying the courses to be used must be approved by a mathematics-scientific computation advisor.
 b. MAE 107, Econ. 120A-B-C, Math. 195, 196, 197, 199, and 199H cannot be counted toward the 13 four-unit upper-division courses.

MAJOR IN MATHEMATICS–PROBABILITY AND STATISTICS

Effective Winter 2007

This major is designed for students with a substantial interest in probability theory and statistics. It is useful preparation for many fields of employment as well as graduate school.

Required Courses

Lower-Division

1. One of the following sequences:
 a. Calculus: Math. 20A-B-C-D-E-F
 b. Honors Calculus: Math. 31AH-BH-CH, Math. 20D
2. Programming (one of the following):
 1. CSE 8A-AL-B (Java)
 2. CSE 11 (Java: Accelerated Pace)
 3. MAE 9 (C/C++)

Upper-Division Mathematics Requirements

3. Mathematical Reasoning: Math. 109 (Note: Students completing Math 31CH may substitute a four-unit upper-division mathematics elective for Math. 109.)
4. Linear Algebra: Math. 102 or Math. 170A
5. Analysis/Advanced Calculus: Math. 140A-B or Math. 142A-B
7. Probability: Math. 180A-B-C
9. One of the following: Math. 181C, 181E, 193A, 193B, 194
10. Computational Statistics: Math. 185
 At least 15 four-unit upper-division mathematics courses are required, except
 a. Two upper-division electives may be outside the department in an approved mathematical area. A petition approved by a math advisor is required.
 b. MAE 107, Econ. 120A-B-C, Math. 195-199 cannot be counted toward the upper-division requirements.

To be prepared for a strong major curriculum, students should complete the last three quarters of the 20 sequence and Math. 109 before the end of their sophomore year.

MAJOR IN MATHEMATICS–APPLIED SCIENCE

This major is designed for students with a substantial interest in mathematics and its applications to a particular field such as physics, biology, chemistry, biochemistry, cognitive science, computer science, economics, management science, or engineering.

Required Courses

Lower-Division

1. One of the following sequences:
 a. Calculus: Math. 20A-B-C-D-E-F
 b. Honors Calculus: Math. 31AH-BH-CH, Math. 20D
2. Programming (one of the following is required):
 a. CSE 8A-AL-B (Intro to Computer Sci: Java)
 b. CSE 11 (Intro to Computer Sci: Java, Accelerated Pace)
 c. MAE 9 (C/C++ Programming)

Upper-Division Applied Science Requirements

8. Seven upper-division courses selected from one or two other departments (these cannot be from mathematics). At least three of these seven upper-division courses must require calculus as a prerequisite.

Students must submit an individual plan for approval in advance by a mathematics department advisor, and all subsequent changes to the plan must be approved by a mathematics department advisor.

MAJOR IN MATHEMATICS–COMPUTER SCIENCE

Graduates of this program will be mathematically oriented computer scientists who have specialized in the mathematical aspects and foundations of computer science or in the computer applications of mathematics.

As of fall 2000, a mathematics–computer science major is not allowed to also minor in computer science in the Computer Science and Engineering department.

The detailed curriculum is given in the list below:

MATHEMATICS–COMPUTER SCIENCE PRE-MAJOR

In October 2001, the Academic Senate approved a minimum GPA requirement of 2.5 in the lower-division mathematics courses required for the mathematics–computer science major. The 2.5 minimum GPA in the lower-division math courses
reflects minimal preparation for the upper-division courses required for the major. Therefore, students entering UCSD as first-year students for the fall 2002 quarter and later and students entering as transfer students for the fall 2003 quarter and later will be held to this requirement. Applications from students entering UCSD on or after the effective dates above will be held until all lower-division math courses for the major are completed and the minimum GPA in those courses of 2.5 can be verified. Students meeting the 2.5 minimum GPA requirement will be accepted into the mathematics–computer science major.

Required Courses

Lower-Division

1. One of the following sequences:
 a. Calculus: Math. 20A-B-C-D-E-F
 b. Honors Calculus: Math. 31AH-BH-CH, Math. 20D
2. Intro to Computer Science—CSE 8A-AL-B
 Introduction to Computer Science: Java, or CSE 11 Introduction to Computer Science: Java (Accelerated)
3. Basic Data Structures and Object-oriented Programming: CSE 12
4. Computer Organization and Systems Programming: CSE 30 (Note: CSE 30 requires CSE 20 or Math. 15A as a prerequisite.)

Upper-Division:

5. Mathematical Reasoning: Math. 109 (Note: Students completing Math. 31CH may substitute a four-unit upper-division mathematics elective for Math. 109.)
7. Theory of Computability: Math. 166 (or CSE 105)
8. Intro to Probability: Math. 180A or 183
9. Combinatorics: Math. 184A
10. Computer Implementations of Data Structures: Math. 176 (or CSE 100)
11. Design & Analysis of Algorithms: Math. 188 (or CSE 101)
12. Eight units from: Math. 170A-B-C, 174, 175, 179 (Note duplication of credit between Math. 174 and 170A-B-C)

JOINT MAJOR IN MATHEMATICS AND ECONOMICS

Majors in mathematics and the natural sciences often feel the need for a more formal introduction to issues involving business applications of science and mathematics. Extending their studies into economics provides this application and can provide a bridge to successful careers or advanced study. Majors in economics generally recognize the importance of mathematics to their discipline. Undergraduate students who plan to pursue doctoral study in economics or business need the more advanced mathematics training prescribed in this major.

This major is considered to be excellent preparation for Ph.D. study in economics and business administration, as well as for graduate studies for professional management degrees, including the MBA. The major provides a formal framework making it easier to combine study in the two fields.

Course requirements of the Major in Mathematics and Economics consist principally of the required courses of the pure mathematics major and the economics/management science major.

Required Courses

Lower-Division

1. One of the following sequences:
 a. Calculus: Math. 20A-B-C-D-E-F
 b. Honors Calculus: Math. 31AH-BH-CH, Math. 20D
2. Intro. to Economics: Econ. 1 and 3

Upper-Division

Fifteen upper-division courses in mathematics and economics, with a minimum of seven courses in each department, chosen from the courses listed below (prerequisites are strictly enforced):

3. Mathematical Reasoning: Math. 109 (Note: Students completing Math. 31CH may substitute a four-unit upper-division mathematics elective for Math. 109.)
5. One of the following: Foundations of Analysis: Math. 140A Advanced Calculus: Math. 142A
7. Microeconomics: Econ. 100A-B-C
8. Econometrics: Econ. 120A-B-C or Math. 180A and Econ. 120B-C or Probability: Math. 180A, 181A and Econ. 120C
9. One of the following:
 a. Macroeconomics: Econ. 110A-B
 or two courses from the following:
 c. Decisions Under Uncertainty: Econ. 171
 d. Introduction to Operations Research: Econ. 172A-B, (Note: 172A is a prerequisite for 172B-C)

Other courses which are strongly recommended are Math. 130B, 131, 131B, 193A-B and 194 and Econ. 109, 113, 175, and 178.

MAJOR IN MATHEMATICS—SECONDARY EDUCATION

This major offers excellent preparation for teaching mathematics in secondary schools. Students interested in earning a California teaching credential from UCSD should contact the Education Studies Program (EDS) for information regarding prerequisites and requirements. It is recommended you contact EDS as early as possible.

Lower-Division Requirements

1. One of the following sequences:
 a. Calculus: Math. 20A-B-C-D-E-F
 b. Honors Calculus: Math. 31AH-BH-CH, Math. 20D
 Recommended:
2. One of the following: Introduction to Computer Science: Java: CSE 8A-AL-B, C/C++ Programming: MAE 9

Upper-Division Requirements

3. Mathematical Reasoning: Math. 109 (Note: Students completing Math. 31CH may substitute a four-unit upper-division mathematics elective for Math. 109)
4. Number Theory: Math. 104A
5. History of Mathematics: Math. 163
6. Practicum in Learning: EDS 129A-B-C (can use EDS 136 and EDS 138 instead of EDS 129A)
8. One of the following: Intro. to Probability: Math. 180A, Statistical Methods: Math. 183
10. One of the following: Modern Algebra: Math. 100A, Applied Linear Algebra: Math. 102, Modern Applied Algebra: Math. 103A
11. One of the following: Foundations of Analysis: Math. 140A, Advanced Calculus: Math. 142A
12. Upper-division courses must total thirteen courses. Upper-division courses must include at least one two-quarter sequence from the following list:

MINOR IN MATHEMATICS

The minor in mathematics consists of seven or more courses. At least four of these courses must be upper-division courses taken from the UCSD Department of Mathematics. Acceptable lower-
division courses are Math. 20D, 20E (or 31CH), and 20F (or 31AH).
Math. 195, 196, 197, 198, 199, and 199H are not acceptable courses for the mathematics minor. A grade of C– or better (or P if the Pass/Not Pass option is used) is required for all courses used to satisfy the requirements for a minor. There is no restriction on the number of classes taken with the P/NP option.
Upper-division courses cannot overlap between major and minor programs.

MINOR IN MATHEMATICS EDUCATION

The education studies mathematics education minor is intended for students interested in understanding how people learn mathematics, including: students considering K-12 teaching as a career; students interested in teaching at the college level; and students who are interested in becoming better, more reflective learners. All majors are welcome, but the Calculus 10 or 20 sequence is a prerequisite requirement for two of the upper-division courses required for the minor. For more information contact Education Studies: http://eds.ucsd.edu/undergraduate/minors.shtml.

MATHEMATICS HONORS PROGRAM

The Department of Mathematics offers an honors program for those students who have demonstrated excellence in the major. Successful completion of the honors program entitles the student to graduate with departmental honors (see Department Honors in the Academic Regulations section).

Requirements for admission to the program are

1. Junior standing
2. An overall GPA of 3.0 or higher
3. A GPA in the major of 3.5 or higher
4. Completion of Math. 109 (Mathematical Reasoning) or Math. 31CH (Hons. Vector Calculus) and at least one of Math. 100A, 103A, 140A, or 142A. (Completion of additional major courses is strongly recommended.)

Applications to the program should be made the spring quarter before the student is at senior standing.

Completion of the honors program requires the following:

1. At least one quarter of the student colloquium, Math. 196 (Note: Math. 196 is only offered in the fall quarter.)
2. At least one Economics honors course: Econ. 100AH, 100BH, 110AH, 110BH, 120AH, 120BH, 120CH. Note: enrollment in these honors classes is by special permission; check with the undergraduate advisors in the Economics Student Services Office (SH 245).
3. An Honors Thesis. The research and writing of the thesis will be conducted over two quarters of the senior year under the supervision of a faculty advisor. The completed thesis must be approved by the Joint Mathematics and Economics Honors Committee, which comprises the Mathematics Honors Committee and the Economics Honors Committee, and presented orally at the Undergraduate Research Conference or another appropriate occasion.
 a. If the student is a declared major in the mathematics department (MA33), this thesis will be credited as eight units of Math. 199H. Enrollment in Math. 199H is by special permission; check with the advisors in the mathematics department Undergraduate Affairs Office (AP&M 7018) or the Mathematics Advising Office (AP&M 6016). Completed applications can be returned to the Mathematics Advising Office.

The department’s Honors Committee will determine the level of honors to be awarded, based on the student’s GPA in the major and the quality of the honors work. Applications for the mathematics department’s Honors Program can be obtained at the mathematics department Undergraduate Affairs Office (AP&M 7018) or the Mathematics Advising Office (AP&M 6016). Completed applications can be returned to the Mathematics Advising Office.

For Joint Mathematics and Economics Majors:

To graduate with honors requires the following:

1. At least one quarter of the Student Colloquium, Math. 196 (Note: Math. 196 is only offered in the fall quarter.)
2. At least one Economics honors course: Econ. 100AH, 100BH, 110AH, 110BH, 120AH, 120BH, 120CH. Note: enrollment in these honors classes is by special permission; check with the undergraduate advisors in the Economics Student Services Office (SH 245).
3. An Honors Thesis. The research and writing of the thesis will be conducted over two quarters of the senior year under the supervision of a faculty advisor. The completed thesis must be approved by the Joint Mathematics and Economics Honors Committee, which comprises the Mathematics Honors Committee and the Economics Honors Committee, and presented orally at the Undergraduate Research Conference or another appropriate occasion.
 a. If the student is a declared major in the economics department (EN28), the student must enroll in Econ. 191A-B. Enrollment in Econ. 191 is by special permission; check with the undergraduate advisors in the Economics Student Services Office (SH 245).

4. A minimum GPA of 3.0 overall, 3.5 in the upper-division courses required for the major and a 3.5 in the following four classes: Math. 196, Economics Honors class and either Econ. 191A-B or two quarters of Math. 199H. The Joint Mathematics and Economics Honors Committee will determine the level of honors to be awarded, based on the student’s GPA in the major and the quality of the honors work.

DUPLICATION OF CREDIT

Information on duplication of credit (both full and partial) can be found in the course descriptions. It is the student’s responsibility to be aware of the credit restrictions listed.

Faculty Advisors

Advisors change yearly. Contact the undergraduate office at (858) 534-3590 for current information.

THE GRADUATE PROGRAM

The Department of Mathematics offers graduate programs leading to the M.A. (pure or applied mathematics), M.S. (statistics), and Ph.D. degrees.

The application deadline for fall admission is January 7 for Ph.D. candidates, and February 7 for M.A./M.S. candidates. Candidates should have a bachelor’s or master’s degree in mathematics or a related field from an accredited institution of higher education or the equivalent. A minimum scholastic average of B or better is required for course work completed in upper-division or prior graduate study. In addition, the department requires all applicants to submit scores no older than twelve months from both the GRE General Test and Advanced Subject Test in Mathematics. Completed files are judged on the candidate’s mathematical background, qualifications, and goals.

Departmental support is typically in the form of teaching assistantships, research assistantships, and fellowships. These are currently only awarded to students in the Ph.D. program.

GENERAL REQUIREMENTS

All student course programs must be approved by a faculty advisor prior to registering for classes each quarter, as well as any changes throughout the quarter.

Full-time students are required to register for a minimum of twelve (12) units every quarter, eight (8) of which must be graduate-level mathematics courses taken for a letter grade only. The remaining four (4) units can be approved upper-division or graduate-level courses in mathematics-related subjects (Math. 500 may not be used to satisfy any part of this requirement). After advancing to candidacy, Ph.D. candidates may take all course work on a Satisfactory/Unsatisfactory basis. Typically, students should not enroll in Math. 299 until they have satisfactorily passed both qualifying examinations (see “Ph.D. in Mathematics”) or obtained approval of their faculty advisor.

MASTER OF ARTS IN PURE MATHEMATICS

[Offered only under the Comprehensive Examination Plan.] The degree may be terminal or obtained on the way to the Ph.D. A total of forty-eight units of credit is required. Twenty-four of these units must be graduate-level mathematics courses approved in consultation with a faculty advisor.

In the selection of course work to fulfill the remaining twenty-four units, the following restrictions must be followed:
1. No more than eight units of upper-division mathematics courses.
2. No more than twelve units of graduate courses in a related field outside the department (approved by the Department of Mathematics).
3. No more than four units of Math. 295 (Special Topics) or Math. 500 (Apprentice Teaching).
4. No units of Math. 299 (Reading and Research) may be used in satisfying the requirements for the master's degree.

Comprehensive Examinations

Seven written departmental examinations in three areas (refer to “Ph.D. In Mathematics,” Areas 1, 2, and 3, for list of exams). A student must complete two examinations, one from Area 1 and one from Area 2, both with an M.A. pass or better.

Foreign Language Requirement

A reading knowledge of one foreign language (French, German, or Russian) is required. In exceptional cases other languages may be substituted. Testing is administered by faculty in the department who select published mathematical material in one of these languages for a student to translate.

Time Limits

Full-time students are permitted seven quarters in which to complete all degree requirements. While there are no written time limits for part-time students, the department has the right to intervene and set individual deadlines if it becomes necessary.

MASTER OF ARTS IN APPLIED MATHEMATICS

[Offered only under the Comprehensive Examination Plan] The degree may be terminal or obtained on the way to the Ph.D. Out of the total forty-eight units of required credit, two applied mathematics sequences comprising twenty-four units must be chosen from the following list (not every course is offered each year):

- Math. 261A-B-C. (Probabilistic Combinatorics and Algorithms)
- Math. 264A-B-C. (Combinatorics)
- Math. 270A-B-C. (Numerical Mathematics)
- Math. 271A-B-C. (Numerical Optimization)
- Math. 273A-B-C. (Advanced Techniques in Computational Math)

In certain cases, a petition may be approved to substitute one of these requirements from the following list of sequences:

- Math. 220A-B-C. (Complex Analysis)
- Math. 231A-B-C. (Partial Differential Equations)
- Math. 240A-B-C. (Real Analysis)
- Math. 280A-B-C. (Probability Theory)
- Math. 281A-B-C. (Mathematical Statistics)

In choosing course work to fulfill the remaining twenty-four units, the following restrictions must be followed:
1. At least eight units must be approved graduate courses in mathematics or other departments. [A one-year sequence in a related area outside the department such as computer science, engineering, physics, or economics is strongly recommended.]
2. A maximum of eight units can be approved upper-division courses in mathematics; and
3. A maximum of eight units can be approved upper-division courses in other departments.
4. A maximum of four units of Math. 500 (Apprentice Teaching).

5. NO UNITS of Math. 295 (Special Topics) or Math. 299 (Reading and Research) may be used.

Students are strongly encouraged to consult with a faculty advisor in their first quarter to prepare their course of study.

Comprehensive Examinations

Two written comprehensive examinations must be passed at the master’s level in any of the required applied mathematics sequences listed above. The instructors of each course should be contacted for exam details.

Foreign Language Requirement

There is no foreign language requirement for the M.A. in applied mathematics.

Time Limits

Full-time M.A. students are permitted seven quarters in which to complete all requirements. While there are no written time limits for part-time students, the department has the right to intervene and set individual deadlines if it becomes necessary.

PH.D. IN MATHEMATICS

Written Qualifying Examinations

The department offers written qualifying examinations in seven subjects. These are grouped into three areas as follows:

Area #1

- Complex Analysis (Math. 220A-B-C) Real Analysis (Math. 240A-B-C)

Area #2

- Topology (Math. 290A-B-C)

Area #3

- Numerical Analysis (Math. 270A-B-C) Statistics (Math. 281A-B-C)
1. Three qualifying exams must be passed. At least one must be passed at the Ph.D. level, and a second must be passed at either the Ph.D. or Provisional Ph.D. Level. The third exam must be passed at least at the master’s level.
2. Of the three qualifying exams, there must be at least one from each of Areas #1 and #2. Algebra and Applied Algebra do not count as distinct exams in Area #2.

3. Students must pass a least two exams from distinct areas with a minimum grade of Provisional Ph.D. (For example, a Ph.D. pass in Real Analysis, Provisional Ph.D. Pass in Complex Analysis, M.A. pass in Algebra would NOT satisfy this requirement, but a Ph.D. Pass in Real Analysis, M.A. pass in Complex Analysis, Provisional Ph.D. Pass in Algebra would, as would a Ph.D. Pass in Numerical Analysis, Provisional Ph.D. Pass in Applied Algebra, and M.A. pass in Real Analysis.)
4. All exams must be passed by the September exam session prior to the beginning of the third year of graduate studies. (Thus, there would be no limit on the number of attempts, encouraging new students to take exams when they arrive, without penalty.)

Department policy stipulates that at least one of the exams must be completed with a Provisional Ph.D. Pass or better by September following the end of the first year. Anyone unable to comply with this schedule will lose their funding as a Ph.D. student. They will be terminated from the doctoral program and transferred to one of our master’s programs.

Any master’s student can submit for consideration a written request to transfer into the Ph.D. Program when the qualifying exam requirements for the Ph.D. Program have been met and a dissertation advisor is found. Approval by the Qualifying Exam and Appeals Committee (QEAC) is not automatic, however.

Exams are typically offered twice a year, one scheduled in the spring quarter and again in early September (prior to the start of fall quarter). Copies of past exams are made available for purchase in the Graduate Office.

In choosing a program with an eye to future employment, students should seek the assistance of a faculty advisor and take a broad selection of courses including applied mathematics, such as those in Area #3.

Foreign Language Requirement

A reading knowledge of one foreign language (French, German, or Russian) is required prior to advancing to candidacy. In exceptional cases other languages may be substituted. Testing is administered within the department by faculty who select published mathematical material in one of these languages for a student to translate.

Advancement to Candidacy

It is expected that by the end of the third year (nine quarters), students should have a field of research chosen and a faculty member willing to direct and guide them. A student will advance to candidacy after successfully passing the oral qualifying examination, which deals primarily with the area of research proposed but may include the project itself. This examination is conducted by the student’s appointed doctoral committee. Based on their recommendation, a student advances to candidacy and is awarded the C.Phil. degree.

Dissertation and Final Defense

Submission of a written dissertation and a final examination in which the thesis is publicly defended are the last steps before the Ph.D. degree is awarded. When the dissertation is substantially completed, copies must be provided to all committee members at least four weeks in advance of the proposed defense date. Two weeks before the scheduled final defense, a copy of the dissertation must be made available in the department for public inspection.

Time Limits

The normative time for the Ph.D. in mathematics is five years. Students must have a dissertation advisor by the end of nine quarters. Students must be advanced to candidacy by the end of eleven quarters. Total university support cannot exceed six years. Total registered time at UCSD cannot exceed seven years.

A student making normal progress must meet the time limits described below. Ph.D. students who fail to meet these time limits may lose their TA funding.

1. Pass Qualifying Exams requirement by the fall quarter of the beginning of the third year.
2. Find Thesis advisor by the end of nine quarters.
3. Advance to Candidacy by the end of eleven quarters.

PH.D. IN MATHEMATICS WITH SPECIALIZATION IN COMPUTATIONAL SCIENCE

The Ph.D. in mathematics, with a Specialization in Computational Science is designed to allow a student to obtain standard basic training in his or her chosen field of science, mathematics, or engineering with training in computational science integrated into those graduate studies. The Specialization in Computational Science recognizes the nation’s growing and continuing need for broadly trained advanced computational scientists in academic, industry, and government laboratories. Its graduates will be well-positioned to compete effectively for the best jobs in these areas.

Computational science refers to the use of computer simulation and visualization for basic scientific research, product development, and forecasting. It is an interdisciplinary field that combines mathematics (mathematical modeling, numerical analysis) and computer science (architecture, programming, networks, graphics) with one of the scientific or engineering disciplines.

The specialization draws upon the expertise of faculty from bioengineering, biological sciences, chemistry and biochemistry, computers and engineering, electrical and computer engineering, mathematics, mechanical and aerospace engineering, physics, Scripps Institution of Oceanography, structural engineering as well as research staff from the San Diego Supercomputer Center.

Admission

Prospective students must apply to the Ph.D. program of a participating home department, be admitted to that department and then be admitted to the specialization. The five participating academic departments that have a Specialization in Computational Science are chemistry and biochemistry, computer science and engineering, mathematics, mechanical and aerospace engineering, and physics. Requirements consist of those of the admitting home department (one of the five participating departments) as well as the proficiency, qualifying, and elective course requirements as outlined below. Requirements and policies relating to the home department can be found in the UC San Diego General Catalog under that department’s name. In the case of the mathematics department, the admission requirements for the mathematics doctoral program are those outlined above.

Specialization in Computational Science Policies

1. The specialization requires that students complete all home department requirements for the Ph.D. along with satisfying the CSME proficiency, qualifying, and elective requirements. In the case of the mathematics department, the requirements and timelines for the normal mathematics Ph.D. program are as described above.
2. CSME Proficiency (see below) must be satisfied by the end of the first year.
3. The CSME qualifying exams must be passed by the end of the second year or, on petition, by end of the third year.
4. The CSME qualifying exams can be attempted repeatedly but no more than once per quarter per subject.
5. The regular qualifying exams in the home department and the CSME qualifying exams must all be passed before the student is permitted to take the candidacy (Senate) exam.
6. Two CSME electives outside the home department must be taken.
7. The two CSME electives can be taken at any time before defending the thesis.
8. One of the CSME electives may be taken Pass/Fail; the other must be taken for a letter grade.
9. No CSME field examination requirements will be imposed beyond those of the admitting home department.
10. No CSME foreign language requirements will be imposed beyond those of the admitting home department.

Proficiency Requirements: All Ph.D. students participating in the CSME doctoral program must demonstrate advanced undergraduate level proficiency in numerical analysis and in computer algorithms and data structures. Proficiency may be demonstrated by taking UCSD’s courses in both subjects while enrolled in the graduate program (four units per course):

1. Numerical Methods (Math. 174/274 or MAE 290A)
2. Data Structures and Algorithms (CSE 100/101)

Alternatively, proficiency in the material contained in these courses may be satisfied by having previously taken these or equivalent courses at other institutions, or through other evidence of sufficient knowledge of this material. Demonstrating proficiency without taking these courses at UCSD is subject to approval by the CSME Executive Committee on an individual basis.

Qualifying Requirements: In addition to the home department qualifying exam requirements, Ph.D. students participating in the CSME doctoral program must pass the final exams in all three qualifying exam courses listed below. The three qualifying exams...
exam courses have been selected to provide a general broad set of tools in computational science. It is expected that most students will register for and take these courses (four units per course), but the CSME Qualifying Exam Committee may allow an exceptionally well-prepared student to take the final exams without taking the courses. Students must pass the qualifying examinations by the end of the second year or, on petition, by the end of the third year.

1. Math. 275 or MAE 290B (Numerical PDEs)
2. Phys. 244 or CSE 260 (Parallel Computing)
3. Course to be selected from List A

LIST A: CSME Qualifying Exam Courses

Courses taken to satisfy the qualifying requirements cannot count toward the elective requirements.

1. Phys. 243 (Stochastic Methods)
2. Math. 270A, B, or C (Numerical Analysis; not permitted for math. students, who typically take Math. 270A-B as a normal mathematics qualifying course.)
3. Math. 272A, B, or C (Advanced Numerical PDEs)
4. MAE 223 (Computational Fluid Dynamics)
5. MAE 232A or B (Computational Solid Mechanics)
6. MAE 280A or B (Linear Systems Theory)
7. (To be determined by Executive Committee)

Elective Requirements: To encourage Ph.D. students specializing in computational science to both broaden themselves in an area of science or engineering as well as to obtain more specialized training in specific areas of computational science, students will be required to take and pass two elective courses from the following approved List B (four units per course), both of which must be outside of their home department, the first of which must be taken for a letter grade, and the second of which may be taken pass/fail. The CSME Executive Committee may approve the use of courses not appearing on the following list on a case-by-case basis. Courses taken to satisfy the elective requirements cannot count toward the qualifying requirements.

LIST B: Elective Graduate Courses in Mathematics, Science, and Engineering

1. Math. 270A-B-C (Numerical Analysis; not permitted for math. students, who typically take Math. 270A-B-C as a normal mathematics qualifying course.)
2. Math. 271A-B-C (Optimization)
3. Math. 272A-B-C (Advanced Numerical PDEs)
4. Math. 273A-B-C (Computational Mathematics Project)
5. Phys. 141/241 (Computational Physics I)
6. Phys. 142/242 (Computational Physics II)
7. Phys. 221 AB (Nonlinear dynamics)
8. Chem. 215 (Modeling Biological Macromolecules)
9. BGGN 260 (Neurodynamics)
10. (To be determined by Executive Committee)

Thesis/Dissertation: Students participating in the Ph.D. in mathematics with a Specialization in Computational Science must complete a dissertation that meets all requirements for the regular Ph.D. in the home department. In addition, it is expected that the Ph.D. dissertation will be interdisciplinary in nature and involve some aspect of computational science.

Final Examination: Students participating in the Ph.D. in mathematics with a Specialization in Computational Science must meet the regular final examination requirements of the home department.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

All prerequisites listed below may be replaced by an equivalent or higher-level course. The listings of quarters in which courses will be offered are only tentative. Please consult the Department of Mathematics to determine the actual course offerings each year.

LOWER-DIVISION

3C. Pre-Calculus (4)

Functions and their graphs. Linear and polynomial functions, zeros, inverse functions, exponential and logarithmic, trigonometric functions and their inverses. Emphasis on understanding algebraic, numerical and graphical approaches making use of graphing calculators. (No credit given if taken after Math. 4C, 1A/10A, or 2A/20A.) Three or more years of high school mathematics or equivalent recommended. **Prerequisite:** Math Placement Exam qualifying score.

4C. Pre-Calculus for Science and Engineering (4)

No credit given if taken after Math. 1A/10A or 2A/20A. Two units of credit granted if taken after Math. 3C. **Prerequisite:** Math Placement Exam qualifying score or Math. 3C with a grade of C– or better.

10A. Calculus (4)

Differentiation and integration of algebraic functions. Fundamental theorem of calculus. Applications. (No credit given if taken after Math. 20A. **Prerequisite:** Math Placement Exam qualifying score, or AP Calculus AB score of 2, or SAT II Math. Level 2 score of 600 or higher, or Math. 3C with a grade of C or better, or Math. 4C with a grade of C– or better.)

10B. Calculus (4)

Further applications of the definite integral. Calculus of trigonometric, logarithmic, and exponential functions. Complex numbers. (No credit given if taken after Math. 2B/20B. Formerly numbered Math. 1B. **Prerequisite:** AP Calculus AB score of 3, 4, or 5 (or equivalent AB subscore on BC exam), or SAT II Math. Level 2 score of 600 or higher, or Math. 2A with a grade of C– or better, or Math. 20A with a grade of C– or better.)

10C. Calculus (4)

Vector geometry, velocity, and acceleration vectors. (No credit given if taken after Math. 2C/20C. Formerly numbered Math. 1C. **Prerequisite:** AP Calculus BC score of 3, 4, or 5, or Math. 108 with a grade of C– or better, or Math. 20B with a grade of C– or better.)

11A. Discrete Mathematics (4)

Basic discrete mathematical structures: sets, relations, functions, sequences, equivalence relations, partial orders, number systems. Methods of reasoning and proofs: propositional logic, predicate logic, induction, recursion, pigeonhole principle. Infinite sets and diagonalization. Basic counting techniques: permutations and combinations. Applications will be given to digital logic design, elementary number theory, design of programs, and proofs of program correctness. Equivalent to CSE 20. Credit not offered for both Math. 15A and CSE 20. **Prerequisites:** CSE 8A or CSE 8B or CSE 11. CSE 8B or CSE 11 may be taken concurrently with Math. 15A/CSE 20. (Not offered in 2010–11.)

15B. Mathematics for Algorithm and Systems (4)

This course introduces mathematical tools for the qualitative and quantitative analysis of algorithms and computer systems. Topics to be covered include basic enumeration and counting techniques; recurrence relations; graph theory; asymptotic notation; elementary applied discrete probability. Equivalent to CSE 21. Credit not offered for both Math. 15B and CSE 21. **Prerequisite:** Math. 15A or CSE 20 or 160A; CSE 12 is strongly recommended for CSE 21. (Not offered in 2010–11.)

20A. Calculus for Science and Engineering (4)

Integral calculus of one variable. Functions, graphs, continuity, limits, derivative, tangent line. Applications with algebraic, exponential, logarithmic, and trigonometric functions. Methods of integration. Infinite series. Pole coordinates in the plane and complex exponentials. (Two units of credit given if taken after Math. 15B and CSE 21. **Prerequisite:** Math. 15A or CSE 20 or 160A; CSE 12 is strongly recommended for CSE 21. (Not offered in 2010–11.)

20B. Calculus for Science and Engineering (4)

Integral calculus of one variable and its applications, with exponential, logarithmic, hyperbolic, and trigonometric functions. Methods of integration. Infinite series. Polar coordinates in the plane and complex exponentials. (Two units of credit given if taken after Math. 15B and CSE 21. **Prerequisite:** AP Calculus AB score of 4 or 5, or AP Calculus BC score of 3, or Math. 20A with a grade of C– or better, or Math. 108 with a grade of C– or better, or Math. 10C with a grade of C– or better.)

20C. Calculus and Analytic Geometry for Science and Engineering (4)

Vector geometry, vector functions and their derivatives. Partial differentiation. Maxima and minima. Double integration. Two units of credit given if taken after Math. 15B. **Prerequisite:** AP Calculus BC score of 4 or 5, or Math. 20B with a grade of C– or better.)

20D. Introduction to Differential Equations (4)

symbolic and graphical solutions using Matlab. Formerly numbered Math. 21D. May be taken as repeat credit for Math. 21D. Prerequisite: Math. 20C (or Math. 21C) or Math. 31B with a grade of C– or better.

20E. Vector Calculus (4)

20F. Linear Algebra (4)
Matrix algebra, Gaussian elimination, determinants. Linear and affine subspaces of Euclidean spaces. Eigenvalues and eigenvectors, quadratic forms, orthogonal matrices, diagonalization of symmetric matrices. Applications. Computing symbolic and graphical solutions using Matlab. Credit not offered for both Math. 20F and 31AH. Prerequisite: Math. 20C (or Math. 21C) with a grade of C– or better.

31AH. Honors Linear Algebra (4)
First quarter of three-quarter honors integrated linear algebra/multivariable calculus sequence for well-prepared students. Topics include: real/complex number systems, vector spaces, linear transformations, bases and dimension, change of basis, eigenvalues, eigenvectors, diagonalization. Credit not offered for both Math. 31AH and 20F. Prerequisite: AP Calculus BC score of 5 or consent of instructor.

31BH. Honors Multivariable Calculus (4)
Second quarter of three-quarter honors integrated linear algebra/multivariable calculus sequence for well-prepared students. Topics include: derivative in several variables, Jacobian matrices, extremum and constrained extremum, integration in several variables. Credit not offered for both Math. 31BH and 20F. Prerequisite: Math. 31AH with a grade of B– or better, or consent of instructor.

31CH. Honors Vector Calculus (4)
Third quarter of honors integrated linear algebra/multivariable calculus sequence for well-prepared students. Topics include: change of variables formula, integration of differential forms, exterior derivative, generalized Stoke's theorem, conservative vector fields, potentials. Credit not offered for both Math. 31CH and 20E. Prerequisite: Math. 31BH with a grade of B– or better, or consent of instructor.

87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a small group of students in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to 15 to 20 students, with preference given to entering freshman. Prerequisites: none.

95. Introduction to Teaching Math (2)
(Cross-listed with EDS 30.) Revisits students’ learning difficulties in mathematics in more depth to prepare students to make meaningful observations of how K–12 teachers deal with these difficulties. Explore how instruction can use students’ knowledge to pose problems that stimulate students’ intellectual curiosity. Prerequisites: none.

99R. Independent Study (1)
Independent study for research under direction of a member of the faculty. Prerequisites: Must be of first-year standing and a Regent’s Scholar.

UPPER-DIVISION

100A. Abstract Algebra I (4)
First course in a rigorous three-quarter introduction to the methods and basic structures of higher algebra. Topics include: groups, subgroups and factor groups, homomorphisms, rings, fields. Students may not receive credit for both Math. 100A and Math. 103A. Prerequisite: Math. 31CH or Math. 109 or consent of instructor.

100B. Abstract Algebra II (4)
Second course in a rigorous three-quarter introduction to the methods and basic structures of higher algebra. Topics include: rings (especially polynomial rings) and ideals, unique factorization, fields; linear algebra from perspective of linear transformations, inclusion spaces, including inner product spaces, determinants, diagonalization. Students may not receive credit for both Math. 100B and Math. 103B. Prerequisite: Math. 100A or consent of instructor.

100C. Abstract Algebra III (4)
Third course in a rigorous three-quarter introduction to the methods and basic structures of higher algebra. Topics include: order, cardinality, noncommutative and nonassociative fields, group actions, homomorphisms. Prerequisite: Math. 100B or consent of instructor. (F,W,S)

102. Applied Linear Algebra (4)
Second course in linear algebra from a computational yet geometric point of view. Elementary Hermitian matrices, Schur’s theorem, normal matrices, and quadratic forms. Moore-Penrose generalized inverse and least square problems. Vector and matrix norms. Characteristic and singular values. Canonical forms. Determinants and multilinear algebra. Prerequisite: Math. 20F. or Math. 31AH. (W)

103A. Modern Algebra I (4)
First course in a three-quarter introduction to abstract algebra with some applications. Emphasis on group theory. Topics include: definitions and basic properties of groups, properties of isomorphisms, subgroups. Students may not receive credit for both Math. 100A and Math. 103A. Prerequisite: Math. 31CH or Math. 109 or consent of instructor.

103B. Modern Algebra II (4)
Second course in a two-quarter introduction to abstract algebra with some applications. Emphasis on rings and fields. Topics include: definitions and basic properties of rings, fields, field extensions, isomorphisms, irreducibility of polynomials. Students may not receive credit for both Math. 100B and Math. 103B. Prerequisite: Math. 103A or Math. 100A or consent of instructor.

104A. Number Theory I (4)
Elementary number theory with applications. Topics include unique factorization, irrational numbers, residue systems, congruences, primitive roots, reciprocity laws, quadratic forms, arithmetic functions, partitions, Diophantine equations, distribution of primes. Applications include fast Fourier transform, signal processing, coding, cryptography. Prerequisite: Math. 109 or Math. 31CH, or consent of instructor.

104B. Number Theory II (4)
Topics in number theory such as finite fields, continued fractions, Diophantine equations, character sums, zeta and theta functions, prime number theorem, algebraic integers, quadratic and cyclotomic fields, prime ideal theory, class number, quadratic forms, units, Diophantine approximations, p-adic numbers, elliptic curves. Prerequisite: Math. 104A or consent of instructor.

104C. Number Theory III (4)
Topics in algebraic and analytic number theory, with an advanced treatment of material listed for Math. 104B. Prerequisite: Math. 104B or consent of instructor.

107A-B. Computer Algebra (4-4)
An introduction to algebraic computation. Computational aspects of groups, rings, fields, etc. Data representation and algorithms for symbolic computation. Polynomials and their arithmetic. The use of a computer algebra system as an experimental tool in mathematics. Programming using algebra systems. Prerequisite: prior or concurrent enrollment in the Math. 109 or 103 sequence. (Not offered in 2010–11.)

109. Mathematical Reasoning (4)
This course uses a variety of topics in mathematics to introduce the students to rigorous mathematical proof, emphasizing quantifiers, induction, negation, proof by contradiction, existence, equivalence relations, and epsilon-delta proofs. Required of all departmental majors. Prerequisite: Math. 20F or Math 31AH or consent of instructor.

110A. Introduction to Partial Differential Equations (4)
Fourier series, orthogonal expansions, and eigenvalue problems. Sturm–Liouville theory. Separation of variables for partial differential equations of mathematical physics, including topics on Bessel functions and Legendre polynomials. Formerly Math. 110A. Students may not receive credit for Math. 110A and Math. 110. Prerequisites: Math. 20D and either 20F or Math. 31AH, or consent of instructor. (F,S)

110B. Elements of Partial Differential Equations and Integral Equations (4)
Basic concepts and classification of partial differential equations. First order equations, characteristics. Hamilton–Jacobi theory. Laplace’s equation, wave equation, heat equation. Separation of variables, eigenfunction expansions, existence and uniqueness of solutions. Formerly Math. 132A. Students may not receive credit for Math. 110B and Math. 132A. Prerequisite: Math. 110A or consent of instructor. (W)

111A. Mathematical Modeling I (4)
An introduction to mathematical modeling in the physical and social sciences. Topics vary, but have included mathematical models for epidemics, chemical reactions, political organizations, magnets, economic mobility, and geographical distributions of species. May be repeated for credit when topics change. Prerequisites: Math. 20D and either Math. 20F or Math. 31AH, or consent of instructor.

111B. Mathematical Modeling II (4)
Continued study on mathematical modeling in the physical and social sciences, using advanced techniques that will expand upon the topics selected in the mathematical theory presented in Math. 111A. May be repeated for credit when topics change. Prerequisite: Math. 111A or consent of instructor.

120A. Elements of Complex Analysis (4)
Complex numbers and functions. Analytic functions, harmonics, contour integration, saddle points, complex integration. Power series. Cauchy’s theorem. Cauchy’s formula. Residue theorem. Prerequisite: Math. 20E or Math. 31CH, or consent of instructor. (F,W)

120B. Applied Complex Analysis (4)
Applications of the residue theorem. Conformal mapping and applications to potential theory, flows, and temperature distributions. Fourier transformations. Laplace transforms, and applications to integral and differential equations. Selected topics such as Poisson’s formula, Dirichlet’s problem, Neumann’s problem, or special functions. Prerequisite: Math. 120A. (W,S)

121A. Foundations of Teaching and Learning Mathematics I (4)
(Cross-listed with EDS 121A.) Develop teachers’ knowledge base (knowledge of mathematics content, pedagogy, and student learning) in the context of advanced mathematics. This course builds on the previous courses where these components of knowledge were addressed exclusively in the context of high-school mathematics. Prerequisites: EDS 30/Math. 95, Calculus 10C or 20C.

121B. Foundations of Teaching and Learning Math II (4)
(Cross-listed with EDS 121B.) Examine how learning theories can consolidate observations about conceptual development with the individual student as well as the development of knowledge in the history of mathematics. Examine how teaching theories explain the effect of teaching approaches addressed in the previous courses. Prerequisite: EDS 121A/Math. 121A.

130A. Ordinary Differential Equations I (4)
Linear and nonlinear systems of differential equations. Stability theory, perturbation theory. Applications and introduction to numerical solutions. Three lectures. Prerequisites: Math. 20D and either Math. 20F or Math. 31AH or consent of instructor. (F)

130B. Ordinary Differential Equations II (4)
Existence and uniqueness of solutions to differential equations, local and global solutions, and differentiability. Three lectures. Prerequisite: Math. 130A or consent of instructor. (W)

2010-2011 UC SAN DIEGO GENERAL CATALOG • MATHEMATICS 9
131. Variational Methods in Optimization (4) Maximum-minimum problems. Normed vector spaces, functionals, Gateaux variations. Euler-Lagrange multiplier theorem for an extremum with constraint. Calculus of variations via the multiplier theorem. Applications taken from a variety of areas: applied mechanics, economics, astronautics physics, geometry, control theory. Prerequisite: Math. 20F or Math. 31AH, or consent of instructor. (S)

140A. Foundations of Real Analysis I (4) First course in a rigorous three-quarter sequence on real analysis. Topics include: the real number system, basic topology, numerical sequences and series, continuity. Students may not receive credit for both Math. 140A and Math. 142A. Prerequisite: Math. 31CH or Math. 109, or consent of instructor.

140B. Foundations of Real Analysis II (4) Second course in a rigorous three-quarter sequence on real analysis. Topics include: differentiation, the Riemann-Stieltjes integral, sequences and series of functions, power series, Fourier series, and special functions. Students may not receive credit for both Math. 140B and Math. 142B. Prerequisite: Math. 140A or consent of instructor.

140C. Foundations of Real Analysis III (4) Third course in a rigorous three-quarter sequence on real analysis. Topics include: differentiation of functions of several variables, the implicit and inverse function theorems, the Lebesgue integral, infinite-dimensional normed spaces. Prerequisite: Math. 140B or consent of instructor.

142A. Introduction to Analysis I (4) First course in an introductory two-quarter sequence on analysis. Topics include: the real number system, numerical sequences and series, limits of functions, continuity. Students may not receive credit for both Math. 140 and Math. 142A. Prerequisite: Math. 31CH or Math. 109, or consent of instructor.

142B. Introduction to Analysis II (4) Second course in an introductory two-quarter sequence on analysis. Topics include: differentiation, the Riemann integral, sequences and series of functions, uniform convergence, Taylor and Fourier series, special functions. Students may not receive credit for both Math. 140B and Math. 142B. Prerequisites: Math. 142A or Math. 140A, or consent of instructor.

150A. Differential Geometry (4) Differential geometry of curves and surfaces. Gauss and mean curvatures, geodesics, parallel displacement, Gauss-Bonnet theorem. Three lectures. Prerequisites: Math. 20E with a grade of C– or better and Math. 20F with a grade of C– or better, or consent of instructor. (F)

150B. Calculus on Manifolds (4) Calculus of functions of several variables, inverse function theorem. Further topics may include exterior differential forms, Stokes' theorem, manifolds, Sard's theorem, elements of differential topology, singularities of maps, catastrophes, further topics in differential geometry, topics in geometry of physics. Prerequisite: Math. 150A or consent of instructor. (W)

152. Applicable Mathematics and Computing (4) This course will give students experience in applying theory to real world applications such as Internet and wireless communication problems. The course will incorporate talks by experts from industry and students will be helped to carry out real problems. Topics include: optimization, linear programming, approximation, interpolation, boundary value problems, linear differential equations, non-linear differential equations. Three lectures, one recitation. Prerequisites: Math. 20D and either 20F or Math. 31AH, or consent of instructor.

153. Geometry for Secondary Teachers (4) Two- and three-dimensional Euclidean geometry is developed. Pedagogical issues will emerge from the mathematics and be addressed using current research in teaching and learning geometry. This course is designed for prospective secondary school mathematics teachers. Prerequisite: Math. 109 or Math. 31CH, or consent of instructor.

154. Discrete Mathematics and Graph Theory (4) Basic concepts in graph theory. Combinatorial tools, structures in graphs. (Hamiltonian cycles, perfect matching.) Properties of graphs and applications in basic algorithmic problems (planarity, k-colorability, traveling salesman problem). Prerequisites: Math. 109 or Math. 31CH, or consent of instructor.

155A. Computer Graphics (4) Bezier curves and control lines, de Casteljau construction for subdivision, elevation of degree, control points of Hermite curves, barycentric coordinates, rational curves. Programming knowledge recommended. Students may not receive credit for both Math. 155A and CSE 167. Prerequisite: Math. 20F or Math. 31AH, or consent of instructor. (F)

155B. Topics in Computer Graphics (4) Spline curves, spline interpolation, affine and affine cross ratios, polar forms (blossoming), the Oslo algorithm for knot insertion, NURBS and geometric continuity. Prerequisite: Math. 155A or consent of instructor. (W)

163. History of Mathematics (4) Topics will vary from year to year in areas of mathematics and their development. Topics may include the evolution of mathematics from the Babylonian period to the eighteenth century using original sources, a history of the foundations of mathematics, development of modern mathematics. Prerequisite: Math. 20B or consent of instructor. (S)

166. Intro to the Theory of Computation (4) Introduction to formal languages; regular languages; regular expressions, finite automata, minimization, closure properties, decision algorithms, and non-regular languages; context-free languages, context-free grammars, push-down automata, parsing theory, closure properties, and non-context-free languages; computable languages; Turing machines, recursive functions, Church's thesis, undecidability and the halting problem. Equivalent to CSE 105. Prerequisites: CSE 88 or 98 or 10 or 65 or 628 AND CSE 20 or 160A or Math. 15A or 109 or 100A or 103A. (Not offered in 2010–11.)

168A. Topics in Applied Mathematics–Computer Science (4) Topics to be chosen in areas of applied mathematics and mathematical aspects of computer science. May be repeated once for credit with different topics. Prerequisite: Math. 20F or Math. 31AH, or consent of instructor. (WS)

171A. Introduction to Numerical Optimization: Linear Problems (4) Linear optimization and applications. Linear programming, the simplex method, duality. Selected topics from integer programming, network flows, transportation problems, inventory problems, and other applications. Three lectures, one recitation. Knowledge of programming recommended. Credit not allowed for both Math. 171A and Econ. 172A. Prerequisite: Math. 20F.

174. Numerical Methods for Physical Modeling (4) (Conjoined with Math. 274) Floating point arithmetic, direct and iterative solution of linear equations, iterative solution of nonlinear equations, optimization, approximation theory, interpolation, quadrature, numerical methods for initial and boundary value problems. Formerly Math. 174 and CSE 105. Prerequisite: Math. 170A, B, or CSE 174 has already been taken. Graduate students will do an extra assignment/exam. Prerequisites: Math. 20D or Math. 21D, and either Math. 20F or Math 31AH, or consent of instructor.

175. Numerical Methods for Partial Differential Equations (4) (Conjoined with Math. 275) Mathematical background for working with partial differential equations. Survey of finite difference, finite element, and finite volume methods for the solution of elliptic, parabolic, and hyperbolic partial differential equations. Formerly Math. 172; students may not receive credit for Math. 175/275 and Math. 172. Graduate students do an extra paper, project, or presentation, per instructor. Prerequisite: Math. 174 or Math. 274, or consent of instructor.

176. Advanced Data Structures (4) Descriptive and analytical presentation of data structures and algorithms. Lists, tables, priority queues, disjoint subsets, and dictionaries data types. Data structuring techniques include linked lists, arrays, hashing, and trees. Performance evaluation involves worst case, average and expected case, and amortized analysis. Credit not offered for both Math. 176 and CSE 100. Equivalent to CSE 100. Prerequisites: CSE 12, CSE 21, or Math. 15B, and CSE 30, or consent of instructor. Not offered in 2010–11.

179. Projects in Computational and Applied Mathematics (4) (Conjoined with Math. 279.) Mathematical models of physical systems arising in science and engineering, good models and well-posedness, numerical and other approximation techniques, solution algorithms for linear and nonlinear approximation problems, scientific visualizations, scientific software design and engineering, project-oriented. Graduate students will do an extra project, paper, or presentation per instructor. Prerequisite: Math. 174 or Math. 274 or consent of instructor.

180A. Introduction to Probability (4) Probability spaces, random variables, independence, conditional probability, distribution, expectation, variance, joint distributions, central limit theorem. (Two units of credit offered for Math. 180A if Econ. 120A previously, no credit offered if Econ. 120A concurrently.) Prerequisite: Math. 20C or Math. 31BH, or consent of instructor. (F)

180B. Introduction to Stochastic Processes I (4) Markov chains in discrete and continuous time, random walk, recurrent events. If time permits, topics chosen from stationary normal processes, branching processes, queuing theory. Three lectures. Prerequisite: Math. 180B or consent of instructor. (F)

180C. Introduction to Stochastic Processes II (4) Markov chains in discrete and continuous time, random walk, recurrent events. If time permits, topics chosen from stationary normal processes, branching processes, queuing theory. Three lectures. Prerequisite: Math. 180B or consent of instructor. (S)

190. Introduction to Topology (4)
Topological spaces, subspaces, products, sums and quotient spaces. Compactness, connectedness, separation axioms. Selected further topics such as fundamental group, classification of surfaces, Morse theory, topological groups. May be repeated for credit once when topics vary, with consent of instructor. Three lectures. Prerequisite: Math. 109 or Math 31CH, or consent of instructor. (W)

191. Topics in Topology (4)
Topics to be chosen by the instructor from the fields of differential algebraic, geometric, and general topology. Three lectures. Prerequisite: Math. 190 or consent of instructor. (S)

192. Senior Seminar in Mathematics (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in mathematics at the upper-division level. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: department stamp and/or consent of instructor.

193A. Actuarial Mathematics I (4)
Probabilistic Foundations of Insurance. Short-term risk models, Survival distributions and life tables. Introduction to life insurance. Prerequisite: Math. 180A or Math. 183, or consent of instructor.

193B. Actuarial Mathematics II (4)
Life Insurance and Annuities. Analysis of premiums and premium reserves. Introduction to multiple life functions and decrement models as time permits. Prerequisite: Math. 193A or consent of instructor.

194. The Mathematics of Finance (4)
Introduction to the mathematics of financial models. Basic probabilistic models and associated mathematical machinery will be discussed, with emphasis on discrete time models. Concepts covered will include conditional expectation, martingales, optimal stopping, arbitrage pricing, hedging, European and American options. Prerequisites: Math. 20D, and either Math. 20F or Math. 31AH, and either Math. 180A or Math. 183, or consent of instructor.

195. Introduction to Teaching in Mathematics (4)
Students will be responsible for and teach a class section of a lower-division mathematics course. They will also attend a weekly meeting on teaching methods. (Does not count towards a minor or major.) Five lectures, one recitation. Prerequisite: consent of instructor. (F,W,S)

196. Student Colloquium (1)
A variety of topics and current research results in mathematics will be presented by guest lecturers and students under faculty direction. May be taken for P/NP grade only.

197. Mathematics Internship (2 or 4)
An enrichment program which provides work experience with public/private sector employers. Subject to the availability of positions, students will work in a local company under the supervision of a faculty member and site supervisor. Units may not be applied towards major graduation requirements. Prerequisites: completion of 90 units, 2 upper-division mathematics courses, an overall 2.5 UCSD GPA, consent of mathematics faculty coordinator, and submission of written contract. Department stamp required.

199. Independent Study for Undergraduates (2 or 4)
Independent reading in advanced mathematics by individual students. Three periods. (P/NP grades only.) Prerequisite: permission of department. (F,W,S)

199H. Honors Thesis Research for Undergraduates (2–4)
Honors thesis research for seniors participating in the Honors Program. Research is conducted under the supervision of a mathematics faculty member. Prerequisite: admission to the Honors Program in mathematics, department stamp.

200A–B–C. Algebra (4–4–4)
Group actions, factor groups, polynomial rings, linear algebra, rational and Jordan forms, unitary and Hermitian matrices, Sylow theorems, finitely generated abelian groups, unique factorization, Galois theory, solvability by radicals, Hilbert Basis Theorem, Hilbert Nullstellensatz, Jacobson radical, semisimple Artinian rings. Prerequisite: consent of instructor.

201A–B. Basic Topics in Algebra (4–4)
Recommended for all students planning to take graduate algebra. Basic topics include categorical algebra, commutative algebra, group representations, homological algebra, nonassociative algebra, ring theory. Prerequisites: Math. 200A-B or consent of instructor. (F,W,S)

202A. Applied Algebra I (4)
Introduction to algebra from a computational perspective. Groups, rings, linear algebra, rational and Jordan forms, unitary and Hermitian matrices, matrix decompositions, perturbation of eigenvalues, group representations, symmetric functions, fast Fourier transform, commutative algebra, Grobner basis, finite fields. Prerequisite: graduate standing or consent of instructor.

202B. Applied Algebra II (4)
Second course in algebra from a computational perspective. Groups, rings, linear algebra, rational and Jordan forms, unitary and Hermitian matrices, matrix decompositions, perturbation of eigenvalues, group representations, symmetric functions, fast Fourier transform, commutative algebra, Grobner basis, finite fields. Prerequisite: Math. 202A or consent of instructor.

202C. Applied Algebra III (4)
Third course in algebra from a computational perspective. Groups, rings, linear algebra, rational and Jordan forms, unitary and Hermitian matrices, matrix decompositions, perturbation of eigenvalues, group representations, symmetric functions, fast Fourier transform, commutative algebra, Grobner basis, finite fields. Prerequisite: Math. 202B or consent of instructor.

203A–B–C. Algebraic Geometry (4–4–4)
Planes, Hilbert Nullstellensatz, varieties, product of varieties, correspondences, nonsingular curves and linear systems; Riemann-Roch theorem; resolution of singularities of curves. Grothendieck schemes; cohomology, Hilbert schemes; Picard schemes. Prerequisites: Math. 200A-B-C, (F,W,S)

204. Topics in Number Theory (4)
Topics in analytic number theory, such as zeta functions and L-functions and the distribution of prime numbers, zeros of zeta functions and Siegel’s theorem, transcendence theory, modular forms, and finite and infinite symmetrical spaces. Prerequisite: consent of instructor.

205. Topics in Algebraic Number Theory (4)
Topics in algebraic number theory, such as cyclotomic and Kummer extensions, class number, units, splitting of primes in extensions, zeta functions of number fields and the Brauer-Siegel Theorem, class field theory, elliptic curves and curves of higher genus, complex multiplication. Prerequisite: consent of instructor.

207A–B. Topics in Algebra (4–4)
In recent years, topics have included number theory, commutative algebra, noncommutative rings, homological algebra, and Lie groups. May be repeated for credit with consent of advisor. Prerequisite: consent of instructor.

208. Seminar in Algebra (1)
Various topics in algebra. Prerequisite: graduate standing or consent of instructor. (S/U grade only.)

209. Seminar in Number Theory (1)
Various topics in number theory. Prerequisite: graduate standing or consent of instructor. (S/U grade only.)

210A. Mathematical Methods in Physics and Engineering (4)
Complex variables with applications. Analytic functions, Cauchy’s theorem, Taylor and Laurent series, residue theorem and contour integration techniques, analytic continuation, argument principle, conformal mapping.
potential theory, asymptotic expansions, method of steep-extend descent. Prerequisite: Math. 202DF, 140A/142A or consent of instructor.

210B. Mathematical Methods in Physics and Engineering (4)
Linear algebra and functional analysis. Vector spaces, ortho-normal bases, linear operators and matrices, eigenvalues and diagonalization, least squares approximation, infinite-dimensional spaces, completeness, integral equations, spectral theory, Green’s functions, distributions, Fourier transform. Prerequisite: Math. 210A or consent of instructor. (W)

210C. Mathematical Methods in Physics and Engineering (4)
Calculation of variations, Euler-Lagrange equations, Noether’s theorem. Fourier analysis of functions and distributions in several variables. Partial differential equations: Laplace, wave, and heat equations; fundamental solutions (Green’s functions); well-posed problems. Prerequisite: Math. 210B or consent of instructor. (S)

212A. Introduction to the Mathematics of Systems and Control (4)
Linear and nonlinear systems, and their input-output behavior, linear continuous time and discrete-time sys-tems, reachability and controllability for linear systems, feedback and stabilization, eigenvalue placement, non-linear controllability, feedback linearization, disturbance rejection, nonlinear stabilization, Lyapunov and control-Lyapunov functions, linearization principle for stability. Prerequisites: Math. 102 or equivalent, Math. 120A or equivalent, Math. 141 or equivalent.

212B. Introduction to the Mathematics of Systems and Control (4)

212C. Introduction to the Mathematics of Systems and Control (4)
Topics of current interest on systems theory, control, and estimation to be chosen by instructor. Prerequisite: Math. 212B.

216. Topics in Pure Mathematics (4)
This course brings together graduate students, postdocs, and faculty to examine a current research topic of broad interest. Previous topics have included: noncommutative geometry, loop groups, geometric quantization. Prerequisite: consent of instructor.

217A. Topics in Applied Mathematics (4)
In recent years, topics have included applied complex analy-sis, special functions, and asymptotic methods. May be repeated for credit with consent of advisor. Prerequisite: consent of instructor.

220A-B-C. Complex Analysis (4-4-4)
Complex variables and functions. Cauchy’s theorem and its applications, calculus of residues, expansions of analytic functions, analytic continuation, conformal mapping and Riemann mapping theorem, harmonic functions. Dirichlet principle, Riemann surfaces. Prerequisites: Math. 140-A or consent of instructor. (F,W,S)

221A-B. Topics in Several Complex Variables (4-4)
Formal power series, Weierstrass preparation theorem; Cartan-Ruckert theorem, analytic sets; mapping theorems; domains of holomorphy; proper holomorphic mappings; complex manifolds; modifications. Prerequisites: Math. 200A and 220B-C or consent of instructor.

221A-B-C. Partial Differential Equations (4-4-4)
Existence and uniqueness theorems. Cauchy-Kowalewski theorem, first order systems. Hamilton-Jacobi theory, ini-tial value problems for hyperbolic and parabolic systems, boundary value problems for elliptic systems. Green’s function, eigenvalue problems, perturbation theory.

237A-B. Topics in Differential Equations (4-4) or May be repeated for credit with consent of advisor. Prerequisite: consent of instructor.

240A-B-C. Real Analysis (4-4-4)
Lebesgue integral and Lebesgue measure, Fubini theorems, functions of bounded variations, Stieltjes integral, derivatives and indefinite integrals, the spaces L1 and C, equi-continuous families, continuous linear functionals, general measures and integrations. Prerequisites: Math. 140A-B-C. (F,W,S)

241A-B. Functional Analysis (4-4)
Metric spaces and contraction mapping theorem; closed graph theorem; uniform boundedness principle; Hahn-Banach theorem; representation of continuous linear functionals; compact spaces; weak topologies; extreme points; Krein-Milman theorem; fixed-point theorems; Riesz convexity theorem; Banach algebras. Prerequisites: Math. 240A-B or consent of instructor.

242. Topics in Fourier Analysis (4)
A course on Fourier analysis in Euclidean spaces, groups, symmetric spaces. Prerequisites: Math. 240A-B-C or consent of instructor.

245A. Convex Analysis and Optimization I (4)
Convex sets and functions, convex and affine hulls, relative interior, closure, and continuity, recession and existence of optimal solutions, saddle point and min-max theory, subgradients and subdifferentials. Prerequisites: Math. 20F and Math. 142A, or graduate standing, or consent of instructor.

245B. Convex Analysis and Optimization II (4)
Optimality conditions, strong duality and the primal func-tion, conjugate functions, Fenchel duality theorems, dual derivatives and subgradients, subgradient methods, cutting plane methods. Prerequisite: Math. 245A or consent of instructor.

245C. Convex Analysis and Optimization III (4)
Convex optimization problems, linear matrix inequalities, second-order cone programming, semidefinite program-ming, sum of squares of polynomials, positive polynomials, distance geometry. Prerequisite: Math. 245B or consent of instructor.

247A-B-C. Topics in Real Analysis (4-4-4)
In recent years, topics have included Fourier analysis, distribution theory, martingale theory, operator theory. May be repeated for credit with consent of advisor. Prerequisite: consent of instructor.

248. Seminar in Real Analysis (1)
Various topics in real analysis. Prerequisite: graduate standing or consent of instructor. (S/U grade only.)

250A-B-C. Differential Geometry (4-4-4)
Differential manifolds, Sard theorem, tensor bundles, Lie derivatives, DeRham theorem, connections, geodesics, Riemannian metrics, curvature tensor and sectional curva-ture, completeness, characteristic classes. Differential manifolds immersed in Euclidean space. Prerequisite: consent of instructor. (F,W,S)

251A-B-C. Lie Groups (4-4-4)
Lie groups, Lie algebras, exponential map, subgroup subal-gebra correspondence, adjoint group, universal enveloping algebra. Structure theory of semi-simple Lie groups, global decompositions, Weyl group. Geometry and analysis on symmetric spaces. Prerequisites: Math. 200 and 250 or consent of instructor. (F,W,S)

256. Seminar in Lie Groups and Lie Algebras (1)
Various topics in Lie groups and Lie algebras, including structure theory, representation theory, and applications. Prerequisite: graduate standing or consent of instructor. (S/U grade only.)

257A. Topics in Differential Geometry (4) in recent years, topics have included Morse theory and general relativity. May be repeated for credit with consent of advisor. Prerequisite: consent of instructor.

257B. Topics in Differential Geometry (4) in recent years, topics have included Morse theory and general relativity. May be repeated for credit with consent of advisor. Math. 257A must be taken before Math. 257B. Prerequisite: consent of instructor.

257C. Topics in Differential Geometry (4) in recent years, topics have included Morse theory and general relativity. May be repeated for credit with consent of advisor. Math. 257B must be taken before Math. 257C. Prerequisite: consent of instructor.

258. Seminar in Differential Geometry (1)
Various topics in differential geometry. Prerequisite: graduate standing or consent of instructor. (S/U grade only.)

259A-B-C. Geometrical Physics (4-4-4)
Manifolds, differential forms, homology, deRham’s theorem. Riemannian geometry, harmonic forms. Lie groups and algebras, connections in bundles, homotopy sequence of a bundle, Chern classes. Applications selected from Hamiltonian and continuum mechanics, electromagnetism, thermodynamics, special and general relativity, Yang-Mills fields. Prerequisite: graduate standing in mathematics, physics, or engineering, or consent of instructor.

260A. Mathematical Logic I (4)
Propositional calculus and first-order logic. Theory prov-ing, Model theory, soundness, completeness, and compact-ness, Herbrand’s theorem, Skolem-Lowenheim theorems, Craig interpolation. Prerequisite: graduate standing or consent of instructor.

260B. Mathematical Logic II (4)
Theory of computation and recursive function theory, Church’s thesis, computability and undecidability. Feasible computability and complexity. Peano arithmetic and the incompleteness theorems, nonstandard models. Prerequisite: Math. 260A or consent of instructor.

261A. Probabilistic Combinatorics and Algorithms (4)
Introduction to the probabilistic method. Combinatorial applications of the linearity of expectation, second moment method, Markov, Chebyshev, and Azuma inequalities, and the local limit lemma. Introduction to the theory of random graphs. Prerequisite: graduate standing or consent of instructor.

261B. Probabilistic Combinatorics and Algorithms II (4)

261C. Probabilistic Combinatorics and Algorithms III (4)

262A–B–C. Topics in Combinatorial Mathematics (4–4–4)
Development of a topic in combinatorial mathematics starting from basic principles. Problems of enumeration, existence, construction, existence with regard to finite sets. Some familiarity with computer programming desirable but not required. Prerequisites: Math. 100A-B-C.

264A–B–C. Combinatorics (4–4–4)
Topics from partially ordered sets, Mobius functions, sim-plicial complexes and shellability. Enumeration, formal power series and formal languages, generating functions, partitions, Lagrange inversion, exponential structures, combi-natorial species. Finite operator methods, q-analogues, Polya theory, Ramsey theory. Representation theory of the symmetric group, symmetric functions and operations with Schur functions. (F,W,S)

269. Seminar in Combinatorics (1)
Various topics in combinatorics. Prerequisite: graduate standing or consent of instructor. (S/U grade only.)
270A. Numerical Linear Algebra (4)
Error analysis of the numerical solution of linear equations and least squares problems for the full rank and rank deficient cases. Error analysis of numerical methods for eigenvalue problems and singular value problems. Iterative methods for linear systems. Gaussian elimination for sparse systems of linear equations. Prerequisites: graduate standing or consent of instructor.

270B. Numerical Approximation and Nonlinear Equations (4)

270C. Numerical Ordinary Differential Equations (4)

271A-B-C. Numerical Optimization (4-4-4)
Formulation and analysis of algorithms for constrained optimization. Optimally conditions; linear and quadratic programming; interior methods; penalty and barrier function methods; sequential quadratic programming methods. Prerequisite: consent of instructor. (I.W.S)

272A. Numerical Partial Differential Equations I (4)

272B. Numerical Partial Differential Equations II (4)

272C. Numerical Partial Differential Equations III (4)
Time dependent (parabolic and hyperbolic) PDEs. Methods of lines. Stiff systems of ODEs. Space-time finite element methods. Adaptive meshing algorithms. A posteriori error estimates. Prerequisites: Math. 272B or consent of instructor.

273A. Advanced Techniques in Computational Mathematics I (4)
Models of physical systems, calculus of variations, principles of least action. Discretization techniques for variational problems, geometric integrators, advanced techniques in numerical discretization. Project-oriented; projects designed around problems of current interest in science, mathematics, and engineering. Prerequisite: graduate standing or consent of instructor.

273B. Advanced Techniques in Computational Mathematics II (4)
Nonlinear functional analysis for numerical treatment of nonlinear PDE. Numerical continuation methods, pseudo-arclength continuation, gradient flow techniques, and other advanced techniques in computational nonlinear PDE. Project-oriented: sparse systems of equations designed around problems of current interest in science, mathematics, and engineering. Prerequisite: Math. 273A or consent of instructor.

273C. Advanced Techniques in Computational Mathematics III (4)
Adaptive numerical methods for capturing all scales in one model, multiscale and multiphysics modeling frameworks, and other advanced techniques in computational multi-scale/multi-physics/hybrid systems of linear equations. Prerequisites: graduate standing or consent of instructor.

274. Numerical Methods for Physical Modeling (4)
(Conjoined with Math. 174.) Floating point arithmetic, direct and iterative solution of linear equations, iterative solution of nonlinear equations, approximation, optimization, asymptotic expansions, initial value problems, differential equations, numerical methods for initial and boundary value problems in ordinary differential equations. Students may not receive credit for both Math. 174 and PHYS 105, AMES 153 or 154. Students may not receive credit for Math. 174 if Math. 170A, B, or C has already been taken. Graduate students will complete an additional assignment/exam. Prerequisites: Math. 20D or 21D, and either Math. 20F or Math. 31AH, or consent of instructor.

275. Numerical Methods for Partial Differential Equations (4)
(Conjoined with Math. 175.) Mathematical background for working with partial differential equations. Survey of finite difference, finite element, and other numerical methods for the solution of elliptic, parabolic, and hyperbolic partial differential equations. Students may not receive credit for Math. 175/275 and Math. 172. Graduate students will do an extra paper, project, or presentation, per instructor. Prerequisite: Math. 174 or Math. 274 or consent of instructor.

276. Numerical Analysis in Multi-Scale Biology (4)
(Cross-listed with BENG 276/CHEM 276.) Introduces mathematical tools to simulate biological processes at multiple scales. Numerical methods for ordinary and partial differential equations (deterministic and stochastic), and methods for parallel computing and visualization. Hands-on use of computers emphasized, students will apply numerical methods in individual projects. Prerequisite: consent of instructor.

277A. Topics in Computational and Applied Mathematics (4)
Topics vary from year to year. May be repeated for credit with consent of advisor. Prerequisite: graduate standing or consent of instructor.

277B. Topics in Numerical Mathematics (4)
Topics vary from year to year. May be repeated for credit with consent of advisor. Prerequisite: consent of instructor.

277A. Seminar in Computational Mathematics (1)
Various topics in computational mathematics. Prerequisite: graduate standing or consent of instructor. (S/U grade only.)

277B. Seminar in Mathematical Physics/PDE (1)
Various topics in mathematical physics and partial differential equations. Prerequisite: graduate standing or consent of instructor. (S/U grade only.)

279. Projects in Computational and Applied Mathematics (4)
(Conjoined with Math. 179.) Mathematical models of physical systems arising in science and engineering, good models and well-posedness, numerical and other approximation techniques, solution algorithms for linear and nonlinear approximation problems, statistical visualization, scientific software design and engineering, project-oriented. Graduate students will do an extra paper, project, or presentation per instructor. Prerequisite: Math. 174 or Math. 274, or consent of instructor.

280A-B-C. Probability Theory (4-4-4)
Probability measures; Borel fields; conditional probabilities; random variables; independence; zero-one laws; stochastic processes. Prerequisites: advanced calculus and consent of instructor. (F,W,S)

281A. Mathematical Statistics (4)
Statistical models, sufficiency, efficiency, optimal estimation, least squares and maximum likelihood, large sample theory. Prerequisites: advanced calculus and basic probability theory or consent of instructor.

281B. Mathematical Statistics (4)
Hypothesis testing and confidence intervals, one-sample and two-sample problems. Bayes theory, statistical decision theory, linear models and regression. Prerequisites: advanced calculus and basic probability theory or consent of instructor.

281C. Mathematical Statistics (4)
Nonparametrics: tests, regression, density estimation, bootstrap and jackknife. Introduction to statistical computing using R plus. Prerequisites: advanced calculus and basic probability theory or consent of instructor.

282A-B. Applied Statistics (4-4)
Sequence in applied statistics. First quarter: general theory of linear models with applications to regression analysis. Second quarter: analysis of variance and covariance and experimental design. Third quarter: further topics to be selected by instructor. Emphasis throughout is on the analysis of actual data. Prerequisite: Math. 181B or equivalent or consent of instructor. (S/U grade permitted.)

283. Statistical Methods in Bioinformatics (4)
This course will cover material related to the analysis of modern genomic data: sequence analysis, gene expression/functional genomics analysis, and gene mapping/applied population genetics. The course will focus on statistical modeling and inference issues and not on database mining techniques. Prerequisite: one year of calculus, one statistics course or consent of instructor.

285. Stochastic Processes (4)
Elements of stochastic processes, Markov chains, hidden Markov models, martingales, Brownian motion, Gaussian processes. Prerequisite: Math. 180A (or equivalent) or consent of instructor.

286. Stochastic Differential Equations (4)

287A. Time Series Analysis (4)
Discussion of finite parameter schemes in the Gaussian and non-Gaussian context. Estimation for finite parameter schemes. Stationary processes and their spectral representation. Spectral estimation. Prerequisite: Math. 181B or equivalent or consent of instructor.

287B. Multivariate Analysis (4)
Bivariate and more general multivariate normal distribution. Study of tests based on Hotelling’s t2. Principal components, canonical correlations, and factor analysis will be discussed as well as some competing nonparametric methods, such as cluster analysis. Prerequisite: Math. 181B (or equivalent) or consent of instructor.

287C. Advanced Time Series Analysis (4)
Nonparametric function (spectrum, density, regression) estimation from time series data. Nonlinear time series models (threshold AR, ARCH, GARCH, etc.). Nonparametric forms of ARMA and GARCH. Multivariate time series. Prerequisite: Math. 287B or consent of instructor.

288. Seminar in Probability and Statistics (1)
Various topics in probability and statistics. Prerequisite: graduate standing or consent of instructor. (S/U grade only.)

289A-B. Topics in Probability and Statistics (4-4)
In recent years, topics have included Markov processes, martingale theory, stochastic processes, stationary and Gaussian processes, ergodic theory. May be repeated for credit with consent of advisor.
290A-B-C. Topology (4-4-4)
Point set topology, including separation axioms, compactness, connectedness. Algebraic topology, including the fundamental group, covering spaces, homology and cohomology. Homotopy or applications to manifolds as time permits. **Prerequisites:** Math. 100A-B-C and Math. 140A-B-C. (F,W,S)

291A-B-C. Topics in Topology (4-4-4)
In recent years, topics have included generalized cohomology theory, spectral sequences, K-theory, homotopy theory. **Prerequisite:** consent of instructor.

292. Seminar in Topology (1)
Various topics in topology. **Prerequisite:** graduate standing or consent of instructor. (S/U grade only.)

294. The Mathematics of Finance (4)
Introduction to the mathematics of financial models. Hedging, pricing by arbitrage. Discrete and continuous stochastic models. Martingales. Brownian motion, stochastic calculus. Black-Scholes model, adaptations to dividend paying equities, currencies and coupon-paying bonds, interest rate market, foreign exchange models. **Prerequisite:** Math. 180A (or equivalent probability course) or consent of instructor.

295. Special Topics in Mathematics (1 to 4)
A variety of topics and current research results in mathematics will be presented by staff members and students under faculty direction.

296. Student Colloquium (1 to 2)
A variety of topics and current research in mathematics will be presented by guest lecturers and students under faculty direction. **Prerequisites:** for one unit—upper-division status or consent of instructor (may only be taken P/NP), or graduate status (may only be taken S/U); for two units—consent of instructor, standard grading option allowed.

297. Mathematics Graduate Research Internship (2–4)
An enrichment program which provides work experience with public/private sector employers and researchers. Under supervision of a faculty advisor, students provide mathematical consultation services. **Prerequisites:** consent of instructor.

299. Reading and Research (1 to 12)
Independent study and research for the doctoral dissertation. One to three credits will be given for independent study (reading) and one to nine for research. **Prerequisite:** consent of instructor. (S/U grades permitted.)

TEACHING OF MATHEMATICS

500. Apprentice Teaching (1 to 4)
Supervised teaching as part of the mathematics instructional program on campus (or, in special cases such as the CTF program, off campus). **Prerequisite:** consent of advisor. (S/U grades only.)

501. Seminar in Teaching Development (1)
A seminar designed for graduate students serving as teaching assistants in mathematics. Includes discussion of teaching theories, techniques, and materials with a focus on career development. **Prerequisite:** graduate standing or consent of instructor. (S/U grades only.)
THE JOINT DOCTORAL PROGRAM

http://www.sci.sdsu.edu/CRMSE/msed/

PH.D. TIME LIMIT POLICIES

All time limits for this program start when a student first registers in this program. Students must be advanced to candidacy by the end of four years. Total university support to students in this program cannot exceed five years. Total registered time in this program cannot exceed six years. The normative time in this program is five years.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

MSED 290. Issues in Science Education Research (4)
Survey of recent literature highlighting critical issues in science education research. Specific focus on research in biology education, chemistry education, and physics education. Theoretical perspectives and research methodology (both qualitative and quantitative) used to understand learning will be discussed. Prerequisites: admission to the Joint Doctoral Program in Mathematics and Science Education or a master’s degree in biology, chemistry/biochemistry, mathematics, or physics with consent of instructor.

MSED 295. Orientation Practicum (2-6)
This course should be taken the first year. Each practicum lasts five weeks and is designed to inform students about a faculty member’s research program. Assignment as a research assistant may be used as one practicum. Prerequisite: admission to MSED Joint Doctoral Program.

MSED 296A. Theories and Applications of Mathematics and Science Education (4)
The course is designed to cover several major themes in mathematics and science education. It will address theories and applications of cognition, teaching and learning, and curriculum, with particular emphasis on international perspectives. This is a three-quarter sequence. Prerequisites: admission to the Joint Doctoral Program in Mathematics and Science Education or a master’s degree in biology, chemistry/biochemistry, mathematics, or physics with consent of instructor.

MSED 296B. Theories and Applications of Mathematics and Science Education (4)
The course is designed to cover several major themes in mathematics and science education. It will address theories and applications of cognition, teaching and learning, and curriculum, with particular emphasis on international perspectives. This is a three-quarter sequence. Prerequisites: admission to the Joint Doctoral Program in Mathematics and Science Education or a master’s degree in biology, chemistry/biochemistry, mathematics, or physics with consent of instructor. MSED 296A must be taken before MSED 296B.

MSED 296C. Theories and Applications of Mathematics and Science Education (4)
The course is designed to cover several major themes in mathematics and science education. It will address theories and applications of cognition, teaching and learning, and curriculum, with particular emphasis on international perspectives. This is a three-quarter sequence. Prerequisites: admission to the Joint Doctoral Program in Mathematics and Science Education or a master’s degree in biology, chemistry/biochemistry, mathematics, or physics with consent of instructor. MSED 296B must be taken before MSED 296C.
Middle East
Studies

FACULTY
Guillermo Algaze, Professor, Anthropology
Eli Berman, Associate Professor, Economics
Suzanne Brenner, Associate Professor, Anthropology
David Goodblatt, Professor, History; Endowed Chair, History
Hasan Kayali, Associate Professor, History
Sanford A. Lakoff, Professor Emeritus, Political Science
Thomas Levy, Professor, Anthropology
Michael E. Meeker, Professor Emeritus, Anthropology
Esra Özyürek, Associate Professor, Anthropology
William H. Propp, Professor, History; Endowed Chair, History
Michael Provence, Program Director, Middle East Studies, Associate Professor, History
Babak Rahimi, Assistant Professor, Literature
James Rauch, Professor, Economics
Gershon Shafir, Professor, Sociology
Melford E. Spiro, Professor Emeritus, Anthropology
Winifred Woodhull, Associate Professor, Literature
Oumelbanine Zhiri, Professor, Literature

OFFICE:
History Undergraduate Advising
Humanities and Social Sciences Building, Fifth Floor
Muir College
http://history.ucsd.edu/programs/caesar-programs/middleeast-stud/

THE MINOR
The minor in Middle East studies is an interdisciplinary program aimed at a comparative study of the Middle East (including North Africa).

The program consists of seven courses, of which at least five must be upper-division courses. Three courses have to deal with the Middle East since the emergence of Islam, as listed here under “Core Courses.” The remaining courses may be chosen from either the Core Courses or the Supporting Courses; and they may be courses dealing with the ancient, medieval, or modern Middle East or a three-quarter sequence of a Middle Eastern language (in which case only four of the seven courses need to be upper-division). Ordinarily, all seven courses must be taken for a letter grade.

The courses that make up the minor must be approved by the student’s college and by the Middle East Studies Program.

Approved courses taken at other universities or through participation in the Education Abroad Program can be included as part of the minor by petition.

COURSES
For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

CORE COURSES
ANTH 199. Independent Study
(Middle East Anthropology)
ANSC 133. Peoples and Culture of the Middle East
HINE 108. The Middle East before Islam
HINE 114. History of the Islamic Middle East
HINE 116. The Middle East in the Age of European Empires
HINE 118. The Middle East in the Twentieth Century
HINE 166. Nationalism in the Middle East
HINE 186. Special Topics in Middle Eastern History
HINE 199. Independent Study in Near Eastern History
HITO 105. Jews and Judaism in the Modern World
LTWL 141. Islam and Modernity
LTWL 160. Women in Literature: Arabic Women in Literature & Society
POLI. 121. Government and Politics of the Middle East
POLI. 138D. Special Topics/Comparative Polities: The Arab-Israeli Conflict
Soci./D 122. Jerusalem: Sacred and Profane
SOCI 158. Islam in the Modern World
SOCI 188F. Modern Jewish Societies and Israeli Society
SOCI 199. Independent Study
(Middle East Sociology)
TWS 25. Third-World Literatures

SUPPORTING COURSES
ANAR 140. Foundations/Social Complex/Near East
ANAR 141. Prehistory of the Holy Land
ANTH 3. World Prehistory
JUDA 1. Beginning Hebrew
JUDA 2. Intermediate Hebrew
JUDA 3. Intermediate Hebrew Continued
JUDA 101. Introduction to Hebrew Texts
JUDA 102. Intermediate Hebrew Texts
JUDA 103. Advanced Hebrew Texts
HINE 102. The Jews in Their Homeland in Antiquity
HINE 104. The Bible and the Ancient Near East
HINE 106. The Bible and the Near East: The Writings
HINE 160. Special Topics in the Bible and the Ancient Near East
HINE 170. Special Topics in Jewish History
LIAB 1A. Beginning Arabic
LIAB 1B. Beginning Arabic
LIAB 1C. Elementary Arabic
LIAB 1D. Elementary Arabic
LIHL 116. Arabic for Arabic Speakers
ASSISTANT PROFESSORS

Jack Bui, M.D., Ph.D., Pathology
Seth J. Field, M.D., Medicine
Jonathan Lin, M.D., Ph.D., Pathology
Mana Parasai, M.D., Ph.D., Pathology
Bing Ren, Ph.D., Cellular and Molecular Medicine
Christina Sigurdson, D.M.V., Ph.D., Pathology
Jing Yang, Ph.D., Pharmacology and Pediatrics

ADJUNCT PROFESSORS

Rolf Bodmer, Ph.D., Burnham Institute
Marcia Dawson, Ph.D., Burnham Institute
Hudson Freeze, Ph.D., Medicine, Burnham Institute
Minoru Fukuda, Ph.D., Pathology, Burnham Institute
Fred Gage, Ph.D., Neurosciences, Salk Institute
Martin Haas, Ph.D., Moores UCSD Cancer Center
Michael Kalichman, Ph.D., Pathology
Stuart Lipton, Ph.D., Neurosciences, Burnham Institute
Mark Mercula, Ph.D., Pathology, Burnham Institute
Robert Oshima, Ph.D., Pathology, Burnham Institute
Maurizio Pellecchia, Ph.D., Burnham Institute
Manuel Perucchi, Ph.D., Pathology, Burnham Institute
James Quigley, Ph.D., Pathology, The Scripps Research Institute

John C. Reed, M.D., Ph.D., Moores UCSD Cancer Center
Rickert, Robert, Ph.D., Pathology, Burnham Institute
Ze'ev Ronai, Ph.D., Pathology, Burnham Institute
Evan Snyder, M.D., Ph.D., Pathology, Burnham Institute
Diane Shetton, D.V.M., Pathology
Francisco Villarreal, M.D., Medicine
Ian Wilson, Ph.D., Pathology, The Scripps Research Institute

ASSOCIATE ADJUNCT PROFESSORS

Roberta Gottlieb, M.D., Pharmacology, SDSU
Dorit Hanein, Ph.D., Pathology, Burnham Institute
Fred Levine, M.D., Ph.D., Pediatrics, Burnham Institute
Elena Pasquale, Ph.D., Pathology, Burnham Institute
David W. Rose, Ph.D., Medicine
Guy Salvesen, Ph.D., Pathology, Burnham Institute
Alexey Terskikh, Ph.D., Pathology, Burnham Institute
Bruce E. Torbett, Ph.D., Pathology

OFFICE: Laurel Building, Room 107
School of Medicine
http://medicine.ucsd.edu/molpath

THE GRADUATE PROGRAM

The Molecular Pathology Program is closed for entrance of new students as of the 2008 academic year. The program has been integrated into the Biomedical Sciences Program as a track in the Biomedical Sciences Program.

The goal of the molecular pathology program is to produce outstanding researchers focused on the molecular basis of human disease who also understand disease at levels of histology and pathology. The molecular pathology graduate program is an interdepartmental and interinstitutional program administered by the UC San Diego Department of Pathology in affiliation with the Burnham Institute. The program provides a comprehensive knowledge of normal and abnormal biological processes, with a particular emphasis on the molecular mechanisms of human diseases. Faculty research focuses on determining how normal cellular processes are altered in human disease. Research falls within six areas: cancer cell biology; stem cell and developmental biology; neurobiology and neurologic disease; structural biology and signal transduction; microbioology and immunology; and cardiovascular, muscle, and organ development/disease. Most program faculty reside in the Departments of Pathology, Medicine, and Pediatrics at the UCSD School of Medicine, in the Burnham Institute, and in The Scripps Research Institute.

COURSE WORK

The core science curriculum includes classes in Molecular Biology of the Cell, Methods in Cellular and Molecular Pathology, The Molecular Pathology of Cancer, and Neurologic and Muscle Disease. Learning is focused on reading and evaluating current scientific literature, with special attention to identifying the major open questions within a field and designing an effective experimental plan to answer these questions. Two elective classes (6 units total) are required. Electives taught by program faculty are offered in Microbial Pathogenesis (4 units) and Mouse Models for Human Disease (2 units). Electives may also be selected from graduate-level courses offered by other medical school programs or by other campus departments (e.g., Division of Biological Sciences, Department of Chemistry and Biochemistry, and Department of Bioengineering). This option allows students the opportunity to acquire advanced training in areas they have selected for graduate research. Popular electives are Molecular Modeling, Macromolecular Recognition, Molecular Biology of the Cardiovascular System, and graduate-level courses in Signal Transduction, Immunology, Animal Virology, Developmental Biology, Genetics, and Neurobiology. An education in histology and pathology is acquired by taking the School of Medicine course in Histology and an overview course in human pathology developed by pathology faculty for molecular pathology and pharmacy students. Students may elect to take in-depth pathology training in their particular disease(s) of interest by attending a set of comprehensive lectures (eight to twelve) taught as part of the comprehensive medical school pathology curriculum. Concurrent with their thesis research, third-year students can acquire a practical consideration of the clinical treatment of disease by attending pathology conferences: Breast Pathology Conference, Tumor Board, Pediatric Autopsy, Neuropathology “Brain-Cutting” Conference, Infectious Disease Rounds, or Hematology Conference. In such conferences, students learn how disease presents and progresses, how physicians currently treat disease, what the practical obstacles are in disease treatment, and where opportunities are for development of molecular therapeutics.

EXAMINATIONS

First Qualifying Examination (Minor Proposition)

The purpose of this examination is to test the student's ability to choose a research problem in molecular pathology and to propose an experimental approach to its solution. The problem should be unrelated to the student's thesis project. The student is expected to demonstrate knowledge in molecular
biology and basic pathology. The first qualifying examination will be taken by the end of the fall quarter of the second year.

Second Qualifying Examination (Major Proposition)

The second qualifying examination, a university requirement, consists of an oral report by the student about research accomplished and the goals to be achieved for completion of the examination, the student will advance to candidacy. The second qualifying examination should be complete by the end of the third year and must be completed by the end of the fourth year.

DEPARTMENTAL PH.D. TIME LIMIT POLICIES

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed six years. Total registered time at UCSD cannot exceed seven years.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

SPPS 215. Human Disease (3)
This introduction to human disease includes etiology and mechanisms of common disease states and integrates pathology with previous core curriculum. Students will focus on an understanding of disease processes and the dynamics of changes related to drug therapy. **Prerequisites:** admission to the School of Pharmacy and Pharmaceutical Sciences, or admission to the Molecular Pathology Graduate Program, or consent of instructor.

PATH 220. Drugs and Disease: Nervous System Disease and Therapy (4)
This course will explore the molecular pathology associated with various diseases other than cancer. Emphasis will be placed on understanding the aberrant cellular processes, caused by mutation or environmental factors, that are associated with the disease state. Cardiovascular, neurological, immunological, and other diseases will be investigated.

PATH 221. Molecular Pathology of Cancer (4)
The purpose of this course is to present exciting new developments in molecular carcinogenesis, with particular emphasis on oncogene expression and functions of onco-genic proteins. The relevance of molecular mechanisms for understanding human cancer will be discussed.

PATH 222. Microbial Pathogenesis (4)
Topics covered in this course include molecular and cellular mechanisms of viral, bacterial, and protozoan pathogenesis. Host response and microbial mechanisms of host defense will also be discussed. Sessions will consist of faculty and student presentations of current literature.

PATH 223. Mouse Models of Human Disease (2)
This course provides an overview of the use of mouse models in biomedical research. Sessions will cover general mouse biology, genetics, and technologies for generating mutant mice, and will focus on model selection, methodological approaches, data interpretation, experimental design, and ethics of animal research. Student participation and discussion will be encouraged. **Prerequisite:** graduate standing or consent of instructor.

PATH 225. Molecular Pathology Research Seminars (2)
This course presents developments in cellular and molecular pathology research. Both faculty and students actively participate in the individual sessions. All students are required to give one to two formal presentations (under faculty supervision) during the year. The relevance of molecular mechanisms for understanding human disease will be discussed. **Prerequisite:** consent of instructor.

PATH 228/PHAR 228/BION 228. Modern Drug Discovery Technologies (2)
Drug discovery is an emerging science available to academic investigators. This course provides an overview of these drug discovery techniques, including high throughput screening, cell-based screening, computational methods of lead compound discovery, and chemical methods of optimization. **Prerequisite:** graduate student status or consent of graduate program director.

PATH 230G. Molecular Biology of the Cell (6)
This course presents key concepts and methodologies used in cellular and molecular pathology research. Topics include protein purification, biochemical characterization, identification of post-translational modifications, DNA/protein microinjection, immunofluorescence, digital imaging, electron microscopy, stem cell culture, gene/promoter analysis, protein-protein interaction analysis using the yeast 2-hybrid system, transgenic and knockout mouse construction, analysis of bacterial virulence factors, and genomic/proteomic approaches to disease analysis.

PATH 232. Statistical Methods and Experimental Design (2)
This course will emphasize the relationships between experimental design, statistical methods, and biomedical research. The content of the course will include basic issues in experimental design and commonly used statistical methods. The assumptions behind the statistical tests, their appropriate use, and examples of misuse will be discussed.

PATH 296. Directed Reading (1–4)
Reading and laboratory study of special topics under the direction of a faculty member. Exact subject matter to be arranged in individual cases.

PATH 299. Independent Study or Research (1–12)
Independent study or research.

SOM 213. Histology (2)
This course teaches the structural basis of normal and abnormal function at the cellular and tissue levels. Emphasis is based on microscopic study conducted in small laboratory groups under close faculty supervision.

SPPS 215. Human Disease (3)
This introduction to human disease includes etiology and mechanisms of common disease states and integrates pathology with previous core curriculum. The focus will be to understand disease processes and the dynamics of changes related to drug therapy. Our goal is to give the student an overview of the illnesses and disorders of human organs, systems and functions, in other words, human disease, with the hope that this background will lead the students to clinical understanding of patients and future insight into the pathogenesis of disease and new treatments. This course will include general pathology and system-based pathology, taught in lecture, case discussion, and lab format.
THE WRITING PROGRAM

OFFICE: Provost, Muir College
2126 Humanities and Social Sciences Building

THE WRITING PROGRAM

OFFICE: 2346 Humanities and Social Sciences Building, Muir College
(858) 534-2522
http://muir.ucsd.edu/muir-writing

The Muir College Writing Program is a sequence of courses in critical thinking and writing during which students must advance beyond the basic competency expected at entrance to understand and write discourse acceptable at the university level. Even when faced with challenging topics, students must demonstrate the ability to comprehend textual arguments at more than a superficial level; their writing must exhibit an understanding of academic arguments including focused theses, systematic methods of analysis and argumentation, awareness of audience, strong organization and development, clear presentation of ideas, appropriate syntax and diction, and—needless to say—correct grammar and usage.

To achieve these ends, the courses focus on principles of analysis and reasoned argumentation. Students will learn to identify underlying assumptions and values in arguments from such fields as the sciences, social and behavioral sciences, and the humanities. They will then write reasoned arguments of their own. Students will also write annotated bibliographies, paper proposals, and research papers as appropriate. In addition, students learn to monitor and adapt their own writing processes. Since the ability to evaluate one’s own writing and carry out appropriate revision strategies is crucial to effective writing and argument, all students are required to revise their papers several times. Attention is devoted to developing skill in evaluation and revision in classes and in individual conferences with instructors. Sections of MCWP 50 vary in theme and content, giving students the opportunity to write in areas that interest them or that may be relevant to their major fields. (Descriptions of the MCWP 50 sections are available each quarter in the Muir Writing Program office during pre-enrollment.)

Students are required to take both MCWP 40 and MCWP 50 for a letter grade in their first year of residence at the college. All transfer students, upon satisfaction of Subject A, must take MCWP 40 and MCWP 50 in their first year of residence. In cases where more than one quarter of practice is needed to prepare a student for MCWP 50, an IP grade is given in MCWP 40, and the student takes MCWP 41. MCWP 41 is then followed by MCWP 50. Completion of the sequence allows students to meet the Muir College writing requirement.

MCWP 40. Critical Writing (4)
First course of sequence in university reading and writing which satisfies the Muir College graduation requirement in writing. Required of all Muir College first-year students and of transfer students who have not completed a comparable course elsewhere. MCWP 40 introduces students to the basic elements of argument and analysis. Students engage in close reading of texts, weekly writing and revision, and individual conferences. Course must be taken for a letter grade. Those who need additional work to prepare for MCWP 50 will be given a grade of IP and will be required to take MCWP 41. Prerequisite: satisfaction of the UC Entry Level Writing requirement.

MCWP 41. Special Study in Writing (4)
An advanced course in argumentation and analysis, with students confer individually with instructors on a regular weekly basis to talk about writing problems. The course is designed for students who have taken MCWP 40 or its equivalent but need additional writing practice to prepare for MCWP 50. MCWP 41 does not satisfy the first part of the Muir Writing requirement. MCWP 41 must be taken for a letter grade and must be taken within two quarters of MCWP 40. Prerequisite: MCWP 40 or its equivalent.

MCWP 50. Critical Writing (4)
Second course of sequence in reading and writing which satisfies the Muir College graduation requirement in writing. Required of all Muir College first-year students and of transfer students. MCWP 50 focuses on advanced skills of argument and analysis. Students engage in close reading of texts, weekly writing and revision, and individual conferences. Course must be taken for a letter grade. Prerequisite: satisfaction of MCWP 40 requirement or completion of TAG or IGETC agreement.

MCWP 125. Argument and Analysis (4)
An advanced course in argumentation and analysis, with particular attention both to constructing arguments and analyzing the logic and rhetoric of others’ arguments. Students will engage in close reading of texts, weekly writing and revision, and individual conferences. A course specially designed for and required of transfer students who enter Muir College under the aegis of TAG or IGETC. Prerequisite: departmental approval.
Music

PROFESSORS
Charles R. Curtis, M.M.
Anthony C. Davis, B.A.
Mark Dresser, M.A.
John W. Fonville, D.M.A.
Aleck Karis, M.M.
Philip C. Larson, M.M.
Philippe Manoury, Dip. Mus.
F. Richard Moore, Ph.D.
Susan Narucki, B.A.
János Négysy, Dip. Mus.
Jann C. Pasler, Ph.D.
Miller S. Puckette, Ph.D.
Roger L. Reynolds, M.M.
Steven E. Schick, M.M.
Rand Steiger, M.F.A., Chair
Chinary Ung, Ph.D.

PROFESSORS EMERITI
Peter Farrell, M.M.
Edwin L. Harkins, Ph.D.
Cecil W. Lytle, B.A.
Wilbur L. Ogdon, Ph.D.
Carol Plantamura, M.F.A.
Harvey Sollberger, M.A.
Bertram J. Turetzky, M.A.
Joji Yuasa

ASSOCIATE PROFESSORS
Gerald J. Balzano, Ph.D.
David Borgo, Ph.D.
Slomo Dubnov, Ph.D.
Nancy Guy, Ph.D.
Jane R. Stevens, Ph.D.

ASSISTANT PROFESSORS
Anthony Burr, D.M.A.
Lei Liang, Ph.D.
Katharina Rosenberger, D.M.A.

LECTURERS
Kenneth Anderson
David Chase, D.M.A.
Kamau Kenyatta, B.A.
Colin McAllister, D.M.A.
Kartik Seshadri, M.B.A.
Robert Zellickman, M.F.A.

MUSIC TECHNOLOGY DIRECTOR
Peter Otto, M.F.A., Director (Lecturer)
Tom Erbe, B.S., Studio Director (Lecturer)

OFFICE: Conrad Prebys Music Center
http://music.ucsd.edu

This department is dedicated to the development of musical intelligence and capacity, centering its quest on the music of our own time. The undergraduate programs intend to enhance the exercise and comprehension of the music-making process. The graduate programs aim to educate practitioners and researchers who can nourish the entire domain of music as well as extend its boundaries.

RESOURCES

PERFORMANCE/PRODUCTION OPPORTUNITIES

Performing in front of an audience is an essential part of the performance program; composers too must hear their works performed. Both performance and non-performance students are encouraged to participate in ensembles, festivals, and collaborative events. Practice facilities include grand pianos, disclaimers and uprights, an electronic keyboard lab, several harpsichords, a wide array of percussion instruments, a percussion studio, and instruments for student checkout.

Each academic year, more than 150 public concerts are presented in well-equipped venues: Mandeville Center Auditorium (792 seats), Mandeville Recital Hall (150 seats), Erickson Hall (150 seats), and Studio A (100 seats). Substantial resources and staffing are dedicated to performances of faculty and student works by new music ensembles, experimental and improvisational ensembles, student performance collectives (New Music Forum, Performers Forum, and IS Forum), and an annual graduate Spring Festival.

Our concert calendar can be viewed at http://music.ucsd.edu/events.

Ensembles in Residence
• Chamber Music Advanced
• Chamber Singers
• Concert Choir
• Gospel Choir
• Ensemble Realizations of Unconventionally Notated Scores
• Improvisation Ensemble
• Jazz Ensembles
• La Jolla Symphony and Chorus
• redfishbluefish
• Wind Ensemble
• World Music (Sitar & Tabla)
• Indian classical music

Visiting Artists/Artist in Residence

Visiting artists and artists in residence play an integral part in research and collaborate with faculty and students in focus seminars, concerts, weeklong festivals, and colloquia, bringing in new ideas and ideas. Recent special events included Powering Up/Powering Down, an international festival of radical media arts, and the IS Intermedia Festival, featuring sound installation, performance, and critical theory.

Music Technology Facilities

The Department of Music maintains highly sophisticated, continuously upgraded facilities for the support of graduate and undergraduate instruction. http://music.ucsd.edu/facilities.

Computer Music Instructional Laboratory (CML)—Established in 1987 to support undergraduate and graduate studies in computer music, CML is a 900-square-foot facility with recessed storage and printing areas, machine isolation, acoustical treatments, a presentation console, ergonomic workstation components, a high-resolution data projection system, CD and DVD authoring, and integrated digital audio equipment for student access to audio processing, duplicating, high-definition digital mixing and high-quality (Dynaudio) multichannel audio monitoring. The facility provides adequate space for instrumental rehearsal and interfacing experimentation, and provides several FireWire interfaces for laptop computing. Mobile desktop systems optimized for live performance applications are also maintained in CML.

Our server has high-speed network and wireless connections, mass storage, and archiving systems. Intel and Macintosh computer workstations run unique music software packages developed at UC San Diego. Pd is a new, real-time, interactive musical and graphics programming environment written and under continuing development by Professor Miller Puckette. Other audio and graphics editing and processing software packages are also supported, including Pro Tools HD, development compilers, and several standard music-production packages. The facility is configured and optimized to support direct connection of musical instruments to computers for prototyping of real-time interactive performance and compositional projects using MAX/MSP/Jitter and Pd computer music software. The facility is also used for advanced seminars and classes in such topics as sound spatialization, music software programming, computer music techniques, repertoire analysis, and research.

Digital Music Project Studio—This is a 900-square-foot facility, including an isolation booth, absorption and diffusion treatments, data connections, and audio tie-lines to CML and Erickson Hall. The studio houses Macintosh and Linux systems and many dedicated devices for music production and recording, including a Pro Tools HD digital audio production package with sixteen channels of digital I/O for precise digital recording and editing. Recent upgrades include improved microphone preamps and an array of new software packages, including Waves plug-ins and convolution reverb. The studio features a Yamaha 02R96 digital mixing console with all upgrades, S.1 and stereo monitoring, and sound-for-picture capabilities. The studio supports MIDI for synthesis, processing, and control in music composition and performance, and includes hardware and software for CD and DVD mastering.

Open Computing Laboratory (OCL)—This facility occupies 1,950 square feet, with audio and printer connections to CML and the Digital Music Project Studio. Most workstations are networked, and several stations are equipped with CD and DVD burning equipment. OCL was established in 1990 to support many facets of the department curriculum, and has been upgraded incrementally every year thereafter. It now comprises seventeen computer workstations (iMacs, desktop G4s and G5s, and several Intels), most with MIDI interfaces and...
Yamaha SY22/33 synthesizers, Coda Finale, Max/MSP, Soundhack, Metasynth, DVD Studio Pro, Final Cut, Pd, Pro Tools, and IRCAM Forum are some of the packages supported in the lab. Large-format music and text printing are supported. For instructional presentation, the room features a high-quality data projection and surround sound system. The presentation station also features a PC workstation, a GS Mac with Pro Tools editing, DAT, Bias Peak editor and SpectraFoo, signal display software, and DVD-authoring software burner.

Media Networking—All instructional labs and all of the Department of Music’s performance spaces and classroom spaces have been upgraded for wireless and fast Ethernet and media networking. Media networking allows advanced students and researchers to “stream” digital video and audio among diverse on-campus facilities and onto the internet. Additionally, there is wireless connectivity at most campus locations. All UCSD music production and research facilities are designed for ease of data portability and as complementary components of a powerful, well-designed, thoroughly integrated continuum of resources serving the needs of entering students through postdoctorate students and faculty researchers.

Music Technology Equipment Checkout—The music department maintains an inventory of technology equipment available to music majors and graduate students for overnight and weekend checkout. Equipment includes laptops with music software installed, FireWire audio interfaces, MIDI keyboards and interfaces, microphones, cables, and other recording and production sound equipment. This equipment is provided primarily to support class-related, dissertation, thesis and ICAM senior projects.

Concert Recording and CD Releases—All faculty and most student concerts are recorded by professional staff or their assistants, and qualified students can utilize the department’s extensive high-tech resources for experimental projects resulting in public performance and recordings of new works. Regularly released CDs, under advisement by faculty mentors, feature advanced graduate students who perform, compose, edit, and collaborate to produce a snapshot of musical achievement that predicts distinguished careers and new avenues of musical thought and practice.

Music Center Studios—The Department of Music has a state-of-the-art recording and faculty research complex, completely refurbished in 2004-05, with studios designed to meet the following objectives:

- Serve as an unsurpassed facility for recording and mastering classical and contemporary music.
- Serve as a reference-critical listening space for the evaluation of audio production.
- Support faculty research in psychoacoustics, computer music, and digital signal processing (DSP) for audio.

The facility incorporates two large recording studios (50 x 60 feet) with variable wall and floor surfaces for diverse acoustical configurations, a control room (20 x 30 feet), an isolated machine room, and other support spaces. Music center studios host live performances as well as six-camera video shoots, and are well suited for high-tech presentations and concert recording. A 120-dimmer grid with a digital lighting board supports theatrical lighting for performance, and for television and video production. The control room features highly refined acoustical qualities and new all-digital mixing and editing systems including Pyramix and Pro Tools HD. ATC monitoring systems have been upgraded for surround sound. An excellent range of microphones supports an unusual array of recording possibilities; a fine selection of pianos, percussion, and electronic instruments is also part of the holdings of the complex. Graduate students may apply for staff positions and recording-project support at music center studios, and ICAM majors may apply for engineering and production internship credits. The department’s instructional labs are designed to be networked, network-compatible satellites to the music center studios. http://music.ucsd.edu/facilities

Center for Research in Computing and the Arts (CRCA), and California Institute for Telecommunications and Information Technology (Calit2)

The Center for Research in Computing and the Arts (CRCA) is an organized research unit of UCSD. Historically rooted in the Center for Music Experiment (CME), CRCA now exists to foster collaborative working relationships among a wide array of artists, scientists, and technologists by identifying and promoting projects in which common research interests may be advanced through computing.

Music projects at CRCA cover a wide spectrum, from pure research to technically advanced creative endeavors. Current research includes, but is not limited to, interactive multimedia and performance, digital audio and synthesis techniques, video/image processing, spatial audio, computer music languages, virtual environments, robotics, computer composition, installation, artificial intelligence, and Web art.

CRCA offers a broad array of events in its facilities, reflecting the research and artistic expression of faculty, students, associates, and visiting scholars. Research residencies and fellowships are available for undergraduate and graduate students on an annual, competitive basis. In fall 2005 CRCA moved into its new home in the Media Arts wing of UCSD’s new Calit2 building. This impressive new structure houses offices, labs, and performance spaces on a world-class stage that places CRCA at the crossroads of artistic and technical innovation. CRCA affirms work alongside leading researchers in the areas of wireless communications, computer imaging, signal processing, bioinformatics, chip design, immersive media, and a host of new and emerging disciplines. http://www.crca.ucsd.edu; http://www.calit2.net/

Music Library

The Music Library (located in Geisel Library) maintains extensive collections of materials in all areas of music, and is known internationally for contemporary music holdings. Ethnic music collections are aggressively being expanded. The Music Library’s Services Room has fifty-two stations for playback of the recordings collection, including CD, DVD, VHS, LP, or tape formats. Ten of the remote control stations are equipped with video monitors. The Seminar Room is equipped with audio and video equipment for group presentations. Digital Audio Reserves (DAR) provide students with 24/7 access, including off-campus access, to course listening assignments, via the UCSD network. http://orpheus.ucsd.edu/music

THE UNDERGRADUATE PROGRAM

Undergraduate courses offered in the Department of Music satisfy a wide range of interests for non-music majors as well as for students majoring in music.

Students wishing to acquire a musical background to support further study should take MUS 1A-B-C, which develops skills musicians use in the analysis and performance of music. Students interested in "music appreciation" should choose from the following courses, which introduce aspects of the rich heritage of music: MUS 4–15. None of the aforementioned courses have prerequisites. For students with prior musical background who wish to continue in upper-division theory courses, MUS 2A-B-C (in lieu of 1A-B-C) is essential.

MUSIC MAJOR PROGRAMS

The undergraduate program at UCSD offers a bachelor of arts degree in music and in music humanities. The curriculum emphasizes the development of musical listening and performance skills as applied to both contemporary and traditional music. A third degree program, interdisciplinary computing in the arts (ICAM-music), is also offered.

The music major is intended for students who may choose to engage in music as a profession. This major thus requires intensive development of musical skills. A student without the appropriate level of those skills upon entrance to UCSD must devote considerable time to attaining them, either in lower-division courses or independent study. Students can concentrate in composition, performance, literature, technology, or jazz and the music of the African diaspora.

The Department of Music is committed to creative music making; thus all music majors are required to enroll in ensemble performance for at least three quarters (see #8 below).

The music/humanities major is intended for students who wish to pursue a broad liberal arts program that includes music as a central element. This program emphasizes music history and literature, and allows the individual student to select an area of interest for the major within the broad field of the humanities.

The interdisciplinary computing in the arts major is intended for students who wish to pursue the field of music specializing in the art and technology of our time. Below is a detailed description of this major.

MUSIC MAJOR REQUIREMENTS

The lower-division prerequisites for the music major are MUS 2A-B-C, and MUS 2AK-BK-CK. Jazz emphasis students take MUS 2JK in lieu of 2CK. To continue within the major, all students must pass Music 2C or an equivalent proficiency exam. Composition emphasis students must take Music 33A-B-C, Introduction to Composition I, II, and III,
or take a proficiency exam for the three-quarter sequence course. All required music major courses must be taken for a letter grade, with the exception of MUS 143, which is taken on a Pass/Not Pass basis. All courses to be counted toward satisfying the major requirements must be passed with a grade of C or better.

To complete the music major the following courses are required. Courses that are specific to each area of emphasis are shown in parentheses.

1. One of the following sequences:
 - MUS 101A-B-C (performance, composition, literature, and technology)
 - MUS 101A-B and 104 (jazz)
2. One of the following sequences:
 - MUS 102A-B-C (performance, composition, literature, and technology)
 - MUS 137A-B-C (jazz)
3. MUS 120A-B-C
4. One quarter of MUS 133 (normally taken in the winter quarter of the junior or senior year)
5. One of the following:
 - MUS 107, 110, 116, or 150 (performance, composition, literature, and technology)
 - MUS 150 (jazz)
6. One of the following:
 - three quarters of MUS 132 or 132V (performance)
 - MUS 103A-B-C (composition)
 - three courses from the series MUS 107-116, 126, 127A-B, and 150, of which at least one must be 107, 110, 116, or 150 (in addition to #5 above) [literature]
 - Music 170/171/175 (technology)
 - two courses from MUS 105, 126, 127A, and 127B; plus one course from MUS 107, 110, 111, 114, 115, 116, or 150 (in addition to #5 above) (jazz)
7. One additional course to be selected from:
 - MUS 107-116, 126, 127A-B, and 150 (performance, composition, literature, and technology)
 - MUS 151-154 (jazz)
8. One of the following sequences:
 - Two quarters chosen from MUS 95C, 95D, or 95K and one quarter from MUS 95B-W, 130, 131, and 134 (performance, composition, literature, and technology)
 - Two quarters of MUS 95C or 131, and one quarter of MUS 95C, 95D, 95G, or 95K (jazz)
9. MUS 143 every quarter

MUSIC/HUMANITIES MAJOR REQUIREMENTS

The prerequisite for the music/humanities major is Music 1A-B-C (or 2A-B-C, if qualified). To complete the major the following courses are required:

1. MUS 120A-B-C
2. Three courses chosen from MUS 107-116, 126, 127A-B, and 150, of which at least one must be 107, 110, 116, or 150
3. A coherent set of six upper-division courses selected from the humanities or fine arts (including music) that focuses on a specific topic, chosen in consultation with the music/humanities academic advisor
4. Two quarters chosen from MUS 95C, 95D, or 95K, and one quarter from MUS 95B-W, 130, 131, and 134
5. MUS 143 every quarter

Students interested in this major should confer with the music/humanities faculty advisor to work out a course of study, which must be submitted at the beginning of the junior year for the advisor's written approval.

INTERDISCIPLINARY COMPUTING AND THE ARTS (ICAM) MAJOR

The Interdisciplinary Computing and the Arts major in the Departments of Music and Visual Arts draws upon and aims to bring together ideas and paradigms from computer science, art, and culture theory. It takes for granted that the computer has become a metamedium and that artists working with computers are expected to combine different media forms in their works. All of this makes the program unique among currently existing computer art or design programs which, on the one hand, usually focus on the use of computers for a particular media (for instance, specializing in computer animation, or computer music, or computer design for print) and, on the other hand, do not enter into a serious dialogue with current research in computer science, only teaching the students off-the-shelf software. The goals of the program are to:

- provide the next generation of artists who will be functioning in a computer-mediated culture
- give students necessary technical, theoretical, and historical backgrounds so they can contribute to the development of new aesthetics for computer media
- prepare students to mediate between the worlds of computer science and technology, the arts, and the culture at large by being equally proficient with computing and cultural concepts
- give students sufficient understanding of the trajectories of development in computing so they can anticipate and work with the emerging trends, rather than being locked in particular software currently available on the market.

Major Course Requirements

Twenty courses are required in the computing and the arts major for the attainment of the Bachelor of Arts degree. A minimum of twelve of these courses must be upper division.

All courses taken to satisfy major requirements must be taken for a letter grade, and only grades of C– or better will be accepted in the major.

MUS 4. Introduction to Western Music
VIS 1. Introduction to Art-Making
ICAM 40/VIS 40. Introduction to Computing in the Arts
Math. 20A. Calculus for Science and Engineering
Math. 20B. Calculus for Science and Engineering
CSE 11. Introduction to Computer Science: JAVA
and choose one from
MUS 1A. Musical Literacy
MUS 2A. Basic Musicianship
MUS 5. Sound in Time
and choose one from
MUS 6. Electronic Music
MUS 7. Music, Science, and Computers
MUS 14. Contemporary Music

*Math. 20A and Math. 20B is an accelerated calculus course for science and engineering. Math. 10A-B-C covers similar material in a non-accelerated format, and can be substituted. CSE 11 is an accelerated course in the JAVA programming language. CSE 8A and CSE 8B, which cover the same material in a non-accelerated format, may be substituted.

Upper-Division (twelve courses required)

Survey (one course required)
ICAM 110. Computing in the Arts: Current Practice
Foundation (three courses required)
ICAM 101/VIS 140. Digital Imaging: Image and Interactivity
ICAM 102/VIS 145A. Digital Media I: Time, Movement, Sound
ICAM 103/MUS 170. Musical Acoustics
Advanced (four courses required)

Choose one from
MUS 172. Computer Music II
VIS 141B. Computer Programming for the Arts II
VIS 145B. Time- and Process-Based Digital Media II
VIS 147B. Electronic Technologies for Art II
Choose three from
ICAM 120. Virtual Environments
ICAM 130/VIS 149. Seminar in Contemporary Computer Topics
MUS 171. Computer Music I
MUS 173. Audio Production: Mixing and Editing
MUS 174A-B. Audio and MIDI Studio Techniques
MUS 175. Musical Psychoacoustics
MUS 176. Music Technology Seminar
VIS 109. Advanced Projects in Media
VIS 131. Special Projects in Media
VIS 132. Installation Production and Studio
VIS 141A. Computer Programming for the Arts I
VIS 147A. Electronic Technologies for Art I
VIS 174. Media Sketchbook

Theory and History (two courses required)
ICAM 150/VIS 159. History of Art and Technology
and choose one of
MUS 111. World Music Traditions
MUS 114. Music of the Twentieth Century
MUS 175. Musical Psychoacoustics
VIS 123CN. Early Print Culture: The First Media Revolution
VIS 125E. History of Performance
VIS 150. History and Art of the Silent Cinema
VIS 151. History of the Experimental Film
VIS 152. Film in Social Context
VIS 153. The Genre Series
VIS 154. Hard Look at the Movies
VIS 155. The Director Series
VIS 156N. Special Problems in Film History and Theory
VIS 157. Video History and Criticism
VIS 158. Histories of Photograph
VIR 194S. Fantasy in Film

Senior Project (two courses required)

ICAM 160A. Senior Project in Computer Arts I
ICAM 160B. Senior Projects in Computer Arts II

All Computing and the Arts (ICAM) course descriptions are listed at the end of the lower- and upper-division sections under “Courses.” Not all courses are offered each year.

Recommendations for Transfer Students

Transfer students should attempt to complete the following lower-division courses before transferring to UCSD: CSE 11 (or CSE 8A/8AL/8B), Math. 20A-B (or Math. 10A-B-C), and MUS 4. Go to http://www.assist.org. ASSIST is an online student-transfer information system that shows how course credits earned at one public California college or university can be applied when transferred to another. ASSIST is the official repository of articulation for California’s public colleges and universities and provides the most accurate and up-to-date information about student transfer in California.

Students should also be able to find courses equivalent to MUS 1A, 6, and 14 at some colleges. While some of these may be listed on ASSIST, transfers should be prepared to provide course descriptions, syllabi, and/or other materials that may be required to determine the content of the courses taken at other institutions.

Transfers entering with thirty-six or more quarter units by their third quarter of study at UCSD should complete their remaining lower-division courses for the major by the end of the third quarter.

HONORS

1. To be admitted into the honors program a student must have the following:
 - Excellence in a specific subject matter (performance, composition, literature, technology, jazz and music of the African diaspora, or music/humanities) and faculty support.
 - Performers must have previously performed at Undergraduate Performers Forum and enrolled in Chamber Music, MUS 130. Vocals can seek an exception.) Other students must have completed all Music 95 requirements prior to entering the honors program. Jazz and music of the African diaspora students must have performed, or had their compositions performed, at the Undergraduate Performers Forum.
 - A GPA in the Department of Music of 3.6; an overall GPA of 3.0
 - All of the requirements below must be completed before the last day of instruction in the spring quarter prior to the academic year in which the student proposes to pursue an honors curriculum.
 - Performance students must present a piece before the performance faculty that demonstrates their technical and musical abilities. In addition, students must provide a proposed program for an honors recital.
 - Composition students must have a composition performed on the New Music Forum series. Either the student’s principal instructor must attend this performance or a tape of this performance must be provided for faculty review. In addition, students must provide a proposed portfolio of original scores for an honors recital.
 - Literature students who have (1) presented historically or musicologically oriented research papers at campus venues featuring undergraduate research, or (2) been involved in the faculty mentor program, or (3) participated in the presentation of the winter opera with the accompanying symposium, may submit a portfolio of papers to the Integrative Studies faculty. In addition, students must propose a fifty minute lecture for the Department Seminar (MUS 143).
 - Music science and technology students must present a portfolio of projects to the music technology faculty and propose a fifty-minute lecture/demonstration for the Department Seminar (MUS 143).
 - Jazz and music of the African diaspora students must perform a piece before the faculty that demonstrates their compositional and improvisational abilities. In addition, students must provide for evaluation a portfolio of three original recordings and a proposed program for an honors recital.

2. Once admitted to the honors program
 - Students must be supervised by a faculty advisor throughout the honors program.
 - Composition students admitted to the honors program will enroll in twelve units of the Composition Honors course (MUS 103D-E-F). Performance students will enroll in twelve units of MUS 132R (after at least three quarters of MUS 132). Technology students will enroll in twelve units of MUS 176 or 199; Music Literature and music humanities students will enroll in twelve units of MUS 199, 150, or 107. Jazz and music of the African diaspora students will enroll in twelve units of MUS 137D, 137E, and 137F (Honors Seminar in Jazz Studies I, II, III).

3. To receive honors
 - A student must publicly demonstrate an appropriate level of excellence, an acceptable GPA, and suitable participation in department presentations and seminars, as determined by the student’s honors committee.
 - Jazz and music of the African diaspora students will have a recital in the spring quarter of their senior year. The recital will include a program of a minimum of 50 percent of original compositions.

Please note: Being admitted to the honors curriculum does not guarantee that a student will receive honors.

For further information on the Department of Music Honors Program and to obtain an application form, students should make an appointment with the undergraduate staff advisor.

TRANSFER STUDENTS

Students who plan to transfer into the music major should have strong skills in basic musicianship. For those planning to emphasize performance, solid proficiency on the instrument is required. A general course in the history of music is recommended. All transfer students must pass a proficiency examination in MUS 2C (Basic Musicianship) and MUS 2CK (Basic Keyboard) or take the two sequence courses. To verify the acceptability of transfer music courses, students must make an appointment with the undergraduate staff advisor.

MINOR PROGRAMS

Please obtain a Department of Music brochure of approved minors from the undergraduate office. Students must seek advice and obtain approval from the undergraduate advisor prior to embarking upon a minor program.

The music minor for students entering UCSD in and after winter quarter 1998 consists of:
 - two lower-division music courses except performance ensembles (Music 95B–Music 95W) and lessons (Music 32)
 - five upper-division music courses
 - Students who entered UCSD before winter 1998 may select either the new minor or one of the music minors offered at the time of their entry into the university.

A minor with an emphasis in ICAM consists of seven specific courses, of which at least five must be upper division. Prospective minors should consult with the respective departmental advisor for a complete list of appropriate classes acceptable for the minor.

ADVISING OFFICE

Undergraduate Staff advisor:
Eileen Voreades
Room 195, Conrad Prebys Music Center
(858) 534-8226
Evoreades@ucsd.edu

OFFICE: Conrad Prebys Music Center
http://music.ucsd.edu

THE GRADUATE PROGRAM

UC San Diego offers the master of arts and doctor of philosophy in music as well as a doctor of musical arts. Areas of emphasis for the M.A. include Composition, Computer Music, Integrative Studies, and Performance. For the Ph.D., areas of emphasis offered are Composition, Computer Music, and Integrative Studies. The doctor of musical arts has an emphasis in Contemporary Music Performance.

COMPOSITION

http://music.ucsd.edu/grad/composition.php

The Composition Program is committed to nourishing the individual gifts and capacities of student composers in a diverse and active environment, with an emphasis on intensive personal interaction between faculty and student. The faculty mentor considers a student’s particular goals and then attempts to strengthen his or her technical capacity to meet them. The diversity and liveliness of our program itself often challenges students to reevaluate their goals.

An incoming member in the M.A. or Ph.D. program begins with a year-long seminar (taught by a different faculty composer each quarter) and
continues with individual studies thereafter. At the close of the first year fall quarter and again after the following spring quarter, the entire composition community gathers for a day-long “jury.” Each seminar member is allotted a block of time during which the composition that has just been completed is performed and recorded in a carefully rehearsed presentation. There is a detailed discussion of each work by the faculty composers, and the student has opportunity to comment, explain, and pose questions. Following the performance and discussions of this day, the composition faculty meets to assess the students’ work collectively and to offer any guidance deemed necessary. This process is at the root of the uniqueness of the UC San Diego program, and manifests the range, seriousness, and vitality with which compositional issues are explored here.

After completing three quarters of seminar and two juries, students come to know something about the ideas and perspectives of each faculty composer; the faculty, in turn, is aware of each student’s objectives and needs. At this point, an individual mentor is agreed upon and this relationship becomes the center of the student’s continuing work as the degree is completed. A Third Year Forum presents, under departmental auspices, a work composed by each third-year Ph.D. composer in the four quarters since his or her second jury. As a part of preparation for this forum, each student composer is expected to have a faculty performer on his or her Ph.D. committee (as a regular member, or as an additional sixth member). The faculty performer is the student’s performance mentor and guide in interfacing with the performance community. There is also a biweekly Focus on Composition Seminar at which faculty, students and selected visitors present work of interest (compositional, analytical, technological, and even whimsical).

The seminars serve to foster mutual awareness within the student composer group. Collegial relationships develop which lead not only to friendships but also to further creative outlets in cooperative projects, including the student-run Composers’ Forums, performance collectives, and recital projects. UCSD performers—faculty and student—are all committed to the playing of new music, and frequent composer/performer collaborations are a vital aspect of life in the Department of Music.

COMPUTER MUSIC

http://music.ucsd.edu/grad/comp_music.php

The Computer Music Program emphasizes research in new techniques for electronic music composition and performance, catalyzed through an active concert program of new works by students, faculty, and visitors. Areas of research include:

• new audio synthesis techniques
• audio signal processing
• music cognition
• live improvisation with and by computers
• integrating audio and video
• electronic spatialization of sounds
• techniques for live electronic music performance
• computer music software and HCL design
• audio analysis and feature detection

The Computer Music Program encourages work which overlaps with the other programs of study: Composition, Performance, and Integrative Studies. Analyzing and performing electronic music repertoire as well as writing new music involving electronics are encouraged.

The first-year computer music curriculum is centered on a yearlong “backbone” course covering the essentials of the computer music field. This material divides naturally into three portions (audio signal processing, compositional algorithms, and musical cognition).

In their second year, students work individually with faculty members to deepen their mastery of their subject areas of concentration. For example, a student wishing to focus on signal processing aspects might study techniques for digital audio analysis and resynthesis, drawing on the current research literature.

Also during these first two years, students take seminars on music analysis, composition, and performance practice. After having taken a critical mass of such subjects, Ph.D. students enter a qualifying examination preparation period, and, once successful, they start their dissertation research.

UCSD’s Center for Research in Computing and the Arts (http://crica.ucsd.edu) offers an ideal research environment for graduate students in this area. The Department of Music also provides extensive laboratory and computing support for computer music.

INTEGRATIVE STUDIES

(formerly Critical Studies/Experimental Practices)

http://music.ucsd.edu/grad/is.php

The graduate program in Integrative Studies (IS) promotes an engagement with contemporary music activity and discourse that integrates diverse methodologies, experiences, learning styles, and resources. IS respects multiple ways of knowing and seeks to explore connections among ideas and processes in the arts, humanities, and sciences. Students are encouraged to combine their artistic and academic pursuits; to think systematically, critically, and reflectively; and to focus on the articulations and points of overlap between specialized and generalized knowledge. Drawing on diverse fields, including cultural theory, new media studies, ethnomusicology, improvisation, cognitive science, and systems theory, among others, the IS program combines an exploration of contemporary Western and non-Western music making with an examination of ideas and concepts that are relevant to its nature, creation, production, and reception.

This integrative and interactive environment encourages cross-fertilization and hybridity between diverse musical forms and the theoretical and critical discourses that surround them, often drawing in those who may not fit categories of “composer” or “performer,” or whose work is not constrained by traditional disciplinary boundaries. Core seminars explore multiple ways of thinking about music—including critical, cognitive, and intercultural approaches—in tandem with creative practices that frequently incorporate new technologies and integrate diverse media and forms. Student-generated projects and collaborations are encouraged and promoted with formal juries conducted by the faculty.

The program comprises four interconnected specializations: critical studies, ethnomusicology, systems inquiry, and creative practice. IS graduate students initially enroll in introductory courses taught by core faculty members designed to present an overview of each specialty and to generate possibilities for future independent and collaborative research. In subsequent quarters students choose between a variety of focused and revolving topic seminars in each of the four primary specializations. By the end of their first year in residency, students declare a primary and secondary specialty within the program. Seminars offered in other departments—for instance in visual arts, literature, theatre and dance, anthropology, communication, ethnic studies, cognitive science, psychology, or computer science—are encouraged and may fulfill degree requirements, if approved by a student’s faculty advisor.

Exposure to a range of disciplines and inter-disciplinary methodologies prepares students to pursue innovative artistic/academic projects and careers. The program teaches students to situate and contextualize knowledge and practices on a broad intellectual and artistic continuum and to recognize the responsibilities and opportunities associated with living in an increasingly interconnected and interdependent world.

PERFORMANCE

http://music.ucsd.edu/grad/performance.php

Fostering the creative, intelligent, and passionate performance of contemporary music is the mission of the Performance Program of the Department of Music. As once stated by founding faculty composer Robert Erickson, we at UCSD are a “community of musicians.”

Performers act and interact in a communal environment by means of collaboration with faculty and student composers, research in the areas of new performance modalities, music technology, and improvisation, among many other pursuits. The performance of contemporary music is viewed as a creative act that balances expertise and exploration.

Graduate performance students pursue either a master of arts or a doctor of musical arts degree in contemporary music performance. The course of study for both programs involves the completion of required graduate seminars and intensive study with a mentoring faculty member. Students are encouraged to adopt a vigorous, exploratory orientation in their private study. Final degree requirements include a recital, or in the case of the DMA, two recitals and the presentation of personal performance research.

The work of graduate performance students forms an integral component of a rich musical environment, which produces an astonishing quantity and variety of performances. Students may perform in collaborative performances with fellow students and faculty. Ensembles include groups specializing in the interpretation of unconventionally notated scores, the percussion group red fish blue fish and other ensembles. The Performance Forum, a student-initiated concert series, provides an opportunity for students to present a wide variety of repertoire which may include improvised music, world music,
and music with technology. A strong, collaborative spirit among the curricular areas of the department (Performance, Composition, Music Technology, and Integrative Studies) also yields many new projects each year. Works by graduate student composers are performed on the annual Spring Festival and other concert series. The sense of musical community engendered by diverse interactions permeates the atmosphere and makes the Department of Music at UCSD a uniquely rewarding place to create the newest of music. Graduate Admissions

Students are admitted to begin in fall quarter only. The deadline for submission of ALL application materials is January 10. Failure to meet this deadline jeopardizes admission and financial support.

Step 1 Preliminary Application

The application process begins at the Department of Music Web site (http://music.ucsd.edu) with a preliminary online application. We encourage all applicants to apply as early as September.

Step 2 Portfolio

Music applicants must submit a portfolio consisting of the following by January 10 to UCSD, Department of Music, MC 0099, La Jolla, CA 92039. Please include your most recent works as well as twentieth-century pieces, when possible.

- For all applicants, a repertory list of works (solo and chamber) performed or composed during the past few years and a sample of printed concert programs in which you have participated, either as performer, composer, or collaborator.
- For all applicants, a minimum of two papers illustrating writing ability in any of the following areas: musical analysis, criticism, aesthetics, music theory, or music technology.
- In addition:
 - For composition applicants only, a minimum of three scores of instrumental works with taped examples of the works being performed. (These may include, but should not be exclusively, electroacoustic works.)
 - For computer music and IS applicants only, representative documentation (e.g., papers, performances, intermedia works, computer programs, etc.) of prior work.
 - For performance applicants only, tapes or CD demonstrating the level of vocal and/or instrumental performance. In person auditions are desirable when possible, but not required.

Step 3 UCSD Application for Graduate Admission

All sections of the official online UCSD Application for Graduate Admission with the $70 nonrefundable fee, or $90 for international students, must be submitted by January 10. Applications must include all supporting documents:

- statement of purpose
- three letters of recommendation
- official transcripts
- Graduate Record Examination (GRE) required for all applicants.
- TOEFL (Test of English as a Foreign Language) or International English Language Testing System (IELTS) required for all applicants whose country of citizenship does not have English as its primary language. Minimum TOEFL score is 550 for the paper-based test, 213 for the computer-based test, or 80 for the Internet-based test. The minimum IELTS score is 7.

ADVISORY EXAMINATIONS

After completion of an advisory examination during Welcome Week, each new student will meet with the departmental M.A. or Ph.D. advisor. Students found to be deficient in any areas covered on the advisory examination (dictation, sight reading, keyboard proficiency, history, and literature) will be advised to remedy deficiencies during their first year.

CORE GRADUATE CURRICULUM

All graduate students are required to take Music 201 (Projects in New Music Performance) as outlined under each area, Music 210 (Musical Analysis), Music 228 (Conducting), and Music 291 (Problems and Methods of Music Research and Performance). Students who completed Music 210, 228, and 291 during their master’s degree program at UCSD, do not need to retake those courses for their doctoral curriculum.

To assure that all requirements are being adequately met, all graduate students must make an appointment with the graduate staff advisor for a degree check no later than the winter quarter of the second year.

MASTER’S DEGREE PROGRAM

The master of arts in music degree includes areas of emphasis in Composition, Computer Music, Integrative Studies, and Performance. The degree requires completion of at least thirty-six quarter units of graduate courses (courses numbered 201–299), including six units of Music 500 (Apprentice Teaching in Music) and six units of Music 299 (Advanced Research Projects and Independent Study) bearing directly on completion of the master’s thesis. Master’s students are expected to complete all requirements for the degree in six quarters of residence.

REQUIREMENTS

In addition to the core graduate curriculum, all master’s degree students are required to complete requirements in their area of emphasis:

Composition

- MUS 201 (A, B, C, D, E, or F)—must take at least two times.
- MUS 203A-B-C—successful completion of the jury process is necessary to get a passing grade in the corresponding seminar.
- MUS 203D—after successful completion of 203C, students must enroll in Music 203D (with their committee chair) every quarter until graduation.
- MUS 204—every quarter until graduation.
- MUS 206 and/or 207—a combination of any two courses.

Computer Music

- MUS 201 (A, B, C, D, E, or F)—must take at least two times.
- MUS 270A-B-C—must take within the first year of the program.
- MUS 270D—required every quarter of the second year.
- MUS 206, 207, and/or 267—a combination of any two courses.
- Integrative Studies
- MUS 201 (A, B, C, D, E, or F)—must take at least one time.
- MUS 205—every quarter until graduation.
- MUS 206 or 207—at least three courses; two approved for a student’s primary specialty and one approved for his or her secondary specialty.
- MUS 211, 212, 213, and 214—must complete the series of four courses within the first year of the program.
- MUS 251, 252, 253, or 254—at least once course corresponding to the student’s primary specialty. Additional courses from this series may also be taken for corresponding 206 or 207 credit if approved by the student’s faculty advisor.

It is the student’s responsibility to check if a given course will count towards his or her primary or secondary specialty prior to enrolling.

Performance

- MUS 201(A, B, C, D, E, or F)—every quarter until graduation.
- MUS 206 or 207—a combination of any two courses.
- MUS 232—every quarter until graduation.
- MUS 245—every quarter in residence.

MASTER’S DEGREE COMPLETION REQUIREMENTS

A folio of three research papers in professional format (normally to be written in connection with the courses the student will be taking) must be accepted by the student’s committee prior to approval of the thesis.

MA candidates will present a thesis consisting of the following under the supervision of the student’s committee chair in MUS 299:

- Candidates emphasizing Composition will prepare a folio of three chamber compositions together with tape recordings of at least two of them.
- Candidates emphasizing Computer Music will write a research paper (thesis) and present a lecture-performance in which the scientific, technological, and musical aspects of an original computer music composition are documented, played, and discussed.
Candidates emphasizing Integrative Studies with a primary specialty in critical studies, ethnomusicology, or systems inquiry must complete a master’s thesis of roughly sixty pages.

Candidates emphasizing Performance will present a recital supported by lecture-quality notes. The program must be approved by the student’s committee chair.

All of the above master’s requirements must have final approval from the student’s individual committee upon completion.

DOCTORAL DEGREE PROGRAM

Students of superior musical competence may pursue a program with emphasis in Composition, Computer Music, or Integrative Studies leading to the Ph.D. or doctor of musical arts (D.M.A.) degree in Contemporary Music Performance.

All doctoral students within the Department of Music must complete the Core Graduate Curriculum (outlined in the section above the Master’s Degree Program) plus additional core requirements for the Ph.D. or D.M.A. program. These additional core requirements are

Successful completion of an M.A. degree, including requirements equivalent to those described above for the M.A. in music. UCSD M.A. students who apply to the Ph.D./D.M.A. program must complete all departmental requirements, obtain OGS approval, and file the M.A. degree at Geisel Library before enrolling in any Ph.D./D.M.A. level courses.

The Department of Music strongly recommends that entering students have acquired a reading ability in at least one of the standard reference foreign languages (French, German, Italian, or Spanish) in addition to their native language.

All Ph.D./D.M.A. students are required to complete six units of credit in Music 500 (Apprentice Teaching) unless the student has completed this requirement in UCSD’s master’s degree program.

After completing the qualifying examination, all students must remain in residence for at least three quarters, during which time they must enroll in twelve units of Music 299 (Advanced Research Projects and Independent Study) with their committee chair or members every quarter.

COURSE REQUIREMENTS

In addition to the core graduate and Ph.D./D.M.A. curriculum, doctoral students (according to their area of emphasis) must complete the following courses prior to the qualifying examination:

Composition

- MUS 201 (A, B, C, D, E, or F)—must take at least two times.
- MUS 203A-B-C—successful completion of the jury process is necessary to get a passing grade in the corresponding seminar. Continuing students from the UCSD Composition M.A. program may be excused from MUS 203B-C by successfully completing MUS 203A at the Ph.D. level.
- MUS 203D—after successful completion of 203C, students must enroll in MUS 203D (with their committee chair) every quarter in residence.
- MUS 204—every quarter in residence.
- MUS 206 and/or 207—a combination of any three courses.
- MUS 209—must be taken at least three times.
- MUS 298—must complete at least six units.

Computer Music

- MUS 201 (A, B, C, D, E, or F)—must take at least two times.
- MUS 270A-B-C—must be taken within the first year of the program unless previously taken as a UCSD M.A. student.
- MUS 270D—after successful completion of 270C, students must enroll in MUS 270D (with their committee chair) every quarter in residence.
- MUS 206, 207, 209, and/or 267—a combination of any six courses.
- MUS 298—must complete at least six units.

Integrative Studies

- MUS 201 (A, B, C, D, E, or F)—must take at least two times.
- MUS 205—every quarter until advanced to candidacy.
- MUS 206 or 207—at least five courses with three approved for a student’s primary specialty and two approved for his or her secondary specialty.
- MUS 211, 212, 213, and 214—entire series must be taken within the first year of the program unless previously taken as a UCSD M.A. student.
- MUS 251, 252, 253, or 254—must take two courses, one to correspond with student’s primary specialty and one to correspond with the student’s secondary specialty; additional courses from this series may also be taken for corresponding 206 or 207 credit if approved by the student’s faculty advisor.
- MUS 298—must complete at least six units.

Those students declaring creative practice as their primary specialty for the Ph.D. are required to pass a jury at the end of their first year of doctoral study. Each student is allotted a block of time to present and/or perform his or her work in front of a panel comprising area and affiliated faculty. Each presentation is followed by a detailed discussion of the student’s work at which students have the opportunity to comment, explain, and pose further questions. After the completion of the jury process, the faculty meets in order to further assess each student’s work and to offer additional guidance. It is the student’s responsibility to check if a given course will count towards his or her primary or secondary specialty prior to enrolling.

Performance

- MUS 201A, B, C, D, E, or F—every quarter until completion of qualifying examination.
- MUS 206/207/209—as approved by D.M.A. advisor, a combination of any six seminars related to the primary and secondary area of specialization. Music 296 may be substituted for up to four seminars with permission of D.M.A. advisor.
- MUS 232—every quarter until completion of qualifying examination.
- MUS 245—every quarter in residence.
- MUS 250—must be taken at least three times.
- MUS 298—must complete at least six units.

QUALIFYING EXAMINATION/ADVANCEMENT TO CANDIDACY

Requirements prior to taking the qualifying examination:

- Completion of all Ph.D./D.M.A. required course work.
- Formation of the Doctoral Committee. Students must choose the chair of their Doctoral Committee no later than their last quarter of course work. They must choose two more internal members of the Doctoral Committee by the end of the fall quarter of their third year. In consultation with the chair of the Doctoral Committee, two faculty members from outside the department should be added to the committee by the end of the spring quarter of the third year. All internal members of the committee must be faculty of the Department of Music. The final composition of the committee is approved by the Office of Graduate Studies.
- For Ph.D. students, one research paper judged to be of publishable quality must be completed prior to qualifying examinations. The subject of the publishable paper will be developed during the student’s first two years and must be approved by the student’s Ph.D. committee chair.
- For Composition students, in addition to the publishable paper, a folio of not fewer than three compositions (not previously accepted for an M.A. degree) must be completed prior to qualifying examinations. A Third Year Forum presents, under departmental auspices, a work composed by each third-year Ph.D. composer in the four quarters since his or her second jury. As a part of preparation for this forum, each student composer is expected to have a faculty performer on his or her Ph.D. committee (as a regular member, or as an additional sixth member). The faculty performer is the student’s performance mentor and guide in interfacing with the performance community.
- For D.M.A. students, one major recital; plus either (a) an abstract of the thesis or research project which will be given to the Doctoral Committee at the qualifying examination; or (b) a substantial portion of the works from the student’s first two “major recitals” will be presented at the qualifying examination.
- For Integrative Studies students, a dissertation prospectus must be submitted to the student’s committee no later than three weeks prior to the oral portion of the qualifying examination. The
dissertation prospectus is a document that presents the research topic of the dissertation, places it in the context of the relevant literature or in the context of recent artistic developments, discusses its significance, specifies and justifies the research methods, theoretical orientation, and/or artistic approach, and indicates the anticipated steps leading to completion.

The qualifying examination for all doctoral students will consist of the following:

A written and oral defense of three questions provided by the Doctoral Committee pertaining to appropriate areas of specialization. For Integrative Studies students, one question will involve a defense of the student’s dissertation prospectus and the remaining two questions will pertain to the student’s primary and secondary specialties.

Successful completion of the qualifying exam marks the student’s advancement to doctoral candidacy, which must take place no later than the end of the spring quarter of the fourth year.

PH.D./D.M.A. DEGREE COMPLETION REQUIREMENTS

- For Composition students, completion of a major composition project.
- For Computer Music students, completion of an acceptable dissertation.
- For Integrative Studies students, a primary specialty in ethnomusicology, systems inquiry, or critical studies, completion of a book-length dissertation demonstrating original research and critical insight. For Integrative Studies students with a primary specialty in creative practice, a major creative work and a written defense of that work. Prior to the dissertation defense, the student’s work must be reviewed by a faculty jury and performed publicly (see the description of the jury process given above for more details).
- For D.M.A. students, completion of a second major recital plus one of the following: (a) thesis or research project; (b) a concert that is innovative in design and/or content and which is supported by a document containing extensive stylistic or analytical discussion of the program; (c) a lecture/concert pertaining to innovative and/or original material, with appropriate documentation as determined by the committee; or (d) two approved chamber music concerts, with appropriate documentation as determined by the committee.
- For all doctoral students, a final public defense of the composition/dissertation/recitals.
- A full copy of the student’s dissertation/research project must be in the hands of the student’s Doctoral Committee members four weeks before the dissertation defense.
- It is understood that the edition of the dissertation given to committee members will not be the final form, and that the committee members may suggest changes in the text at the defense. Revisions may be indicated and, in extreme cases, may require this examination to be taken more than once.
- Acceptance of the dissertation by the university librarian represents the final step in completion of all requirements for the Ph.D.

Materials previously submitted for other degrees are not acceptable for submission for the Ph.D./D.M.A. degree.

TIME LIMIT POLICY FOR THE DOCTORAL DEGREE

Normative Time Limits

4 years: Students entering the Ph.D./D.M.A. program with a master’s degree from another institution.

6 years: Students continuing into the Ph.D./D.M.A. program with a master’s degree from UCSD. Time limit is calculated from the beginning of the M.A. program (i.e., two years for M.A. program plus four years normative time for Ph.D./D.M.A.).

Support Time Limits

6 years: Students entering the Ph.D./D.M.A. program with a master’s degree from another institution.

7 years: Students continuing into the Ph.D./D.M.A. program with a master’s degree from UCSD. Time limit is calculated from the beginning of the M.A. program.

Total Registered Time Limits

6 years: Students entering the Ph.D./D.M.A. program with a master’s degree from another institution.

8 years: Students continuing into the Ph.D./D.M.A. program with a master’s degree from UCSD. Time limit is calculated from the beginning of the M.A. program.

Students who have not completed all Ph.D. requirements within the maximum total registered time will no longer be permitted to register for classes.

ADVISING OFFICE

Graduate Staff Advisor
Diana Platero
Room 197, Conrad Prebys Music Center
(858) 534-3279
E-mail: dplatero@ucsd.edu

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

Note: The following course offerings outline the general scope of our program. Not all courses are offered every year. It is essential that students work closely with departmental advisors when planning their degree programs.

LOWER-DIVISION

1A. Fundamentals of Music A (4)
This course, first in a three-quarter sequence, is primarily intended for students without previous musical experience. It introduces music notation and basic music theory topics such as intervals, scales, keys, and chords, as well as basic rhythm skills. Prerequisites: none.

1B. Fundamentals of Music B (4)
This course, second in a three-quarter sequence, focuses on understanding music theory and in developing musical ability through rhythm, ear training, and sight singing exercises. Topics include major and minor scales, seventh-chords, transportation, compound meter and rudiments of musical form. Prerequisite: Music 1A.

1C. Fundamentals of Music C (4)
This course, third in a three-quarter sequence, offers solid foundation in musical literacy through exercises such as harmonic and melodic dictation, sight singing exercises and rhythm in various meters. Topics include complex rhythm, harmony, and basic keyboard skills. Prerequisite: Music 1B.

2A–B–C. Basic Musicship (4–4–4)

2AK-BK-CK. Basic Keyboard (2-2-2)
Scales, chords, harmonic progressions, transposition, and simple pieces. Prerequisites: concurrent enrollment in Music 2A, B, C.

2JK. Jazz Keyboard (2)
This course will introduce basic voicings and voice leading, stylistically appropriate accompaniment, and basic chord substitution. For majors with a Jazz and the Music of the African Diaspora emphasis to be taken concurrently with Music 2C. Prerequisites: Music 2AK and 2BK or passing proficiency exam, or consent of instructor. Concurrent enrollment in Music 2C. Majors only.

4. Introduction to Western Music (4)
A brief survey of the history of Western Music from the Middle Ages to the present. Much attention will be paid to the direct experience of listening to music and attendance of concerts. Class consists of lectures, listening labs, and live performances. Prerequisite: none.

5. Sound in Time (4)
An examination and exploration of the art and science of music making. Topics include acoustics, improvisation, composition, and electronic and popular forms. There will be required listening, reading, and creative assignments. No previous musical background required. Prerequisite: none.

6. Electronic Music (4)
Lectures and listening sessions devoted to the most significant works of music realized through the use of computers and other electronic devices from the middle of this century through the present. Prerequisite: none.

Exploration of the interactions among music, science, and technology, including the history and current development of science and technology from the perspective of music. Prerequisite: none.

8. American Music (4)
A course designed to study the development of music in America. The focus will be on both the vernacular traditions including hymn singing, country music, jazz, big band, rock, etc., as well as the cultivated traditions of various composers from William Billings to John Cage. Prerequisite: none. (Offered in selected years.)

9. Symphony (4)
The symphonic masterworks course will consist of lectures and listening sessions devoted to a detailed discussion of a small number of recognized masterworks (e.g., Mozart, Beethoven, Berlioz, Stravinsky, Ligeti, etc.). Prerequisite: none. (Offered in selected years.)

10. Chamber Music (4)
Chamber Music will consist of lectures and listening sessions devoted to a detailed discussion of recognized
chamber masterworks. (e.g., Haydn, Mozart, Beethoven, Bartok, etc.). Prerequisite: none. (Offered in selected years.)

11. Folk Music (4)
A course on folk music of the world, covered through lectures, films, and listening sessions devoted to detailed discussion of music indigenous to varying countries/areas of the world. Topics vary from year to year. May be repeated once for credit. Prerequisite: none.

12. Opera (4)
A study of opera masterworks that often coincide with operas presented in the San Diego Opera season. Class consists of lectures, listening labs, live performances, and opera on video. Prerequisite: none.

13A. World Music/Africa (4)
A course that focuses on the music of Africa and on African ways of music making in the Diaspora to the Caribbean and South America. Prerequisite: none.

13AM. World Music/Multicultural America (4)
A study of music cultures in the United States, particularly Native American, Hispanic American, European American, Asian American, and Pacific Islanders from the perspective of ethnicity, origin, interaction, and the contribution of various ethnic groups to American musical life. Prerequisite: none.

13A. World Music/Asia and Oceania (4)
Introduction to selected performance traditions of Asia and Oceania with links to local and visiting musicians from these cultures. No prior technical knowledge of music is necessary. Prerequisite: none.

14. Contemporary Music (4)
This course offers opportunities to prepare oneself for experiences with new music (through preview lectures), hear performances (by visiting or faculty artists), to discuss each event informally with a faculty panel; an effort to foster informed listening to the new in music. Prerequisite: none.

15. Popular Music (4)
A course on popular music from different time periods, covered through lectures, films, and listening sessions. Topics vary from year to year. May be repeated once for credit. Prerequisite: none.

32. Instrumental/Vocal Instruction (2)
Individual instruction on intermediate level in instrumental technique and repertory. For declared music majors and minors. Students must be simultaneously enrolled in a performance ensemble or non-performance music course. Prerequisite: audition and department stamp.

32G. Group Instructional Instrumental Instruction (2)
Group instruction in instrumental or vocal technique and repertory. Intended for students who wish to make an important contribution to Department of Music ensembles. Prerequisite: Written recommendation from ensemble director and audition for performance faculty on first day of classes required. Department stamp required. Prerequisite: audition and department stamp.

32V. Vocal Instruction (1)
Individual instruction on intermediate level in vocal technique and repertory. For declared music majors and minors. Students must be simultaneously enrolled in a performance ensemble or non-performance music course and in Music 32VM. May be taken six times for credit. Prerequisite: audition and department stamp.

32VM. Vocal Masterclass (1)
All students enrolled in voice lessons (32V, 132V, or 132C) are permitted to perform with their instructor. Students critique in-class performances, with emphasis on presentation, diction, dramatic effect, vocal quality, and musicality. Prerequisite: concurrent enrollment in Music 32V, 132V, or 132C.

33A. Introduction to Composition I (4)
First course in a sequence for music majors and non-majors pursuing an emphasis in composition. The course examines "sound" itself and various ways of building sounds into musical structures, and develops skills in music notation. Students compose solo pieces in shorter forms. Students may not receive credit for both Music 33 and 33A.

33B. Introduction to Composition II (4)
Second part of course sequence for students pursuing a composition emphasis. Course continues the building of skills with the organization of basic compositional elements: pitch, rhythm, and timbre. It explores issues of musical texture, expression, and structure in traditional and contemporary repertoire. Writing for two instruments in more extended forms. Prerequisite: Music 33A.

33C. Introduction to Composition III (4)
Third part of course sequence for students pursuing a composition emphasis. Course continues the development of skills in instrumentation and analysis. It includes a survey of advanced techniques in contemporary composition, with additional focus on notation, part-preparation, and the art of writing for small groups of instruments. Prerequisite: Music 33B.

87. Freshman Seminar (I)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to 15 to 20 students, with preference given to entering freshmen.

95. Ensemble Performance (2)
Performance in an ensemble appropriate to student abilities and interests. Normally each section requires student participation for the whole academic year, with credit for participation each quarter. Sections of Music 95W have included: African drumming, Korean percussion, Indian sitar and tabla, koto, and Indonesian flute. Not all sections will be offered every year. May be repeated for credit. Grading on participation level, individual testing, comparative papers on repertoire content, etc. Prerequisites: audition and consent of instructor for each section. Materials fee required.

Note: Students in the Music 95 series courses may enroll with a letter grade option a total of twelve units for registered music majors and a total of six units for all other students; after which students may continue to enroll in Music 95 courses, but only with a P/NP grade option. There is one exception to the above grading policy. Music 95GC, Gospel Choir, can only be taken for a P/NP grading option.

Section B. Instrument Choir
Section C. Concert Choir
Section D. Symphonic Chorus
Section E. Chamber Orchestra
Section G. Gospel Choir
Section H. Chamber Opera (Not offered every year.)
Section J. Jazz Chamber Ensembles
Section L. Large Jazz Ensemble
Section K. Chamber Singers
Section L. Wind Ensemble
Section W. World Music Ensembles

ICAM 40. Introduction to Computing in the Arts (4)
An introduction to conceptual uses and historical precedents for use of computers in art making. Introduces students to the programming of computer facilities and teaches them basic computer skills. Prerequisites: Visual Arts and ICAM majors and minors only. Note: Materials fee required.

UPPER-DIVISION

101A. Music Theory and Practice I (4)
Study of modal counterpoint in the style of the sixteenth century. Two-voice species counterpoint studies. Analysis of music of the period. Musicianship studies: sight-singing, dictation, and keyboard skills. Prerequisites: Music 2C and 2CK.

101B. Music Theory and Practice II (4)
Study of tonal harmony and counterpoint. Analysis of Bach chorales and other music from the Baroque period. Musicianship studies: sight-singing, dictation, and keyboard skills. Prerequisite: Music 101A.

101C. Music Theory and Practice III (4)
Tonal harmony and counterpoint. Analysis of larger classical forms: Sonata, Variation, Minuet and Trio, Rondo. Musicianship studies: sight-singing, dictation, and keyboard skills. Prerequisite: Music 101B.

102A. Music Theory and Practice IV (4)
Advanced study of the materials and structures of music (Beethoven to Wagner) emphasizing the evolution of music through chromatic harmony and voice leading. Development of aural discrimination and in-depth analysis. Prerequisite: Music 101C.

102B. Music Theory and Practice V (4)
Advanced study of the materials and structures of music (Schoenberg, Stravinsky, Webern, etc.—1900–1940) emphasizing the evolution of music through extended harmony post tonality and neoclassicism. Development of aural discrimination and in-depth analysis. Prerequisite: Music 102A.

102C. Music Theory and Practice VI (4)
Advanced study of the materials and structures of music (1945–2006) emphasizing the evolution of music through the many compositional trends of the late twentieth century. Development of aural discrimination and in-depth analysis. Prerequisite: Music 102B.

103A. Seminar in Composition I (4)
First part in composition course sequence. Individual projects will be reviewed in seminar. Techniques of instrumentation will be developed through examination of scores and creative application. Assignments will include short exercises and analysis, and final project for standard ensemble. Prerequisite: Music 33C.

103B. Seminar in Composition II (4)
Second part in composition course sequence. Intensive work in free composition by drafting a composition for presentation at the end of Music 103C. Written analysis of contemporary repertoire is introduced. Instruction about calligraphic conventions including computer engraving programs. Prerequisite: Music 103A.

103C. Seminar in Composition III (4)
Third part in composition course sequence. A mixture of individual lessons as well as group meetings, with discussion of topics germane to the development of composers, including musical aesthetics and contemporary orchestration techniques. Final performance of students’ works will take place at the end of the quarter. Prerequisite: Music 103B.

103D-E. F. Honors Seminar in Composition (4-4-4)
Advanced individual projects for senior music majors pursuing honors in composition. Projects will be critically reviewed in seminar with fellow students and faculty composers. Prerequisites: Music 103A-B-C, and admission into the Department of Music Honors Program in composition. Department stamp required.

104. Jazz Transcription and Analysis (4)
An introduction to the practice of transcribing and analyzing improvised music. Discussion of music technique, style, aesthetics, and the ideology of transcription. Prerequisites: Music 101A and 101B.

105. Jazz Composition (4)
This course will explore a range of compositional possibilities from song forms to modal and more extended forms. May be repeated once for credit. Prerequisite: Music 104 or consent of instructor.

107. Critical Studies Seminar (4)
This seminar explores the history of music in relation to critical issues, such as race, gender, sexuality, the environment, and politics. Readings include recent literature in cultural studies, musicology, and sociology. Topics vary. May be taken three times for credit. Prerequisite: Music 120C.
110. Introduction to Ethnomusicology Seminar (4)
This seminar introduces the central theories, methods, and approaches used to study the musics of contemporary cultures, in their local contexts. In addition to surveying key writings, students will document music from their local environments. Prerequisite: upper-division standing or consent of instructor.

111. Topics/World Music Traditions (4)
A study of particular regional musics in their repertory, cultural context, and interaction with other traditions. Topics vary. Prerequisite: none.

112. Topics in European Music Before 1750 (4)
This course will address topics in medieval, Renaissance, and Baroque music; topics will vary from year to year. May be repeated five times for credit. Prerequisites: knowledge of music notation or consent of instructor; Music 4, 8–10, or 120 recommended.

113. Topics in Classic, Romantic, and Modern Music (4)
This course will focus on Western music between 1750 and the early 20th century; topics will vary from year to year. May be repeated five times for credit. Prerequisites: knowledge of music notation or consent of instructor; Music 4, 8–10, or 120 recommended.

114. Music of the Twentieth Century (4)
An exploration of materials and methods used in the music of our time. There will be an extra discussion group for music majors. May be repeated once for credit. Prerequisites: none.

115. Women in Music (4)
A survey of the biographical, historical, sociological, and political issues affecting women composers, their creativity, their opportunities, and their perception by others. It compares and contrasts the work of women composers, performers, patrons, teachers, and writers on music from the Middle Ages through the present. Prerequisite: consent of instructor.

116. Popular Music Studies Seminar (4)
This course examines special topics in popular music from various sociopolitical, aesthetic, and performance perspectives. Readings include recent literature in cultural studies, musicology, and/or performance practice. Topics vary. May be taken three times for credit. Prerequisites: upper-division standing or consent of instructor.

120A. History of Music in Western Culture I (4)
First part of intensive historical, analytical, and cultural-aesthetic examination of music in Western culture from the ninth through the twenty-first centuries. Considers both sacred and secular repertories, from Gregorian chant through early opera, c. 800–1600. Prerequisites: Music 1C or 2C or passing grade on proficiency exam. Music majors should be enrolled concurrently in Music 101A. Department stamp required for non-majors.

120B. History of Music in Western Culture II (4)
Second part of intensive historical, analytical, and cultural-aesthetic examination of music in Western culture from the ninth through the twenty-first centuries. Considers both instrumental and vocal repertories, from the Baroque to the Romantic, c. 1600–1830. Prerequisites: Music 120A. Music majors should be enrolled concurrently in Music 101B. Department stamp required for non-majors.

120C. History of Music in Western Culture III (4)
Third part of intensive historical, analytical, and cultural-aesthetic examination of music in Western culture from the ninth through the twenty-first centuries. Considers both established traditions and new trends, from Romanticism through Modernism and Post-Modernism, c. 1800–present. Prerequisites: Music 120B. Music majors should be enrolled concurrently in Music 101C. Department stamp required for non-majors.

126. Blues: An Oral Tradition (4)
This course will examine the development of the Blues from its roots in work-songs and the minstrel show to its flowering in the Mississippi Delta to the development of Urban Blues and the close relationship of the Blues with Jazz, Rhythm and Blues, and Rock and Roll. (Cross-listed with Ethnic Studies 178.) Prerequisite: none.

127A. Jazz Roots and Early Development (1900–1943) (4)
This course will trace the early development of Jazz and the diverse traditions which helped create this uniquely American art form. We will witness the emergence of Louis Armstrong as a force and examine the composer’s role in Jazz with Jelly Roll Morton and Duke Ellington. (Cross-listed with Ethnic Studies 179A.) Prerequisite: none.

127B. Jazz Since 1946: Freedom and Form (4)
This course will examine the evolution of Jazz from 1943 to the present. The course will survey the contrasting and competing styles in Jazz from bebop to cool to the avant-garde and fusion. (Cross-listed with Ethnic Studies 179B.) Prerequisite: none.

128. Principles and Practice of Conducting (4)
The theory and practice of instrumental and/or choral conducting as they have to do with basic baton techniques, score reading, interpretation, orchestration, program building, and functional analysis. Members of the class will be expected to demonstrate their knowledge in the conducting of a small ensemble performing literature from the eighteenth, nineteenth, and twentieth centuries. Prerequisites: Music 2A-B-C and 101A-B-C. Department stamp required.

129. Orchestration (4)
This course will give practical experience in orchestration. Students will study works from various eras of instrumental music and will demonstrate their knowledge by orchestrating works in the styles of those various eras, learning the capabilities, timbre, and articulation of all the instruments in the orchestra. Prerequisite: Music 101B.

130. Chamber Music Performance (2–4/0)
Instruction in the preparation of small group performances of representative instrumental and vocal chamber music literature. May be taken for credit six times, after which students must enroll for zero units. Prerequisite: consent of instructor through audition.

131. Advanced Improvisation Performance (4/0)
Master class instruction in advanced improvisation performance for declared majors and minors only or consent of instructor. Audition required at first class meeting. May be repeated six times for credit. Prerequisites: consent of instructor through audition. Department stamp required.

132. Pro-Seminar in Music Performance (4)
Individual or master class instruction in advanced instrumental performance. For declared music majors and minors. Students must be simultaneously enrolled in a performance ensemble or non-performance music course. Prerequisites: Music 102 and department stamp.

132R. Recital Preparation (4)
Individual instruction in advanced vocal performance. Emphasis placed on diction and musical issues. For declared majors and minors. Topics will vary. Prerequisites: Music 102 and department stamp. May be repeated six times for credit.

132C. Vocal Coaching (4)
Individual instruction in advanced vocal coaching. Emphasis placed on diction and musical issues. For declared music majors and minors. Students must be simultaneously enrolled in the Vocal Masterclass, Music 32VM. May be taken six times for credit. Prerequisites: at least one quarter of Music 12DV and consent of instructor. Department stamp required.

132V. Pro-Seminar in Vocal Instruction (3)
Individual instruction in advanced vocal performance. For declared music majors and minors. Students must be simultaneously enrolled in a performance ensemble or non-performance music course. Prerequisites: by audition only; Music 132B. Department stamp required.

132R. Recital Preparation (4)
Advanced instrumental/vocal preparation for senior music majors pursuing honors in performance. Repertoire for a solo recital will be developed under the direction of the appropriate instrument/vocal faculty member. Special audition required for incoming fall quarter. Prerequisites: by audition only; Music 132V. Department stamp required.

133. Projects in New Music Performance (4)
Performance of new music of the twentieth century. Normally offered winter quarter only. Required a minimum of one time for all music majors. May be repeated two times for credit. Prerequisite: consent of instructor through audition.

134. Symphonic Orchestra (4)
Repertoire is drawn from the classic symphonic literature of the eighteenth, nineteenth, and twentieth centuries with a strong emphasis on recently composed and new music. Distinguished soloists, as well as The La Jolla Symphony Chorale, frequently appear as guides for the orchestra. The La Jolla Symphony Orchestra performs two full-length programs each quarter, each program being performed twice. May be repeated six times for credit. Prerequisites: audition and department stamp required.

137A. Jazz Theory and Improvisation (4)
Study of jazz theory and improvisation, focused on fundamental rhythmic, harmonic, melodic, and formal aspects of modern jazz style. Application of theoretical knowledge to instruments and concepts will be reinforced through listening, transcription work, and composition and improvisation exercises. First course of a year-long sequence. Prerequisites: MUS 2A-B-C, proficiency exam, or consent on instructor.

137B. Jazz Theory and Improvisation (4)
Study of jazz theory and improvisation, focused on fundamental rhythmic, harmonic, melodic, and formal aspects of modern jazz style. Application of theoretical knowledge to instruments and concepts will be reinforced through listening, transcription work, and composition and improvisation exercises. Second course of a year-long sequence; continuation of Music 137A. Prerequisites: MUS 2A-B-C and 137A, proficiency exam, or consent on instructor.

137C. Jazz Theory and Improvisation (4)
Study of jazz theory and improvisation, focused on fundamental rhythmic, harmonic, melodic, and formal aspects of modern jazz style. Application of theoretical knowledge to instruments and concepts will be reinforced through listening, transcription work, and composition and improvisation exercises. Third course of a year-long sequence; continuation of MUS 137B. Prerequisites: MUS 2A-B-C and 137B, proficiency exam, or consent on instructor.

137D. Seminar in Jazz Studies I (4)
Advanced individual projects for senior music majors pursuing honors in jazz and music of the African diaspora. Projects will be critically reviewed in seminar with fellow students and jazz faculty. First course of a year-long sequence. Prerequisites: MUS 137A-B-C and admission into the Music Department Honors Program in jazz. Department stamp required.

137E. Seminar in Jazz Studies II (4)
Advanced individual projects for senior music majors pursuing honors in jazz and music of the African diaspora. Projects will be critically reviewed in seminar with fellow students and jazz faculty. Second course of a year-long sequence; continuation of 137D. Prerequisites: MUS 137D and department stamp.

137F. Seminar in Jazz Studies III (4)
Advanced individual projects for senior music majors pursuing honors in jazz and music of the African diaspora. Projects will be critically reviewed in seminar with fellow students and jazz faculty. Third course of a year-long sequence; continuation of 137E. Prerequisites: MUS 137E and department stamp.

143. Department Seminar (1)
The department seminar serves both as a general department meeting and as a forum for the presentation of research and performances by visitors, faculty, and students. Required of all undergraduate music majors every quarter.

150. Jazz and the Music of the African Diaspora: Special Topics Seminar (4)
An in-depth writing and listening intensive investigation into a jazz or diaspora-related music history topic. Topics vary from year to year. May be repeated once for credit. Prerequisite: Music 126, 127A or 127B, or consent of instructor.

151. Race, Culture, and Social Change (4)
Aggrieved groups generate distinctive cultural expressions by turning negative ascription into positive affirmation and by transforming segregation into congregation. This course
152. Hip Hop: The Politics of Culture (4)
Examination of hip-hop's music, technology, lyrics, and its influence in graffiti, film, music video, fiction, advertising, gender, corporate investment, government and censorship with a critical focus on race, gender, popular culture, and the politics of creative expression. (Cross-listed with Ethnic Studies 128.) Prerequisite: upper-division standing or consent of instructor.

153. African Americans and the Mass Media (4)
Examination of media representations of African Americans from slavery to the present focusing on emergence and transmission of enduring stereotypes, their relationship to changing social, political, and economic frameworks, and African Americans' responses to and interpretations of these mediated images. (Cross-listed with Ethnic Studies 164.) Prerequisite: upper-division standing or consent of instructor.

154. Black Music/Black Texts: Communication and Cultural Expression (4)
Explores roles of music as a traditional form of communication among Africans, Afro-Americans, and West Indians: Special attention is paid to the possibilities of black music, including blues and other forms of vocal music expressive of contestatory political attitudes. (Cross-listed with Ethnic Studies 176 and Literature in English 187.) Prerequisite: upper-division standing or consent of instructor.

170. Musical Acoustics (4)
(Formerly Music 160A.) An introduction to the acoustics of music with particular emphasis on contemporary digital techniques for understanding and manipulating sound. Prerequisite: Music 1A, 2A, or 4, Cross-listed with ICAM 103.

171. Computer Music I (4)
(Formerly Music 160C.) A practical introduction to computer techniques for desktop audio, including audio editing, MIDI control, and real-time music algorithms using the MAX programming environment. Prerequisites: Music 170, music majors, ICAM-music and ICAM-visual arts majors and minors, or consent of instructor.

172. Computer Music II (4)
(Formerly Music 161.) Computer synthesis techniques including waveable and additive synthesis, waveshaping, and sampling. Transformation of musical sounds using filters, modulation, and delay effects. Fourier analysis of sounds. Prerequisites: Music 171 (formerly Music 160C); music majors, ICAM-music and ICAM-visual arts majors and minors, or consent of instructor.

173. Audio Production: Mixing and Editing (4)
(Formerly Music 162.) Theoretical and practical aspects of recording, mixing, and editing software and hardware techniques explored in project setting. Topics include microphone design, digital recording and editing, analog and digital interfaces, workflow, analytical listening. Prerequisites: Music 170, music majors, ICAM-music and ICAM-visual arts majors and minors, or consent of instructor.

174A. Audio/MIDI Studio Techniques I (2)
First of three-part sequence, detailing digital studio resources and production techniques. Hardware and software techniques explored in project setting. Topics include electronic and acoustic mixing, signal processing, MIDI, synchronization and basic sound-for-picture. Prerequisites: Music 170, music majors, ICAM-music and ICAM-visual arts majors and minors, or consent of instructor.

174B. Audio/MIDI Studio Techniques II (2)
Second of three-part sequence, detailing digital studio resources and production techniques. Hardware and software techniques explored in project setting. Topics include electronic and acoustic mixing, signal processing, MIDI, synchronization and basic sound-for-picture. Prerequisites: Music 170, music majors, ICAM-music and ICAM-visual arts majors and minors, or consent of instructor.
The goal of the course is to investigate and develop analytical procedures that yield significant information about specific works of music, old and new. Reading, projects, and analytical papers. Prerequisites: graduate standing in music; others by written consent of instructor and department stamp.

211. Introduction to Ethnomusicology (2) This course introduces the student to the study of music societies and ethnic groups, and to the anthropological and sociological aspects of Ethnomusicology. Prerequisite: graduate standing in music.

212. Introduction to System Inquiry (2) The course introduces the network of concepts and approaches that comprise systems inquiry and explores the theoretical, philosophical, and methodological implications of systems thinking for musical research and practice. Prerequisites: graduate standing in music.

213. Introduction to Critical Studies (2) This course introduces important themes and thinkers from the fields of critical theory and cultural studies and explores how musical behaviors and phenomena relate to matters of ideology, national, social, cultural, and political dimensions of its manifestations and practice. Prerequisites: graduate standing in music.

228. Conducting (4) This course will provide practical experience in conducting a variety of works from various eras of instrumental and/or vocal music. Students will study problems of instrumental or vocal techniques, theoretical and expressive analysis of the music, and manners of rehearsal. Required of all graduate students. Prerequisites: graduate standing in music; others by written consent of instructor and department stamp. (Offered in selected years.)

229. Seminar in Orchestration (4) A seminar to give practical experience in orchestration. Students will study works from various eras of instrumental and vocal music and will demonstrate their knowledge by orchestrating works in the style of various eras, learning the capabilities, timbre, and articulation of all the instruments in the orchestra. Prerequisite: graduate standing. (Offered in selected years.)

230. Chamber Music Performance (4) Performance of representative chamber music literature, instrumental and/or vocal, through coached rehearsal and seminar study. Course may be repeated for credit since the literature studied varies from quarter to quarter. Prerequisite: consent of instructor.

232. Pro-Seminar in Music Performance (1–4) Individual or master class instruction in advanced instrumental/vocal performance. Prerequisite: consent of instructor through audition.

234. Symphonic Orchestra (4) Repertoire is drawn from the classic symphonic literature of the eighteenth, nineteenth, and twentieth centuries with a strong emphasis on recently composed and new music. Distinguished soloists, as well as The La Jolla Symphony Chorus, frequently appear with the orchestra. The La Jolla Symphony Orchestra performs two full-length programs each quarter, each program being performed twice. May be repeated six times for credit. Prerequisites: audition required.

245. Focus on Performance (2) The purpose of this seminar is to bring together performance students, faculty, and guests for discussion, presentation of student and faculty projects, performances by guest artists, and master classes with different members of the performance faculty. Prerequisite: consent of instructor. (S/U grade option only.)

250. Special Projects (1–12) An umbrella course offered to music graduate students in lieu of normal seminar offerings. Topics will be generated by faculty and graduate students and submitted in December each year for review by faculty. Students may use this course to pursue further study of a specialized research topic with given faculty. May be taken for up to twelve units a quarter. (S/U grade option only.)

251. Integrative Studies Seminar in Ethnomusicology (4) Provides an in-depth look at the shifting definitions, methods, and scope of ethnomusicology and explores contemporary writings and sources shaping the field today. Prerequisite: graduate standing in music.

252. Integrative Studies Seminar in Systems Inquiry (4) Traces the development of systems thinking and encourages work of a transdisciplinary nature, integrating models, strategies, methods, and tools from natural, human, social, and technological realms. Prerequisite: graduate standing in music.

253. Integrative Studies Seminar in Critical Studies (4) Develops critical thinking and self-reflexive inquiry through in-depth study of a diverse range of critical and scholarly traditions as they relate to music. Students are encouraged to investigate their own sense of identity and voice, as embodied in their creative and/or scholarly work. Prerequisite: graduate standing in music.

254. Integrative Studies Seminar in Creative Practice (4) Students will explore a variety of approaches to collaborative work and will be challenged to develop a personal aesthetic in experimental art and new media and design original work for presentation at faculty juries. Prerequisite: graduate standing in music.

267. Advanced Music Technology Seminar (4) Advanced topics in music technology and its application to composition and/or performance. Offerings vary according to faculty availability and interest. May be repeated for credit. Prerequisites: Music 173 or equivalent and consent of instructor.

270B. Musical Cognitive Science (4) Theoretical bases for analyzing musical sound. Approaches to perception and cognition, including psychoacoustics and information processing, both ecological and computational. Models of audition including Helmholtz’s consonance/dissonance theory and Bregman’s streaming model. Musical cognition theories of Lerdahl and Narmour. Neural network models of music perception and cognition. Models of the problem of timbre and timbre perception. Prerequisite: consent of instructor.

270D. Advanced Projects in Computer Music (4) Meetings on group basis with computer music faculty in support of individual student research projects. Prerequisites: consent of instructor and completion of Music 270A-B-C.

271A. Survey of Electronic Music Techniques (1–4) A hands-on encounter with several important works from the classic electronic repertory, showing a representative subset of the electronic techniques available to musicians.
Students who have taken MUS 271 for credit may not take MUS 271A for credit. **Prerequisite:** graduate standing in music.

271B. Survey of Electronic Music Techniques II (4)
A continuation of 271A, with emphasis on live interactive techniques (e.g., audio processing; analysis/resynthesis; score following). **Prerequisites:** Music 271A and graduate standing in music.

271C. Survey of Electronic Music Techniques III (4)
A continuation of 271A and B, with emphasis on compositional techniques (e.g., computer-aided composition; production; spatialization). **Prerequisites:** Music 271B and graduate standing in music.

272. Seminar in Live Computer Music (4)
Group projects to create new pieces of live electronic music involving research in electronic music and/or instrumental techniques. May be repeated for credit. **Prerequisites:** Music 271A-B-C or consent of instructor and graduate standing in music.

291. Problems and Methods of Music Research and Performance (2)
The course will give practical experience in historical research, including use of important source materials, evaluation of editions, and examination of performance practice problems. (S/U grade option only.)

296. Directed Group Research in Performance (4)
This group research seminar involves the investigation and exploration of new and experimental performance concerns. Areas could include: improvisation, graphic notation, performance electronics, and working with combined media (such as dance, poetry, and theater). **Prerequisite:** graduate standing. (S/U grade option only.)

298. Directed Research (1–4)
Individual research. (S/U grades permitted.) May be repeated for credit. Enrollment by consent of instructor only.

299. Advanced Research Projects and Independent Study (1–12)
Individual research projects relevant to the student’s selected area of graduate interest conducted in continuing relationship with a faculty advisor in preparation of the master’s thesis or doctoral dissertation. **Prerequisites:** graduate standing in music; others by written consent of instructor and department stamp. (S/U grades permitted.)

500. Apprentice Teaching (1–4)
Participation in the undergraduate teaching program is required of all graduate students at the equivalent of 25 percent time for three quarters (six units is required for all graduate students). **Prerequisites:** graduate standing in music; others by written consent of instructor and department stamp. (S/U grade option only.)

501. Apprentice Teaching—Nondepartmental (4)
Consideration and development of pedagogical methods appropriate to undergraduate teaching. **Prerequisites:** graduate standing and consent of instructor. (S/U grade option only.)
Neurosciences

DIRECTOR, NEUROSCIENCES GRADUATE PROGRAM
Anirvan Ghosh, Ph.D., Biology

PROFESSORS
Henry Abarbanel, Ph.D., Physics
Thomas Albright, Ph.D., Adjunct/ Psychology and Neurosciences
Ursula Bellugi, Ed.D., Adjunct/ Psychology
Darwin K. Berg, Ph.D., Biology-Neurobiology Section
Karen Britton, M.D., Ph.D., In-Residence/Psychiatry
Joan Heller Brown, Ph.D., Pharmacology
Nigel Calcutt, Ph.D., Pathology
Edward M. Callaway, Ph.D., Adjunct/Neurosciences and Biology
Gert Cauwenberghs, Ph.D., Biology
Andrew Chisolm, Ph.D., Biology
Senyon Choe, Ph.D., Chemistry and Biochemistry/Biological Sciences
Jerold Chum, M.D., Ph.D., Adjunct/ Pharmacology
Robert Clark, Ph.D., In-Residence/Psychiatry
Don Cleveland, Ph.D., Medicine/Neurosciences
Eric Courchesne, Ph.D., Neurosciences
Anders M. Dale, Ph.D., Neurosciences
Karen Dobkins, Ph.D., Psychology
Jeffrey L. Elman, Ph.D., Cognitive Science
Mark H. Ellisman, Ph.D., Neurosciences
Edmund J. Fantino, Ph.D., Psychology
Fred H. Gage, Ph.D., Adjunct/Neurosciences and Biology
Douglas R. Galasco, M.D., In-Residence/Neurosciences
Mark A. Geyer, Ph.D., In-Residence/Neurosciences
Lawrence S.B. Goldstein, Ph.D., Cellular and Molecular Medicine
Michael Gorman, Ph.D., Psychology
Philip M. Groves, Ph.D., Emeritus, Psychiatry and Neurosciences
Richard H. Haas, M.D., Neurosciences and Pediatrics
Eric Halgren, Ph.D., Radiology
Shelley Halpain, Ph.D., Biology
Richard L. Hauger, M.D., In-Residence/Psychiatry
Stephen F. Heinemann, Ph.D., Adjunct/Neurosciences
Steven A. Hillyard, Ph.D., Neurosciences and Adjunct/ Psychology
Vivian Y.H. Hook, Ph.D., Pharmacology
Paul A. Insel, M.D., Pharmacology and Medicine
Vicente J. Iragui-Madrazo, M.D., Ph.D., Clinical Neurosciences
Dilip J. Jeste, M.D., In-Residence and Psychiatry and Adjunct/Neurosciences
Yishi Jin, Ph.D., Biology
Michael W. Kalichman, Ph.D., Adjunct/Pathology
Harvey J. Karten, M.D., Neurosciences and Psychiatry
John Kelsoe, M.D., Psychiatry
Christopher Kintner, Ph.D., Adjunct/Biology
David Kleinfeld, Ph.D., Physics
Edward Koo, M.D., Neurosciences
George F. Koob, Ph.D., Adjunct/ Psychology and Psychiatry
William B. Kristan, Ph.D., Biology and Adjunct/Neurosciences

ASSOCIATE PROFESSORS
Rinmin Blesch, Ph.D., Adjunct/Neurosciences
Wendy Campana, Ph.D., Anesthesiology
Andrea Chiba, Ph.D., Cognitive Science
E.J. Chichilnisky, Ph.D., Adjunct/Neurosciences
Sascha du Lac, Ph.D., Adjunct/Neurosciences
Laura L. Dugan, M.D., Ph.D., Medicine
David Feifei, M.D., Ph.D., In-Residence/Psychiatry
Joseph G. Gleeson, M.D., Neurosciences
Donna Grodzki, Ph.D., Adjunct/Neurosciences
Bruce A. Hamilton, Ph.D., Medicine
Jeffry S. Isaacson, Ph.D., Neurosciences
Richard Krauzlis, Ph.D., Adjunct/Neurosciences
Jaime Pineda, Ph.D., Cognitive Science
William R. Schafer, Ph.D., Adjunct/Biological Sciences and Neurobiology
Katerina Semendeferi, Ph.D., Anthropology
Paul A. Slesinger, Ph.D., Adjunct/Neurosciences
Evelyn Tectoma, M.D., Ph.D., Clinical Neurosciences
John Thomas, Ph.D., Adjunct/Neurosciences and Biology
Yimin Zou, Ph.D., Biology

ASSISTANT PROFESSORS
Stephan Anagnostaras, Ph.D., Psychology
Adam Aron, Ph.D., Psychology
James B. Brewer, M.D., Ph.D., Radiology and Neurosciences
Virginia de Sa, Ph.D., Cognitive Science
Timothy Gentner, Ph.D., Psychology
S.V. Penelope Jones, Ph.D., Psychiatry
Jonathan Lin, Ph.D., Pathology
Jill Leutgeb, Ph.D., Biology
Stefan Leutgeb, Ph.D., Biology
Mark Mayford, Ph.D., Adjunct/Neurosciences
Terunaga Nakagawa, M.D., Ph.D., Chemistry and Biochemistry
Sharon Nichols, Ph.D., Adjunct/Neurosciences
Ardem Patapoutian, Ph.D., Cell Biology
Gentry N. Patrick, Ph.D., Biological Sciences
Pam Reingael, Ph.D., Biology
John Reynolds, Ph.D., Adjunct/Neurosciences
Subhojit Roy, Ph.D., Neurosciences
John Serences, Ph.D., Psychology
Tatyana Sharp, Ph.D., Adjunct/ Physics
Gabriel A. Silva, Ph.D., Bioengineering
Lisa Stefancic, Ph.D., Adjunct/Psychiatry
Lisa Stowers, Ph.D., Adjunct/Neurosciences
Michael A. Taffe, Ph.D., Neuropharmacology
Jing Wang, Ph.D., Biological Sciences
Angela Yu, Ph.D., Cognitive Sciences
Binhai Zheng, Ph.D., Neurosciences
Eric Zorilla, Ph.D., Adjunct/Neurosciences

OFFICE: Building #1, School of Medicine, Mail Code 0662
http://neurograd.ucsd.edu

THE GRADUATE PROGRAM

The Neurosciences Graduate Program accepts candidates for the Ph.D. degree who have undergraduate majors in such disciplines as biology, chemistry, engineering, microbiology, mathematics, physics, psychology, and zoology. A desire...
and competence to understand how the nervous system functions is more important than previous background and training.

DOCTORAL DEGREE PROGRAM

Students in this program receive guidance and instruction from a campuswide group of faculty interested in nervous system mechanisms. Each student, in consultation with an advisory committee, selects courses relevant to his or her research interests and goals. The selection will include formal courses listed in this catalog and informal seminars offered by the department. A regular schedule of rotation through the laboratories of faculty members is a feature of the first year; the student is exposed in this way to the various approaches, techniques, and disciplines represented on the campus.

SPECIALIZATION IN COMPUTATIONAL NEUROSCIENCE

The Neuroscience Graduate program offers a specialization in Computational Neuroscience. Students in the Computational Neuroscience specialization are trained in the broad range of scientific and technical skills essential to understand the computational resources of neural systems. Students in this specialization will be required to fulfill all of the academic requirements of students in the Neurosciences Graduate Program. In addition to these requirements, students in the Computational Neuroscience specialization must successfully complete a set of three core computational courses, an advanced laboratory, and computational neurosciences journal clubs.

Required courses include:

- **Core Courses:**
 - Neurosci. 200A-B-C
 - Neuosci. 225
 - Neuosci. 241
 - Neuosci. 257
 - Neurosci. 276

- **Computational Neuroscience Specialization Courses:**
 - BGGN 246A-B
 - BGGN 260
 - BGGN 266
 - Cog. Sci. 260
 - Physics 271

- **COURSE WORK**
 - By the time of the minor proposition (see below), students are expected to demonstrate competence in the basics of neuroscience by taking five quarters of mandatory course work—three quarters of Basic Neuroscience (Neurosci. 200 A-B-C), and one quarter each of Neuroanatomy Lab (Neurosci. 257) and Statistical Methods and Experimental Design (Neurosci. 225). In addition, students choose among various core elective courses, such as Molecular and Cellular Neuroendocrinology (Neurosci. 222), Neuropsychopharmacology (Neurosci. 277), Molecular and Cellular Neurobiology (Neurosci. 268), Developmental Neuroscience (Neurosci. 263) and approved courses from other graduate departments. Students are also permitted to substitute previous courses that are similar to the Neurosciences core courses. Such a substitution would require approval of the chair of the Curriculum Committee or the director of the Graduate Program.

- **MINOR PROPOSITION**
 - The purpose of this examination is to test the student's ability to choose a problem in the neurosciences and propose an experimental approach to its solution. The problem should be broad, requiring experimental approaches from more than one discipline. The problem should be outside the area of the student's anticipated dissertation research. Students will be required to demonstrate a working knowledge of the disciplines involved in the minor proposition.
 - Oral defense of the minor proposition will be required at the end of the winter quarter of the second year of study.

- **DISSERTATION**
 - During the second year, students are expected to propose and initiate work on a dissertation problem under the guidance of a faculty preceptor. The neurosciences group at UCSD currently conducts animal research and clinical studies in the fields of neuroanatomy, neurochemistry, neuroparmacology, neurophysiology, comparative neurology, physiology of excitable membranes, synaptic transmission, neuronal integration and coding, nervous system tissue culture, neuroimmunology, brain function, sensory physiology, motor mechanism, and systems analysis as applied to neurological problems.

- **QUALIFYING EXAMINATION**
 - This examination, a university requirement, focuses on the proposed research that the student will undertake for his or her dissertation. This examination is conducted by the approved doctoral committee.

- **DISSERTATION EXAMINATION**
 - The required formalities listed in the Instruction for Preparation and Submission of Doctoral Dissertations issued by the Office of Graduate Studies and Research to students should be followed closely. The final examination includes both a public presentation followed by a closed defense of the dissertation with members of the Committee.

- **TEACHING**
 - All students are required to perform as a teaching assistant for at least one quarter during their graduate career. To this end, opportunities to lecture and assist in laboratory exercises and demonstrations are available through a number of departments, including neurosciences, biology, and cognitive science.

- **P.H.D. TIME LIMIT POLICIES**
 - Students must advance to candidacy by the end of four years. Total university support cannot exceed six years. Total registered time at UCSD cannot exceed seven years.

- **COURSES**
 - For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.
information processing. Prerequisites: Neurosci. 238 or
Psych. 231, and consent of instructor. (S/U grades only.) (F)

259. Workshop in Electron Microscopy (4)
This course is to introduce graduate students in the
neurosciences to research methods used in electron
microscopy (EM) through one hour of formal lecture, one
hour of seminar, three hours of demonstration, and three
hours of supervised laboratory work per week. Students
will become familiar with sectioning EM, scanning EM,
and freeze-fracture EM. Prerequisites: graduate-student
standing in neurosciences doctoral program and consent
of instructor. Enrollment limited. (S/U grades only.) (S)

263. Developmental Neuroscience (3)
A graduate reading course that highlights selected topics
in the molecular study of neural development.

266. Development of Neural Circuits (4)
Course focuses on developmental processes during forma-
tion of neural circuits. Molecular, genetic, cellular mecha-
nisms controlling neurogenesis, neuronal differentiation,
positioning (migration), axon/dendrite patterning, and
synapse formation will be discussed. Role of neural activity
shaping circuit formation will be explored. Prerequisites:
graduate standing only. For students in the following major
codes: NE75, BI77, BI79, or consent of instructor.

268. Molecular and Cellular Neurobiology (4)
Molecular and cellular approaches to the study of the ner-
vous system are advancing neurobiology at an increasingly
rapid pace. This graduate-level course will address the latest
molecular advances in the areas of: 1) synapse formation,
neurotransmitter release, and neurotransmitter receptors;
2) nerve growth factors, their receptors, and neuronal
apoptosis; 3) transcriptional regulation in the brain and
peripheral nervous system; 4) cell culture, transgenic, and
knock-out mouse model systems; 5) the molecular bases
of genetic, psychiatric, and degenerative diseases of the
nervous system; and 6) the current molecular knowledge
of genetic, psychiatric, and degenerative diseases of the
nervous system; and 6) the current molecular knowledge
of vision, sensory transduction, circadian rhythms, learning,
memory, and behavior.

276. Neuroscience Research Rounds (1)
Neurosciences group faculty members and graduate
students will present and discuss ongoing research.
Attendance will be mandatory for first- and second-year
graduate students. Faculty, advanced graduate students,
medical students, postdoctoral trainees, and other inter-
ested parties are encouraged to attend. (F,W,S)

277. Neuropsychopharmacology (4)
An examination of the molecular and biochemical bases of
drug and transmitter action. The course is devoted to recep-
tor mechanisms, neuropharmacology, and drug action
on excitable tissues. Prerequisite: graduate standing. (S)

285. Clinical Trials: Issues and
Dilemmas in Clinical Trials (3)
This course provides a methodological perspective on
clinical trials. Topics will include ethics, design of Phase I–IV
trials, randomization/blinding, bias, and sample-size power.
Lectures will also cover “application” with eminent UCSD
trialists describing conduct, design, and statistical issues
of specific studies. Prerequisites: medical or graduate
student standing.

296. Neurosciences Research Rotation (1-12)
Independent study. (S/U grades only.) (F,W,S)

298. Neurosciences Independent
Study Project (ISP) (1-12)
Prerequisite: approved ISP proposal. (F,W,S)

299. Neurosciences Research (1-12)
Independent study. (S/U grades only.) (F,W,S)

401. Neurology General Clinical
Selective Clerkship (7)
Provides opportunities for practical application of
neurological skills to the understanding and treatment of
a variety of clinical disorders of the nervous system.
Prerequisite: successful completion of first two years of
medical school. (F,W,S)

426. Subintern Pediatric Neurology (7)
Subinterns are responsible for the primary care of hospit-
ilized pediatric neurology patients under direct resident

and attending physician supervision. Students will perform
procedures such as lumbar puncture and participate in
night call, daily teaching round, neurology Grand Rounds,
and Journal Clubs. Prerequisite: Neurology 401 or consent
of instructor. (F,W,S)

427. Neurology Outpatient (7)
The student will rotate through the general and subspe-
cialty (stroke, epilepsy, headache, nerve, and muscle)
neurology clinics based at UCSD Medical Center, Perlman,
VAMC, and Children’s Hospital. There are lectures and
clinical conferences. Prerequisite: Neurosciences 401 or
equivalent. (F,W,S)

496. Clinical Independent Study (1-21)
Independent clinical study for medical students (S/U grades
only.) (F,W,S)

500. Apprenticeship Teaching (1-4)
Participation in the department teaching program is re-
quired of all students working toward a Ph.D. degree. In
general, students are not expected to teach in the first year,
but are required to serve as teaching assistants or tutors
for one quarter at any time during their subsequent years
of training. The amount of teaching required is equivalent
to the duties expected of a 50 percent assistant for one
quarter. Prerequisite: neurosciences graduate students.
(S/U grades only.) (F,W,S)
UC San Diego Opportunities Abroad Program

OFFICE: Programs Abroad Office in the International Center (corner of Gilman Drive and Library Walk) (858) 534-1123
http://programsabroad.ucsd.edu

Sharon Rose, Linguistics, Faculty Director
Paula Levin, Education Studies, Associate Faculty Director
Lynn Anderson, Dean of International Education
Kimberly Burton, Director of Programs Abroad
Jim Galvin, OAP Director
Tonia Pizer, OAP Advisor
Maribeth Erlich, OAP Advisor
Rachel Rigoli, OAP Advisor
Kathleen McLaren-Hawking, OAP Advisor
Derek Kolb, OAP Advisor
Kelly O’Sullivan, Academic Integration Officer
Christine Trinidad, Office Manager

Students interested in going abroad should investigate possibilities through the Opportunities Abroad Program, which can assist with placement in a wide range of academic programs outside the UC system. These programs include study for an academic year, semester, quarter, or summer. They may be sponsored by other U.S. universities or include direct enrollment in foreign institutions. Academic credit may also be earned on a number of overseas internship programs that combine work experience and courses.

Students going abroad through the Opportunities Abroad Program earn transfer credit from the sponsoring institution. Courses taken abroad may satisfy general-education, major, or minor requirements, depending on department or college approval. Federal and state financial aid for approved plans of study abroad is available. Special study abroad scholarships are also available.

In addition to these academic programs, the Programs Abroad Office can assist students in selecting a wide range of volunteer, paid work, and educational travel programs.

RELATED PROGRAMS

For other study abroad opportunities, see UC "Education Abroad Program (EAP)" and "UC San Diego Global Seminars (GS)."
Philosophy

PROFESSORS
Georgios H. Anagnostopoulos, Ph.D.
Richard J. Arneson, Ph.D.
William Bechtel, Ph.D.
David O. Brink, Ph.D.
Craig A. Callender, Ph.D.
Nancy D. Cartwright, Ph.D.
Jonathan Cohen, Ph.D., Graduate Advisor
Gerald D. Doppelt, Ph.D., Academic Senate
Distinguished Teaching Award
Rick Grush, Ph.D.
Samuell C. Rickless, Ph.D., Academic Senate
Distinguished Teaching Award
Donald P. Rutherford, Ph.D., Chair, Academic Senate
Distinguished Teaching Award
Gila Sher, Ph.D.
Eric Watkins, Ph.D.

ASSOCIATE PROFESSORS
Michael O. Hardimon, Ph.D.
Monte Johnson, Ph.D.
Dana Nelkin, Ph.D., Undergraduate Faculty Advisor

ASSISTANT PROFESSORS
Saba Bazargan, Ph.D.
Clinton Tolley, Ph.D.
Christian Wüthrich, Ph.D.

PROFESSORS EMERITI
Henry E. Allison, Ph.D., Research Professor (not in-residence)
Patricia Smith Churchland, Ph.D., Professor Emerita
Paul M. Churchland, Ph.D., Professor Emeritus
Edward N. Lee, Ph.D., Professor Emeritus
Frederick A. Olafson, Ph.D., Professor Emeritus
Avrum Stroll, Ph.D., Research Professor
OFFICE:
7002 Humanities and Social Sciences Building
Muir College
http://philosophy.ucsd.edu

INTRODUCTION TO THE DEPARTMENT
Philosophy addresses some of the most basic questions humans ask about the world. Some questions are very broad, such as how can minds know about the external world, themselves, and other minds? How can we arrive at reasonable answers to ethical questions about right and wrong? What distinguishes science from other kinds of knowledge and are there limits to science? What is the role of moral choice and values in human life? Do standards of truth and logic apply in areas such as religion, art, politics, and law?

Philosophy also seeks answers to particular problems in specific areas of science, medicine, law, ethics, and technology. For example, it explores the ways that modern physics impacts our notions of space, time, causation, and nature itself. It considers the ways that neuroscience and genetics impact the traditional ideas about free will and responsibility. It debates the limits of democratic governments in regulating individuals’ conduct. It wrestles with problems about the right to die and the varied responsibilities of medical professionals. It inquires into the relation between science and religion. Related issues concern privacy, the limits of private property, and who should have access to what information.

CAREER GUIDANCE
Philosophy is a broad field with diverse subfields. Some students may want to pursue a general course of study for the major, sampling courses across several of these distinct subfields. This strategy develops a solid foundation for graduate work in philosophy and for any career that requires breadth of knowledge, intellectual flexibility, as well as communicative and analytic skills.

Other students may wish to pursue a more specialized program of studies. Below are descriptions of several areas of emphasis within philosophy. These illustrate the possibilities of developing your own coherent and focused set of courses that fulfill the requirements for the major in ways that are tailored to your specific intellectual and career interests. Philosophy is preparation for a wide range of careers—including science, law, medicine, teaching, business, and public policy.

Choosing a philosophy major is an excellent way to follow a disciplined and rigorous course of study that joins the breadth of a traditional college education with specialization in a chosen area.

UNDERGRADUATE PROGRAM—MAJOR
The Department of Philosophy offers the degree of bachelor of arts (B.A.) in philosophy for the undergraduate major. A major in philosophy requires a total of fifteen philosophy courses, at least twelve of which must be upper-division (courses numbered 100 and above). Up to two upper-division courses outside of philosophy can count among the twelve required for the major if they are drawn from a related field and contribute to the major’s philosophical program; such credit must be approved by the undergraduate advisor. Honor’s and directed study courses (Philosophy 191–199) may not be used to satisfy the major requirement of fifteen philosophy courses. Major requirements may be met by examination.

There is no required introduction to philosophy or the major. The department offers a variety of lower-division courses and sequences (numbered 1–99), any of which could be a suitable introduction to philosophy. The only required lower-division course for majors is Philosophy 10, Introduction to Logic.

At the upper-division level, majors are encouraged to take courses in the central areas of philosophical study:
- Metaphysics and Epistemology
- Law, Ethics, and Politics
- Philosophy of Science and Logic
- History of Philosophy

Though many upper-division courses have no prerequisite, any combination of three-lower-division courses would provide a good foundation for taking most upper-division courses.

CORE REQUIREMENTS FOR THE MAJOR
1. History of Philosophy. A history of philosophy core sequence 157, 158, and 159. It is strongly recommended that majors complete these courses in order.
2. Logic. Philosophy 10, and Philosophy 120 are required of all majors. Because Philosophy 120 is a prerequisite for a variety of upper-division courses, prospective majors are strongly encouraged to take Philosophy 10 and Philosophy 120 as early as possible.
3. Moral and Political Philosophy. Majors must take at least one upper-division course in moral or political philosophy from among Philosophy 160, 161, 166, or 167.
4. Metaphysics and Epistemology. Majors must take at least one upper-division course in traditional areas of analytic philosophy—metaphysics, epistemology, philosophy of language, and philosophy of mind—from among Philosophy 130, 132, 134, or 136.
5. Philosophy of Science. Majors must take at least one upper-division course in philosophy of science from among Philosophy 145, 146, 147, 149, 150, 151, or 152.

OPTIONAL AREAS OF EMPHASIS IN THE MAJOR
The Department of Philosophy offers four optional areas of emphasis within the major, as described below. Students selecting an optional area of emphasis for the major must take and pass five of the courses listed under that area. Courses taken to complete an area of emphasis are counted toward the fifteen courses required for the major. Particular courses may be applied both to the completion of the area of emphasis and in fulfillment of a core requirement for the major. Students should be aware, as they plan their course of study, that only some of the courses listed for an area of emphasis will be taught in any given year.

The department encourages students considering a philosophy major to consult with the philosophy undergraduate coordinator and the philosophy faculty undergraduate advisor to plan a program of study that is suitable to their particular interests and needs. The department Web site http://philosophy.ucsd.edu provides additional information about courses falling within each area of emphasis. Areas of emphasis are not noted on transcripts or diplomas. The optional areas of emphasis are

1. Law, Ethics, and Society

This area targets the nature and source of our moral rights and obligations, the authority of the state and law, the basis of value and goodness. Several courses in this area target ethical issues in medicine, the environment, technological change, economic inequality, and matters concerning race, gender, class, ethnicity, and nationality. In this area, students will learn how moral and legal reasoning can reshape the political debates.
2. Science, Technology, and Medicine

This emphasis focuses on the insights and challenges presented by science. Modern science and technologies affect our view of ourselves and of nature, introducing novel promises and problems. For instance, how do we balance technical, economic, environmental, and ethical values in making decisions concerning which technologies or drugs to develop? Modern science has also changed our understanding of nature. Quantum physics, the genetic revolution, and neuroscience (to name a few) present problems and have important implications for human life. Finally, there are questions about science itself. What are the methods of modern science? Do they vary from one science to another? Can the sciences be value free?

This area will appeal especially to those students interested in pursuing careers in philosophy, science, clinical medicine, medical research, the social sciences, science journalism, and public policy.

123. Philosophy of Logic
145. Philosophy of Science
146. Philosophy of Physics
147. Philosophy of Biology
148. Philosophy and the Environment
149. Philosophy of Psychology
150. Philosophy of Cognitive Sciences
151. Philosophy of Neuroscience
152. Philosophy of Social Science
153. Philosophy of History
163. Biomedical Ethics
164. Technology and Human Values

3. Mind, Brain, and Cognitive Sciences

Traditional epistemology (the theory of how and what we know) and philosophy of mind (the theory of that-which-perceives-and-thinks) have recently been joined by several scientific disciplines in a collective search for illuminating theories. Psychology, cognitive neurobiology, computer science, and sociology have all made explosive contributions to a tradition as old as Plato and Aristotle. For example, our growing understanding of the biological brain has given new life to our traditional attempts to understand the nature of the mind. New accounts of the various mechanisms of cognition—both at the cellular and the social levels—have provided entirely new perspectives on the nature of consciousness, the self, knowledge and free will, and on the nature of science itself.

This area is excellent preparation for careers in cognitive science, neuroscience, artificial intelligence, science journalism, and philosophy.

132. Epistemology
134. Philosophy of Language
136. Philosophy of Mind
145. Philosophy of Science
147. Philosophy of Biology
149. Philosophy of Psychology
150. Philosophy of Cognitive Sciences
151. Philosophy of Neuroscience
180. Phenomenology

4. Historical Perspectives on Philosophy, Science, and Religion

Throughout its history, philosophy has developed in a complex relationship with the natural sciences and religion. Philosophical ideas have both contributed to and challenged our understanding of nature and God, and developments in the sciences and religion have posed new challenges for philosophical thinking. The historical perspectives emphasis focuses on the fertile interplay between philosophy, science, and religion in several key periods: ancient Greece, the Scientific Revolution, and Enlightenment and post-Enlightenment Europe. The aim is not simply to document the history of philosophical ideas, but to use this history as a way of better understanding contemporary debates about the basic questions of human life.

This area prepares students for postgraduate work in philosophy, and for any career that requires breadth of knowledge, intellectual flexibility, as well as communicative and analytical skills.

100. Plato
101. Aristotle
102. Hellenistic Philosophy
104. The Rationalists
105. The Empiricists
106. Kant
107. Hegel
108. Nineteenth-Century Philosophy
109. History of Analytic Philosophy
161. Topics in the History of Ethics
166. Classics in Political Philosophy
180. Phenomenology
181. Existentialism
183. Philosophy and Race
184. Philosophy and the Environment

GRADE RULES FOR MAJORS/MINORS

All courses applied toward the major or minor must be completed with a grade of C– or higher. Further, a GPA of 2.0 must be maintained in courses applied toward the major or minor. It should be noted that courses taken under the Pass/Not-Pass (P/NP) grading option cannot be applied toward the major or minor.

HONORS PROGRAM

The philosophy department offers an honors program for outstanding students in the major. Majors who have a 3.7 GPA in philosophy (3.25 overall) at the end of their junior year and who have taken at least four upper-division philosophy courses are eligible to apply. Interested students must consult with a faculty sponsor by the last day of classes during the spring term of their junior year. Admission to the honors program requires nomination by a faculty sponsor and approval of the undergraduate advisor. Nominating Petitions can be obtained from the philosophy department.

In addition to the usual major requirements, an honors student is required to complete a senior honors thesis by the end of winter quarter. During the fall and winter quarters, the student will be registered for Philosophy 191A and 191B and will be engaged in thesis research that will be supervised and evaluated by the student’s faculty sponsor. A departmental committee will read and assess the completed thesis and determine if philosophy honors are to be awarded. Honors students are expected to maintain an average of 3.7 or better for all work taken in the program. (Qualified students wishing to participate in the honors program according to a different timetable than the one described above can apply to do so by petitioning the undergraduate advisor.)

TRANSFER CREDIT

Courses taken at other institutions may be applied toward the major by petition only. Petitions should be submitted to the Department of Philosophy main office, and must be accompanied by supporting materials (transcripts, syllabi, course work, etc.). Students are required to submit one petition per transfer course.

For specific regulations regarding transfer credit for Philosophy 10 (Introduction to Logic), please see the information on the department Web site: http://philosophy.ucsd.edu.

It is important to note that seven of the twelve upper-division courses in the major must be taken in the Department of Philosophy at UC San Diego.

Note: All courses applied toward major must be taken for a letter grade.

UNDERGRADUATE PROGRAM—MINOR

The Department of Philosophy offers a minor in philosophy. As with the major, the minor is an attractive option for a wide range of career paths, including medicine, law, research in the natural and social sciences, journalism, education, and government. A minor requires a total of seven philosophy courses, at least five of which must be upper division. If choosing an area of emphasis, at least four upper-division courses must be from the chosen area of emphasis. All courses must be taken for a letter grade, C– or better.

ADVISING OFFICE

Students who desire additional information concerning our course offerings or program may contact individual faculty or the assistant director of the undergraduate program through the department main office at 7002 H&SS, (858) 534-3070.

OFFICE: 7002 Humanities and Social Sciences Building Muir College

http://philosophy.ucsd.edu
GRADUATE PROGRAM REQUIREMENTS

The department offers programs leading to the M.A. and Ph.D. It is the intention of the graduate program to enable the student to obtain an understanding of diverse traditions and to develop as a philosopher in his or her own right. To this end, the department offers courses and seminars in the history of philosophy and in traditional and contemporary philosophical issues, from a variety of perspectives.

DOCTORAL DEGREE PROGRAM

COURSE WORK

Over the first two years, students will normally take at least three courses per quarter, of which at least two are philosophy seminars (numbered 200–285). The balance may be made up from additional graduate courses in philosophy, up to two independent studies in philosophy, upper-division courses in philosophy (those numbered 100–199), approved upper-division or graduate courses in related departments, and, if the student is a teaching assistant, Philosophy 500 Apprentice Teaching. In any case, before advancing to candidacy, students must have completed fourteen graduate seminars, twelve of which are graduate philosophy seminars.

PROSEMINAR

In fall quarter of their first year of residence, graduate students will take a proseminar designed to introduce them to philosophical methods and improve their skills at writing and analysis. Enrollment in the proseminar is limited to first-year students. The proseminar may be team-taught. The topics to be covered will address some central area or areas of philosophy and will vary from year to year. The proseminar is a regular four-unit seminar.

CORE COURSES

In the following areas, the department shall offer "core" or advanced introductory seminars: philosophy of mind, philosophy of language, philosophy of science, the history of philosophy, epistemology, metaphysics, ethics and political philosophy. The department shall offer at least three of these courses in each academic year. Students must take two of these core courses by the end of their second year of residence. Courses taken to satisfy this requirement may be applied toward the distribution requirement.

Core courses are not necessarily distinguished by the numbers under which they are offered, but by their content. A core course provides a point of entry into a field that is suitable for graduate students with no prior work in this area of philosophy as well as students with some background knowledge. A core course may be a general survey of a field, or alternatively may take up some central, relatively nonspecialized topic. Though core courses are intended to provide students with an entry point into particular philosophical topics, students are welcome to supplement the graduate core courses with upper-division undergraduate philosophy courses (those numbered 100–199), which are often organized as surveys. A core course may offer students the option of writing shorter papers rather than one long seminar paper; in some cases a final examination may be offered. The decision whether to count a course as core will be made by the instructor in consultation with the graduate advisor.

DISTRIBUTION REQUIREMENTS

Before advancing to candidacy students must have completed, nine graduate seminars in philosophy (in addition to the proseminar) distributed across the subfields of philosophy listed below. Students must take three seminars in the history of philosophy, including one in ancient philosophy and one in modern philosophy), two seminars in two other areas, and at least one seminar in every area.

1. History of Philosophy
2. Philosophy of Science
3. Philosophy of Mind and Philosophy of Language
4. Ethics and Political Philosophy
5. Metaphysics and Epistemology

Courses used to satisfy a requirement in one category cannot be used to satisfy a requirement in another category. The determination as to what category or categories a particular seminar taught in a given quarter may count toward is normally made by the seminar instructor.

LOGIC REQUIREMENT

In their first year of residence, all graduate students must demonstrate proficiency in basic formal logic (the predicate calculus, up to and including functions, relations, and identity) either by passing an examination in this material (normally offered each fall and often in spring) or by taking Philosophy 120 (Symbolic Logic) during their first year of study and achieving a grade of B+ or better. By the end of their second year of residence, all students must pass an advanced logic course (Philosophy 122, 123, 126, 222, or another logic class approved by the graduate advisor).

THIRD YEAR ESSAY REQUIREMENT

During the third year each student shall write an original research essay of about 7,500–9,000 words under the supervision of the student's third-year committee, which is responsible for determining that the research essay meets the necessary standards of philosophical sophistication. The intent of the requirement is to demonstrate that the student has acquired the skills necessary for exploring a philosophical problem and addressing it in a polished essay that is more substantial and sustained than is typical in the writing of papers for graduate seminars. It is intended that the student will complete this requirement during his or her third year of residence; in any case, the student must satisfy this requirement before advancing to candidacy.

RESEARCH SKILLS REQUIREMENT

Before advancing to candidacy, students will normally be required to demonstrate competence in a skill outside philosophy but relevant to his or her dissertation research. Which skill is appropriate will be decided by the student in consultation with his or her first- or second-year advisors and the graduate advisor.

Examples of ways in which students may satisfy the skills requirement include demonstrating competence in a foreign language relevant to their research (e.g., Classical Greek, Latin, French, or German, for students working in the history of philosophy); passing three upper-division undergraduate or graduate-level courses in biology, physics, mathematics, or linguistics (for students working in the philosophy of biology, physics, mathematics, or language); passing three upper-division undergraduate or graduate-level courses in political science, economics or sociology (for students working in political philosophy or ethics). Undergraduate courses taken must be passed with a grade of B+ or better.

Specific decisions about the satisfaction of this requirement will be made on a case-by-case basis by the graduate advisor and the student's advisors, and will be made on grounds of the intellectual relevance of the proposed research skill and the needs of the student.

INDEPENDENT STUDY COURSES

Philosophy 290 (Directed Independent Study) is appropriate for a graduate student still in the process of fulfilling course requirements for the degree. However, this course will not normally be approved for students in the first year of the program, and will not normally count toward the satisfaction of distribution requirements.

Philosophy 295 (Research Topics) is an appropriate course for a student in the process of working towards a dissertation prospectus.

Philosophy 299 (Thesis Research) is appropriate for a student working on his or her dissertation.

TEACHING REQUIREMENTS

Participation in undergraduate teaching is one of the requirements for a Ph.D. in philosophy. Students are required to serve as a teaching assistant for (at a minimum) the equivalent of one-quarter time (ten hours per week) for three academic quarters. The duties of a teaching assistant normally entail grading papers and examinations, conducting discussion sections, and related activities, including attendance at lectures in the course for which he or she is assisting.

DISSERTATION PROSPECTUS AND ORAL CANDIDACY EXAM

Sometime after completing the distribution requirements, the student must submit a dissertation prospectus to his or her doctoral committee. The committee will then orally examine the student on the intended subject and plan of research. The examination will seek to establish that the thesis proposed is a satisfactory subject of research and that the student has the preparation and the abilities necessary to complete that research. This oral qualifying exam must be passed before the end of the fourth year of study (twelfth quarter of residence). Students who are passed and have met the other requirements will be advanced to candidacy for the Ph.D.

DOCTORAL DISSERTATION

Under the supervision of a doctoral committee, each candidate will write a dissertation demonstrating a capacity to engage in original and independent
research. The candidate will defend the thesis in an oral examination by the doctoral committee.

ACADEMIC ADVISING

First and Second Year Academic Advising

After consultation with the graduate advisor, each entering student will be assigned a faculty advisor. Students are encouraged to meet with their faculty advisors once a quarter during their first two years to plan their course of study and review their progress in the program. Students may change their faculty advisor after one has been assigned. Advising duties will shift to the third-year committee in the student’s third year of study, and then to the dissertation committee once the student begins the dissertation.

Third Year Academic Advising

At the end of the student’s second year of study, the department will appoint a three-member faculty committee for that student. The composition of the committee will reflect the student’s preferences and the area of philosophy in which the student is inclined to do dissertation work. One of the members of the committee will be designated as the committee chair, and will serve as the student’s main advisor. The committee will meet, at a minimum, once in the spring of the student’s second year of study; once in the fall of the student’s third year, and once in the spring of the student’s third year. The responsibilities of the committee include advising the student in developing a sound dissertation project, the acquisition of professional skills (possibly through the departmental professional skills workshop), and advancing to candidacy in a timely manner. The members of this third-year committee may but need not be members of the student’s dissertation committee.

Professional Skills Workshop

The department will offer each year a noncredit workshop on professional skills. Topics covered may include publication strategies, the mechanics of the job market, and how to write a cv. This workshop is open to any student in the department, and all students are encouraged to attend at least once before going on the job market.

Academic Advising after Candidacy

After advancing to candidacy, the student will select a dissertation committee that will advise him or her throughout the writing of the dissertation, supply feedback on the material of the dissertation, and conduct the oral dissertation defense. The standard committee consists of five faculty members. Three of these faculty members will be from the Department of Philosophy, and one of these (who must be tenured) will be designated as the principal director of the student’s dissertation. In addition to the three philosophy faculty, the dissertation committee must include at least two faculty from outside the Department of Philosophy, at least one of whom must be a tenured UC San Diego faculty member.

MASTER’S DEGREE

The UCSD Department of Philosophy does not admit students with the intention of completing their studies at the master’s level. Nonetheless, Ph.D. students in the department sometimes elect to receive the master’s degree in the course of their academic progress.

To qualify for a master’s degree in philosophy, a student must pass eight of the distribution requirement seminars as described above, under the subheading “Distribution Requirements.” No more than four seminars from any one of the five areas count toward the master’s degree. The student must also complete a master’s research paper under the direction of a faculty member or his or her choice, and have it approved by two members of the department faculty.

INTERDISCIPLINARY DEGREE PROGRAMS

The philosophy department at UCSD participates in three interdisciplinary programs, the requirements for which are outlined below.

INTERDISCIPLINARY DEGREE PROGRAM IN COGNITIVE SCIENCE

The Interdisciplinary Ph.D. Program in Cognitive Science includes faculty from a number of UCSD departments including the Departments of Anthropology, Biology and Neurobiology, Cognitive Science, Communication, Computer Science and Engineering, Linguistics, Music, Neurosciences, Philosophy, Psychiatry, Psychology, and Sociology. This group includes many outstanding figures in contemporary cognitive science.

Students wishing to pursue a Ph.D. in philosophy and cognitive science register in the philosophy program in the normal fashion, but pursue a significant portion of their studies with faculty in the several departments participating in the interdisciplinary program. Students may apply for admission to the interdisciplinary program at the same time that they apply to the Department of Philosophy, or at some point after entering UCSD. (All students wishing to transfer into any interdisciplinary program must do so prior to the end of the fifth quarter of residency.) Students in philosophy/cognitive science are required to complete all of the requirements for the Ph.D. in philosophy with the following five amendments:

1. The student must take six quarters of Cognitive Science 200.
2. The student must take the equivalent of one year’s course work (usually six courses) in one or more of the other departments affiliated with the Department of Cognitive Science. (It should be noted that a philosophy graduate student who completes this requirement is deemed thereby to have satisfied the philosophy special skills requirement by gaining an approved special competency.)
3. The distribution requirement is amended as follows. Before advancing to candidacy a philosophy/cognitive science student must have completed nine graduate seminars in philosophy distributed across the areas of (A) philosophy of science, (B) philosophy of mind and philosophy of language, (C) ethics and political philosophy, (D), epistemology and metaphysics, and (E) history of philosophy. The student must take at least one seminar from each of these five areas and at least two seminars from any four of these areas.

4. The course work requirement is amended as follows: Over the first two years, a philosophy/cognitive student will normally take at least three courses/seminars per quarter. Besides graduate seminars in philosophy and cognitive science, these may include up to two independent studies in philosophy, upper-division courses in philosophy (those numbered 100–199), approved upper-division or graduate courses in cognitive science and affiliated departments, and, if the student is a teaching assistant, Philosophy 500 (Apprentice Teaching). (It should be noted that philosophy/cognitive students who complete all the other requirements for cognitive studies and who complete the amended distribution requirement above are thereby deemed to have completed the fourteen graduate seminars required of students prior to their advancing to candidacy.)

5. A plan detailing the course of study must be approved by the Cognitive Science Program Committee. The dissertation should be interdisciplinary, reflecting the two areas of specialization.

INTERDISCIPLINARY PROGRAM IN SCIENCE STUDIES

The Science Studies Program at UCSD is committed to interdisciplinary investigations. Understanding, interpreting, and explaining the scientific enterprise demand a systematic integration of the perspectives developed within the communication of science, history of science, sociology of science, and philosophy of science. The program offers students an opportunity to work towards such integration, while receiving a thorough training at the professional level in one of the component disciplines (communications, history, sociology, philosophy).

Students enrolled in the program choose one of the component disciplines for their major field of specialist studies (for students enrolled in the Department of Philosophy, this major field is, of course, philosophy), and are required to complete minor field requirements in the others. The core of the program, however, is a year-long seminar in science studies, led by faculty from all participating departments.

Students may apply for admission to the interdisciplinary program at the same time that they apply to the Department of Philosophy, or at some point after entering UCSD. (All students wishing to transfer into any interdisciplinary program must do so prior to the end of the fifth quarter of residency.) Students in philosophy/science studies are required to complete all of the requirements for the Ph.D. in philosophy with the following seven amendments:

1. The student must attend the Science Studies Colloquium series for his or her entire first and second years. He or she will receive course credit (course 200C) in any two quarters of his or her
choice (once in the first year and once in the second year, with exceptions to be considered by the director of science studies). This course is taken for an S/U grade option only.

2. Before defending his or her prospectus, the student must take Introduction to Science Studies I (209A), Introduction to Science Studies II (209D), and two iterations (with changed content) of the Core Seminar in Science Studies (209B). (These courses are required in addition to the proseminar in philosophy which is required of all Ph.D. students in philosophy.)

3. The student must, prior to defending his or her prospectus, take two additional science studies courses outside philosophy drawn from a list of approved courses available each year from the Science Studies Program office. (One course in one of the sciences may be substituted for one of these courses as part of an approved program of study.)

4. The distribution requirement is amended as follows. Before advancing to candidacy, a philosophy/science studies student must have completed nine seminars in philosophy distributed across the areas of (A) philosophy of science, (B) philosophy of mind and philosophy of language, (C) ethics and political philosophy, (D) metaphysics and epistemology, and (E) history of philosophy. Students must take at least one seminar from each of these five areas and at least two seminars from any four of these areas.

5. The course work requirement is amended as follows. Over the first two years, a philosophy/science studies student will normally take at least three courses/seminars per quarter. Besides graduate seminars in philosophy and science studies, these may include up to two independent studies in philosophy, upper-division courses in philosophy (those numbered 100–199), approved upper-division or graduate courses in science studies and affiliated departments, and, if the student is a teaching assistant, Philosophy 500 (Apprentice Teaching). (It should be noted that philosophy/science studies students who complete all the other requirements for science studies and who complete the amended distribution requirements for philosophy are thereby deemed to have completed the fourteen graduate seminars required of students prior to their advancing to candidacy.)

6. The student’s program of study must be approved by the Department of Philosophy faculty advisor for science studies.

7. At least two internal members and at least one external member of the student’s dissertation committee should be faculty of the Science Studies Program. Exceptions to this policy require permission from the director of the Science Studies Program.

DUAL DEGREE PROGRAM WITH UNIVERSITY OF SAN DIEGO LAW SCHOOL

Students pursuing the Ph.D. in philosophy at UCSD can also pursue a degree at the University of San Diego (USD) School of Law, either the J.D. (normally a three-year degree) or the M.S.L.S. (a one-year master’s degree). Students must be admitted independently to the two programs and must complete the requirements for both programs. Once admitted to both programs, the expectation is that students would first complete their first two years of Ph.D. course work and any associated qualifying exams at UCSD. They can then take a leave from the UCSD program, freezing their clock here, to complete the appropriate course work at USD. For their M.S.L.S. degree, this will require a one-year leave, while for their J.D. degree this will require two years leave. While on leave, students would not be eligible for financial aid from UCSD. Students would then return to UCSD to complete their Ph.D., drawing on their combined training here and at USD in their thesis research, and getting advice on their research from faculty at both universities. Each program will make specific arrangements to grant some course credit toward their degrees for courses taken at the other university. The expectation is that students will pursue dual degrees rather than concurrently, and that the UCSD clock will stop while students are enrolled at USD. Consequently, in the normal course of events the UCSD Department of Philosophy sees no special need for extending time limits on advancing to candidacy, years of support, or time toward the degree. However, exceptional cases can be handled by petition.

PH.D. TIME LIMIT POLICIES

Students must be advanced to candidacy by the end of four years. The department’s normative time to graduation is six years. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

APPLICATION REQUEST

For information regarding the graduate program call (858) 534-6809 or write to University of California, San Diego Graduate Advisor, Philosophy 9500 Gilman Dr. # 0119 La Jolla, CA 92093-0119

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LOWER-DIVISION

1. Introduction to Philosophy (4)
 A general introduction to some of the fundamental questions, texts, and methods of philosophy. Multiple topics will be covered, and may include the existence of God, the nature of mind and body, free will, ethics and political philosophy, knowledge and skepticism.

10. Introduction to Logic (4)
 Basic concepts and techniques in both informal and formal logic and reasoning, including a discussion of argument, inference, proof, and common fallacies, and an introduction to the syntax, semantics, and proof method in sentential (propositional) logic. (May be used to fulfill general-education requirements for Warren and Eleanor Roosevelt Colleges.)

12. Logic and Decision Making (4)
 An introduction to the study of probability, inductive logic, scientific reasoning, and rational choice among competing hypotheses and alternative courses of action when the evidence is incomplete or uncertain. (May be used to fulfill general-education requirements for Marshall, Warren, and Eleanor Roosevelt Colleges.)

13. Introduction to Philosophy: Ethics (4)
 An inquiry into the nature of morality and its role in personal or social life by way of classical and/or contemporary works in ethics. (May be used to fulfill general-education requirements for Muir and Marshall Colleges.)

 A survey of central issues and figures in the Western metaphysical tradition. Topics include the mind-body problem, freedom and determinism, personal identity, appearance and reality, and the existence of God.

15. Introduction to Philosophy: Knowledge and Its Limits (4)
 A study of the grounds and scope of human knowledge, both commonsense and scientific, as portrayed in the competing traditions of Continental rationalism, British empiricism, and contemporary cognitive science.

25. Science, Philosophy, and the Big Questions (4)
 An inquiry into fundamental questions at the intersection of science and philosophy. Topics can include Einstein’s universe; scientific revolutions; the mind and the brain.

26. Science, Society, and Values (4)
 An exploration of the interaction between scientific theory and practice on the one hand, and society and values on the other. Topics include the relationship between science and religion, global climate change, DNA, medicine, and ethics.

27. Ethics and Society (4)
 (Same as Poli. Sci. 27.) An examination of ethical principles (e.g., utilitarianism, individual rights, etc.) and their social and political applications to contemporary issues: abortion, environmental protection, and affirmative action. Ethical principles will also be applied to moral dilemmas in government, law, business, and the professions. Satisfies the Warren College ethics and society requirement. Letter grade only. Prerequisites: CAT 2 and 3, DOC 2 and 3, MCWP 40 and 50, Hum. 1 and 2, MMW 2 and 3, WCWP 10A-B or WCWP 11A-B.

28. Ethics and Society II (4)
 (Same as Poli. Sci. 28.) An examination of a single set of major contemporary social, political, or economic issues (e.g., environmental ethics, international ethics) in light of ethical and moral principles and values. Warren College students must take course for a letter grade in order to satisfy the Warren College general-education requirement. Prerequisite: Phil./Poli. Sci. 27.

31. Introduction to Ancient Philosophy (4)
 A survey of classical Greek philosophy with an emphasis on Socrates, Plato and Aristotle, though some consideration may be given to Presocratic and/or Hellenistic philosophers.

 Beginning with the contrast between medieval and early modern thought, the course focuses on the relation of seventeenth-century philosophy and the emergence of modern natural science. Figures to be studied include Bacon, Galileo, Descartes, Hobbes, Leibniz, and Newton.

33. History of Philosophy: Philosophy between Reason and Despair (4)
 Introduction to nineteenth-century philosophy, focusing on skepticism about the authority of reason to answer questions about the ultimate meaning and value of human life. Figures discussed may include Kant, Schopenhauer, Kierkegaard, Nietzsche, and James.

87. Freshman Seminar (1)
 The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments.
and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty stu-
dents, with preference given to entering freshmen.

90. Basic Problem in Philosophy (4)
An investigation of a selected philosophical topic through readings, discussions, and written assignments. (May be taken for credit twice, when topics vary.)

UPPER-DIVISION

100. Plato (4)
A study of Socrates and/or Plato through major dialogues of Plato. Possible topics include the virtues and happiness; weakness of the will; political authority and democracy; the theory of forms; the soul; immortality; relativism, skepticism, and knowledge. May be repeated for credit with change of content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.

101. Aristotelian (4)
A study of major issues in Aristotle’s works, such as the categories; form and matter; substance, essence, and accident; the soul; virtue, happiness, and politics. Prerequisite: upper-division standing or consent of instructor.

102. Hellenistic Philosophy (4)
A study of selected texts from the main schools of Hellenistic philosophy—Stoicism, Epicureanism, and Skepticism. Prerequisite: upper-division standing or consent of instructor.

104. The Rationalists (4)
The major writings of one or more of the seventeenth cen-
tury rationalists—Descartes, Spinoza, and Leibniz. Topics include the existence of God, the mind-body problem, free will, the nature of knowledge, belief, and error. May be repeated for credit with change of content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.

105. The Empiricists (4)
The major writings of one or more of the British empiri-
cists—Locke, Berkeley, Hume, and Reid. May be repeated for credit with change of content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.

106. Kant (4)
A study of selected portions of the Critique of Pure Reason and other theoretical writings and/or his major works in moral theory. Prerequisite: Philosophy 33 or 105 or con-

sent of instructor. May be repeated for credit with change in content and approval of the instructor.

107. Hegel (4)
A study of some of Hegel’s major works, in particular, The Phenomenology of Spirit and The Philosophy of Right. Readings and discussion may also include other figures in the Idealist tradition—such as Fichte, Holderlin, and Schelling—and critics of the Idealist tradition—such as Marx and Kierkegaard. Prerequisite: upper-division stand-
ing or consent of instructor.

108. Nineteenth-Century Philosophy (4)
A study of one or more figures in nineteenth-century phi-
losophy, such as Schopenhauer, Nietzsche, Kierkegaard, Marx, Emerson, Thoreau, James, and Mill. The focus may be on particular figures or intellectual themes and tradi-
tions. May be repeated for credit with change of content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.

109. History of Analytic Philosophy (4)
Central texts, figures, and traditions in analytic philosophy. Figures may include Frege, Russell, Wittgenstein, Carnap, Moore, Austin, Tarski, Quine, Davidson, Kripke, and Putnam. May be repeated for credit with change of content and approval of the instructor. Prerequisite: upper-division standing or consent of instructor.

115. Philosophical Methods Seminar (4)
This course provides an introduction to the techniques of philosophical inquiry through detailed study of selected philosophical texts and through extensive training in philosophical writing based on those texts. Enrollment limited and restricted to majors; must be taken for letter grade. May not be repeated for credit. Prerequisite: open to philosophy majors only.

120. Symbolic Logic I (4)
The syntax, semantics, and proof-theory of first-order predicate logic with identity, emphasizing both conceptual issues and practical skills (e.g., criteria for logical truth, consistency, and validity, the application of logical methods to everyday as well as scientific reasoning). Prerequisite: Philosophy 10 or consent of instructor.

122. Topics in Logic (4)
A study of new, extended, or alternative logics and/or spe-
cial issues in meta-logic. Topics include the nature of logic, modal logic, higher-order logic, generalized logic, free logic, the Löwenheim-Skolem theorem, the incompleteness of arithmetic, undecidability. May be repeated for credit with change in content and approval of instructor. Prerequisite: Philosophy 120 (and for advanced topics: Philosophy 121) or consent of instructor.

123. Philosophy of Logic (4)
Philosophical issues underlying standard and non-standard logic. The nature of logical knowledge, the relation between logic and mathematics, the revisability of logical, truth and logic, ontological commitment and ontological relativity, logical consequence, etc. May be repeated for credit with change of content and approval of instructor. Prerequisite: Philosophy 120 or consent of instructor.

126. Topics in the History of Logic (4)
Prerequisites: Philosophy 12 or consent of instructor.

130. Metaphysics (4)
Central problems in metaphysics, such as free will and deter-
mination, the mind-body problem, personal identity, causation, primary and secondary qualities, the nature of universals, necessity, and identity. Prerequisite: upper-
division standing or consent of instructor.

131. Topics in Metaphysics (4)
An in-depth study of some central problem, figure, or tradi-
tion in metaphysics. May be repeated for credit with change of content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.

132. Epistemology (4)
Central problems in epistemology such as skepticism; a pri-
ori knowledge; knowledge of other minds; self-knowledge; the problem of induction; foundationalist, coherence, and causal theories of knowledge. Prerequisite: upper-division standing or consent of instructor.

134. Philosophy of Language (4)
An examination of contemporary debates about meaning, reference, truth, and thought. Topics include descriptive theories of reference, sense and reference, compositionality, truth, theories of meaning, vagueness, metaphor, and natural and formal languages. Prerequisite: upper-division standing or consent of instructor.

136. Philosophy of Mind (4)
Different conceptions of the nature of mind and its rela-
tion to the physical world. Topics include identity theories, functionalism, eliminative materialism, internalism and externalism, subjectivity, other minds, consciousness, self-knowledge, perception, memory, and imagination. Prerequisite: upper-division standing or consent of instructor.

137. Philosophy of Action (4)
The nature of action and psychological explanation. Topics include action individuation, reasons as causes, psychologi-
cal laws, freedom and responsibility, weakness of will, self-
deception, and the emotions. Prerequisite: upper-division standing or consent of instructor.

145. Philosophy of Science (4)
Central problems in philosophy of science, such as the nature of confirmation and explanation, the nature of scientific revolutions and progress, the unity of science, and realism and antirealism. Prerequisite: upper-division standing or consent of instructor.

146. Philosophy of Physics (4)
Philosophical problems in the development of modern physics, such as the philosophy of space and time, the epistemology of geometry, the philosophical significance of Einstein’s theory of relativity, the interpretation of quan-
tum mechanics, and the significance of modern cosmol-
ogy. Prerequisite: upper-division standing or consent of instructor.

147. Philosophy of Biology (4)
Philosophical problems in the biological sciences, such as the relation between biology and the physical sciences, the status and structure of evolutionary theory, and the role of biology in the social sciences. Prerequisite: upper-division standing or consent of instructor.

148. Philosophy and the Environment (4)
An investigation of ethical and philosophical questions con-
cerning our relationship to the environment. Topics may include the value of nature, biodiversity, policy and science, and responsibility to future generations. Prerequisite: upper-
division standing or consent of instructor.

149. Philosophy of Psychology (4)
Philosophical issues raised by psychology, including the nature of psychological explanation, the role of nature versus nurture, free will and determinism, and the unity of the person. Prerequisite: upper-division standing or consent of instructor.

150. Philosophy of the Cognitive Sciences (4)
Theoretical, empirical, methodological, and philosophical issues at work in the cognitive sciences (e.g., Psychology, Linguistics, Neuroscience, Artificial Intelligence, and Computer Science), concerning things such as mental representation, consciousness, rationality, explanation, and nativism. Prerequisite: upper-division standing or consent of instructor.

151. Philosophy of Neuroscience (4)
An introduction to elementary neuroanatomy and neurophysiology and an examination of theoretical issues in cognitive neuroscience and their implications for tradi-
tional philosophical conceptions of the relation between mind and body, perception, consciousness, understanding, emotion, and the self. Prerequisite: upper-division stand-
ing or consent of instructor.

152. Philosophy of Social Science (4)
Philosophical issues of method and substance in the social sciences, such as causal and interpretive models of explana-
tion, structuralism and methodological individualism, value neutrality, and relativism. Prerequisite: upper-division standing or consent of instructor.

157. History of Philosophy: Ancient (4)
An examination of ancient Greek philosophy, focusing on major works of Plato and Aristotle. It is recommended that Phil. 157, Phil. 158, and Phil. 159 be taken in order. Prerequisites: upper-division standing and department stamp, or consent of instructor.

158. History of Philosophy: Early Modern (4)
An examination of seventeenth- and eighteenth-century philosophy, focusing on major works of Descartes, Locke, and Hume. It is recommended that Phil. 157, Phil. 158, and Phil. 159 be taken in order. Prerequisites: upper-division standing and department stamp, or consent of instructor.
159. History of Philosophy: Late Modern
An examination of late eighteenth-century philosophy, focusing on major works of Kant and Hegel. It is recommended that Phil. 157, Phil. 158, and Phil 159 be taken in order. Prerequisites: upper-division standing and department stamp, or consent of instructor.

160. Ethical Theory (4)
Systematic analysis and critical perspectives on ethical issues in ethical theory such as deontic, contractualist, and consequentialist conceptions of morality; rights and special obligations; the role of happiness and virtue in morality; moral conflict; ethical objectivity and relativism; and the rational authority of morality. Prerequisite: upper-division standing or consent of instructor.

161. Topics in the History of Ethics (4)
Central issues and texts in the history of ethics. Subject matter can vary, ranging from one philosopher (e.g., Aristotle, Hobbes, Kant, or Mill) to a historical tradition (e.g., Greek ethics or the British moralists). May be repeated for credit with change in content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.

162. Contemporary Moral Issues (4)
An examination of contemporary moral issues, such as abortion, euthanasia, war, affirmative action, and freedom of speech. Prerequisite: upper-division standing or consent of instructor.

163. Biomedical Ethics (4)
Moral issues in medicine and the biological sciences, such as patient's rights and physician's responsibilities, abortion and euthanasia, the distribution of health care, experimentation, and genetic intervention. Prerequisite: upper-division standing or consent of instructor.

164. Technology and Human Values (4)
Philosophical issues involved in the development of modern science, the growth of technology, and control of the natural environment. The interaction of science and technology with human nature and political and moral ideals. Prerequisite: upper-division standing or consent of instructor.

166. Classics in Political Philosophy (4)
Central issues about the justification, proper functions, and limits of the state through classic texts in the history of political philosophy by figures such as Plato, Aristotle, Hobbes, Locke, Rousseau, Mill, and Marx. Prerequisite: upper-division standing or consent of instructor.

167. Contemporary Political Philosophy (4)
Different perspectives on central issues in contemporary political philosophy, such as the nature of state authority and political obligation, the limits of government and individual liberty, liberalism and its critics, equality and distributive justice. Prerequisite: upper-division standing or consent of instructor.

168. Philosophy of Law (4)
A study of issues in analytical jurisprudence such as the nature of law, the relation between law and morality, and the nature of legal interpretation and issues in normative jurisprudence such as the justification of punishment, paternalism and privacy, freedom of expression, and affirmative action. Prerequisite: upper-division standing or consent of instructor.

170. Philosophy and Race (4)
A philosophical investigation of the topics of race and racism. The role of "race" in ordinary speech. The ethics of racial discourse. Anthropological and biological conceptions of race. The social and political significance of racial categories. Post-racialist conceptions of race. Prerequisite: upper-division standing or consent of instructor.

175. Aesthetics (4)
Central issues in philosophical aesthetics such as the nature of art and aesthetic experience, the grounds of artistic interpretation and evaluation, artistic representa-tion, and the role of the arts in education, culture, and politics. Prerequisite: upper-division standing or consent of instructor.

176. Philosophy and Literature (4)
A study of philosophical themes contained in selected fiction, drama, or poetry, and the philosophical issues that arise in the interpretation, appreciation, and criticism of literature. Prerequisite: upper-division standing or consent of instructor.

177. Philosophy and Literature (4)
A study of philosophical themes contained in selected fiction, drama, or poetry, and the philosophical issues that arise in the interpretation, appreciation, and criticism of literature. Prerequisite: upper-division standing or consent of instructor.

180. Phenomenology (4)
An examination of the phenomenological tradition through the works of its major classical and/or contemporary representatives. Authors studied will vary and may include Brentano, Husserl, Heidegger, Merleau-Ponty, Levinas, Bourdieu. Prerequisite: upper-division standing or consent of instructor.

181. Existentialism (4)
Classical texts and issues of existentialism. Authors studied will vary and may include Nietzsche, Kierkegaard, Sartre, and Heidegger. Prerequisite: upper-division standing or consent of instructor.

183. Topics in Continental Philosophy (4)
The focus will be on a leading movement in continental philosophy (e.g., the critical theory of the Frankfurt school, structuralism and deconstruction, post-modernism) or some particular issue that has figured in these traditions (e.g., freedom, subjectivity, historicity, authenticity). May be repeated for credit with change in content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.

185. Philosophy of Religion (4)
A general introduction to the philosophy of religion through the study of classical and/or contemporary texts. Among the issues to be discussed are the existence and nature of God, the problem of evil, the existence of miracles, the relation between reason and revelation, and the nature of religious language. Prerequisite: upper-division standing or consent of instructor.

190A. Core Course in Philosophy of Religion (4)
Independent study by special arrangement with and under the supervision of a faculty member, including a proposal for the honors thesis. Prerequisite: upper-division standing; department stamp and/or consent of instructor. Prerequisite: upper-division standing or consent of instructor.

191A. Philosophy Honors (4)
Independent study by special arrangement with and under the supervision of a faculty member, including a proposal for the honors thesis. Prerequisite: upper-division standing; department stamp and/or consent of instructor.

191B. The Honors Essay (4)
Continuation of 191A: independent study by special arrangement with and under the supervision of a faculty member, leading to the completion of the honors essay. A letter grade for both 191A and 191B will be given at the end of this quarter; a final grade will be given for both quarters at the end of 191B. Prerequisites: department stamp; consent of instructor.

192. Senior Seminar (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in PHIL (at the upper-division level). Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: upper-division standing; department stamp and/or consent of instructor.

195. Introduction to Teaching Philosophy (4)
Under the supervision of the instructor, student will lead one discussion section of a lower-division philosophy class. The student must attend the lecture for the class and meet regularly with the instructor. Applications are available in the Department of Philosophy. Prerequisites: consent of instructor and department chair, G.P.A. of 3.0 or higher, over ninety units.

199. Directed Individual Study (4)
Directed individual study by special arrangement with and under the supervision of a faculty member. (P/NP grades only.) Prerequisite: consent of instructor.

200. Proseminar (4)
Introduction to philosophical methods of analysis through study of classic historical or contemporary texts. Writing intensive. Enrollment limited to entering graduate students.

201A. Core Course in History (4)
A study of selected texts or topics in the history of philosophy. Usually the focus will be on a single major text. May be taken for credit nine times with changed content.

202. Core Course in Ethics (4)
An introduction to some central issues in ethical theory with emphasis on classic texts or contemporary authors. May be taken for credit three times with changed content.

204A. Core Course in Philosophy of Science (4)
An introduction to one or more problems in the philosophy of science, or in the philosophy of one of the particular sciences, such as the nature of confirmation and explanation, the nature of scientific knowledge, reductionism, the unity of science, or realism and antirealism. May be taken for credit three times with changed content.

207A. Core Course in Metaphysics (4)
An introduction to central topics in metaphysics with emphasis on classic texts or contemporary authors. May be taken for credit three times with changed content.

208A. Core Course in Epistemology (4)
An introduction to central topics in epistemology with emphasis on classic texts or contemporary authors. May be taken for credit three times with changed content.

209A. Introduction to Science Studies (4)
Study and discussion of classic work in history of science, philosophy of science, and of work that attempts to develop a unified science studies approach. Required of all students in the Science Studies Program.

209B. Seminar in Science Studies (4)
Study and discussion of selected topics in the science studies field. Required of all students in the Science Studies Program.

209C. Colloquium in Science Studies (4)
A forum for the presentation and discussion of research in progress in science studies, by graduate students, faculty, and visitors. May be taken for credit two times with changed content.

209D. Advanced Approaches to Science Studies (4)
Contemporary themes and problems in science studies. Focus on recent literature in the history, philosophy, and sociology of science, technology, and medicine.

210. Greek Philosophy (4)
A study of selected texts or topics from the history of Greek philosophy. Usually centers on works by Plato or Aristotle. May be taken for credit six times with changed content.

214. Early Modern Philosophy (4)
A study of selected texts or topics from philosophers of the sixteenth and seventeenth centuries, Descartes, Spinoza, Leibniz, or Locke. May be taken for credit six times with changed content.

215. Eighteenth-Century Philosophy (4)
A study of selected texts or topics from philosophers of the eighteenth century: for example, Kant or Hume. May be taken for credit six times with changed content.

218. Contemporary Analytical Philosophy (4)
A study of the historical development of the analytical movement, with emphasis on major texts. May be taken for credit six times with changed content.

222. Philosophy of Logic (4)
A study of selected issues in the philosophy of logic. Focus may be on contemporary texts or historical works or both. May be taken for credit six times with changed content.

230. Metaphysics (4)
Topics may include identity, personal identity, universals and particulars, modality and possible worlds, causation, reduction, supervenience, freedom and determinism, space and time, and realism versus anti-realism. May be taken for credit six times with changed content.

232. Epistemology (4)
This seminar will cover issues such as rival accounts of reduction, supervenience, freedom and determinism, personal identity, universals and particulars, and modality and possible worlds. May be taken for credit six times with changed content.

240. Core Course in Philosophy (4)
A study of philosophical issues contained in selected fiction, poetry, or philosophy. May be taken for credit three times with changed content.
contemporary perspectives on empiricism, rationalism, and pragmatism, and skepticism. May be taken for credit six times with changed content.

234. Philosophy of Language (4)
Central issues in contemporary philosophy of language, such as the nature of linguistic meaning, truth, content, reference, the syntax and semantics of various linguistic constructions, presupposition, speech acts, the epistemology of language understanding and language learning, the mental/psychological basis of linguistic understanding and use. May be taken for credit six times with changed content.

236. Philosophy of Mind (4)
Contemporary debates on the nature, function, and operation of the mental. May include questions about the mind-body relation, mental causation, perception, consciousness, and mental representation. May be taken for credit six times with changed content.

245. Philosophy of Science (4)
This seminar will cover current books and theoretical issues in the philosophy of science. May be taken for credit seven times with changed content.

246. Philosophy of Physics (4)
Systematic problems and historical and contemporary perspectives on foundational issues in physics. May include issues in the philosophy of space and time, the interpretation of relativity theory and quantum mechanics, or the foundations of statistical mechanics and probability. May be taken for credit six times with changed content. Prerequisite: graduate standing or consent of instructor.

247. Philosophy of Biology (4)
Historical and contemporary perspectives on foundational issues about biology. May include questions about the nature of biological explanation, the relation of biology to chemistry and physics, the status of attributions of function, and the relation of biology to the social sciences. May be taken for credit six times with changed content.

250A. Philosophy of the Cognitive Sciences (4)
Contemporary debates about the study of the mind-brain as studied in one or more of the empirical cognitive sciences. May include questions about the different strategies of explanation invoked, the conceptions of representation employed, the connections between theoretical models developed. May be taken for credit six times with changed content.

260. Ethics (4)
Topics may include metaethics (e.g., the semantics, metaphysics, epistemology, and normativity of ethics), consequentialism and deontology, moral psychology (e.g., freedom, responsibility, and weaknesses of will), or substantive moral problems. The approach may be systematic, historical, or both. May be taken for credit six times with changed content.

267. Political Philosophy (4)
Topics may include the nature and limits of state authority, liberty and equality, distributive justice, liberalism and its critics (e.g., feminists, libertarians, and others), or issues in jurisprudence. The focus may be on classic texts or contemporary authors. May be taken for credit six times with changed content.

276. German Translation Workshop (1–2)
This course meets weekly to provide training in reading and translating philosophical German. Students prepare in advance written translations of assigned passages. The course helps train graduate students preparing to take the Departmental German Exam. Can be taken nine times for credit with changed content.

277. Phenomenology Reading Group (1–2)
This course meets biweekly with students reading and presenting material from the phenomenological literature. The course is designed both for students doing active research in phenomenology and for those seeking to gain some familiarity with that tradition. Can be taken nine times for credit with changed content.

278. Topics and Methods in Contemporary Philosophy (1–2)
Investigation of central issues in contemporary philosophy. Content varies but typically will center on a recent and important philosophical book. Can be taken nine times for credit with changed content.

279. Experimental Philosophy Laboratory (1–2)
A weekly forum of presentations, EPL provides a wider range of content than a traditional seminar. Content varies, but the focus is on philosophical problems of mind, representation, language and consciousness through empirical and philosophical methods. Can be taken nine times for credit with changed content.

280. Philosophy of Science Topics and Methods (1–2)
This course meets weekly to discuss recent books or articles in philosophy of science. The reading is designed both for students doing active research in the field and for those seeking to gain some familiarity with it. Can be taken nine times for credit with changed content.

281. History of Philosophy Research and Methods (1–2)
This course meets to discuss work in progress in the history of philosophy. Its aim is to introduce understanding of the methods and standards of research in the field through constructive criticism of each other’s work. Can be taken nine times for credit with changed content.

282. Topics and Methods in Ethics (1–2)
Weekly or biweekly meetings to discuss recent literature in ethics, broadly construed so as to include ethical theory, normative ethics, jurisprudence, and historical traditions in these fields. The course is suitable for those specializing in ethics and for those seeking some familiarity with the field. Can be taken nine times for credit with changed content.

283. Topics and Methods in Political Philosophy (1–2)
Weekly or biweekly meetings to discuss recent literature in political philosophy and historical tradition of this field. The course is suitable for those specializing in ethics and for those seeking some familiarity with the field.

284. Philosophy of Biology Research Group (1–2)
A research group for graduate students engaged in philosophy or history of the biological sciences. The group discusses biological, historical, and philosophical articles and books and ongoing research projects. Can be taken nine times for credit with change of content. Prerequisite: graduate standing or consent of instructor.

285. Seminar on Special Topics (4)
Focused examination of specific problems or themes in some area of philosophy. May be taken for credit nine times with changed content.

286. Philosophy of Physics Reading Group (1–2)
A research group for graduate students engaged in philosophy or history of the physical sciences. The group discusses physical, historical, and philosophical articles and books and ongoing research projects. Can be taken nine times for credit with change of content. Prerequisite: graduate standing or consent of instructor.

287. Greek Reading Group (1–2)
This group provides training in reading and translating philosophical Greek by having students prepare translations of passages and lead discussions. The group helps train graduate students preparing for Departmental Greek Exam. Can be taken nine times for credit with change of content. Prerequisite: graduate standing or consent of instructor.

290. Directed Independent Study (4)
Supervised study of individually selected philosophical topics. S/U grades permitted.

292. Writing Workshop (1–3)
Each enrolled student produces a research essay ready for publication, presents it to students and faculty, and offers critiques of other students’ presentations. Units will vary according to enrollment in course. To be taken in fall quarter of third year of philosophy graduate study.

295. Research Topics (1–12)
Advanced individual research studies under the direction of a member of the staff. Hours of outside preparation will vary with number of units taken. May be taken for credit nine times with changed content.

299. Thesis Research (1–12)
S/U grades permitted.

500. Apprentice Teaching (1–4)
A course designed to satisfy the requirement that graduate students should serve as teaching assistants, either in the Department of Philosophy or in one of the writing programs offered by the various colleges. Each Ph.D. candidate must teach the equivalent of quarter time for three academic quarters. Students are permitted to sign up as TAs for a maximum of eighteen quarters.
The Department of Physics presents the Shang-Keng Ma Memorial Award at commencement each year to a graduating physics student who has shown exceptional ability and promise during the UCSD undergraduate years. The award was established in 1984 to commemorate the contributions of Professor Ma to the UCSD Department of Physics and to the field of theoretical condensed matter physics.

JOHN HOLMES MALMBERG PRIZE

The John Holmes Malmberg Prize is presented annually at commencement to a graduating physics student who is recognized for potential for a career in physics and a measure of experimental inquisitiveness. This prize was established in 1993 in memory of Professor Malmberg who pioneered the use of non-neutral plasmas for sophisticated tests of plasma equilibrium, wave, and transport effects. He was an involved teacher of undergraduate and graduate students and was active in departmental and campus affairs.

SHANG-KENG MA AWARD

The Department of Physics offers undergraduate programs leading to the following degrees:

- B.S., Physics
- B.S., Physics with Specialization in Astrophysics
- B.S., Physics with Specialization in Biophysics
- B.S., Physics with Specialization in Computational Physics
- B.S., Physics with Specialization in Earth Sciences
- B.S., Physics with Specialization in Materials Physics
- B.A., General Physics
- B.A., General Physics/Secondary Education

A grade-point average of 2.0 or higher in the upper-division major program is required for graduation. Students must receive a grade of C– or better in any course to be counted toward fulfillment of the major requirements. In exceptional cases, students with a grade-point average in the major of 2.5 or greater may petition to have one grade of D accepted. All courses (lower- and upper-division) required for the major must be taken for a letter grade.

THE UNDERGRADUATE PROGRAM

Astrophysics and space physics

Nonlinear dynamics

Computational physics

In addition to on-campus research facilities, the high energy program uses accelerators at SLAC, CERN, and Fermi Laboratory. The astrophysics program uses facilities at Keck, Lick, and Kitt Peak Observatories.
PHYSICS MAJOR (B.S. DEGREE)

The physics major provides a core of basic education in several principle areas of physics, with sufficient flexibility to allow students to prepare either for graduate school or a career in industry. Since in preparing for either goal, more than the required core courses are necessary, it is important for students to meet with a physics department advisor in deciding a schedule.

In the junior year, the emphasis is on macroscopic physics; the two principal physics subjects are electromagnetism and mechanics. The mathematics and computer background required for the physics program is completed in this year.

In the senior year, a sequence of courses in quantum physics provides the student the modern view of atomic and some aspects of sub-atomic physics and the principal analytical methods appropriate in this domain. The relation of the microscopic to the macroscopic world is the subject of courses in thermodynamics and statistical physics, with illustrations drawn from gas dynamics and solid-state physics. Upper-division laboratories teach students the essentials of physical measurement and building advanced equipment, as well as other aspects of experimental science.

The following courses are required for the physics major:

Lower-Division
1. Physics 4A-B-C-D-E or Physics 2A-B-C-D1
2. Physics 2CL and 2DL
3. Chemistry 6A or 2 a programming course such as MAE 9 or MAE 10
4. Mathematics 20C-D-E-F

Suggested Schedule (pre-graduate school)

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys. 100A</td>
<td>Phys. 100B</td>
<td>Phys. 120A</td>
</tr>
<tr>
<td>Phys. 105A</td>
<td>Phys. elective1</td>
<td>Phys. 130A</td>
</tr>
<tr>
<td>Phys. 110A</td>
<td>Phys. 105B2</td>
<td></td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 140A</td>
<td>Phys. 140B2</td>
<td>Phys. lab1</td>
</tr>
<tr>
<td>Phys. 130B</td>
<td>Phys. elective1</td>
<td>Phys. elective1</td>
</tr>
</tbody>
</table>

Suggested Schedule (career in industry)

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys. 100A</td>
<td>Phys. 100B</td>
<td>Pre-grad</td>
</tr>
<tr>
<td>Phys. 105A</td>
<td>Phys. elective1</td>
<td>Phys. 120A</td>
</tr>
<tr>
<td>Phys. 110A</td>
<td>[other]2</td>
<td>Phys. 130A</td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 140A</td>
<td>Pre-grad</td>
<td>Phys. elective1</td>
</tr>
<tr>
<td>Phys. lab2</td>
<td>Phys. elective1</td>
<td>[other]3</td>
</tr>
<tr>
<td>Phys. 130B</td>
<td>[other]3</td>
<td></td>
</tr>
</tbody>
</table>

Upper-Division
1. Physics 100A-B, 105A, 110A, 120A, 130A-B, 140A, and an additional laboratory course from the lab group: 120B, 121, 133, 173
2. Two courses from either the theoretical or experimental pre-grad-school sequence
3. Restricted electives: Three upper-division (four-unit) or graduate courses in physics or mathematics (only one). Courses in other science disciplines may be substituted by petition.

For students wishing to prepare for graduate school it is important that all courses in either the theorist or experimentalist pre-grad-school sequence be taken. Mathematics 120A is also recommended.

PHYSICS MAJOR WITH SPECIALIZATION IN ASTROPHYSICS (B.S. DEGREE)

The astrophysics specialization is appropriate for students who would like to gain an in-depth understanding of modern astronomy and astrophysics, and/or who wish to prepare for graduate school in astronomy or astrophysics. It is similar to the standard physics major with electives being chosen from astronomically oriented courses. A wide variety of technical, academic, and professional careers are possible for students who choose this specialization.

The following courses are required for the physics major with specialization in astrophysics:

Lower-Division
1. Physics 4A-B-C-D-E or Physics 2A-B-C-D1
2. Physics 2CL and 2DL
3. Chemistry 6A or 2 a programming course such as MAE 9 or MAE 10
4. Mathematics 20C-D-E-F

Suggested Schedule (pre-graduate school)

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys. 100A</td>
<td>Phys. 100B</td>
<td>Phys. 120A</td>
</tr>
<tr>
<td>Phys. 105A</td>
<td>Phys. elective1</td>
<td>Phys. 130A</td>
</tr>
<tr>
<td>Phys. 110A</td>
<td>Phys. 105B2</td>
<td></td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 140A</td>
<td>Phys. 140B2</td>
<td>Phys. lab1</td>
</tr>
<tr>
<td>Phys. 130B</td>
<td>Phys. elective1</td>
<td>Phys. elective1</td>
</tr>
</tbody>
</table>

Suggested Schedule (career in industry)

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys. 100A</td>
<td>Phys. 100B</td>
<td>Pre-grad</td>
</tr>
<tr>
<td>Phys. 105A</td>
<td>Phys. elective1</td>
<td>Phys. 120A</td>
</tr>
<tr>
<td>Phys. 110A</td>
<td>Pre-grad</td>
<td>Phys. 130A</td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 140A</td>
<td>Pre-grad</td>
<td>Phys. elective1</td>
</tr>
<tr>
<td>Phys. lab2</td>
<td>Phys. elective1</td>
<td>[other]3</td>
</tr>
<tr>
<td>Phys. 130B</td>
<td>[other]3</td>
<td></td>
</tr>
</tbody>
</table>

PHYSICS MAJOR WITH SPECIALIZATION IN BIOPHYSICS (B.S. DEGREE)

The Department of Physics offers an undergraduate program that prepares students for careers in biophysics. This program leads to a degree in “B.S., Physics with Specialization in Biophysics.” As a terminal degree, it is an excellent education for students who wish to work in the biotechnology industry, and provides an ideal background for students who plan to attend graduate or professional school in biological or biomedical fields.

This program is intended for students with a strong interest in bringing the concepts and technical advances from the physical sciences to bear on issues in biology. The curriculum is chosen to prepare students as rigorously trained but broad-minded generalists, so that they may attack problems in the biological, biochemical, and biomedical sciences with the tools and confidence that come from rigorous training in the physical sciences.

The curriculum for Physics Major with Specialization in Biophysics is designed to allow premedical students to complete all necessary courses for admission to medical schools.
The lower-division program for physics majors with specialization in biophysics includes basic courses in biology and chemistry as well as physics. Although the sequence Physics 4A through 4E is strongly recommended, students have the choice of petitioning the department to substitute the sequence Physics 2A through 2D.

The following courses are required for the physics major with specialization in biophysics:

Lower-Division

1. Physics 4A-B-C-D-E and 2CL-DL; or Physics 2A-B-C-D and 2CL-DL (Physics 4 sequence is strongly recommended)
2. Chemistry 6A-B-C and 6BL
3. Biology, BILD 1 and BILD 2
4. Mathematics 20A-B-C-D-E-F

The upper-division program includes advanced courses in physics, including two core lecture courses and one core laboratory course in biophysics, as well as organic chemistry.

Upper-Division

2. Chemistry 140A

Additional electives, to achieve a count of twelve upper-division courses in the major, may be selected from biology, chemistry and physics. Three additional upper-division courses, in any subject, are required in order to satisfy UCSD requirements.

Premedical students will need to take two additional quarters of organic chemistry (Chemistry 140B and 140C), one quarter of organic chemistry laboratory (Chemistry 143A), and one quarter of an upper level biology course. In addition, some medical schools also require a quarter of biochemistry (Biology BIBC 100 or Chemistry 114A). The premedical requirements may be used to satisfy elective requirements for upper-division courses.

As a guide to prospective students, we consider a schedule of required classes for a Muir College student.

Suggested Schedule

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 20A</td>
<td>Chem. 6A</td>
<td>Chem. 6B</td>
</tr>
<tr>
<td>Math. 2B</td>
<td>Chem. 6B</td>
<td>Math. 2C</td>
</tr>
<tr>
<td>Phys. 4A</td>
<td>Math. 20C</td>
<td>Phys. 4B</td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem. 6C</td>
<td>Math. 20E</td>
<td>Math. 20F</td>
</tr>
<tr>
<td>Math. 20D</td>
<td>Phys. 4D</td>
<td>Phys. 4E</td>
</tr>
<tr>
<td>Phys. 4C</td>
<td>Phys. 2C</td>
<td>Phys. 2D</td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 100A</td>
<td>BILD 1</td>
<td>BILD 2</td>
</tr>
<tr>
<td>Phys. 105A</td>
<td>Chem. 140A</td>
<td>Phys. 120A</td>
</tr>
<tr>
<td>Phys. 110A</td>
<td></td>
<td>Phys. 130A</td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 140A</td>
<td>Phys. 172</td>
<td>Elec.</td>
</tr>
<tr>
<td>Phys. 171</td>
<td></td>
<td>Elec.</td>
</tr>
</tbody>
</table>

B.S. IN PHYSICS WITH SPECIALIZATION IN COMPUTATIONAL PHYSICS

The computational physics specialization is designed to support a broad range of career development tracks, so students may pursue (1) a terminal B.S. degree for gainful employment in information technology and high-tech industry, (2) preparation for graduate studies in computational science with an M.S. degree, and (3) graduate work in physics with strong interest in computational physics. This flexibility is afforded by a wide array of restricted electives which allows students to design much of their own program (subject to advisor’s approval), while simultaneously maintaining the essential physics-based curriculum. Academic advising will be provided by physics faculty in the Computational Physics Specialization Program to assist students in designing their optimal career development track in the flexible curriculum.

The following courses are required for Physics Major with Specialization in Computational Physics:

Lower-Division

1. Physics 4A-B-C-D-E or Physics 2A-B-C-D-F, Physics 2CL-DL
2. Mathematics 20C-F
3. Chemistry 6A
4. MAE 9, or MAE 10, or CSE 11

1. The 2A-B-C-D sequence is an allowed substitute by petition.

Upper-Division

Suggested Schedule (restricted electives not shown)

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 100A</td>
<td>Phys. 100B</td>
<td>Phys. 120A</td>
</tr>
<tr>
<td>Phys. 105A</td>
<td>Phys. 105B</td>
<td>Phys. 130A</td>
</tr>
<tr>
<td>Phys. 110A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 140A</td>
<td>Phys. 140B</td>
<td>Phys. 142</td>
</tr>
<tr>
<td>Phys. 130B</td>
<td>Phys. 121</td>
<td></td>
</tr>
</tbody>
</table>

1. Students will choose two required courses from the group Phys. 121, Phys. 141, Phys. 142, and other will drop the third, or take it as one of the six restricted electives.

Career Track Examples with Restricted Electives

The program of electives is intended to be flexible, and can be tailored to the student’s needs and interests in consultation with the academic advisor.

Grad. School Theorist with Computational Interest Track for student with interest in theoretical physics based computational science:

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 100A</td>
<td>Phys. 100B</td>
<td>Phys. 120A</td>
</tr>
<tr>
<td>Phys. 105A</td>
<td>Phys. 110B</td>
<td>Phys. 130A</td>
</tr>
</tbody>
</table>
Students who anticipate taking Chemistry 120A-B as an upper-division elective are strongly advised to take Chemistry 6C.

Lower-Division

1. Physics 4A-B-C-D-E or Physics 2A-B-C-D, Physics 2CL-DL
2. Chemistry 6A-B*
3. Mathematics 20C-F
4. MAE 9 or MAE 10 (or equivalent programming experience)

Upper-Division

2. Four restricted electives, to be chosen from Chemistry 120A-B; Mathematics 120A; ECE 103, 134, 135A-B, 136, 136L; MAE 160, 110A; or any upper division physics course

* Students who anticipate taking Chemistry 120A-B as an upper-division elective are strongly advised to take Chemistry 6C.

Suggested Schedule (restricted electives not shown)

FALL
- Physics 100A
- Physics 105A
- Physics 110A

WINTER
- Physics 100B
- Physics 105B
- Physics 110B

SPRING
- Physics 120A
- Physics 130A
- Physics 133

Restricted Electives: Example

As examples of restricted electives, a student opting for a terminal B.S. Degree (Option 1) might choose to take MAE 160, ECE 103, 136, and Physics 121. Students preparing for graduate work in materials science (Option 2) might consider MAE 160, ECE 103, 134, and a fourth elective. Students preparing for graduate work in physics (Option 3) might consider Physics 100C, 110B, 140B, and a fourth elective. The program of electives is intended to be flexible, and can be tailored to the student's needs and interests in consultation with the academic advisor.

For more information, see entry for Integrated Bachelor’s/Master’s Degree Program in Materials Physics.
requires at least twenty-eight units, of which at least twenty units must be upper-division. All courses must be taken for a letter grade. Lower-division transfer courses are permitted.

ADVISING OFFICE

All students are assigned an academic advisor. It is strongly recommended that students see their advisor at least once a quarter. Additional advising information may be obtained from the Department of Physics Student Affairs Office, 1110-115 Urey Hall Addition (858) 534-3290.

HONORS PROGRAM

The Department of Physics offers an Honors Program for students who demonstrate excellence in the major. Students interested in the Honors Program should consult the Student Affairs Office. Eligibility for the Honors Program includes completion of all required lower-division physics courses, ten upper-division physics courses, and a GPA of at least 3.50 in the physics major. The Honors Program consists of a minimum of eight units of Honors Thesis Research (Physics 199H), an Honors Thesis, and the presentation of the research to faculty and peers at UCSD's Undergraduate Research Conference or an Undergraduate Seminar. Admission to the Honors Program is contingent upon the prior approval of the Honors Thesis "research topic" by the Vice Chair for Education.

THE GRADUATE PROGRAM

The Department of Physics offers curricula leading to the following degrees:

- **M.S.**, Physics
- **C.Phil., Physics**
- **Ph.D., Physics**
- **Ph.D., Physics (Biophysics)**
- **Ph.D. Physics Specialization in Computational Science**

Biophysics students will receive their M.S. and C.Phil. degrees in physics. Only their Ph.D. will be in physics (biophysics).

Entering graduate students are required to have a sound knowledge of undergraduate mechanics, electricity, and magnetism; to have had senior courses or their equivalent in atomic and quantum physics, nuclear physics, and thermodynamics; and to have taken upper-division laboratory work. An introductory course in solid-state physics is desirable.

Requirements for the master of science degree can be met according to Plan II (comprehensive examination). The comprehensive examination is identical to the first-year departmental examination for Ph.D. students. A list of acceptable courses is available in the Department of Physics Graduate Student Affairs office. There is no foreign language requirement.

The program offers a M.S. in physics with specialization in materials physics. It is open only to UC San Diego undergraduates, and is a Plan I program only (thesis). During the fourth quarter prior to receipt of the B.S. Degree, students enrolled in the B.S. Degree program with specialization in materials physics (see above) may apply for admission to the M.S. program. To be eligible, students must have completed the first two quarters of their junior year in residence at UCSD and have a GPA of at least 3.0 in both their major and overall undergraduate curriculum. It is strongly recommended that B.S. students who intend to apply to the M.S. program take MAE 160, ECE 103, and ECE 134 as restricted B.S. electives. It is the responsibility of the prospective B.S./M.S. student to select a faculty member (from the Department of Physics or, with physics department approval, from the MAE, ECE, or chemistry departments) who would be willing to serve as the student's advisor and with whom the student would complete at least twelve units of S/U graded research, which could commence as early as the undergraduate senior year. (During the senior year, the units would count only toward the M.S. degree and not toward the B.S.) The student must confirm that the selected faculty advisor will not be off-campus sabbatical leave during any quarter of the scheduled B.S./M.S. project. Students are expected to meet the requirements for the M.S. degree in one year (three consecutive, contiguous academic quarters) from the date of receipt of the B.S. Degree Any deviation from this plan, such as a break in enrollment for one or more quarters, may result in the student being dropped from the program.

The requirements for the M.S. degree are as follows:

1. Completion of at least twelve and no more than twenty-four units of research, which may begin as early as the first quarter of the senior undergraduate year.
2. Completion of three required courses during the fifth (graduate) year (MAT SCI 201A-B-C), and two restricted electives (see below).
3. Completion of restricted elective courses so that the total number of units (research plus required courses plus elective courses) totals no less than 36 units taken as a graduate student. Students accumulate units for their research by enrolling in Physics 295 (M.S. Thesis Research), which may be taken repeatedly.
4. Maintenance of a grade-point average of at least 3.0 for all course work, both cumulatively and for each quarter of enrollment in the B.S./M.S. program.
5. Completion of a thesis, with an oral presentation to, and approval of, a three-member committee from the Department of Physics including the faculty advisor. If the faculty advisor is from outside the physics department, the committee shall consist of the advisor and two members from the physics department faculty.
6. Three complete, separate, and consecutive quarters of full-time residency as a graduate student that will commence the quarter immediately following the quarter in which the B.S. Degree is awarded (not counting summer session).
7. Although students may receive research or teaching assistantships if available from their advisor or through the Department of Physics, there is no guarantee of financial support associated with the M.S. program.
8. M.S. candidates will be permitted to serve as teaching assistants, although teaching will not be a requirement for the degree. Students who obtain a teaching assistantship should make sure that it does not interfere with completion of the M.S. degree requirements within the one year time frame allotted.

M.S. Program: Fifth Year Curriculum

1. MAT SCI 201A-B-C
2. Physics 295 (M.S. Thesis Research)
3. Two restricted electives, to be chosen from Physics 201, 211A-B; MAT SCI 227, 240A-B-C; ECE 231, 233: other courses allowed by petition

DOCTORAL DEGREE PROGRAM

The department has developed a flexible Ph.D. program that provides a broad, advanced education in physics while at the same time giving students opportunity for emphasizing their special interests. This program consists of graduate courses, apprenticeship in research, teaching experience, and thesis research.

Entering students are assigned a faculty advisor to guide them in their program. Many students spend their first year as teaching assistants or fellows and begin apprentice research in their second year. When a student’s association with a research area and research supervisor is well established, a faculty research progress committee is formed with the responsibility of conducting an annual review of progress and, at the appropriate time, initiating the formation of a doctoral committee. After three years of graduate study, or earlier, students complete the departmental examinations and begin thesis research. Students specializing in biophysics make up deficiencies in biology and chemistry during the first two years and complete the departmental examinations by the end of their third year of graduate study. There is no foreign language requirement.

ENTRANCE TESTING

An entrance test covering undergraduate physics is given to entering students during the first week of orientation to give better guidance to students in their graduate program. The results are not entered in the student’s file. Entering students are encouraged, but not obliged, to bring the results to the first meeting with their academic advisor. Entering students may elect to take the departmental examination instead of taking the entrance test.

REQUIREMENTS FOR THE PH.D.

Students are required to pass a departmental examination, advanced graduate courses, a qualifying examination, teaching requirement and a final defense of the thesis as described below.

1. **Departmental Written Examination**

Physics students are required to take the departmental written examination after completing one year of graduate work at UCSD. The examination is on the level of material usually covered in upper-division courses and the graduate courses listed below:
2. Advanced Graduate Courses

Physics students are required to take five advanced graduate courses from at least three of the groups listed below no later than the end of the third year of graduate study. A 3.0 average over the five courses is required. (In lieu of the course requirement, students may petition to take an oral examination covering three areas of physics.)

- **Group 1:** Physics 218A-B-C (Plasma), 235 (Nonlin. Plas. Th.)
- **Group 4:** Physics 220 (Group Th.), 221A, 221B (Nonlinear Dyn.), 241 and 242 (Comp. Phys), Physics 243 (Stochastic Methods) and 244 (Parallel Computing in Science and Engineering)
- Mathematics 210A-B, 210C (Mathematics Physics), Mathematics 259A-B-C (Geom. Physics)
- **Group 5:** Physics 225A-B (Relativ.), 271 (Bio. Neurons/Net); 272 (Bio. Molecules)
- **Group 6:** Physics 223 (Stel. Str.), 224 (Intrstel. Med.), 226 (Gal. & Gal. Dyn.), 227 (Cosmology), 228 (HE Astro. & Comp. Obj.)

Students enrolled in the Biophysics Ph.D. program select five courses from biology, biochemistry, chemistry, or physics in consultation with their advisor. At least three courses must be graduate courses. For more information, see the Biophysics section, below.

3. Ph.D. Candidacy Examination

In order to be advanced to candidacy, students must have met the departmental requirements and obtained a faculty research supervisor. At the time of application for advancement to candidacy, a doctoral committee responsible for the remainder of the student's graduate program is appointed by the Graduate Council. The committee conducts the Ph.D. candidacy examination during which students must demonstrate the ability to engage in thesis research. This involves the presentation of a plan for the thesis research project. The committee may ask questions directly or indirectly related to the project and questions on general physics that it determines to be relevant. Upon successful completion of this examination, students are advanced to candidacy and are awarded the Candidate of Philosophy degree.

4. Instruction in Physics Teaching

All graduate students are required to participate in the physics undergraduate teaching program as part of their career training. The main component of this requirement is an evaluated classroom-based teaching activity. All graduate student teaching accomplishments are subject to the approval of the vice chair for education. There are several ways to satisfying the teaching requirement, including: (1) leading discussions as a teaching assistant, (2) practical classroom teaching, under faculty supervision, (3) participation in an approved teaching development program offered by the Department of Physics or the campus Center for Teaching Development, or (4) transferred teaching credit from another institution or department. Students who satisfy the requirement by teaching at UCSD should enroll in Physics 500 during the quarter in which they complete it.

5. Thesis Defense

When students have completed their theses, they are asked to present and defend them before their doctoral committees.

Time Limits for Progress to the Ph.D.

In accordance with university policy, the Department of Physics has established the following time limits for progress to the Ph.D. A student's research progress committee helps ensure that these time limits are met.

Theorists	*Experimentalists*
Advancement to Candidacy | 4 years | 5 years
Total Registered | 7 years | 8 years
Time and Support | | |

PH.D. IN PHYSICS (BIOPHYSICS)

The Department of Physics offers a graduate program which prepares students for a career in biophysics and which leads to the following degrees: C.Phil. in Physics Ph.D. in Physics (Biophysics)

Biophysics students will receive their M.S. and C.Phil. degrees in physics. Only their Ph.D. will be in physics (biophysics).

The Ph.D. program consists of graduate courses, apprenticeship in research, teaching experience, and thesis research. Research in biophysics is being actively pursued in several departments (physics, chemistry/biochemistry, and biology) that also offer courses in, or courses relevant to, biophysics.

Requirements for the Ph.D. in Physics (Biophysics)

The specialization in biophysics requires that students complete many of the same requirements as for the physics Ph.D. Students must pass a departmental written examination, advanced graduate courses, Ph.D. candidacy examination, teaching requirement, and a final defense of the thesis. However, the requirements for the written examination and advanced courses differ slightly from those of the Ph.D. degree.

Biophysics Ph.D. students are required to take the departmental written examination within two years of beginning graduate studies at UCSD, and no later than the beginning of the third year. Biophysics students are required to pass five courses from biology, chemistry, biochemistry, or physics no later than the end of the third year of graduate study.

The course plan shall be determined in consultation with the advisor. At least three of these courses must be graduate courses. A 3.0 average over the five courses is required. (In lieu of the course requirement, students may petition to take an oral examination covering three areas of physics.)

PH.D. IN PHYSICS WITH SPECIALIZATION IN COMPUTATIONAL SCIENCE

See "Computational Science in Mathematics & Engineering (CSME)" for more information.

The UCSD campus is offering a new comprehensive Ph.D. specialization in computational science that will be available to doctoral candidates in participating academic departments at UCSD.

This Ph.D. specialization is designed to allow students to obtain training in their chosen field of science, mathematics, or engineering with additional training in computational science integrated into their graduate studies. Prospective students must apply and be admitted into the Ph.D. program in physics, and then be admitted to the CSME program.

Areas of research in the Department of Physics will include computational astrophysics and cosmology, studying star formation and the large scale structure of the universe, computational condensed matter physics studying nanodevices, computational quantum field theory studying the four basic forces of nature, computational biological physics of protein folding and other biologically important complex structures, computational nonlinear dynamics, and computational plasma physics. Each faculty member works with graduate students on the listed research topics that will greatly benefit from the new program.

The specialization in computational science requires that students complete all home requirements for the physics Ph.D. degree. Students are required to pass the departmental written examination, advanced course requirements, Ph.D. candidacy
examination, teaching requirement, and a final defense of the thesis. The qualifying and elective courses for the CSME program (e.g., Physics 241-244) can be used as part of the advanced course requirement, which is the same as for the physics Ph.D.

Requirements for the Ph.D. in Physics with Specialization in Computational Science:

Qualifying Requirements: In addition to the home department qualifying exam requirements, Ph.D. students must take the final exams in three qualifying exam courses from the list below. Courses taken to satisfy the qualifying requirements will not count toward the elective requirements.
1. Math. 275 or MAE 290B (Numerical PDEs)
2. Phys. 244 or CSE 260 (Parallel Computing)
3. One course to be selected from List A

List A: CSME Qualifying Exam Courses
1. Phys. 243 (Stochastic Methods)
2. Math. 270A, B, or C (Numerical Analysis)
3. Math. 272A, B, or C (Advanced Numerical PDEs)
4. MAE 223 (Computational Fluid Dynamics)
5. MAE 232A or B (Computational Solid Mechanics)
6. MAE 280A or B (Linear Systems Theory)
7. To be determined by Executive Committee

Elective Requirements: To encourage Ph.D. students to both broaden themselves in an area of science or engineering as well as to obtain more specialized training in specific areas of computational science, students will be required to take and pass three elective courses from the following approved List B (four units per course). The Executive Committee may approve the use of courses not appearing on the following list on a case-by-case basis. Courses taken to satisfy the elective requirements will not count toward the qualifying requirements.

List B: Relevant Elective Graduate Courses in Mathematics, Science, and Engineering
1. Math. 270A-B-C (Numerical Analysis, not permitted for mathematics students)
2. Math. 271A-B-C (Optimization)
3. Math. 272A-B-C (Advanced Numerical PDEs)
4. Math. 273A-B-C (Computational Mathematics Project)
5. Phys. 141/241 (Computational Physics I)
6. Phys. 142/242 (Computational Physics II)
7. Phys. 221A-B (Nonlinear Dynamics)
8. Chem. 215 (Modeling Biological Macromolecules)
9. BGNN 260 (Neurodynamics)
10. To be determined by Executive Committee

Program Policies: The following is a list of policies for the Ph.D. specialization with regard to proficiency, qualifying, and elective requirements.

1. Proficiency in computer engineering must be demonstrated by the end of the first year.
2. The qualifying exams must be passed by the end of the second year, or, on petition, by end of the third year.
3. The qualifying exams can be attempted repeatedly but no more than once per quarter per subject.
4. The qualifying exams in the home department and the CSME qualifying exams must all be passed before the student is permitted to take the candidacy (senate) exam.
5. Two electives outside the home department must be taken.
6. The two electives can be taken at any time before defending the thesis.
7. One of the electives may be taken Pass/Fail; the other must be taken for a letter grade.

Recommended schedule for the Ph.D. in physics with specialization in computational science

YEAR 1: PHYSICS CORE COURSES
- Phys. 200A
- Phys. 200B
- Phys. 203B
- Phys. 212A
- Phys. 212B
- Phys. 212C

YEAR 2: CSME QUALIFYING COURSES
- Math. 275
- Non-Phys. Elective
- Phys. 243
- Adv. Phys. Course

YEAR 3: CSME ELECTIVE COURSES
- Non-Phys.
- Phys. 241
- Phys. 242
- Elective

DEPARTMENTAL COLLOQUIUM

The department offers a weekly colloquium on topics of current interest in physics and on departmental research programs. Students are expected to register and attend the colloquium.

SUPPLEMENTARY COURSE WORK AND SEMINARS

The department offers regular seminars in several areas of current interest. Students are strongly urged to enroll for credit in seminars related to their research interests and, when appropriate, to enroll in advanced graduate courses beyond the departmental requirement. To help beginning students choose a research area and a research supervisor, the department offers a special seminar (Physics 261) that surveys physics research at UCSD.

COURSE CREDIT BY EXAMINATION

Students have an option of obtaining credit for a physics graduate course by taking the final examination without participating in any class exercises. They must, however, officially register for the course and notify the instructor and the Department of Physics graduate student affairs office of their intention no later than the first week of the course.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LOWER-DIVISION

The Physics 1 sequence is primarily intended for biology.

The Physics 2 sequence is intended for physical science and engineering majors and those biological science majors with strong mathematical aptitude.

The Physics 4 sequence is intended for all physics majors and for students with an interest in physics. This five-quarter sequence covers the same topics as the Physics 2 sequence, but it covers these topics more slowly and in more depth. The Physics 4 sequence provides a solid foundation for the upper-division courses required for the physics major.

Note: Since some of the material is duplicated in the Physics 1, 2 and 4 sequences, credit cannot be obtained for both. Please check with the Physics Student Affairs Office when switching sequences.

Example: Physics 1A followed by Physics 2A, no credit for Physics 2A.

Physics 5, 6, 7, 8, 9, 10, 11, and 12 are intended for non-science majors. Physics 5, 6, 7, 8, 9, 10, and 12 do not use calculus while Physics 11 uses some calculus.

1A. Mechanics (3)
First quarter of a three-quarter introductory physics course, geared towards life-science majors. Equilibrium and motion of particles in Newtonian mechanics, examples from astronomy, biology and sports, oscillations and waves, vibrating strings and sound. **Prerequisites:** Mathematics 10A or 20A, prior or concurrent enrollment in Mathematics 10B or 20B, concurrent enrollment in Physics 1AL laboratory. (F,W,S)

1AL. Mechanics Laboratory (2)
Physics laboratory course to accompany Physics 1A. Experiments in mechanics. **Prerequisite:** concurrent enrollment in Physics 1A. (F,W,S)

1B. Electricity and Magnetism (3)
Second quarter of a three-quarter introductory physics course geared toward life-science majors. Electric fields, magnetic fields, DC and AC circuitry. **Prerequisites:** Physics 1A, 1AL, and prior or concurrent enrollment in Mathematics 10C or 20C. Concurrent enrollment in Physics 1BL. (F,W,S)

1BL. Electricity and Magnetism Laboratory (2)
Physics laboratory course to accompany Physics 1B. Experiments in electricity and magnetism. Course materials fee is required. **Prerequisite:** concurrent enrollment in Physics 1B. (F,W,S)

1C. Waves, Optics and Modern Physics (3)
Third quarter of a three-quarter introductory physics course geared toward life-science majors. Behavior of systems under combined thermal and electric forces, the interaction of light with matter as illustrated through optics and quantum mechanics. Examples from biology and instrumentation. (First offered winter 2003) **Prerequisites:** Physics 1B, 1BL, Mathematics 10C or 10D or 20C. Concurrent enrollment in Physics 1CL. (F,W,S)

1CL. Waves, Optics, and Modern Physics Laboratory (2)
Physics laboratory course to accompany Physics 1C. Experiments in waves, optics, and modern physics. Course materials fee is required. First offered in winter 2005. **Prerequisite:** concurrent enrollment in Physics 1C. (F,W,S)
2A. Physics—Mechanics (4)
A calculus-based science-engineering general physics course covering vectors, motion in one and two dimensions, Newton's first and second laws, work and energy, conservation of energy, linear momentum, collisions, rotational kinematics, equilibrium of rigid bodies, oscillations, gravitation. Prerequisites: Mathematics 20A, and concurrent enrollment in Mathematics 20B. (F,W,S)

2B. Physics—Electricity and Magnetism (4)
Continuation of Physics 2A covering charge and matter, the electric field, Gauss's law, electric potential, capacitors and dielectrics, current and resistance, electromagnetic force and circuits, the magnetic field, Ampere's law, Faraday's law, inductance, electromagnetic oscillations, alternating currents and Maxwell's equations. Prerequisites: Physics 2A, Mathematics 20B, and concurrent enrollment in Mathematics 20C. (F,W,S)

2BL. Physics Laboratory—Mechanics and Electrodynamics (2)
One hour lecture and three hours laboratory. Experiments include gravitational force, linear and rotational motion, conservation of energy and momentum, collisions, oscillations and springs, gyroscopes. Experiments on electrostatics involve charge, electric field, potential, and capacitance. Data reduction and error analysis are required for written laboratory reports. Prerequisite: concurrent enrollment in Physics 2B or 4C. (F,W,S) Course materials fee is required.

2C. Physics—Fluids, Waves, Thermodynamics, and Optics (4)
Continuation of Physics 2B covering fluid mechanics, waves, elastic media, water temperatures, wave patterns, heat and the first law of thermodynamics, kinetic theory of gases, entropy and the second law of thermodynamics, Maxwell's equations, electromagnetic waves, geometric optics, interference and diffraction. Prerequisites: Physics 2B, Mathematics 20C, and concurrent enrollment in Mathematics 20D. (F,W,S)

2CL. Physics Laboratory—Electricity and Magnetism, Waves, and Optics (2)
One hour lecture and three hours' laboratory. Experiments on refraction, interference/diffraction using lasers and microwaves; lenses and the eye; acoustics; oscillators and L-R-C circuits; oscillations, resonance and damping, measurement of magnetic fields; and the mechanical equivalence of heat. Prerequisites: prior or concurrent enrollment in Physics 1C, 2C, or 4D. (F,W,S) Course materials fee is required.

2D. Physics—Relativity and Quantum Physics (4)
A modern physics course covering atomic view of matter, electricity and radiation, atomic models of Rutherford and Bohr, relativity, X-rays, wave and particle duality, matter waves, Schrödinger's equation, atomic view of solid state, nuclear radioactivity. Prerequisites: Physics 2B and Mathematics 20D. (F,W,S)

2DL. Physics Laboratory—Modern Physics (2)
One hour lecture and three hours of laboratory. Experiments to be chosen from refraction, diffraction and interference of microwaves, Hall effect, thermal band gap, optical spectra, coherence of light, photoelectric effect, e/m ratio of particles, radioactive decays, and plasma physics. Prerequisites: 2BL or 2CL, prior or concurrent enrollment in Physics 2D or 4E. (S) Course materials fee is required.

4A. Physics for Physics Majors—Mechanics (4)
The first quarter of a five-quarter calculus-based physics sequence for physics majors and students with a serious interest in physics. Topics covered are vectors, particle kinematics and dynamics, work and energy, conservation of energy, conservation of momentum, collisions, rotational kinematics and dynamics, equilibrium of rigid bodies. Prerequisites: Mathematics 20A and concurrent enrollment in Mathematics 20B. (W)

4B. Physics for Physics Majors—Mechanics, Fluids, Waves, and Electrodynamics (4)
Continuation of Physics 4A covering oscillations, gravity, fluid statics and dynamics, waves in elastic media, sound waves, heat and the first law of thermodynamics, kinetic theory of gases, second law of thermodynamics, gaseous mixtures and chemical reactions. Prerequisites: Physics 4A, Mathematics 20B, and concurrent enrollment in Mathematics 20C. (S)

4C. Physics for Physics Majors—Electricity and Magnetism (4)
Continuation of Physics 4B covering charge and Coulomb's law, electric field, Gauss's law, electric potential, capacitors and dielectrics, current and resistance, magnetic field, Ampere's law, Faraday's law, inductance, magnetic properties of matter, LRC circuits, Maxwell's equations. Prerequisites: Physics 4B, Mathematics 20C, and concurrent enrollment in Mathematics 20E. (F)

4D. Physics for Physics Majors—Electromagnetic Waves, Optics, and Special Relativity (4)
Continuation of Physics 4C covering electromagnetic waves and the laws of light, cavities and wave guides, electromagnetic radiation, reflection and refraction with applications to geometrical optics, interference, diffraction, holography, special relativity. Prerequisites: Physics 4C, Mathematics 20E, and prior or concurrent enrollment in Mathematics 20D. (W)

4E. Physics for Physics Majors—Quantum Physics (4)
Continuation of Physics 4D covering experimental basis of quantum mechanics: Schrödinger equation and simple applications; spin; structure of atoms and molecules; selected topics from solid state, nuclear, and elementary particle physics. Prerequisites: Physics 4D, Mathematics 20D, 20E, and prior or concurrent enrollment in Mathematics 20F. (S)

5. The Universe (4)
Introduction to astronomy. Topics include the earth's place in the universe; the atom and light; the birth, life, and death of stars; the Milky Way galaxy; normal and active galaxies; and cosmology. Physics 5 or 7, and SIO 10 and 30 form a three-quarter sequence. Students may not receive credit for both Physics 5 and Physics 7. Restricted to P/NP grading option if taken after Physics 1A, 2A, or 4A. (F,S)

6. Introduction to Astronomy (4)
Introduction to astronomy and astrophysics. Topics same as Physics 5. This course uses basic pre-calculus level mathematics (algebra, exponential and logarithmic functions, trigonometry). Relations of the proportions, logs, similar triangles). Physics 5 or 7 and Earth Sciences 10 and 30 form a three-quarter sequence. Students may not receive credit for both Physics 5 and Physics 7. Restricted to P/NP grading option if taken after Physics 1A, 2A, or 4A. (W)

7. Physics of Everyday Life (4)
Examines phenomena and technology encountered in daily life from a physics perspective. Topics include waves, musical instruments, telecommunication, sports, appliances, transportation, computers, and energy sources. Physics concepts will be introduced and discussed as needed employed in the algebra. No prior physics knowledge is required. Restricted to P/NP grading option if taken after Physics 1A, 2A, or 4A. (S)

8. The Solar System (4)
A non-technical exploration of our Solar System and other planetary systems for non-science majors. The sun, terrestrial and giant planets, satellites, asteroids, comets and meteors. The formation of planetary systems, space exploration, the development and search for life. (F)

10. Concepts in Physics (4)
This is a one-quarter general physics course for nonscience majors. Topics covered are motion, energy, heat, waves, electric current, radiation, light, atoms and molecules, nuclear fission and fusion. This course emphasizes concepts with minimal mathematical formulation. Prerequisite: college algebra or equivalent. Restricted to P/NP grading option if taken after Physics 1A, 2A, or 4A. (W)

11. Survey of Physics (4)
Survey of physics for non-science majors with strong mathematical background, including calculus. Physics 11 describes the laws of motion, gravity, energy, momentum, and relativity. A laboratory component consists of two experiments with gravity and conservation principles. Prerequisites: Mathematics 10A or 20A and concurrent enrollment in Math 108 or 208. (F)

12. Energy and the Environment (4)
A course covering energy fundamentals, energy use in an industrial society and the impact of large-scale energy consumption. It addresses topics on fossil fuel, heat engines, solar energy, nuclear energy, energy conservation, transportation, air pollution and global effects. Concepts and quantitative analysis. (S)

87. Freshman Seminar in Physics and Astrophysics (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

98. Directed Group Study (2)
Directed group study on a topic by special arrangement with a faculty member. (P/NP grading only)

99. Independent Study (2)
Independent reading or research on a topic by special arrangement with a faculty member. (P/NP grading only)

UPPER-DIVISION

100A. Electromagnetism (4)
Coulomb's law, electric fields, electrostatics; conductors and dielectrics; steady currents, elements of circuit theory. Four hours lecture. Prerequisites: Physics 2C or 4D, Mathematics 20D, 20E, 20F. (Concurrent enrollment in Math. 20F permitted.) (F)

100B. Electromagnetism (4)
Magnetic fields and magnetostatics, magnetic materials, induction, AC circuits, displacement currents; development of Maxwell's equations. Four hours lecture. Prerequisite: Physics 100A. (W)

100C. Electromagnetism (4)
Electromagnetic waves, radiation theory; application to optics; motion of charged particles in electromagnetic fields; relation of electromagnetism to relativistic concepts. Four hours lecture. Prerequisite: Physics 100B. (S)

105A. Mathematical and Computational Physics (4)
A combined analytic and mathematically-based numerical approach to the solution of common applied mathematics problems in physics and engineering. Topics: Fourier series and integrals, special functions, initial and boundary value problems, Green's functions; heat, Laplace and wave equations. Prerequisites: Mathematics 20E and 20F and Physics 4E or 2D. (F)

105B. Mathematical and Computational Physics (4)
A continuation of Physics 105A covering selected advanced topics in applied mathematical and numerical methods. Topics include statistics, diffusion and Monte-Carlo simulations; Laplace equation and numerical methods for non-separable geometries; waves in inhomogeneous media, WKBJ analysis; nonlinear systems and chaos. Prerequisite: Physics 105A. (W)

110A. Mechanics (4)
Phase flows, bifurcations, linear oscillations, calculus of variations, Lagrangian dynamics, conservation laws, central forces, systems of particles, collisions, coupled oscillations. Four-hour lecture. Prerequisites: Physics 2C or 4D, Mathematics 20D, 20E, 20F (concurrent enrollment in Mathematics 20F permitted). (F)

110B. Mechanics (4)
Noninertial reference systems, dynamics of rigid bodies, Hamilton's equations, Liouville's theorem, chaos, continuum mechanics, special relativity. Prerequisites: Physics 110A and Mathematics 20E. (W)

510/111/Physics 111. Introduction to Ocean Waves and Tides (4)
This course will cover a broad range of physical oceanography topics, including linear dynamics of surface gravity waves, dispersion relations, spectral descriptions, group velocity, shoaling waves, tidal theory, edge waves, Coriolis force, the tide-generating force, Laplace's tide equations.
120A. Physical Measurements (4-4)
A laboratory-lecture course in physical measurements with an emphasis on electronic methods. Topics include circuit theory, special circuits. Fourier analysis, noise, transmission lines, transistor theory, amplifiers, feedback, operational amplifiers, oscillators, pulse circuits, digital electronics. Three hours lecture, four hours laboratory. Prerequisites: Physics 2CL and 2DL, Physics 100A, (F) Course materials fee is required.

121. Experimental Techniques (4)
A laboratory-lecture courses providing content and experiences useful in modern physics laboratories. Topics include: mechanics of design and machining; mechanics of materials; thermal design/control; vacuum and cryogenic technologies; optical raytracing and design; practical electronics; computer interface to scientific equipment. Prerequisite: Physics 120A. (W)

130A. Quantum Physics (4)
Phenomena which led to the development of quantum mechanics. Wave mechanics, the Schrödinger equation, interpretation of the wave function, the uncertainty principle, piece-wise constant potentials, simple harmonic oscillator, central field and the hydrogen atom. Observables and measurements. Four hours lecture. Prerequisites: Physics 2C or 2D, 4E, or equivalent. (S)

130B. Quantum Physics (4)
Matrix mechanics, angular momentum and spin, Stern-Gerlach experiments, dynamics of two-state systems, approximation methods, the complete hydrogen spectrum, identical particles. Four hours lecture. Prerequisite: Physics 130A. (F)

130C. Quantum Physics (4)
Scattering theory, symmetry and conservation laws, systems of interacting particles, interaction of electromagnetic radiation with matter, Fermi golden rule, the relativistic electron. Prerequisites: Physics 100C or equivalent, 130B. (W)

133/219. Condensed Matter/Materials Science Laboratory (4)
A project-oriented laboratory course utilizing state-of-the-art experimental techniques in materials science. The course prepares students for research in a modern condensed matter-matter materials science laboratory. Under supervision, the students develop their own experimental ideas after investigating current research literature. With the use of sophisticated state-of-the-art instrumentation students conduct research, write a research paper, and make verbal presentations. Prerequisites: Physics 2CL and 2DL for undergraduates; Physics 152A or Physics 211A for graduate students. (S) Course materials fee is required.

137. String Theory (4)
Quantum mechanics and gravity. Electromagnetism from gravity and extra dimensions. Unification of forces. Quantum black holes. Properties of strings and branes. Prerequisites: Physics 100A and 110A or consent of instructor, Physics 130A may be taken concurrently. (S)

140A. Statistical and Thermal Physics (4)
Integrated treatment of thermodynamics and statistical mechanics; statistical treatment of entropy, review of elementary probability theory, canonical distribution, partition function, free energy, phase equilibrium, introduction to ideal quantum gas. Prerequisite: Physics 130A, or consent of instructor. (F)

140B. Statistical and Thermal Physics (4)
Applications of the theory of ideal quantum gases in condensed matter physics, nuclear physics and astrophysics; advanced thermodynamics, the third law, chemical equilibrium, low temperature physics; kinetic theory and transport in quantum equilibrium systems; introduction to critical phenomena including mean field theory. Prerequisite: Physics 140A, or consent of instructor. (W)

141. Computational Physics I: Probabilistic Models and Simulations (4)
Project-based computational physics laboratory course with student's choice of Fortran90/95, or C/C++. Applications from materials science to the structure of the early universe are chosen from molecular dynamics, classical and quantum Monte Carlo methods, physical Langevin/Fokker-Planck processes, and other modern topics. Graduate students will do advanced projects. Prerequisite: Use of probability or consent of instructor. Conjoined with Physics 241. (W)

142. Computational Physics II: PDE and Matrix Models (4)
Project-based computational physics laboratory course for modern physics and engineering problems with student's choice of Fortran90/95, or C/C++. Applications of finite difference PDE models are chosen from quantum mechanics and nanodevices, fluid dynamics, electromagnetism, materials physics, and other modern topics. Graduate students will do advanced projects. Prerequisite: upper-division standing or consent of instructor. Conjoined with Physics 242. (S)

151. Elementary Plasma Physics (4)
Particle motions, plasmas as fluids, waves, diffusion, equilibrium, and stability, nonlinear effects, controlled fusion. Three hours lecture. Prerequisite: Math. 200 or consent of instructor. Physics 100 (B,C) or ECE 107 and Physics 110A are suggested. Cross-listed with MAE 117A. (S)

152A. Condensed Matter Physics (4)
Physics of the solid state. Binding mechanisms, crystal structures and symmetries, diffraction, reciprocal space, phonons, free and nearly free electron models, energy bands, solid state thermodynamics, kinetic theory and transport, semiconductors. Prerequisites: Physics 130A or Chemistry 140A. (W)

152B. Electronic Materials (4)

154. Elementary Particle Physics (4)
The constituents of matter (quarks and leptons) and their interactions (strong, electromagnetic, and weak). Symmetries and conservation laws. Fundamental processes involving quarks and leptons. Unification of weak and electromagnetic interactions. Particle-astrophysics and the Big Bang. Prerequisites: Physics 130B. (W)

155. Nonlinear Dynamics (4)
Qualitative analysis and dissipative dynamical systems: stability of orbits, integrability of Hamiltonian systems, chaos and nonperiodic motion, transition to chaos. Examples to be drawn from mechanics, fluid mechanics, and related physical systems. Numerical work and graphical display and interpretation will be emphasized. Three hours lecture. Prerequisites: Physics 100B and 110B. (S)

160. Stellar Astrophysics (4)
Introduction to stellar astrophysics: observational properties of stars, solar physics, radiation and energy transport in stars, stellar spectroscopy, nuclear processes in stars, stellar structure and evolution, degenerate matter and compact stellar objects, supernovae and nucleosynthesis. Physics 160, 161, and 162 may be taken as a three-quarter sequence for students interested in pursuing graduate study in astrophysics or individually as topics of interest. Prerequisite: Physics 2A. 2B, 2C, 2D or 4A, 4B, 4C, 4D, 4E. (F)

161. Black Holes and The Milky Way Galaxy (4)
The structure and content of the Milky Way galaxy and the physics of black holes. Topics will be selected from general relativity, theory and observation of black holes, galactic X-ray sources, galactic structure, physical processes in the interstellar medium, star formation. Physics 160, 161, and 162 may be taken as a three-quarter sequence for students interested in pursuing graduate study in astrophysics or individually as topics of interest. Prerequisite: Physics 2A, 2B, 2C, 2D or 4A, 4B, 4C, 4D, 4E. (W)

162. Galaxies and Cosmology (4)
The structure and properties of galaxies, galaxy dynamics and dark matter, the expanding universe, plus some of the following topics: the big bang, early universe, galaxy formation and evolution, large scale structure, active galax- ies, quasars. Physics 160, 161, and 162 may be taken as a three-quarter sequence for students interested in pursuing graduate study in astrophysics or individually as topics of interest. Prerequisites: Physics 2A, 2B, 2C, 2D or 4A, 4B, 4C, 4D, 4E. (S)

170. Medical Instruments: Principles and Practice (4)
The principles and clinical applications of medical diag- nostic instruments, including electromagnetic measure- ments, spectroscopy, microscopy, ultrasound, X-rays, MRI, tomography, lasers in surgery, fiber optics in diagnostics. Prerequisite: Physics 1C, or 2C, or equivalent. (F)

171/271. Biophysics of Neurons and Networks (4-4)
Fundamental limits to measurements on nervous systems, the biophysics of excitable membranes and neurons, and the fundamentals of recurrent neuronal networks. The em- phasis is on information processing by the nervous system through physical reasoning and mathematical analysis. Three hours lecture. The graduate version, Physics 271, will include a report at the level of a research proposal. Prerequisites: Physics 100A and 110A, or Physics 101A and 102A, or Chemistry 6C and Physics 140A, for graduate students, consent of instructor. The graduate version, Physics 271, will include a report at the level of a research proposal. (F)

172/272. Biophysics of Molecules (4-4)
Physical concepts and techniques used to study the structure and function of biological molecules, the thermodynamics and kinetics of biological activity, and physical descriptions of biological processes. Examples from enzyme action, protein folding, photobiology, and molecular motors. Three hour lecture. Prerequisites: Physics 100A and 110A, or Chemistry 6C and Physics 130A, or graduate students, consent of instructor. The graduate version, Physics 272, will include a report at the level of a research proposal. (W)

173. Modern Physics Laboratory: Biological and Quantum Physics (4)
A selection of experiments in contemporary physics and biophysics. Students select among pulsed NMR, Mossbauer, Zeeman effect, light scattering, holography, optical trapping, voltage clamp and genetic transcription of ion channels in oocytes, fluorescent imaging, and flight control in flies. Prerequisites: Physics 120A, BILD 1, and Chemistry 6BL. (S)

180/280. Teaching and Learning Physics (4)
How people learn and understand key concepts in physics. Readings in physics, physics education research, and cogni- tive science. Field work teaching and evaluating pre-college and undergraduate students. Useful for students interested in teaching and learning physical sciences. Prerequisites: Physics 1, 2, or 4 series, or consent of instructor. Cross-listed with EDS 105. (S)

191. Undergraduate Seminar on Physics (1)
Undergraduate seminars organized around the research interests of various faculty members. Prerequisite: Physics 2A or 4A series.

192. Senior Seminar in Physics (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in Physics (at the upper-division level). Senior Seminars may be offered in several physics departments. There will be from about one to quarter to quarter. Senior Seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors.

195. Physics Instruction (2–4)
Students will be responsible for and teach a class section of a lower-division physics course. They will also attend a weekly meeting on teaching methods and materials conducted by the professor who supervises their teaching. (P/ NP grades only.) Prerequisite: consent of instructor. (F,WS)
197. Physics Internship (4) An enrichment program which provides work experience with industry, government offices, etc., under the supervision of a faculty member and industrial supervisor. Prerequisite: Completion of 90 units with 2.5 GPA and consent of faculty advisor.

198. Directed Group Study (2 or 4) Direct group study of a topic or in a field not included in the regular departmental curriculum. (P/NP grades only) Prerequisites: consent of instructor and departmental chair. (F,W,S)

199. Research for Undergraduates (2 or 4) Independent reading or research on a problem by special arrangement with a faculty member. (P/NP grades only) Prerequisites: consent of instructor and departmental chair. (F,W,S)

199H. Honors Thesis Research for Undergraduates (2–4) Honors thesis research for seniors participating in the Honors Program. Research is conducted under the supervision of a physics faculty member. Prerequisite: admission to the Honors Program in physics. (F,W,S)

GRADUATE

200A. Theoretical Mechanics (4) Lagrangian equations and Hamilton’s principle; symmetry and conjugate variables. Applications to charged particle motion; central forces and scattering theory; small oscillations; anharmonic oscillations; rigid body motion; continuum mechanics. Prerequisite: Physics 110B or equivalent. (F)

200B. Theoretical Mechanics (4) Hamilton’s equations, canonical transformations; Hamilton-Jacobi theory; action-angle variables and adiabatic invariants; introduction to canonical perturbation theory, nonintegrable systems and chaos; Liouville equation; ergodicity and mixing; entropy; statistical ensembles. Prerequisite: Physics 200A. (W)

201. Mathematical Physics (5) An introduction to mathematical methods used in theoretical physics. Topics include: a review of complex variable topics in particle theory. Unified gauge theories, particle cosmology, and special quantum chromodynamics and the weak interactions. Modern applications of the renormalization group in continuation of 211A. Deals with collective effects in solids arising from interactions between constituents. Topics include electron-electron and electron-phonon interactions, screening, band structure effects, Landau Fermi liquid theory. Magnetism in metals and insulators, superconductivity; occurrence, phenomenology, and microscopic theory. Prerequisites: Physics 210A, 211A. (Offered in alternate years) (W)

212A. Quantum Mechanics (4) Hilbert space formulation of quantum mechanics and application to simple systems: states and observables, uncertainty relations and measurements, time evolution, and mixed states and density matrix. Symmetries; commuting observables and symmetries, rotation group representations, Clebsch-Gordan coefficients, Wigner-Eckhardt theorem, and discrete symmetries (parity, time reversal, etc.). Prerequisite: Physics 130B or equivalent. (F)

212B. Quantum Mechanics (4) Time independent perturbation theory: non-degenerate and degenerate cases, Zeeman effect, fine structure, exclusion principle, and many-electron atoms. Time dependent perturbation theory: interaction picture and Dyson series, transition rates. Radiation theory: quantization of EM field, calculation of atomic line transition rates, line width, and spontaneous decay. Prerequisite: Physics 212A. (W)

215A. Particles and Fields (4) The first quarter of a three-quarter course on field theory and elementary particle physics. Topics covered include the relation between symmetries and conservation laws, the calculation of cross sections and reaction rates, covariant perturbation theory, and quantum electrodynamics. (F)

215B. Particles and Fields (4) Continuation of 215A. Gauge theory quantization by means of path integrals, SU(3) symmetry and the quark model, spontaneous symmetry breakdown, introduction to QCD and the Glashow-Weinberg-Salam model of weak interactions, basic issues of renormalization. Prerequisite: Physics 215A. (W)

215C. Particles and Fields (4) Modern applications of the renormalization group in quantum chromodynamics and the weak interactions. Unified gauge theories, particle cosmology, and special topics in particle theory. Prerequisites: Physics 215A–B. (Offered in alternate years) (S)

217. Field Theory and the Renormalization Group (4) Application of field theoretic and renormalization group methods to problems in condensed matter, or particle physics. Topics will vary and may include: phase transition and critical phenomena, many body quantum systems; quantum chromodynamics and the electroweak model. Prerequisite: Physics 210A.

218A. Plasma Physics (4) The basic physics of plasmas is discussed for the simple case of an unmagnetized plasma. Topics include: thermal equilibrium statistical properties, fluid and Landau theory of electron and ion plasma waves, velocity space instabilities, quasi-linear theory, fluctuations, scattering or radiation, Fokker-Planck equation. (F)

218B. Plasma Physics (4) This course deals with magnetized plasma. Topics include: Appleton-Hartree theory of waves in cold plasma, waves in warm plasma (Bernstein waves, cyclotron damping). MHD equations, MHD waves, low frequency modes, and the adiabatic theory of particle orbits. Prerequisite: Physics 218A. (W)

218C. Plasma Physics (4) This course deals with the physics of confined plasmas with particular relevance to controlled fusion. Topics include: topology of magnetic fields, confined plasma equilibria, energy principles, ballooning and kink instabilities, resistive MHD modes (tearing, rippling and pressure-driven), gyrokinetic theory, microstabilities and anomalous transport, and laser-plasma interactions relevant to inertial fusion. Prerequisite: Physics 218B. (S)

133/219. Condensed Matter/Materials Science Laboratory (4) A project-oriented laboratory course utilizing state-of-the-art experimental techniques in materials science. The course prepares students for research in a modern condensed matter/materials science laboratory. Under supervision, the students develop their own experimental ideas after investigating current research literature. With the use of sophisticated state-of-the-art instrumentation students conduct research, write a research paper, and make verbal presentations. Prerequisites: Physics 2CL and 2DL for undergraduates; Physics 152A or Physics 211A for graduate students. (S)

220. Group Theoretical Methods in Physics (4) Study of group theoretical methods with applications to problems in high energy, atomic, and condensed matter physics. Representation theory, tensor methods, Clebsch-Gordan series. Young tableaux. The course will cover discrete groups, Lie groups and Lie algebras, with emphasis on permutation, orthogonal, and unitary groups. Prerequisite: Physics 212C. (S)

221A. Nonlinear and Nonequilibrium Dynamics of Physical Systems (4) An introduction to the modern theory of dynamical systems and applications. Topics include maps and flows, bifurcation theory and normal form analysis, chaotic attractors in dissipative systems, Hamiltonian dynamics and the KAM theorem, and time series analysis. Examples from real physical systems will be stressed throughout. Prerequisite: Physics 221B (Offered in alternate years) (W)

221B. Nonlinear and Nonequilibrium Dynamics of Physical Systems (4) Nonlinear dynamics in spatially extended systems. Material to be covered includes fluid mechanical instabilities, the amplitude equation approach to pattern formation, reaction-diffusion dynamics, integrable systems and solitons, and an introduction to coherent structures and spatio-temporal chaos. Prerequisites: Physics 210B and 221A. (Offered in alternate years) (S)

222A. Elementary Particle Physics (4) Weak interactions; neutrino physics; CP, and CP violation; electroweak gauge theory and symmetry breaking. Design of detectors and experimental techniques for new phenomena. Prerequisites: Physics 214. (W)

223. Stellar Structure and Evolution (4) Energy generation, flow, hydrostatic equilibrium, equation of state. Dependence of stellar parameters (central surface temperature, radius, luminosity, etc.) on stellar mass and
relation to physical constants. Relationship of these parameters to the H-R diagram and stellar evolution. Stellar interiors, opacity sources, radiative and convective energy flow. Nuclear reactions, neutrino processes. Polytopic models. White dwarfs and neutron stars. Prerequisites: Physics 130A/B/C or equivalent. (S/U grades permitted.) (Offered in alternate years.) (F) 224. Physics of the Interstellar Medium (4) Gaseous nebulae, molecular clouds, ionized regions, and dust. Low energy processes in neutral and ionized gases. Interaction of matter with radiation, emission and absorption processes, formation of atomic lines. Energy balance, steady state temperatures, and the physics and properties of dust. Masers and molecular line emission. Dynamics and shocks in the interstellar medium. Prerequisites: Physics 130A–B or equivalent, Physics 140A–B or equivalent. (S/U grades permitted.) (Offered in alternate years.) 225A–B. General Relativity (4–4) This is a two-quarter course on gravitation and the general theory of relativity. The first quarter is intended to be offered every year and may be taken independently of the second quarter. The second quarter will offer material in alternate years. Topics covered in the first quarter include special relativity, differential geometry, the equivalence principle, the Einstein field equations, and experimental and observational tests of gravitation theories. The second quarter will focus on more advanced topics, including gravitational collapse and black holes, gravitational radiation, cosmology, and quantum gravitation. (225B offered in alternate years.) (F,W) 226. Galaxies and Galactic Dynamics (4) The structure and dynamics of galaxies. Topics include potential theory, the theory of stellar orbits, self-consistent equilibria of stellar systems, stability and dynamics of stellar systems including relaxation and approach to equilibrium. Collisions between galaxies, galactic evolution, dark matter, and galaxy formation. Prerequisite: consent of instructor. (Offered in alternate years.) 227. Cosmology (4) An advanced survey of topics in physical cosmology. The Friedmann models and the large-scale structure of the universe, including the observational determination of Ho (the Hubble constant) and q0 (the deceleration parameter). Galaxy number counts. A systematic exposition of the physics of the early universe, including vacuum phase transitions; inflation; the generation of net baryon number, fluctuations, topological defects and textures. Primordial nucleosynthesis, both standard and nonstandard models. Growth and decay of adiabatic and isocurvature density fluctuations. Discussion of dark matter candidates and contrasts from cosmological observation and experiment. Nucleosynthesis and cosmochronology and the determination of the age of the universe. Prerequisite: consent of instructor. (Offered in alternate years.) 228. High-Energy Astrophysics and Compact Objects (4) The physics of compact objects, including the equation of state of dense matter and stellar stability theory. Maximum mass of neutron stars, white dwarfs, and super-massive objects. Black holes and accretion disks. Compact X-ray sources and transient phenomena, including X-ray and g-ray bursts. The fundamental physics of electromagnetic radiation mechanisms: synchrotron radiation, Compton scattering, thermal and nonthermal bremsstrahlung, pair production, pulsars. Particle acceleration models, neutrino production mechanisms, supernovae, and neutron star production. Prerequisites: Physics 130A–B/C or equivalent. (Offered in alternate years.) 230. Advanced Solid-State Physics (4) Selection of advanced topics in solid-state physics; material covered may vary from year to year. Examples of topics covered: disordered systems, surface physics, strong-coupling superconductivity, quantum Hall effect, low-dimensional solids, heavy fermion systems, high-temperature superconductivity, solid and liquid helium. Prerequisite: Physics 211B. (S) 152B/232. Electronic Materials (4) Physics of electronic materials. Semiconductors: bands, donors and acceptors, devices. Metals: Fermi surface, screening, optical properties. Insulators: dia/-ferro-electrics, displacive transitions. Magnets: dia/-ferro-/antiferromagnetism, phase transitions, low temperature properties. Superconductors: pairing, Meissner effect, flux quantization, BCS theory. Prerequisite: Physics 152A, Phys. 211 or consent of instructor. Graduate students in Phys. 232 will complete a special topics paper. (S) 235. Nonlinear Plasma Theory (4) This course deals with nonlinear phenomena in plasmas. Topics include: orbit perturbation theory, stochasticity, Arnold diffusion, nonlinear wave-particle and wave-wave interactions, resonance broadening, basics of fluid and plasma turbulence, closure methods, models of coherent structures. Prerequisite: Physics 218C or consent of instructor. (Offered in alternate years.) (W) 239. Special Topics (1–3) From time to time a member of the regular faculty or a resident visitor will find it possible to give a self-contained short course on an advanced topic in his or her special area of research. This course is not offered on a regular basis, but it is estimated that it will be given once each academic year. (S/U grades permitted.) 141/241. Computational Physics I: Probabilistic Models and Simulations (4–4) Project-based computational physics laboratory course with student choice of Fortran90 or C/C++. Applications from materials science to the structure of the early universe are chosen from molecular dynamics, classical and quantum Monte Carlo methods, physical Langvin/Fokker-Planck processes, and other modern topics. Graduate students will do advanced projects. Prerequisites: upper-division standing or consent of instructor; graduate standing for 241. (W) 142/242. Computational Physics II: PDE and Matrix Models (4–4) Project-based computational physics laboratory course for modern physics and engineering problems with student’s choice of Fortran90/95 or C/C++. Applications from finite element PDE models are chosen from quantum mechanics and nanodevices, fluid dynamics, electromagnetism, materials physics, and other modern topics. Graduate students will do advanced projects. Prerequisites: upper-division standing; graduate standing for 242. (S) 243. Stochastic Methods (4) Introduction to methods of stochastic modeling and simulation. Topics include: random variables; stochastic processes; Markov processes; one-step processes; the Fokker-Planck equation and Brownian motion; the Langevin approach; Monte-Carlo methods; fluctuations and the Boltzmann equation; and stochastic differential equations. (F) 244. Parallel Computing in Science and Engineering (4) Introduction to basic techniques of parallel computing, the design of parallel algorithms, and their scientific and engineering applications. Topics include: parallel computing platforms; message-passing model and software; design and application of parallel software packages; parallel visualization; parallel applications. (S) 250. Condensed Matter Physics Seminar (0–1) Discussion of current research in physics of the solid state and of other condensed matter. (S/U grades only.) (F,W,S) 251. High-Energy Physics Seminar (0–1) Discussions of current research in high-energy physics, principal in the field of elementary particles. (S/U grades only.) (F,W,S) 252. Plasma Physics Seminar (0–1) Discussions of recent research in plasma physics. (S/U grades only.) (F,W,S) 253. Astrophysics and Space Physics Seminar (0–1) Discussions of recent research in astrophysics and space physics. (S/U grades only.) (F,W,S) 257. High-Energy Physics Special Topics Seminar (0–1) Discussions of current research in high-energy physics. (S/U grades only.) (F,W,S) 258. Astrophysics and Space Physics Special Topics Seminar (0–1) Discussions of current research in astrophysics and space physics. (S/U grades only.) (F,W,S) 260. Physics Colloquium (0–1) Discussions of recent research in physics directed to the entire physics community. (S/U grades only.) (F,W,S) 261. Seminar on Physics Research at UCSD (0–1) Discussions of current research conducted by faculty members in the Department of Physics. (S/U grades only.) (W,S) 266. Recent Topics in Condensed Matter Physics (1–3) The course is dedicated to a topic determined by the area of condensed matter physics through lectures given by graduate students and postdocs. The course teaches practical skills, delivering research lectures, and answering questions in front of a research audience. Prerequisite: physics graduate students in good standing. (F,W,S) 171/271. Biophysics of Neurons and Networks (4–4) Fundamental limits to measurements on nervous systems, the biophysics of excitable membranes and neurons, and the fundamentals of recurrent neuronal networks. The emphasis is on information processing by the nervous system through physiological and mathematical analysis. Three hours lecture. The graduate version, Physics 271, will include a report at the level of a research proposal. Prerequisites: Physics 100A and 110A, BILD 1, Chemistry 6C and Physics 140A, for graduate students, consent of instructor. The graduate version, Physics 271, will include a report at the level of a research proposal. (F) 172/272. Biophysics of Molecules (4–4) Physical concepts and techniques used to study the structure and function of biological molecules, the thermodynamics and kinetics of biological activity, and physical descriptions of biological processes. Examples from enzyme action, protein folding, photobiology, and molecular motors. Three hours lecture. Prerequisites: Physics 100A and 110A, BILD 1, Chemistry 6C and Physics 130A and graduate students consent of instructor. The graduate version, Physics 272, will include a report at the level of a research proposal. (W) 180/280. Teaching and Learning Physics (4) How people learn and understand key concepts in physics. Readings in physics, physics education research, and cognitive science. Field work teaching and evaluating pre-college and college students. Useful for students interested in teaching and learning physics. Undergraduate students are required to read and discuss papers in class. Graduate students are expected to read the papers and prepare an annotated bibliography on the background literature. The instructor will lead the in-class discussion on the topics covered in the papers. Prerequisites: Physics 1, 2, or 4, series, or consent of instructor. 295. M.S. Thesis Research in Materials Physics (1–12) Directed research on M.S. dissertation topic. (F,W,S) 297. Special Studies in Physics (1–4) Studies of special topics in physics under the direction of a faculty member. Prerequisites: consent of instructor and departmental vice chair, education. (S/U grades permitted.) (F,W,S) 298. Directed Study in Physics (1–12) Research studies under the direction of a faculty member. (S/U grades permitted.) (F,W,S) 299. Thesis Research in Physics (1–12) Directed research on dissertation topic. (F,W,S) 500. Instruction in Physics Teaching (1–4) How students in the Department of Physics. (S/U grades only.) (W,S)
Barbara Walter, Ph.D.

THE MAJOR PROGRAM

Political science addresses some of the fundamental problems facing human society. Questions concerning world peace, government policies aimed at achieving economic stability and growth, the management of environmental quality, control over political competition, the possibility of using law to affect social and political change, and the gap between the rich and poor in the United States and abroad are all on the research agenda of contemporary political scientists. The general purpose of the major is to address these and other issues systematically, and, simultaneously, to raise the broad theoretical questions which can help students relate today’s political debates to those debates about politics which have kept a theoretical tradition alive for over 2,000 years.

Students may major in political science as a general program of study, or they may concentrate in one of six areas: (1) American politics, (2) comparative politics, (3) international relations, (4) political theory, (5) public law, and (6) public policy. All majors in political science must satisfy the following sixteen courses: PS 30 (Political Inquiry), three of the four lower-division courses from 10, 11, 12, 13 and twelve upper-division courses. (Note: Lower-division courses PS 27 and PS 40 may not be used to satisfy requirements in these fields.) Moreover, as students may major in political science as a general program of study, or they may concentrate in one of six areas: (1) American politics, (2) comparative politics, (3) international relations, (4) political theory, (5) public law, and (6) public policy. All majors in political science must satisfy the following sixteen courses: PS 30 (Political Inquiry), three of the following four lower-division courses from 10, 11, 12, 13 and twelve upper-division courses.

REQUIREMENTS FOR MAJOR IN POLITICAL SCIENCE WITHOUT AN AREA OF CONCENTRATION

1. Three of the four lower-division courses from 10, 11, 12, 13.
2. Political Science 30
3. Any twelve upper-division political science courses

REQUIREMENTS FOR MAJOR IN POLITICAL SCIENCE WITH AN AREA OF CONCENTRATION

Major in Political Science/American Politics

1. Lower-division required: PS 10 (in addition to two other lower-division courses from 11, 12, 13)
2. Political Science 30
3. Five upper-division American courses:
 a. at least two of which must be from the 100 sequence: 100A-B-C, 100DA, 100E, 100H, 100J, 100K, 100L, 100M, 100N

Major in Political Science/Comparative Politics

1. Lower-division required: PS 11 (in addition to two other lower-division courses from 10, 12, 13)
2. Political Science 30
3. Five upper-division courses, including
 a. at least one from the following thematic courses: 120K, 122A-B, 123, 124A, 125, 125A, 126AA-AB, 127, 136A-B-C, 137A, 150A-B
 b. and at least one each from two of the following three regional areas: Asia: 121, 121B, 130H, 131C, 132C, 133A, 133D, 133D-D, 133G, 133J
 Europe: 120A-B, 120H, 120J-K, 126AA-AB, 130A, 130D
 Latin America: 134AA, 134B, 134D, 134I

Major in Political Science/International Relations

1. Lower-division required: PS 12 (in addition to two other lower-division courses from 10, 11, 13)
2. Political Science 30
3. Five upper-division IR courses with at least one each from the following two groups:

Major in Political Science/Political Theory

1. Three of four lower-division courses from 10, 11, 12, 13
2. Political Science 30
3. 110A-B-C

Major in Political Science/Public Law

1. Lower-division required: PS 10 (in addition to two other lower-division courses from 11, 12, 13)
2. Political Science 30
3. Five of the following: 100A-B, 102L, 104A-B-C-D, 104F, 104I, 104L-M

Major in Political Science/Public Policy

1. Lower-division required: PS 10 (in addition to two other lower-division courses from 11, 12, 13)
2. Political Science 30
3. 160AA
4. One of 160AB, 167A, 168
5. Two of 100A-B-C, 100E-F-G, 100I-J
6. One of 102B-C, 102E, 102L, 103A, 103B, 142A, 142J, 150A-B, 162, 163, 165, 166F

Two upper-division courses in a field may be substituted for that field’s lower-division course. However, these courses cannot also be used to satisfy the upper-division course requirements for a concentration of that field. Since course offerings change from year to year, students are strongly advised to consult the department for the latest listing of courses before preregistration.

Agreements signed between UC San Diego and several community colleges allow students to apply some community college courses toward lower-division course requirements for the major. Transfer students must, however, take at least one of the lower-division courses (10, 11, 12, 13) in residence at UCSD. Courses taken elsewhere may be credited toward the major. Please check with an undergrad student affairs advisor for more information on credit for courses taken elsewhere.

Students who pass the Advanced Placement (AP) Tests in American or Comparative Politics may petition to be exempted from taking PS 10 or 11 (respectively). Effective fall 2004, students must pass with a score of 5 to be exempted from taking PS 10 or 11.

At least nine courses in political science must be taken in residence at UCSD. A total maximum of six courses may be taken elsewhere and applied toward the major. This applies to transfer students, students who pass the AP exam(s), as well as students who study abroad on the Education Abroad Program (EAP) or the Opportunities Abroad Program (OAP). Students planning to transfer course work completed elsewhere are urged to consult an undergraduate student affairs advisor.

Double majors who include political science as one of their two majors must fulfill the requirements of both programs. Please consult an undergraduate student affairs advisor for more information.

Students must maintain an overall 2.0 GPA in the major. To be counted toward satisfying the requirements for the major, upper- and lower-division courses must be completed with a C– or better grade. Courses taken to satisfy requirements for the major may not be taken Pass/Not Pass with the exception of a maximum of two independent study courses (PS 199).

Honors candidates for departmental honors are required to take PS 191A and B in which they write a senior thesis. To be admitted to the Honors Seminar a student must be of senior standing in the first quarter of the seminar, have a minimum GPA of 3.6 in political science, have completed all lower-division requirements including Political Science 30 and five upper-division courses. Also, students must have an advisor prior to enrolling in the Honors Seminar. These courses may be counted toward the upper-division requirement.

CAREER GUIDANCE

The premise of our educational philosophy is that the best professional preparation for productive careers which we can provide is one which is broad, theoretical, and only indirectly related to the current job market. Our majors graduate into a wide range of career options.

Many political science majors at UCSD will seek admission to a law school. Although law schools make no recommendation concerning the usefulness of any undergraduate major, a B.A. in political science should be seen as a useful complement to a law degree. Students who take courses in American government, policy analysis, and law and politics find that they develop a keen understanding of the role of law in the general political process. This helps students understand the limits and possibilities of the legal process in fostering change or in preserving the status quo. This same curriculum provides a solid foundation for a career in journalism. Students with any specific questions regarding law are advised to consult with career services.

Increasingly, political science majors are preparing for careers in business or as policy analysts in both the public and private sectors. Many of these students pursue advanced degrees in public policy or study for a master’s in business administration. Students interested in this option should look into public policy, American, or comparative politics as an area of concentration. Some political science majors are interested in careers in international organization or diplomacy. These students should look into international relations as an area of concentration. In addition, a broad array of courses in comparative politics is essential for anyone interested in a career of international service.

A political science major offers excellent preparation for teaching in the elementary schools. If you are interested in earning a California teaching credential from UCSD, contact the Teacher Education Program for information about the prerequisite and professional preparation requirements. It is recommended that you contact TEP as early as possible in your academic career.

Students interested in majoring or minoring in political science should stop by the Department of Political Science Office, SSB 301, or visit our Web site at http://www.polisci.ucsd.edu.

STUDY ABROAD

Political science majors are encouraged to participate in the UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP). Information on EAP/OAP is given in the “Education Abroad Program” section of the UC San Diego General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit its Web site at http://programs-abroad.ucsd.edu. Financial aid can be used for EAP/OAP study, and special study-abroad scholarships are also available.

MINOR IN POLITICAL SCIENCE

For students entering UCSD winter 1998 or later the following guidelines for a political science minor will apply: seven political science courses, not including Political Science 27 and 40, with a minimum of five upper-division. Continuing students may follow the guidelines for a minor of a total of six political science courses, with a minimum of three upper-division. All courses taken for a political science minor must be taken for a letter grade.

INTERDISCIPLINARY MINOR

The Department of Political Science takes part in one interdisciplinary minors offered at UCSD. The law and society minor offers students the opportunity to examine the role of the legal system in society. Students should note that Law and Society 101 (Contemporary Legal Issues) may be used in fulfilling the twelve upper-division course requirement for the political science major. Additional information on this program is available through the Warren Interdisciplinary Programs Office.

RESEARCH

The Department of Political Science is closely affiliated with several research centers/institutes/projects currently on campus. Faculty members directly involved include: Steven Erle, director, Urban Studies Program; J. Lawrence Broz, coordinator, Project in International Affairs; Germaine Hoston, director, Center for TransPacific Studies in Values, Culture, and Politics; Mathew McCubbins, director, Public Policy Research Project; Zoltan Hajnal and Thaddeus Kousser, coordinators, American Political Institutions Project; Wayne Cornelius, director, Center for Comparative Immigration Studies; and Clark Gibson, coordinator, Political Economy of Development Series. For further information please refer to the General Catalog section on “Research at UCSD.”

THE PH.D. PROGRAM

The Department of Political Science at the University of California, San Diego offers a program of graduate studies leading to the Ph.D. degree. Instruction is provided in the major fields of the discipline. For purposes of comprehensive examinations, the discipline is broken into four fields: American politics, comparative politics, international relations, and political theory. The department also offers a variety of courses that are of a methodological or epistemological nature, spanning the various fields.

PROGRAM OVERVIEW

Course Work

Students must complete eighteen quarter courses before the end of the second year with an overall grade point average of 3.3 or better. All students must complete the six-course core curriculum, Political Science 200A-C and 204A-C. No other UCSD courses may be substituted to fulfill this requirement. Fifteen of these courses must be offered by the department, with a number between Political Science 200 and 279. (Political Science 200A-C and 204A-C count toward this requirement). No more than three courses, offered within or outside the department, may be taken on a satisfactory/unsatisfactory basis. In some individual fields the faculty normally recommends that students take
Written Examinations

Written field examinations last four hours. These examinations cover major theoretical approaches in a field. They are structured so that passing requires general knowledge and understanding of important work in the field as a whole. Written focus-area examinations last four hours. These examinations cover in greater depth one subfield within a major research literature. Written examinations are open-note and open-book. Students are expected to do their own work, and to compose their answers on the day of the examination. Text from computer files may not be downloaded into these answers.

Oral Examinations

The oral examination normally lasts between one and two hours, and covers all three written examinations. It may also include discussion of the student’s seminar paper. A student must take the oral examination, even if one or more of the written examinations is such that it is deemed impossible to pass the entire examination.

Each field has a designated field coordinator, appointed by the department chair in consultation with the director of graduate studies. The field coordinator, in consultation with the faculty in the field, prepares the written examinations. Each General Examination is graded by a committee of four faculty members, with two from each of the student’s examination fields. These examiners are nominated by the field coordinator and appointed by the department chair. Students are normally informed of the composition of General Examination boards during the fourth week of the spring quarter.

Each General Examination is graded in its entirety. A student passes or fails the entire examination, not simply parts of it. The examination committee may assign a grade of fail, pass, or distinction. A student passes the General Examination if at least three examiners vote to assign a grade of pass or better. A student receives a grade of distinction by vote of at least three examiners. The student will receive written notification of the examination committee’s decision. A student who fails the General Examination must retake it at least one week prior to the start of the fall quarter of the third year. A student who fails the General Examination twice will not be permitted to continue in the graduate program in political science.

Good progress toward the Ph.D. requires that a student complete the General Examination by the end of the second year. A student who has not attempted all parts of the General Examination by the end of the second year may not continue in the program.

Seminar Papers

A student must complete one seminar paper in one of his or her examination fields. This paper may be written as part of the requirements for a regularly scheduled seminar course or in an independent research course.

Certification that a paper fulfills the seminar paper requirement is at the sole discretion of the faculty member supervising the work (i.e., the instructor of the course for which the paper was written).

A student may not take the General Examination before fulfilling the seminar paper requirement. A final draft of the paper, along with the appropriate form certifying that the paper meets the seminar paper requirement, must be submitted to the graduate coordinator before the written portion of the General Examination may be taken. Copies of the seminar paper will be distributed to the General Examination committee.

Dissertation

By the end of the sixth year good progress requires completion of the dissertation. A student who fails to complete the dissertation by the end of the sixth year may be denied all departmental financial assistance.

Advising and Evaluation

Each incoming student is assigned a temporary faculty advisor by the director of graduate studies. At the end of the first year students are given the opportunity to confirm that advisor or select a new one. At the beginning of the third year each student must select a faculty member from the department to serve as prospectus advisor. The prospectus advisor will help guide the student in writing the prospectus and selecting a dissertation committee.
is not assumed that the prospectus advisor will subsequently chair the dissertation committee, or even be a member of it. Those roles should be determined as the prospectus develops.

During the spring quarter each student is evaluated by his or her advisor in consultation with the departmental faculty. The student will receive a written evaluation from the advisor each year. The student must sign this evaluation for it to become an official part of the student’s departmental file. As part of the first-year review each student must complete a plan of study that identifies a faculty seminar paper supervisor, two examination fields, a focus area, and intended preparation in each. This plan must be signed by the student’s faculty advisor and submitted to the graduate coordinator by the end of spring quarter of the first year.

Student Petitions
To contest an evaluation or any departmental action a student must do so in writing. A petition should be submitted to the director of graduate studies no later than the end of the quarter following the evaluation (or other action) contested by the student.

COURSES
For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LOWER-DIVISION
10. Introduction to Political Science: American Politics (4)
This course surveys the processes and institutions of American politics. Among the topics discussed are individual political attitudes and values, political participation, voting, parties, interest groups, Congress, presidency, Supreme Court, the federal bureaucracy, and domestic and foreign policy making.

11. Introduction to Political Science: Comparative Politics (4)
The nature of political authority, the experience of a social revolution, and the achievement of an economic transformation will be explored in the context of politics and government in a number of different countries.

12. Introduction to Political Science: International Relations (4)
The issues of war/peace, nationalism/internationalism, and economic growth/redistribution will be examined in both historical and theoretical perspectives.

13. Power and Justice (4)
An exploration of the relationship between power and justice in modern society. Materials include classic and contemporary texts, films and literature.

27. Ethics and Society (4)
(Same as Phil. 27) An examination of ethical principles (e.g., utilitarianism, individual rights, etc.) and their social and political applications to contemporary issues such as abortion, environmental protection, and affirmative action. Ethical principles will also be applied to moral dilemmas familiar in government, law, business, and the professions. Satisfies the Warren College ethics and society requirement. Prerequisites: (Same as Phil. 27) An examination of ethical principles (e.g., utilitarianism, individual rights, etc.) and their social and political applications to contemporary issues such as abortion, environmental protection, and affirmative action. Ethical principles will also be applied to moral dilemmas familiar in government, law, business, and the professions. Satisfies the Warren College ethics and society requirement. Prerequisites: (Same as Phil. 27) An examination of ethical principles (e.g., utilitarianism, individual rights, etc.) and their social and political applications to contemporary issues such as abortion, environmental protection, and affirmative action. Ethical principles will also be applied to moral dilemmas familiar in government, law, business, and the professions. Satisfies the Warren College ethics and society requirement. Prerequisites: CAT 2 and 3, DOC 2 and 3, MCWP 40 and 50, Hum. 1 and 2, MMW 2 and 3, WCWP 10A & 10B, or WARR 11A & 11B.

30. Political Inquiry (4)
Introduction to the logic of inference in social science and to quantitative analysis in political science and public policy including research design, data collection, data description and computer graphics, and the logic of statistical inference (including linear regression).

40. Introduction to Law and Society (4)
This course is designed as a broad introduction to the study of law as a social institution and its relations to other institutions in society. The focus will be less on the substance of law (legal doctrine and judicial opinions) than on the process of law making. Legal rules both reflect and shape basic social values and their relation to social, political, and economic conflicts within society.

87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduates, and topics vary from quarter to quarter. Enrollment is limited to 15 to 20 students, with preference given to entering freshmen. May not be used to fulfill any major or minor requirements in political science.

98R. Independent Study (1)
Independent study or research under direction of a member of the faculty. Prerequisites: Student must be of freshman class standing, and a Regents Scholar; Approved Special Studies Form.

UPPER-DIVISION
Minimum requirement for all upper-division courses is at least one quarter of lower-division political science, or upper-division standing.

AMERICAN POLITICS
100A. The Presidency (4)
The role of the presidency in American politics. Topics will include nomination and election politics, relations with Congress, party leadership, presidential control of the bureaucracy, international political role, and presidential psychology.

100B. The U.S. Congress (4)
This course will examine the nomination and election of congressmen, constituent relationships, the development of the institution, formal and informal structures, leadership, comparisons of House with Senate, lobbying, and relationship with the executive branch.

100C. American Political Parties (4)
This course examines the development of the two major parties from 1789 to the present. Considers the nature of party coalitions, the role of leaders, activists, organizers, and voters, and the performance of parties in government.

100DA. Voting, Campaigning, and Elections (4)
A consideration of the nature of public opinion and voting in American government. Studies of voting behavior are examined from the viewpoints of both citizens and candidates, and attention is devoted to recent efforts to develop models of electoral behavior for the study of campaigns. The role of mass media and money also will be examined.

100E. Interest Group Politics (4)
The theory and practice of interest group politics in the United States. Theories of pluralism and collective action, the role of interest groups in the political process, and political action committees, and other important aspects of political action in groups are examined. Prerequisite: sophomore standing.

100H. Race and Ethnicity in American Politics (4)
This course examines the processes by which racial and ethnic groups have/have not been incorporated into the American political system. The course focuses on the political experiences of European immigrant groups, blacks, Latinos, and Asians.

100J. Race in American Political Development (4)
Readings examine how the multicultural character of the United States has shaped the broad outlines of American politics. Cases include the founding, the Constitution, southern politics, social organization in formerly Mexican, regions, the New Deal, consequences of limited suffrage. Prerequisite: upper-division standing.

100K. Railroads and American Politics (4)
The railroads transformed the economy and politics of the United States in the nineteenth century. The railroads were the first big businesses and their sheer size lead inevitably to conflict with governments at all levels. This conflict shaped modern politics. Prerequisite: upper-division standing.

100M. Political Psychology (4)
We begin with hypotheses about how people develop political attitudes, and methods to test these hypotheses. The second half focuses on emerging cognitive neuroscience insights, including brain imaging, and asks how these inform theories of political cognition, affect, and behavior. Prerequisite: upper-division standing.

100N. Politics in Washington (4)
Examines Washington as a political community, its institutions, culture, and history. In addition to its elected officeholders and senior government officials, it examines Washington’s subcommunities: the national news industry, diplomatic service, the representation of interests. Prerequisite: department approval is required.

100O. Perspectives on Race (4)
Drawing heavily from the political psychology literature, this course looks at race in American politics from a variety of perspectives. We consider psychological, genetic, neuroscience, economic, political, sociological, and legal views of what drives powerful dynamics of race in our country. Prerequisite: upper-division standing.

100P. Economic Entrepreneurs and American Politics (4)
This course is concerned with the interaction between representative democracy and capitalism in American political history. The key to understanding this interaction is the role of the entrepreneur in the economy and how unexpected economic change shapes politics. Prerequisite: upper-division standing.

102C. American Political Development (4)
Examines selected issues and moments in the political history of the United States, comparing competing explanations and analyses of U.S. politics. Likely topics include the founding. “American exceptionalism,” change in the party system, race in U.S. politics, the “new institutionalism.”

102E. Urban Politics (4)
(Same as USP 107) This survey course focuses upon the following six topics: the evolution of urban politics since the mid-nineteenth century; the urban fiscal crisis; federal/urban relationships; the “new” ethnic politics; urban power structure and leadership; and selected contemporary policy issues such as downtown redevelopment, poverty, and race.

102F. Mass Media and Politics (4)
This course will explore both the role played by mass media in political institutions, processes and behaviors, and reciprocally, the roles played by political systems in guiding communication processes.

102G. Special Topics in American Politics (4)
An undergraduate course designed to cover various aspects of American politics. May be repeated for credit two times, provided each course is a separate topic, for a maximum of twelve units.

102J. Advanced Topics in Urban Politics (4)
(Same as USP 110) Building upon the introductory urban politics course, the advanced topics course explores issues such as community power, minority empowerment, and the politics of growth. A research paper is required. Students wishing to fulfill the paper requirement with field research should enroll in the subsequent PS 102JJ course (offered Summer Session 2). Prerequisite: consent of instructor.

102JJ. Field Research in Urban Politics (2)
(Same as USP 111) To be taken with the approval of the PS 102J instructor, this course allows students to do original field research on topics in urban politics. This course is offered in Summer Session 2 subsequent to a 102J course.
102K. The Urban Underclass (4)
The lives of individuals living in ghetto poverty in the United States. Causes and consequences of ghetto poverty. Political debates surrounding the underclass and different possible solutions. Prerequisite: upper-division standing.

102L. The Politics of Regulation (4)
Politics and policy-making issues in regulation. Themes: regulation as legislation, speech, press, assembly, specific grants of regulatory power; market versus command mechanisms; private property; and risk assessment. Emphasis on American regulatory policy, examples from current regulatory debates (e.g., health care and environment). Prerequisite: upper-division standing.

103A. California Government and Politics (4)
(Same as USP 109) This survey course explores six topics: 1) the state's political history; 2) campaigning, the mass media, and elections; 3) actors and institutions in the making of state policy; 4) local government; 5) contemporary policy issues; e.g., Proposition 13, school desegregation, crime, housing and land use, transportation, water; 6) California's role in national politics.

103B. Politics and Policymaking in Los Angeles (4)
(Same as USP 113) This course examines politics and policymaking in the five-county Los Angeles region. It explores the historical development of the city, suburbs, and region; local and regional government; and major policy challenges facing the city and metropolitan area. Prerequisite: upper-division standing.

103C. Politics and Policymaking in San Diego (4)
(Same as USP 115) This course examines how major policy decisions are made in San Diego. It analyzes the region's power structure (including the roles of non-governmental organizations and the media), governance systems and reform efforts, and the politics of major infrastructure projects. Prerequisite: upper-division standing or consent of instructor.

104A. The Supreme Court and the Constitution (4)
An introduction to the study of the Supreme Court and constitutional doctrine. Topics will include the nature of judicial review, federalism, race, and equal protection. The relation of judicial and legislative power will also be examined.

104B. Civil Liberties—Fundamental Rights (4)
This course will examine issues of civil liberties from both legal and political perspectives. Topics will include the First Amendment, speech, press, assembly, and religion; other "fundamental" rights, such as the right to privacy; and some issues in equal protection. Conflicts between governmental powers and individual rights will be examined.

104C. Civil Liberties—The Rights of Criminals and Minorities (4)
Examines the legal issues surrounding the rights of "marginal" groups such as aliens, illegal immigrants, and the mentally ill. Also includes a discussion of the nature of discrimination in American society.

104D. Judicial Politics (4)
Introduction to the study of law and courts as political institutions and judges as political actors, including the role of the judiciary in our constitutional system and decision making both within the Supreme Court and within the judicial hierarchy.

104F. Seminar in Constitutional Law (4)
This seminar will provide an intensive examination of a major issue in constitutional law, with topics varying from year to year. Recent topics have included equal protection law and the rights of citizens in wartime. Students will be required to do legal research on a topic, write a legal brief, and argue a case to the seminar. Prerequisites: PS 104A/B, department stamp.

104I. Law and Politics—Courts and Political Controversy (4)
This course will examine the role of the courts in dealing with issues of great political controversy, with attention to the rights of speech and assembly during wartime, questions of internal security, and the expression of controversial views on race and religion. The conflict between opposing Supreme Court doctrines on these issues will be explored in the context of the case studies drawn from different historical periods.

104L. Positive Political Theory of Law (4)
We will discuss modern theories of the origins of law and legal behavior.

104M. Law and Sex (4)
How law regulates and impacts sexuality and orientation with focus on constitutional law in areas of privacy, free speech, association, regulation of sexual conduct under criminal law pornography, prostitution, reproductive rights, and regulation of family status. Prerequisite: upper-division standing. Credit will not be allowed for students who have taken Political Science 102G Law and Sex in the following quarters: spring 2002, (section A00); spring 2001 (section A00); fall 1999 (section A00).

105A. Latino Politics in the U.S. (4)
This course examines contemporary issues in Latino politics in the U.S.; comparisons of racial and ethnic group experiences in the U.S.; Latino access to the political system through political participation. Prerequisite: upper-division standing.

105B. Understanding Intercultural Conflict (4)
This course examines and seeks to explain patterns of conflict and cooperation between different racial and ethnic groups within the United States. Why do groups cooperate under certain circumstances and fall into conflict in others? Prerequisite: upper-division standing.

108. Politics of Multiculturalism (4)
This course will examine central issues in debates about race, ethnicity, and multiculturalism in the United States. It will also relate these issues both to different historical periods. Prerequisite: upper-division standing.

This course will examine the political parties, the major political institutions, the Supreme Court, and the making of public policy in the United States. It will also examine the political process, the role of interest groups, and political participation. This course will be offered in the fall of each even-numbered year. This course is required for the major in Political Science. Prerequisite: upper-division standing.

110EB. American Political Thought from Civil War to Civil Rights (4)
The second quarter examines some of the major themes of American political thought in the twentieth century including controversies over the meaning of democracy, equality, and the distributive justice, the nature of "neoconservatism," and America's role as a world power.

110EC. American Political Thought: Contemporary Debates (4)
This course explores contemporary issues in American political thought. Topics may include liberalism and rights, gender and sexuality, race and ethnicity, cultural diversity, and the boundaries of modern citizenship. Readings include political pamphlets, philosophical treatises, court decisions, and works of literature.

110ED. Seminar in American Political Thought (4)
This seminar explores debates over ideals, institutions, and identities in American political thought. Themes and topics will vary. Readings will include political pamphlets, philosophical treatises, court decisions, and works of literature.

110F. Contemporary Political Thought (4)
This course examines the historical development of the ideas of democracy from Plato to the present. Themes and topics will vary. Readings will include political pamphlets, philosophical treatises, court decisions, and works of literature.

110H. Democracy and Its Critics (4)
This course will examine the historical development of the ideas of democracy from Plato to the present. Themes and topics will vary. Readings will include political pamphlets, philosophical treatises, court decisions, and works of literature.

110J. Power in American Society (4)
This course explores how power has been conceived and contested during the course of American history. The course explores the changes which have occurred in political rhetoric and strategies as America has moved from a relatively isolated agrarian and commercial republic to a military and industrial empire.

110T. Modern Political Ideologies (4)
An examination of some of the ideas and values associated with major social and political movements in Europe and the United States since the French Revolution. Topics will vary and may include liberalism, populism, democracy, communism, nationalism, fascism, and feminism.

112A. Economic Theories of Political Behavior (4)
An introduction to theories of political behavior developed with the assumptions and methods of economics. General emphasis will be upon theories linking individual behavior to institutional patterns. Specific topics to be covered will include collective action, leadership, voting, and bargaining.

112C. Political Theory and Artistic Vision (4)
The course explores the modes of political thinking found in arts, especially in drama and literature. It may include ends and means, political leadership, and political economy. Students may not receive credit for both POLI 112CS and POLI 112C. Prerequisite: upper-division standing.

113A. East Asian Thought in Comparative Perspective (4)
This course examines the major traditions of East Asian thought in comparative perspective. Topics include Confucianism, Taoism, Buddhism, and contemporary nationalist and East Asian political thought. Throughout, focused comparisons and contrasts will be made between western and eastern thought. Prerequisite: upper-division standing.

113B. Chinese and Japanese Political Thought I (4)
Examines philosophical traditions of ancient and modern China and Japan, to understand how these have been reflected in Chinese and Japanese development. Course will be in English; however, students with Chinese or Japanese language skills will have opportunity to use these.
students will be required to complete a seminar-length research paper; undergraduate students will write a paper. Prerequisites: upper-division standing for 113B.

114B. Marxist Political Thought (4)
An introduction to Marxist thought from its roots in the western tradition through its development in non-western contexts. Emphasis is placed on how adaptations were made in Marxism to accommodate the specific challenges of each environment.

115A. Gender and Politics (4)
Our understanding of politics, power, conflict, and quality continue to be challenged and transformed by considering gender as it intersects with nationality, race, class, and ethnicity. We will consider the importance of gender in each of the subfields of political science.

116A. Feminist Theory (4)
Readings in historical and contemporary feminist theory; development of gender as a category of political analysis; alternative perspectives on core concepts and categories in feminist thought.

118B. The Political Theory of Liberation Theology (4)
A comparative study of liberation theologies, including Continental, Latin American, South African, and East Asian. Prerequisite: PS 118A.

119A. Special Topics in Political Theory (4)
An undergraduate course designed to cover various aspects of political theory. May be repeated for credit two times, provided each course is a separate topic, for a maximum of twelve units. COMPARATIVE POLITICS

120A. Political Development of Western Europe (4)
An examination of various paths of European political development through consideration of the conflicts which shaped these political systems: the commercialization of agriculture; religion and the role of the church; the army and the state bureaucracy; and industrialization. Stress will be on alternative paradigms and on theorists.

120B. The German Political System (4)
An analysis of the political system of the Federal Republic of Germany with an emphasis on the party system, elections, executive-legislative relations, and federalism. Comparisons will be made with other West European democracies and the Weimar Republic.

120C. Politics in France (4)
This course will examine the consequences of social and economic change in France. Specific topics will include institutional development under a semi-presidential system, parties, and elections.

120D. Germany: Before, During, and After Division (4)
Consideration of political, economic, and security factors that have kept Germany at the center of European developments for more than a century.

120E. Scandinavian Politics (4)
Introduction to the politics and societies of the Scandinavian states (Denmark, Finland, Norway, and Sweden). Focuses on historical development, political culture, constitutional arrangements, political institutions, parties and interest groups, the Scandinavian welfare states, and foreign policy. Prerequisite: upper-division standing.

120H. European Integration (4)
This course reviews the origins and development of the European Community/European Union and its institutions, theories of integration and the challenges inherent in the creation of a supranational political regime.

120I. Politics in Italy (4)
This course will provide a comparative perspective on the development and functioning of the Italian political system, including its political institutions, ideological traditions, parties and elections, political elites in the policy process, and the evolving importance of Italy within European integration.

120K. Politics of Developing Countries (4)
This course critically examines central concepts and theories of development, and assesses their utility in understanding political, economic, and social change in three regions of the developing world: Latin American, sub-Saharan Africa, and Southeast Asia.

121. Government and Politics of the Middle East (4)
This course examines the dynamics of the Russian Revolution from 1905 through the Stalinist period and recent years in light of theories of revolutionary change. Emphasis is placed on the significance of political thought, socioeconomic stratification, and cultural-historical conditions.

121C. The Chinese Revolution (4)
An analysis of the dynamics of the Chinese Revolution from the fall of the Qing Dynasty (1644–1911) to the present. Emphasis is placed on the relationship between political thought and the dynamics of the revolutionary process.

122. Politics of Empire in Comparative Perspective (4)
A comparative analysis of contemporary political systems and unification policies of the two Koreas. Prerequisite: PS 133D.

123. Politics of Human Rights (4)
What do we mean by “international human rights”? Are they universal? This course examines human rights abuses and redress over time, and across different regions of the world. From an empirically grounded perspective, we critically evaluate contemporary human rights debates. Prerequisite: upper-division standing.

123A. Communities and the Environment (4)
A popular new idea in environmental protection is to include local communities in conservation efforts. But what are these communities? What challenges do they face in governing their own resources? This course uses both theoretical and case studies to explore the political economy of community-based conservations.

124A. Foundations of Political Economy: Modern Capitalism (4)
This course explores how economic factors affect political institutions and how political action affects economic behavior in the United States and Western Europe. Particular attention is given to relations between business and labor, economic policy choices, and the impact of international trade. Prerequisite: PS 11 or consent of instructor.

126A. Politics and Economics in Eastern Europe (4)
This course explores the interrelationship of politics and economics in Eastern Europe, analyzing the historic evolution of the area, the socialist period, and contemporary political and economic change there. Prerequisite: upper-division standing.

127. Politics of Developing Countries (4)
This course critically examines central concepts and theories of development, and assesses their utility in understanding political, economic, and social change in the developing world. Case studies are drawn from three regions: Latin America, Sub-Saharan Africa, and Southeast Asia. Prerequisite: upper-division standing.

130A. The Soviet Successor States (4)
An overview of the historical background and contemporary politics of the fifteen successor states of the Soviet Union.

130A. The Soviet Successor States (4)
An overview of the historical background and contemporary politics of the fifteen successor states of the Soviet Union.

130A. The Soviet Successor States (4)
An overview of the historical background and contemporary politics of the fifteen successor states of the Soviet Union.

130A. The Soviet Successor States (4)
An overview of the historical background and contemporary politics of the fifteen successor states of the Soviet Union.

130A. The Soviet Successor States (4)
An overview of the historical background and contemporary politics of the fifteen successor states of the Soviet Union.

130A. The Soviet Successor States (4)
An overview of the historical background and contemporary politics of the fifteen successor states of the Soviet Union.

130A. The Soviet Successor States (4)
An overview of the historical background and contemporary politics of the fifteen successor states of the Soviet Union.

130A. The Soviet Successor States (4)
An overview of the historical background and contemporary politics of the fifteen successor states of the Soviet Union.
136B. Comparative Politics and Political Culture (4)
This course is designed to provide undergraduates with a sound introduction to cultural interpretations of power and politics. The course will also attempt to render an explicit account of the process of theory formation in social science. Special attention will be given to Africa and Asia.

136C. Comparative Bureaucracy (4)
Politics of the administrative state in the world's democracies. How political institutions influence governance across different types of democratic institutional environments.

137A. Comparative Political Parties and Interest Groups (4)
This course serves as an introduction to the comparative study of political parties and interest groups as well as an analytical discussion to parties, interest groups, and their role in democratic representation. Prerequisite: upper-division standing.

138D. Special Topics in Comparative Politics (4)
An undergraduate course designed to cover various aspects of comparative politics. May be repeated for credit two times, provided each course is a separate topic, for a maximum of twelve units.

INTERNATIONAL RELATIONS

140A. International Law and Organizations (4)
International law and organizations are central to the efforts to create a world order to limit armed conflict, regulate world economy, and advance programs for economic redistribution among nations, and set minimum standards for human rights. This course explains the theory of international law and organizations that is accepted by diplomats and compares this viewpoint to the analysis of social scientists concerning the past record and likely future of world order concerning conflict, economic redistribution, and human rights.

140B. Concepts and Aspects of Revolution (4)
Introduction to the analytical and comparative study of revolutionary movements and related forms of political violence. Topics include: the classical paradigms: types of revolutionary episodes; psychological theories; ideology and belief systems; coups; insurgencies; civil wars; terrorism and revolutionary outcomes. Prerequisite: upper-division standing.

140C. International Crisis Diplomacy (4)
A survey of international peacekeeping and peace enforcement in civil conflicts with a simulation of international diplomacy. Prerequisite: upper-division standing.

141B. Scientific Analysis of Conflict and Peace (4)
The use of data to evaluate theories of conflict. Course will examine the relationship between theory and evidence, measurement and research design. Specific issues examined may include the relationship of power, preference, economic relations, and domestic politics to conflict and peace. Prerequisites: POLI 12 and POLI 30.

142A. United States Foreign Policy (4)
United States foreign policy from the colonial period to the present era. Systematic analysis of competing explanations for U.S. policies—strategic interests, economic requirements, or the vicissitudes of domestic politics. Interaction between the U.S., foreign states (particularly allies), and transnational actors are examined. Prerequisite: PS 12 or consent of instructor.

142L. Insurgency and Terrorism (4)
"Terrorism" uses "illegitimate" violence to achieve political goals. This course uses philosophical, historical, and contemporary material from distinct cultures to understand which actions are defined as "terrorist," who uses them, why, and when, as well as the determinants of their effectiveness.

142M. U.S. Foreign Policy/Regional Security (4)
Lectures and readings examine U.S. foreign policy in Europe, Latin America, and East Asia with attention to current problems with specific nations (e.g., Bosnia) and/or issues central to U.S. national security. Prerequisite: upper-division standing.

142N. American Defense Policy (4)
An introduction to analytic techniques for assessing policy options in the field of national security. Prerequisite: upper-division standing.

142O. International Terrorism (4)
(Same as SOC 177) This course covers the definitions, history, and internationalization of terrorism; the interrelation of religion, politics, and terror; and the representation of terrorism in the media. A number of organizations and their activities in Europe and the Middle East are examined. Prerequisite: upper-division standing.

142P. Crisis Areas in World Politics (4)
This course examines the most critical areas in contemporary world politics. While the emphasis will be placed on American involvement in each crisis, an effort will be made to acquaint the student with its historical and political background. Credit will not be allowed for students who have taken POLI 154 "Crisis Areas in World Politics" in the following quarters: SP01; SP02; SP03; SP04; SP05; W006; SP06; S06; FA06; W07; SP07(A00); SP07(A00). Prerequisite: upper-division standing.

143A. War and Society (4)
How has war fighting evolved over the centuries? How has it varied across cultures? What has war been like for soldiers and civilians? How do societies mobilize for war, and how do they change in the short and long term from fighting? Prerequisite: upper-division standing.

144AB. Selected Topics in International Political Economy (4)
This course will consider major theories purporting to explain and predict the workings of the international order from the point of view of political economy. An extended discussion of one aspect of the economic order (e.g., the multinational corporation) will serve as the test case. PS 144AA and one quarter of economics recommended. Prerequisite: PS 12.

144E. The Politics of International Trade (4)
Examines theories of trade and protectionism, focusing both on relations among advanced industrial nations and on relations between developed and developing countries. Topics include standard and strategic trade theory, nontariff barriers to trade, export-led growth strategies, regional trade agreements, and the future of the WTO. Prerequisite: upper-division standing.

144F. The Politics of International Trade and Finance (4)
Examines the welfare and distributional aspects of international trade and finance as they relate to the politics of economic policymaking. Topics include: globalization in historical perspective; origins and consequences of trade policy; exchange-rate arrangements; international capital flows; currency crises; economic development.

145A. International Politics and Drugs (4)
This course examines the domestic and international aspects of the drug trade. It will investigate the drug issues from the perspectives of consumers, producers, traffickers, money launderers, and law enforcement. Course material covers the experiences of the United States, Latin America, Turkey, Southeast Asia, Western Europe, and Japan.

145C. International Relations After the Cold War: Theory and Prospect (4)
The nature of international politics appears to have changed dramatically since 1989. This course applies different theoretical approaches to enhance our understanding of the new international environment, future prospects for peace and war, and current problems of foreign policy. Prerequisite: upper-division standing.

146A. The U.S. and Latin America: Political and Economic Relations (4)
An analytical survey of U.S. relations with Latin America from the 1820s to the present, with particular emphasis on the post–Cold War environment. Topics include free trade and economic integration; drugs and drug trafficking; illegal migration and immigration control. Focus covers U.S. policy, Latin American reactions, dynamics of cooperation, and options for the future.

150A. Politics of Immigration (4)
Comparative analysis of attempts by the United States and other industrialized countries to initiate, regulate and reduce immigration from Third World countries. Social and economic factors shaping outcomes of immigration policies, public opinion toward immigrants, anti-immigration movements, and immigration policy reform options in industrialized countries. Prerequisites: upper-division standing required.

151. International Organizations (4)
Surveys the theory and function of IOs (UN, NATO, EU, World Bank, IMF) in promoting international cooperation in security, peacekeeping, trade, environment, and human rights. Discuss why IOs exist, how they work, and what challenges they face. Prerequisites: PS 12, upper-division standing.

154. Special Topics in International Relations (4)
An undergraduate course designed to cover various aspects of international relations. May be repeated for credit two times, provided each course is a separate topic, for a maximum of twelve units.

POLICY ANALYSIS

160AA. Introduction to Policy Analysis (4)
(Same as USP 101) This course will explore the process by which the preferences of individuals are converted into public policy. Also included will be an examination of the complexity of policy problems, methods for designing better policies, and a review of tools used by analysts and policy makers. Prerequisite: PS 10 or 11.

160AB. Introduction to Policy Analysis (4)
This course, students will use their knowledge of the political and economic foundations of public policy making to conduct research in a wide variety of public policy problems. Prerequisite: PS 160AA.

162. Environmental Policy (4)
This course will explore contemporary environmental issues such as global warming, endangered species, and land use. Students will be asked to analyze various policy options and to write case analyses. Policies may be debated in class.

163. Analyzing Politics (4)
Politics are understood as the combination of individual preferences and decisions into collective choices. What are the issues involved in aggregating individual preferences, what is the choice of rules—formal and informal—for doing so.

165. Special Topic: Policy Analysis (4)
An undergraduate course designed to cover various aspects of policy analysis. May be repeated for credit two times, provided each course is a separate topic, for a maximum of twelve units.

168. Policy Assessment (4)
The use of real data to assess policy alternatives. Introduction to benefit/cost analysis, decision theory, and the valuation of public goods. Applications to health, environmental, and regulatory economic policy making.
170A. Introductory Statistics for Political Science and Public Policy (4)
Introduction to the use of statistics in both political science and public policy concentrating on regression based approaches. Students undertake a series of small quantitative analyses and one project. Prerequisite: upper-division standing.

SPECIAL STUDIES

191A–B. Senior Honors Seminar: Frontiers of Political Science (4-4)
This course is open only to seniors interested in qualifying for departmental honors. Admission to the course will be determined by the department. Each student will write an honors essay under the supervision of a member of the faculty.

192. Senior Seminar in Political Science (1)
The senior seminar is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in political science at the upper-division level. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisite: departmental standing and/or consent of instructor.

(Same as Com/Gen 194; USP 194, HTD 193, SocE 194, COGS 194) Course attached to six-unit internship taken by students participating in the UCDC program. Involves weekly seminar meetings with faculty and teaching assistant and a substantial research paper. Prerequisite: participating in UCDC program.

197L. Political Science Washington Internship (6, 8)
This internship is attached to the UC in DC Program. Students participating in the UC in DC Program are placed in an internship in the Washington, D.C., area, requiring approximately seventeen to twenty-three hours per week. Prerequisite: consent of instructor.

199. Independent Study for Undergraduates (2 or 4)
Independent reading in advanced political science by individual students. (P/NP grades only.) Prerequisite: consent of instructor.

GRADUATE

All graduate courses are categorized as either seminars or independent study.

SEMINARS

200A. Foundations of Political Science (4)
An introduction to the theoretical concepts in the discipline of political science that are commonly used across various sub-fields. Each week will introduce the core concept(s) and discuss applications from several, if not all sub-fields in the department. Prerequisite: graduate student standing.

200B. Democracy (4)
An overview of normative and positive issues associated with modern democracies. The appeal and the social, political, and economic arrangements of democracies will be explored. Prerequisite: graduate student standing.

200C. States and Markets (4)
An overview of the normative and positive issues associated with decentralized (market) versus centralized (political) mechanics of allocation. The appropriate role of government in the economy will be explored. Prerequisite: graduate student standing.

204A. Research Design (4)
This course will study various approaches to knowledge accumulation in social science. A basic outline of scientific method will be used to examine the difference between theories as assumptions and axioms and hypotheses as “if-then” statements derived from theory. Experimental, quasi-experimental, and qualitative designs will be discussed. Prerequisite: graduate student standing.

204B. Quantitative Methods I (4)
The use of quantitative methods (particularly multiple regression and its extensions) in political science. Emphasis on understanding the methods and using them in political science applications. Prerequisite: graduate student standing.

204C. Game Theory I (4)
This course introduces students to the rudiments of decision theory and game theory. Emphasis will be placed on modeling and solving games. Prerequisite: graduate student standing.

210A. Systems of Political Thought: Thucydides to Augustine (4)
This course is a preparation for the field examination in political theory. It will provide an intensive and critical introduction to European political thought from Thucydides to Augustine. Some of the secondary literature on this period will also be explored. Prerequisite: graduate student standing or consent of instructor.

210B. Systems of Political Thought: Machiavelli to Rousseau (4)
This course is a preparation for the field examination in political theory. It will provide an intensive and critical introduction to European political thought from Machiavelli to Rousseau. Some of the secondary literature on this period will also be explored. Prerequisite: graduate student standing or consent of instructor.

210C. Systems of Political Thought: Kant to Nietzsche (4)
This course is a preparation for the field examination in political theory. It will provide an intensive and critical introduction to European political thought from Kant to Nietzsche. Some of the secondary literature on this period will also be explored. Prerequisite: graduate student standing or consent of instructor.

210D. Systems of Political Thought: Contemporary (4)
This course is a preparation for the field examination in political theory. It will provide an intensive and critical introduction to nineteenth-century political thought. Some of the secondary literature on this period will also be explored. Prerequisite: graduate student standing or consent of instructor.

214. Marxist and Post-Marxist Political Philosophy (4)
An examination of selected texts in Marxist and post-Marxist political philosophy, with a focus on the theme of individual and collective identity including issues concerning alienation, consciousness, and ideology. Prerequisite: graduate student standing.

216. Contemporary Liberal and Democratic Theory (4)
Normative approaches to liberty, equality, justice, and democracy, mostly Anglo-American and empirical approaches to justice. Thinkers such as Rawls, Habermas, Nozick, Dworkin, Raz, Roemer, Elster, Strom, Bowles, and Gintis may be considered. Prerequisite: graduate student standing.

219. Special Topics in Political Theory (4)
This seminar is an examination of the different approaches to the study of political theory. Issues and research areas will vary each time the course is offered. Prerequisite: graduate student standing or consent of instructor.

220A. Comparative Politics: State and Society (4)
This course will provide a general literature review in comparative politics to serve as preparation for the field examination. Prerequisite: graduate student standing, or consent of instructor.

220B. Comparative Politics: Institutions (4)
This is a second course in comparative politics designed as a preparation for the field examination. It will focus on the comparative study of political institutions. Prerequisite: graduate student standing, or consent of instructor.

220C. Origins of the State (4)
Survey of theories, with empirical cases explaining origins of the modern state. Prerequisite: graduate student standing.

222A. American Politics in Comparative Perspective (4)
Research seminar that focuses on systematic comparisons of the American political system with about thirty other contemporary democracies, particularly the other large industrialized countries. A central aim will be to assess the claims about American “exceptionalism.” Prerequisite: graduate standing.

223A. Comparative Parliamentary Studies (4)
A survey of the academic literature on parliamentary studies, comparing the research on legislative elections, behavior, and organization in American, European, and Asian democracies. The course will also compare various approaches to studying legislative activity. Prerequisite: graduate student standing.

224. The Politics of Democratization (4)
A survey of theories explaining the processes of democratization and democratic stability. Prerequisite: graduate student standing.

224A. Elections in Consolidating Democracies (4)
Course looks at elections in consolidating democracies with an eye to evaluating existing theories of elections with new data. Also explores new empirical patterns in countries around the world, especially Africa, Latin America, Eastern Europe, and the Soviet successor states. Prerequisite: graduate student standing or consent of instructor.

225B. The Nation-State (4)
A reading and research seminar on the origins, development, and politics of nationalism and the nation-state. Prerequisite: graduate student standing.

227. Comparative Political Economy (4)
An introduction to seminal and current research in comparative political economy. Course explores how various political institutions and processes affect economic outcomes (e.g., growth, inequality) and how the economy influences politics (e.g., democratization, electoral institutions, and welfare states). Prerequisite: POLI 200C or consent of instructor.

228. Comparative Bureaucracy (4)
This course examines the politics of the administrative state in the world’s democracies. The course focuses on how political institutions affect the nature of governance in democracies. Prerequisite: graduate student standing.

229. Special Topics in Comparative Politics (4)
This seminar is an examination of the different approaches to the study of comparative politics. Issues and research areas will vary each time the course is offered. Prerequisite: graduate student standing or consent of instructor.

231E. Politics of Development (4)
An introduction to the study of international relations. A survey of the principal theories and approaches to the study of international relations. Prerequisite: graduate student standing or consent of instructor.

235A. Latin American Politics (4)
An introductory reading seminar on Latin American politics to acquaint students with leading schools of thought, provide critical perspective on premises and methodology, and identify themes for further inquiry. Themes include authoritarianism, revolution, democratization, regional conflict, and emergence of middle-level powers. Prerequisite: graduate student standing.

236. Immigration Policy and Politics (4)
An interdisciplinary seminar covering origins, consequences, and characteristics of worker migration from Third World countries (especially Mexico, Central America, and the Caribbean basin) to the United States, from the nineteenth century to the present. Prerequisite: graduate student standing or consent of instructor.

238. State and Society in Modern East Asia (4)
An examination of the role of the state in economic development in major East Asian societies and its impact on democratization. Case studies will vary but will include China, Japan, Korea, and, as well as at least one other society. Prerequisite: graduate student standing.

240. International Relations Theory (4)
A survey of the principal theories and approaches to the study of international relations. Prerequisite: graduate student standing or consent of instructor.
243. International Security (4)
A colloquium surveying the major theoretical controversies in the study of international and national security. Prerequisite: graduate standing or consent of instructor.

244A. European Integration (4)
This seminar provides perspectives on the theories and politics of European integration. Analysis will focus on the development of the European Union, the functioning of core institutions, and the challenges of creating a supranational political regime.

245. International Political Economy (4)
A seminar surveying the major theoretical controversies in the study of international political economy. Prerequisite: graduate standing or consent of instructor.

247A. Quantitative International Relations (4)
Explores empirical research in international relations with special emphasis on international conflict. Topics covered include theories on the causes of war, the distribution of power and conflict, formal and informal alignment, interdependence and conflict, linkages between domestic and international processes, and issues of research design. Students who have previously taken 247 may not take this course for credit. Prerequisite: graduate standing or consent of instructor.

247B. Formal Models in International Relations (4)
Explores formal analytic and primarily game-theoretic research in international relations with emphasis on conflict and bargaining. Topics include: causes of war and peace, conventional and nuclear deterrence, crisis bargaining, arms race, and two-level games.

248. Special Topics in International Relations (4)
(Same as IRGN 290) This seminar is an examination of the different approaches to the study of international relations. Issues and research areas will vary each time the course is offered. Prerequisite: graduate standing or consent of instructor.

251. American Political Institutions (4)
A critical examination of major contributions to the theoretical and empirical literature on the U.S. Congress, presidency, and federal bureaucracy. Prerequisite: graduate standing or consent of instructor.

252. American Politics: Behavior (4)
Theoretical and empirical perspectives on voting and other forms of political participation, parties, interest groups, and public opinion in the United States. Prerequisite: graduate standing or consent of instructor.

253. Research in State Politics (4)
This seminar will survey the existing literature in state politics with an eye toward proposing new research designs. Topics will include: state variation across states in electoral systems, campaign finance laws, political culture, legislative institutions, judicial arrangements, and policy outcomes. Prerequisite: graduate standing or consent of instructor.

254. American Political Development (4)
This course examines the historical evolution of the American state with particular attention to theories of political development. Special topics include the development of the party system, electoral and policy realignments, and the evolution of national political institutions. Prerequisite: graduate standing in any discipline of the social sciences or humanities or consent of instructor.

255. Urban Politics (4)
Examines central works on the development of political institutions in U.S. cities; analyses of community power structures; who governs, why, and to what ends; processes and prospects for minority empowerment; the prominence of “growth machines”: the political economy of contemporary cities. Prerequisite: graduate standing or consent of instructor.

256A. Judicial Politics (4)
Judicial politics is the study of law and courts as political institutions and judges as political actors, focusing on decision-making and power relations within courts, within the judicial hierarchy, and within the constitutional system. Prerequisite: graduate standing or consent of instructor.

257. Voting and Elections (4)
This course is designed to acquaint graduate students with the central themes and issues in the study of voting in national elections. Prerequisite: graduate standing or consent of instructor.

259. Special Topics in American Politics (4)
This seminar is an examination of the different approaches to the study of American politics. Issues and research areas will vary each time the course is offered. Prerequisite: graduate standing or consent of instructor.

270. Mathematical and Statistical Foundations (4)
This course reviews essential calculus and linear algebra and introduces probability theory (probability rules, random variables, univariate and multivariate distributions) and mathematical statistics (sampling distributions, estimation and inference frameworks). Prerequisite: graduate standing.

276. Mathematical Modeling (4)
This course demonstrates how to construct mathematical models of phenomena of interest to political science. Specific applications examined may include models for the distributions of state size, war magnitude, and democracy over time and space. Prerequisite: graduate standing.

277. Measurement Theory (4)
This course is concerned with methods of estimating latent dimensions of preference and similarity from individuals’ observed choices and judgments. Factor Analysis, Multidimensional Scaling, and related techniques are studied both with classical maximum likelihood and Bayesian methods. Prerequisite: graduate standing.

279. Special Topics in Methodology (4)
This seminar is an examination of the different approaches to the study of methodology. Issues and research areas will vary each time the course is offered. Prerequisite: graduate standing or consent of instructor.

282A-B-C. Workshop on State and Society (4-4-4)
Examination of recent research in American politics, comparative politics, and political theory concerning the relationship of politics to society; development and presentation of research projects by graduate students; presentations of research projects by faculty. Second-year students present seminar paper; third-year students present dissertation prospectus; candidates make yearly presentations of dissertation research. Prerequisite: PS 202 or consent of instructor.

283A-B-C. Workshop in International Relations (4-4-4)
Examination of recent research in international politics; development and presentation of research projects by graduate students; presentations of research projects by faculty. Second year students present seminar paper; third year students present dissertation prospectus; candidates make yearly presentations of dissertation research. Prerequisite: PS 202 or permission of instructor.

284. Workshop on Scientific Communication (4)
Forms of scientific communication, practical exercise in scientific writing and short oral communication, and in criticism and editing; preparation of illustrations, preparation of proposals; scientific societies, and the history of scientific communication. Examples from any field of science, most commonly political science, economics, and law. Prerequisite: PS 202 or consent of instructor.

INDEPENDENT STUDY

298. Directed Reading (1–12)
Guided and supervised reading in the literature of the several fields of political science.

299. Dissertation Research (1–12)
Independent work by graduate students engaged in research and writing of second-year paper and doctoral dissertation, under direct supervision of advisor.

500. Apprentice Teaching (1–4)
A course in which teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty: handling of discussions, preparation, and grading of examinations and other written exercises, and student relations. Twenty-four units of teaching apprenticeship meets the department teaching requirement for the Ph.D. degree.

501. Seminar on Teaching Development—American Politics (1–4)
A seminar designed for graduate students serving as teaching assistants in American politics, includes discussion of teaching theories, techniques, and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. Prerequisite: graduate standing.

502. Seminar on Teaching Development—Comparative Politics (1–4)
A seminar designed for graduate students serving as teaching assistants in comparative politics, includes discussion of teaching theories, techniques, and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. Prerequisite: graduate standing.

503. Seminar on Teaching Development—International Relations (1–4)
A seminar designed for graduate students serving as teaching assistants in international relations, includes discussion of teaching theories, techniques, and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. Prerequisite: graduate standing.

504. Seminar on Teaching Development—Political Theory (1–4)
A seminar designed for graduate students serving as teaching assistants in political theory, includes discussion of teaching theories, techniques, and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. Prerequisite: graduate standing.
THE UNDERGRADUATE PROGRAM

MAJOR PROGRAMS

The department offers three degree programs: bachelor of arts (B.A.), bachelor of science (B.S.), and the contiguous bachelor of science (B.S.)/master of arts (M.A.). We offer courses in all major areas of experimental psychology, with emphasis in behavior analysis, clinical psychology, cognitive psychology and cognitive neuropsychology, developmental psychology, human information processing, neuroscience and behavior, psychopathology, sensation and perception, and social psychology. The department emphasizes research in the experimental and theoretical analysis of human and animal behavior, and the study of the mind. Students who major in psychology can expect to develop a knowledge of a broad range of content areas, as well as basic skills in experimental and analytic procedures. Once a student has decided upon a major in psychology, he or she is highly encouraged to consult with the Psychology Student Affairs Office.

Majors must have departmental approval for electives taken outside the department. Of the required courses in the area of specialization (three upper-division courses and two research experiences), no more than two may be taken outside the department. We recommend consulting the department before enrolling in courses offered by other departments.

PREREQUISITES FOR THE B.A.

Experimental psychology uses the tools and knowledge of science: calculus, probability theory, computer science, chemistry, biology, physics, and statistics. Accordingly, students in upper-division courses must have an adequate background in these topics. Prerequisites for individual courses are specified in the catalog.

The prerequisites for the bachelor of arts degree in psychology are as follows:
1. Three lower-division, general-introductory natural science courses from the listing of the approved UC San Diego courses below or their equivalent. (The three courses can be distributed in any manner.)
 - Biology: 1, 2, 3, 10, 20, 24, 26
 - Chemistry: 4, 6A, 6B, 6C, 11, 12, 13
 - Physics: Any of the 1 and 2 series, 10, 11
2. Three formal skills courses, at least one of which must be calculus. The other two courses may consist of any combination of courses in calculus or logic. Acceptable calculus courses at UC San Diego include Mathematics 10A-B-C, 20A-B-C. Acceptable logic courses at UCSD include Philosophy 10 and 12.
3. One introduction to computer programming course. Acceptable courses at UCSD are CSE 3, CSE 5A, CSE 5B, CSE 8A, CSE 8B, CSE 11, CSE 12, MAE 5, MAE 9, MAE 10, or CoqSci 18. Other courses will be considered by petition only if they are primarily concerned with programming in a high-level computer language.

All courses listed under 1–3 may be taken Pass/Not Pass.

4. One quarter of statistics. Acceptable courses at UCSD are Psychology 60, Economics 120A, Sociology 60, Mathematics 11, 181, or 183, BIEB 100, Cognitive Science 14, or equivalent. Statistics MUST be taken for a letter grade.

Students should complete these lower-division requirements by the end of the sophomore year.

MAJOR REQUIREMENTS FOR THE B.A.

A minimum of twelve upper-division courses in psychology is required. Five must be taken from the core courses (Psychology 101–106), and at least seven from the upper-division elective courses. A minimum of six upper-division psychology courses must be taken at UCSD. These courses must be taken for a letter grade; courses taken as Pass/Not Pass prior to declaring psychology as a major cannot be used to satisfy the major requirement. Excluded from credit toward the major are Psychology 199 (Special Studies); however, Psychology 195 (Undergraduate Instructional Apprentice) can be credited once. Majors must obtain departmental approval for electives taken outside the department. A grade-point average of at least 2.0 in the upper-division courses of the major is required for graduation.

PREREQUISITES FOR THE B.S.

In general, the lower-division courses required for the B.S. degree in psychology overlap with the B.A. major. However, to fulfill the formal skills, we require the mathematics sequence 20A-B-C.

MAJOR REQUIREMENTS FOR THE B.S.

A minimum of twelve upper-division courses is required. Five of these courses must come from the core courses (Psychology 101–106). The seven elective courses may be chosen from any of the upper-division courses listed for the psychology program at UCSD. B.S. students must choose an area of concentration (behavior analysis, clinical psychology, cognitive psychology, and cognitive neuropsychology, developmental psychology, neuroscience and behavior, sensation and perception, or social psychology), and three courses of the seven electives must be in the chosen area of concentration.

In addition to the twelve upper-division courses, all B.S. degree students must complete course(s) to fulfill the research experience requirement. Research experience courses may comprise either one laboratory course or two Psychology 199 courses (Independent Study). If two Psychology 199 courses are taken to fulfill this requirement, they must be directed by the faculty within the chosen area of concentration and culminate in a research paper approved by the advisor and submitted to the Psychology Student Affairs Office no later than the graduating quarter. The 199 sequence should be taken with the same faculty member.

UPPER-DIVISION COURSE REQUIREMENTS FOR THE B.S.

Core Courses, of which five have to be taken for any area of concentration:
- PSYC 101. Intro to Developmental Psychology
- PSYC 102. Intro to Sensation and Perception
- PSYC 103. Intro to Principles of Behavior
- PSYC 104. Intro to Social Psychology
- PSYC 105. Intro to Cognitive Psychology

2010-2011 UC SAN DIEGO GENERAL CATALOG • PSYCHOLOGY
Concentration in Behavior Analysis

Behavior analysis is based on the principles of Pavlovian and operant conditioning, and other aspects of contemporary associative learning theory. It also includes the application of reinforcement principles and other behavior modification techniques in applied settings (applied behavior analysis).

Courses

PSYC 109. Lab/Applied Behavior Analysis
PSYC 120. Learning and Motivation
PSYC 121. Lab/Operant Psychology
*to be taken concurrently with PSYC 120
PSYC 132. Hormones and Behavior
PSYC 134. Eating Disorders
PSYC 135. Evolutionary Principles/Animal Social Behavior
PSYC 140. Lab/Human Behavior
*to be taken concurrently with PSYC 120
PSYC 143. Control and Analysis of Human Behavior
PSYC 154. Behavior Modification
PSYC 168. Psychological Disorders of Childhood
PSYC 171. Neurobiology Learning and Memory
PSYC 184. Choice and Self Control
PSYC 188. Impulse Control Disorders
PSYC 199. Independent Study courses in this field must culminate in a research paper to fulfill lab requirement (but do not count as upper-division psychology courses towards the major).

Concentration in Neuroscience and Behavior

This area studies how the nervous system mediates behavioral effects in the realms of motivation, perception, learning and memory, and attention. It also includes human neurophysiology and aphasia.

Courses

PSYC 107. Lab/Substance Abuse Research
PSYC 114. Lab/psychophysiological Perspectives on the Social Mind
PSYC 125. Clinical Neuropsychology and Assessment
PSYC 129. Logic of Perception
PSYC 132. Hormones and Behavior
PSYC 133. Circadian Rhythms—Biological Clocks
PSYC 134. Eating Disorders
PSYC 135. Evolutionary Principles/Animal Social Behavior
PSYC 150. Cognitive Neuroscience of Vision
PSYC 159. Physiological Basis of Perception
PSYC 169. Brain Damage and Mental Function
PSYC 170. Introduction to Cognitive Neuropsychology
PSYC 171. Neurobiology Learning and Memory
PSYC 179. Drugs, Addiction, and Mental Disorders
PSYC 181. Drugs and Behavior
PSYC 188. Impulse Control Disorders
PSYC 189. Brain, Behavior, and Evolution
PSYC 190. Parenting
PSYC 199. Independent Study courses in this field must culminate in a research paper to fulfill lab requirement (but do not count as upper-division psychology courses towards the major).

Concentration in Clinical Psychology

This area studies psychological and physiological causes of and treatments for mental illness in children and adults.

Courses

PSYC 107. Lab/Substance Abuse Research
PSYC 109. Lab/Applied Behavior Analysis
PSYC 124. Intro to Clinical Psychology
PSYC 125. Clinical Neuropsychology and Assessment
PSYC 132. Hormones and Behavior
PSYC 133. Circadian Rhythms—Biological Clocks
PSYC 134. Eating Disorders
PSYC 151. Test and Measurement
PSYC 154. Behavior Modification
PSYC 155. Social Psychology and Medicine
PSYC 163. Abnormal Psychology
PSYC 168. Psychological Disorders in Children
PSYC 172. Human Sexuality
PSYC 184. Choice and Self-Control
PSYC 188. Impulse Control Disorders
PSYC 199. Independent Study courses in this field must culminate in a research paper to fulfill lab requirement (but do not count as upper-division psychology courses towards the major).

Concentration in Cognitive Psychology and Cognitive Neuropsychology

1. The cognitive area studies reasoning, thinking, language, judgment, and decision-making in adults and children (including attention, memory, and visual and auditory information processing).

2. The cognitive neuropsychology area studies cognitive processes and their implementation in the brain. Cognitive neuroscientists use methods drawn from brain damage, neuropsychology, cognitive psychology, functional neuroimaging, and computer modeling.

Courses

PSYC 108. Introduction to Cognitive Neuroscience
PSYC 114. Lab/psychophysiological Perspectives on the Social Mind
PSYC 115. Lab/Cognitive Psychology
PSYC 118. Lab 118A-B/Language Processing
PSYC 119. Lab/psycholinguistics
PSYC 128. Psychology of Reading
PSYC 129. Logic of Perception
PSYC 137. Social Cognition
PSYC 141. Evolution and Human Nature
PSYC 142. Psychology of Consciousness
PSYC 144. Memory and Amnesia
PSYC 145. Psychology of Language
PSYC 146. Language and Conceptual Development
PSYC 148. Psychology of Judgment and Decision
PSYC 150. Cognitive Neuroscience of Vision
PSYC 152. Concepts of Intelligence
PSYC 156. Cognitive Development in Infancy
PSYC 161. Introduction to Engineering Psychology
PSYC 170. Introduction to Cognitive Neuropsychology
PSYC 171. Neurobiology Learning and Memory
PSYC 187. Development of Social Cognition
PSYC 191. Psychology of Sleep
PSYC 199. Independent Study courses in this field must culminate in a research paper to fulfill lab requirement (but do not count as upper-division psychology courses towards the major).

Concentration in Developmental Psychology

This area studies all aspects of human development with emphasis on social and personality development, perceptual development, and language acquisition. It also includes the study of developmental psychopathology.

Courses

PSYC 109. Lab/Applied Behavior Analysis
PSYC 114. Lab/psychophysiological Perspectives on the Social Mind
PSYC 133. Circadian Rhythms—Biological Clocks
PSYC 135. Evolutionary Principles/Animal Social Behavior
PSYC 136. Cognitive Development
PSYC 141. Evolution and Human Nature
PSYC 145. Psychology of Language
PSYC 152. Concepts of Intelligence
PSYC 156. Cognitive Development in Infancy
PSYC 158. Interpersonal Relationships
PSYC 168. Psychological Disorder of Childhood
PSYC 172. Human Sexuality
PSYC 180. Adolescence
PSYC 185. Applied Developmental Psychology
PSYC 187. The Development of Social Cognition
PSYC 190. Parenting
PSYC 199. Independent Study courses in this field must culminate in a research paper to fulfill lab requirement (but do not count as upper-division psychology courses towards the major).

(For additional qualifying courses, see the department’s Student Affairs Office, 1533 Mandler Hall.)

Concentration in Sensation and Perception

This area studies how our sense organs and brain make it possible for us to construct a consciously experienced representation of the environment. Experiments using stimuli and computer control are used to test models of sensory or perceptual processes. Processes of particular interest include color vision, motion perception, and auditory illusions and paradox.

Courses

PSYC 125. Clinical Neuropsychology and Assessment
PSYC 128. Psychology of Reading
PSYC 129. Logic of Perception
PSYC 138. Sound and Music Perception
PSYC 150. Cognitive Neuroscience of Vision
PSYC 159. Physiological Basis of Perception
PSYC 169. Brain Damage and Mental Functions
PSYC 182. Allusions and the Brain
PSYC 199. Independent Study courses in this field must culminate in a research paper to fulfill lab requirement (but do not count as upper-division psychology courses towards the major).

Concentration in Social Psychology

This area studies human behavior in social situations, with specialization in such topics as emotion, aggression, social cognition, and aesthetics. It also encompasses applied social psychology, including psychology and the law and behavioral medicine.

Courses

PSYC 114. Lab/Psychophysiological Perspectives on the Social Mind
PSYC 127. Applied Social Psychology
PSYC 130. Delay of Gratification
PSYC 135. Evolutionary Principles/Animal Social Behavior
PSYC 137. Social Cognition
PSYC 139. Social Psychology of Sports
PSYC 141. Evolution and Human Nature
PSYC 149. Social Psychology of Theater
PSYC 152. Concepts of Intelligence
PSYC 153. Psychology of Emotion
PSYC 155. Social Psychology and Medicine
PSYC 157. Happiness
PSYC 158. Interpersonal Relationships
PSYC 160. Groups
PSYC 162. Psychology and the Law
PSYC 172. Human Sexuality
PSYC 175. Psychology and the Arts
PSYC 178. Industrial Organization Psychology
PSYC 186. Psychology and Social Policy
PSYC 187. Development of Social Cognition
PSYC 190. Parenting
PSYC 199. Independent Study courses in this field must culminate in a research paper to fulfill lab requirement (but do not count as upper-division psychology courses towards the major).

HONORS PROGRAM

Students are encouraged to participate in the department's honors program. It is strongly recommended for all students interested in graduate school. A minimum overall GPA of 3.5 (3.3 for transfer students, based on transfer GPA) is a prerequisite. Admission is granted by application in the fall quarter of the junior year (Deadline: October 31).

This program is composed of the following courses:

1. **Junior Year**
 - Winter:
 - Junior Honors Research Seminar (PSYC 110)
 - Advanced Statistics and Research Methods (PSYC 111A)
 - Spring:
 - Advanced Statistics and Research Methods (PSYC 111B)

2. **Senior Year**: A year-long independent research project (PSYC 194-A-B-C) under the sponsorship of a faculty advisor. This research culminates in an honors thesis.

3. At least one laboratory course (Psychology 107, 109, 114, 115, 118A, 118B, 119, 120/121, 120/140, 127) or, upon petitioning, two Psychology 199 Independent Study courses culminating in a research paper accepted by the advisor (199s, however, do not count as upper-division credit toward the major).

 Successful completion of the Honors Program requires a grade of A- in the Psychology 194 series and a minimum GPA of 3.5 in the upper-division courses taken for the major.

MINOR PROGRAM

The minor in psychology consists of seven four-unit courses and a minimum GPA of 3.5 in the upper-division courses taken for the major.

EDUCATION ABROAD

Students are often able to participate in the UC Education Abroad Program (EAP) and UCSD's Opportunities Abroad Program (OAP) while still making progress toward the major. Students considering this option should discuss their plans with the Psychology Student Affairs Office before going abroad, and courses taken abroad must be approved by the department. Students may only receive credit for up to two core courses (PSYC 101-106) from their courses taken abroad. Information on EAP/OAP is detailed in the Education Abroad Program of the UC San Diego General Catalog. Interested students should contact the Program Abroad Office in the International Center.

TRANSFER CREDIT

In general, all introductory courses in experimental psychology are accepted for lower-division credit toward a psychology minor. Lower-division courses covering special topics in psychology (e.g., personal adjustment, human sexuality) will be accepted only if: 1) the student had a general introductory course as a prerequisite, and 2) the student had satisfied this prerequisite before taking the special topics course. Upper-division psychology courses will be evaluated for transfer credit on a course by course basis.

THE GRADUATE PROGRAM

The Department of Psychology provides broad training in experimental psychology. Increased specialization and the general burgeoning of knowledge make it impossible to provide training in depth in every aspect of experimental psychology, but most aspects are represented in departmental research.

PREPARATION

Apart from the general university requirements, the department generally expects adequate undergraduate preparation in psychology. A major in the subject, or at least a strong minor, is normally a prerequisite, but applicants with good backgrounds in such fields as biology and mathematics are also acceptable.

LANGUAGE REQUIREMENTS

There is no foreign language requirement.

GRADUATE CURRICULUM

Students must fulfill all course requirements (stated below) while registered as graduate students in psychology at UC San Diego. There may occasionally be exceptions granted to this rule. Requests for exception should be in the form of petitions from students and their advisors to the Committee on Graduate Affairs. It is in the best interest of the student if these petitions are forthcoming at the time of admission to the graduate program. In this way, the committee, the students, and their advisors will all be aware of the course requirements before any of them are taken.

PROGRAM OF STUDY

Courses are divided into six areas: behavior analysis (including basic and applied), neuroscience and behavior (including neuropsychology and neurophysiology), cognitive (including attention, language, and perception), developmental (including language acquisition), sensation and perception (including vision and audition), and social (including health and law). The Graduate Affairs Committee provides an approved list of courses from these areas. In the first year of study, each student must fulfill the following four requirements:

1. Each student must fulfill a quantitative methods requirement, either by taking two quantitative methods courses approved by the Graduate Affairs Committee (currently 201A and 201B), or by showing a satisfactory knowledge of these courses through an examination.
2. In addition to the quantitative methods requirement, each student is expected to take four proseminars and four approved courses from the list prepared by the Graduate Affairs Committee. All course work must be completed by the end of the third year.
3. Each first-year graduate student is required to submit a research paper on the research project (Psychology 270ABC). The paper should be comparable in style, length, and quality to papers published in the normal, refereed journals of the student’s research area. (The publication manual of the American Psychological Association, fourth edition, 1995, gives an acceptable format.) The research paper will be read and evaluated by the student’s research advisor and by at least two other readers appointed by the graduate advisor. The research paper is presented orally at a research meeting held at the end of the spring quarter. Attendance at this meeting is a requirement for the department’s graduate students and faculty. Typically, each student is allowed ten minutes to present the paper, with a five-minute question period following the presentation.

4. A teaching requirement must be met. (See below.)

All students are evaluated by the entire faculty at the end of the academic year. The normal...
minimum standards for allowing a student to continue beyond the first year are

a. Satisfactory completion of the first-year research project (including oral presentation)
b. At least a B average in the courses which fulfill the area requirements
c. Having a faculty advisor in the Department of Psychology

Any student whose needs cannot be reasonably met with courses conforming to these guidelines may petition the Graduate Affairs Committee. The petition should contain a specific list of courses and a statement of justification and must be approved by the student’s advisor.

ADVANCING TO CANDIDACY

In order to advance to Ph.D. candidacy a student must
1. Complete all first-year requirements
2. Complete an additional four elective courses from the list prepared by the Graduate Affairs Committee
3. Complete the qualifying examination for the Ph.D.

The qualifying examination is divided into two sections to be taken separately by all students. Part I of the qualifying exam consists of a paper written by the student that is modeled after those published in Psychological Bulletin or Psychological Review. Ideally, the paper would consist of a detailed review and theoretical synthesis of a coherent body of research. The paper should demonstrate independent and original thinking on the part of the student, and should either take a theoretical stance or recommend experiments designed to resolve theoretical ambiguities (i.e., the paper should not merely review published research).

Students form a qualifying committee in much the same way that they form a dissertation committee. The same rules apply, except that members from outside the department need not be included (although up to two may be). Once the committee is formed, the student should prepare a brief (e.g., three pages) proposal defining the area of research and the theoretical issues that will be addressed in the paper. A proposal meeting is then arranged (usually in spring quarter of the student’s second year), and committee members may at that time recommend changes in the scope of the paper and define their expectations.

The paper does not have a prescribed length, although low-end and high-end limits of thirty and fifty pages, respectively, seem reasonable. An oral defense of the paper is required (and should be completed by the end of the student’s third year). Part II of the qualifying examination is the defense of the dissertation proposal. This will normally follow Part I of the qualifying examination and will be an oral examination including outside examiners.

TEACHING

In order to acquire adequate teaching experience, all students are required to participate in the teaching activities of the department for at least four years (one quarter for the first year and two quarters the second through the fourth year).

RESIDENCY

Each student must complete the requirements for qualification for candidacy for the Ph.D. degree by the end of the third year of residence. Any student failing to qualify by this time will be placed on probation. A student who fails to qualify by the end of the spring quarter of the fourth year of residence will automatically be terminated from the department.

No students may allow more than eight calendar years to lapse between starting the graduate program and completing the requirements for the Ph.D. Degree students will automatically be terminated from the program at the end of the spring quarter of their eighth calendar year in the department.

RESEARCH

In each year of graduate study, students enroll in a research practicum (Psychology 270 in the first year; Psychology 296 or 299 in subsequent years). Students are assigned to current research projects in the department and receive the personal supervision of a member of the staff.

DEPARTMENTAL PH.D. TIME LIMIT POLICIES

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed eight years. Total registered time at UCSD cannot exceed eight years.

SPECIALIZATION IN ANTHROPOGENY

This is a transdisciplinary graduate specialization in anthropogeny with the aim of providing graduate students the opportunity to specialize in research and education on explaining the origins of the human phenomenon. The aim is to rectify the absence of existing training programs that provide such a broad and explicitly transdisciplinary approach—spanning the social and natural sciences—and focusing on one of the oldest questions known to humankind, namely, the origins of humans and humanity. This specialization is not a stand-alone program, but aims at providing graduate students who have just embarked on their graduate careers with the opportunity to interact and communicate with peers in radically different disciplines throughout the duration of their Ph.D. projects. Such communication across disciplines from the outset is key to fostering a capacity for interdisciplinary “language” skills and conceptual flexibility.

ADMISSION TO THE SPECIALIZATION

The psychology graduate program will advertise the specialization to those students in our programs who have an interest in human origins. Qualifying applicants will have the opportunity to enroll for the specialization.

SPECIALIZATION REQUIREMENTS

Students pursuing this specialization will be required to take a series of courses in addition to research rounds over four years of study. It is advised that students begin their course work in their second year.

- Course work: Introduction to Anthropogeny (BIOM 225) and Advanced Anthropogeny (BIOM 229) are each taken once, in the winter and spring of the students’ second year. Current Topics in Anthropogeny (BIOM 218) is to be taken every quarter for four years.
- Research Rounds: Monthly seminars during which all participating students talk about their respective research.

QUALIFYING EXAMINATION

Psychology students in the anthropogeny specialization must meet the departmental requirement for advancement to candidacy, including the qualifying paper and dissertation proposal. In addition, students must meet internal deadlines, mentoring provisions, and proposal standards of the anthropogeny specialization track.

DISSERTATION

Ph.D. students must complete a dissertation, which meets all requirements of the home program. In addition, it is expected that the Ph.D. dissertation is broadly related to human origins and will be interdisciplinary in nature.

TIME LIMITS

It is expected that students will retain the same time to degree as students not pursuing this specialization. Additional course load consists only of two regular courses (two quarters twenty lectures each). The third proposed course takes place only three times a year from Friday noon to Saturday evening.

MAJOR REQUIREMENTS FOR THE CONTIGUOUS B.S./M.A.

A contiguous program leading to a bachelor of science degree and a master of arts degree in psychology is offered to those undergraduate students who are enrolled in the bachelor of science major offered in the Department of Psychology at UC San Diego. Qualified students are able to obtain the M.A. degree within one year following receipt of the B.S. degree. Students interested in applying to this program must consult with the B.S./M.A. advisor in the Psychology Student Affairs Office fall quarter of their junior year.

The program is open only to UCSD undergraduates. The Department of Psychology does not have financial aid available for students enrolled in this program.

ELIGIBILITY AND ENROLLMENT

To be eligible, students must have completed the first two quarters of their junior year in residence at UCSD and must have an overall UCSD GPA of at least 3.0 and students’ major GPA should be at least 3.3. It is the responsibility of the prospective student to select a faculty member who would be willing to serve as the student’s advisor and in whose laboratory the student would complete at least twenty-four units of research over a two-year period. Twelve of the twenty-four units of research Psychology (194A-B-C or 196A-B-C) must be completed during the student’s senior undergraduate year and must be taken in addition to the requirements for the bachelor of science degree. The remaining twelve units of research will be taken in their year of graduate study as part of their M.A.
There are two applications:
1. In fall quarter of the junior year, students apply to the contiguous B.S./M.A. track if they fulfill the above requirements.
2. In the spring quarter of their senior year, students apply to the M.A. program.

REQUIREMENTS FOR THE M.A.

For an M.A. in psychology, students must pick a concentration in one of six areas: Behavioral, Cognitive, Developmental, Neuroscience and Behavior, Sensation and Perception, and Social. Students who have been approved (by both the Department of Psychology and UCSD Office of Graduate Studies) for the program must enroll in their graduate year in:
- PSYC 201A-B. Quantitative Methods
- PSYC 270A-B-C. Introduction to Laboratory Experimentation
- Four psychology seminars, two of which are in their area of concentration. In addition, three of the four seminars must be pro-seminars, which include
 - PSYC 217. Developmental Psychology
 - PSYC 218. Cognitive Psychology
 - PSYC 219. Behavioral Psychology
 - PSYC 220. Social Psychology
 - PSYC 221. Sensation and Perception
 - PSYC 222. Behavioral Psychology
 - One PSYC 500. Teaching Instruction

This amounts to forty units of graduate work. All course work is to be approved by the advisors (forms available from the Psychology Student Affairs Office). Students are expected to meet the graduate requirements for the M.A. in one year (three consecutive, contiguous, academic quarters, beginning in the fall after graduation). Any deviation from this plan, such as a break in enrollment for one or more quarters, will cause the student to be dropped from the program.

All forms required for the program must be submitted and approved by the Psychology Student Affairs Office, including the Application for Candidacy. Students must pay fees and be officially enrolled at UCSD during the quarter that the student begins their graduate studies for the program. See the Psychology Student Affairs Office for further details.

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LOWER-DIVISION

EXPERIMENTAL REQUIREMENTS

Psychology at UCSD is a laboratory science. We are concerned with the scientific development of knowledge about human and animal behavior and thought. Accordingly, experience with experimental procedures plays an important role in the undergraduate and graduate training of students.

1. Psychology (4)
A comprehensive series of lectures covering the basic concepts of modern psychology in the areas of human information processing, sensation and perception, motivation, developmental processes, language acquisition, social psychology, and personality.

2. General Psychology: Biological Foundations (4)
A survey of physiological and psychological mechanisms underlying selected areas of human behavior. Emphasis is placed on the experimental basis of psychological knowledge and the development of language, memory, and attention.

3. General Psychology: Cognitive Foundations (4)
This course is an introduction to the basic concepts of cognitive psychology. The course surveys areas such as perception, attention, memory, language, and thought. The relation of cognitive psychology to cognitive science and to neuropsychology is also covered.

4. General Psychology: Behavioral Foundations (4)
This course will provide a basic introduction to behavioral psychology, covering topics such as classical conditioning, operant conditioning, animal learning, and motivation, and behavior modification.

5. General Psychology: Social Foundations (4)
This course will provide a basic introduction to social psychology, covering topics such as emotion, aesthetics, behavioral medicine, person perception, attitudes and attitude change, and behavior in social organizations.

6. General Psychology: Developmental Foundations (4)
This course is an introduction to cognitive and social changes that take place over the course of a lifetime. With emphasis also given to the neuropsychology of motivation, memory, and attention.

7. General Psychology: Social Foundations (4)
This course will provide a basic introduction to social psychology, covering topics such as emotion, aesthetics, behavioral medicine, person perception, attitudes and attitude change, and behavior in social organizations.

8. General Psychology: Developmental Foundations (4)
This course is an introduction to cognitive and social changes that take place over the course of a lifetime. With emphasis also given to the neuropsychology of motivation, memory, and attention.

9. Independent Study (2-4)
Independent study or research under direction of a member of the faculty. Prerequisites: lower-division standing, completion of at least thirty units of undergraduate study at UCSD with a minimum UCSD GPA of 3.0; completed and approved Special Studies form.

UPPER-DIVISION

101. Introduction to Developmental Psychology (4)
A lecture course on a variety of topics in the development of the child, including the development of perception, cognition, language, and sex differences. Prerequisites: upper-division standing; Psychology 60 or BIH 100 or COGS 14 or Econ. 120A or Math. 11 or Math. 181A or Math. 183 or Soc/L 60.

102. Introduction to Sensation and Perception (4)
An introduction to problems and methods in the study of sensation and perception processes. Prerequisites: upper-division standing; Psychology 60 or BIH 100 or COGS 14 or Econ. 120A or Math. 11 or Math. 181A or Math. 183 or Soc/L 60.

103. Introduction to Principles of Behavior (4)
An example of the principles of conditioning and their application to the control and modification of human behavior. Prerequisites: upper-division standing; Psychology 60 or BIH 100 or COGS 14 or Econ. 120A or Math. 11 or Math. 181A or Math. 183 or Soc/L 60.

104. Introduction to Social Psychology (4)
An intensive introduction and survey of current knowledge in social psychology. Prerequisites: upper-division standing; Psychology 60 or BIH 100 or COGS 14 or Econ. 120A or Math. 11 or Math. 181A or Math. 183 or Soc/L 60.

105. Introduction to Cognitive Psychology (4)
Introduction to experimental study of higher mental processes. Topics to be covered include pattern recognition, perception, cognition, language, memory, and problem solving. Prerequisites: upper-division standing; Psychology 60 or BIH 100 or COGS 14 or Econ. 120A or Math. 11 or Math. 181A or Math. 183 or Soc/L 60.

106. Introduction to Physiological Psychology (4)
Intensive introduction to current knowledge of physiological factors in learning, motivation, perception, and memory. Prerequisites: upper-division standing; Psychology 60 or BIH 100 or COGS 14 or Econ. 120A or Math. 11 or Math. 181A or Math. 183 or Soc/L 60.

107. Lab/Substance Abuse Research (4)
This course examines theory and research design and methods for substance abuse in adolescent adult populations. This course serves as preparation for individual research topics culminating in a paper.

108. Introduction to Cognitive Neuroscience (4)
This course covers background history, neuroanatomy, methods, and results from neuropsychological and neuropsychological studies of behavior. Topics include attention, motor control, executive function, memory, learning, emotion, and language. Prerequisites: upper-division standing; Psychology 60 or BIH 100 or COGS 14 or Econ. 120A or Math. 11 or Math. 181A or Math. 183 or Soc/L 60.

109. Lab/Applied Behavior Analysis (4)
This course will provide students with hands-on training in the application of behavioral research technology to a clinical population. Students will meet weekly for lecture, discussion, research article reviews, and specific technical training. In addition, students will work on a research project. Prerequisite: Psychology 199 in the Schreiberan autism laboratory recommended.

110. Juniors Honors Research Seminars (4)
Meetings consist of research seminars by a range of departmental faculty, exposing students to contemporary research problems in all branches of experimental psychology. Class discussions will follow faculty presentations. Evaluation is based on assigned papers. Prerequisites: admission by application with a minimum UCSD GPA of 3.3. Department stamp required. Application forms are available from the Student Services Office and due by the end of October of each fall quarter.

111A. Research Methods I (6)
Designed to provide training in the applications of advanced statistical methods in the context of initial instruction in experimental design. Emphasis will be placed on the development of statistical problem-solving skills, practical computer applications, and scientific report writing. Prerequisites: minimum grade of B in Psychology 60 or
111B. Research Methods II (6) Designed to extend the material of Psychology 111A. Focusing on the techniques developed previously. Participate in data collection, data organization, statistical analysis, and graphic displays, emphasis placed on developing scientific report writing, presentations, and critical thinking about experimental methods. Prerequisite: Psychology 111A or consent of instructor.

114. Laboratory in Psychophysiological Perspectives on the Social Mind (4) Lab course on the use of psychophysiological methods to investigate “the social mind,” or the cognitive and emotional processes involved in understanding and reacting to other people. Overview of major research topics and methods applying selected techniques in actual experiments. Students will engage in developing individual research questions to actively participate in designing and conducting the experiments. Prerequisite: upper-division standing.

115. Laboratory in Cognitive Psychology (4) Lecture and laboratory work in human information processing. Prerequisite: upper-division standing or consent of instructor.

118A. Real-Time Examination of Language Processing (4) This lab course examines the design and methods for the real-time examination of language processing in normal and disordered (aphasic, dyslexic, child language impaired, etc.) language populations. This course serves as preparation for individual research topics in Psychology 118B. Prerequisite: a course in language or cognition (see professor for exception).

118B. Real-Time Examination of Language Processing (4) This lab is a continuation of Psychology 118A. The introduction to laboratory methods is now applied to individual research projects culminating in a lab presentation and paper. Prerequisite: Psychology 118A or consent of instructor.

119. Psycholinguistics/Cognition Laboratory (4) Methods and practicum in experimental study of language, reading, and related cognitive processes (reasoning, problem solving) in young adult populations. Prerequisites: Psychology 118A-B or consent of instructor. Department stamp required.

120. Learning and Motivation (4) Survey of research and theory in learning and motivation. Includes instincts, reinforcement, stimulus control, choice, aversive control, and human application. Prerequisite: upper-division standing. Must be taken concurrently with Psychology 121 or Psychology 140.

121. Laboratory in Operant Psychology (4) Lecture and laboratory in operant psychology. Prerequisite: upper-division standing. May be taken concurrently with Psychology 120.

123. Cognitive Control and Frontal Lobe Function (4) Cognitive control refers to the optimization of behavior according to one’s goals. This class examines: anatomy; neuroscience methods; working memory, switching, and stopping; prefrontal pharmacology; ADHD and other neuropsychiatric disorders; addiction and emotion regulation; development, rehabilitation, and criminal responsibility. Note: Students may not enroll in Psychology 123 after receiving credit for Psychology 193 Cognitive Control and Frontal Lobe Function. Prerequisite: department stamp.

124. Introduction to Clinical Psychology (4) Introduction to major concepts and models used in psychological assessment and psychotherapeutic intervention. Several modalities of psychotherapy (individual, group, and family) will be reviewed along with research on their efficacy. Prerequisite: Psychology 163.

125. Clinical Neuropsychology and Assessment (4) A fundamental grounding in basic neuropsychological principles. Major topics include functional neuroanatomy and physiology of the human brain, neurobehavioral presentations of common neurologic and psychiatric conditions, and an introduction to diagnostic neuropsychological assessment and methods. Prerequisite: Psychology 60.

127. Methods in Applied Social Psychology (4) Emphasizes learning of experimental and quasi-experimental methodology applicable to social problems. Students carry out field research in areas such as the psychology of law (judicial decision-making), traffic-related behavior (risk taking), environmental psychology, and other areas of student interest. Prerequisites: Psychology 104 and 60.

128. Psychology of Reading (4) Basic information about the nature of reading will be covered. Topics include word recognition, eye movements, inner speech, sensorimotor memory for reading, learning, methods for teaching reading, reading disabilities, and dyslexia, speed reading. Prerequisites: Psychology 105 or Psychology 145 or consent of instructor.

129. Logic of Perception (4) Lectures will cover three topics: 1) tradition of experimental work on perception that dates back to H. Held, 2) discussion and criticisms of theories of perception, 3) recent physiological work on the visual pathways that may give us insights into neural mechanisms underlying perception. Prerequisite: upper-division standing.

130. Delay of Gratification (4) This course will review the research on delay of gratification. Students will make it in general so tough, what situations make it possible, who can do it, and what the implications of this ability are. Prerequisite: upper-division standing.

132. Hormones and Behavior (4) A survey of the effects of chemical signals (hormones, neurohormones and pheromones) on behavior as well as reciprocal effects of behavior on these chemical systems. Specific topics covered include aggression, sex and sexuality, feeding, learning, memory and mood. Animal studies will be emphasized. Prerequisite: Psychology 106 or consent of instructor.

133. Circadian Rhythms—Biological Clock (4) Examples and fundamental properties of the daily biological clock in humans, animals and microbes. Experimental approaches employed to understand how organisms keep time and how this applies to human health. Prerequisite: Psychology 106 or BILD 1 or consent of instructor. This course is cross-listed with BMIM 116.

134. Eating Disorders (4) This course covers psychological and psychobiology of eating disorders such as anorexia nervosa, bulimia nervosa, and binge eating disorder. Abnormal, as well as normal eating will be discussed from various perspectives including endocrinological, neurobiological, psychological, sociological, and evolutionary. Prerequisite: upper-division standing.

135. Animal Behavior (4) Mechanisms that regulate the behavior of animals, including neural, endocrine, genetic, and environmental mechanisms, with a strong emphasis on evolution (natural and sexual selection). Topics include communication, sociality, mating strategies, and parental behavior. Prerequisites: upper-division standing and consent of instructor.

136. Cognitive Development (4) This course examines the foundations and growth of the mind, discussing the development of perception, imagery, concept formation, memory, and thinking. Emphasis is placed on the representation of knowledge in infancy and early childhood. Credit may be received for both PSYC 136 and COGS 113.) Prerequisite: PSYC 101 or PSYC 105.

137. Social Cognition (4) Social cognition blends cognitive and social psychology to show how people make sense of the social world. Social perception, inference, memory, motivation, and affect, understanding of the self, stereotypes, and cultural cognition. Prerequisite: upper-division standing.

138. Sound and Music Perception (4) Topics include the physiology of the auditory system, perception and pitch, loudness and timbre, localization of sound in space, perception of melodic and temporal patterns, handedness correlates, and musical illusions and paradoxes. There will be a substantial number of sound demonstrations. Prerequisites: upper-division standing and consent of instructor.

139. Social Psychology of Sports (4) This course focuses on the applications of social psychological principles and understanding of sports. Topics include the role of motivation, level of aspiration, competition, cooperation, social comparison, and optimal arousal, spectators’ perspective, motivation and perceptions of success, streaks, etc. Prerequisite: upper-division standing and consent of instructor.

140. Lab/Human Behavior (4) Laboratory on the principles of human behavior, including choice behavior, self-control, and reasoning. Prerequisites: 120 (may be taken concurrently); upper-division standing and consent of instructor.

142. Psychology of Consciousness (4) This course will survey research on consciousness from an experimental psychology perspective. Special emphasis will be placed on cognitive, neuroimaging, and clinical/neuropsychiatric investigative techniques, and on the scientific assessment of the mind-body problem. Prerequisite: upper-division standing.

143. Control and Analysis of Human Behavior (4) An overview of the behavioral approach including basic principles, self-control, clinical applications, and the design of cultures. Prerequisite: upper-division psychology major.

144. Memory and Amnesia (4) This course will review basic research into the nature of memory. It begins with an examination of historical milestones in the study of memory and then considers research concerned with contemporary models of memory and amnesia. Prerequisite: upper-division standing.

145. Psychology of Language (4) Introduction to research on language comprehension and production. Focus on the role of language in human nature. Prerequisite: a course in language, cognition, or cognitive development. Prerequisite: upper-division standing.

146. Language and Conceptual Development (4) Introduction to research on language acquisition and how it relates to conceptual development. Focus on theoretical foundations (e.g., learning mechanisms, universal grammar, theories of concepts) and empirical case studies, including word meaning, syntax and semantics, and language and thought. Recommend course in language/linguistics, cognition, or cognitive development. Prerequisite: upper-division standing or consent of instructor.

147. Gender (4) This interactive undergraduate seminar will examine biological approaches to gender differences and sexuality. Do the biosciences further our understanding of these issues? How are biological claims embraced or rebutted by other disciplines? Students will read primary scientific literature and criticism. Prerequisite: upper-division standing.

148. Psychology of Judgment and Decision (4) Broadly defined, the field of judgment and decision making examines preferences and subjective probability, and how they are combined to arrive at decisions. The course will cover history and current topics.

149. Social Psychology of Theater (4) Exploration of the relationship between social psychology and drama, focusing on the use of psychological principles in plays (by playwrights) and their performance (by directors, actors, and choreographers). Prerequisite:
upper-division standing, major in psychology or theater, or consent of instructor.

150. Cognitive Neuroscience of Vision (4)
Cognitive neuroscience is an interdisciplinary field of research dedicated to understanding how the brain supports different cognitive abilities. This course will focus on the neural basis of visual experience, or how our brain allows us to see in the world around us. Prerequisite: Psychology 102 or Psychology 108.

151. Tests and Measurement (4)
This course provides an introduction to psychological testing presented in three components: 1) psychometric and statistical methods of test construction; 2) application of psychological tests in industry, clinical practice, and other applied settings; and 3) controversies in the application of psychological tests. Prerequisite: Psychology 60.

152. Conceptions of Intelligence (4)
This course will examine the concept of intelligence from several perspectives: its historical development, its measure in terms of IQ test, and its role in practical affairs. Also included will be its role in comparative psychology and attempts to analyze intelligence in change in more fundamental cognitive processes. Prerequisite: Psychology 60 or consent of instructor.

153. Psychology of Emotion (4)
Past and current findings and theories on emotion. Facial expressions of emotions, psychophysiology, evolutionary perspectives, and specific emotions: anger, fear, and jealousy. Prerequisite: upper-division standing or consent of instructor.

154. Behavior Modification (4)
Extension of learning principles to human behavior, methods of applied behavior analysis, and applications of behavioral principles to clinical disorders and to normal behavior in various settings. Prerequisite: upper-division standing.

155. Social Psychology and Medicine (4)
Explores areas of health, illness, treatment, and delivery of treatment, and social psychological perspectives in the medical area. Prerequisites: Psychology 60 or equivalent and 104.

156. Cognitive Development in Infancy (4)
Examines perception and cognition in the first year of life. Differences in cognitive development are linked to the development of perception and cognition. Prerequisite: upper-division standing or consent of instructor.

157. Happiness (4)
This course will address the psychology of happiness. The discussions and readings, consisting largely of original research articles and perspectives, will address questions as: what is happiness? How do we measure it, and how do we tell who has it? What is the psychology of happiness and what is its evolutionary significance? What Makes people happy—youth, fortune, marriage, chocolate? Is the pursuit of happiness rational? Prerequisite: upper-division standing.

158. Interpersonal Relationships (4)
A seminar-style course to examine theories and empirical work pertaining to interpersonal relationships; attraction, jealousy, attachments, love. Prerequisite: upper-division standing.

159. Physiological Basis of Perception (4)
A survey of sensory and perceptual phenomena and the physiological mechanisms underlying them. Prerequisite: Psychology 102 or consent of instructor.

160. Groups (4)
An examination of the processes of group formation and maintenance and their consequences for group members. Prerequisite: upper-division standing.

161. Introduction to Engineering Psychology (4)
Surveys human perceptual and cognitive limitations and abilities important for understanding "user-friendly" computers and devices, improving aviation and traffic safety, and other engineering challenges. Topics include human vision as it bears on display design (including virtual-reality), short-term memory limitations, learning and practice, effects of noise and stress, causes of human error and their minimization. Prerequisite: upper-division standing.

162. Psychology and the Law (4)
Research dealing with psychological factors in the legal system will be surveyed. Particular emphasis will be placed on applying psychological theory and methods to the criminal justice system and in understanding the behavior of its participants. Prerequisite: Psychology 60 and 104.

163. Abnormal Psychology (4)
Surveys origins, characteristics and causes of abnormal behavior and the biological and environmental causes of abnormality. Prerequisite: upper-division standing.

164. Criminology (4)
Focus is on the scientific study of law making and societal reaction to breaking of laws; major theories that account for criminal behavior; the relationship between drugs and crime; the effects penalties have on recidivism; and psychological effects of incarceration. Note: Students may not enroll in Psychology 164 after receiving credit for Psychology 193 Criminology. Prerequisite: department approval.

166. History of Psychology (4)
Survey of the major trends and personalities in the development of psychological thought. Emphasis given to such selected topics as mind-body problem, nativism vs. empiricism, and genesis of behaviorism. Open to psychology majors with senior standing only.

168. Psychological Disorders of Childhood (4)
Explores different forms of psychological deviance in children (psychosis, neurosis, mental retardation, language disorders and other behavior problems). Emphasis on symptomatology, assessment, etiological factors, and various treatment modalities. Prerequisite: upper-division standing.

169. Brain Damage and Mental Functions (4)
Studies neural mechanisms underlying perception, memory, language, and other mental capacities. What happens to these capacities when different parts of the brain are damaged? What can we learn about the normal brain by studying patients? Prerequisite: upper-division standing.

170. Introduction to Cognitive Neuropsychology (4)
What are the neural mechanisms underlying mental phenomena such as perception, attention, and memory? The two disciplines, neuropsychology and psychology, both have a long history but until recently there has been very little interaction between them. This course will take students to the interface between these two fields and we will discuss a wide range of topics that are of current interest. Prerequisite: upper-division standing.

171. Neuropsychology of Learning and Memory (4)
Studies the neurobiology of learning and memory, from cognitive to molecular neuroscience, including human, animal, and cellular; and molecular studies of memory. Topics include amnesia, mental retardation, exceptional intelligence, aging, and Alzheimer's disease. Prerequisites: Psychology 2 or 106 or 181, upper-division standing or consent of instructor.

172. The Psychology of Human Sexuality (4)
Important issues in human sexuality including sex and gender, sexual orientation, reproductive technology, and sexual dysfunction. Prerequisite: upper-division standing.

173. Psychology of Food and Behavior (4)
Reviews the psychology of food and behavior. Topics will include biological, psychological, and social influences: taste preferences and aversions and how they are learned; how culture influences food selection; and food-related behaviors across the lifespan. Prerequisite: upper-division standing or consent of instructor.

175. Psychology and the Arts (4)
An interdisciplinary course focusing on theoretical ideas and empirical research that relate contemporary psychology (social and cognitive, psychophysiology, motivation and emotion) to issues in various aesthetic and artistic domains, including visual arts, music, literature, criticism, and the performance arts. Prerequisites: upper-division standing, major in psychology, music, visual arts, communication, theatre and dance, or literature, or consent of instructor.

176. Creativity (4)
The focus is on enhancing creativity in individuals, small groups, and organizations. Topics include how changes to individuals (e.g., gaining expertise, accepting more risk) and their environment (e.g., more diverse colleagues, more time for exploring) increase creativity. Prerequisite: upper-division standing.

179. Drugs, Addiction, and Mental Disorders (4)
Considers the use, abuse, liability, and psychotherapeutic effects of drugs in humans. Lectures are supplemented by guest lecturers. Prerequisites: upper-division students in psychology, biology, economics, or consent of instructor.

180. Adolescence (4)
This course will adopt a multidisciplinary approach toward understanding the period of human adolescence. A strong focus on the neurobiological underpinnings of adolescent behavior will be combined with psychological, anthropological, and sociological considerations. Prerequisite: upper-division standing.

181. Drugs and Behavior (4)
Develops basic principles in psychopharmacology while exploring the behavioral effects of psychoactive drugs and mechanisms of action of drugs. Prerequisites: Psychology major or minor, or biology major or minor.

182. Illusions and the Brain (4)
This course explores the bases of illusions in terms of perceptual and cognitive principles, and the underlying brain mechanisms; extensive demonstrations are included. Prerequisite: upper-division standing.

184. Choice and Self-Control (4)
Experimental analysis of choice behavior, with an emphasis on the affective and cognitive processes that underlie self-control. Focus on conditions under which decision-making is optimal. Prerequisite: upper-division students in psychology, biology, economics, or consent of instructor.

185. Applied Developmental Psychology (4)
This seminar course deals with how developmental psychologists explore such questions as: How do we help children to acquire new knowledge, and what are the implications for children's well-being. Major issues to be discussed are: child witnesses, literacy, school violence, impact of media on child development, and developmental psychopathology. Prerequisites: upper-division standing and Psychology 101.

187. Development of Social Cognition (4)
This course will examine reasoning about people from a developmental perspective. Topics will include emotional understanding, achievement motivation, peer relations, social categories, and culture. Prerequisite: Psychology 101.

188. Impulse Control Disorders (4)
Problems of impulse control are important features of major psychiatric disorders but also of atypical impulse control disorders such as: pathological gambling, compulsive sex, eating, exercise, shopping. Focus: development, major common features, treatment, and neurobiological basis of impulse control disorders. Prerequisite: upper-division standing.

189. Brain, Behavior, and Evolution (4)
A survey of natural behaviors, including birdsong, prey capture, localization, electro-reception, and echo-location, and the neural systems that control them, emphasizing broad functional relationships between brain and behavior across species. Prerequisites: Psychology 103 and 106, or permission of instructor.
190. Parenting (4)
This course adopts an interdisciplinary approach to the complex construct of parenting. Parenting is explored with respect to history, culture, development, psychology, biology, etc. Controversial issues such as the influence of the media, family structure, and discipline strategies are analyzed. Prerequisite: upper-division standing.

191. Psychology of Sleep (4)
Topics include basic psychology, evolutionary models of the purpose of sleep, the role of sleep in learning/creativity, dreams, and sleep disorders. Prerequisite: upper-division standing.

193. Topics in Psychology (4)
Selected topics in the field of psychology. May be repeated for credit as topics vary. Prerequisites: upper-division standing and consent of instructor.

194A-B-C. Honors Thesis (4-4-4)
Students will take part in a weekly research seminar. In addition, they will plan and carry out a three-quarter research project under the guidance of a faculty member. The project will form the basis of the senior honors thesis. Prerequisites: acceptance to the Honors Program in the junior year (110A-B) (GPA 3.3), in addition one laboratory course (114–127) or two 199s which culminate in a research paper (by petition only) and Psychology 110, 111A-B and consent of instructor.

195. Instruction in Psychology (4)
Intensive course in statistical methods and the mathematical foundations of research. Topics include probability, hypothesis testing, and hypothesis generation and grading (P/NP grades only). This course counts only once towards the major. Prerequisites: junior or senior psychology major with GPA of 3.0 or an A in the course and consent of instructor.

196A-B-C. Research Seminar (4-4-4)
Weekly research seminar, three quarter research project under faculty guidance which culminates in a thesis. Prerequisites: one laboratory course, 3.3 GPA, and/or consent of instructor.

199. Independent Study (2 or 4)
Independent study or research under direction of a member of the faculty. Prerequisites: GPA 2.5 and ninety units completed. (P/NP grades only) Not counted for credit toward the major. See section on 199 information.

GRADUATE

201A-B-C. Quantitative Methods in Psychology (4-4-4)
An intensive course in statistical methods and the mathematical treatment of data, with special reference to research in psychology. Prerequisite: restricted to graduate students in psychology.

204. Neurobiology of Social Development (4)
The goal of this class is to acquaint students with research on the neurological underpinnings of social and social cognitive development. Students will be expected to become familiar with the existing research in the area, and to understand the neural structures that comprise the limbic system, and their developmental timecourse. Students will be expected to form hypotheses about the neural correlates of aspects of social development based upon an understanding of the development of structures involved in social behavior.

205. Emotion (4)
This seminar provides a selective overview of the scientific study of emotion. We will discuss various theoretical perspectives on emotion and will focus on specific topics such as emotion regulation, affect in social interactions, individual differences, and particular emotions (e.g., embarrassment, envy, and jealousy). Prerequisite: graduate standing.

206. Mathematical Modeling (4)
This course is designed to teach the basics of mathematical modeling. Topics include when, why, and how to use signal detection theory (an essential theory for anyone interested in attention, perception, memory, or decision making), how to analyze reaction time distributions (instead of simply measuring mean RT), how to engage in the fine art of model comparison, and how to avoid creating models that are more complex than the data they seek to explain.

209. Topics in Judgment and Decision Making (3)
This seminar examines issues in the psychology of judgment and decision making. Topics include the heuristics and biases approach, overconfidence, framing effects, intertemporal choice, and rationality.

210. Skill Acquisition and Development of Expertise (4)
The course examines the transition from novice to highly skilled performance and the transfer of that skill to novel problems and contexts. Emphasis will be on information processing accounts of learning and performance for relatively simple cognitive tasks.

211. The Development of Social Cognition (3)
This seminar will cover the development of concepts about people. Topics include emotional understanding, “theory of mind,” trait thinking, social categories, psychological essentialism, achievement motivation, and social and cultural influences on person perception. Prerequisite: graduate standing.

212. Current Topics in Visual Science (3)
Each year a different topic in visual science is selected for in-depth review and discussion based on current readings. Prerequisite: consent of instructor.

213. Professional Procedures and Survival in Psychology (3)
This course provides a forum for presentation and discussion of the basic issues associated with surviving in a professional (particularly, academic) psychology environment. It covers such issues as: 1) how to get a job; 2) how to keep a job; 3) general issues in professional survival. The course will include the presence of a number of the psychology faculty in topic specific areas (e.g., journal editors from our faculty; faculty sitting on grant review panels, etc.). The issue of ethics will be examined and discussed relative to each topic raised.

214. Applied Developmental Psychology (4)
This seminar deals with how developmental psychologists conduct scientific studies that have direct practical implications for children's well-being. Major issues to be discussed are: child witnesses, literacy, school violence, impact of media on child development, and developmental psychopathology.

217A. Proseminar in Developmental Psychology I (3)
The course examines cognitive development through the school-age period. It begins with an examination of early neurological, sensory, motor, and perceptual functions and then focuses on issues in linguistic and cognitive development.

217B. Proseminar in Developmental Psychology II (3)
The course examines social and personality development from infancy through early adolescence. The class will first discuss general developmental theory and methods and then topics such as attachment, temperament, self-concept, aggression, family relations, play, and peers.

218A-B. Cognitive Psychology (3-3)
A two-quarter survey of basic principles and concepts of cognitive psychology. This course is intended to serve as the basic introduction for first-year students. Basic areas include knowledge, memory, thought, perception and performance. The areas are taught by faculty members who work within the specialty. Prerequisite: graduate status in psychology or consent of instructor.

219. Proseminar in Learning and Motivation (3)
An overview of the experimental and applied analysis of behavior including topics such as the principles of operant and classical conditioning, stimulus control, choice, conditioned reinforcement, aversive control, biological and economic contexts, verbal behavior, and the modification of human behavior in a variety of applied settings.

220. Proseminar in Social Psychology (3)
An introduction to social psychology. Psychology and the law, health and psychosomatics, perception, perception and aggression are some of the topics to be covered.

221. Proseminar in Sensation and Perception (3)
Fundamentals of vision, audition, and other senses. Emphasis will be upon psychophysical approaches to the study of these sensory modalities, as well as some essential aspects of their neurophysiological bases.

222. Biological Psychology (3)
A survey of the functional neuroanatomical, neurodevelopmental, neurophysiological, and pharmacological correlates of psychological phenomena.

223. Advanced Topics in Vision (4)
An in-depth analysis of empirical and theoretical issues in a specialized area of vision or visual perception. Emphasis most likely will be on a topic of ongoing vision research at UCSD. Prerequisite: Psychology 212 or special consent of instructor.

229. Happiness (4)
This course will address the psychology of happiness. The discussions and readings, consisting largely of original research articles, will explore such questions as: What is happiness? How do we measure it, and how do we tell who has it? What is the biology of happiness and what is its evolutionary significance? What makes people happy—youth, fortune, marriage, chocolate? Is the pursuit of happiness pointless?

230. Comparative Social Cognition (4)
This seminar will address the following questions: What do nonhuman animals know about the identity and characteristics of conspecifics? How do they use this information to guide their actions? How do animals modify their behavior in relation to social context? What kinds of information are culturally transmitted? What are the brain mechanisms for social cognition in nonhumans, and how do they compare to ours? Prerequisite: graduate standing or consent of instructor.

231. Experimentation and Data Analysis Using Matlab (4)
Lecture and exercises will demonstrate the use of Matlab, its extensions in running psychological experiments and in analyzing experimental data. No prior programming knowledge assumed. Experimental topics include writing scripts to generate well-controlled visual or acoustic stimuli. Analytical topics include data plotting and statistics. Prerequisite: graduate standing or consent of instructor.

233A. Topics in Learning and Motivation (3)
Advanced topics in learning and motivation, with special emphasis on current research. Prerequisite: Psychology 210.

236. Substance Abuse (3)
Theory and research on the development, progression, and resolution of substance use and abuse will be reviewed and evaluated. Normal and abnormal patterns of substance involvement will be contrasted across the life span.

237. Human Rationality (4)
The traditional view of rationality is based upon abstract, content-independent rules for behavior. People sometimes violate these rules in a laboratory setting, but the violations are often systematic and appear to reflect adaptation to the environment outside the laboratory. Such findings raise questions about what it means to be rational. Readings will be empirically oriented and cover the areas of deductive reasoning, inductive reasoning, and choice.

240. The Primate Brain (4)
This course will explore the neural basis of perception, action and cognition in primate cortex. Drawing on recent findings in neuroscience, we will discuss the role of cortex in a range of topics including decision making, object perception and recognition, memory and communication. Prerequisite: graduate standing or consent of instructor.

242A-B-C. Research Topics in Developmental Psychology (4-4-4)
Advanced seminar concentrating on methods of research and current experimental literature. May be taken by undergraduate senior majors concurrently enrolled in Psychology 194. Prerequisite: consent of instructor. (S/U grades permitted.)
243. Sound and Music Perception (3)
This course will deal with anatomy and physiology of the ear, central auditory pathways, and neurological disorders of sound and music perception.

244. Special Topics in Psycholinguistics (4)
Discussion of the psychological reality of grammatical models, competence versus performance, learnability and innateness in theories of language acquisition, and questions of autonomy of “modularity” of grammatical versus semantic processing. In addition, graduate students are required to give oral presentations on articles. Prerequisites: Psychology 145, upper-division standing, or consent of instructor.

246. Emotion and Cognition (4)
This seminar focuses on the interplay between emotion and cognition. We will consider how emotion influences perception, reasoning, memory, and judgment, and how cognitive processes can have emotional consequences. We will also discuss physiological and neural underpinnings of an affective influence and debate more general issues such as emotion and rationality. Prerequisite: graduate standing or consent of instructor.

247. Neuroendocrinology of Social Variation (4)
Students will read and discuss primary literature on the general topic of how steroid and peptide hormones contribute to the production of social variation and diversity. This diversity includes seasonal variation, intersexual variation, and divergence between species in patterns of sociality and space use, pair-bonding and mating tactics, aggression, and use of communication signals.

249A-B-C. Advanced Topics in Applied Behavior Analysis (3-3-3)
Research and discussion on selected topics in applied behavior analysis.

250. Sleep, Learning and Thought (4)
The role of time and sleep in learning, memory, and thought will be covered. Topics include human procedural memory, declarative memory, inference, creativity, and problem solving. Prerequisite: graduate standing or consent of instructor.

251. Advanced Topics in Learning and Motivation (3)
Weekly meetings for graduate students actively engaged in research on conditioning. Prerequisite: consent of instructor.

252. Seminar on Cognitive Neuroscience (3)
This is a series of weekly seminars on current trends in neuropsychology. The seminars will deal with the concept of "localization" of function in different parts of the brain and the effects of damage to these parts on cognitive functions such as perception, memory and language. Active student participation will be encouraged in preparing these seminars.

253. Cognitive Psychology and Cognitive Neuroimaging (4)
This seminar in cognitive neuroscience focuses on modern approaches to cognitive psychology as revealed through cognitive neuroimaging. A major goal of the course is to evaluate what (if anything) neuroimaging evidence has added to classic cognitive models/evidence in major areas of cognition (working memory, categorization, executive processes, decision-making, emotion, and memory).

255A-B-C. Advanced Topics in Biological Psychology (3-3-3)
Research and discussion on selected topics in biological psychology.

256. Impulsivity (4)
This seminar will cover the following topics in relation to impulsivity: varieties of the construct; operationalization via behavioral tasks in nonhuman animals and humans; translation from genes through phenotypes; neuropsychiatric disorders; neuropsychopharmacology; behavioral treatments; and implications for jurisprudence. Prerequisite: graduate standing or consent of instructor.

258. Delay of Gratification (3)
This course will review the research on delay of gratification. We will cover what makes it in general so tough, what situations make it possible, who can do it, and what the implications of this ability are. We will draw from research in social, personality, and animal psychology as well as economics.

259. Social Psychology/Psycho-aesthetics (3)
This course will be an intensive examination of social psychology (legal decision-making, emotion, aggressive behavior) and the psychology of visual art and music (psycho-aesthetics).

261. Proseminar in History of Psychology (3)
This course will consider the intellectual context in the nineteenth century from which psychology developed as an independent discipline. Emphasis will be on early German psychology and evolutionary theory. The second part of the course will consider the histories of different areas of psychology (e.g., behavioral, cognitive).

262. Functional Construction of the Vertebrate Brain’s Social Behavior Network (4)
The vertebrate brain contains a network of strongly interconnected structures that play essential roles in the regulation of social behavior. In this seminar we will read and discuss primary literature that details the structure and functional behaviors of this network.

264A-B-C. Advanced Topics in Language Processes (4-4-4)
Research and discussion on selected topics in language processes.

266. Psychology of Reading (4)
This seminar will cover aspects of reading, emphasizing cognitive processes involved in skilled reading. However, learning to read and methods to teach reading will also be discussed. Other topics include: eye movements and reading, word recognition, inner speech, context effects, discourse processing, sentence parsing, and dyslexia.

267A-B-C. Advanced Topics in Behavior Medicine (3-3-3)
Research and discussion on selected topics in behavior medicine.

269A-B-C. Advanced Topics in Sound and Music Perception (3-3-3)
Research and discussion on selected topics in sound and music perception.

270A-B-C. Introduction to Laboratory Experimentation (1–4)
A basic laboratory course, designed to introduce first-year graduate students to experimental methods in psychology. The student will select a research topic, do a thorough literature review of the area, design and carry out new, original studies of problems in the selected area, and prepare a final formal report of the study at the end of the spring quarter. This course is required of all first-year graduate students in the department. Prerequisite: first-year psychology graduate students only.

271. Neurobiology of Learning and Memory (4)
This seminar will span the study of learning and memory from an interdisciplinary neuroscience perspective: the goal will be to gain a broad perspective on memory. The course will also touch on dysfunctions of learning and memory such as in amnesia, mental retardation, aging, and Alzheimer’s disease. The course will end with exciting developments in the field, including the possibility of genetic and pharmacological enhancement of memory and intelligence.

272. Selected Topics in Cognitive Psychology (3)
An in-depth analysis of selected empirical and theoretical topics in cognitive psychology. The course will focus on areas where notable progress appears to be taking place in contemporary research.

273. Selected Topics in Quantitative Methods in Psychology (4)
An in-depth analysis and discussion of selected advanced topics in quantitative methods in psychology.

280. Seminar in Communication and Information Processing (1)
(S/U grades only.)
THE JOINT DOCTORAL PROGRAM (JDP) IN EPIDEMIOLOGY

OFFICE: Stein Clinical Research Building, Room 349
Mail Code 0607
UCSD—http://epidemiology.ucsd.edu/
SDSU—http://publichealth.sdsu.edu/phdmain.php

The doctoral program in public health (epidemiology) was developed as a joint program in 1990 between the Department of Family and Preventive Medicine in the School of Medicine at the University of California, San Diego (UCSD), and the Graduate School of Public Health at San Diego State University (SDSU). Students in the program complete course work and conduct research at both institutions. Faculty from each campus serve on advisory and dissertation committees, providing students with extensive exposure to experts whose research interests represent the interdisciplinary nature of modern public health. Dr. Deborah Wingard (UCSD) and Dr. Richard Shaffer (SDSU) codirect the program.

Requirements for the joint doctoral degree include:
1. successful completion of required course work
2. passing written preliminary examinations in epidemiology and biostatistics
3. passing written and oral qualifying examinations
4. demonstrating proficiency in two computer-based statistical software packages
5. demonstrating proficiency in teaching
6. completion and successful formal defense of a dissertation

Typical areas of emphasis include infectious disease epidemiology, chronic disease epidemiology, cancer epidemiology, behavioral epidemiology, community-based trials, physical activity/exercise/nutrition and health, San Diego is ideally located in a large and ethnically diverse metropolitan center bordering Mexico and the Pacific Rim, enabling students to carry out population-based multicultural and multinational studies of health problems.

Time Limits

The goal of this policy is to encourage Ph.D. completion in a timely manner.

Pre-candidacy limit. Maximum registered time to advance to Ph.D. candidacy: 4 years

Support limit. Maximum registered time doctoral student is eligible for support: 6 years

Total time limit. Maximum registered time to complete all Ph.D. requirements: 7 years

Information regarding admission is found in the current edition of the Bulletin of the Graduate Division of San Diego State University. To receive an application for admission, contact SDSU/UCSD Joint Doctoral Program in Public Health, San Diego State University, 5500 Campanile Drive, San Diego 92182-4162, (619) 594-2743.

For more information, please contact UCSD Graduate Coordinator, 3855 Health Sciences Drive, Room 3063, La Jolla, CA 92093-0901, (858) 822-2382.

THE JOINT DOCTORAL PROGRAM (JDP) IN GLOBAL HEALTH

OFFICE: Ash Building, Room 109
Mail Code 0622

Since 2007, a Ph.D. in public health with a concentration in global health has been offered by multidisciplinary faculty in UCSD’s School of Medicine and the Graduate School of Public Health at San Diego State University. Global health relates to health issues and concerns that transcend national borders, class, race, ethnicity, and culture, stresses the commonality of health issues, and calls for collective, partnership-based action to resolve these issues. Accordingly, emphasis is on preparing graduates with the fundamental knowledge, understanding, and specific skills necessary to become public health researchers and professional leaders in global health settings. Proximity to the U.S./Mexico border and expertise of many current faculty support and encourage a focus on infectious diseases (e.g., HIV, TB, STDs) and health of migrant populations, although students are expected to develop other areas of specialization within the global health concentration. These may be content areas, such as chronic/infectious disease surveillance and prevention, environmental health, health policy, and substance abuse, or methodological areas such as quantitative, qualitative, and spatial research methodologies that are applied to address health problems of global health significance. Dr. Steffanie Stratthdee (UCSD) and Dr. Jenny Quintana (SDSU) direct the program.

Requirements for the joint doctoral degree include:
1. Successful completion of required course work
2. Passing written and oral qualifying examinations
3. Demonstrated proficiency in teaching
4. Demonstrated cultural competence appropriate to dissertation area
5. Completion and successful formal defense of a dissertation

THE JOINT DOCTORAL PROGRAM (JDP) IN HEALTH BEHAVIOR

OFFICE: Moores UCSD Cancer Center, Room 3063
Mail Code 0901
UCSD—http://famprevmed.ucsd.edu/educational.html
SDSU—http://publichealth.sdsu.edu

A Ph.D. in public health with a concentration in health behavior is offered by the joint faculties of the Department of Family and Preventive Medicine in the School of Medicine at UC San Diego and the Graduate School of Public Health at San Diego State University (SDSU). Students in the program complete course work and conduct research at both institutions. Faculty from each campus serve on advisory and dissertation committees, providing students with extensive exposure to experts whose research interests represent the interdisciplinary nature of modern public health. Dr. John P. Pierce (UCSD) and Dr. Joni Mayer (SDSU) codirect the program.

Emphasis is on producing graduates with a mastery of the central concepts and analytic processes of health behavior. Graduates of the program are expected to establish advanced skills in applied behavioral analysis for population application; to establish expertise in advanced qualitative and quantitative research methods; to establish advanced skills in the application of interventions and research methods to health behavior in disenfranchised populations; and to establish skills necessary to understand and change health policy. Graduates of the program are competitive for a variety of research, teaching, and community service positions in areas such as academic institutions, local and state health departments, federal and international agencies, and both private and public-sponsored research institutions.

Areas of specialization currently include physical activity, tobacco control, skin-cancer prevention, nutrition and obesity, and HIV/AIDS and tuberculosis prevention and control. An additional emphasis will be placed on methodologies, such as measurement and related research issues; and ecological approaches to understanding health behavior. San Diego is ideally located in a large and ethnically diverse metropolitan center bordering Mexico and the Pacific Rim, enabling students to carry out community-based multicultural and multinational studies of health problems.

Time Limits

The goal of this policy is to encourage Ph.D. completion in a timely manner.

Pre-candidacy limit. Maximum registered time to advance to Ph.D. candidacy: 4 years

Support limit. Maximum registered time doctoral student is eligible for support: 6 years

Total time limit. Maximum registered time to complete all Ph.D. requirements: 7 years

Information regarding admission is found in the current edition of the Bulletin of the Graduate Division of San Diego State University. To receive an application for admission, contact SDSU/UCSD Joint Doctoral Program in Public Health, San Diego State University, 5500 Campanile Drive, San Diego 92182-4162, (619) 594-2743.

For more information, please contact UCSD Graduate Coordinator, 3855 Health Sciences Drive, Room 3063, La Jolla, CA 92093-0901, (858) 822-2382.
Public Service Minor

Office: Office of the Provost
Thurgood Marshall College
Administration Building

AFFILIATED FACULTY AND STAFF
Amy Binder, Associate Professor, Sociology, Director of Public Service Minor
Tricia Taylor-Oliveira, Director, Academic Internship Program
Kerry Shannon, Public Service Internship Specialist

SPECIALIZATION CHAIRS
Aurora Zepeda, M.P.A., Education Studies—Education
Steven P. Erie, Ph.D., Political Science—Government
Lawrence A. Palinkas, Ph.D., Family and Preventive Medicine, School of Medicine—Health
Joel Robbins, Ph.D., Anthropology—Social Issues

The public service minor at UCSD encourages students to understand the history and practices of public service and to participate in the development of civic skills. Those skills and practices are essential cornerstones of participation in a democratic society regardless of one’s chosen profession.

The course work for the minor emphasizes the history and emergence of the non-profit sector as a national institution distinct from the private and public sectors. The practicum aspects of the minor coupled with the traditional academic work encourage students to see the connection between the deeds of charitable service and the historic worth of citizen participation in the common public franchise, regardless of professional interests or gain.

The minor in public service is open to all UCSD students in good standing. Students first complete TMC 15, Public Service in America, and must choose one area of specialization from education, government, social issues, or health. A list of specific courses appropriate for these specializations is available through the Marshall College Provost’s Office. Approval of the minor is based on completion of TMC 15 and two of the three upper-division specialization courses with a 2.0 GPA or better, and a cumulative GPA of 2.5 on ninety units. Students approved to complete the minor are placed into specific internships in public service through the Academic Internship Program.

The following twenty-eight units comprise the public service minor:

- TMC 15, Public Service in America
- Three upper-division specialization courses (education, government, social issues, or health)
- Three upper-division academic internships in public service
- Capstone seminar in public service

For more information regarding the requirements for the minor, see the Office of the Provost, or Academic Advising, Thurgood Marshall College.
Religion, Study of

Program Director: Richard S. Cohen

FACULTY
John Blanco, Associate Professor, Literature
Nancy Caciola, Associate Professor, History
Suzanne Cahill, Adjunct Professor, History
Steven Cassedy, Professor, Literature
Alain J.-J. Cohen, Professor, Literature
Richard S. Cohen, Associate Professor, Literature
Stephen D. Cox, Professor, Literature
Thomas J. Csordas, Professor, Anthropology
Page A. duBois, Professor, Literature
John H. Evans, Associate Professor, Sociology
Amelia Glaser, Assistant Professor, Literature
David Goodblatt, Professor, History
Jack Greenstein, Associate Professor, Visual Arts
Marcel Hénaff, Professor, Literature
Matthew T. Herbst, Lecturer with Security of Employment, Roosevelt College
Deborah Hertz, Professor, History
Alan Houston, Professor, Political Science
Stephanie Jed, Associate Professor, Literature
David K. Jordan, Professor Emeritus, Anthropology
Benetta W. Jules-Rosette, Professor, Sociology
Dayna Kallenes, Assistant Professor, Literature
Hasan Kayali, Associate Professor, History
Lisa Lampert-Weissig, Associate Professor, Literature
Richard P. Madsen, Professor, Sociology
John A. Marino, Professor, History
Keith McNeal, Assistant Professor, Anthropology
Dana K. Nelkin, Associate Professor, Philosophy
Elizabeth Newsome, Associate Professor, Visual Arts
Kwai Ng, Assistant Professor, Sociology
Sheldon A. Nodelman, Professor, Visual Arts
Esra Ozurek, Associate Professor, Anthropology
Steven M. Parish, Professor, Anthropology
Michael Parrish, Professor, History
Patrick Patterson, Assistant Professor, History
William H. Propp, Professor, History
Babak Rahimi, Assistant Professor, Literature
Fred V. Randel, Associate Professor Emeritus, Literature
Joel Robbins, Professor, Anthropology
Natalia Roudaková, Assistant Professor, Communication
Gershon Shafir, Professor, Sociology
Kuiyi Shen, Professor, Visual Arts
Susan Smith, Associate Professor, Visual Arts
Teri Sowell, Lecturer, Visual Arts
Melford E. Spiro, Professor Emeritus, Anthropology
Tracy B. Strong, Professor, Political Science
Christena Turner, Associate Professor, Sociology
Eric Watkins, Professor, Philosophy
Robert Westman, Professor, History
Oumelbanine Zhihi, Professor, Literature

Office: Literature Building, First Floor, Room 139
(858) 534-8849
E-mail: religion@ucsd.edu
http://religion.ucsd.edu/

PROGRAM DESCRIPTION

The program engages in the academic study of religious phenomena in many regions of the world and within many different religious cultures and traditions; and it studies literature, history, and society in relation to religion. Faculty and students associated with the program give primacy to humanistic and social scientific methods of study that have become established in the academic community during the nineteenth and twentieth centuries.

The location of the program in the Division of Arts and Humanities and its use of courses from a variety of departments and divisions imply that neither the study of religion nor its data are the privileged possession of a single discipline. The hallmark of the program is its interdisciplinary and interdepartmental structure. At UC San Diego, faculty from the Departments of Anthropology, History, Literature, Philosophy, Political Science, Sociology, and Visual Arts provide students with the opportunity to examine religious artifacts, texts, institutions, and communities within a particular cultural and historical context and in the context of comparable manifestations within the general history of religions.

A concentration in the Study of Religion aims at fostering a student’s understanding of religion as one of the primary expressions of the human condition and as an historically powerful force in the shaping of human cultures; and it aims to foster an understanding of multiple religious traditions. It seeks to develop a student’s appreciation of the difficulties and possibilities inherent in undertaking a critical, disciplined, cross-cultural study of religion.

Since the program endorses an interdisciplinary and comparative approach to the study of religion, lower-division preparation should be wide and varied. Lower-division courses in which religion figures prominently (e.g., Introduction to Religion, The Making of the Modern World, or the Revelle College Humanities Program), as well as courses which focus on textual and contextual analysis and employ the analytical tools and conceptual categories of the human sciences, would all be useful in preparing the student for a major in the Study of Religion. The program strongly encourages foreign language study.

The ability to read the languages of original sources and of modern scholarship is highly recommended, especially for students planning to attend graduate school in religion.

MAJOR

The major in the Study of Religion consists of twelve upper-division courses, achieving a balance between courses which focus on a single religious tradition or issue and those which explore various traditions and methodologies. These courses should include the following:

- Three required courses in the Study of Religion, (1) RELI 110A or B and (2) RELI 111 or 112 or 113 and (3) RELI 189, or one other seminar approved by the program director.
- Nine courses from the approved course list to be selected in consultation with the program director. Students should see the program coordinator for further details.

DOUBLE MAJOR

Students may choose to pursue the Study of Religion as their second major. In such cases, it may be possible for up to two courses to overlap with the other major. Students should consult the program coordinator for further information.

HONORS IN THE STUDY OF RELIGION

The program for the Study of Religion offers an Honors Program for students who demonstrate excellence in the major. The minimum eligibility requirements for the Honors Program are stated below. In most cases students are completing their last two quarters (winter and spring) when they enroll in the Honors Program.

Minimum Eligibility Requirements

- RELI 110A or 110B completed prior to honors project
- Junior or senior standing (completion of at least 90 units)
- GPA of 3.3 overall and a 3.5 in the major to enter or remain in the Honors Program
- Eight units of RELI 196H taken over two quarters (typically winter and spring)
- Research paper (at least twenty pages; most students write between thirty and fifty pages)

Students interested in the Honors Program should consult with the program coordinator for a detailed list of requirements and an application. Participation in the Honors Program is contingent upon the prior approval of the Honors Thesis research topic by the director. Honors proposals are due at the program office by the tenth week of the quarter (usually fall quarter of the senior year) prior to being enrolled. Final approval must take place before the first day of the quarter in which the student plans to enroll in RELI 196H.

The Honors student’s faculty director must certify by the end of the first term that the student is making timely progress toward the completion of his or her project.

The notations “distinction,” “high distinction,” and “highest distinction” will be determined on the following basis: major GPA, the grade for the research paper, and the grade for the public presentation.

MINOR

The minor in the Study of Religion consists of seven courses, of which five must be upper-division. These seven courses must include two required courses in the Study of Religion as delineated under the major:
1. RELI 110A or 110B, and
2. RELI 111 or 112 or 113.

Some students may apply two lower-division college requirements to the minor (e.g., Revelle students may apply HUM 1 and HUM 2, and ERC students may apply MW 2 and MW 3).

Student Advising

All students are assigned a faculty advisor and are encouraged to meet with their advisor at least once
a quarter to develop their course of study. Additional advising information may be obtained from the program coordinator, Literature Building, First Floor, Room 139.

Study Abroad

Students are encouraged to investigate the University of California Education Abroad Program (EAP) and other options for foreign study through the Opportunities Abroad Program (OAP). By petition, credits earned through EAP/OAP can fulfill major and minor requirements. More information about studying abroad can be obtained in the Education Abroad section of the catalog.

Career Opportunities and Preparation for Graduate Study

Among its many aims, the major in the Study of Religion is designed to develop fundamental skills in critical thinking, comparative analysis, research, and written expression. As such, the B.A. degree is appropriate for careers in education, government, business, and non-profit agencies. It is also an excellent preparation for graduate study in a variety of fields and disciplines.

Students interested in earning a California teaching credential from UCSD should contact the Teacher Education Program for further information. Students are encouraged to consult the program director for further information about career opportunities and graduate study. Information is also available on the program’s Web site.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

RELI 1. Introduction to Religion (4)
An introduction to key topics in the study of religion through a comparative reading of religious texts and/or artifacts. The intent is to develop basic strategies of interpretation for undertaking a critical, disciplined study of religion.

RELI 110A. The Modern Study of Religion: Religion in Modernity (4)
This class examines the history of the term “religion,” focusing upon the development of religion’s contemporary significance within the Reformation and Enlightenment, and questioning what it means to be “modern.” Topics change yearly. Special attention to contemporary culture and politics.

RELI 110B. The Modern Study of Religion: Social and Cultural Theories of Religion (4)
An introduction to basic strategies of interpretation in the study of religion, including issues of category formation, theory, and method. Special attention paid to prominent voices of the nineteenth and twentieth centuries, including Marx, Freud, Durkheim, Eliade, etc.

RELI 111. Texts and Contexts: The Holy Book in Judaism and Christianity (4)
This class examines the development of sacred scripture in Judaism and Christianity. Topics include the variety and use of texts in religious communities; the process of canonization; the formation and transformation of textual communities. Prerequisite: upper-division standing or department stamp.

RELI 112. Texts and Contexts: The Holy Book in Islam (4)
An overview of the history and thematic issues in the study of Quran. It will focus on historical events, issues, and various interpretive practices in the development of Quran as a sacred text. Prerequisite: upper-division standing or department stamp.

RELI 113. Texts and Contexts: Textual Communities in South Asia (4)
This class considers important texts belonging to one or more of the following South Asian Traditions: Hinduism, Buddhism, Jainism, or Sikhism. It introduces students to the ways in which religious identities are formed and contested within a pluralistic society.

RELI 130. Religion, Science, and Magic (4)
Religion, science, and magic provide scholars with a set of analytic categories for the comparative study of cultural forms and modes of thinking. What are the ideological underpinnings of these categories? This class addresses this question using comparative avenues involving literary sources. Prerequisite: upper-division standing or consent of instructor.

RELI 131. Topics in Religion and Sexuality (4)
How does religiosity as a significant cultural component help mold gender and sexuality identities? The class offers topical investigations into this question. Prerequisite: upper-division standing or consent of instructor.

RELI 132. Topics in Orthodoxy and Heterodoxy (4)
Religious dogmas often develop in dialogue with alternative viewpoints that ultimately are rejected by heterodoxy by the dominant group. This class presents case studies in the interpretation of such ideological and sociological pairings using scriptural, literary, and analytic sources. Prerequisite: upper-division standing or consent of instructor.

RELI 134. Topics in American Religion (4)
Topical studies in the history of religion in American society, ranging from the Puritans to the New Age. Prerequisite: upper-division standing or consent of instructor.

RELI 140. Death and Religion (4)
This interdisciplinary course uses literary sources to explore the relationship between death and religion on a historical and global scale; the relationship between political religious rituals and symbolism of rebirth; examination of carnival, death pollution, and symbolism of gender. Prerequisite: upper-division standing or consent of instructor.

RELI 141. Public Sphere and Religion (4)
This interdisciplinary course will explore the historical and theoretical relationship between religious rituals and symbolism of rebirth; examination of carnival, death pollution, and symbolism of gender. Prerequisite: upper-division standing or consent of instructor.

RELI 142. Secularization and Religion (4)
Surveys the relationship between religion and modernity, in particular the problematic of the secularization theory; covers cases such as Catholic liberation theology and Islamic fundamentalism, with particular focus on the "deprivation of modern religion." Prerequisite: upper-division standing or consent of instructor.

RELI 143. Topics in Performing Religion (4)
This course explores religion as a system of bodily practices, rather than one of tenets or beliefs. How do day-to-day activities as well as significant rituals express and inform people’s religious lives? Why is doctrine an insufficient basis for understanding religion? May be taken up to three times as topics vary. Prerequisite: upper-division standing or consent of instructor.

RELI 188. Special Topics in Religion (4)
Students in this lecture will investigate important problems in the study of religion or the history of particular religions. May be repeated for credit up to three times when topics vary. Prerequisite: upper-division standing.

RELI 189. Seminar in Religion (4)
This seminar requires the intensive analysis of critical problems in the study of religion or the history of particular religions. May be repeated for credit up to three times when topics vary. Prerequisite: upper-division standing: RELI 110A or 110B or consent of instructor.

RELI 196H. Honors Thesis Research (4)
Honors thesis research for students accepted into the Honors Program. Research is conducted under the supervision of a program faculty member. Prerequisite: program approval into the Honors Program.

RELI 197. Directed Advanced Readings (4)
A faculty member will direct a student in advanced readings on a topic not generally included in the Program for the Study of Religion’s curriculum. Students must make arrangements with the program and individual faculty. May be repeated for credit up to three times for credit. Prerequisites: upper-division standing: RELI 110A or 110B; overall GPA of 2.5.

RELI 199. Independent Research Study for Undergraduates (2–4)
Independent research in religion under the supervision of a faculty member affiliated with the Program for the Study of Religion. This course may be repeated three times with program approval. (P/NP grades only.) Prerequisites: upper-division standing, with 2.5 GPA (overall); program stamp.

APPROVED ELECTIVE COURSES

The following lower- and upper-division courses are offered on a regular basis, although not every course is available every year. Please contact the program coordinator for approved courses in any given quarter or visit the program’s Web site, http://reliigion.ucsd.edu. Students may petition other courses, including independent study and Education Abroad Program courses when appropriate.

LOWER-DIVISION

ANTH 1. Introduction to Culture
HUM 1. The Foundations of Western Civilization: Israel and Greece
HUM 2. Rome, Christianity, and the Middle Ages
MMW 2. The Great Classical Traditions
MMW 3. The Medieval Heritage
PHIL 14. Introduction to Philosophy: Metaphysics
PHIL 31. History of Philosophy: Ancient Philosophy
RELI 1. Introduction to Religion
SOCI 1A, 8. The Study of Society

UPPER-DIVISION

METHODOLOGICAL

ANSC 120. Anthropology of Religion
ANSC 167. Rituals and Celebrations
RELI 110A. The Modern Study of Religion: Religion in Modernity
RELI 110B. The Modern Study of Religion: Social and Cultural Theories of Religion
RELI 143. Topics in Performing Religion
RELI 189. Seminar in Religion
SOCI 100. Classical Sociological Theory
SOCI 156. Sociology of Religion

GENERAL COMPARATIVE

ANSC 104. Anthropology of Fantasy
ANSC 134. Global Islam
ANSC 160. Nature, Culture, and Environmentalism
LTWL 100. Mythology
RELI 130. Religion, Science, and Magic
RELI 131. Topics in Religion and Sexuality
RELI 132. Topics in Orthodoxy and Heterodoxy
RELI 134. Topics in American Religion
RELI 140. Death and Religion
RELI 188. Special Topics in Religion
RELI 196H. Honors Thesis Research
RELI 197. Directed Advanced Readings
VIS 117I. Western and Non-Western Rituals and Ceremonies

REVELATION IN HISTORICAL CONTEXT
ANAR 142. The Rise and Fall of Ancient Israel
ANAR 143. Archaeology, Anthropology, and the Bible
ANAR 154. Aztecs and their Ancestor
ANSC 130. Hinduism
ANSC 137. Chinese Popular Religion
ETHN 161. Black Politics and Protest Since 1941
ETHN 188. African Americans, Religion, and the City
HIEA 120. Classical Chinese Philosophy and Culture
HIEA 121. Medieval Chinese Culture and Society
HIEA 126. The Silk Road in Chinese and Japanese History
HIEA 136. History of Thought and Religion in China: Daoism
HIEA 168. Topics in Classical and Medieval Chinese History (when topic covers religion)
HIEU 101. Greece in the Classical Age
HIEU 105. The Early Christian Church
HIEU 113. Rule, Conflict, and Dissent in the Middle Ages
HIEU 115. The Pursuit of the Millennium
HIEU 132. Germany from Luther to Bismark
HIEU 147. Women and Gender in Early Modern Europe
HIEU 158. Why Hitler? How Auschwitz?
HIEU 159. Three Centuries of Zionism, 1648–1948
HIEU 163. Special Topics in Medieval History (when topic covers religion)
HIEU 171. Special Topics in Twentieth-Century Europe (when topic covers religion)
HINE 102. The Jews in Their Homeland in Antiquity
HINE 103. The Jewish Diaspora in Antiquity
HINE 106S. Apocalyptic Judaism
HINE 107. Ancient Egypt: History and Culture
HINE 108. The Middle East Before Islam
HINE 112A. Great Stories from the Hebrew Bible
HINE 114. The History of the Islamic Middle East
HINE 115. Islamic Civilization
HINE 116. The Middle East in the Age of European Empires (1798–1914)
HINE 119. U.S. Mid-East Policy Post WWII
HINE 161. Seminar in the Hebrew Bible
HINE 170. Special Topics in Jewish History
HINE 181. Problems in the Study of the Hebrew Manuscripts
HINE 186. Special Topics in Middle Eastern History (when topic covers religion)
HISC 166. The Galileo Affair
HITO 102. East Asian Religious Traditions
HITO 103S. Gnosis and Gnosticism
HITO 104. Jews and Judaism in the Ancient and Medieval Worlds
HITO 105. Jews and Judaism in the Modern World
HITO 106. How Jewish Women Lived in Modern Times
HITO 115S. Myth, History, and Archaeology
HIUS 155A/B. Religion and Law in American Society
JUDA 110. Introduction to Judaism
LTWL 139. Gnosticism: The Religious Underground from Late Antiquity to the New Age
LTWL 142. Islam: The Origin and Spread of a World Religion

RELIGION AND SOCIETY
ANSC 100. Special Topics in Socio-Cultural Anthropology (when topic covers religion)
ANSC 132. Modernity in Brazil
ANSC 133. Peoples and Cultures of the Middle East
ANSC 136. Traditional Chinese Society
ANSC 189. The Anthropology of the End of the World
ETHN 110. Cultural World Views of Native Americans
ETHN 189. Special Topics in Ethnic Studies (when topic covers religion)
HIAF 124. Islam in Contemporary African Societies
HIEA 119. Religion and Popular Culture in East Asia (SOCB 162R)
HIEA 120. Classical Chinese Philosophy and Culture
HIEA 126. The Silk Road in Chinese and Japanese History
HIEA 135. History of Thought and Religion in China: Buddhism
HIEA 137. Women and Family in Chinese History
HIEU 110. The Rise of Europe
HIEU 111. Europe in the Middle Ages
HIEU 125. Reformation Europe
HIEU 163. Topics in Medieval History
HINE 118. The Middle East in the Twentieth Century
HINE 122. Politicization of Religion in Middle East
HINE 166. Nationalism in the Middle East
HISC 101B. Medieval Science in the Latin West, ca. 500–1500
JUDA 111. Topics in Judaism
LTWL 141. Islam and Modernity
POLI 110A. Citizens and Saints: Political Thought from Plato to Augustine
POLI 110B. Sovereign Subjects in the Modern State: Machiavelli to Rousseau
POLI 110C. Revolution and Reaction: Political Thought from Kant to Nietzsche
POLI 121. Government and Politics of the Middle East
POLI 121B. Politics of Israel
RELI 141. Public Sphere and Religion
RELI 142. Secularization and Religion
SOCI 145. Religious Institutions in America
SOCI 157. Religion in Contemporary Society
SOCI 158. Islam in the Modern World
SOCI 160. Sociology of Culture
SOCI 162R. Religion and Popular Culture in East Asia (HIEA 119)
SOCI 177. International Terrorism
SOCI 188E. Community and Social Change in Africa
SOCI 188F. Modern Jewish Societies and Israeli Society
SOCI 188G. Chinese Society
SOCI 189. Special Topics in Comparative-Historical Sociology (when topic covers religion)

RELIGION AND LITERATURE
HINE 160. Special Topics in the Bible and Ancient Near East
JUDA 100. Introduction to the Hebrew Bible
LTEN 118. Milton
LTEN 125B. First-Generation Romantic Poets: Wordsworth, Rousseau, and Burke
LTEN 149. Themes in English and American Literature (when topic covers religion)
LTEU 105. Medieval Studies: Dante
LTEU 158. Single Author in Russian Literature (when topic covers religion)
LTGK 120. New Testament Greek
LTWL 106. The Classical Tradition (when topic covers religion)
LTWL 129. Wisdom: A Literature of Authority
LTWL 135. The Buddhist Imaginary
LTWL 138. Critical Religion Studies
LTWL 145. South Asian Religious Literature: Selected Topics
LTWL 147. Readings in Mahayana Buddhism
LTWL 153. Literature, Religion, and Culture in Iran
LTWL 158A. Topics in the New Testament
LTWL 158B. Topics in Early Christian Texts and Cultures
LTWL 158C. Topics in Other Christianities
LTWL 172. Special Topics in Literature (when topic covers religion)
RELI 111. Texts and Contexts: The Holy Book in Judaism and Christianity
RELI 112. Texts and Contexts: The Holy Book in Islam
RELI 113: Texts and Contexts: Textual Communities in South Asia

RELIGION AND PHILOSOPHY
HISC 168. The Extraterrestrial Life Question
PHIL 104. The Rationalists
PHIL 130. Metaphysics (when topic covers religion)
PHIL 131. Topics in Metaphysics (when topic covers religion)
PHIL 185. Philosophy of Religion

RELIGION AND THE ARTS
VIS 117A. Narrative Structures
VIS 120A. Greek Art
VIS 120B. Roman Art
VIS 120C. Late Antique Art
VIS 121B. Castles, Cathedrals, and Cities
VIS 121D. The Illuminated Manuscript in the Middle Ages
VIS 122AN. Renaissance Art
VIS 122D. Michelangelo
VIS 123AN. Between Spirit and Flesh: Northern Art of the Early Renaissance
VIS 124BN. Art & the Enlightenment
VIS 126BN. The Art and Civilization of the Ancient Maya
VIS 128A. Topics in Pre-Modern Art History (when topic covers religion)
VIS 128B. Topics in Early Modern Art History (when topic covers religion)
Revelle College

OFFICE: Office of the Provost, Revelle College
http://revelle.ucsd.edu

HUMANITIES/WRITING PROGRAM

OFFICE: Galbraith Hall 180, Revelle College
See Humanities.

REVELLE HONORS PROGRAM

OFFICE: Office of the Provost, Revelle College
Particularly well-prepared students are invited to join a freshman honors program, which includes weekly participation in small faculty seminars (Revelle 20). Acceptance into the Honors Program at admission is automatic for Regents and National Merit Scholars as well as those students entering with a high school GPA of 3.6 or higher and verbal and math SAT scores of 700 or higher. Admission to the program winter quarter is offered to those who achieve a 3.7 GPA in at least twelve graded units taken at UC San Diego during the fall quarter. A variety of other perquisites are also awarded. Outstanding students are individually advised to participate in small honors classes in chemistry, mathematics, physics, and social science.

Outstanding seniors are selected for participation in honors seminars, Revelle 100 and 110. At least five outstanding graduating seniors are honored at graduation each year with a monetary honorarium.

An honors banquet is given for the top 200 students (from all class levels) in Revelle each spring.

REVELLE SEMINARS

OFFICE: Office of the Provost, Revelle College
Revelle Seminars 90 (1.0 unit credit) are sponsored by Revelle College to promote student/faculty interaction in a small group setting.

Revelle 90. Undergraduate Seminar (1)
A seminar intended for exposing undergraduate students, especially freshmen and sophomores, to exciting research programs conducted by the faculty. Prerequisite: none. Pass/Not Pass grades only. (F,W,S)

Revelle 91. Art, Book, and Life (1)
This interdisciplinary seminar will look at some selective relationships between visual arts and literature generally building chronologically and culminating with slide-illustrated visits to the world’s great museums. Short student presentations. Prerequisite: Humanities or consent of instructor.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

Revelle 20. Revelle Honors Seminar (0)
Weekly seminars with a faculty member (chosen each year by the provost to match the interests of participating students). This seminar will acquaint students with the scholarship and research being conducted by faculty and instill in students a sense of participation in the scholarly life at UCSD. Prerequisite: by invitation only. Pass/Not Pass grades only. (F,W,S)

Revelle 100. Senior Honors Seminar:
Science and Civilization (4)
Beginning with the distinction between science and technology, the course will trace their evolution from earliest times, culminating in an examination of their impact on modern society and of the social concerns about their future course. Prerequisites: senior standing, 3.5 overall GPA, science major, consent of instructor, Revelle students only. Pass/Not Pass grades only.
Russian and Soviet Studies

FACULTY
Steven Cassedy, Ph.D., Professor in Literature
Frantisek Deak, Ph.D., Professor Emeritus in Theatre and Dance
Robert Edelman, Ph.D., Professor in History
Amelia Glaser, Ph.D., Assistant Professor in Literature
Philip Roeder, Ph.D., Professor in Political Science
Rebecca Wells, Lecturer in Literature

OFFICE:
History Undergraduate Advising
Humanities and Social Sciences Building, Fifth Floor
Muir College
http://history.ucsd.edu/programs/caesar-programs/russiansoviet-stud/

Russian and Soviet Studies is an interdisciplinary program that provides a broad range of courses in the history, language, literature, and social and political life of Russia (before, during, and after the Soviet period). It is designed for students who do not wish to restrict their Russian studies to literature.

THE MINOR
The minor consists of seven courses, at least four of which must be upper-division. In addition, there must be at least one course each from two of the three following areas: literature, history, and social science. No more than three of the seven courses may be language courses. Knowledge of the language is not a requirement for the minor, but it is strongly recommended.

THE MAJOR
The major requires a study of Russian language. It consists of LTRU 1A-B-C (First-Year Russian), LTRU 2A-B-C (Second-Year Russian), or their equivalent, and a minimum of twelve upper-division courses. All students are required to take LTRU 104A-B-C (Advanced Practicum in Russian), HIEU 134 (History of Russia, Ninth Century to 1855), HIEU 156 (History of Russia, 1855 to the Present), and LTRU 110A-B-C (Survey of Russian Literature in Translation). In addition, students will take four electives, of which at least two must be from the social sciences (sociology or political science).

Students in the major are encouraged to participate in the Education Abroad Program (EAP) in Russia and to investigate other options for foreign study through the Opportunities Abroad Program (OAP). By petition, credits earned through EAP/OAP can fulfill UC San Diego degree and major requirements. Please visit the Web site at http://history.ucsd.edu/programs/caesar-programs/russiansoviet-stud/ for further details.

COURSES
For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LITERATURE
LTRU 1A-B-C. First-year Russian (4-4-4)
LTRU 2A-B-C. Second-year Russian (4-4-4)
LTRU 104A-B-C. Advanced Practicum in Russian (4-4-4)
LTRU 110A-B-C. Survey of Russian and Soviet Literature in Translation (4-4-4)
110A. 1800–1860
110B. 1860–1917
110C. 1917–Present
LTRU 123. Single Author in Russian Literature in Translation (4)
LTRU 150. Russian Culture (4)
LTRU 198. Directed Group Study (4)
LTRU 199. Special Studies (2 or 4)

HISTORY
HIEU 134. The Formation of the Russian Empire, 800–1855 (4)
HIEU 157. Religion and the Law in Modern European History (4)
HIEU 178. Soviet History (4)

SOCIOLOGY
Course offerings vary by quarter.

POLITICAL SCIENCE
POLI 130AA. The Soviet Successor States (4)
POLI 130B. The Soviet State and Society (4)
POLI 130AC. Seminar: Post-Soviet Politics (4)
Science Studies

Program Director, Robert S. Westman

PROFESSORS
William Bechtel, Ph.D., Philosophy
Craig Callender, Ph.D., Philosophy
Lisa Cartwright, Ph.D., Communication
Nancy Cartwright, Ph.D., Philosophy
Paul M. Churchland, Ph.D., Philosophy
Gerald D. Doppelt, Ph.D., Philosophy
Chandra Mukerji, Ph.D., Communication
Naomi Oreskes, Ph.D., History
Andrew Scull, Ph.D., Sociology
Eric Watkins, Ph.D., Philosophy
Robert S. Westman, Ph.D., History

PROFESSOR EMERITUS
Martin J.S. Rudwick, Ph.D., History

ASSOCIATE PROFESSORS
Tal Golan, Ph.D., History
Martha Lampland, Ph.D., Sociology
David Serlin, Ph.D., Communication
Charles Thorpe, Ph.D., Sociology

ASSISTANT PROFESSORS
Morana Alac, Ph.D., Communication
Kelly Gates, Ph.D., Communication
Cathy Gee, Ph.D., History
Christian Wuthrich, Ph.D., Philosophy

AFFILIATED FACULTY/RESEARCHERS
Karen Baker, M.D., Scripps Institution of Oceanography
Roddey Reid, Ph.D., Literature
Linda Strauss, Ph.D., Sixth College

OFFICE: 5045 Humanities and Social Sciences Building, Muir College
http://sciencestudies.ucsd.edu/

The Science Studies Program at UC San Diego is an interdisciplinary Ph.D. program committed to working toward a deeper understanding of scientific knowledge and technological change, past and present. The program offers students an opportunity to integrate the perspectives developed in communication studies and the history, sociology, and philosophy of science, while receiving a thorough training at a professional level in one of the component disciplines. Students enrolled in the program choose one of the four disciplines for their major field of specialist studies and are required to complete minor field requirements in the others. Students are also required to take the Introduction to Science Studies, Advanced Approaches to Science Studies, and two interdisciplinary, topical “core” seminars, and to attend the program colloquium. Science studies students are encouraged to select dissertation topics that offer scope for a cross-disciplinary approach. The Ph.D. will be awarded in Communication (Science Studies), History (Science Studies), Sociology (Science Studies), or Philosophy (Science Studies). In special circumstances, students may be permitted to work for the M.A. degree.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

GRADUATE

COGR 225A, HIGR 238, PHIL 209A, SOCG 255A. Introduction to Science Studies (4)
Study and discussion of classic work in history of science, sociology of science, and philosophy of science, and of work that attempts to develop a unified science studies approach. Required for all students in the Science Studies Program. Prerequisite: enrollment in Science Studies Program.

COGR 225B, HIGR 239, PHIL 209B, SOCG 255B. Seminar in Science Studies (4)
Study and discussion of selected topics in the science studies field. Required for all students in the Science Studies Program. The topic varies from year to year, and students may, therefore, repeat the course for credit. Prerequisite: enrollment in Science Studies Program.

COGR 225C, HIGR 240, PHIL 209C, SOCG 255C. Colloquium in Science Studies (4)
A forum for the presentation and discussion of research in progress in science studies, by graduate students, faculty, and visitors. Required for all students in the Science Studies Program. Prerequisite: enrollment in the Science Studies Program.

COGR 225D, HIGR 241, PHIL 209D, SOCG 255D. Advanced Approaches to Science Studies (4)
Contemporary themes and problems in Science Studies. Focus on recent literature in the history, philosophy and sociology of science, technology, and medicine. Required of all students in the Science Studies Program. Prerequisites: completion of COGR 225A, HIGR 238, PHIL 209A, or SOCG 255A; enrollment in Science Studies Program; or instructor’s permission.

HIGR 235. Science, Empire, and Exploration (4)
Examines links between scientific work, particularly expeditions and exploration, and political programs of empire in the seventeenth to twentieth centuries. Topics: collecting expeditions as expressions of empire; role of colonial administrative networks in facilitating field-based investigations; relations between European and non-European knowledge systems. Prerequisite: graduate standing or consent of instructor.

HIGR 236A-B. Seminar in History of Science (4-4)
A two-quarter research seminar, comprising intensive study of a specific topic in the history of science. The first quarter will be devoted to readings and discussions; the second chiefly to the writing of individual research papers. The topic varies from year to year, and students may repeat the course for credit. (IP grade to be awarded the first quarter; final grade will be given at the end of the second quarter.) Prerequisite: graduate standing.

HIGR 242. Topics in the History of Earth and Life Sciences (4)
Intensive study of specific problems in the history of the life sciences and earth sciences, ranging in period from the Renaissance to the twenty-first century. May be repeated for credit as topics will vary annually. Prerequisite: graduate standing.

HIGR 243. Historical Scholarship in Technology (4)
An introduction to the historiography of technology. This reading seminar provides an overview of scholarly approaches to the history of technology by critically examining classic and contemporary works in the field. Prerequisite: graduate standing or consent of instructor.

HIGR 244. Introduction to Sound Studies (4)
Study and discussion of classic and recent scholarship on sound production and cultures of listening. Emphasizes historical literature but also includes works in literary studies, art history, music, and other fields.

HISC 160. Historical Approaches to the Study of Science (4)
This colloquium course will introduce students to the rich variety of ways in which the scientific enterprise is currently being studied historically. Major recent publications on specific topics in the history of science selected to illustrate this diversity will be discussed and analyzed; the topics will range in period from the seventeenth century to the late twentieth, and will deal with all major branches of natural science. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students may be expected to submit a more substantial piece of work. Prerequisites: consent of instructor; department stamp required.

HISC 163/263. History, Science, and Politics of Climate Change (4)
The complex historical development of human understanding of global climate change, including key scientific work, and the cultural dimensions of proof and persuasion. Special emphasis on the differential political acceptance of the scientific evidence in the U.S. and the world. Graduate students are required to submit an additional paper. Prerequisite: upper-division or graduate standing; department stamp required.

HISC 164/264. Topics in the History of the Physical Sciences (4)
Intensive study of specific problems in the physical (including chemical and mathematical) sciences, ranging in period from the Renaissance to the twentieth century. Topics vary from year to year, and students may therefore repeat the course for credit. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students may be expected to submit a more substantial piece of work. Prerequisites: consent of instructor; department stamp required.

HISC 165. Topics in Twentieth-Century Science and Culture (4)
This is a seminar open to advanced undergraduate and graduate students that explores topics at the interface of science, technology, and culture, from the late nineteenth century to the present. Topics change yearly; may be repeated for credit with instructor’s consent. Requirements vary for undergraduates, M.A., and Ph.D. students. Graduate students are required to submit a more substantial piece of work. Prerequisites: upper-division standing or consent of instructor; department stamp required.

HISC 166/266. The Galileo Affair (4)
Galileo’s condemnation by the Catholic Church in 1633 is a well-known but misunderstood episode. Was Galileo punished for holding dangerous scientific views? Personal arrogance? Disobedience? Religious transgressions? Readings in original sources, recent historical interpretations. Graduate students will be expected to submit a more substantial piece of work. Prerequisites: upper-division standing or consent of instructor.

HISC 167/267. Gender and Science (4)
Why have women been traditionally excluded from science? How has this affected scientific knowledge? How have scientists constructed gendered representations not only of women, but also of science and nature? We will address these questions from perspectives including history, philosophy, and psychoanalytic theory. Prerequisite: upper-division standing or consent of instructor.

HISC 168/268. The Extraterrestrial Life Question (4)
The changing fortunes of the belief in the existence of life beyond the Earth (pluralism) from 1750–present as it evolved from a marginal speculation to a central scientific question with wide-ranging consequences for traditional religious belief systems. Prerequisite: upper-division standing or graduate standing or consent of instructor. Graduate students will be expected to submit a more substantial piece of work.

2010-2011 UC SAN DIEGO GENERAL CATALOG • SCIENCE STUDIES 1
HISC 170/270. Topics in the History of Science and Technology (4)
This seminar explores topics at the interface of science, technology, and society, ranging from the seventeenth century to the twentieth. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students are required to submit an additional paper. Prerequisite: upper-division standing or consent of instructor; department stamp required.

The history of the built environment in the United States, from skyscrapers to suburbs, canals and railroads to factories and department stores. The technological history of structures and infrastructures, and the social and cultural values that have been "built into" our material environment. Graduate students are required to submit an additional paper. Prerequisite: upper-division standing or consent of instructor; department stamp required.

Phil. 204A. Core Course in Philosophy of Science (4)
An introduction to one or more central problems in the philosophy of science, or in the philosophy of one of the particular sciences, such as the nature of confirmation and explanation, the nature of scientific knowledge, reductionism, the unity of science, or realism and antirealism. May be taken for credit three times with changed content.

Phil. 245. Philosophy of Science (4)
This seminar will cover current books and theoretical issues in the philosophy of science. May be taken for credit seven times with changed content.

Phil. 247. Philosophy of Biology (4)
Historical and contemporary perspectives on foundational issues about biology. May include questions about the nature of biological explanation, the relation of biology to chemistry and physics, the status of attributions of function, and the relation of biology to the social sciences. May be taken for credit six times with changed content.

Phil. 250A. Philosophy of the Cognitive Sciences (4)
Contemporary debates about the study of the mind-brain as studied in one or more of the empirical cognitive sciences. May include questions about the different strategies of explanation invoked, the conceptions of representation employed, the connections between theoretical models developed. May be taken for credit six times with changed content.

Phil. 280. Philosophy of Science Topics and Methods (1-2)
This course meets weekly to discuss recent books or articles in philosophy of science. The reading is designed both for students doing active research in the field and for those seeking to gain some familiarity with it. Can be taken nine times for credit with changed content. Prerequisite: graduate standing or consent of instructor.

Soc/G 234. Intellectual Foundation of the Study of Science, Technology, and Medicine (4)
This course focuses on some classic methodological and theoretical resources upon which the sociology of science, technology, and medicine all draw. It gives special attention to relationships between knowledge and social order, and between knowledge and practice, that are common to science, technology, and medicine. Prerequisite: graduate standing.

Soc/G 247. Madness and Society (4)
An examination of the changing Western responses from the age of Bedlam to the age of Prozac. Topics include: the rise and decline of the total institution; the emergence of psychiatry; changing cultural meanings of madness; and the therapeutics of mental disorder. Prerequisite: graduate standing.

Soc/G 249. Technology and the Human (4)
This course explores the ethical and political implications of technological interventions into human life. Approaches from science studies, the sociology of the body, and philosophy. Topics include transformations in domains of life such as work, health, childhood, and death. Prerequisite: graduate standing.

Soc/G 283. The Making of Modern Medicine (4)
An examination of the intellectual, social, cultural, and political dimensions of the Transformation of Western medicine from 1750 to 1900, with a primary focus on Anglo-American developments. Prerequisite: graduate standing.

Soc/G 284. Contemporary Biomedicine (4)
Develops central themes in medical sociology in order to understand twentieth- and twenty-first-century medical practice and research. Topics include authority and expertise; health inequalities; managed care; health activism; biomedical knowledge production; and the construction of medical objects and subjects. Prerequisite: graduate standing.

Soc/G 288. Knowledge Capitalism (4)
This seminar examines the place of scientific knowledge and information and communication technology in the transformation of capitalist economy and society. The class explores new interactions between science studies and the social theory of advanced capitalism. Prerequisite: graduate standing.
Science, Technology, and Public Affairs

OFFICE: Galbraith Hall, Room 180, Revelle College

The program offers an opportunity to study the important social policy issues that lie at the intersection of science, technology, and decision making and to develop awareness of the social and political factors that condition technology on the social order. The program will be attractive to students anticipating careers in law, administrative sciences, science, engineering, business, and international affairs. The program will serve as a meeting place for those interested in approaching policy questions from the perspective of the physical and biological sciences and for those in the social sciences having an interest in the scientific and technological component of present social, political, and environment problems.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LOWER-DIVISION

35. Society and the Sea (4)
Introduction to the oceans and their relationship to mankind. Selected topics include ocean-related science, engineering, research, economics, and international relations (emphasizing countries of the Pacific Rim); living and nonliving resources; coastal zone management; military and social aspects; and the sea in weather and climate. Prerequisite: none. (F)

UPPER-DIVISION

181. Essentials of Global Health (4)
Illustrates and explores ecologic settings and frameworks for study and understanding of global health and international health policy. Students acquire understanding of diverse determinants and trends of disease in various settings and inter-relationships between socio-cultural-economic development and health. Prerequisite: upper-division standing. (W)

199. Special Project (2 or 4)
Directed study on topics in science, technology, and public affairs; especially for Warren College students. (P/NP grades only.) Prerequisite: senior standing.

RELATED COURSES

Courses in other departments (change somewhat from year to year):

Economics 130
MAE 110B, 118A, 118B, 118C
Political Science 138D, 154, 160AA, 160AB
PROFESSORS
Duncan C. Agnew, Ph.D., Geophysics
Laurence Armi, Ph.D., Oceanography
Farooq Azam, Ph.D., Marine Biology
Jeffrey L. Bada, Ph.D., Marine Chemistry
Douglas H. Bartlett, Ph.D., Marine Microbiology, and Chair of the Department
Kevin M. Brown, Ph.D., Geology
Michael J. Buckingham, Ph.D., Oceanography
Ronald S. Burton, Ph.D., Marine Biology
Steven C. Cande, Ph.D., Marine Geophysics
Paterno R. Castillo, Ph.D., Geology
Paola Cessi, Ph.D., Oceanography
Christopher D. Charles, Ph.D., Oceanography
David M. Checkley, Ph.D., Oceanography
Catherine G. Constable, Ph.D., Geophysics
Steven C. Constable, Ph.D., Geophysics
Paul K. Dayton, Ph.D., Oceanography
Andrew G. Dickson, Ph.D., Marine Chemistry
LeRoy M. Dormann, Ph.D., Geophysics
Neal W. Driscoll, Ph.D., Geology
Horst Felbeck, Dr. rer. nat., Marine Biology
William H. Fenical, Ph.D., Chemistry
Yuri Fialko, Ph.D., Geophysics
Peter J. S. Franks, Ph.D., Oceanography
Terry Gaasterland, Ph.D., Computational Genomics
Jeffrey S. Gee, Ph.D., Geophysics
William H. Gerwick, Ph.D., Marine Chemistry
Carl H. Gibson, Ph.D., Marine Biophysics
Sarah T. Gillie, Ph.D., Oceanography
Robert T. Guza, Ph.D., Oceanography
Philip A. Hastings, Ph.D., Marine Biology
Anthony D.J. Haymet, Ph.D., Chemistry, Vice Chancellor of Marine Sciences and Director of Scripps Institution of Oceanography
Myrl C. Hendershott, Ph.D., Oceanography
John A. Hildebrand, Ph.D., Geophysics
David R. Hilton, Ph.D., Geochemistry
William S. Hodgkiss, Ph.D., Electrical Engineering
Nicholas D. Holland, Ph.D., Marine Biology
Glenn R. Ierley, Ph.D., Geophysics
Jeremy B.C. Jackson, Ph.D., Marine Biology and Geology
Miriam Kastner, Ph.D., Earth Sciences
Ralph F. Keeling, Ph.D., Geochemistry
William A. Kuperman, Ph.D., Oceanography
Devendra Lal, Ph.D., Nuclear Geophysics
Michael R. Landry, Ph.D., Oceanography
Lisa A. Levin, Ph.D., Oceanography
Peter F. Lonsdale, Ph.D., Oceanography
T. Guy Masters, Ph.D., Geophysics
W. Kendall Melville, Ph.D., Oceanography
Jean-Bernard M. Minster, Ph.D., Geophysics
Mario J. Molina, Ph.D., Atmospheric Chemistry
Bradley S. Moore, Ph.D., Marine Biochemistry
Richard D. Norris, Ph.D., Paleobiology
Mark D. Ohman, Ph.D., Biological Oceanography
John A. Orcutt, Ph.D., Geophysics
Brian Palenik, Ph.D., Marine Biology
Robert Pinkel, Ph.D., Oceanography
Kimberly A. Prather, Ph.D., Atmospheric Chemistry
Veerabhadran Ramanathan, Ph.D., Climate and Atmospheric Sciences
Dean H. Roemmich, Ph.D., Oceanography
Gregory Rouse, Ph.D., Zoology
Daniel L. Rudnick, Ph.D., Oceanography
Lynn M. Russell, Ph.D., Atmospheric Chemistry
David T. Sandwell, Ph.D., Geophysics
John G. Sclater, Ph.D., Marine Geophysics
Jeffrey S. Severynhaus, Ph.D., Geochemistry
Peter M. Shearer, Ph.D., Geophysics
Dariusz Stramski, Ph.D., Oceanography
George Sugihara, Ph.D., Mathematical Ecology
Lynne D. Talley, Ph.D., Oceanography
Lisa Tauxe, Ph.D., Geophysics
Ray F. Weiss, Ph.D., Geochemistry
Bradley T. Werner, Ph.D., Oceanography
Clinton D. Winant, Ph.D., Oceanography
William R. Young, Ph.D., Oceanography

PROFESSORS EMERITI
Gustaf Arhenius, Ph.D., Oceanography
George E. Backus, Ph.D., Geophysics
Andrew A. Benson, Ph.D., Biology
Wolfgang H. Berger, Ph.D., Oceanography
Charles S. Cox, Ph.D., Oceanography
Paul J. Crutzen, Ph.D., Atmospheric Chemistry
Joseph R. Curran, Ph.D., Geology
Edward A. Frieman, Ph.D., Physics, Director
Joris M. T. M. Gieskes, Ph.D., Oceanography
J. Freeman Gilbert, Ph.D., Geophysics
Richard A. Haubrich, Ph.D., Geophysics
James W. Hawkins, Ph.D., Geology
Francis T. Haxo, Ph.D., Biology
Margo G. Haygood, Ph.D., Marine Biology
Robert R. Hessler, Ph.D., Biological Oceanography
Douglas L. Inman, Ph.D., Oceanography
Charles F. Kennel, Ph.D., Physics
Gerald L. Kooymans, Ph.D., Biochemistry
J. Douglas Macduff, Ph.D., Earth Sciences
John A. McGowan, Ph.D., Oceanography
Walter H. Munk, Ph.D., Oceanography
William Newman, Ph.D., Zoology
Pearm P. Niiler, Ph.D., Oceanography
Robert L. Parker, Ph.D., Geophysics
Joseph L. Reid, M.S., Oceanography
Richard H. Rosenblatt, Ph.D., Marine Biology
Richard L. Salmon, Ph.D., Oceanography
Robert Shadwick, Ph.D., Zoology/Biomechanics
George N. Somero, Ph.D., Biology
Richard C.J. Somervell, Ph.D., Meteorology
Bradley M. Tebo, Ph.D., Marine Biology
Victor D. Vacquier, Ph.D., Marine Biology
Martin Wahlen, Ph.D., Geochemistry
Kenneth M. Watson, Ph.D., Physical Oceanography
Edward L. Winterer, Ph.D., Geology
A. Aristides Yayahos, Ph.D., Biology

ACTING ASSOCIATE PROFESSOR
Jennifer A. MacKinnon, Ph.D., Oceanography

ASSOCIATE PROFESSORS
Luhui I. Aluwihare, Ph.D., Marine Chemistry
Katherine A. Barbeau, Ph.D., Marine Chemistry
Helen Fricke, Ph.D., Glaciology
James J. Leichter, Ph.D., Oceanography
Joel R. Norris, Ph.D., Climate and Atmospheric Sciences

ASSISTANT PROFESSORS
Eric E. Allen, Ph.D., Marine Biology
Amro Hamdoun, Ph.D., Physiology
Todd R. Martz, Ph.D., Analytical Chemistry
Jennifer E. Smith, Ph.D., Botany and Ecology, Evolution and Conservation Biology
David Stegman, Ph.D., Geophysics

ADJUNCT PROFESSORS
Lisa T. Ballance, Ph.D., Biological Oceanography
Jay P. Barlow, Ph.D., Biological Oceanography
Exequiel Ezcurra, Ph.D., Ecology
Paul Falkowski, Ph.D., Biology
Konstantine P. Georgakakos, Sc.D., Hydrology
Catherine L. Johnson, Ph.D., Geophysics
Nancy Knowlton, Ph.D., Marine Biology
Stefan G. Llewellyn Smith, Ph.D., Applied Mathematics
Tadeusz F. Molinski, Ph.D., Organic Chemistry
Phillip Morin, Ph.D., Population Genetics
Naomi Oreskes, Ph.D., Graduate Special Program in Geological Research and History of Science
William F. Perrin, Ph.D., Marine Biology
Paul E. Smith, Ph.D., Biological Oceanography
Detlef Stammer, Ph.D., Oceanography

ASSOCIATE ADJUNCT PROFESSOR
Andrew E. Allen, Ph.D., Ecology

ASSISTANT ADJUNCT PROFESSOR
Shannon J. Williamson, Ph.D., Marine Science

SENIOR LECTURERS
Donna K. Blackman, Ph.D., Research Geophysicist
Yehuda Bock, Ph.D., Research Geodesit
George Carnevale, Ph.D., Research Oceanographer
Daniel R. Cayan, Ph.D., Research Meteorologist
Teresa K. Chereskin, Ph.D., Research Oceanographer
Bruce D. Cornuelle, Ph.D., Research Oceanographer
Grant B. Deane, Ph.D., Research Oceanographer
Peter Gerstoft, Ph.D., Research Scientist
Jeffrey B. Graham, Ph.D., Research Biologist
Alistair J. Harding, Ph.D., Research Geophysicist
Michael A.H. Hedlin, Ph.D., Research Geophysicist
Sam Iacobellis, Ph.D., Specialist
Jules S. Jaffe, Ph.D., Research Oceanographer
Graham M. Kent, Ph.D., Research Geophysicist
J. Anthony Koslow, Ph.D., Research Oceanographer/Director, CalCOFI
Michael I. Latz, Ph.D., Research Biologist
Dan Lubin, Ph.D., Research Physicist
Arthur J. Miller, Ph.D., Research Oceanographer
B. Gregory Mitchell, Ph.D., Research Oceanographer
Jerome A. Smith, Ph.D., Research Oceanographer
Kenneth L. Smith, Jr., Ph.D., Research Biologist
Hubert Staudegdel, Ph.D., Research Geologist
James H. Swift, Ph.D., Research Oceanographer
Frank L. Vernon, Ph.D., Research Geophysicist
Kraig Winters, Ph.D., Research Oceanographer
Peter F. Worocce, Ph.D., Research Oceanographer
Mark A. Zumberge, Ph.D., Research Geophysicist
THE UNDERGRADUATE PROGRAM

The Scripps Institution of Oceanography Department offers over forty-five undergraduate courses covering a wide breadth of earth and marine sciences on several different levels. There are several introductory classes for non-majors, and upper-division courses intended for a wide range of students in natural science majors. For students interested in careers in earth sciences, the Scripps Institution of Oceanography offers a B.S. degree and a contiguous B.S./M.S. degree in earth sciences. In addition, students may follow a chemistry/earth sciences major, a physics major with a specialization in earth sciences, or an environmental systems/earth sciences major (see the “Chemistry,” “Physics,” or “Environmental Systems” sections of the catalog for details). The program also offers an academic minor in earth sciences.

For students interested in broadening their understanding of and opportunity in marine science and oceanography, the program offers an academic minor in marine science. The marine science minor is designed to complement the strong disciplinary training of UC San Diego basic natural science and engineering majors (i.e., chemistry, physics, biological sciences, earth sciences, engineering, mathematics, etc.) by providing a broad interdisciplinary perspective with an applied environmental focus.

EARTH SCIENCES MAJOR

Earth sciences encompass broad scientific study of the origin and evolution of the earth system and its life forms. The earth sciences major embraces a wide range of topics, including the physical and chemical evolution of the planet, the evolution of life, the causes of earthquakes and volcanic eruptions, earth-surface processes, the origin and behavior of oceans and atmosphere, and the impact of humans on the environment. Earth science investigations are increasingly quantitative and experimental, and thus most upper-division courses require a strong foundation in chemistry, physics, and mathematics.

The earth sciences curriculum takes advantage of the unique opportunities offered by Scripps Institution of Oceanography. Classes beyond introductory level are usually small, permitting personalized instruction. Field trips are an important part of the instructional program. Earth sciences students are encouraged to consult with their instructors about incorporating appropriate courses and research opportunities at the Scripps Institution of Oceanography into their undergraduate curriculum.

A degree in earth sciences is an appropriate start for a broad range of career and graduate school opportunities in various areas, including research, government, state and federal survey jobs, environmental management, the petroleum and mining industries, consulting, ocean sciences, industrial institutions, elementary or secondary education, environmental policy, or environmental law. Program advisors and faculty can provide additional information on career and graduate school opportunities.

There are three specializations, each with slightly different course requirements, in the earth sciences major: The Earth Sciences/Geology major, Earth Sciences/Geochemistry major, and Earth Sciences/Geophysics major.

It is strongly recommended that all earth science majors meet regularly with the earth sciences academic advising staff and a faculty advisor to discuss and update curriculum choices. The earth sciences academic staff are located in the Scripps office of Undergraduate Programs in Galbraith Hall, Room 188.

Lower-division requirements are designed to provide the foundations in mathematics, physics, chemistry, and biology that are essential in modern quantitative earth science disciplines. In addition, there are four upper-division courses introducing basic concepts, SIO 100, SIO 102, SIO 103, and SIO 104. SIO 100 and SIO 102 should be taken during the sophomore year to provide the appropriate background for other upper-division courses.

A grade-point average of 2.0 or higher in the upper-division major program is required for graduation. Students must receive a grade of C– or better in any course to be counted toward fulfillment of the major requirements. In exceptional cases, students with a grade-point average in the major of 2.5 or greater may petition to have one grade of D accepted. All courses (lower- and upper-division) required for the major must be taken for a letter grade.

Special Studies Courses

Special studies in the earth sciences are offered as the courses SIO 198 and SIO 199. These courses are subject to consent of the instructor and approval by the earth sciences faculty advisor. They are open to students who have accrued at least ninety quarter-units and have a GPA of at least 3.0. Two quarters of earth sciences special studies may be counted toward any earth sciences major.

EARTH SCIENCES/GEOLoGY

The earth sciences/geology major is designed to allow students maximum flexibility in tailoring the curriculum to their interests, within the constraints of obtaining the necessary background in physical, biological, and earth sciences. Compared to the earth sciences/geochemistry and earth sciences/geophysics tracks, it requires more earth science and fewer non-earth science courses.

Lower-Division Requirements

Math. 20A-B-C (may allow Math. 10A-B-C by petition) and Math. 20D
Phys. 2A-B-C (may allow Phys. 1A-B-C by petition)
Chem. 6A-B-C
BILD 3
SIO 50

Upper-Division Requirements

Earth Sciences Upper-Division Core Requirements

SIO 100. Introduction to Field Methods
SIO 102. Introduction to Geochemistry
SIO 103. Introduction to Geophysics
SIO 104/255. Paleobiology and History of Life
Upper-Division Earth Science Requirements
SIO 105. Sedimentology and Stratigraphy
SIO 120. Mineralogy
SIO 152. Petrology and Petrography
SIO 160. Introduction to Tectonics
SIO 162. Structural Geology
SIO 182A. Environmental and Exploration Geophysics A
SIO 182B. Environmental and Exploration Geophysics B

Upper-Division Restricted Electives, at least four courses from
Chem. 173. Atmospheric Chemistry
SIO 101. California Coastal Oceanography
SIO 110. Introduction to GIS and GPS for Scientists
SIO 111/Phys. 111. Introduction to Waves and Tides
SIO 112. Urban Landscapes
SIO 115. Ice and the Climate System
SIO 117. The Physical Basis of Global Warming
SIO 135/236. Satellite Remote Sensing
SIO 138. The Coral Reef Environment
SIO 141/Chem. 174. Chemical Principles of Marine Systems
SIO 144/252A. Introduction to Isotope Geochemistry
SIO 148/248. Evolution of Earth’s Biosphere
SIO 154/254. Macroevolution
SIO 155/251. Petrology and Geochemistry of the Solid Earth
SIO 170. Introduction to Volcanology
SIO 186. Interactions Between Humans and the Environmental Problems, including biochemical and anthropogenic effects.

Lower-Division Requirements
Math. 20A-B-C-D
Phys. 2A-B-C (2D recommended)
Chem. 6A-B-C and Chem. 6BL
BILD 3
SIO 50

Upper-Division Requirements
Earth Sciences Upper-Division Core Requirements
SIO 100. Introduction to Field Methods
SIO 102. Introduction to Geochemistry
SIO 103. Introduction to Geophysics
SIO 104/255. Paleobiology and History of Life

Upper-Division Earth Science Requirements
SIO 120. Mineralogy
SIO 144/252A. Introduction to Isotope Geochemistry
SIO 152. Petrology and Petrography

Upper-Division Chemistry Requirements
Chem. 120A. Inorganic Chemistry
Chem. 131. Physical Chemistry or Chem. 127
Chem. 140A. Organic Chemistry

Chemistry Restricted Electives, at least two courses from
Chem. 149A. Environmental Chemistry
Chem. 149B. Environmental Chemistry
Chem. 173. Atmospheric Chemistry

Upper-Division Restricted Electives, at least three courses from
SIO 101. California Coastal Oceanography
SIO 105. Sedimentology and Stratigraphy
SIO 110. Introduction to GIS and GPS for Scientists
SIO 111/Phys. 111. Introduction to Waves and Tides
SIO 112. Urban Landscapes
SIO 115. Ice and the Climate System
SIO 135/236. Satellite Remote Sensing
SIO 138. The Coral Reef Environment
SIO 141/Chem. 174. Chemical Principles of Marine Systems
SIO 148/248. Evolution of Earth’s Biosphere
SIO 154/254. Macroevolution
SIO 155/251. Petrology and Geochemistry of the Solid Earth
SIO 160. Introduction to Tectonics
SIO 162. Structural Geology
SIO 170. Introduction to Volcanology
SIO 182A. Environmental and Exploration Geophysics A

EARTH SCIENCES/GEOPHYSICS MAJOR

This specialization focuses on the Earth as a chemical system and on its evolution. Emphasis is placed on the fundamental observations that allow geoscientists to understand better the past history of the planet, the energetics of its evolution, and the major “cycles” (e.g., water, carbon) that characterize and control planetary-scale changes on a broad range of time scales. The major is appropriate for students interested in modern geochemistry, in “global change” studies, and in global and local environmental problems, including biochemical and anthropogenic effects.

Lower-Division Requirements
Math. 20A-B-C-D-E-F
Phys. 4A-B-C-D or Phys. 2A-B-C (4D recommended)
Chem. 6A-B-C
BILD 3
SIO 50

Upper-Division Requirements
Earth Sciences Upper-Division Core Requirements
SIO 100. Introduction to Field Methods
SIO 102. Introduction to Geochemistry
SIO 103. Introduction to Geophysics
SIO 104/255. Paleobiology and History of Life
Upper-Division Earth Sciences Requirements

SIO 160. Introduction to Tectonics
SIO 182A. Environmental and Exploration Geophysics A
SIO 182B. Environmental and Exploration Geophysics B

Upper-Division Physics Requirements

Phys. 100A-B. Electromagnetism
Phys. 110A-B. Mechanics

Physics Restricted Electives, at least one course from

Phys. 105A. Mathematical and Computational Physics
Phys. 105B. Mathematical and Computational Physics
Phys. 121. Experimental Techniques
Phys. 140A-B. Statistical and Thermal Physics
MAE 131A. Solid Mechanics I
MAE 180A. Spacecraft Guidance I

Upper-Division Restricted Electives, at least two courses from

SIO 101. California Coastal Oceanography
SIO 105. Sedimentology and Stratigraphy
SIO 110. Introduction to GIS and GPS for Scientists
SIO 111/Phys. 111. Introduction to Waves and Tides
SIO 112. Urban Landscapes
SIO 115. Ice and the Climate System
SIO 117. The Physical Basis of Global Warming
SIO 120. Introduction to Mineralogy
SIO 135/236. Satellite Remote Sensing
SIO 138. The Coral Reef Environment
SIO 141/Chem. 174. Chemical Principles of Marine Systems
SIO 144/252A. Introduction to Isotope Chemistry
SIO 148/248. Evolution of Earth’s Biosphere
SIO 152. Petrology and Petrography
SIO 154/254. Macroevolution
SIO 155. Petrology and Geochemistry of the Solid Earth
SIO 160. Introduction to Tectonics
SIO 162. Structural Geology
SIO 170. Introduction to Volcanology
SIO 186. Interactions Between Humans and the Earth
SIO 195. Methods of Teaching Earth Sciences
SIO 197. Earth Science Internship
SIO 199. Independent Study
SIO 223. Geophysical Data Analysis
SIO 226. Introduction to Marine Geophysics
SIO 227A. Introduction to Seismology

An example schedule is outlined below.

FALL	**WINTER**	**SPRING**
Freshman Year	Chem. 6A	Chem. 6B
Math. 20A	Math. 20B	Math. 20C
SIO 50	Phys. 4A	Phys. 4B
Sophomore Year	Math. 20D	Math. 20E
Math. 4C	Phys. 4D	BILD 3
SIO 100	SIO 102	
Junior Year	Phys. 100A	Phys. 100B
Phys. 110A	SIO 104	SIO 110B
SIO 103	SIO 182A	SIO 182B
Senior Year	SIO 130 or 160	Phys. Elect.

HONORS PROGRAM

The Honors Program in Earth Sciences is offered for a limited number of students who have demonstrated excellence in the earth sciences major. Students are eligible for admission to the program when they have:

- Completed ninety units of courses including twelve units of earth sciences courses.
- Achieved a GPA of 3.3 overall and 3.5 in earth sciences courses.
- Submitted to the Earth Sciences Steering Committee, and had approved, an honors thesis research proposal.
- Successful completion of the Honors Program requires Maintenance of a GPA of 3.3 overall and 3.5 in earth sciences courses.
- Completion, with a B grade or higher, of a minimum of eight units of SIO 196 related to the honors thesis research, distributed over at least two quarters. These units must be in addition to the ordinary major requirements. However, students who subsequently fail to complete the Honors Program may apply up to four of these 196 units to their major.
- Acceptance of a written honors thesis report by a committee of not fewer than three faculty members.
- Satisfactory presentation of an oral report on the thesis research, preferably at a public undergraduate research conference on campus, or at an earth sciences conference. Alternatively, the oral report may be given at a seminar involving honors students and at least three faculty members.
- Students who successfully complete the Honors Program will graduate with "high distinction." Students who are interested in the Honors Program should contact the program advisor in Galbraith Hall, Room 188, Revelle College.

(See Scripps Institution of Oceanography graduate program for information on the "Contiguous Bachelor’s/Master’s Earth Sciences Degree Program."

EARTH SCIENCES MINOR

A minor in earth sciences consists of twenty-eight units of earth sciences courses, at least twenty of which must be upper-division, focused on geology, geochemistry, or geophysics. Courses required by a student’s major may not be applied toward a minor and neither can SIO 198 nor SIO 199. Courses for the minor may be taken on a Pass/Not Pass basis if the student’s college permits. Students interested in the earth sciences minor should meet with the earth sciences academic advising staff to discuss their curriculum choices.

MARINE SCIENCE MINOR

The Scripps Institution of Oceanography offers an undergraduate minor program in marine science. The minor curriculum is designed to complement the strong disciplinary training of UCSD basic science majors by providing a broad interdisciplinary perspective with an environmental focus. Ocean-related science is relevant to many contemporary environmental issues and problems and central to understanding earth-system evolution, dynamics, climate, and sustainability. The minor consists of courses and research opportunities offered primarily through faculty and researchers at Scripps. The mix of these components can be tailored to reflect students’ career interests through an “all courses” track or a “research” track. The “all courses” track offers a very flexible curriculum that serves students with a broad range of educational and career interests including environmental management and regulation, teaching, environmental law, economics and policy and a wide variety of graduate programs. The “research” track is designed for students interested in an undergraduate research experience at Scripps and serves as excellent preparation for graduate research studies.

The minor consists of twenty-eight units of course work, at least twenty of which must be upper-division. Courses required by a student’s major may not be applied toward the minor. Up to two courses for the minor may be taken on a Pass/Not Pass basis (upper- or lower-division). Students must earn at least a letter grade of C- in the remaining five or more courses used for the minor. The marine science minor places a strong emphasis on a rigorous natural science foundation; thus, several of the upper-division courses related to the minor have significant prerequisites. Students planning the minor should check catalog course descriptions carefully and should meet with advising staff in the Scripps Institution of Oceanography Office of Undergraduate Programs, Galbraith Hall, Room 188.

Lower-Division Requirements

SIO 30. The Oceans
Any one of the following lower-division courses may be applied to the minor requirements
STPA 35. Society and the Sea
SIO 10. The Earth
SIO 12. History of the Earth and Evolution
SIO 20. The Atmosphere
SIO 35. Water
SIO 40. Life and Climate on Earth
SIO 50. Introduction to Earth and Environmental Sciences

Additionally, any math, chemistry, physics, or biology course that is a prerequisite for an upper-division elective for the marine science minor (ex., Math. 20 series; Chem. 6A, 6B, 6C; Phys. 2 series; BILD 1, 2, 3) may be applied, by petition, as a lower-division requirement for the minor ’s major.
Upper-Division Requirements

Option 1 — All Courses Track
At least five courses from the list (below) of upper-division electives

Option 2 — Research Track
At least five courses from the list (below) of upper-division electives, at least three of which must be courses satisfying Option #1 and at least two of which must be Independent Study (SIO 199); eight units total. The Independent Study must be designed in mutual agreement and arrangement with an SIO faculty member. Students interested in the marine science minor “Research Track” must meet with a Scripps Undergraduate Program advisor for information and policies.

Upper-Division Electives
SIO 101. California Coastal Oceanography
SIO 102. Introduction to Geochemistry
SIO 103. Introduction to Geophysics
SIO 104/255. Paleobiology and History of Life
SIO 105. Sedimentology and Stratigraphy
SIO 110. Introduction to GIS and GPS for Scientists
SIO 111/Phys. 111. Introduction to Ocean Waves and Tides
SIO 115. Ice and the Climate System
SIO 117. The Physical Basis of Global Warming
SIO 138. The Coral Reef Environment
BIMM 126. Marine Microbiology
BIMM 127/SIO 288. Marine Microbiology Lab
BIBC 130/SIO 281. Marine Biochemistry
BIEB 134. Introduction to Biological Oceanography
SIO 135/236. Satellite Remote Sensing
SIO 141/Chem. 174. Chemical Principles of Marine Systems
SIO 148/248. Evolution of Earth’s Biosphere
SIO 154/254. Macroevolution
SIO 160. Introduction to Tectonics
SIO 180/292. Communicating Science to Informal Audiences
SIO 198. Directed Group Study
SIO 199. Independent Study
ECE 156/MAE 149/SIO 238. Sensor Networks
SIO 201. Geologic Record of Climate Change
SIO 210. Physical Oceanography
SIO 260. Marine Chemistry
SIO 265. Chemical Ecology of Marine Organisms
Other SIO courses may be submitted by petition.

STUDY ABROAD

Study abroad through the Education Abroad Program (http://programsabroad.ucsd.edu/) or Opportunities Abroad Program can enhance a student’s major, particularly as an opportunity for diverse field experiences. However, careful planning is important to meet all major requirements. Please contact the Scripps Office of Undergraduate Programs as early as possible if you are an earth sciences major and planning to study abroad.

CAREERS IN EDUCATION

Students interested in a teaching career should be aware that the earth sciences major, because of its broad course requirements in the sciences, fulfills many of the subject requirements for obtaining a California Teaching Credential through UCSD’s Educational Studies Program. The projected high demand over the next decade for well-trained teachers, particularly in the sciences, makes this an attractive option for many students. Students who wish to take advantage of this opportunity may wish to complete a minor in science education. Please contact the Education Studies office directly for further details.

THE GRADUATE PROGRAM

GRADUATE EDUCATION OFFICE:
Old Scripps Building 22, Scripps Institution of Oceanography
http://scrippseducation.ucsd.edu/

The Department of Scripps Institution of Oceanography offers instruction leading to Ph.D. degrees in oceanography, marine biology, and earth sciences. Although students are not admitted specifically for an M.S. degree, it is possible to obtain an M.S. on the way to completing the Ph.D. degree. The Department of Scripps Institution of Oceanography is organized into three academic programs: Climate-Ocean-Atmosphere Program (COAP), Geosciences of the Earth, Oceans, and Planets (GEO), and Ocean Biosciences Program (OBP).

Each of these programs is responsible for all graduate educational activities in its area, including teaching, advising, and examining. The academic programs are umbrellas for curricular groups as follows.

Climate-Ocean-Atmosphere Program (COAP)

Applied Ocean Science (AOS)
Climate Sciences (CS)
Physical Oceanography (PO)

Geosciences of the Earth, Oceans, and Planets (GEO)

Geophysics (GP)
Geosciences (GS)
Marine Chemistry and Geochemistry (MCG)

Ocean Biosciences Program (OBP)

Biological Oceanography (BO)
Marine Biology (MB)

Climate-Ocean-Atmosphere Program (COAP)

Applied Ocean Science is a multidisciplinary program focused on the application of advanced technology to ocean exploration and observation. AOS students perform research in marine acoustics, optics, electromagnetics, geophysics, ecology, sediment transport, coastal processes, physical oceanography, and air-sea interaction. The emphasis is on the resolution of key scientific issues through novel technological development. The science focus of the Scripps AOS program is complemented by parallel Applied Ocean Science programs in the Mechanical and Aerospace Engineering (MAE) and Electrical and Computer Engineering (ECE) departments. Students have access to professors, courses, and research facilities across all three departments.

Climate Sciences concerns the study of the climate system of the earth with emphasis on the physical, dynamical, and chemical interactions of the atmosphere, ocean, land, ice, and the terrestrial and marine biospheres. The program encompasses changes on seasonal to interannual time scales and those induced by human activities, as well as paleoclimatic changes on time scales from centuries to millions of years. Examples of current research activities include: interannual climate variability; physics and dynamics of El Niño; studies of present and future changes in the chemical composition of the atmosphere in relation to global warming and ozone depletion; effects of cloud and cloud feedbacks in the climate system; paleoclimate reconstructions from ice cores, banded corals, tree-rings, and deep-sea sediments; the origin of ice ages; air-sea interactions; climate theory; terrestrial and marine ecosystem response to global change.

Physical Oceanography is the field of study that deals with mechanisms of energy transfer through the sea and across its boundaries, and with the physical interactions of the sea with its surroundings, especially including the influence of the seas on the climate of the atmosphere. Research activities within this curricular group are both observational and theoretical and include: study of the general circulation of the oceans, including the relations of ocean currents to driving forces and constraints of the ocean basins; fluctuations of currents, and the transport of properties; the mechanisms of transport of energy, momentum, and physical substances within the sea and across its boundaries; properties of wind waves, internal waves, tsunami, and planetary waves; the thermodynamic description of the sea as a system not in equilibrium; optical and acoustic properties of the sea; and the influence of surf on near-shore currents and the transport of sediments.

Geosciences of the Earth, Oceans and Planets (GEO)

Geophysics emphasizes the application of general principles of mathematics and experimental physics to fundamental problems of the oceans, the oceanic and continental lithosphere, the cryosphere, and the crust and deep interior of the Earth. Research interests of the group include: observational and theoretical studies of electric and magnetic fields in the oceans and on the land; paleomagnetism; theoretical seismology with special emphasis on the structure of the Earth from free-oscillation and body wave studies; broadband observational seismology, including ocean bottom and multichannel seismology; earthquake source mechanisms; the measurements of slow crustal deformations using satellite and observatory methods on continents and in the oceans; marine geomicrobes and tectonophysics; gravity measurements; geophysical inverse theory; observations of the ice sheets; magnetohydrodynamics of the core of the Earth; geophysical instrumentation for oceanic and
Geosciences emphasizes the application of general principles of geology, geochemistry, and geophysics to problems in the marine and terrestrial environments of the Earth. Graduate students routinely participate in expeditions at sea and on land and many doctoral theses evolve from these experiences.

Research areas in the geological sciences include: the origin and evolution of the ocean-atmosphere system and global climate; geology, geochemistry, and geophysics of oceanic crustal rocks and near-shore environments; tectonic and structural evolution of the oceans, plate margins, and back-arc basins; the role of fluids in the crust; chemistry of rare gases in active volcanoes; the use of natural nuclear processes for understanding physical and chemical processes in the Earth; paleomagnetic applications in geology and geophysics.

Marine Chemistry and Geochemistry concerns chemical and biochemical processes operating in a broad range of study areas: the oceans, the solid earth, the atmosphere, marine organisms, polar ice sheets, lakes, meteorites, and the solar system.

Areas of advanced study and research include the physical and inorganic chemistry of seawater; ocean circulation and mixing based on chemical and isotopic tracers; marine organic and natural products chemistry; marine bioinorganic chemistry; geochemical interactions of sediments with seawater and interstitial waters; geochemicals of volcanic and geothermal phenomena; chemical exchanges between the ocean and the atmosphere; geochemical cycles of carbon, oxygen, sulfur, nitrogen, and other elements; isotopic geochemistry of the solid earth and meteorites; atmospheric trace gas chemistry; paleoatmospheric composition recorded in polar ice cores, corals and sediments; and chemistry of lakes and other freshwater systems.

Studies are typically interdisciplinary and involve integration of chemical concepts with information about the physical, biological, or geological processes that influence natural systems. Students in the marine chemistry and geochemistry curricular group are encouraged to explore these links.

Ocean Biosciences Program (OBP)

Biological Oceanography is concerned with the interactions of populations of marine organisms with one another and with their physical and chemical environment. Because these interactions are frequently complex, and because the concepts and techniques used are drawn from many fields, biological oceanography is, of necessity, interdisciplinary. Therefore, studies in physical oceanography, marine chemistry, marine geology, and several biological areas are pertinent.

Research is conducted on space/time scales ranging from short-term interactions between individual organisms (mm., sec.) to interdecadal variation in widely dispersed populations. The techniques used in these investigations are diverse, and can include field observation and manipulations, experimentation in the laboratory, and mathematical modeling.

Research topics include primary and secondary productivity and nutrient regeneration, fishery biology and management, community ecology of benthic and pelagic organisms, population dynamics, habitat changes and disruptions, systematics and biogeography, population genetics and evolution, and behavior as it affects distribution. Development and testing of new tools (molecular, optical, acoustical), design of sampling programs, and statistical/mathematical analyses of data also are significant activities.

Marine Biology is the study of marine organisms. It is concerned with evolutionary, organismic, genetic, genomic, physiological, and biochemical processes in these organisms, and the relationship between them and their biotic and physical environment. Marine biology encompasses several major areas of modern biology, and is interpreted by understanding the physical and chemical dynamics of the oceans. Faculty research focuses on microbiology, photobiology, invertebrate biology, vertebrate biology, high pressure biology, deep-sea biology, developmental biology, genetics, comparative biochemistry, ecotoxicology, physiology, behavior, ecology, biogeography, taxonomy, and evolution.

Processes ranging from coral larval recruitment to the role of bacteria in marine food web dynamics are under study in over twenty independent research laboratories.

REQUIREMENTS FOR ADMISSION

Candidates for admission should have a bachelor’s or master’s degree in one of the physical, biological, or earth sciences; degrees in mathematics or engineering science are also accepted. A scholastic average of 8 or better in upper-division courses, or prior graduate study, is required. The student’s preparation should include mathematics through differential and integral calculus, physics, one year with laboratory (the course should stress the fundamentals of mechanics, electricity, magnetism, optics, and thermodynamics, and should use calculus in its exposition) chemistry, one year with laboratory, and an additional year of physics, chemistry, or mathematics.

All applicants are required to submit scores from the general test of the Graduate Record Examinations (GRE) given by the Educational Testing Service of Princeton, New Jersey. Applicants to the Ocean Biosciences Program, additionally, should take one GRE subject test of their own choice.

All international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English must take the TOEFL and submit their test scores to the UC San Diego Office of Graduate Admissions.

Specific additional requirements for admission to the programs are as follows:

Climate-Ocean-Atmosphere Program (COAP)

Applied Ocean Science—Students are admitted with a strong background in physical science, engineering science, or mathematics. Three years of physics or applicable engineering and three years of mathematics at college level are expected.
including advice about courses of study that may reach beyond a single curricular group. By the end of the first year, students usually select a particular area of focus and choose an advisor. As students advance beyond the first year, they begin to function effectively as research assistants or, in some cases, as teaching assistants. During their third to fifth year they are working toward writing their dissertations.

Programs of study for the first year vary between the three programs.

Climate-Ocean-Atmosphere Program

Students admitted to COAP choose a curricular group by the end of the fall quarter. This choice is aided by the student’s guidance committee, which includes a Curriculum Advisor from one of the COAP curricular groups. The guidance committee will help to arrange an individually tailored set of first-year courses for the student, and to ensure that the student has taken all necessary courses to prepare for the departmental exam. During the year, students may be supported in a variety of ways, but by the end of the spring quarter students must choose a research advisor. After the first year the guidance committee is dissolved, and the research advisor and dissertation committee provide guidance.

Applied Ocean Science—The AOS academic program is designed to provide both a broad background and a core technical base to support the diverse interests and activities of the students. Early participation in an ongoing research project is encouraged. However, specialization and focus on a specific thesis topic is not required until the second or third year of the program. Required courses include SIO 214A Introduction to Fluid Mechanics, and the two-quarter Wave Physics sequence SIO 202A–B. Two of the four AOS introductory courses (SIO 210, 240, 260, 280), must be completed during the first year, with the remaining two required prior to passing the doctoral qualifying exam at the end of the third year. In addition, the applied math sequence SIO 203 A–B or MAE 294 A–B is taken in either the first or second year of study. The AOS Seminar (SIO 208) serves as a communications bridge across the program; enrollment in this seminar is required during the student’s entire period of study. Beyond these core classes, the majority of each student’s academic program is tailored to individual interests. The AOS departmental examination, held at the end of the first year, is based on the core technical courses SIO 214A, SIO 202A–B, and two of the four introductory courses (chosen by the student). The exam has both oral and written components.

Climate Sciences—The emphasis of this curricular group is on education through interdisciplinary research. All students are responsible for the fundamental material in the following “core” courses: SIO 210, 217A-B-C, 260. Students are also expected to supplement their backgrounds with five to seven additional courses, including, for most Climate Sciences students, at least one additional quarter of fluid dynamics. These additional course(s) will be chosen in consultation with the students’ advisors. It is recommended that students participate actively in at least two quarters of seminar courses designed to complement and stimulate individual research. Though the group stresses interactions across disciplines, students will specialize in a particular subdiscipline or track that will be chosen by the student following discussions with a three-person faculty advisory committee soon after arrival. Examples of core tracks include: (1) atmospheric/ocean/climate dynamics and physics; (2) atmospheric chemistry (emphasizing climatic interactions); and (3) paleoclimate studies. Additional course requirements for these tracks will be tailored to the needs of the individual student.

Physical Oceanography—The physical oceanography curriculum combines a comprehensive program of course work with individually tailored specialization to meet student needs. Presently defined “tracks” in the curriculum are: (i) Observational Physical Oceanography, (ii) Theoretical Physical Oceanography, and (iii) the Atmospheric/Ocean Climate System. All tracks are similar in the entry-year fall quarter, diverging as students become more familiar with the field and in their interests. A Faculty Curriculum Advisory Committee meets with students to tailor tracks to individual needs, or to create new tracks as appropriate. Students in all subdisciplines of physical oceanography are required to take SIO 210A-B, 214A, 212A. In any track, students are required to take sixteen four-unit graduate courses, of which twelve are covered during the first year. As part of the overall requirement, tracks include a breadth component of two or more four-unit courses in other scientific disciplines. These might come from the SIO core courses in other oceanographic disciplines (SIO 240, 260, 280) or from related graduate-level courses taught at UCSD.

Any exception to the policy above requires written approval by the department chair in consultation with the curriculum advisor.

Physical oceanography students are required to take the departmental examination after completing one year of graduate work at UCSD. The examination covers the material in the four required courses and in eight additional first-year graduate courses offered by the student in consultation with the curriculum advisor.

The Department of Scripps Institution of Oceanography offers regular seminars in several areas of current interest. After the departmental exam, students in residence are strongly encouraged to enroll for credit in at least one seminar each quarter.

Geosciences of the Earth, Oceans, and Planets

Students admitted to GEO are assigned an advisor, who is a member of the three-person guidance committee. Based on the student’s interests and the major affiliation of the advisor, students are assigned to a curricular group on admission. Although students may change curricular groups in the course of the year, they must choose which departmental exam they will take. Departmental exams have similar structures among the curricular groups within GEO (a written exam at the end of spring quarter and an oral exam before the beginning of fall quarter). The material covered is quite different so students must begin preparing for the particular exam from the start. Student support for the first year comes from a variety of sources including departmental fellowships and research grants. Students are encouraged to begin a research project from the beginning and typically do not hold teaching assistant positions during their first year. Students may change advisors during their first year, and they must find an advisor by the end of the first year. Geophysics—There is no single course of study appropriate to the geophysics curriculum; instead, the individual interests of the student will permit, in consultation with the first-year guidance committee, a choice of course work in seismology, geomagnetism, etc. The content of certain core courses usually taken during the first year (SIO 223A,B, SIO 225, SIO 227A, SIO 229, SIO 234) forms the basis for the written departmental examination. Students are also encouraged to participate in the Special Topics seminars (SIO 239).

Geosciences—The geosciences curriculum consists of a series of core courses and a series of research focus courses. All students whether pursuing an earth sciences or an oceanography degree are responsible for material in the core courses: Marine Geology (SIO 240), Marine Chemistry (SIO 260), and Physical Oceanography (SIO 210) during their first year of study. The research courses are selected from three themes: geochemistry, paleoclimate and Earth history, and geology and geophysics. A total of four research courses are required during the first year of study, with at least one from each theme. Additional courses offered by other curricular programs (e.g., geophysics, marine chemistry, and geochemistry) can be selected and scheduled depending on the student’s background and interests any time during the student’s career at SIO. Each student is also encouraged to participate in the Special Topics seminars (SIO 249) every quarter during the first two years of graduate study. Students wishing to graduate with an oceanography degree are also responsible for the material in SIO 280 (Biological Oceanography).

Marine Chemistry and Geochemistry—In their first year at SIO, students in this curricular group are required to take SIO 210, 260, and either SIO 280 or SIO 240, as well as three additional elective courses. In their second year, students are required to take a further three elective courses. Although the exact choice of such courses will depend on the student’s research interests, these required electives must be four-unit courses that are offered at the graduate level, and that have been approved by the curricular group as suitable electives. A list of approved courses is on file at the Department of Scripps Institution of Oceanography. If a student desires to take (as a required elective) a course that is not already on this list, he or she should consult with one of the curricular group advisors to get approval.

Ocean Biosciences Program

Students admitted to OBP are assigned an advisor, who is a member of the three-person guidance committee. Students are assigned to a curricular group based on their interests. Although students may change curricular groups near the beginning of the year, they must commit to a curricular group early on because this determines which departmental exam they will take. The BO departmental exam is an oral exam based on first year course work while the MB exam is a written report and an oral presentation based on first year research, both are
be administered no later than the end of the third year. The nature of the qualifying examination varies between curricular groups. In biological oceanography, marine biology, geosciences, physical oceanography, applied ocean science, and climate sciences the student will be expected to describe his or her proposed thesis research and satisfy the committee, in an oral examination, as to mastery of this and related topics. In marine chemistry and geochemistry the student, in an oral examination, is required to present and defend a single research proposition in his or her specialized area. The student also is required to provide a written summary of the research proposition, with references, prior to the examination. In geophysics, the student presents an original research problem, in the form of a written proposition, to the doctoral committee. The student's oral presentation and defense of this proposition completes the examination.

DISsertATION

A requirement for the Ph.D. degree is the submission of a dissertation and a final examination in which the thesis is publicly defended. Students are encouraged to publish appropriate parts of their theses in the scientific literature. Individual chapters may be published as research articles prior to completion of the dissertation.

DEPARTMENTAL PH.D. TIME LIMIT POLICIES

Students must complete a qualifying examination by the end of three years, and must be advanced to candidacy for the Ph.D. Degree by the end of four years. Total university support may not exceed seven years and total registered time at UCSD may not exceed eight years.

SPECIAL FINANCIAL ASSISTANCE AND FELLOWSHIPS

In addition to teaching assistantships, and graduate student researcher positions, fellowships, traineeships, and other awards available on a campus-wide competitive basis, the department has available a certain number of fellowships and graduate student researcher positions supported from research grants and contracts, or from industrial contributions.

CONCURRENT PH.D./M.B.A. PROGRAM

The Department of Scripps Institution of Oceanography offers a concurrent degree program allowing interested Ph.D. students to complete an M.B.A. at the Rady School of Management. Students who are admitted to Scripps may, with the consent of their academic advisor, apply to Rady, through the usual admissions process, to begin the M.B.A. program no earlier than after the completion of their departmental exam, and no later than the fall quarter following their advancement to candidacy, in line with specific plans developed with their Scripps faculty advisors. An extensive independent study, jointly supervised by Scripps and Rady faculty, enables the student to develop linkages between Scripps and Rady studies. Interested students are encouraged to consult early with Rady M.B.A. admissions and their Scripps academic advisors.

CONTIGUOUS BACHELOR’S/MASTER’S EARTH SCIENCES DEGREE PROGRAM

The program leading to a bachelor of science and a master of science degree in earth sciences is offered to undergraduate students who are enrolled in the earth sciences major, and to qualified students who are completing a specialization or minor in earth sciences. It is open only to UCSD undergraduates, and entails participation in research in an area of the earth sciences to be determined jointly by the student and a committee of earth sciences faculty members from the Scripps Institution of Oceanography Department. Applications will only be accepted during the final quarter of the applicant’s junior year, or the first or second quarter of the senior year. A minimum undergraduate GPA of 3.0 overall and 3.3 in upper-division earth sciences courses is required for admission. Applications must include a written statement of purpose, a summary of the research proposal, and a letter of support from the potential M.S. thesis advisor. Students must complete requirements for the B.S. degree before they are enrolled in the M.S. program, and are expected to meet the requirements for the M.S. degree within three consecutive academic quarters after obtaining the B.S. Students may be dropped from the program if breaks in enrollment occur. The Scripps Institution of Oceanography Department does not have financial aid available for students enrolled in the contiguous B.S./M.S. program. Please contact the undergraduate education program office in Galbraith Hall, room 188, for information.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LOWER-DIVISION

1. The Planets (4)
Space exploration has revealed an astonishing diversity among the planets and moons in our solar system. The planets and their histories will be compared to gain insight and a new perspective on planet Earth. Prerequisite: none. (W)

10. The Earth (4)
An introduction to structure of the Earth and the processes that form and modify it. Emphasizes material which is useful for understanding geological events as reported in the news and for making intelligent decisions regarding the future of our environment. Prerequisite: none. (W)

12. History of the Earth and Evolution (4)
Evolution of the Earth from its origin in the early solar system to formation of continents and ocean basins, and how the planet became habitable. It examines the geologic record of evolution, extinction, plate tectonics, and climate changes through time. Prerequisite: none. (S)

15. Natural Disasters (4)
Introduction to environmental perils and their impact on everyday life. Geological and meteorological processes, including earthquakes, volcanic activity, large storms, global climate change, mass extinctions throughout Earth’s history, and human activity that causes and prevents natural disasters. Prerequisite: none. (F)
16. Geology of the National Parks (4)
An introduction to fundamental concepts of geology and environmental science through the lens of the national park system. Topics covered include the geologic time scale; plate tectonics; igneous, metamorphic, and sedimentary processes; geomorphology; climate change; and environmental degradation. Prerequisite: none. (S)

20. The Atmosphere (4)
Descriptive introduction to meteorology and climate studies. Topics include global and wind and precipitation patterns, weather forecasting, present climate and past climate changes (including droughts, El Niño events), "greenhouse" gas effects, ozone destruction, the "little ice age," acid rain. Prerequisite: none. (W)

25. Climate Change and Society (4)
Climate change is one of the most complex and critical issues affecting societies today. This course will present the scientific evidence for climate change and its impacts and consider governmental policy responses and possible adaptation strategies. Prerequisite: none. (W)

30. The Oceans (4)
Presents modern ideas and descriptions of the physical, chemical, biological, and geological aspects of oceanography, and considers the interactions between these aspects. Intended for students interested in the oceans, but who do not necessarily intend to become professional scientists. Prerequisite: none. (F)

35. Water (4)
This course will examine the properties of water that make it unique and vital to living things. Origin of water on Earth and neighboring planets will be explored. Socially relevant issues concerning water use and contamination will be covered. Prerequisite: none. (S)

40. Life and Climate on Earth (4)
Explores life on Earth and its relationship to the environment—past, present, and future. Topics include origins of life, earth history, elemental cycles, global climate variability and human impacts on our environment. Prerequisite: none. (F)

50. Introduction to Earth and Environmental Sciences (6)
This course is an introduction to how our planet works, focusing on the formation and evolution of the solid earth, and the processes affecting both its surface and interior. Laboratories and substantial field component complement and extend the lecture material. Prerequisite and/or material fee may apply. Prerequisite: none. (F)

87. Freshman Seminar (1)
The freshman seminar program is designed to provide the new students with the opportunity to explore and intellectual topic with a faculty member in a small setting. Topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen. Prerequisite: none. (F,WS)

90. Undergraduate Seminar (1)
Provides an introduction to earth sciences. Faculty members from departments in natural sciences, geosciences, and marine sciences will offer perspectives in these areas. Formerly ERTH 90. (Students may earn up to three units of credit of SIO 90 and/or ERTH 90.) Prerequisite: none.

96. Frontiers in the Earth Sciences (2)
An introduction to current research in the earth sciences. Background in science not required, but may be useful for some topics. Areas covered vary from year to year. Prerequisite: none.

99. Independent Study (2 or 4)
Independent reading or research on a problem by special arrangement with a faculty member. Prerequisite: lower-division standing, completion of thirty units of UCSD undergraduate study, a minimum UCSD G.P.A. of 3.0, and a completed and approved Special Studies form, UCSD Application for Enrollment Special Studies Courses 97, 98, 99.

UPPER-DIVISION

100. Introduction to Field Methods (4)
Mapping and interpretation of geologic units. Field work is done locally and under the direction of the laboratory instructor. There will be one mandatory weekend field trip to Anza Borrego State Park. Program and/or material fee may apply. Prerequisite: SIO 50 or consent of instructor. (F)

101. California Coastal Oceanography (4)
This course emphasizes oceanographic connections between physical and climate forcing and marine ecosys- tem responses using examples from and activities in the California coastal environment. The approach is inquiry- based, combining classroom and experiential learning to build critical and quantitative thinking and research insights and abilities. Prerequisite: Chem. 6A or consent of instructor. (F)

102. Introduction to Geochemistry (4)
An introduction to the chemical composition and evolution of the Earth and solar system. Applications of chemical methods to elucidate the origin and geologic history of the Earth and the planets, evolution of oceans and atmosphere, and human environmental impacts. Prerequisites: SIO 50, Chem. 6A-B-C, or consent of instructor. (W)

103. Introduction to Geophysics (4)
An introduction to the structure and composition of the solid earth. Topics include seismology, the gravity and magnetic fields, high-pressure geophysics, and concepts in geodynamics. Emphasis on chemical geophysics, i.e., on the structure and evolution of the planet. Prerequisites: Math. 20A-B-C-D and Phys. 2A-B-C, SIO 50, or consent of instructor. SIO 160 recommended. (F)

104/255. Paleobiology and History of Life (6)
An introduction to the major biological transitions in Earth history from the origins of metabolism and cells to the evolution of complex societies. The nature and limitation of the fossil record, patterns of adaptation and diversity, and the tempo and mode of biological evolution. Laboratories and substantial field component complement and extend the lecture material. Program and/or course fee may apply. Prerequisite: Undergraduate: BILD 3 or consent of instructor. Graduate: graduate-level standing or consent of instructor. Graduate students, additionally, will give oral presentation or research paper. (W)

105. Sedimentology and Stratigraphy (4)
This course will examine sedimentary environments from mountain tops to the deep sea across a variety of time scales. The focus is to develop the skills to interpret strati- tigraphy and read the history of the Earth that it records. Laboratories and substantial field component complement and extend lecture material. Program and/or course material fee may apply. Prerequisite: SIO 50 or consent of instructor. (S)

110. Introduction to GIS and GPS for Scientists (4)
A hands-on introduction to science applications of geographic information systems and global positioning system. Students acquire data through GPS field surveys, design and construct GIS using ESRI's ArcGIS software, analyze spatial data, and present the results in a Web-based environment. Prerequisite: upper-division standing or consent of instructor. (W)

111/Phys. 111. Introduction to Ocean Waves and Tides (4)
This course will cover broad physical models of ocean current and wave formation. Topics include: linear waves, non-linear waves, dispersion relations, effect of wind conditions, wave energy, and wave power. Prerequisites: Math. 20A and Phys. 20A-C or consent of instructor. (W)

112. Urban Landscapes (4)
Introduction to scientific examples, such as conservation of mass and energy and pattern formation, that govern the development of urban centers as complex systems. Contrasts between natural and urban landscapes will be highlighted, with examples including water routing and disease transmission. Prerequisite: upper-division standing or consent of instructor. (S)

115. Ice and the Climate System (4)
This course examines the Earth’s cryosphere, including glaciers, ice sheets, ice caps, sea ice, lake ice, river ice, snow, and permafrost. We cover the important role of the cryosphere in the climate systems and its response to climate change. Prerequisites: Math 20A-D and Physics 2A-C or consent of instructor. (F)

117. The Physical Basis of Global Warming (4)
Introduction to the processes behind global warming, including the physics of the greenhouse effect, controls on greenhouse gases, atmospheric and oceanic circulation, climate feedbacks, relationships to natural climate variability, and global environmental and societal issues related to global warming. Prerequisites: Math. 20D and Phys. 2C or consent of instructor. (S)

120. Introduction to Mineralogy (4)
Application of mineralogical and x-ray crystallographic techniques in earth sciences. Topics include symmetry, crys- tals structure, chemical, and physical properties of minerals with special emphasis on the common rock-forming mineral. Laboratory component includes polarizing microscope and x-ray powder diffraction methods. Prerequisites: SIO 50, or consent of instructor. (W)

135/236. Satellite Remote Sensing (4)
Satellite remote sensing provides global observations of Earth to monitor environmental changes in land, oceans, and ice. Overview, physical principles of remote sensing including: orbits, electromagnetic radiation, diffraction, electro-optical, and microwave systems. Weekly labs explore remote sensing data sets. Graduate students will also be required to write a term paper and do an oral presentation. Prerequisites: Undergraduate: Phys. 2A-B or Physics 4A-B-C or consent of instructor. Graduate: graduate-level standing or consent of instructor. (S)

138. The Coral Reef Environment (4)
Assessment of the physical, chemical, and biological interactions that define the coral reef system; essential geography and evolutionary history of reefs; natural and human perturbations to the coral reef ecosystem; aspects of reef management and sustainability. Prerequisite: BILD 3, Math. 10A, Chem. 6B, or consent of instructor.

Introduction to the chemistry and distribution of the elements in seawater, emphasizing basic chemical principles such as electron structure, chemical bonding, and group and periodic properties and showing how these affect basic aqueous chemistry in marine systems. Prerequisite: Chem. 6C with a grade of C– or better or consent of instructor. (S)

144/252A. Introduction to Isotope Geochemistry (4)
Radioactive and stable isotope studies in geology and geochemistry, including geochronology, isotopes as tracers of magmatic processes, cosmic-ray produced isotopes as tracers in the crust and weathering cycle, isotopic evolution of the crust and mantle. Prerequisites: Undergraduate: SIO 50, SIO 102, and 120 or consent of instructor. Graduate: graduate-level standing or consent of instructor. Graduate level requires student presentation. (W) (Not offered 2010–11.)

148/248. Evolution of Earth’s Biosphere (6)
Paleoecological development of marine and terrestrial environ- ments during Earth’s evolution. Ecological and chemical evolution of the oceans, atmosphere, biogeochemical cycles, and environments during Earth’s evolution. Prerequisites: SIO 104 or consent of instructor. Graduate: graduate-level standing or consent of instructor. Graduate level requires student presentation. (W) (Not offered 2010–11.)

152. Petrology and Petrography (4)
Mineralogic, chemical, textural and structural properties of igneous, metamorphic, and sedimentary rocks: their origin and relations to evolution of the Earth’s crust and mantle. Laboratory emphasizes hand specimens and microscopic
studies of rocks in thin sections. Prerequisites: SIO 50, SIO 102, and SIO 120 or consent of instructor. (S)

154/254. Macroevolution (4)
Tempo and mode of evolution with emphasis on the marine fossil record. Large-scale patterns and trends in diversity, speciation, and extinction. Innovation, disparity, and adaptive radiation. Evolutionary turnover and the role of the environment. Graduate students will also be required to write a term paper and do oral presentation. Prerequisites: Undergraduate: SIO 104 or BIEB 150 or consent of instructor. Graduate: graduate-level standing or consent of instructor. (S)

155/251. Petrology and Geochemistry of the Solid Earth (4)
A geochronologic and petrogenetic overview of the Earth and planets. Topics include formation and differentiation of the Earth into core, mantle, crust, and atmosphere/hydrosphere, generation of magma, and isotope and trace element geochemistry of igneous and metamorphic rocks. Prerequisites: Undergraduate: SIO 152 or consent of instructor. Graduate: graduate-level standing or consent of instructor. Graduate students, additionally, must submit a term paper in one aspect of work discussed during the quarter to be presented orally in class. (W) (Not offered 2010–11).

160. Introduction to Tectonics (4)
The theory of plate tectonics attempts to explain how forces within the Earth give rise to continents, ocean basins, mountain ranges, earthquake belts, and most volcanoes. In this course we will learn how plate tectonics works. Prerequisite: SIO 50 or consent of instructor. (S)

162. Structural Geology (4)
Principles of stratigraphy and structural geology applicable to field geologic studies. Discussion and laboratory exercises. Two to three field trips required. Program and/or material fee may apply. Prerequisites: SIO 50 and SIO 100, or consent of instructor. (W)

170. Introduction to Volcanology (6)
This course surveys fundamental aspects of physical and chemical volcanology with a major field study component on an active volcano on Hawaii (two weeks early September). Subjects are introduced in lectures and reinforced and expanded in field exercises. Students return to campus to attend regular lectures and to prepare final field report during fall quarter. Additional fees may be required. Prerequisites: SIO 50, SIO 100, and Chem. 6A, or consent of instructor. Department stamp required. (F)

180/292. Communicating Science to Informal Audiences (4)
Students develop fundamental science communication and instructional skills through the understanding and application of learning theory, interpretive techniques, and pedagogical practices, which occur in the context of communicating ocean science concepts to a diverse audience at Birch Aquarium at Scripps. Graduate science students will develop fundamental communication and instructional skills through the understanding and application of learning theory, interpretive techniques, and pedagogical practices, including the development of a teaching plan to support a consumer research proposal. Prerequisites: (graduate) graduate-level standing or consent of instructor; (undergraduate) Chem. 6A or SIO 50 or BILD 1 or consent of instructor. (F)

182A. Environmental and Exploration Geophysics A (4)
First of two-part sequence on theory and application of practical geophysics. Lectures are supplemented by the collection of gravity, magnetic, and seismic data and production of field reports. Includes introduction to MATLAB for analysis and interpretation of data. SIO 103 recommended. Prerequisites: Math. 20D and Phys. 2C, or consent of instructor. (W)

182B. Environmental and Exploration Geophysics B (4)
Second of two-part sequence on theory and application of practical geophysics. Lectures are supplemented by the collection of electrical and ground penetrating radar data. Continued use of MATLAB for analysis and interpretation of geophysical data. Prerequisite: SIO 182A or consent of instructor. (S)

186. Interactions Between Humans and the Natural Environment (4)
As human population and resource usage have increased, the character of human interactions with nonhuman natural systems on Earth’s surface has changed dramatically. This course will survey tools for characterizing this change, its nature, and projections into the future. Prerequisites: upper-division standing or consent of instructor. (W)

190. Special Topics in Earth Sciences (4)
A seminar course designed to treat emerging or topical subjects in the earth sciences. Includes reading from the literature and student participation in discussion. Topics vary from year to year. Enrollment by permission of instructor. (Students may enroll in SIO 190 and/or ERTH 190 no more than two times for credit.) Prerequisite: upper-division standing, a minimum UCSD GPA of 3.0 or consent of instructor.

192. Senior Seminar in Scripps Institution of Oceanography (1)
The Senior Seminar Program is designed to allow SIO senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in SIO (at the upper division level). Topics will vary from quarter to quarter. Senior Seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors.

Course attached to a six- to eight-unit internship taken by students participating in the UCDC Program. Involves weekly seminar meetings with faculty and teaching assistant and a substantial research paper. Prerequisites: departmental approval. Participation in the UCDC Program during quarter enrolled in seminar.

195. Methods of Teaching Earth Sciences (4)
Introduction to teaching earth sciences class section in a lower-division class, hold office hours, assist with examinations. This course counts only once toward the major.
Prerequisites: junior or senior earth sciences major with GPA of 3.0 or an A in the course, overall GPA of 3.0 or higher, ninety units or more, and consent of instructor, plus department stamp.

196. Honors Thesis Research (4)
Independent research on a problem in earth sciences by special arrangement with a faculty member (letter grade only). Students may take ERTH 196 and/or SIO 196 two times for credit. Prerequisites: completed ninety units of ERTH and/or courses included. Achieved a GPA of 3.3 overall and 3.5 in SIO/ERTH courses. Submitted to ERTH Steering committee, and had approved an honors thesis research proposal. Department stamp.

197. Earth Science Internship (2 or 4)
The earth science internship program is designed to complement the program’s academic curriculum with practical field experience. Prerequisites: completion of ninety units with a GPA of 2.5, and a completed and approved Special Studies Form, UCSD Application for Enrollment Special Studies Courses 197, 198, 199, and department stamp.

198. Directed Group Study (2–4)
This course covers a variety of directed group studies in areas not covered by formal SIO courses. (P/NP grades only.)

199. Independent Study for Undergraduates (4)
Independent reading or research on a problem. By special arrangement with a faculty member. (P/NP grades only.)

BS/S COURSE

228. Research Seminar (2)
A three-quarter required sequence for B.S./M.S. earth sciences students to prepare students for thesis writing. Prerequisites: current earth sciences B.S./M.S. student. Department stamp required.

GRADUATE

200A. Computational Ocean Acoustics and Signal Processing I (4)
Overview of ocean acoustics. Acoustics Wave Equation with some analytic solution techniques. Ray Methods. Introduction to Spectral and Normal Modes methods. Introduction to beamforming including matched field processing. Computer programs will be constructed on all subjects covered. Prerequisite: graduate standing and consent of instructor. Kuperman (F)

200B. Computational Ocean Acoustics and Signal Processing II (4)
Continuation of SIO 200A. Range dependent propagation models including adiabatic and coupled mode models and parabolic equations. More advanced topics in matched field processing. Prerequisites: graduate standing and SIO 200A or consent of instructor. Kuperman (W)

200C. Computational Ocean Acoustics and Signal Processing III (4)
Continuation of SIO 200B. Modeling interference such as ambient noise. Time domain methods. Matched field tomography, non-linear optimization methods, and geo-physical inversion. Prerequisites: graduate standing and SIO 200B or consent of instructor. Kuperman (S)

201. Geological Record of Climate Change (4)
Introduction to geological archives; the tools for paleoclimate reconstruction and a sampling of important issues from the geological record, including the development of “greenhouse” and “icehouse” worlds, the origin and evolution of glacial cycles, and the origin of “millennial scale” climate variability. Prerequisites: chemistry and physics required for graduate admission to SIO, SIO 101 or equivalent, or consent of instructor. Charles (S)

202A. Fundamentals of Wave Physics (4–4)
This two-quarter sequence is designed to introduce a broad background of students to basic principles of wave physics, including generation, propagation, dispersion, refraction, diffraction, reflection, waveguides, etc. A variety of wave motions of environmental relevance, including acoustic, ocean surface and internal (SIO 202A), optical and seismic (SIO 202B) are used to illustrate these principles. In-class experiments, data collection, and analysis exercises are incorporated. Prerequisites: calculus and partial differential equations. Buckingham, Kuperman, Stramski, Melville, Hildenbrand, Dorman (W)

202A. Introduction to Applied Mathematics I (4)

202B. Introduction to Applied Mathematics II (4)
(Cross-listed with MAE 294B.) Asymptotic methods: method of steepest descent (if not covered in I) WKB, method of multiple scales, boundary layer theory. Elements of complex analysis. Prerequisite: MAE 294A or SIO 203A or consent of instructor.

203C. Introduction to Applied Mathematics III (4)
(Cross-listed with MAE 294C.) Partial differential equations: characteristics, similarity solutions, Green’s functions, images, wave equation, diffusion equation, Laplace’s equation. Applications to continuum mechanics, potential fields, and transport phenomena such as diffusion, linear and nonlinear waves, Burger’s equation and shocks. Other topics according to the interests of the instructor. Prerequisite: MAE 294B or SIO 203B or consent of instructor.

204. Advanced Acoustics (4)
Theory of radiation, transmission, and scattering of sound with special application to ocean acoustics. Students who have taken SIO 204B for credit may not get credit for SIO 204. Prerequisite: graduate standing or consent of instructor. Buckingham (W)
206. Land Surface Hydrology (4) Advanced introduction to natural processes that govern water occurrence and transport over the land surface. Principles of global hydrologic cycle and land-surface water balance, runoff and fluvial geomorphology, infiltration and subsurface flow processes, and human influences on the water cycle. Prerequisites: graduate standing or consent of instructor. Staff (S)

207A. Fundamentals of Digital Signal Processing (4) Discussion of discrete-time signals and systems, Discrete-Time Fourier Transform (DFT) and window functions, Fast Fourier Transform (FFT), design of Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) digital filters and their implementations, finite word length effects, applications to data acquisition and analysis. Prerequisite: graduate standing or consent of instructor. Hodgkiss (F)

207B. Digital Signal Processing I (4) Discrete random signals; conventional (FFT-based) spectral estimation. Coherence and transfer function estimation; model-based spectral estimation; linear prediction and AR modeling. Levinson-Durbin algorithm and lattice filters, minimum variance spectrum estimation. Cross-listed with ECE 251A. (Recommended prerequisites: ECE 153 in addition to either ECE 161 or 161A and SIO 207A or equivalent background.) SIO 207A is intended for graduate students who have not had an undergraduate course in DSP. Prerequisite: graduate standing. Hodgkiss, Rao (W)

207C. Digital Signal Processing II (4) Adaptive filter theory, estimation errors for recursive least squares and gradient algorithms, convergence and tracking analysis of LMS, RLS, and Kalman filtering algorithms, comparative performance of Wiener and adaptive filters, transversal and lattice filter implementations, performance analysis for equalization, noise canceling, and linear prediction applications. Cross-listed with ECE 251B. (Recommended prerequisite: ECE 251A or ECE 251AN.) Prerequisites: graduate standing, for ECE 251A (for ECE 251B; SIO 207B for SIO 207C). Hodgkiss (S)

207D. Array Processing (4) The coherent processing of data collected from sensors distributed in space for signal enhancement and noise rejection purposes. Overview of directional techniques - Convolutional and adaptive beamforming. Matched field processing. Sparse array design and processing techniques. Applications to acoustics, geophysics, and electromagnetics. Cross-listed with ECE 251D. (Recommended prerequisite: ECE 251A or ECE 251AN.) Prerequisites: graduate standing; ECE 251C (for ECE 251D); SIO 207C (for SIO 207D). Hodgkiss (F)

208. Seminar in Applied Ocean Sciences (1) Topics in applied ocean sciences. One-hour seminar. (S/U grades only). Staff (F,W,S)

209. Special Topics (1–4) Within the next few years, lectures on various special subjects will be offered by members of the staff. The emphasis will be on topics that reveal the interdependence of the biological, chemical, geological, and physical processes operating in the oceans. (S/U grades permitted.) Staff (F,W,S)

210. Physical Oceanography (4) Physical description of the sea; physical properties of seawater, methods and measurements, boundary processes, regional oceanography. Prerequisite: graduate standing or consent of instructor. Hendershot, Talley (F)

211A–B. Ocean Waves (4–4) Propagation and dynamics of waves in the ocean including the effects of stratification, rotation, topography, wind, and nonlinearity. Prerequisite: graduate standing or consent of instructor. Hendershot, Guza, Winant (W,S)

212A. Geophysical Fluid Dynamics I (4) The equations of motion for rotating stratified flow and their application to the atmospheric and oceanic dynamics; Ekman layer dynamics, potential vorticity dynamics, the quasi-geostrophic approximation, theories of the wind-driven oceanic circulation, theories of the atmospheric Hadley circulation, geostrophic adjustment, and baroclinic instability. Prerequisite: graduate standing or consent of instructor. Cessi, MacKinnon, Young (W,S)

212B. Geophysical Fluid Dynamics II (5) The equations of motion for rotating stratified flow and their application to the atmospheric and oceanic dynamics; Ekman layer dynamics, potential vorticity dynamics, the quasigeostrophic approximation, theories of the wind-driven oceanic circulation, theories of the atmospheric Hadley circulation, geostrophic adjustment, and baroclinic instability. Prerequisites: graduate standing or consent of instructor. Cessi, MacKinnon, Young (W,S)

213. Turbulence and Mixing (4) Mixing mechanisms, their identification, description, and modeling. Introduction to turbulence, semi-empirical theories, theoretical structures, and effects of stratification and rotation on turbulent structure, entrainment and mixing. Cross-listed with MAE 216. (S/U grades permitted.) Armi (S)

214A. Introduction to Fluid Mechanics (4) A survey of classical problems in fluid mechanics and approximate techniques of analysis. Topics include conservation equations, straight laminar flows, low and high Reynolds number laminar flow, stability of laminar flows, turbulent flow. Prerequisite: graduate standing or consent of instructor. Hendershot, Winant (F)

214B. Environmental Fluid Dynamics (4) Single-layer flows with a free surface, two-layer flows including exchange flows in harbors, estuaries, seas, and buildings. Continuously stratified flows with meteorological and oceanographic applications. Topographic effects, plumes, jets, and thermals. Planetary boundary layers. Prerequisite: graduate standing or consent of instructor. Armi (S)

215A. Applied Mathematics for Oceanographers I (4) Intended for first-year graduate students who seek a quantitative way to describe how the ocean works: vector analysis, complex quantities, Fourier and Laplace transforms, ordinary differential equations, non-homogeneous ordinary differential equations, initial and boundary value problems, Heat and Laplace equations. Prerequisite: graduate standing or consent of instructor. Hendershot, Ierley, Winant (F)

215B. Applied Mathematics for Oceanographers II (4) An introduction to the mathematical description of waves, beginning with a description of the linear oscillator, and followed by normal modes, the flexible string, membranes, water waves, ray theory, method of characteristics, and basic linear algebra. Prerequisites: graduate standing and SIO 215A or consent of instructor. Hendershot, Ierley, Winant (W)

215C. Applied Mathematics for Oceanographers III (4) An introduction to complex analysis, regular and singular expansions, Poincare's method, two-scale method, the WKBJ approximation and boundary layer theory. Prerequisites: graduate standing and SIO 215B or consent of instructor. Hendershot, Ierley, Winant (S)

216. Introduction to the Physics of Complex Systems (4) Emergent complex behavior in nonlinear, dissipative, open dynamical systems will be investigated by studying fundamental properties and their manifestation in examples drawn from the physical and biological sciences. Topics include fractals, chaos, self-organization, artificial life, and neural networks. Prerequisites: graduate standing or consent of instructor. Hendershot, Ierley, Winant (S)

217A. Atmospheric and Climate Sciences I (4) Thermodynamics and statics of dry and moist air, atmospheric composition, Earth radiation budget, vertical structure of the atmosphere, global energy balance, thermodynamic feedbacks in the climate system. Prerequisite: graduate standing or consent of instructor. (S/U grades permitted.) Werner (W)

217B. Atmospheric and Climate Sciences II (4) Structure of midlatitude synoptic systems; equations of motion, scale analysis, elementary applications and wave solutions; baroclinic instability theory; atmospheric general circulation; tropical dynamics; relationships between atmospheric dynamics, CO2 clouds, precipitation, and other weather and climate phenomena. Prerequisites: graduate standing and SIO 217A or equivalent background, or consent of instructor. J. Norris (W)

217C. Atmospheric and Climate Sciences III (4) Physical and dynamical processes that determine climate and climate change; role of aerosols; water vapor; CO2 and other greenhouse gases; cloud-radiative interactions; atmospheric general circulation; role of convection; tropical climate including El Niño. Prerequisites: graduate standing and SIO 217A and SIO 217B or equivalent background, or consent of instructor. Ramanathan (S)

217D. Atmospheric and Climate Sciences IV (4) Atmospheric chemistry that impacts climate change, including photochemical reactions, ozone chemistry, and aerosol evolution in the troposphere and stratosphere. Atmospheric applications of heterogeneous chemistry, and microphysical processes will include the ozone hole, urban smog, and aerosol-cloud interactions. Prerequisites: undergraduate physical chemistry, and mathematics (including differential equations). Russell (S)

218. Special Topics in Physical Oceanography (1–4) Example topics are case histories and methods in physical oceanography, theories of the ocean circulation, numerical methods in large-scale ocean and atmospheric models, and natural electromagnetic phenomena in the earth and the oceans. (S/U grades permitted). Staff (F,W,S)

220. Observations of Large-Scale Ocean Circulation (4) General circulation of the oceans; tropical, subtropical, and high-latitude current systems of the Atlantic, Indian, and Pacific Oceans and marginal seas; ocean heat flux and thermohaline circulation; observational basis of large-scale dynamics. Prerequisite: graduate standing or consent of instructor. (S/U grades permitted.) Roemmich (S)

221A. Analysis of Physical Oceanographic Data I (A) (4) Fundamental elements of analysis of geophysical and oceanographic time series, including sampling problems, least squares techniques, spectral analysis, interpretation of series, design of experiments. Prerequisite: consent of instructor. Pinkel (F)

221B. Analysis of Physical Oceanographic Data II (B) (4) Techniques for analysis of physical oceanographic data involving many simultaneous processes including probability densities, sampling errors, spectral analysis, empirical orthogonal functions, correlation, linear estimation, objective mapping. Prerequisite: graduate standing or consent of instructor. (S/U grades permitted.) Rudnick, Gille (F)

221C. Data Analysis Laboratory (4) This course is to give students practical experience with analysis techniques. Students complete three projects. Topics include empirical orthogonal functions, objective mapping, complex demodulation, inference of geostrophic flow, estimation of CTD salinity spiking, isolation of wind-driven currents, wavelets. Prerequisite: graduate standing or consent of instructor. (S/U grades only.) Rudnick, Gille (F)

222. Underwater Bioacoustics (4) Introductory course to familiarize a broad spectrum of participants to underwater sound and its relationship to underwater animals. Basic physics of sound propagation, use of sound to study underwater animals and, the sounds made by the animals themselves for echolocation and communication will be covered. Prerequisite: consent of instructor. (S/U grades permitted). J. Hildebrand, Jaffe (W)

223A. Geophysical Data Analysis I (4) Probability and statistics and their application to make inferences from geophysical data point processes, distributions, maximum likelihood estimation, hypothesis testing and confidence intervals, least squares, density estimation, interpolation and smoothing. Prerequisite: graduate standing or consent of instructor. Agnew, C. Constable (W)

223B. Geophysical Data Analysis II (4) Analysis of geophysical measurements, especially time series. Fourier theory digital filter design, and spectral analysis. Prerequisites: graduate standing and SIO 223A or consent of instructor. Agnew, C. Constable (S)

2010-2011 UC SAN DIEGO GENERAL CATALOG • SCRIPPS INSTITUTION OF OCEANOGRAPHY 11
224. Internal Constitution of the Earth (4)

An examination of current knowledge about the composition and state of the earth's interior revealed by geo-physical observations. Seismic velocity and mass distribution; equations of state; phase changes; energy balance and climate; potential energy. Development and refinement of models of composition from extraterrestrial samples and exposed rocks; spherical and aspherical variations of properties. Prerequisites: differential equations, calculus and physics, or consent of instructor. Masters (S)

225. Physics of Earth Materials (4)

Mathematics and physics of continuous media, focusing on geophysical problems. Topics include deformation, stress, and elasticity; attenuation, viscoelasticity, fracture mechanics, and porous media. Prerequisite: graduate standing or consent of instructor. Agnew, Fialko (W)

226. Introduction to Marine Geophysics (4)

Methods of exploration geophysics with emphasis on those useful at sea. Magnetic and gravitational potential field methods, multi-beam echo sounding reflection and refraction seismology will be covered. Recent papers from the literature will also be read and discussed. Prerequisites: differential equations, at least one geology course. (S/U grades permitted.) Dorman, Hildebrand (S)

227A. Introduction to Seismology (4)

Introduction to seismometers and seismograms; stress and strain; potentials and the wave equation; geometrical ray theory and travel times in layered media; representa- tion of seismic sources; WKB and synthetic seismograms; seismograms and seismology systems. Prerequisite: consent of instructor. (S/U grades permitted.) Shearer (F)

227B. Advanced Seismology I (4)

Introduction to low-frequency digital data; continuum mechanics and the equations of motion; free oscillation solutions; construction of Earth models; excitation of free-oscillations and source mechanism retrieval; array process- ing of long-period data; modelling aspherical structure; surface waves. Prerequisite: consent of instructor. (S/U grades permitted.) Staff (W)

227C. Advanced Seismology II (4)

High-frequency wave propagation; methods for computing synthetic seismograms including WKB, reflection, and finite differences; body-wave spectra; attenuation of body waves; source physics; reflection and refraction seismology; seismic tomography. Prerequisite: consent of instructor. (S/U grades permitted.) Staff (S)

229. Gravity and Geomagnetism (4)

Introduction to theory with applications to gravity and geomagnetism. Topics include the geoid, spherical harmonics, Laplace's equation, the Dirichlet problem on a sphere, and Fourier methods. Gravity anomalies and geomagnetic field modeling and sources are discussed; also classical seismologic observations. Prerequisite: graduate standing or consent of instructor. (S/U grades permitted.) C. Constable, Parker (S)

230. Introduction to Inverse Theory (4)

Solution of linear and nonlinear inverse problems in geo-physics by optimization techniques such as norm minimi- zation and linear programming. Construction of models by regularization; inference by bounding functionals. Illustrations from gravity, geomagnetism, and seismology. Prerequisite: graduate standing or consent of instructor. (S/U grades permitted.) Staff (W)

231. Introduction to EM Methods in Geophysics (4)

Introduction to electromagnetic methods for both global geophysics and applied/exploration methods. Covers his- tory of EM investigation in rocks, binary mixing laws, self potential, induced polarization, DC resistivity, magnetoellurics, geomagnetic depth sounding, elemen- tary inverse methods, global conductivity structure, and marine EM methods. Prerequisite: graduate standing or consent of instructor. (S/U grades permitted.) S. Constable (F)

233. Introduction to Computing at SIO (4)

Introduction to the SIO computing environment and com- mon software tools in geophysics and other disciplines. Topics include UNIX, MATLAB, Postscript, GMT, LaTeX, HTML, and a scientific programming language such as C or Fortran90. Prerequisite: graduate standing or consent of instructor. (S/U grades permitted.) Agnew, Shearer (F)

234. Geodynamics (4)

A general course on the dynamics and kinematics of the solid earth based on the text of Turcotte and Schubert. Topics include: physical geology, geodynamics, heat transport, plate tectonics, viscosity, flow viscosity, crustal dynamics, and other related topics. Prerequisite: graduate standing or consent of instructor. (S/U grades permitted.) Sandwell (W)

236. Satellite Remote Sensing (4)

Satellite remote sensing provides global observations of Earth to monitor environmental changes in land, oceans, and ice. A variety of remote sensing applications will be covered including: orbit, electromagnetic radiation, diffraction, electro-optical, and microwave systems. Weekly labs ex- plore remote sensing data sets. Graduate students will also be required to write a term paper and do an oral pre- sentation. Conjoined with SIO 135. Prerequisite: graduate standing or consent of instructor. Sandwell (S)

237A. Introduction to Ocean Optics (4)

Overview of ocean optics. Concepts in radiometry. Inherent and apparent optical properties. Radiative transfer equa- tion. Light absorption and scattering by seawater constitu- ents. Optics of the ocean surface. Light fields with and without the ocean. Optics of marine particles. Measurement methods and instrumentation. Prerequisites: basic physics and differential calculus, or consent of instructor. Stramski (F)

237B. Ocean Color Remote Sensing (4)

Overview of ocean color satellite missions. Concepts in radiometry. Inherent and apparent optical properties. Radiative transfer equation. Solar radiation and elements of atmospheric optics. Propagation of light across the sea sur- face and within the ocean. Light absorption and scattering by substances. Data analysis and remote-sensing reflectance. Ocean color algorithms and applications. Prerequisites: basic physics and differential calculus, or consent of instructor. (S/U grades permitted.) Stramski (F)

237C. Optical-Biological Interactions in the Ocean (2)

A discussion class with emphasis on the interaction of light with marine plankton. Topics will include light absorption, fluorescence, and scattering by phytoplankton and effects of growth conditions on phytoplankton optical properties. Classic and contemporary papers dealing with these topics will be discussed. Prerequisite: basic physics and biology, or consent of instructor. (S/U grades only.) Stramski (F)

238. Sensor Networks (4)

Characteristics of chemical, biological, seismic, and other physical sensors; signal processing techniques supporting distributed detection of salient events; wireless communi- cation and networking protocols supporting formation of robust sensor fabrics; current experience with low power, low cost sensor deployments. Conjoined with MAE 149 and ECE 156. Prerequisite: upper-division standing and approval of instructor, or graduate student in science or engineering. (S/U grades permitted.) Hodgskis (S)

239. Special Topics in Geophysics (1–4)

Special course offerings by staff and visiting scientists. Example topics are seismic source theory, geophysical problems, geodynamics, and seismology. Prerequisites: consent of instructor. (S/U grades only.) Staff (F,W,S)

240. Marine Geology (4)

Introduction to the geomorphology, sedimentation, stratigraphy, vulcanism, structural geology, tectonics, and geological history of the oceans. Prerequisites: the physics and chemistry required for admission to the gradu- ate curriculum in SIO, and ES 101 or equivalent, or consent of instructor. Canes, Charles, Hilton (F)

242. Marine Biotechnology (4)

The class will contain lectures discussing current topics and new technologies in the marine sciences (biology, chemistry). Faculty that are part of the marine biotechnol- ogy training grant will lecture on their own research and techniques that are being used. The students will select and present a paper that is an application of topics discussed.

The areas of genomics, proteomics, expression analysts, mutagenesis, microbial diversity, etc., will be presented. Bartlett (F)

243. Marine Paleoecology (4)

Paleoecology of marine plankton, nekton, and benthos. Patterns and changes in marine communities and eco- systems over geological time in relation to changes in the physical, chemical, and geological environment and biotic interactions. The preservation filter and inference of ecological processes from fossils and biogeochemical proxies. Biotic interchanges, incumbency, escalation and trends, mass extinctions, and recovery. Lectures, seminar discussions, laboratory, and field trips. Prerequisites: bach- elor's degree in science or consent of instructor; open to undergraduates with completion of SIO 104 and either BIB 130 or BIB 140, or equivalent. Jackson, Staff (S)

244. Shape and Structure of the Ocean Floor (4)

Description and explanation of the structural geomor- phology of oceanic crust, and of the tectonic and volcanic processes responsible for it. Description and interpretation of deep-sea sedimentary landforms (e.g., deep-sea fans, drifts, bedforms) and of the bottom currents that shape them. Offered in alternate years. Prerequisite: any previous graduate/undergraduate earth science or geology course. Lonsdale (W)

245. Sedimentary Geochemistry for Chemical Paleocenoegraphy (2)

Chemical paleoecography will be the focus, emphasis, on seawater and/or sediment chemical and isotopic records; discussions will concentrate on some of the following isotopic systems: Li, B, C, D, N, S, Sr, Nd, and on select chemical tracers such as Cd and Ir; on the marine phases that most reliably record seawater chemical and isotopic compositions; and on diagenetic processes, how to identify and deal with them. Prerequisite: SIO 260 and consent of instructor. (Offered in alternate years.) (S/U grades permitted.) Kastner (S)

246. Global Tectonics and Basin Formation (4)

Plate tectonics of the crust and upper mantle, examining a variety of environments from ridge crests to continental margins, including plate interiors, with an emphasis on basin formation in these tectonic settings. Prerequisite: graduate standing. Canes, Driscoll (W)

247. Rock Magnetism and Paleomagnetism (4)

Rock magnetism and acquisition of magnetic remanence in geological materials as well as laboratory procedures and data analysis (isolating remanence components and statistical approaches). The paleomagnetic literature will be used to illustrate applications in geological and geophysical problems. Prerequisites: one year each of college-level physics and geology; mathematics through calculus. (S/U grades permitted.) Tauxe (S)

248. Evolution of Earth’s Biosphere (4)

Paleoecological development of marine and terrestrial environments during Earth’s evolution. Ecological and chemical evolution of the oceans, atmosphere, biogeo- chemical cycles, and environments with particular em- phasis on the long-term history and climate of the Earth’s surface. Substantial field component (three weekend field trips in San Diego County) supplement and extend the lecture material. Additionally, at graduate level oral presentation or research paper required. Conjoined with SIO 148. Prerequisite: graduate-level standing or consent of instructor. Jackson, R. Norris (S)

249. Special Topics in Marine Geology (1–4)

Special course offerings by staff and visiting scientists. (S/U grades only.) Staff (F,W,S)

251. Petrology and Geochemistry of the Solid Earth (4)

A geochemical and petrogenetic overview of the Earth and planets. Topics include formation and differentiation of the Earth into core, mantle, crust, and atmosphere/ hydrosphere; generation of magma, and isotopic and trace element geochemistry of igneous and metamor- phic rocks. Graduate students, additionally, must submit a term paper in one aspect of work discussed during the quarter to be presented orally in class. Conjoined with SIO
252A. Introduction to Isotope Geochemistry (4)
Radioactive and stable isotope studies in geology and geochemistry, including geochronology, isotopes as tracers of magmatic processes, cosmic-ray produced isotopes as tracers in the crust and weathering cycle, isotopic evolution of the crust and mantle. Graduate level requires student presentation. Conjoined with SIO 144. Prerequisite: graduate-level standing or consent of instructor. Hinton, Keeling, Lal (W)

252B. Advanced Isotope Geochemistry I (4)
An advanced treatment of noble gas and stable isotope geochemistry. Offered in alternate years with SIO 252C. Prerequisites: SIO 252A/SIO 144. Hinton, Keeling, Lal (S)

252C. Advanced Isotope Geochemistry II (4)
An advanced treatment of radiogenic and cosmogenic isotope geochemistry. Offered in alternate years with SIO 252B. Prerequisites: SIO 252A/SIO 144. Lal (S)

253. Interactions of Oceanic Plates and the California Margin (4)
How the geology of Alta and Baja California has been shaped, especially in the past 30MYr, by changing patterns of oceanic plate motions that have subducted beneath the North American Margin, slid obliquely past it, and captured continental crust. Prerequisites: graduate standing, or consent of instructor and any other earth science class for undergraduates. Lonsdale, Castillo (S)

254. Macroevolution (4)
Tempo and mode of evolution with emphasis on the marine fossil record. Large-scale patterns and trends in diversity, speciation, and extinction. Innovation, disparity, and adaptive radiation. Evolutionary turnover and the role of the environment in macroevolution. Additionally, oral presentation or research paper required. Conjoined with SIO 154. Prerequisite: graduate-level standing or consent of instructor. Jackson, R. Norris (S)

255. Paleobiology and History of Life (6)
An introduction to the major biological transitions in Earth history from the origins of metabolism and cells to the evolution of complex societies. The nature and limitations of the fossil record, patterns of adaptation and diversity, and the tempo and mode of biological evolution. Laboratories and substantial field component complement and extend lecture material. Program and/or material fee may apply. Graduate students, additionally, will give oral presentation or research paper. Conjoined with SIO 104. Prerequisite: graduate-level standing or consent of instructor. Jackson, R. Norris (S)

255A. Topics in Paleobiology and History of Life (3)
Lecture topics on the major transitions in the evolutionary history of life including origin of metabolism, microbes, major eukaryotic radiation, ecosystems and societies. Prerequisite: graduate standing or consent of instructor. Jackson, R. Norris (S)

256A. Introduction to Field Geology (4)
Principles of stratigraphy and structural geology applicable to field geologic studies. Discussion and laboratory exercises. Prerequisites: consent of instructor. Brown (W)

256L. Structural Geology (4)
Principles of stratigraphy and structural geology applicable to field geologic studies. Discussion and laboratory exercises. Two to three field trips required. Graduate students will complete an in-depth literature-based focused study consisting of a written report and a forty-five-minute seminar on topics related to structural geology. Prerequisite: graduate-level standing or consent of instructor. (W)

257. Seminar in Petrology (4)
Discussion of current research in petrology and mineralogy. (S/U grades permitted.) Castillo (W)

259. Atmospheric Geochemistry (4)
Topics in this introductory course include: structure and composition of the atmosphere; chemistry and isotopes of natural and man-made carbon, nitrogen, and sulfur-bearing trace gases; ozone and hydroxyl radical; halogenated gases; air-sea exchange; aerosols; climatic effects. (S/U grades permitted.) Weiss (S)

260. Marine Chemistry (4)
Chemical description of the sea; the distribution of chemi- cal species in the world oceans, and their relationships to physical, biological, and geological processes. Aluwihare, Barbeau, R. Keeling (W)

261. Energetics and Kinetics in Marine Systems (4)
This course teaches the physical chemical principles that control chemistry in marine systems. After a basic introduction to thermodynamics and its application to an understanding of the marine environment, the emphasis will be on the study of a variety of kinetic processes. Prerequisite: graduate standing or consent of instructor. Dickson (S)

262. Seminar in Marine Natural Products (1)
Students will give seminars on current research topics in marine natural products chemistry. Prerequisite: graduate standing or consent of instructor. (S/U grades only.) Fenical, W. Gerwick, Moore (F,WS)

263. Aqueous Chemistry (4)
This course emphasizes the chemical principles that control basic aqueous chemistry in marine systems. The focus will be to show that the geochemistry of the various elements in sea water and biological systems can be understood as a consequence of basic general chemical concepts such as electron structure, chemical bonding, and group and periodic properties. Prerequisite: undergraduate chemistry equivalent to UCSD Chemistry 6 sequence. Dickson (F)

264. Special Topics in Marine Natural Products Chemistry (3)
This course provides the foundation for advanced study in the field of marine natural products chemistry. Topics vary from the history of natural products to the organic chemistry of terpenes, alkaloids, acetogenins, and other natural product classes. Varying by topic quarterly, this class is given each quarter and may be repeated. Prerequisite: one year general organic chemistry. (S/U grades only.) Fenical, W. Gerwick, Moore (F,WS)

265. Biogeochemistry (4)
Examines quantitatively the impact of the biota on the chemistry of the atmosphere and ocean. Emphasis given to isotopes as tracers of biogeochemical processes. Attention given to paleoclimatic and paleoatmospheric data from ice cores to reveal mechanisms. Prerequisite: graduate standing or consent of instructor. Severinghaus, R. Keeling (S)

266. Seminar in Geochemistry and Marine Chemistry (1)
Student seminar in topics related to geochemistry and the chemistry of the marine environment. (S/U grades only.) Dickson (S)

269. Special Topics in Marine Chemistry (1–4)
Special course offerings by staff and visiting scientists. (S/U grades permitted.) Staff, (F,WS)

270. Pelagic Ecology (4)
Analysis of the concepts and theories used to explain the biological events observed in the water column. Alternate years. Prerequisites: SIO 210, 280, or consent of instructor. Checkley, Ohman (S)

270A. Fisheries Oceanography (4)
Aspects of marine ecology relevant to the reproduction, survival, and distribution of commercially important marine species. Alternate years only. Prerequisite: graduate standing or consent of instructor. Checkley, Ohman (S)

271. Marine Zooplankton (5)
Lectures and laboratories treating the morphological, behavorial, and life history variations of the principal phyto- plankton invertebrates and heterotrophic protists. Constraints of life at low Reynolds numbers; principles of allometry; growth processes of heterotrophic organisms. Prerequisite: graduate standing or consent of instructor. (S/U grades permitted.) Ohman (S)

272. Biogeochemistry (3)
A lecture course concerning the origin, development, and perpetuation of distributional patterns with emphasis on benthic marine organisms. (W)

273. Professional Ethics in Science (2)
A seminar on the historical and contemporary ethics and ethos of scientific research, based on published documents. Offered in alternate years. Dayton (W)

275A. Benthic Ecology (4)
Evolution and maintenance of benthic communities from the terrestrial margins to the deep sea. Special emphasis will be placed on physical and biological scal- ing and processes determining patterns of distribution and abundance; interrelationships between community structure and population phenomena, including trophic relationships, reproductive and recruitment patterns, suc- cession, and life history biology. Offered in alternate years with SIO 275B. Prerequisite: consent of instructor; open to undergraduates. (S/U grades permitted.) Levin, Dayton (W)

275B. Natural History of Coastal Habitats (6)
Two three-hour lecture/laboratories per week, three week- long field trips to coastal habitats in the Southwest and northern Mexico. Several day field trips to local habitats. Offered in alternate years with SIO 275A. Prerequisite: consent of instructor. (S/U grades permitted.) Dayton, R. Norris (S)

276. Quantitative Theory of Populations and Communities (4)
An introduction to the quantitative tools and conceptual issues underlying the study of the dynamics and struc- ture of ecological systems. Prerequisite: calculus (three quarters) or consent of instructor. (S/U grades permitted.) Sugihara (F)

277. Deep-Sea Biology (4)
The ecology, zoogeography, taxonomy, and evolution of deep-sea organisms, with emphasis on the benthos. Course includes the one-day cruise to the hydrothermal environment to examine deep sea organisms (700–1200 meters) (two-hour steam from Point Loma). Offered alternate years. Prerequisite: graduate standing or consent of instructor. Levin (W)

278. Seminar in Ocean Biosciences (2)
Presentations of reports, review of literature, and discussion of current research in the marine biological and oceano- graphic sciences. (S/U grades permitted.) Staff, (F,WS)

279. Special Topics in Biological Oceanography (1–4)
(S/U grades permitted.) Staff, (F,WS)

280. Biological Oceanography (4)
The biology and ecology of marine plankton, nekton, and benthos. Emphasis will be on processes regulating spe- cies, community, and ecosystem patterns and changes, including productivity, trophic relationships and species interactions with the physical, chemical, and geological environment. One or more field trips. Prerequisite: bachelor’s degree in science or consent of instructor. Franks or Checkley, Levin (F)

281. Environmental Physiology and Biochemistry of Marine Organisms (4)
Biochemical mechanisms of adaptation of organisms to the marine environment. Special emphasis is on the effects of pressure, temperature, salinity, oxygen, and light on the physiology and biochemistry. Conjoined with BIBC 130. Prerequisite: BIBC 102 or consent of instructor. Felbeck (F)

282. Phytoplankton Diversity (4)
Molecular, biochemical, ecological, and evolutionary perspectives on the diversity of eukaryotic and prokary- otic phytoplankton. Prerequisite: consent of instructor. Palenik (W)

285. Physical-Biological Interactions (4)
Physical and biological processes affecting growth and patchiness of plankton. Concepts and equations from physical oceanography will be presented and explored in a biological context. Ideas will be treated both theoreti- cally and with examples from the literature. Prerequisites: introductory calculus and SIO 210, or consent of instructor. Franks (S)

286. Marine Science, Economics and Policy (4)
This course investigates global issues in marine conserva- tion and potential policy solutions. The approach is inter-disciplinary, fast-paced, and discussion oriented. Students will become acquainted with sufficient background in
marine biology, ecology, marine and conservation economics, international law, and policy as preparation for participation in discussion on real-world issues in marine conservation. Topics and instructors change each quarter. **Prerequisite:** graduate standing or consent of instructor. (S/U grades permitted) Staff (F,W)

287A. Marine Microbial Ecology (4)
Recent developments in the study of marine bacteria. Emphasis will be on biochemical and physiological adaptations of marine bacteria to the ocean environment. Bacterial metabolism, growth, and death will also be discussed in the context of trophic interactions and flows of material and energy in marine ecosystems. Molecular biology techniques used in the study of bacterial ecology will also be discussed. **Prerequisite:** consent of instructor. (S/U grades permitted.) Azam (W)

287B. Microbial Physiology (4)
Prokaryotic microbial physiology will be discussed primarily from a biochemical standpoint with emphasis on mechanism. Topics will vary from year to year but will include the following themes: Central Metabolism, Bioenergetics, Biosynthesis, Regulation, Differentiation. Prokaryotic Structure-Function Relationships. Conjoined with BIBM 130. **Prerequisites:** BIBC 100 or BIBC 102 or equivalent. Saier (S).

288. Marine Microbiology Laboratory (4)
Advanced techniques and theory in environmental microbiology. Students will perform experiments concerning (a) enrichment of diverse microbes (b) microbial enumeration and identification (c) metabolic and physiochemical adaptations, and (d) biotechnology, along with an independent project. **Prerequisite:** consent of instructors. Brahamsha, Palenik (S)

290. Marine Biology (4)
An introduction to the field of marine biology, especially to the diversity of marine organisms at all taxonomic levels and their adaptations to the marine environment. **Prerequisite:** graduate standing. N. Holland, Palenik (W)

291. Biology Graduate Research Presentations (1)
Graduate students in the biological sciences present their research in a seminar or poster format. Class participants and instructors provide written feedback on the presentations. Required of third-year and beyond marine biology curricular group students during spring quarter. Open to all SIO graduate students. (S/U grades only.) Latz (S)

292. Communicating Science to Informal Audiences (4)
Students develop fundamental science communication and instructional skills through the understanding and application of learning theory, interpretative techniques, and pedagogical practices, which occurs in the context of communicating ocean science concepts to a diverse audience at Birch Aquarium at Scripps. Graduate science students will develop fundamental communication, and instructional skills through the understanding and application of learning theory, interpretive techniques, and pedagogical practices, including the development of an education/outreach plan to support a competitive research proposal. Conjoined with SIO 180. **Prerequisite:** graduate standing or consent of instructor. (F)

294. Biology of Fishes (5)
The comparative evolution, morphology, physiology, and ecology of fishes. Special emphasis on local and deep-sea and pelagic forms in laboratory. **Prerequisite:** graduate standing or consent of instructor. Hastings (S)

295S. Introduction to Marine Biodiversity and Conservation—Seminar (8)
Lectures on ecological, economic, social, and legal issues related to marine biodiversity and case studies on socio-economic and legal issues. Students are expected to attend field trips at sea and to various sites around San Diego County as part of the course. Students who have taken SIO 295 may not receive credit for SIO 295S. **Corequisite:** SIO 295LS. **Prerequisites:** MAS students only; consent of instructor. Jackson (Su)
The Senior Seminar Program was launched in fall 2006 as an additional venue to enhance the undergraduate student experience at UC San Diego. By design, the small informal class setting promotes intellectual discussions with faculty, and fosters an ideal learning environment for polishing critical thinking and analytical skills.

Some twenty unique seminars are offered each quarter by faculty representing most UCSD academic departments. Senior seminars are designated by the course number 192 (e.g., POLI 192), are graded Pass/Not Pass, and carry one unit of credit. A department stamp is required prior to enrollment and is obtained by simply contacting the department or program offering the seminar. Prerequisites vary by seminar. Students are highly encouraged to incorporate senior seminars into their upper-division studies at UCSD.

Please visit the Senior Seminar Program Web site at http://ugseminars.ucsd.edu for a description of seminars currently offered. This site also contains useful information such as enrollment procedures and additional program details. Questions about a specific senior seminar should be directed to the department offering the seminar.
CULTURE, ART, AND TECHNOLOGY

See “Culture, Art, and Technology” core sequence.

SIXTH COLLEGE HONORS PROGRAM

OFFICE: Academic Advising
Pepper Canyon Hall, 2nd floor
Sixth College Honors Program nurtures academically high achieving students intellectually and socially, increases their awareness about opportunities of academic, social, and cultural engagement, and motivates them to become community leaders in Sixth College, at UC San Diego, and in communities outside the university.

• Through seminars, research, and social and cultural events, students are introduced to the academic, cultural, artistic, and social richness of the campus, provide information about resources, support students in finding extracurricular activities, and create opportunities to make connections to people, peers, faculty, staff, and campus community leaders.

• Through special advising by Sixth College provost and Sixth College associated faculty, honors students will receive mentoring and guidance.

FRESHMAN HONORS SEQUENCE

Students who have distinguished themselves academically in their high schools are invited to participate in the Freshman Honors Program. The qualifications are outstanding high school grade-point averages (3.8) and College Board Scholastic Aptitude Test scores (SAT math: 700 and above, and SAT reading and writing: 700 and above). In the fall quarter, freshmen are invited to enroll in SXTH 20—Freshmen Honors Seminar, which is noted on the UCSD transcript for zero units. Students who were not originally invited and who completed at least twelve graded units with a 3.7 cumulative GPA, will be invited to join the honors program. Students need to maintain a 3.5 cumulative GPA in order to remain in the honors program.

The weekly Freshman Honors seminars include cultural and social events such as lectures, hikes, dinners, plays, music events, and visits to museums are also an important component of the program.

SOPHOMORE HONORS SEQUENCE

Sixth College students who distinguish themselves academically during their freshman year and maintain a minimum cumulative GPA of 3.5 have two additional academic enrichment opportunities available to them:

• Second-year honors can participate in the Sixth College Honors Apprentice Research Program by enrolling in SXTH 96 (2 units P/NP)—Honors Project. Second-year projects may extend for one to three quarters and may lead to the creation of a Practicum project. Students are encouraged to present their projects at the UCSD Undergraduate Research Conferences held each spring and summer.

• A second option is participation in SXTH 60 (1 unit)—Sophomore Honors Seminar, a series that deals with Technology and Society and the Arts issues.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

SXTH 20. Freshmen Honors Seminar (0)
Weekly seminars with faculty members from a variety of disciplines (chosen by the provost to match the interests of participating students). This seminar provides students with opportunities to learn more about research and scholarly activities being conducted by faculty and instill in students a sense of participation in the scholarly life at UCSD. Prerequisite: by invitation only. Pass/Not Pass grade only.

SXTH 60. Sophomores Honors Seminar (1)
This sophomore weekly seminar is the continuation of the Freshman Honors Seminar. This series will deal specifically with Culture, Art, and Technology issues/topics. Prerequisite: by invitation only. Pass/Not Pass grade only.

SXTH 96. Honors Project (2)
Individual project on a topic related to Culture, Art, and Technology done under the direction of a faculty member. College stamp required. Pass/Not Pass grade only.
Sociology

PROFESSORS
Harvey S. Goldman, Ph.D.
Jeffrey M. Haydu, Ph.D.
Bennetta W. Jules-Rosette, Ph.D.
Yen Espiritu, Ph.D.
Jack D. Douglas, Ph.D.
David P. Phillips, Ph.D.
Richard G. Biernacki, Ph.D.
Andrew T. Scull, Ph.D.
Carlos H. Waisman, Ph.D.
Richard P. Madsen, Ph.D., Chair
Academic Senate
Rebecca E. Klatch, Ph.D.
Bennetta W. Jules-Rosette, Ph.D.
Jeffrey M. Haydu, Ph.D.
Harvey S. Goldman, Ph.D.
Carlos H. Waisman, Ph.D.

ASSOCIATE PROFESSORS
Richard G. Biernacki, Ph.D.
Amy J. Binder, Ph.D.
Mary F. Blair-Loy, Ph.D.
Ivan T. Evans, Ph.D.
John H. Evans, Ph.D.
David S. Fitzgerald, Ph.D.
Martha Lampland, Ph.D.
Isaac Martin, Ph.D.
Akos Rona-Tas, Ph.D.
Charles Thorpe, Ph.D.
Cihan Tugal, Ph.D.
Christina Turner, Ph.D.
Leon Zamosc, Ph.D.

ASSISTANT PROFESSORS
April Linton, Ph.D.
Thomas Medvetz, Ph.D.
Kwai Ng, Ph.D.

ADJUNCT PROFESSORS
Yen Espiritu, Ph.D.
Chandra Mukerji, Ph.D.
Mary L. Walshok, Ph.D.

OFFICE: Social Sciences Building, Room 401
http://sociology.ucsd.edu

SOCIOLGY AT UC SAN DIEGO

Sociology studies societies and human groups: their composition, organization, culture, and development. It combines scientific and humanistic methods to investigate a subject that is both relevant and broad—ranging from social interaction in everyday life to social changes taking place on a global scale. The Department of Sociology at UC San Diego offers an innovative program that covers the breadth of the discipline while giving students opportunities to specialize in areas of their choice, to conduct independent research, and to participate in an Honors Program. The department also encourages majors to study abroad and to take courses in other humanities and social science departments in order to expand their perspective on sociological topics.

Students at UCSD can explore a full range of sociological inquiry through courses in such established fields as Third World development, law, culture, social movements, religion, race and ethnic relations, gender roles, medicine, and mental illness. In addition, students have the opportunity to participate in courses found in few other sociology departments, such as the politics of language, ethnographic film, the Holocaust, comparative sex stratification, mass media, and revolutions. The faculty also teach an exceptional array of courses focusing on specific societies or world regions, including Africa, Japan, China, Latin America, eastern Europe, the former Soviet Union, and the United States.

Thus sociology is a valuable major for students who want to enter law, medicine, architecture, business, or politics. It also provides a solid liberal arts education for students who plan careers in such fields as criminal justice, public health, urban planning, social welfare, counseling, public administration, international relations, or market research. For students who wish to pursue graduate study in the social sciences for careers in teaching or scholarly research, an undergraduate degree from the Department of Sociology will provide a thorough grounding in recent theoretical and methodological advances in the discipline. A sociology major offers excellent preparation for teaching in the elementary schools. If you are interested in earning a California teaching credential from UCSD, contact the Teacher Education Program for information about the prerequisite and professional preparation requirements. It is recommended that you contact TEP as early as possible in your academic career. Whatever the career choice, the study of sociology can help the student cultivate a critical awareness of social life.

Students interested in majoring or minoring in sociology should stop by the Department of Sociology office, SSB 401, for program information and handouts. These clarify specific procedures and guidelines, and provide recommendations for areas of specialization within the major, as well as for graduate studies and careers in sociology.

THE UNDERGRADUATE PROGRAM

THE MAJOR

Students may choose to major in general sociology or in one of several concentrations, described below. Some basic requirements for the B.A. are common to all of these majors. All students must complete four lower-division and twelve upper-division courses in sociology.

A 2.0 GPA is required in the major, and students must earn at least a C– in each course used for the major. No courses taken to apply toward the major may be taken on a Pass/Not Pass basis except Sociology 199. Only one such special studies course (including internships) may be applied toward the major. Special studies courses must be applied for and approved by the department before the beginning of the quarter in which the student wishes to enroll, and can only be taken on a Pass/Not Pass basis. See the staff undergraduate coordinator for the necessary application forms and deadlines.

Lower-Division

The four lower-division requirements for a major in sociology are:

1. Sociology 1, 2 and 60. (We strongly recommend you take Sociology 1 and 2 in sequence.)
2. One course from the following: Sociology 10, 20, 30, 40 or 50

It is advisable that students complete these required lower-division courses (which should be taken during the freshman or sophomore year) before continuing with their upper-division work. Sociology 60 is a prerequisite for all upper-division methods courses.

Upper-Division

Twelve upper-division courses are needed for the major. Sociology 100 is required (students are strongly advised to complete this course by the end of their junior year), as well as one of the following methods courses:

1. Sociology 103M
2. Sociology 104
3. Sociology 105
4. Sociology 106
5. Sociology 106M
6. Sociology 108
7. Sociology 109
8. Sociology 110

Sociology 60 is a prerequisite for these methods courses. Students are encouraged to complete their theory and methods courses early in their program, since theoretical perspectives and skills in methods will enhance their subsequent course work. Ten additional upper-division classes are required for the major. The specific choices will depend on the student’s major concentration.

REQUIREMENTS FOR MAJOR IN GENERAL SOCIOLOGY

Students who seek a B.A. in General Sociology may complete any ten additional upper-division Sociology classes.

Requirements for Major Concentrations

Students may graduate with a B.A. in one of seven concentrations by choosing at least five upper-division classes from the course offerings in that concentration, as part of the ten upper-division courses for the major. Only one major concentration is allowed.

Concentration in International Studies

Students may graduate with a B.A. in Sociology/International Studies by completing at least five of the following courses as part of the ten
upper-division courses required for the major. This concentration would be especially appropriate for those interested in international business, foreign service, or international law.
SOCI 111E. Human Rights: Principles and Problems
SOCI 111F. Human Rights: Practices and Cases
SOCI 130. Population and Society
SOCI 145. Violence and Society
SOCI 148. Political Sociology
SOCI 151. Comparative Race and Ethnic Relations
SOCI 152. Urban Sociology
SOCI 157. Religion in Contemporary Society
SOCI 158. Islam in the Modern World
SOCI 162R. Religion and Popular Culture in East Asia
SOCI 169. Citizenship, Community, and Culture
SOCI 176. War and Society
SOCI 177. International Terrorism
SOCI 178. The Holocaust
SOCI 179. Social Change
SOCI 180. Social Movements and Social Protest
SOCI 181. Modern Western Society
SOCI 182. Ethnicity and Indigenous Peoples in Latin America
SOCI 183. Minorities and Nations
SOCI 185. Globalization and Social Development
SOCI 187. African Societies through Film
SOCI 188D. Latin America: Society and Politics
SOCI 188E. Community and Social Change in Africa
SOCI 188F. Modern Jewish Societies and Israeli Society
SOCI 188G. Chinese Society
SOCI 188J. Change in Modern South Africa
SOCI 189. Special Topics in Comparative-Historical Sociology

Note: Sociology SOCI 189 must be preapproved by undergraduate advisor.

It is recommended that students concentrating in this area take Sociology 20 as part of their lower-division requirements.

Concentration in American Studies

Students may graduate with a B.A. in Sociology/ American Studies by completing at least five of the following courses as part of the ten upper-division courses required for the major. This concentration is especially appropriate for those interested in careers in American politics, education, and social work.
SOCI 115. Social Problems
SOCI 117. Language, Culture, and Education
SOCI 125. Sociology of Immigration
SOCI 127. Immigration, Race, and Ethnicity
SOCI 126. Social Organization of Education
SOCI 129. The Family
SOCI 148. Political Sociology
SOCI 151. Comparative Race and Ethnic Relations
SOCI 152. Urban Sociology
SOCI 157. Religion in Contemporary Society
SOCI 163. Migration and the Law
SOCI 180. Social Movements and Protest
SOCI 188K. American Society

It is recommended that students concentrating in this area take Sociology 10 as part of their lower-division requirements.

Concentration in Science and Medicine

Students may graduate with a B.A. in Sociology/ Science and Medicine by completing at least five of the following courses as part of the ten upper-division courses required for the major. This concentration is especially appropriate for those interested in careers in the health professions or technology-related fields.
SOCI 113. Sociology of the AIDS Epidemic
SOCI 134E. The Making of Modern Medicine
SOCI 135. Medical Sociology
SOCI 136E. Sociology of Mental Illness: An Historical Approach
SOCI 136F. Sociology of Mental Illness in Contemporary Society
SOCI 138. Genetics and Society
SOCI 149. Sociology of the Environment
SOCI 167. Science and War
SOCI 168E. Sociology of Science
SOCI 168T. Sociology of Technology

It is recommended that students concentrating in this area take either Sociology 30 or 40 as part of their lower-division requirements.

Concentration in Culture and Communication

Students may graduate with a B.A. in Sociology/ Culture and Communication by completing at least five of the following courses as part of the ten upper-division courses required for the major. This concentration is especially appropriate for those interested in careers related to education, the media, or marketing.
SOCI 116. Gender and Language in Society
SOCI 117. Language, Culture, and Education
SOCI 118. Sociology of Gender
SOCI 120T. Special Topics in Communication and Culture
SOCI 131. Sociology of Youth
SOCI 137. Sociology of Food
SOCI 156. Sociology of Religion
SOCI 157. Religion in Contemporary Society
SOCI 160. Sociology of Culture
SOCI 162. Popular Culture
SOCI 162R. Religion and Popular Culture in East Asia
SOCI 165A. American News Media
SOCI 166. Sociology of Knowledge
SOCI 172. Films and Society
SOCI 174. Sociology of Literature
SOCI 184. Gender and Film

Note: Sociology SOCI 120T must be preapproved by undergraduate advisor.

It is recommended that students concentrating in this area take Sociology 50 as part of their lower-division requirements.

Concentration in Economy and Society

Students may graduate with a B.A. in Sociology/ Economy and Society by completing at least five of the following courses as part of the ten upper-division courses required for the major. This concentration is especially appropriate for those interested in careers related to contemporary business.
SOCI 121. Economy and Society
SOCI 125. Sociology of Immigration
SOCI 137. Sociology of Food
SOCI 132. Gender and Work
SOCI 139. Social Inequality: Class, Race, and Gender
SOCI 140F. Law and the Workplace
SOCI 141. Crime and Society
SOCI 142. Social Deviance
SOCI 146. Law Enforcement in America
SOCI 147. Organizations, Society, and Social Justice
SOCI 159. Special Topics in Social Organizations and Institutions
SOCI 160E. Law and Culture
SOCI 163. Migration and the Law
SOCI 173. Elite Crime

Note: Sociology SOCI 159 must be preapproved by undergraduate advisor.

It is recommended that students concentrating in this area take Sociology 50 as part of their lower-division requirements.

Concentration in Social Inequality

Students may graduate with a B.A. in Sociology/ Social Inequality by completing at least five of the following courses as part of the ten upper-division courses required for the major. This concentration is especially appropriate for those interested in social services and education.
SOCI 114. Culture and Ethnicity
SOCI 116. Gender and Language in Society
SOCI 117. Language, Culture, and Education
SOCI 118. Sociology of Gender
SOCI 119. Sociology of Sexuality and Sexual Identities
SOCI 126. Social Organization of Education
SOCI 127. Immigration, Race, and Ethnicity
SOCI 129. The Family
SOCI 132. Gender and Work
SOCI 139. Sociology Inequality: Class, Race, and Gender
SOCI 148. Political Sociology
SOCI 151. Comparative Race and Ethnic Relations
SOCI 151M. Chicanos in American Society
SOCI 153. Urban Sociology
SOCI 154. Religious Institutions in America
SOCI 155. The City of San Diego
SOCI 157. Religion in Contemporary Society
SOCI 163. Migration and the Law
SOCI 180. Social Movements and Protest
SOCI 183. Sociology of Gender

It is recommended that students concentrating in this area take either Sociology 10 or 20 as part of their lower-division requirements.
Education Abroad Program

Students are encouraged to participate in the UC Education Abroad Program (EAP) or UCSD’s Opportunities Abroad Program (OAP) while still making progress toward completing their major. Students considering this option should discuss their plans with the undergraduate advisor prior to going abroad, and courses taken abroad must be approved by the department. It may be possible to use some related courses outside of the discipline of sociology toward the major. For more information on EAP, see the section of this catalog on the Education Abroad Program. Interested students should contact the Programs Abroad Office in the International Center. To petition particular courses taken abroad, see the undergraduate advisor in the Department of Sociology.

RECOMMENDATIONS FOR TRANSFER STUDENTS

Students transferring from a community college or other university may petition for sociology credit for courses taken at their previous institution. For students transferring from the California Community College System, articulation agreements for many courses have been developed that facilitate the petition process.

Transferring Lower-Division Credit

The four lower-division requirements for a major in sociology are:

- Sociology 1, 2, and 60: Articulations exist at most community colleges
- Sociology 10, 20, 30, 40, or 50: If your community college does not offer an already articulated course, please see the undergraduate coordinator for information about petitioning potential lower-division sociology transfer credit.

It is important to note that eight of the twelve upper-division courses in the undergraduate program must be taken in the Department of Sociology at UCSD, unless students obtain special acceptance of additional courses from the chair and the faculty undergraduate advisor.

THE MINOR

The minor consists of seven sociology courses: two lower-division and five upper-division. Unless colleges specify specific courses to be taken, the student may choose any two lower-division sociology courses (Soc. 1, 2, 10, 20, 30, 40, or 60) and any five upper-division courses (Soc. 100 to 190). Courses for the minor must be taken for a letter grade only. Special study courses or internships may not be applied toward the minor.

THE HONORS PROGRAM

The Department of Sociology offers an honors program to those students who have demonstrated excellence in the sociology major. Successful completion of the honors program enables the student to graduate “With Highest Distinction,” “With High Distinction,” or “With Distinction,” depending upon performance in the program.

Eligibility

Students may apply to the honors program if they meet the following requirements:

1. junior standing (ninety units completed)
2. GPA of 3.5 or better in the major
3. recommendation of a faculty sponsor familiar with student’s work
4. must have completed at least four upper-division sociology courses
5. overall GPA of 3.2 or better
6. must have completed SOCI 100 and one upper-division methods course prior to the fall quarter when the honors course begins; alternatively, the consent of the honors program director or the undergraduate advisor must be obtained

Interested students may pick up an application from the staff undergraduate coordinator in the Department of Sociology. Completed applications must be in the department office no later than week five of the spring quarter prior to the start of the honors program in the fall.

Students traveling abroad during their junior year should note that the deadline for applications still applies to them and should make arrangements accordingly.

Enrollment in the honors program is limited. Final decisions on acceptance into the program will be made by the presiding faculty member.

Course Requirement

The student must take Sociology 196A, Advanced Studies in Sociology, and Sociology 196B, Supervised Thesis Research, which will count as two of the twelve upper-division courses required for the major. Each student will choose a faculty advisor to help supervise the thesis research and writing with the honors program director.

Students whose GPA in the major falls below 3.5 or who do not earn at least an A– in the honors seminars will not graduate with distinction, but they may count the two honors courses among the twelve upper-division courses required for the major. Students must maintain a 3.5 GPA in the major and a 3.2 overall GPA until final graduation, in order to receive honors in the sociology honors program. To graduate “With Highest Distinction” the student must earn an A+; to graduate “With High Distinction” the student must earn an A; and to graduate “With Distinction” the grade must be an A–.

THE GRADUATE PROGRAM

The graduate program in sociology at the University of California, San Diego is organized on the basis of programs of specialization in comparative and historical sociology, the sociology of culture, social inequalities, and science, technology, and medicine. It is designed to prepare students for two main goals: to contribute to the increase of knowledge about societies and thereby advance the discipline of sociology; and to teach sociology at the graduate and undergraduate levels. The majority of graduates from the program find teaching and research positions in colleges and universities, although some also work in non-academic research and social policy positions. The department offers a course of study leading to the doctor of philosophy degree. While the Master of Arts degree is awarded as a step toward the completion of the Ph.D., applicants seeking only an M.A. degree are not accepted.

Departmental Research and Teaching Members of the department are engaged in a wide variety of research and teaching activities that fall into four broad areas of concentration that correspond to our programs of specialization. Much of the research carried out by departmental students and faculty is distinguished by unique intersections of these areas.

Comparative and Historical Sociology

Many members of our faculty have research interests in the historical and/or comparative analysis of social institutions, structures, and processes, and social change in general. Using methods of comparative historical research and concepts drawn from social theory, individual faculty are engaged in research on, among other things: (1) political sociology, including revolution, social and political movements, and the evolution of the modern state, (2) economic transformation in contemporary societies (industrial countries, “emerging markets,” and agrarian societies), including the labor process, stratification and the organization of work, and the development of market economies, (3) collective identities and social relations, including nationalism, class, gender, race, and ethnicity, and (4) social control and institutionalization. The department is among the most internationally oriented departments of sociology in the world, with specialists in most regions of the world, including Eastern and Western Europe, the former Soviet Union, Japan, China, southern Africa, Latin America, the Middle East, as well as the United States.

Sociology of Culture

A great number of the faculty have research and teaching interests in the sociology of culture broadly conceived. Sociology of culture involves topics such as: (1) the interpretation of the symbol systems that constitute meaningful resources for social action, (2) the analysis of the processes through which patterns of meaning are socially reproduced, and (3) the study of the interaction between culture change and social change. Many faculty have an interest in the comparative study of cultural traditions around the world. Others are interested in the relationship of culture to social movements and collective identities. And some see the sociology of culture not simply as a subdiscipline but as a general theoretical perspective on social experience. More specific substantive interests include sociology of knowledge and intellectuals, political culture, the culture of work, education and socialization, comparative moral cultures, the cultural dimensions of ethnicity, gender, sexuality, and popular culture.

Sociology of Social Inequalities

A large number of departmental faculty have expertise in the study of social inequalities, including those based on distinctions of gender, race, ethnicity, class, language, citizenship, and sexuality. Unique to our program are (1) focus on the processes by which social distinctions and identities
are themselves constructed, represented, and maintained over time, (2) comprehensive training in both qualitative and quantitative approaches to studying inequality, (3) emphasis on international and historical inequality research, and (4) expertise in social movements as products of and challenges to inequality. Many members of the department study inequalities in workplaces, schools, markets, states, families, politics, law, and medicine.

Sociology of Science, Technology, and Medicine

A substantial fraction of the faculty has research and teaching interests focused on the interrelationships between science, technology, and medicine and modern society. Drawing on a range of sociological and historical methodologies, individual faculty are engaged in research on science and social movements, scientists and the state, biomedicine, the social history of madness and psychiatry, the historical sociology of scientific knowledge and practice, and sociological approaches to the Scientific Revolution. (For information on the interdisciplinary Science Studies Program, see below “Interdisciplinary Programs of Study”)

ADMISSION

Admission to the graduate program in sociology is open to students with excellent undergraduate records in any field. Some previous work in sociology or the social and behavioral sciences is advisable, but not required. New students are admitted in the fall quarter of each academic year. A bachelor’s degree from an accredited college or university is a prerequisite for admission to the graduate program. Prospective applicants should submit the official online application for admission and awards (same form), one set of official transcripts from each institution attended after high school, official scores from the Graduate Record Examination, application fee, at least three letters of recommendation, and one or more samples of the applicant’s own writing, such as a term paper. Additionally, foreign applicants must submit official scores from the Test of English as a Foreign Language (TOEFL) and the Test of Written English (TWE). Applicants are encouraged to contact and communicate with the department to talk with faculty and graduate students. The application deadline is January 4, of each year.

PROGRAM OF STUDY

The graduate programs in the University of California system work under the “normative time” standard. Normative time refers to the time period in which students, under normal circumstances, are expected to complete their requirements for the Ph.D. degree. Each department establishes a normative time for its doctoral program, and for the Department of Sociology, as for most graduate programs in the university, it is six years.

Course Requirements

Students are required to enroll as full-time graduate students, to carry a minimum enrollment of twelve units of graduate-level courses each quarter, and to maintain a grade-point average of 3.0 or better.

Theory and Methods Requirements

Students take almost all the courses on theory and methods in their first year in the program. They are required to take two courses in classical sociological theory (Sociology 201A/B) and one in contemporary theory (Sociology 202), two in quantitative methods (Sociology 205 and 206), and two in qualitative methods (from among Sociology 203, Field Methods; Sociology 204, Text and Discourse Analysis; or Sociology 207, Comparative-Historical Methods). In addition, students enroll in a two-credit introduction to the faculty and their research (Sociology 208). Note: Sociology 208 is in addition to other requirements.

The remaining theory and methods requirements are Sociology 252 and 253, a two-quarter practicum sequence, which will be taken in the fall quarters of the second and third year. In these courses, students will complete a piece of research they have started in a previous seminar, write a paper, and revise it for submission to a journal. The emphasis in the first quarter will be on the completion of the research for this project, and the second quarter will focus on the writing of the results and revision of drafts.

Core Seminars

These are survey courses in major substantive fields. Students must take three out of the following eight, which the department offers regularly: Sociology 264, Economic Sociology; Sociology 226, Political Sociology; Sociology 216, Sociology of Culture; Sociology 234, Intellectual Foundations of the Study of Science, Technology, and Medicine; Sociology 212, Social Stratification; Sociology 267, Sociology of Gender; Sociology 244, Sociology of Race and Ethnicity; and Sociology 222, Social Movements. These are major areas of sociology and fields in which several of the members of our faculty specialize. Moreover, several of these seminars serve as introductions to the programs of specialization on which the program is based (see below).

Remaining Courses

Beyond these requirements, students must take four seminars, at least two of which must be in the program of specialization selected by the student. In total, sixteen graduate courses, plus the introduction to the faculty, are required for advancing to candidacy.

The Programs of Specialization

The department currently offers specialized Ph.D. programs in comparative and historical sociology, sociology of culture, sociology of social inequalities, and the sociology of science, technology, and medicine. Affiliation to the clusters is voluntary and non-exclusive, and the department encourages multiple participation and joint activities among the groups. Students could qualify in more than one concentration, if they wish, and they will not be required to specialize in any one of them (although we are confident that most will find it advantageous to do so). The curriculum for each specialization is relatively light, in order to provide students with a solid common background in theory and methods, and allow for as much interface as possible between the programs. The requirements are: appropriate qualitative methods courses, one of the core seminars (see above) in areas relevant for the concentration, two specialized seminars, pertinent specialties for the field examination, and the dissertation.

The qualitative methods requirement varies according to the program of specialization. Students who concentrate in comparative and historical sociology must take Sociology 207, Comparative-Historical Methods. For sociology of culture, Sociology 203, Field Methods, is required. Students specializing in social inequalities should take at least one of the following courses: Sociology 203, Field Methods; Sociology 204, Text and Discourse Analysis; or Sociology 207, Comparative-Historical Methods. Finally, students specializing in sociology of science, technology, and medicine must choose two of the following three courses in qualitative methods: Sociology 203, Field Methods; Sociology 204, Text and Discourse Analysis; and Sociology 207, Comparative-Historical Methods. The required core seminars are survey courses in major substantive fields. Students must take three out of the following eight, which the department offers regularly: Sociology 264, Economic Sociology; Sociology 226, Political Sociology; Sociology 216, Sociology of Culture; Sociology 234, Intellectual Foundations of the Study of Science, Technology, and Medicine; Sociology 212, Social Stratification; Sociology 267, Sociology of Gender; Sociology 244, Sociology of Race and Ethnicity; and Sociology 222, Social Movements. These are major areas of sociology and fields in which several of the members of our faculty specialize. Moreover, several of these seminars serve as introduction to the programs of specialization on which the program is based. The core seminars required for each program of specialization are the following: Sociology 264, Economic Sociology or Sociology 226, Political Sociology, for comparative and historical sociology Sociology 216, Sociology of Culture, for sociology of culture Sociology 212, Social Stratification or Sociology 244, Sociology of Race and Ethnicity or Sociology 267, Sociology of Gender, for social inequalities Sociology 234, Intellectual Foundations of the Study of Science, Technology, and Medicine, for sociology of science, technology, and medicine

PROGRAM OVERVIEW

First-Year Evaluation

All students are evaluated by the department faculty toward the end of the academic year. At the end of the student’s first year in the program, student performance is also evaluated by the Graduate Program Committee, including the director of Graduate Studies, the faculty teaching the core sequences, and by their faculty advisor. Students whose performance is satisfactory are allowed to continue the regular course of study; others may be asked to repeat some courses or to do additional course work; others may be asked to withdraw from the program. Evaluations are communicated to students in writing.
Second-Year Evaluation and the M.A. Degree

The master's degree is earned as one of the requirements of the Ph.D. and is based on the quality of the student's course work described below. At the end of the second year, students are evaluated by the Graduate Program Committee for the master's degree. At that time, the committee ascertains the student's suitability for doctoral work.

The fifteen core courses required to receive the M.A. degree are:

Sociology 201A. Classical Sociological Theory I
Sociology 201B. Classical Sociological Theory II
Sociology 202. Contemporary Sociological Theory
Sociology 205. Quantitative Methods I
Sociology 206. Quantitative Methods II
Sociology 252. Research Practicum I

Two courses chosen from:

Sociology 203. Field Methods
Sociology 204. Text and Discourse Analysis
Sociology 207. Comparative-Historical Methods

Three seminars from:

Sociology 212. Social Stratification
Sociology 216. Sociology of Culture
Sociology 222. Social Movements
Sociology 226. Political Sociology
Sociology 234. Intellectual Foundation of the Study of Science, Technology, and Medicine
Sociology 244. Sociology of Race and Ethnicity
Sociology 264. Economic Sociology
Sociology 267. Sociology of Gender

Three elective sociology graduate seminars.

One may be outside the department and may be taken S/U.

At the beginning of the spring quarter of their second year in the program or at the beginning of the quarter in which they wish to be considered, students must submit to the committee for evaluation three papers they have written for seminars taught by different faculty. Reviewers assess the quality of the overall record and determine whether it indicates a potential for conducting doctoral research.

The final decision regarding the M.A. degree is based on the student's GPA, the three papers, and yearly faculty evaluations. The committee makes one of the following three recommendations: pass, M.A. only, and non-pass. Pass means that students may proceed toward the Ph.D. Those given M.A. only evaluations are granted the degree but may not continue toward the Ph.D. Students who received non-pass evaluations are asked to withdraw without a graduate degree.

Students admitted for a Ph.D. with a master's degree in sociology may not be candidates for a second master's degree.

The Field Examination

In the quarter in which students expect to finish the theory and methods requirements, the three core seminars, and the six elective seminars, students become eligible to take the field examination. This examination must be completed by the end of the student's third year in the program. The object of the field examination is to demonstrate mastery of two established, broad, and distinct fields of sociological inquiry, selected from a list of fields provided by the department. The examination is carried out by a faculty committee composed of no fewer than four departmental faculty, one of whom serves as chair. The choice of fields and the composition of the committee must be approved by the Graduate Program Committee before the student starts preparing for the exam. Faculty from departments other than sociology may be added (or, if necessary, substituted) by petition to the Graduate Program Committee.

The demonstration of mastery has both written and oral components. The written part consists of two papers, one in each field, and a course syllabus for a course they would teach in one of the two fields in which they take their orals. In these papers, students are expected to demonstrate a grasp of key issues and debates, and of the broad, conceptual history of the field. These reviews are based on a bibliography drawn up by the student in consultation with relevant committee members and other faculty in each field. Students are expected to know the central arguments of all the books and papers in the bibliographies, regardless of the extent to which these books and articles have been used in the papers. Field papers must be a minimum of thirty and a maximum of fifty pages each, exclusive of notes and should include at least twenty to thirty books or article equivalents. The two bibliographies may not significantly overlap, either in literature surveyed or in specific titles. The papers, the bibliographies, and the syllabus must be submitted to the committee at least two weeks before orals, or the orals cannot go forward.

The oral part lasts two hours and covers both fields. It is given by the examining committee, sitting as a whole, and is based on the bibliographies, papers, and course syllabus submitted by the student. The exam does not focus on the papers, but on the students' knowledge of the fields. Following the oral examination, the committee evaluates the student on the basis of both the written and the oral components of the examination. Possible grades are high pass, pass, conditional pass, and no pass. High pass recognizes exceptional performance. Conditional pass indicates that the committee has passed the student pending the completion of additional work. Students receiving a grade of no pass will have an opportunity to retake the examination, should they so desire, no later than the end of the subsequent quarter. Students electing not to retake the examination or receiving a grade of no pass a second time will be asked to withdraw from the graduate program.

Students will have to constitute their field exam committee two months before the proposed date of the exam. Once the committee is constituted it can be changed only if a faculty member becomes unavailable. Students will have to submit one copy per member of a substantial draft of their field papers one month in advance to the graduate coordinator, who then distributes them to the committee members. Faculty, in turn, will commit to read and comment on the papers in two weeks time.

All papers (as opposed to the drafts) and the syllabus must be submitted to the committee two weeks before the fields.

The Dissertation Prospectus and Hearing

The central intellectual activity leading to the award of the Ph.D. degree is the doctoral dissertation: an original contribution to knowledge, based on substantial, original research on a topic of intellectual significance within the field of sociology.

Following successful completion of the field examination, the student establishes a doctoral committee to supervise dissertation research. This is a five-person committee, including three faculty from within the department and two from other departments within the university. The committee should include the faculty members whose fields of expertise make them most appropriate for supervising the students' research. The student approaches the faculty member he or she would like to include, but the committee must be approved by the director of Graduate Studies and the department chair before the student starts working on the prospectus. The composition of the committee may or may not overlap with the committee that carried out the field examination. If the student elects to have a six member committee, the sixth member has all the same obligations as the other committee members.

By the end of the spring quarter of the fourth year in the department, the student must have a dissertation prospectus approved by his or her doctoral committee. The dissertation prospectus is a document that presents the research topic of the dissertation, places it in the context of the relevant literature, discusses its significance, specifies and justifies the methods the student intends to use, establishes the feasibility of the research, and indicates the anticipated steps leading to completion.

Following submission of the dissertation prospectus, the student must defend it at a hearing before the doctoral committee. The purpose of the hearing is to certify that the prospectus is significant and feasible, that the research design is appropriate, and that the student is prepared to carry it out successfully. Based on the written prospectus and the hearing, the committee may choose to approve the prospectus or to ask for revisions and resubmission. The prospectus hearing serves, in effect, as a qualifying examination, and approval of the dissertation prospectus is the final step to advancement to candidacy for the Ph.D. Degree.

Students will have to constitute their dissertation committee three months before the proposed date of the exam. Once the committee is constituted it can be changed only if a faculty member becomes unavailable. Students will have to submit one copy per member of a substantial draft of their prospectus one month in advance to the graduate coordinator, who then distributes them to the committee members. Faculty, in turn, will commit to read and comment on the papers in two weeks time.

The Doctoral Dissertation

Upon approval of the dissertation prospectus, the student proceeds with dissertation research. Students are expected to consult with committee members as the research progresses and to keep the committee chair advised of progress made.

Once the dissertation is substantially completed and committee members have had the opportunity to review drafts of the written work, the committee
meets at least one month before the defense takes place, with or without the student present, to consider the progress made and to identify concerns, changes to be made, or further work to be done. Once the committee members are substanti- tially satisfied with the written work, the student, in consultation with the committee, schedules the oral defense of the dissertation. By university regulation, this defense is open to the public.

The final version of the dissertation must be ap- proved by each member of the doctoral committee. All members of the committee must be present at the defense. Exceptions may be made only under very restrictive conditions. Further, the student must consult with the Office of Graduate Studies to be told of appropriate requirements for the thesis to be filed. Having obtained this approval and successfully defended the dissertation in oral examination, the student is eligible to receive the Ph.D. Degree. The final version of the dissertation is then filed with the university librarian via the Office of Graduate Studies. Acceptance of the dissertation by the university librarian is the final step in completing all requirements for the Ph.D.

Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of four years (PCTL—Preliminary Candidacy Limit). Normative time is six years. Total university financial support (SUTL—Support Time Limit) cannot exceed seven years. Total registered (TRTL—Total Registered Time Limit) time at UCSD cannot exceed eight years.

INTERDISCIPLINARY PROGRAMS OF STUDY

Sociology of Science, Technology, and Medicine and the Science Studies Program

Students interested in the interrelationships between science, technology, and medicine (STM) and the larger social order can opt for one of two specialized programs of study. The first of these is undertaken wholly within the department (see above). The second approach is to seek admission to the Science Studies Program, a joint doctoral program that brings together graduate students from the Departments of Sociology, History, Philosophy, and Communication. Students in the Program pursue a cross-disciplinary curriculum leading to dissertation research in the sociology of science, technology, or medicine, broadly conceived. Sociology faculty affiliated with this Program have research interests across the broad spectrum of science studies, from the philosophy and history of science to the organization of scientific discovery and the culture of specific work.

Students may seek admission to the Science Studies Program at the same time they apply for admission to the Department of Sociology, or may, in certain circumstances, request to be accepted into the Program at some point after entering the University of California, San Diego. The requirements of the Science Studies Program are similar to those of the standard graduate program. However, there are some distinct curricular requirements in the first two years of the Program, as well as some distinct emphases in the qualifying examination. The core of the Program is a two-quarter team-taught seminar sequence taken in the first year, the first quarter being an interdisciplinary introduction to science studies and the second quarter (or core seminar) being devoted to special topics in science studies which vary from year to year.

For details on the Science Studies Program, including information about requirements, write to the University of California, San Diego, Coordinator, Science Studies Program, 9500 Gilman Drive #0104, La Jolla, CA 92039-0104; or telephone the program coordinator at (858) 534-0491. Visit their Web site: http://sciencestudies.ucsd.edu.

Interdisciplinary Program in Sociology and Cognitive Science

This program allows students to earn a Ph.D. in sociology and cognitive science. Students must complete all the regular sociology requirements. In addition, they take six cognitive science seminars and select a dissertation committee composed of three Sociology and three Cognitive Science Program faculty. Admission to this program requires a separate application and is contingent on acceptance into the Department of Sociology. For more information, contact the coordinators in the Department of Sociology, (858) 534-4626, or the Cognitive Science Department, (858) 534-7141. Please view our Web site for application and department handbook information: http://sociology.ucsd.edu.

Courses

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LOWER-DIVISION

SOCI 1. The Study of Society (4)

An introduction to the organizing themes and ideas, empirical concerns, and analytical approaches of the discipline of sociology. The course focuses on both classical and contemporary views of modern society, on the nature of community, and on inequality; with special attention to class, race, and gender. Materials include both theoretical statements and case studies. Will not receive credit for SOCI 1 and SOCL 1A.

SOCI 2. The Study of Society (4)

A continuation of Sociolgy/1. 1A. The focus here is on socialization processes, culture, social reproduction and social control, and collective action. As in 1A, materials include both theoretical statements and case studies. While 1B may be taken as an independent course, it is recommended that students take 1A and 1B in sequence, as the latter builds on the former. Will not receive credit for SOCI 2 and SOCL 1B.

SOCI 10. American Society: Social Structure and Culture in the U.S. (4)

An introduction to American society in historical, compara- tive, and contemporary perspectives. Topics will include American cultural traditions; industrialization; class struc- ture; the welfare state; ethnic, racial, and gender relations; the changing position of religion; social movements; and political trends. Will not receive credit for SOCI 10 and SOCL 10.

SOCI 20. Social Change in the Modern World (4)

A survey of the major economic, political, and social forces that have shaped the contemporary world. The course will provide an introduction to theories of social change, as well as prepare the student for upper-division work in comparative-historical sociology. Will not receive credit for SOCI 20 and SOCL 20.

SOCI 30. Science, Technology, and Society (4)

A series of case studies of the relations between society and modern science, technology, and medicine. Global warming, reproductive medicine, AIDS, and other topical cases prompt students to view science-society interactions as problematic and complex. Will not receive credit for SOCI 30 and SOCL 30.

SOCI 40. Sociology of Health Care Issues (4)

Designed as a broad introduction to medicine as a social institution and its relationship to other institutions as well as its relation to society. It will make use of both micro and macro sociological work in this area and introduce students to sociological perspectives of contemporary health care issues. Will not receive credit for SOCI 40 and SOCL 40.

SOCI 50. Introduction to Law and Society (4)

Interrelationships between law and society, in the U.S. and other parts of the world. We examine law’s norms, customs, culture, and institutions, and explain the prolifera- tion of lawyers in the U.S. and the expansion of legal “rights” worldwide. Will not receive credit for SOCI 50 and SOCL 50.

SOCI 60. The Practice of Social Research (4)

This course introduces students to the fundamental principles of the design of social research. It examines the key varieties of evidence, sampling methods, logic of comparison, and causal reasoning researchers use in their study of social issues. Will not receive credit for SOCI 60 and SOCL 60.

SOCI 87. Freshman Seminar (1)

The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminar topics will vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

SOCI 98. Directed Group Study (4)

Small group study and research under the direction of an interested faculty member in an area not covered in regular sociology courses. (P/NP grades only.) Prerequisites: lower-division standing; completion of thirty units of UCSD undergraduate study; minimum UCSD GPA of 3.0; completion and approval of Special Studies form. Consent of instructor and department approval required.

SOCI 99. Independent Study (4)

Individual study and research under the direction of an in- terested faculty member. P/NP grades only. Prerequisites: lower-division standing; completion of thirty units of UCSD undergraduate study; minimum UCSD GPA of 3.0; completion and approval of Special Studies form. Consent of instructor and department approval required.

UPPER-DIVISION

SOCI 100. Classical Sociological Theory (4)

Major figures and schools in sociology from the early nineteenth century onwards, including Marx, Tocqueville, Durkheim, and Weber. The objective of the course is to provide students with a background in classical social theory, and to show its relevance to contemporary sociol- ogy. Prerequisite: upper-division standing. Will not receive credit for SOCI 100 and SOCA 100.

SOCI 103M. Computer Applications to Data Management in Sociology (4)

Develop skills in computer management and analysis of sociological data. Practical experience with data produced by sociological research. Students will develop competency in the analysis of sociological data, by extensive acquaint- ance with computer software used for data analysis and management (e.g., SPSS). Prerequisite: SOCI 60. Will not receive credit for SOCI 103M and SOCA 103M.

SOCI 104. Field Research/Methods of Participant Observation (4)

Relationship between sociological theory and field re- search. Strong emphasis on theory and methods of partici- pant observation: consideration of problems in entering field settings, recording observations, description/analysis
of field data, ethical problems in field work. Required paper

Prerequisite: upper-division standing. Will not receive credit for SOCI 107 and SOCA 108.

SOCI 106. Comparative and Historical Methods (4)

A broad-based consideration of the use of historical materials in sociological analysis, especially as this facilitates empirically oriented studies across different societies and through time, and their application in student research projects. Prerequisite: SOCI 60. Will not receive credit for SOCI 106 and SOCA 106.

SOCI 106M. Holocaust Diaries (4)

Methods for interpreting diaries, letters, and testaments written by victims and perpetrators of the Holocaust. Students use these sources for original research about life in hiding, ghettos, and death camps. Includes techniques for making comparisons and for generalizing from evidence. Prerequisites: SOCI 60 and SOCI 178 or the consent of instructor. Will not receive credit for SOCI 106M and SOCA 106M.

SOCI 107. Epidemiological Methods: Statistical Study of Disease (4)

Epidemiology is the statistical study of disease, and epide
mologic knowledge is a powerful tool for understanding the causes of certain diseases, e.g., AIDS, scurvy, cholera, and lung cancer. These fundamental epidemiologic methods will be taught. Prerequisite: SOCI 60. Will not receive credit for SOCI 107 and SOCA 107.

SOCI 108. Survey Research Design (4)

Translation of research goals into a research design, including probability sampling, questionnaire construction, data collection (including interviewing techniques), data processing, coding, and preliminary tabulation of data. Statistical methods of analysis will be limited primarily to percentage tables. Prerequisite: SOCI 108 and SOCA 108.

SOCI 109. Analysis of Sociological Data (4)

Students test their own sociological research hypotheses using data from recent American and International social surveys and state-of-the-art computer software. Application of classical scientific methods, interpretation of statistical results, and clear presentation of research findings. Prerequisite: SOCI 60. Will not receive credit for SOCI 109 and SOCA 109.

SOCI 110. Qualitative Research in Educational Settings (4)

Basic understanding of participant observation, interview ing, and other ethnographic research techniques through field experiences in school and community settings sponsored by CREATE. Students will learn to take field notes, write-up interviews, and compose interpretive essays based on their field experiences. Prerequisite: SOCI 60 Will not receive credit for SOCI 110 and SOCA 110A.

SOCI 111E. Human Rights: Principles and Problems (4)

An inquiry into the concept of human rights, the history of human rights in the twentieth century, and problems in both the concept and its implementation in modern societies. Prerequisite: upper-division standing. Will not receive credit for SOCI 111E and SOCB 111A.

SOCI 111F. Human Rights: Practices and Cases (4)

An investigation into human rights practices in contemporary society, focusing on abuses and understanding both their causes and responses to them. We will look at several key cases, probably including the Islamic world and East Asia. Prerequisite: upper-division standing. Will not receive credit for SOCI 111F and SOCB 111B.

SOCI 112. Social Psychology (4)

This course will deal with human behavior and personali
dity development as affected by social group life. Major theories will be presented. The interaction dynamics of such substantive areas as socialization, normative and deviant behavior, learning and achievement, the social construction of the self, and the social identities will be considered. Prerequisite: upper-division standing. Will not receive credit for SOCI 112 and SOCB 112.

SOCI 113. Sociology of the AIDS Epidemic (4)

This course considers the social, cultural, political, and economic aspects of HIV/AIDS. Topics include the social context of transmission; the experiences of women living with HIV; AIDS activism; representations of AIDS; and the impact of race and class differences. Prerequisite: upper-division standing. Will not receive credit for SOCI 113 and SOCB 113.

SOCI 114. Culture and Ethnicity (4)

Examines culture and inter-ethnic relations, the links be
tween culture and ethnic variations in socio-economic achievement, and the intersection of culture and ethnic
ity with politics in the impact of immigration and the impact of immigration on host economies; refugees; assimilation; and return migration. Prerequisite: upper-division standing. Will not receive credit for SOCI 125 and SOCB 125.

SOCI 126. Social Organization of Education (4)

(Same as EDS 126.) The social organization of education in the U.S. and other societies; the functions of education for individuals and society; the structure of schools; educational decision making; educational testing; socialization and education; formal and informal education; cultural transmission. Prerequisite: upper-division standing. Will not receive credit for SOCI 126 and SOCB 126.

SOCI 127. Immigration, Race, and Ethnicity (4)

Examination of the role that race and ethnicity play in immigrant group integration. Topics include: theories of integration; racial and ethnic identity formation; racial and ethnic change; immigration policy; public opinion; comparisons between contemporary and historical waves of immigration. Prerequisite: upper-division standing. Will not receive credit for SOCI 127 and SOCB 127.

SOCI 129. The Family (4)

An examination of historical and social influences on family life. Analyzes contemporary families in the United States, the influence of gender, class, and race, and current issues such as divorce, domestic violence, and the feminization of poverty. Prerequisite: upper-division standing. Will not receive credit for SOCI 129 and SOCB 129.

SOCI 130. Population and Society (4)

This course offers insight into why and how populations grow (and decline), and where and under what conditions changes in population size and/or structure change have positive and negative consequences for societies and environment. Prerequisite: upper-division standing. Will not receive credit for SOCI 130 and SOCB 130.

SOCI 131. Sociology of Youth (4)

Chronological age and social status; analysis of social processes bearing upon the socialization of children and adolescents. The emergence of "youth cultures," generational succession as a cultural problem. Prerequisite: upper-division standing. Will not receive credit for SOCI 131 and SOCB 131.

SOCI 132. Gender and Work (4)

Examination and analysis of empirical research and theo retical perspectives on gender and work. Special attention to occupational segregation. Other topics include: the integration between work and family, work and poverty; gender and work in the Third World. Prerequisite: upper-division standing. Will not receive credit for SOCI 132 and SOCB 132.
SOCI 133. Immigration in Comparative Perspective (4)
Societies across the world are confronting new immigration. In this course, we will focus on Europe, Asia, and North America, and examine issues of nationalism, cultural diversity and integration, economic impacts, and government policy. Prerequisite: upper-division standing. Will not receive credit for SOCI 133 and SOCB 133.

SOCI 134E. The Making of Modern Medicine (4)
A study of the social, intellectual, and institutional aspects of the nineteenth-century transformation of clinical medicine, examining both the changing content of medical knowledge and the moral and economic impact on the medical profession. Prerequisite: upper-division standing. Will not receive credit for SOCI 134E and SOCC 134A.

SOCI 135. Medical Sociology (4)
An inquiry into the roles and structure in mediating the health and illness experiences of individuals and groups. Topics include the social construction of illness, the relationships between patients and health professionals, and the organization of medical work. Prerequisite: upper-division standing. Will not receive credit for SOCI 135 and SOCC 135.

SOCI 136E. Sociology of Mental Illness: An Historical Approach (4)
An examination of the social, cultural, and political factors involved in the identification and treatment of mental illness. This course will emphasize historical material, focusing on the eighteenth, nineteenth, and early twentieth centuries. Developments in England as well as the United States will be examined from an historical perspective. Prerequisite: upper-division standing. Will not receive credit for SOCI 136E and SOCC 136A.

SOCI 136F. Sociology of Mental Illness in Contemporary Society (4)
This course will focus on recent developments in the mental illness arena and the contemporary sociological literature on mental illness. Developments in England as well as the United States will be examined. Prerequisite: upper-division standing. Will not receive credit for SOCI 136F and SOCC 136B.

SOCI 137. Sociology of Food (4)
Topics include food as a marker of social inequalities (e.g., gender, class, ethnicity)—the changing character of food production and distribution; food as an object of political conflict; and the symbolic meanings and rituals of food preparation and consumption. Prerequisite: upper-division standing. Will not receive credit for SOCI 137 and SOCB 137.

SOCI 138. Genetics and Society (4)
The class will first examine the direct social effects of the "genetic revolution": eugenics, genetic discrimination, and stratification. Second, the implications of thinking of society in terms of genetics, specifically—sociobiology, social evolution, and evolutionary psychology and biology. Prerequisite: upper-division standing. Will not receive credit for SOCI 138 and SOCC 138.

SOCI 139. Social Inequality: Class, Race, and Gender (4)
Massive inequality in wealth, power, and prestige is ever-present in industrial societies. In this course, causes and consequences of class, gender, race, and ethnic inequality ("stratification") will be considered through examination of classical and modern social science theory and research. Prerequisite: upper-division standing. Will not receive credit for SOCI 139 and SOCC 139.

SOCI 140. Sociology of Law (4)
This course analyzes the structuring of law in society, the social sources of legal change, social conditions affecting the administration of justice, and the role of social science in jurisprudence. Prerequisite: upper-division standing. Will not receive credit for SOCI 140 and SOCC 140.

SOCI 140F. Law and the Workplace (4)
This course examines how the U.S. legal system has responded to the dynamic of inequality and demands for employee rights. Particular attention is given to racial, gender, religious, and disability discrimination, as well as the law's role in regulating unions, the global economy, and sweatshop labor. Prerequisite: upper-division standing. Will not receive credit for SOCI 140F and SOCC 140F.

SOCI 141. Crime and Society (4)
A study of the social origins of criminal law, the administration of justice, causes, and patterns of criminal behavior, and the prevention and control of crime, including individual rehabilitation and institutional change, and the politics of legal policy and correctional reform. Prerequisite: upper-division standing. Will not receive credit for SOCI 141 and SOCC 141.

SOCI 142. Social Deviance (4)
This course studies the major forms of behavior seen as rule violations by large segments of our society and analyzes the major theories trying to explain them, as well as processes of rule making, social control, deviance, stigmatization and status degradation, and rule change. Prerequisite: upper-division standing. Will not receive credit for SOCI 142 and SOCC 142.

SOCI 143. Suicide (4)
Traditional and modern theories of suicide will be reviewed and tested. The study of suicide will be treated as one method for investigating the influence of society on the individual. Prerequisite: upper-division standing. Will not receive credit for SOCI 143 and SOCC 143.

SOCI 144. Forms of Social Control (4)
The organization, development, and mission of social control agencies in the nineteenth and twentieth centuries, with emphasis on modern law enforcement (police, psychiatrists, correctional work, etc.) theories of control movements. Prerequisite: upper-division standing. Will not receive credit for SOCI 144 and SOCC 144.

SOCI 145. Violence and Society (4)
Focusing on American history, this course explores violence in the light of three major themes: struggles over citizenship and nationhood; the drawing and maintenance of racial, ethnic, and gender boundaries; and the persistence of notions of “masculinity” and its relation to violence. Prerequisite: upper-division standing. Will not receive credit for SOCI 145 and SOCC 145.

SOCI 146. Law Enforcement in America (4)
Provides a sociological understanding of policing in practice in the United States. Examines the social, political, and historical forces behind the development and shaping of policing in America—including the functions of police, the “-working personality” of police officers, as well as police misconduct and its control. Prerequisite: upper-division standing. Will not receive credit for SOCI 146 and SOCC 146.

SOCI 147. Organizations, Society, and Social Justice (4)
Organizations are dynamic forces in society. This course examines how organizations address human health and social justice issues in national and international settings, focusing on the changing dynamics of organizations and macro-level political, economic, and cultural factors. Prerequisite: upper-division standing. Will not receive credit for SOCI 147 and SOCC 147.

SOCI 148. Political Sociology (4)
Course focuses on the interaction between state and society. It discusses central concepts of political sociology (social cleavages, mobilization, the state, legitimacy), institutional characteristics, causes, and consequences of contemporary political regimes (liberal democracies, authoritarianism, communism), and processes of political change. Prerequisite: upper-division standing. Will not receive credit for SOCI 148 and SOCC 148.

SOCI 148E. Inequality and Jobs (4)
Some people do much better than others in the world of work. Causes and consequences of this inequality will be examined: How do characteristics of individuals (e.g., class, gender, race, education, talent) and characteristics of jobs affect market outcomes? Prerequisite: upper-division standing. Will not receive credit for SOCI 148E and SOCC 148E.

SOCI 149. Sociology of the Environment (4)
The “environment” as a socially and technically shaped milieu in which competing values and interests play out. Relation of humanity to nature; conflicts between preservation and development; environmental pollution and contested illnesses. Will not receive credit for SOCI 149 and SOCC 149.

SOCI 150. Madness and the Movies (4)
Hollywood has had an ongoing obsession with mental illness. This course will examine a number of important or iconic films on this subject. By examining them against a historical and cultural backdrop, we shall develop a critical perspective on these cultural artifacts. Prerequisite: upper-division standing. Will not receive credit for SOCI 150 and SOCC 150.

SOCI 151. Comparative Race and Ethnic Relations (4)
An historical and comparative analysis of race and ethnic relations in various national settings, with emphasis on the United States. The course will center on the origins of ethnic stratification systems, their maintenance, the adaptation of minority communities, and the role of reform and revolutionary movements and government policies in promoting civil rights and social change. Prerequisite: upper-division standing. Will not receive credit for SOCI 151 and SOCC 151.

SOCI 151M. Chicanos in American Society (4)
Survey of contemporary sociological issues affecting Mexican-origin people in the United States. Lectures and reading will be oriented toward understanding the range of experiences within the Mexican-origin population. Focus will also be placed on evaluating theories and evidence used to understand this population. Prerequisite: upper-division standing. Will not receive credit for SOCI 152 and SOCC 152.

SOCI 153. Urban Sociology (4)
Same as USP 105.) Introduces students to the major approaches in the sociological study of cities and to what a sociological analysis can add to our understanding of urban processes. Prerequisite: upper-division standing or consent of instructor. Will not receive credit for SOCI 153 and SOCC 153.

SOCI 154. Religious Institutions in America (4)
Examination of sociological theories for why people have religious beliefs. Also examines types of religious organizations, secularization, fundamentalism, religion and immigration, religion and politics, and religiously inspired violence and terrorism. Will focus on the American context. Prerequisite: upper-division standing. Will not receive credit for SOCI 154 and SOCC 154.

SOCI 155. The City of San Diego (4)
A research-oriented course studying a specific city. Students will describe and analyze a local community of San Diego. Additional work on one citywide institution. Guest lecturers from San Diego organizations and government. Readings largely from city reports and news media. Prerequisite: upper-division standing. Will not receive credit for SOCI 155 and SOCC 155.

SOCI 156. Sociology of Religion (4)
Diverse sociological explanations of religious ideas and religious behavior. The social consequences of different kinds of religious beliefs and religious organizations. The influence of religion upon concepts of history, the natural world, human nature, and the social order. The significance of such notions as “sacred peoples” and “sacred places.” The religious-like character of certain political movements and political parties. Prerequisite: upper-division standing. Will not receive credit for SOCI 156 and SOCC 156.

SOCI 157. Religion in Contemporary Society (4)
Sacred texts, religious experiences, and ritual settings are explored from the perspective of sociological analysis. The types and dynamic of religious sects and institutions are examined. African and contemporary U.S. religious data provide resources for lecture and comparative analysis.
SOCI 158. Islam in the Modern World (4)
The role of Islam in the society, culture, and politics of the Muslim people during the nineteenth and twentieth centuries; attempts by Muslim thinkers to accommodate or reject rival ideologies (such as nationalism and socialism); and a critical review of the relationship between Islam and the West. Prerequisite: upper-division standing. Will not receive credit for SOCI 158 and SOCC 158.

SOCI 159. Special Topics in Social Organizations and Institutions (4)
Readings and discussion of particular substantive issues and research in the sociology of organizations and institutions, including such areas as population, economy, education, family, medicine, law, politics, and religion. Topics will vary from year to year. Prerequisite: upper-division standing.

SOCI 160. Sociology of Culture (4)
This course will examine the concept of culture, its "disintegration" in the twentieth century, and the repercussions on the integration of the individual. We will look at this process from a variety of perspectives, each focusing on one cultural fragment (e.g., knowledge, literature, religion) and all suggesting various means to reunify culture and consequences of the individual. Prerequisite: upper-division standing. Will not receive credit for SOCI 160 and SOCB 160.

SOCI 160E. Law and Culture (4)
This course examines major formulations of the relationship between law and culture in the sociological literature. Topics include formal law versus embedded law, law and morality, law and the self, legal consciousness, the rule of law, and the construction of legality. Prerequisite: upper-division standing. Will not receive credit for SOCI 160E and SOCB 160.

SOCI 161. Sociology of the Life Course (4)
This course explores concepts, theory and empirical research related to demographic, socio-psychological, and institutional aspects of the different stages of human development. It considers social influences on opportunities and constraints by gender, class, race/ethnicity, and historical period. Prerequisite: upper-division standing. Will not receive credit for SOCI 161 and SOCB 161.

SOCI 162. Popular Culture (4)
An overview of the historical development of popular culture from the early modern period to the present. Also a review of major theories explaining how popular culture reflects and/or affects patterns of social behavior. Prerequisite: upper-division standing. Will not receive credit for SOCI 162 and SOCB 162.

SOCI 162R. Religion and Popular Culture in East Asia (4)
(Same as HEA 119.) Historical, social, and cultural relationships between religion and popular culture. Secularization of culture through images, worldviews, and concepts of right and wrong, which may either derive from or pose challenges to the major East Asian religions. Prerequisite: upper-division standing. Will not receive credit for SOCI 162R and SOCB 162R.

SOCI 163. Migration and the Law (4)
Provides a global sociological perspective on the development and consequences of laws regulating migration within and across nation-state borders. The ability of the nation-state to control migration using law and its policy instruments. The effects of different legal statuses on political and socio-economic outcomes. Prerequisite: upper-division standing. Will not receive credit for SOCI 163 and SOCC 163.

SOCI 165A. American News Media (4)
History, politics, social organization, and ideology of the American News Media. SOCI 165A surveys the development of the news media as an institution, from earliest newspapers to modern mass news media. Prerequisite: upper-division standing. Will not receive credit for SOCI 165A and SOCC 165A.

SOCI 166. Sociology of Knowledge (4)
This course provides a general introduction to the development of the sociology of knowledge, and will explore questions concerning social determination of consciousness as well as theoretical ways to articulate a critique of ideology. Prerequisite: upper-division standing. Will not receive credit for SOCI 166 and SOCC 166.

SOCI 167. Science and War (4)
This class examines how science has been mobilized in the development of nuclear weapons and other weapons of mass destruction. The class applies sociological concepts to the analysis of modern technological violence. Prerequisite: upper-division standing. Will not receive credit for SOCI 167 and SOCC 167.

SOCI 168E. Sociology of Science (4)
A survey of theoretical and empirical studies concerning the workings of the scientific community and its relations with the wider society. Special attention will be given to the institutionalization of the scientific role and to the social construction of scientific knowledge. Prerequisite: upper-division standing. Will not receive credit for SOCI 168E and SOCC 168E.

SOCI 168T. Sociology of Technology (4)
An introduction to classic and recent sociological perspectives on technology, giving special attention to the relations between gender, science, and technology and work, organization, and technology and politics. Prerequisite: upper-division standing. Will not receive credit for SOCI 168T and SOCC 168T.

SOCI 169. Citizenship, Community, and Culture (4)
Will survey the liberal, communitarian, social-democratic, nationalist, feminist, post-nationalist, and multicultural viewpoints, and will examine the role of the citizen in the modern world. Prerequisite: upper-division standing. Will not receive credit for SOCI 169 and SOCC 169.

SOCI 172. Films and Society (4)
An analysis of films and how they portray various aspects of American society and culture. Prerequisite: upper-division standing. Will not receive credit for SOCI 172 and SOCC 172.

SOCI 173. Elite Crime (4)
Explores theoretical and conceptual dimensions in the analysis of the systematic violation of the laws and ethics of business and politics in the United States. Covers a range of illegal and unethical practices, the social and political advantages of such violators, as well as the historical bias in both theory and research that has contributed to our lack of understanding of such issues in sociology and criminology. Prerequisite: upper-division standing. Will not receive credit for SOCI 173 and SOCC 173.

SOCI 174. Sociology of Literature (4)
Literature will be discussed in the context of the ideas of national and regional culture, "historical situation," and "social order." Other issues to be studied are literary men and women as spokespersons and as rebels, literary movements and social conditions, and literary works as social documents. Prerequisite: upper-division standing.

SOCI 175. Nationality and Citizenship (4)
Surveys the development of nationality and citizenship law in historical and comparative perspective with an emphasis on the United States, Latin America, and Europe. Examines competing sociological accounts for national variation and convergence; consequences of the law; and local, transnational, and extraterritorial forms of citizenship. Prerequisite: upper-division standing. Will not receive credit for SOCI 175 and SOCC 175.

SOCI 176. War and Society (4)
This course considers classical and contemporary theories that address the social organization of war-making and the effects of war on society since the Middle Ages, emphasizing more recent history. Topics include state formation, citizenship, gender, social stratification, and social protest. Prerequisite: upper-division standing. Will not receive credit for SOCI 176 and SOCC 176.

SOCI 177. International Terrorism (4)
(Same as POLI 1420.) This course covers the definitions, history, and internationalization of terrorism; the interrelation of religion, politics and terror; and the representation of terrorism in the media. A number of organizations and their activities in Europe and the Middle East are examined. Prerequisite: upper-division standing. Will not receive credit for SOCI 177 and SOCD 177.

SOCI 178. The Holocaust (4)
The study of the unique and universal aspects of the Holocaust. Special attention will be paid to the nature of genocide and racism. Other issues studied are literate aspects that make genocide possible, the relationship among the perpetrators, the victims and the bystanders, and the teaching, memory, and denial of the Holocaust. Prerequisite: upper-division standing. Will not receive credit for SOCI 178 and SOCD 178.

SOCI 179. Social Change (4)
Course focuses on the development of capitalism as a worldwide process, with emphasis on its social and political consequences. Topics include: capitalist societies, the rise of capitalism in the West, and the social and political responses to its expansion elsewhere. Prerequisite: upper-division standing. Will not receive credit for SOCI 179 and SOCD 179.

SOCI 180. Social Movements and Social Protest (4)
An examination of the nature of protests and violence, particularly as they occur in the context of larger social movements. The course will further examine those generic factors and general movements that have to do with their genesis, characteristic forms of development, relationship to established political configurations, and gradual fading away. Prerequisite: upper-division standing. Will not receive credit for SOCI 180 and SOCC 180.

SOCI 181. Modern Western Society (4)
This course examines the nature and dynamics of modern Western society in the context of the historical process by which this type of society has emerged over the last several centuries. The aim of the course is to help students think about what kind of society they live in, what makes it the way it is, and how it shapes their lives. Prerequisite: upper-division standing. Will not receive credit for SOCI 181 and SOCD 181.

SOCI 182. Ethnicity and Indigenous Peoples in Latin America (4)
Ethnicity and the reassertion of Indian identity in contemporary Latin America. Issues related to these trends are examined in comparative perspective, with attention to changes in global conditions and in the socioeconomic, political, and cultural contexts of Latin American modernization. Prerequisite: upper-division standing. Will not receive credit for SOCI 182 and SOCD 182.

SOCI 183. Minorities and Nations (4)
We will study minority rights and aspirations as well as the logic and dynamic of nationalist movements in selected cases. We will conclude by examining the chances and challenges of a post-nationalist world. Prerequisite: upper-division standing. Will not receive credit for SOCI 183 and SOCD 183.

SOCI 184. Gender and Film (4)
This class will examine issues of masculinity and femininity through analysis of films. Emphasis is on contemporary American society and will include varying issues such as race, class, and sexualities; worlds of work; romance, marriage, and family. Prerequisite: upper-division standing. Will not receive credit for SOCI 184 and SOCC 184.

SOCI 185. Globalization and Social Development (4)
Social development is more than mere economic growth. It entails improvements in the overall quality of human life, particularly in terms of access to health, education, employment, and income for the poorer sectors of the population. Course examines the impact of globalization on the prospects for attaining these goals in developing countries. Prerequisite: upper-division standing. Will not receive credit for SOCI 185 and SOCD 185.

SOCI 187. African Societies through Film (4)
Exploration of contemporary African urbanization and social change via film, including 1) transitional African communities, 2) social change in Africa, 3) Western vs. African filmmakers' cultural codes, ideological and ethnographic representations, aesthetics, social relations, and market demand for African films are analyzed. Prerequisite:
upper-division standing. Will not receive credit for SOCI 187 and SOCD 187.

SOCI 187T. The Sixties (4)
A sociological examination of the era of the 1960s in America, its social and political movements, its cultural expressions, and debates over its significance, including those reflected in video documentaries. Comparisons will also be based on violent and nonviolent settings in other countries. Prerequisite: upper-division standing. Will not receive credit for SOCI 187T and SOCD 187S.

SOCI 188D. Latin America: Society and Politics (4)
Course focuses on the different types of social structures and political systems in Latin America. Topics include positions in the world economy, varieties of class structure and ethnic identities, political regimes, mobilization and legitimacy, class alignments, reform and revolution. Prerequisite: upper-division standing. Will not receive credit for SOCI 188D and SOCD 188D.

SOCI 188E. Community and Social Change in Africa (4)
The process of social change in African communities, with emphasis on changing ways of seeing the world and the effects of religion and political philosophies of social change. The methods and data used in various village and community studies in Africa will be critically examined. Prerequisite: upper-division standing. Will not receive credit for SOCI 188E and SOCD 188A.

SOCI 188F. Modern Jewish Societies and Israeli Society (4)
Contrary effects of modernization on Jewish society in Western and Eastern Europe and the plethora of Jewish responses: assimilation, fundamentalism, emigration, socialism, diaspora nationalism, and Zionism. Special attention will be paid to issues of discontinuity between Jewish societies and Israeli society. Simultaneously, we will scrutinize the influence of the Palestinian-Israeli conflict on Israeli society, and identity. Prerequisite: upper-division standing. Will not receive credit for SOCI 188F and SOCD 188F.

SOCI 188G. Chinese Society (4)
The social structure of the People's Republic of China since 1949, including a consideration of social organization at various levels: the economy, the policy, the community, and kinship institutions. Prerequisite: upper-division standing. Will not receive credit for SOCI 188G and SOCD 188B.

SOCI 188J. Change in Modern South Africa (4)
Using sociological and historical perspectives, this course examines the origins and demise of apartheid and assesses the progress that has been made since 1994, when apartheid was officially ended. Contrasts of racism in South Africa and the United States. Prerequisite: upper-division standing. Will not receive credit for SOCI 188J and SOCD 188J.

SOCI 188K. American Society (4)
Comparative and historical perspectives on U.S. society. The course highlights "American exceptionalism": did America follow a special historical path, different from comparable nations in its social relations, politics, and culture? Specific topics include class relations, race, religion, and social policy. Prerequisite: upper-division standing. Will not receive credit for SOCI 188K and SOCD 188K.

SOCI 189. Special Topics in Comparative-Historical Sociology (4)
Readings and discussion in selected areas of comparative and historical macro-sociology. Topics may include the analysis of a particular research problem, the study of a specific society or of cross-national institutions, and the review of different theoretical perspectives. Contents will vary from year to year. Prerequisite: upper-division standing.

SOCI 192. Senior Seminar in Sociology (1)
The Senior Seminar Program is designed to allow seniors undergraduate students to meet with faculty members in a small group setting to explore an intellectual topic in sociology (at the upper-division level). Topics will vary from quarter to quarter. Senior Seminars may be taken for credit up to four times. Students may conduct a research project and/or serve as a resource for the department. Enrollment is limited to twenty students, with preference given to seniors. (P/NP grades only.)
abstract. Prerequisites: graduate standing/Soc/L 1A, 1B or consent of instructor.

Soc/G 232. Advanced Issues in the Sociology of Knowledge (4) The social construction of 'knowledge' and the social institutions in which these processes take place are examined. Topics include relationships between knowledge and social institutions, conceptions of knowledge in society, knowledge and social interactions, and contrasting folk and specialized theories. Prerequisites: graduate standing in sociology.

Soc/G 234. Intellectual Foundation of the Study of Science, Technology, and Medicine (4) This course focuses on some classic methodological and theoretical issues in the sociology of science, technology, and medicine all draw. It gives special attention to relationships between knowledge and social order, and between knowledge and practice, that are common to science, technology, and medicine. Prerequisites: graduate standing in sociology.

Soc/G 238. Survey of the Sociology of Scientific Knowledge (4) An introduction to some enduring topics in the sociology of scientific knowledge and to some resources for addressing them. Attention is drawn to problems of accounting for scientific change and stability, and to recurring debates over the proper method for sociological accounts of science. Prerequisite: graduate standing.

Soc/G 243. Sociology of Social Control (4) An examination of the sociological literature on social control, looking at theoretical developments over time, and examining the contemporary literature dealing with social control in historical and comparative perspective. Prerequisite: graduate standing.

Soc/G 244. Sociology of Race and Ethnicity (4) Analysis of enduring topics in the study of race and ethnicity, including stratification, discrimination conflict, immigration, assimilation, and politics. Other topics include racial and ethnic identity and the social construction of race and ethnic categories. A special focus is on the role of 'culture' and 'structure' for explaining race/ethnic differentiation. Prerequisites: graduate standing in sociology.

Soc/G 246. The Welfare State (4) Surveys major theories of the development and functioning of the welfare state, addressing the roles of economic development, political institutions, stratification, and culture. The course focuses on the development of the U.S. social provision in comparison with other advanced industrial societies.

Soc/G 247. Madness and Society (4) An examination of changing Western responses to the age of Bedlam to the age of Prozac. Topics include: the rise of and decline of the total institution; the emergence of psychiatry; changing cultural meanings of madness; and the therapeutics of mental disorder. Prerequisites: graduate standing in sociology.

Soc/G 249. Technology and the Human (4) This course explores the ethical and political implications of technological interventions into human life. Approaches from science studies, the sociology of the body, and philosophy. Topics include transformations in domains of life such as work, health, childhood, and death.

Soc/G 252. Research Practicum I (4) In this seminar students work on a research project, which might have originated in a paper written for another course. The goal is to produce the first draft of a paper that will be submitted to an academic journal. Prerequisite: graduate standing in sociology.

Soc/G 253. Research Practicum II (4) In this seminar students revise an existing research paper (usually the one they wrote for Sociology 252) for submission to an academic journal. Emphasis is placed on conceptual development, writing style and structure, and drawing links to the existing theoretical and empirical literature. Prerequisite: graduate standing in sociology.

Soc/G 255A. Introduction to Science Studies (4) (Same as Phil. 209A, HIGR 238, and COGR 225A.) Study and discussion of classic work in history of science, sociology of science, and philosophy of science, and of work that attempts to develop a unified science studies approach. Required for all students in the Science Studies Program. Prerequisite: enrollment in Science Studies Program.

Soc/G 255B. Seminar in Science Studies (4) (Same as Phil. 209B, HIGR 239, and COGR 225B.) Study and discussion of selected topics in the science studies field. Required for all students in the Science Studies Program. Prerequisite: enrollment in Science Studies Program.

Soc/G 255C. Colloquium in Science Studies (4) (Same as Phil. 209C, HIGR 240, and COGR 225C.) A forum for the presentation and discussion of research in progress in science studies, by graduate students, faculty, and visitors. Required of all students in the Science Studies Program. Prerequisite: enrollment in Science Studies Program.

Soc/G 255D. Advanced Approaches to Science Studies (4) (Same as COGR 225D, Phil. 241, Phil. 209D.) Focus on recent literature in the history, philosophy, and sociology of science, technology, and medicine. Required of all students in the Science Studies Program. Prerequisites: Soc/G 255A is a prerequisite for Soc/G 255D; enrollment in Science Studies Program or instructor's permission.

Soc/G 258. Institutional Change in the Contemporary World; Latin American Societies in a Comparative Perspective (4) This course explores institutional change in contemporary Latin America, and compares this area with other transitional societies. Issues include social consequences of economic liberalization, changing forms of inequality, dynamics of civil society, conceptions of citizenship, quality, and future of democracy. Prerequisite: graduate standing.

Soc/G 260. Sociology of Religion (4) This seminar will examine major theories and debates in the sociology of religion. Possible topics include secularization, religion and immigration, and religion and politics. Prerequisite: graduate standing in sociology.

Soc/G 263. Graduate Seminar in the Sociology of Art (4) This seminar explores the production and interpretation of art forms in cross-cultural context. Processes of symbolic and economic exchange in art worlds will be examined from sociological and semiotic perspectives. Contemporary and popular art forms will be analyzed as types of cultural reproduction. Graduate students will be required to submit a project abstract and final research paper of twenty-seven pages. Prerequisite: graduate standing in sociology.

Soc/G 264. Economic Sociology (4) This course provides an overview of the classical and current debates in economic sociology literature. It presents theories of the rise of industrial economics and addresses how economic activities are constituted and influenced by institutions, culture, and social structure. Prerequisite: graduate standing in sociology.

Soc/G 267. Sociology of Gender (4) Course examines social construction of gender focusing on recent contributions to the field, including micro- and macro-level topics, i.e., social psychological issues in the development of gender, gender stratification in the labor force, gender and social protest, feminist methodologies. Prerequisite: graduate standing in sociology.

Soc/G 268. Sociology of Masculinities (4) This course introduces students to recent developments in the field of masculinities within analysis to theoretical conceptualizations as well as empirical analyses of social organization of masculinity. Topics include the development of masculinity in boys, historical and cultural influences on masculinity, differences of race, class, sexuality, the male body, and the meaning of work and family in men's lives.

Soc/G 269. The Citizenship Debates (4) Will examine the controversies surrounding the construction of the modern citizen and the good society of the liberal outlook, and their alternatives in the communitarian, social-democratic, nationalist, feminist, and multicultural perspectives. Prerequisite: graduate standing in sociology.

Soc/G 270. The Sociology of Education (4) A consideration of the major theories of schooling and society, including functionalist, conflict, critical and interactional; selected topics in the sociology of education will be addressed in a given quarter, including the debate over inequality, social selection, cultural reproduction and the transition of knowledge, the cognitive and educational consequences of education. Major research methods will be discussed and critiqued. Prerequisite: graduate standing in sociology.

Soc/G 278. Immigration, Assimilation, and Identity (4) This course focuses on theoretical and empirical approaches to the study of immigration, assimilation, and identity. The course will focus primarily on the post-1965 immigrants, but consideration will also be given to earlier waves of immigration. Prerequisites: graduate standing in sociology.

Soc/G 282. Immigration and Citizen (4) Alternative theories of the relations of immigrants and host societies, and an examination on the debates on, and dynamic of, immigration expansion and restriction. Comparison of the bearing of liberal, communitarian, and ethnic citizenship discourses on the inclusion and exclusion of immigrants and their descendants. Prerequisite: graduate standing in sociology.

Soc/G 284. Contemporary Biomedicine (4) Develops central themes in medical sociology in order to understand twentieth- and twenty-first-century medical practice and research. Topics include authority and expertise; health inequalities; managed care; health activism; biomedical knowledge production; and the construction of medical objects and subjects. Prerequisite: graduate standing.

Soc/G 288. Knowledge Capitalism (4) This seminar examines the place of scientific knowledge and information and communication technology in the transformation of capitalist economy and society. The class explores new interactions between science studies and social theory of advanced capitalism. Prerequisite: graduate standing in sociology.

Soc/G 290. Graduate Seminar (4) A research seminar in special topics of interest to available staff, provides majors and minors in sociology with research experience in close cooperation with faculty. (S/U grades permitted.) Prerequisite: graduate standing in sociology.

Soc/G 299. Independent Study (1–8) Tutorial individual guides study and/or independent research in an area not covered by present course offerings. (S/U grades only.) Prerequisite: graduate standing in sociology; departmental approval.

Soc/G 299. Thesis Research (1–12) Open to graduate students engaged in thesis research. (S/U grades only.) Prerequisite: graduate standing in sociology.

Soc/G 500. Apprentice Teaching (2–4) Supervised teaching in lower-division contact classes, supplemented by seminar on methods in teaching sociology. (S/U grades only.) Prerequisite: graduate standing in sociology.

2010-2011 UC SAN DIEGO GENERAL CATALOG • SOCIOLOGY 11
THEATRE AND DANCE

PROFESSORS
Steven Adler, M.F.A., Provost, Warren College, Stage Management and Directing
Andrei Both, M.F.A., Scenic Design
Alan Burnett, GCE (U.K.), Lighting Design
Frantisek Deak, Ph.D., Emeritus, Criticism and Theory
Judith A. Dolan, Ph.D., Costume Design, Associate Dean, Division of Arts and Humanities
Kyle Donnelly, M.F.A., Arthur and Molli Wagner Chair in Acting, Acting and Directing
Deborah M. Dryden, M.F.A., Emerita, Costume/SET Design
Allyson Green, M.F.A., Chair, Dance
Allan Havis, M.F.A., Playwriting, Provost, Marshall College
Jorge A. Huerta, Ph.D., Emeritus, Dramatic Literature
Naomi Iizuka, M.F.A., Playwriting
James Ingalls, B.F.A., Lighting Design (Adjunct)
Walt Jones, M.F.A., Emeritus, Directing/Acting/Sound Design
Marianne McDonald, Ph.D., Dramatic Literature
Adele Edling Shank, M.A., Emerita, Playwriting
Theodore Shank, Ph.D., Emeritus, Directing
Janet Smarr, Ph.D., Dramatic Literature and Italian Studies
Yolande Snaith, B.A., Dance
Gabor Tompa, Ph.D., Directing
Arthur Wagner, Ph.D., Emeritus, Acting
Les Waters, B.A., Emeritus, Directing
James R. Winker, M.F.A., Academic Senate, Distinguished Teaching Award, Acting

ASSOCIATE PROFESSORS
James Carmody, Ph.D., Dramatic Literature
Mary Corrigan, M.A., Emerita, Voice
Tony Curiel, M.A., Emeritus, Chicano Literature, Acting
Nadine George-Graves, Ph.D., Dramatic Literature and Dance History
Lisa Porter, M.F.A., Stage Management
Victoria Petrovich, M.F.A., Design
John Rouse, Ph.D., Dramatic Literature
Kim Rubinstein, B.S., Head of Undergraduate Acting
Jonathan Saville, Ph.D., Emeritus, Literature/Criticism
Shahrokh Yadegaari, Ph.D., Sound Design/Composition/Audio Technology

ASSISTANT PROFESSORS
Robert Castro, M.F.A., Acting, Directing, Chicano Literature
Liam Clancy, M.F.A., Dance
Emily Roxworthy, Ph.D., Dramatic Literature

SENIOR LECTURERS WITH SECURITY OF EMPLOYMENT
Eva W. Barnes, M.F.A., Speech and Acting
Margaret Marshall, M.F.A., Emerita, Ballet, Dance History, Choreography
Ursula Meyer, M.F.A., Voice and Acting

Charlie Oates, M.F.A., Movement and Acting
Patricia A. Rincón, M.F.A., Modern and Jazz Dance

LECTURER WITH POTENTIAL SECURITY OF EMPLOYMENT
Eric Geiger, M.A., Dance

LECTURERS
Kristin Arcidiacono, M.A., Dance
Tony Caligagan, Dance
Sandra Foster-King, M.F.A., Dance
Mark Guirguis, M.F.A., Design
Jean Isaac, B.A., Emerita, Dance
Alicia E. Rincón, M.F.A., Dance
Todd Salovey, M.F.A., Acting and Directing
Toni Sammartano, B.A., Dance
Judith A. Sharp, B.S., Dance
Linda Vickerman, D.M.A., Singing
Terry Wilson, M.F.A., Dance

OFFICE: 202 Galbraith Hall, Revelle College (858) 534-3791 http://theatre.ucsd.edu

THE UNDERGRADUATE PROGRAM

The curriculum of the Department of Theatre and Dance is based on the belief that a good undergraduate education in theatre or dance should provide the student with a solid background in dramatic literature and the aesthetics and history of theatrical performance as well as exposure to the different artistic components of theatrical art—performance, playwriting, design, and choreography.

In addition to providing an integrated program for students desiring a theatre or dance major, the curriculum provides a sequence of courses to fulfill the fine arts and/or humanities requirements for Muir College; courses fulfilling Warren College’s program of concentration requirements; courses to fulfill Revelle, Thurgood Marshall, and Eleanor Roosevelt Colleges’ fine arts requirements; public speaking courses to fulfill requirements in the Schools of Engineering and Pharmacy; and elective courses for the general student desiring experience in theatre or dance.

Any student who has been accepted to the University of California, San Diego is eligible to declare theatre or dance as a major, double major, or minor. Auditions are not required. Continuing UCSD students who are changing their major to theatre or dance must file a Change of Major form with the UCSD Registrar’s Office.

DEPARTMENT OF THEATRE AND DANCE ADVISING

The department’s undergraduate faculty advisors, can provide guidance and answers to students’ questions concerning specific course content, transfer course work, honors research projects, academic success, production, auditioning procedures, postgraduate opportunities, and departmental policy changes.

The undergraduate coordinator can answer students’ questions regarding major requirements, procedural matters, class enrollment, and the petition process, and give referrals to faculty and other campus resources for specific information.

Undergraduate student representatives are another important resource for theatre and dance majors. The student reps organize quarterly meetings at which students and faculty discuss departmental issues and concerns.

The department regularly communicates with the majors and minors, as well as other students involved in classes and productions, through the campus e-mail and Listserv systems. Students are strongly urged to check their campus e-mail accounts for timely messages or to make arrangements with Academic Computing Services to have campus e-mail forwarded to any other e-mail account they may use. Additionally, a handbook containing useful information is available in the department office, Room 202, Galbraith Hall.

PROGRAMS ABROAD

The department encourages students to enrich their undergraduate experience by studying abroad. Students majoring in theatre and/or dance are encouraged to participate in the Education Abroad Program (EAP) and to investigate other options of foreign study through the Opportunities Abroad Program (OAP). By petition, credits earned through EAP/OAP can fulfill UCSD degree and major requirements. Please visit the Programs Abroad Web site at http://pao.ucsd.edu/pao for further details. Financial aid is applicable and special study abroad scholarships are readily available.

The Department of Theatre and Dance will accept a maximum of three courses per semester abroad, and students are encouraged to take courses abroad that will fulfill major elective requirements. Please meet with the undergraduate coordinator prior to the EAP/OAP application deadline.

THE THEATRE MAJOR

The theatre major provides a student with a solid artistic and academic background. The required lower-division courses equip the student with the skills and knowledge necessary for more advanced work in each of the areas of study. The major is structured to respond to the needs of students who seek a broad-based liberal arts education in theatre as well as those who plan to pursue their studies at the graduate level with the aim of acquiring either an M.F.A. or a Ph.D. degree. Students should meet with the department’s undergraduate coordinator during the quarter in which they declare a theatre major in order to plan an appropriate individual course of study.

The major requirements are those published in the catalog in effect for the first quarter that a first-year student attends UCSD; transfer students will be held to the catalog requirements two years previous to their first quarter at UCSD. Any student in good standing may declare a theatre major by completing a Change of Major form and delivering it to the Registrar’s Office. A department stamp is not required.

THE DANCE MAJOR

The dance major offers students an opportunity to specialize their training in the creative, aesthetic, and conceptual discipline of expressive movement as a contemporary art form, within the context of a broad undergraduate education. The primary focus
of the dance major will be the study of contemporary and ballet techniques, dance history, theory, and choreographic methods, emphasizing innovation and interdisciplinary collaboration, and pushing forward the boundaries of dance as a contemporary art form. It will provide the rigor of an academic program that fosters the balanced development of the dancer’s creative artistic potential, physical skills, and intellectual growth. The aim is to provide students with a broad range of artistic and conceptual tools for achieving goals in a variety of career areas and for pursuing advanced study in dance and dance related fields. Growth of individual artistic potential is encouraged through the integration of creative, physical and intellectual process, which provide a foundation for the creative and critical thinking needed for success in all career paths.

The major requirements are those published in the catalog in effect for the first quarter that a first-year student attends UCSD; transfer students will be held to the catalog requirements two years previous to their first quarter at UCSD. Any student in good standing may declare a theatre major by completing a Change of Major form and delivering it to the Registrar’s Office. A department stamp is not required.

THE THEATRE-DANCE DOUBLE MAJOR

The double major in Theatre and Dance provides students with a solid academic base and an artistic base in both theatre and dance disciplines. Furthermore, requirements for this double major will create stronger and more experienced directors (for their exposure to choreography), choreographers (for their exposure to directing), actors (for their exposure to directing), and dancers (for having confronted text and character).

Students should meet with the department’s undergraduate coordinator as soon as practical (but no later than the quarter in which they declare the major) in order to plan an appropriate individual course of study.

Double majors should complete the Petition for Double Major form obtained from their college and submit it to the department for review and approval.

THEATRE MINOR

The theatre minor consists of seven theatre courses, one of which is the Practicum. It is recommended that students declare the theatre minor as soon as possible as priority enrollment in the Practicums is given to majors and minors.

DANCE MINOR

The dance minor consists of seven courses, one of which is the Practicum. The dance minor will provide a balanced educational experience for the student who has a strong interest in dance but who wishes to major in another area of study. It is recommended that students declare the dance minor as soon as possible as priority enrollment in the Practicums is given to majors and minors.

SATISFYING YOUR MAJOR REQUIREMENTS

Fifty percent of all course work required for the theatre or dance major (including both upper- and lower-division courses) must be taken at UCSD, regardless of approved transfer work and petitions.

Theatre practicum (TDPR) classes completed elsewhere do not satisfy the theatre and dance department’s requirements unless they have been formally petitioned and approved. Only one practicum class from another institution may be petitioned. All courses required for the major or minor must be taken for a letter grade. A theatre and dance department course for which a student earns a grade lower than C– will not satisfy any of the department’s graduation requirements. Four units of Instructional Assistance (TDGE 195, P/NP credit) may be used as an upper-division elective for the theatre major, double major, or minor. Courses taken outside the Department of Theatre and Dance will not satisfy core or elective major requirements.

MAJOR REQUIREMENTS

Theatre majors are required to complete ten lower-division courses. Dance majors are required to complete three lower-division courses. All lower-division courses should be satisfied before starting upper-division course work in the respective areas.

Theatre and Dance majors and minors should complete a Practicum course—either TDPR 1, TDPR 2, TDPR 3, or TDPR 5—with three quarters of declaring their major or minor. Theatre majors should plan to complete their second Practicum requirement as soon as possible thereafter, as space in these classes is limited. The second Practicum course must be in an area different from the initial Practicum course.

Theatre History 10, 21, 22, and 23 are prerequisites for most upper-division theatre history and theory courses. Introduction to Acting (TDAC 1), Theatre Design (TDDE 1), and Theatre Playwriting (TDPW 1) are all prerequisites for any upper-division course work in their respective areas. Students should take these classes as soon as possible after declaring their major. Prerequisites ensure that students are properly prepared for the work required.

Theatre Major

Please refer to the major requirements section for an overview of the theatre major.

Lower-Division Requirements

1. Two courses selected from
TDPR 1. Practicum—Scenery
TDPR 2. Practicum—Costume
TDPR 3. Practicum—Lighting
TDPR 5. Practicum—Sound

2. Each of the following:
TDHT 10. Introduction to Play Analysis
TDHT 21. Performance Dynamics: Spaces, Performers, and Audiences
TDHT 22. One Actor, Two, or More: How Theatre Peoples the World
TDHT 23. Social Contexts of Performance

3. TDGE 1. Introduction to Theatre

4. Each of the area threshold classes:
 a. TDAC 1. Introduction to Acting
 b. TDDE 1. Introduction to Design
 c. TDWP 1. Introduction to Playwriting

 Note: The threshold classes listed above must be completed before taking upper-division courses in their respective areas.

Upper-Division Requirements

5. One upper-division four-unit acting course
6. One upper-division four-unit design course
7. One upper-division four-unit directing course
8. One upper-division four-unit playwriting course
9. One upper-division four-unit stage management course
10. Three upper-division four-unit theatre history courses
11. Four upper-division four-unit theatre electives

Note: THGE 197 and 199 may not be used as upper-division electives by theatre majors unless approved by petition.

Dance Major

Lower-Division Requirements

1. One course from
TDPR 1. Practicum—Scenery
TDPR 2. Practicum—Costume
TDPR 3. Practicum—Lighting
TDPR 5. Practicum—Sound

2. TDTR 10. Introduction to Dancing
3. TDCH 40. Principles of Choreography

Upper-Division Requirements

4. TDTR 101. Dance Movement Analysis
5. Two choreography courses chosen from the following:
 TDCH 140. Improvisation/Composition
 TDCH 142. Choreographic Workshop
 TDCH 145. Music for Dance Composition

6. One design course chosen from the following:
 TDDE 113. Costume Design for Dance
 TDDE 121. Lighting Design for Dance

7. Four dance history and theory courses chosen from the following:
 TDHD 171. Dance History I (Ancient to 1900)
 TDHD 172. Dance History II (1900 to 1960)
 TDHD 173. Dance History III (1960 to present)
 TDHD 174. Dance Aesthetics and Criticism
 TDHD 175. Cultural Perspectives on World Dance

8. Forty-eight units of movement courses in ballet and contemporary dance chosen from the following (each of the courses listed below may be repeated up to six times):
 TDMV 110. Intermediate Ballet
 TDMV 111. Advanced Ballet
 TDMV 112. Advanced Ballet for Contemporary Dance
 TDMV 120. Intermediate Contemporary Dance
 TDMV 122. Advanced Contemporary Dance

9. Eight units of electives chosen from the following:
 TDAC 109. Singing for the Actor
 TDAC 111. Freeing the Voice
 TDAC 115. Movement for Actors
 TDCH 143. Choreography and Dramatic Text
 TDMV 133. Advanced Jazz
 TDMV 142. Latin Dance of the World
 TDMV 143. West African Dance
Theatre and Dance Double Major

Lower-Division Requirements
1. One course from
 TDPR 1. Practicum—Scenery
 TDPR 2. Practicum—Costumes
 TDPR 3. Practicum—Lighting
 TDPR 5. Practicum—Sound
2. One course from the following list:
 TDHT 21. Performance Dynamics: Spaces, Performers, and Audiences
 TDHT 22. One Actor, Two, or More: How Theatre Peoples the World
 TDHT 23. Social Contexts of Performance
 TDAC 1. Introduction to Acting
 TDDE 1. Introduction to Design
 TDPW 1. Introduction to Playwriting

Upper-Division Requirements
3. Any five four-unit, upper-division theatre courses chosen from the following subjects: TDAC, TDDE, TDGR, TDGE, TDHT, TDPR, TDPW.

THE DANCE MINOR

Minor forms are available at the advising office of the student's college. Minor courses may not be taken on a Pass/Not Pass basis.

The minor requirements are those published in the catalog in effect for the first quarter that a first-year student attends UCSD; transfer students will be held to the catalog requirements two years previous to their first quarter at UCSD.

Dance Minor Requirements
Lower-Division Requirements
1. One course from
 TDPR 1. Practicum—Scenery
 TDPR 2. Practicum—Costumes
 TDPR 3. Practicum—Lighting
 TDPR 5. Practicum—Sound

2. One course from the following list:
 TDHT 21. Performance Dynamics: Spaces, Performers, and Audiences
 TDHT 22. One Actor, Two, or More: How Theatre Peoples the World
 TDHT 23. Social Contexts of Performance
 TDAC 1. Introduction to Acting
 TDDE 1. Introduction to Design
 TDPW 1. Introduction to Playwriting

Upper-Division Requirements
3. Any five four-unit, upper-division theatre courses chosen from the following subjects: TDAC, TDDE, TDGR, TDGE, TDHT, TDPR, TDPW.

THEATRE MINOR

Minor forms are available at the advising office of the student's college. Minor courses may not be taken on a Pass/Not Pass basis.

The minor requirements are those published in the catalog in effect for the first quarter that a first-year student attends UCSD; transfer students will be held to the catalog requirements two years previous to their first quarter at UCSD.

Note: TDGE 197 and 199 may not be used as upper-division electives by theatre and dance majors unless approved by petition.

THE TECHNICAL MINOR

Minor forms are available at the advising office of the student's college. Minor courses may not be taken on a Pass/Not Pass basis.

The minor requirements are those published in the catalog in effect for the first quarter that a first-year student attends UCSD; transfer students will be held to the catalog requirements two years previous to their first quarter at UCSD.

Honors Program

The department offers a special program of advanced study for outstanding undergraduates majoring in theatre or dance. Successful completion of the Honors Program enables the student to graduate with Highest Distinction (A+), With High Distinction (A), or With Distinction (A–), depending upon performance in the program.

Eligibility

1. Junior standing (ninety units or more completed)
2. 3.7 GPA or better in the major
3. 3.5 GPA or better overall, which student must maintain until final graduation
4. Completion of at least four upper-division theatre courses
5. Recommendation of a faculty sponsor who is familiar with the student's work

Guidelines

Application to the Honors Program may be made upon completion of ninety units or no later than the fifth week of the quarter preceding the final two quarters before graduation. The Undergraduate Committee will consider the application and, if approved, the student and the principal advisor will have the responsibility of proposing an Honors Thesis Committee to the Undergraduate Committee for final approval.

Students are required to take THGE 196A, Honors Studies in Theatre, and 196B, Honors Thesis in Theatre, in addition to the thirteen upper-division required courses for the major. THGE 196A-B are to be taken consecutively and may not be taken concurrently.

Placement and Proficiency for Dance Majors

The technical command and the expansion of a vocabulary of movement are essential to the dancer’s creative expression. The faculty advise new students in dance to participate in beginning dance in all areas for a minimum of one year, as well as enrolling in TDTR 10, Introduction to Dance. These courses are designed to give the student the basic information needed to move on to the intermediate level. Students should remain in this level for a minimum of one year unless the instructor encourages them to move up to the advanced level.

Students are required to audition and be approved by the faculty to be enrolled in advanced dance courses. If you come to UCSD with a background in dance and would like to take an advanced class, you need to audition in the class of your choice on the first day of the class meeting so that the teacher can
accept you in the class or recommend another more appropriate class.

Undergraduate Student Petitions

Undergraduate student petitions are required whenever an exception to a rule is being requested. They are required for major or minor requirement substitutions, substitution of courses from other departments or institutions, late course adding or dropping, or requesting a retroactive incomplete grade. Students should submit petitions for course substitutions well in advance of taking the course. If they have difficulty with the form, students should have the Department of Theatre and Dance undergraduate coordinator assist them with the petition process to ensure that the petition is complete and well documented.

Receiving Transfer Credit

Students must petition the department to substitute courses taken in another department or institution for courses required by the Department of Theatre and Dance. The following procedures and guidelines will help students with the transfer petition process.

First, review the Department of Theatre and Dance residency requirement. It is generally a good idea to petition a course before taking it. The Department of Theatre and Dance undergraduate coordinator will review petitions for all transfer courses. Students may obtain a General Undergraduate Student Petition form on TritonLink. A detailed syllabus for the course to be evaluated must be attached to the completed petition form. Any petition relating to courses within the Department of Theatre and Dance should be dropped off at the main office during normal business hours.

Transfer credits must be accepted by the Admissions Office at the appropriate level and for the appropriate number of units for the substitution to be effective. Upper-division credit cannot be given for lower-division work. Course work done at a junior college can only transfer to UCSD as lower-division credit.

Theatre and Dance Performance and Production Opportunities

The Department of Theatre and Dance produces undergraduate productions throughout the academic year. These productions range in scale from student directed “black box” productions to full-scale faculty directed undergraduate productions on the main stage. Every effort is made to provide a faculty directed opportunity for undergraduates each quarter.

Each of these productions is staged with undergraduate actors and dancers. Historically, where there are design assignments to be made (sets, costumes, lights, sound), those assignments are given to qualified undergraduates. Upper-division credit is available for students involved in the design or staging of department productions. Students may not work on department productions unless they are formally enrolled in a related class. Information regarding design and advanced crew opportunities is typically available from the design faculty or may be posted on the bulletin board in the lobby of Galbraith Hall as opportunities arise.

Cabaret

Cabarets are independent productions that are produced in Galbraith Hall Studio Theatre 157. Students may submit proposals for cabarets one quarter in advance to the cabaret manager. The cabaret policy is subject to revision on a quarterly basis. Please check at the front desk for details and deadlines.

Undergraduate Audition Policy

Undergraduates are encouraged to audition for all shows produced in the department. Auditions are typically held in the quarter preceding the staging of a production. Audition announcements will be posted on the bulletin board in the lobby of Galbraith Hall. Undergraduates who have completed or are currently enrolled in TDA 1, Introduction to Acting are eligible to audition. Qualified undergraduates may audition for roles in graduate productions as they are available.

UCSD Dance Repertory

This repertory is open to dance students through auditions. The company will perform lecture-demonstrations, and performances, and teach master classes in the community or at other UC campuses.

Annual Dance Concerts

Two main stage and one studio theatre dance concert are presented each year. In fall quarter a small-scale faculty-directed laboratory or cabaret performance is presented in the Molli and Arthur Wagner Dance Building’s Studio Theatre. In winter quarter’s Dance Alive concert, students perform choreography created by the professional faculty and international guest artists in the Mandell Weiss Center for the Performing Arts, Forum Theatre, or the Potiker Theatre; and in spring quarter’s New Works student dance concert, students perform the faculty-directed experimental choreographic works for other students at the Potiker Theatre. In addition, smaller productions and student cabarets take place in our intimate Studio Theatre, located in the dance facility. Auditions are held at the beginning of the quarter for all productions. Students interested in performing in the winter concert must audition for a specific repertory class taught by the faculty or guest choreographer with whom they wish to work. Students who are then cast must enroll in both the appropriate Dance Repertory (TDPF 160, 161, 162) and Studies in Performance (TDPF 163). Students interested in performing in the spring concert must audition for a specific repertory class taught by the faculty or guest choreographer with whom they wish to work. Students who are then cast must enroll in both the appropriate Dance Repertory (TDPF 160, 161, 162) and Studies in Performance (TDPF 160, 161, 162). Students participating in either dance production are required to be concurrently attending a technique class. Students who wish to choreograph for the spring concert must have completed or be concurrently enrolled in a choreography class.

Ushering

A fantastic and simple way for students to become involved with the Department of Theatre and Dance is to be a volunteer usher. When a student volunteers, he or she will receive a complimentary ticket and a guaranteed seat to a predetermined performance in exchange for carrying out easy but important front-of-house tasks (such as tearing tickets, seating patrons, or handing out programs). Ushering is fun and easy—no experience is required and all majors are welcome.

To inquire about usher availability, contact the Theatre and Dance promotions manager at promotions@ucsd.edu and put the word “USHER” (in all caps) in the subject line. Someone will respond to your inquiry with more information in a timely manner.

Comps

Declared Theatre or Dance majors are eligible to receive one free complimentary ticket per departmental production. The complimentary tickets are on a first-come-first-served basis. Majors need to come into the department office and fill out a complimentary request form at least forty-eight hours prior to the performance. Majors will be notified through e-mail if the request cannot be filled. For the complete Complimentary Ticket Policy, please visit our Web site (http://theatre.ucsd.edu) or come into the office.

THE GRADUATE PROGRAM

MASTER OF FINE ARTS IN THEATRE

JOINT DOCTORAL DEGREE PROGRAM

M.F.A. IN THEATRE

The Department of Theatre and Dance at UC San Diego has set an ambitious goal for its M.F.A. program: the training of artists who will shape the future direction of the theatre. The professional theatre training program is ranked third in the nation (and first west of the Hudson River), according to U.S. News & World Report, 1997.

The curriculum for all students involves studio classes and seminars. These are integrated with a progressive sequence of work on productions and with a professional residency at the La Jolla Playhouse.

The M.F.A. program at UCSD is built around the master-apprentice system of training. All the faculty are active professionals who teach at UCSD because of a shared commitment to training young artists. Instruction takes place not just in the classroom, but in theatres around the country where faculty, with students as assistants, are involved in professional productions, including those at the La Jolla Playhouse.

Students graduating from the M.F.A. program at UCSD should be prepared to take positions in the professional theatre in the United States and abroad. Students are now working in New York, in resident theatres, in the film and television industry, and in European repertory theatres. M.F.A. candidates in acting, dance theatre, design, directing, playwriting, and stage management will complete at least ninety quarter-units of academic work during their tenure in the program.
PROGRAM DESCRIPTIONS

Acting

The body and mind of the actor are synthesized to serve as an instrument of expression. Actors must depend on their instrument to perform, and the program places great emphasis on the strengthening and tuning of that instrument. The innate talent of the student is nurtured, coaxed, and challenged with individual attention from an extraordinary team of professionals and specialists in actor training.

Classes

Each year, intensive studio work in movement, voice, speech, and singing accesses, expands, and frees the physical body. Acting process introduces a range of improvisational and rehearsal techniques that help the actor approach onstage events with imagination and a rich emotional life. In the first year, studio classes guide the actor through daily explorations that encourage, change, and enhance artistic expression. The second year is devoted to the study of classical texts as well as the specific vocal and physical skills required to perform them. In the final year, classes focus on the needs of individual actors as they prepare to enter the professional world.

Productions

Actors work on classical and contemporary texts as well as new plays with graduate students, faculty, and professional guest directors. Each year the department schedules from fifteen to twenty productions of varying size and scope. Graduate students are given casting priority for all but a few plays. Student-scheduled and produced cabaret/workshop productions occur year-round and provide additional acting opportunities.

Externship

All graduate students serve a residency with the La Jolla Playhouse and are cast in positions ranging from supporting to leading roles alongside professional actors and directors of national and international stature. For many actors this opportunity establishes valuable networking relationships and exposure for future employment.

Research and Other Opportunities

Modest funds are sometimes available for the pursuit of research, special technique workshops, and travel to auditions and festivals. In addition, in the third year, the entire acting class receives a showcase presentation in both Los Angeles and New York at which specially invited groups of film, television, and theatre professionals are in attendance.

Dance Theatre

With an emphasis on the collaborative process, the purpose of the Dance Program is to create an intensive laboratory for candidates to pursue processes that will hone their particular artistic voice in dance theatre. The curriculum is designed to allow graduate students to explore their own unique creative processes, to define their own particular aesthetic, and to discover and develop their own distinctive movement and performance language. Core courses consist of Choreography Seminars in the study and practice of aesthetic concepts, history, and methodology for choreographic creation of dance theatre; Dance Theatre Topics Seminars that provide in-depth discussion and research on a full spectrum of topics from collaborative processes to professional practice; costume, lighting, sound, and scenic design; and a rich offering of electives across media and between disciplines that allow each student to pursue individual areas of interest. Graduate students maintain a physical practice chosen from Graduate Studio offerings in contemporary practices, improvisation, ballet for contemporary dance, yoga, Pilates, and a range of Latin, African, and Asian dance forms.

Productions

Dance Theatre students will have the opportunity to create work throughout their time at UCSD in studio, workshop, cabaret, and site-specific productions. Second-year students will present a short work in the existing production in the spring quarter. Thesis projects of a significant dance theatre work will be fully executed by the extensive production talents of the M.F.A. design program in the winter quarter of the third year.

Externship

Students are encouraged to work or research in the field when time permits, and they are assisted with professional opportunities, typically in the spring or summer of the second year. Dance Theatre candidates may have an opportunity to gain production experiences in a variety of theatres and venues in San Diego, New York, Seattle, Los Angeles, and London, at the La Jolla Playhouse, or through a comparable professional residency experience.

Dance Theatre

The M.F.A. program in Dance Theatre provides an intensive laboratory for candidates to pursue processes that will hone their particular artistic voice in dance theatre. The curriculum is designed to allow graduate students to explore their own unique creative processes, to define their own particular aesthetic, and to discover and develop their own distinctive movement and performance language. Core courses consist of Choreography Seminars in the study and practice of aesthetic concepts, history, and methodology for choreographic creation of dance theatre; Dance Theatre Topics Seminars that provide in-depth discussion and research on a full spectrum of topics from collaborative processes to professional practice; costume, lighting, sound, and scenic design; and a rich offering of electives across media and between disciplines that allow each student to pursue individual areas of interest. Graduate students maintain a physical practice chosen from Graduate Studio offerings in contemporary practices, improvisation, ballet for contemporary dance, yoga, Pilates, and a range of Latin, African, and Asian dance forms.

Productions

There are a generous number of (fully executed) production opportunities, and generally all productions are designed by students. Designers collaborate with student, faculty, and internationally prominent guest directors. Students are fully supported by the same professional workshop staff as the La Jolla Playhouse and are not expected to build or run their own productions.

Research and Other Opportunities

With an emphasis on the collaborative process, the purpose of the Directing Program is to develop directors with a solid foundation in the components of production and the interpretation of text. Individuals are encouraged to make challenging choices, to break down barriers, and to create exciting, meaningful theatre. Graduates of the program are prepared to select and get to the heart of a text, to communicate effectively with and inspire production designers, and to elicit expressive performances from the actors with whom they work.

Classes

The core curriculum of the Directing Process Program offers students opportunities to hone their skills in text analysis and scene work in all three years. The first-year student also completes a sequence in the acting process, develops a visual vocabulary in theatrical design and visual arts courses, and explores the nature of the collaborative process.

Productions

Directing students will direct from two to four department scheduled and supervised productions in the Mandell Weiss Center for the Performing Arts during their time at UCSD. In addition, studio, workshop, and cabaret productions of the director's choice are strongly encouraged. The production season also offers opportunities to assist guest and faculty directors.
Externship

In the students' second year, the La Jolla Playhouse provides a residency during which students typically serve as assistant directors.

Additional Opportunities

It is common for the directing faculty to take M.F.A. directors with them to work as assistant directors at theatres around the United States and the world.

Playwriting

Playwrights are more than mere writers. They are artists who unleash their imagination in incredibly dramatic ways. The successful playwright writes with intellectual power and emotional honesty, with a distinct and essential voice that speaks with vulnerability and sentence to the heart and soul of the audience. The dedicated, individual attention and formidable production opportunities of the program offer talented writers the ability to stretch, expand, and witness the unfolding of their work onstage in the bodies of very gifted actors.

Classes

In Playwriting Seminar—the core course—writers in all three years read and discuss their ongoing work, focusing on style, character, and structure. They also observe their work being read by M.F.A. actors at times throughout the year. Writing for Television, Screenwriting, and Dramatization/Adaptation are offered in rotation within a three-year cycle. In addition, students take a variety of topics in theatre and dramatic literature along with individual practicum classes. Playwrights can take advantage of rich offerings in literature, music, visual arts, and language study, as well as in dramatic texts, theory, and design.

Production

First-year students receive a one-act showcase production each year, while second- and third-year students receive a fully designed production. These are produced in the New Plays Festival each spring, which is attended by literary managers, agents, and artistic directors from across the country. Typically, these productions are directed, designed, and acted by students in the M.F.A. program. Production of plays in any year of study is dependent on the readiness of the work for staging.

Externship

Each student is assisted with a carefully chosen assignment, typically in the summer of the second year. Our playwrights may have an opportunity to gain exceptional literary and production experiences in a variety of theatres and venues in New York, Seattle, Los Angeles, London, Germany, and Romania.

Stage Management

The stage manager is a pivotal member of the collaborative process and creates the environment that supports the work of the other members of the artistic team. The stage manager is the prime communicator and liaison who synthesizes the disparate elements of production into a cohesive whole and is responsible for the implementation of diverse artistic choices throughout the production process.

The Stage Management Program at UCSD integrates a comprehensive knowledge of all critical components of this complex field in order to prepare students for work in leading professional theatres. The program develops individualized, creative artists with personal approaches to their work. UCSD creates a supportive and stimulating environment that allows each student to develop the confidence and flexibility necessary to meet the challenges of production in a wide variety of professional venues.

Classes

All first-year students take a core curriculum in stage management process that explores the role of the stage manager in professional theatre today and offers a comprehensive investigation of the work from pre-production to closing a show. Students in all three years attend the stage management seminar, which serves as a weekly forum for sharing insights and solving problems on current production assignments, meeting with a variety of guest artists, and examining the bigger picture of stage management and theatre in America today. Additional course work is offered in various aspects of theatre administration and management, professional practice, directing, design, and collaborative process.

Productions

Great emphasis is placed on the student's ability to apply the theories learned in class to the production process. Students typically serve as both assistant stage manager and stage manager on a number of studio and main stage productions in a variety of theatrical spaces. In addition to established scripts directed by M.F.A. students, faculty, and nationally prominent guest directors, students also work on new plays by graduate or guest playwrights, as well as faculty and student choreographed dance concerts.

Research Opportunities

Students are encouraged to work or research in the field when time permits. Past projects have included stage managing at the National Playwrights Conference at the O'Neill Center in Connecticut, interning at Warner Brothers Feature Animation, working as production assistant for the Broadway production of Play On, stage managing Andrei Serban's production of Our Country's Good at the Romanian National Theatre, and researching stage combat and weaponry at the Royal Shakespeare Company.

Externship

Each student is guaranteed at least one production opportunity at the La Jolla Playhouse, or a comparable professional residency experience.

PH.D. IN THEATRE AND DRAMA

The UCSD Department of Theatre and Dance and the Department of Drama at UC Irvine began to recruit students for the new Joint Doctoral Program in Theatre and Drama in fall 1999 for admission in fall 2000. Within the context of the program's twin focus on theory and history, an innovative structure permits each student to pursue a custom designed curriculum that draws from a rich variety of seminars in faculty research areas that include Greek classical theatre; Shakespeare and his contemporaries; Italian, French, and German theatre; U.S.-Latino, African-American, and Asian-American theatre; and critical, historical, and performance theories.

Interested students are encouraged to request detailed information about the program and application materials, which will be available from either department each September.

Preparation

Students with a B.A. (minimum GPA: 3.5), M.A., or M.F.A. degrees in drama and theatre are eligible for admission to the doctoral program. Students with training in literature (or another area in the humanities) will also be considered, provided they can demonstrate a background in drama or theatre. Experience in one of the creative activities of theatre (acting, directing, playwriting, design, dramaturgy) will enhance chances of admission.

All applicants are required to take the Graduate Record Examination and to submit samples of their critical writing.

While not required for admission, a working knowledge of a second language is highly desirable (see "Language Requirement").

Course of Study

Students are required to take a minimum of 144 units, which is equivalent to four years of full-time study (full-time students must enroll for a minimum of twelve units each quarter). Forty of these units will be taken in required seminars; the balance will be made up of elective seminars, independent study, and research projects (including preparing the three qualifying papers), and dissertation research. Students must take a minimum of one seminar per year in the Department of Drama at UC Irvine. The program of study makes it possible for students to take a significant number of elective courses and independent studies both with faculty in drama and theatre and in other departments.

Required Seminars

1. A minimum of twelve units of TDGR 290 (Dramatic Literature and Theatre History to 1900).
2. A minimum of twelve units of TDGR 291 (Dramatic Literature and Theatre History 1900 to the Present).
3. A minimum of sixteen units of TDGR 292 (Cultural and Critical Theory).

These required seminars must be completed before the end of the student's third year. In addition to the ten required seminars, students must pass comprehensive examinations at the end of the first and second years (see "Comprehensive Examinations" below).

Comprehensive Examinations

In the first year, students prepare for the written comprehensive examination, which is based on a reading list of approximately 150 titles ranging from the ancient Greeks to the present. Students take the written comprehensive at the beginning of the fall quarter of the second year. (Comprehensive examinations are scheduled at the beginning of fall
quarter in order to allow the students the summer to prepare.) Students who fail the written comprehensive may retake it no later than the first week of winter quarter of the second year. Students who fail the written comprehensive for a second time are dismissed from the program.

In the second year, students prepare for oral comprehensive examination. The reading list for this examination is designed to permit the student to acquire a knowledge of his or her dissertation subject area, broadly conceived. The reading list is compiled by the student and his or her dissertation advisor, in consultation with other members of the faculty, as appropriate; the reading list must be established by the end of winter quarter of the second year. Students take the oral comprehensive at the beginning of the fall quarter of the third year. Students who fail the oral comprehensive for a second time are dismissed from the program.

Advancement to Candidacy: Three Qualifying Papers
Students normally select a dissertation advisor during the second year and must do so before the end of spring quarter of that year. In consultation with the dissertation advisor and other faculty members, students develop topics for three qualifying papers, which are written during the third year. The three qualifying papers—one long (approximately fifty pages) and two short (approximately thirty pages each)—must be completed by the end of the third year; when completed, the qualifying papers provide the basis for the oral qualifying examination. Students write the long paper under the direction of the dissertation advisor; it is understood that the long paper is preparatory to the dissertation. The short papers deal with other related topics, subject to the approval of the student’s advisors; the two short papers are understood as engaging in exploring the larger contexts of the dissertation. Students normally pass the qualifying examination and advance to candidacy at the end of the third year; students must advance to candidacy no later than the end of fall quarter of the fourth year. Once admitted to candidacy, students write the dissertation that, upon completion, is defended in a final oral examination. Students may select a dissertation advisor from either UCSD’s Department of Theatre and Dance or UC Irvine’s Department of Drama. All UCSD doctoral dissertation committees must include at least one faculty member from UC Irvine.

Language Requirement
Students are required to complete an advanced research project using primary and secondary material in a second language (“materials” should be understood as including live and/or recorded performance; interviews with artists, critics, and scholars; and other non-documentary sources, as well as more conventional textual sources). This requirement may be satisfied by writing a seminar paper or a qualifying paper (see “Advancement to Candidacy”) that makes extensive use of materials in a second language. The second language requirement must be satisfied before the end of the third year. This requirement will not be waived for students who are bi- or multilingual; all students are required to do research level work in more than one language.

It is assumed that students will have acquired a second language before entering the doctoral program, although second-language proficiency is not a requirement for admission. While students may study one or more second languages while at UC Irvine or UCSD, language classes may not be counted toward program requirements.

Teaching
Students are required to teach a minimum of four quarters. No more than eight units of apprentice teaching (TDGR 500) may be counted toward the required 144 units.

Departmental Ph.D. Time Limit Policies
Students must advance to candidacy by the end of the fall quarter of their fourth year. Departmental normative time for completion of the degree is five years; total registered time in the Ph.D. program at UCSD or UC Irvine cannot exceed seven years. While students with an M.A. or M.F.A. degree may be admitted to the Ph.D. program, they will be required to take all required doctoral seminars.

Financial Support
Students entering the Ph.D. program may be supported (by either employment or fellowships) for four years. Support depends on the funds available and on the student’s rate of progress toward the degree.

Courses
For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

Note: For changes in major requirements and in course offering implemented after publication, inquire at the office of the Department of Theatre and Dance.

The subject codes are
TDAC (formerly THAC) Theatre Acting
TDCH Dance Choreography
TDDE (formerly TDHE) Theatre Design
TDDR (formerly THDR) Theatre Directing/Stage Management
TDGE (formerly THGE) Theatre General
TDGR (formerly THGR) Theatre Graduate
TDHD Dance History
TDHT (formerly THHTS) Theatre History and Theory
TDMV Dance Movement
TDPF Dance Performance
TDPR (formerly THPR) Theatre/Dance Practicum
TDWP (formerly THPW) Theatre Playwriting
TDTDR Dance Theory

TDAC – THEATRE ACTING

TDAC 1. Introduction to Acting (4)
A beginning course in the fundamentals of acting: establishing a working vocabulary and acquiring the basic skills of the acting process. Through exercises, compositions, and improvisations, the student actor explores the imagination as the actor’s primary resource, and the basic approach to text through action. Prerequisite: none.

TDAC 101. Acting I (4)
This course focuses on beginning scene study with an emphasis on exploring action/objective and the given circumstances of a selected text. Prerequisite: THAC or TDAC 1 or consent of instructor.

TDAC 102. Acting II (4)
Further study in the application of the given circumstances to a text and the development of characterization. Prerequisite: THAC or TDAC 1 or consent of instructor.

TDAC 103A. Acting Intensive I (4)
An intensive foundation class for students interested in professional actor training. Using Viewpoints, students will learn the physical, vocal, and emotional aspects of their actor instrument toward developing character and relationships by using scenes from contemporary and modern plays. Prerequisites: THAC 101 or TDAC 101, department stamp, and consent of instructor.

TDAC 103B. Acting Intensive II (4)
A continuation of TDAC 103A. Working from Meisner technique, students will learn to deepen and detail their objectives, spontaneous response, and deep listening skills. For those who wish to pursue a performance career at UCSD, these courses will fulfill a performance background. Prerequisites: THAC or TDAC 102, and department stamp.

TDAC 104. Classical Text (4)
Studies in the heightened realities of poetic drama. Verse analysis, research, methods and how to approach a classical dialogue. Prerequisites: THAC or TDAC 102, and department stamp.

TDAC 105. Rehearsing Shakespeare (4)
Advanced exploration of Shakespeare’s language through examining and performing scenes from the plays. Admission by audition/interview. Prerequisites: THAC 102 or TDAC 102, department stamp, interview/audition, consent of instructor.

TDAC 106. Chekhov Acting (4)
Intensive workshop for actors and directors designed to examine and perform scenes from the plays of Anton Chekhov. Admission by audition/interview. Prerequisites: THAC 101 or TDAC 101, THAC 102 or TDAC 102, interview/audition, and consent of instructor.

TDAC 107. Improvisation for the Theatre (4)
Improvisation for the Theatre explores improvisation techniques as an alternative and unique approach to acting. Students should have a performance background. Prerequisite: THAC or TDAC 1.

TDAC 108. Advanced Topics (4)
Advanced topics in acting, such as avant garde drama, commedia, or Beckett, for students who possess basic acting techniques. Prerequisites: THAC or TDAC 102, admission by audition, and department stamp.

TDAC 109. Singing for Actors (4)
This course introduces basic vocal skills of breathing, placement, diction, musicianship, harmony, interpretation, and presentation needed by actors for roles requiring singing. Through a combination of group and individual coaching in class, students will prepare a program of short solo and ensemble pieces for a finals-week presentation. Prerequisites: THAC or TDAC 1 and audition; department stamp.

TDAC 111. Freeing the Voice (4)
Intensive workshop for actors and directors designed to “free the voice,” with special emphasis on characteristics and vocal flexibility in a wide range of dramatic texts. This proven method combines experimental and didactic learning with selected exercises, texts, tapes, films, and total time commitment. Prerequisite: concurrent enrollment in THAC or TDAC 101.

TDAC 112. Major Seminar in Acting (4)
An in-depth study seminar focused on special issues in acting as they relate to contemporary theatre. Of particular interest to students who plan to pursue a career in this area of theatre. Prerequisites: department stamp; theatre majors only; upper-division only.

TDAC 115. Movement for Actors (4)
An exploration of the wide array of physical skills necessary for the actor. Using techniques derived from mime, clowning, sports, acrobatics, and improvisation, students
will investigate their individual physical potential as well as their sense of creativity and imagination. **Prerequisite:** THAC or TDAC 101.

TDAC 120. Ensemble (4)

An intensive theatre practicum designed to generate theatre created by an ensemble with particular emphasis upon the analysis of text. Students will explore and analyze the script. **Prerequisite:** Consent of instructor. Admission by audition only. A maximum of four units may be used for major credit. **Prerequisite:** consent of the instructor; department stamp.

TDAC 123. Advanced Studies in Performance (4)

Participation in a fully staged season production that is directed by a faculty member or guest for the Department of Theatre and Dance. Admission by audition only. A maximum of four units may be used for major credit. **Prerequisite:** consent of the instructor; department stamp.

TDAC 126. Acting-Directing Process (4)

A studio class that investigates the relationship between the actor and the director. Working alongside directors, students learn how to animate the writer’s and director's vision onstage through status exercises and scene work while expanding their skills in the acting process. **Prerequisites:** THAC or TDAC 1 and THAC or TDAC 101, or consent of instructor.

TDCH–DANCE CHOREOGRAPHY

TDCH 40. Principles of Choreography (4)

Presents the fundamentals of the concepts, elements, aesthetic principles, and process of choreographic creation through practical studies, discussions, and examination of choreographies. **Prerequisite:** TDTR 10.

TDCH 140. Improvisation/Composition (4)

The study of compositional and improvisational methods concerning the aesthetic awareness of movement, and organization of elements in time, space, and energy. Both structured and unstructured tasks facilitate development of movement vocabulary, imagination, timing, spontaneity, contact skills, and compositional choices. **Prerequisite:** TDTR 10.

TDCH 142. Choreographic Workshop (4)

Advanced problem solving through practical and conceptual studies. Choreographic projects enable students to create choreographic projects for solo, duet, and small group situations. Emphasis will be on dance as a complement to verbal communication and a medium for nonverbal communication. **Prerequisites:** TDTR 10, TDCH 40.

TDCH 143. Choreography and Dynamic Text (4)

Choreographic problems in movement style and purpose will be explored through analysis of both historical and contemporary choreographies and dynamic text. Emphasis will be on dance as a complement to verbal communication and a medium for nonverbal communication. **Prerequisites:** TDTR 10, TDCH 40.

TDCH 145. Music for Dance Composition (4)

Presents the fundamentals of the concepts, elements, aesthetics, and process of music. Emphasizes choreographer/composer/musician collaborations. Rhythmic analysis will include the physical application of relating movement and sound. **Prerequisites:** TDTR 10, TDCH 40.

TDCH 146. Advanced Improvisation: Partnering (4)

Advanced problem solving through practical and conceptual studies pertaining to improvisation and partnering. **Prerequisites:** TDTR 10, TDCH 40, or consent of instructor.

TDCH 164A. Senior Honors Focus Choreographic (4)

Selected seniors create a significant choreographic work or media project under faculty mentorship for presentation in the studio theatre, spring dance production, or site-specific alternative location. All courses in the choreography series must be completed or concurrent with the seniors honos focus. **Prerequisites:** TDCH 140, TDCH 142, TDCH 145, consent of instructor, and department stamp. **Prerequisites:** THDE or TDDE 1 recommended. May be repeated for credit. A maximum of four units may be used for major credit. **Prerequisite:** consent of instructor; department stamp.

TDCH 164B. Senior Honors Focus Choreographic (4)

Continuation of TDCH 164A. Selected seniors present a significant choreographic work or media project under faculty mentorship in the studio theatre, spring dance production, or site-specific alternative location. All courses in the choreography series must be completed or concurrent with the seniors honos focus. **Prerequisites:** TDCH 140, TDCH 142, TDCH 145, consent of instructor, and department stamp. **Prerequisite:** THDE or TDDE 1 recommended. May be repeated for credit. A maximum of four units may be used for major credit. **Prerequisites:** THDE or TDDE 1 or consent of instructor. May be taken three times for credit.

TDCH 165. Special Topics in Theatre Design (4)

A course designed to expose the theatre design students to a variety of specialized topics that will vary from quarter to quarter. **Prerequisites:** TDCH 40 or TDDE 1 or consent of instructor. May be taken three times for credit.

TDCH 167. Undergraduate Mainstage Production: Design (4)

A course that will guide a student in a design assignment on the undergraduate mainstage production. Specialized topics dependent on the design requirements of the production. **Prerequisites:** THDE or TDDE 1 and THDE or TDDE 101 or THDE or TDDE 121, or THDE or TDDE 131, or consent of instructor. May be taken three times for credit.

TDCH 168. Theatre Process—Scene Design (4)

This course focuses on advancing students in their artistic and technical skills in scenic design. A large-scale project will be identified with special attention given to text analysis and technical specification of the sound design process. **Prerequisites:** THDE or TDDE 1 or THPR or TDPR 3 or THPR 140 or THDE or TDDE 1, any upper-division un -

TDCH 169. Major Project in Design/ Theatre Production (4)

For the advanced design/production student. Concentration on a particularly challenging design or theatre production assignment, including such areas as assistant designer (scenery, lighting, or costumes), technical director, master cutter, or master electrician. May be repeated one time for credit. A maximum of eight units of major project study, regardless of area (design, directing, or stage management) may be used to meet major requirements. **Prerequisite:** admission by consent of instructor only. See department for application form. May be taken two times for credit.

TDDR–THEATRE DIRECTING/STAGE MANAGEMENT

TDDR 101. Stage Management (4)

A production-oriented course that continues to introduce students to the fundamentals of design assisting. Laboratory format allows the student to work with faculty, graduate, or advanced undergraduate theatre designers, directors, designers, dance directors, and stage managers. **Prerequisites:** THCH or TDCH 140, or consent of instructor. May be repeated for credit. A maximum of eight units of major project study, regardless of area (design, directing, or stage management) may be used to meet major requirements. **Prerequisite:** THDE or TDDE 1 recommended. May be taken three times for credit.

TDDR 103. Assistant Designer (2–6)

A production-oriented course that continues to introduce students to the fundamentals of design assisting. Laboratory format allows the student to work with faculty, graduate, or advanced undergraduate theatre designers, directors, designers, dance directors, and stage managers. **Prerequisites:** THCH or TDCH 140, or consent of instructor. May be repeated for credit. A maximum of eight units of major project study, regardless of area (design, directing, or stage management) may be used to meet major requirements. **Prerequisites:** THCH or TDCH 140, or consent of instructor. May be taken three times for credit.

TDDR 104. Theatre Process—Lighting Design (4)

One of three classes in theatre process. The course aims to develop basic skills in lighting design through practical projects, lab work and lecture. Emphasizes relationships between design and production. **Prerequisite:** TDCH 145, or consent of instructor.

TDDR 105. Lighting Design (4)

Creative projects and topics in lighting design. Work to include studies and design research, concepts, collaboration, professional procedures and systems, paperwork, and organization. Varies scales of theoretical and practical projects in the light lab and classroom will be addressed by the student for presentation and critique. Final project will be a lighting design suitable for a design portfolio. **Prerequisites:** THCH or TDCH 140, or consent of instructor. May be repeated for credit. A maximum of eight units of major project study, regardless of area (design, directing, or stage management) may be used to meet major requirements. **Prerequisite:** THDE or TDDE 1 recommended. May be taken three times for credit.

TDDR 107. Text Analysis for Actors and Directors (4)

This is an introductory class in the process of understanding the play script. The class will focus on analyzing the story and the underlying dramatic structure in terms of dramatic action, objectives, action, and character. **Prerequisite:** upper-division standing or consent of instructor.

TDDR 109. Directing–Acting Process (4)

A studio class that investigates the fundamental skills a director needs to work with actors. Working with actors, students learn how to animate the text onstage through status exercises and scene work as they develop their skill in...
text work, staging, and dramatic storytelling. Prerequisite: THDR or TDTR 108 or THDS or TDTH 10.

TDTR 190. Major Project in Directing (4)
For the advanced student in directing. Intensive concentration on the full realization of a dramatic text from research and analysis through rehearsal and into performance. A maximum of eight units of major project study, regardless of area (design, directing, or stage management) may be used to fulfill major requirements. See department for application. Prerequisites: THDR or TDTR 108, THDR or TDTR 111, consent of instructor, and department stamp. May be taken two times for credit.

TDTR 191. Major Project in Stage Management (4)
For the advanced student in stage management. Intensive concentration problems of a dramatic text, from research and analysis through rehearsal and final performance. A maximum of eight units of major project study regardless of area (design, directing, stage management, or playwriting) may be used to fulfill major requirements. See department for application. Prerequisites: THPR or TDPR 4, THPR or TDPR 104, THDR or TDTR 101, consent of instructor, and department stamp. May be taken two times for credit.

TDGE–THEATRE GENERAL

TDGE 1. Introduction to Theatre (4)
An introduction to fundamental concepts in drama and performance. Students will attend performances and learn about how the theatre functions as an art and as an industry in today’s world. Prerequisite: none.

TDGE 2. Solo Performance (4)
Analysis, history, and literature of solo performance in the United States; screening of pivotal one-person shows; workshops to design and mount students’ own solo theatre pieces; focus on delivery of American experiences through performance. Prerequisite: none.

TDGE 10. Theatre and Film (4)
Theatre and Film analyzes the essential differences between theatrical and cinematic approaches to drama. Through selected play/film combinations, the course looks at how the director uses actors and the visual languages of the stage and screen to guide and stimulate the audience’s responses. Prerequisite: none.

TDGE 11. Great Performances on Film (4)
Course examines major accomplishments in screen acting from the work of actors in films or film genres. Prerequisite: none. May be taken three times for credit.

TDGE 25. Public Speaking (4)
This course is designed to establish a clear understanding of the fundamentals of effective oral communication. The methodologies explore the integration of relaxation, concentration, organization, and clear voice and diction as applied to various public speaking modes. Prerequisite: none.

TDGE 87. Freshman Seminar in Theatre and Dance (1)
Seminar on a topic in theatre or dance on a level appropriate for first-year students, conducted in an informal, small group setting limited to ten to twenty students. Topics will vary. Prerequisites: none or THDA 10, upper-division standing.

TDGE 90. Undergraduate Seminar (1)
Discussion of various theatre topics.

TDGE 108. Production (4)
The collaborative process from the rehearsal process through public performance. All participants will enroll for the same number of units with the director of theatre. Prerequisite: consent of instructor.

TDGE 122. The Films of Woody Allen (4)
Students explore a variety of issues: screenwriting, directing, cinematography, and editing; the intersection of comedy and tragedy in Allen’s works; recurring themes; and critical responses. Students view thirteen films and write two three-page essays and one ten-page research paper. Prerequisite: upper-division standing.

TDGE 123. Mary Poppins Meets Bladerunner (4)
A lecture class that examines significant historical and contemporary art direction/genres that effectively supports film narration in a unique manner. Highlights and video clips accompany each feature film presentation. (TDGE 1 recommended). Prerequisite: upper-division standing.

TDGE 124. Cult Films: Weirdly Dramatic (4)
A select survey of eight to ten exceptional offbeat, frequently low-budget films from the last sixty years that have attained cult status. The mix includes Tod Browning’s Freaks (1932) to John Water’s Pink Flamingos (1973). Aspects of bad taste, cinematic irony, and theatrical invention will be highlighted. Prerequisite: upper-division standing.

TDGE 125. Topics in Theatre and Film (4)
Great films and the performance of the actors in them are analyzed in their historical, cinematic, or theatrical contexts. This course examines the actor’s contribution to classic cinema and the social and aesthetic forces at work in film. Prerequisites: upper-division standing or consent of instructor.

TDGE 126. Storytelling and Design in Animation (4)
This course will use a broad range of animation styles and genres to examine larger issues in art practice, focusing closely on the relationship between form and content, and how a filmmaker’s narrative voice works. Prerequisite: upper-division standing or consent of instructor.

TDGE 127. The Films of Spike Lee (4)
Students view eight to ten films of this important filmmaker to examine style; genre; screenwriting; directing; cinematography; recurring themes; the place of this work in (African) American history; race and movie industry politics; and critical responses. Prerequisite: upper-division standing or consent of instructor.

TDGE 130. Let There Be Light! (4)
An adventure-theory class investigating the power of light and color in art, architecture, theatre, film, and television, and how human and social behavior is altered and shaped by light in the environment. Prerequisite: upper-division standing or consent of instructor.

TDGE 192. Senior Seminar in Theatre and Dance (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in theatre and dance (at the upper-division level). Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: senior standing; department stamp and/or consent of instructor.

TDGE 195. Instructional Assistance (2 or 4)
Assist with instruction in undergraduate theatre courses. Full description of duties will appear on the "Application for Instructional Assistance." Prerequisites: upper-division standing; 3.0 GPA; department stamp. May be repeated for a total of 8 units.

TDGE 196A. Honors Study in Theatre (4)
Theatre honors students undertake research for a scholarly thesis or a creative project in playwriting or in directing under the guidance of a faculty mentor. Creative projects will culminate in a written thesis that is either a full-length play or a dramaturgical discussion of the directing project. Prerequisites: upper-division course work in the area of thesis, department stamp, 3.5 GPA in major, approval of faculty member.

TDGE 196B. Honors Study in Theatre (4)
Theatre honors students complete the thesis, play, or dramaturgical analysis of a directing project under the close supervision of a faculty mentor. Prerequisites: upper-division course work in the area of thesis, TDGE 196A, 3.5 GPA in major, approval of faculty member.

TDGE 197. Field Studies (1–12)
Designed for advanced students, this course significantly extends their knowledge of the theatre through intensive participation in the creative work of a major professional theatre, television, or film company under the guidance of artists resident in those theatres or companies. Students will submit regular written evaluations each week of their ongoing field study. Prerequisites: consent of instructor, upper-division standing, and department stamp. May be taken two times for credit.

TDGE 198. Directed Group Studies (0–2–4)
Group studies, readings, projects, and discussions in theatre history, problems of production, and performance, and similarly appropriate subjects. Prerequisites: upper-division standing, 2.5 GPA, consent of instructor, and department stamp. May be repeated for a total of 12 units.

TDGE 199. Special Projects (0–2–4)
Qualified students will pursue a special project in theatre history, problems of production, and performance, and similarly appropriate topics. Prerequisites: upper-division standing, 2.5 GPA, consent of instructor, and department stamp.

TDHD–DANCE HISTORY

TDHD 171. Dance History I (Ancient to 1900) (4)
The study of the history of dance from antiquity to the early twentieth century. An analysis and understanding of the social, political, and cultural forces on the development of early dance theories and practices. Prerequisite: TDTH 10. Not equivalent to THDA 151, Dance History–Ballet.

TDHD 172. Dance History II (1900 to 1960) (4)
The study of the history of dance from the early twentieth century to the 1960s. An analysis and understanding of the social, political, and cultural forces on the development of dance theories and practices. Prerequisite: TDTH 10. Not equivalent to THDA 152, Dance History–Modern.

TDHD 173. Dance History III (1960 to Present) (4)
The study of the history of dance from the 1960s to the present. An analysis and understanding of social, political, and cultural forces on the development of current dance theories and practices. Prerequisite: TDTH 10. Not equivalent to THDA 153, Dance History–Jazz Dance and Related Ethnic Studies.

TDHD 174. Dance Aesthetics and Criticism (4)
An historical overview of the aesthetic concepts that form the foundation for the creation, performance, and critical analysis of dance. Critical and aesthetic theory in related arts will be discussed and contrasted. Prerequisite: TDTH 10 or consent of instructor.

TDHD 175. Cultural Perspectives on World Dance (4)
The study of world dance forms from a comparative perspective. An analysis and understanding of ethnic dance traditions and their connections to religion, ritual, folklore, custom, festive celebration, popular culture, and political movements. Prerequisite: TDTH 10 or consent of instructor.

TDHD 176. Dance History—Special Topics (4)
An in-depth exposure to an important topic in dance history, theory, aesthetics, and criticism. Topics vary from quarter to quarter. Prerequisites: TDTH 10, upper-division standing.

TDHD 169A. Senior Honors Focus Scholarly (4)
Selected seniors will complete a scholarly research project on a dance topic of their choice under faculty mentorship that will be reviewed by the faculty and archived. All courses in the history series must be completed or concurrent with the senior honors focus. Individual honors contract for selected senior dance majors. Honors content noted on transcript. Requirements: 3.5 overall GPA, 3.7 major GPA, 90 units completed, and 2 quarter commitment. Prerequisite: TDHD 171, TDHD 172, TDHD 173, TDHD 174, TDHD 175, consent of instructor, and department stamp.

TDHD 169B. Senior Honors Focus Scholarly (4)
Continuation of TDHD 169A. Selected seniors will present a scholarly research project on a dance topic of their choice under faculty mentorship that will be reviewed by the faculty and archived. All courses in the history series must be completed or concurrent with the senior honors focus. Individual honors contract for selected senior dance majors. Requirements: 3.5 overall GPA, 3.7 major GPA, 90 units completed, and 2 quarter commitment. Prerequisites:
TDHT–THEATRE HISTORY

TDHT 10. Introduction to Play Analysis (4)
An introduction to the fundamental techniques of analyzing a dramatic text. Focus is on the student's ability to describe textual elements and their relationships to each other as well as on strategies for writing critically about drama. Prerequisites: none.

TDHT 21. Ancient and Medieval Theatre (4)
Ancient and medieval theatre. Explores the roots of contemporary theatre in world performance traditions of ancient cultures, with a focus on humans' gravitation toward ritual and play. Examples come from Egypt, Greece, Rome, Mesoamerica, Japan, China, India, Indonesia, Persia, and England. Prerequisite: none.

TDHT 22. Theatre 1500–1900 (4)
Explores varieties of drama in professional theatre from 1500 to 1900 in Europe, Japan, and China, and their interconnections both formal and historical. Prerequisite: none.

TDHT 23. Twentieth-Century Theatre (4)
Twentieth-century theatre: a survey of drama from 1890 to 1990, with attention also paid to the development of avant-garde performance forms. Plays discussed reflect developments in Europe and the U.S., but also transnational, postcolonial perspectives. Prerequisite: none.

TDHT 101. Topics in Dramatic Literature and Theatre History (4)
An in-depth exposure to an important individual writer or subject in dramatic literature and/or theatre history. Topics vary from quarter to quarter. Recent courses have included Shakespeare, Modern French Drama, and the History of Russian Theatre. Prerequisite: THHS or TDHT 10 or consent of instructor. May be taken three times for credit.

TDHT 101XL Topics in Dramatic Literature and Theatre History: Foreign Language Discussion Section (1)
Foreign-language discussion of materials in the English-language course with corresponding number. This section is taught by the course professor, has no final exam, and does not affect the grade in the parent course. Prerequisite: concurrent enrollment in TDHT 101.

TDHT 102. Masters of Theatre (4)
Focus on the artists of seminal importance in the theatre. Consideration will be given to theory and practice of the artist; the function of the theatrical realization that can be reconstructed by integrated research. Examples of recent courses include Molière, Fugard, and Strindberg. Prerequisite: THHS or TDHT 10 or consent of instructor. May be taken three times for credit.

TDHT 103. Asian American Theatre (4)
This course examines pivotal dramatic works in the history of professional Asian American theatre in the U.S. (1960s to the present). Issues include interculturalism, the crossover between minority theatres and mainstream venues, and the performance of identity. Prerequisite: THHS or TDHT 10 or consent of instructor.

TDHT 104. Italian Comedy (4)
Continuities and changes in Italian comedy from the Romans through the Renaissance and commedia dell'arte to modern comedy. Prerequisite: THHS or TDHT 10 or consent of instructor.

TDHT 105. French Comedy (4)
Masterpieces of French farce and comedy from the seventeenth century to the twentieth century studied their theatrical and cultural contexts. Readings include plays by Molière, Marivaux, Beaumarchais, and Feydeau. Prerequisite: THHS or TDHT 10 or consent of instructor.

TDHT 106. Brecht and Beyond (4)
Examination of the German playwright and director, Bertolt Brecht and of recent representative plays and performances from world theatre that reveal a creative assimilation of Brecht's influence on artists including Peter Weiss, Heiner Muller, Augusto Boal, and Tony Kushner. Prerequisite: THHS or TDHT 10 and TDHT 21 or consent of instructor.

TDHT 106XL. Brecht and Beyond: Foreign Language Discussion Section (1)
Foreign language discussion of materials in the English-language course with corresponding number. This section is taught by the course professor, has no final exam, and does not affect the grade in the parent course. Prerequisite: concurrent enrollment in TDHT 106.

TDHT 107. American Theatre (4)
In this course we will examine representative plays and playwrights who write about the American experience from a variety of historical periods and diverse cultural communities. Playwrights will include O'Neill, Glaspell, Miller, Williams, Hellman, Wasserstein, Wang, and Parks. Prerequisite: THHS or TDHT 10 or consent of instructor.

TDHT 108. Luis Valdez (4)
In this course examines the works of Luis Valdez, playwright, director, screenwriter, film director, and founder of the Teatro Campesino. Readings include plays and essays by Valdez and critical books and articles about this important American theatre artist. Prerequisite: THHS or TDHT 10 or consent of instructor.

TDHT 109. African American Theatre (4)
This course provides a survey of the contributions to the theatre arts made by African Americans. Analytic criteria will include the historical context in which the piece was crafted—thematic and stylistic issues; aesthetic theories and reception. Prerequisite: THHS or TDHT 10 or TDHT 10 consent of instructor.

TDHT 110. Chicano Dramatic Literature (4)
Focusing on the contemporary evolution of Chicano dramatic literature, this course will analyze playwrights and theatre groups that express the Chicanos experience in the United States, examining relevant "actors," plays, and documentaries for their contributions to the developing Chicano theatre movement. (Cross-listed with Ethnic Studies 132.) Prerequisite: THHS or TDHT 11 or 12 or 13 or consent of instructor.

TDHT 111. Hispanic-American Dramatic Literature (4)
Course examines the plays of leading Cuban-American, Puerto-Rican, and Chicano playwrights in an effort to understand the experience of these Hispanic-American groups in the United States. (Cross-listed with Ethnic Studies 133.) Prerequisite: THHS or TDHT 11 or 12 or 13 or consent of instructor.

TDHT 112. Gay and Lesbian Themes in U.S. Latino Theatre (4)
This course examines plays by Latina and Latino playwrights that include characters who are gay, lesbian, bisexual, or transgendered. Readings include the plays as well as articles and essays about the plays, playwrights, and queer theory. Prerequisites: THHS or TDHT 10 and 11 or consent of instructor.

TDHT 113. Avant-Garde Theatre (4)
Innovations in theatre production and performance since the late nineteenth century. Artists and movements studied include Jarry, Appia, Constructivism, Expressionism, Dada, cabaret, performance art, and dance theatre. Complements TDHT 13's focus on modern theatre. Prerequisite: THHS or TDHT 10 or consent of instructor.

TDHT 114. American Musical Theatre (4)
The class will explore this vital and unique theatre form in its historical context as an American vernacular form. Builds a beginning technical jazz vocabulary with a focus on rhythmic exercises, isolations, turns, and locomotor combinations. Prerequisite: none. May be taken six times for credit.

TDHT 115. History and Theory of Directing (4)
A practical course in directing; students will develop skills in dramatic interpretation and working on the dramatic text. Prerequisites: THHS or TDHT 10 and THAC 101 or TDAC 101 or consent of instructor. May be taken three times for credit.

TDHT 116. Old Myths in New Films (4)
The course will address the work of different writers each quarter, showing how their films derive from classic myths, legends, and traditions of a specific ethnic group. Authors discussed may include Kurosawa (Japanese), Herzog (German), Nei Jordan (Irish), and other moderns. Prerequisite: upper-division standing or consent of instructor. May be taken three times for credit.

TDHT 118. Dramaturgy in Practice (4)
Provides opportunities for students to undertake dramaturgical assignments for productions or as projects. Class meetings will create a mentoring atmosphere focused on the concrete, day-to-day tasks of dramaturgy. Prerequisite: Theatre major, THHS or TDHT 11, 12, 13, and TDHT 118; at least two UD History courses; consent of instructor.

TDMV–DANCE MOVEMENT

TDMV 1. Beginning Ballet (2)
An introduction to classical ballet principles, technique, and terminology. Develops the body for strength, flexibility, and artistic interpretation. Emphasis on developing a foundation in classical movement for continuation of ballet training. Historical origin of ballet will be discussed. Prerequisite: none. May be taken six times for credit.

TDMV 2. Beginning Contemporary Dance (2)
Introduction to contemporary dance as an expressive medium, building technical skills at the beginning level. Pattern variations analyzed in time, space, design, and kinetic sense. Movement exploration includes improvisation and composition. Prerequisite: none. May be taken six times for credit.

TDMV 3. Beginning Jazz (2)
Introduction to the technique of jazz dance, while placing the art form in its historical context as an American vernacular form. Builds a beginning technical jazz vocabulary with a focus on rhythmic exercises, isolations, turns, and locomotor combinations. Prerequisite: none. May be taken six times for credit.

TDMV 11. Theatrical Tap (2)
The study of theatrical tap dance. Various styles of tap—such as classical, rhythm, and musical theatre—will be introduced. Emphasis on rhythm, coordination, timing, and theatrical style. Includes basic through intermediate tap movement. Prerequisite: none.

TDMV 110. Intermediate Ballet (4)
Continued studio work in ballet technique at the intermediate level and terminology. Emphasis on increasing strength, flexibility, and balance, and the interpretation of classical ballet phrases. Includes a foundation in classical movement and artistic philosophy of classical ballet. Prerequisite: six units of THDA or TDMV 1 or consent of instructor. May be taken six times for credit.

TDMV 111. Advanced Ballet (4)
Further emphasis on advanced ballet technique, performance, terminology, and an introduction to point work. Introduces historical ballet choreographic variations. Individual and group composition will be examined and aesthetic criticism applied. Prerequisite: twelve units of THDA 101A-B-C or TDMV 110 or consent of instructor. May be taken six times for credit.

TDMV 112. Advanced Ballet for Contemporary Dance (4)
Designed for students with advanced training in contemporary modern dance and intermediate to advanced training in ballet. Emphasis is on increasing composition and performance skills in ballet through contemporary modern dance aesthetic. Prerequisite: twelve units of THDA 101A-B-C or TDMV 111 or consent of instructor. May be taken six times for credit.

TDMV 120. Intermediate Contemporary Dance (4)
The development of contemporary dance as an expressive medium, with emphasis on technical skills at the intermediate level. Includes the principles, elements, and historical context of contemporary modern postmodern dance. Prerequisite: six units of THDA 2 or TDMV 2 or consent of instructor. May be taken six times for credit.
TDPF–DANCE PERFORMANCE

TDPF 122. Advanced Contemporary Dance (4)
The development of contemporary dance as an expressive medium, with emphasis on advanced technical skills, expressive style, and performance elements. Choreography and aesthetic concepts will be explored. Incorporates applied theoretical principles of human movement. Prerequisite: T2 units of THDA 110A-B-C or TDHA 111A-B-C, or TDMV 112, or TDMV 120 or consent of instructor. May be taken six times for credit.

TDPF 130. Intermediate Jazz (2)
Designed to provide training in the technique of jazz dance, while placing the art form in its historical context as an American vernacular form. Builds an intermediate technical jazz level with a focus on style, musicality, dynamics, and performance. Prerequisite: six units of THDA 3 or TDMV 3 or consent of instructor. May be taken six times for credit.

TDPF 133. Advanced Jazz Dance (4)
Further development in the technique of jazz dance, while placing the art form in its historical context as an American vernacular form. Builds an advanced technical jazz level with a focus on style, musicality, dynamics, and performance. Prerequisite: six units of THDA 120A-B-C or TDHA 121A-B-C or TDMV 130 or consent of instructor. May be taken six times for credit.

TDPF 138. Hip-Hop (2)
An introduction to the basic technique of hip-hop, studied to enhance an understanding of the historical cultural content of the American form hip-hop and street dances in current choreography. Prerequisite: THDA 3 or TDTR 10 or consent of instructor. May be taken twice for credit.

TDPF 139. Pilates Dance Conditioning (2)
A conditioning program based on the teachings of Joseph Pilates, designed to correct muscular imbalances, and body alignment by incorporating strength, flexibility, and relaxation techniques. Prerequisite: THDA 1 or THDA 2 or TDMV 3 or TDTR 1 or TDTR 2 or consent of instructor. May be taken six times for credit.

TDPF 140. Beginning Dances of the World (2)
Courses designed for the in-depth study of the dances and historical context of a particular culture or ethnic form: Afro-Cuban, Spanish, Balinese, Japanese, Latin, etc. Specific topic will vary from quarter to quarter. Prerequisite: upper-division standing.

TDPF 141. Advanced Dances of the World (4)
Courses designed for the advanced continuing study of the dances and historical context of a particular culture or ethnic form: Afro-Cuban, Spanish, Balinese, Japanese, Latin, etc. Specific topic will vary from quarter to quarter. Prerequisite: THDA 132 or TDMV 136 or TDMV 142 or TDMV 143 or TDMV 144, or consent of instructor.

TDPF 142. Latin Dance of the World (4)
To develop an appreciation and understanding of the various Latin dance forms. Emphasis on learning basic social dance movement vocabulary, history of Latin cultures, and use of each dance as a means of social and economic expression.

TDPF 143. West African Dance (4)
An introductory course that explores the history of West African cultures and diasporas through student research, oral presentation, dance class, and performance. Contemporary African dances influenced by drum masters and performing artists from around the world are also covered. Prerequisite: upper-division standing.

TDPF 144. Asian Dance (4)
To develop an appreciation and understanding of the dances from various Asian cultures. Emphasis on learning the basic forms and movement vocabularies, their historical context, and the use of each dance as a means of cultural and artistic expression. Prerequisite: upper-division standing.

TDPF–DANCE PERFORMANCE

TDPF 160. Studies in Performance—Fall Production (2–4)
The in-depth study of a major dance production in a fall dance cabaret led by faculty. Admission by audition only.

Prerequisites: audition; department stamp; concurrent enrollment in TDMV 110, 111, 112, 120, 122, 130, or 133.
TDPF 161. Studies in Performance—Winter Production (2–4)
The in-depth study for a fully staged dance production in various venues, including a fall dance cabaret led by faculty, a winter faculty concert with guest choreographers, and a spring student choreographed concert directed by faculty. Admission by audition only. Prerequisites: audition, department stamp, concurrent enrollment in TDMV 163, TDMV 110 or TDMV 111 or TDMV 120 or TDMV 122 or TD TR 130 or TDMV 133. May be taken four times for credit.

TDPF 162. Studies in Performance—Spring Production (2–4)
The in-depth study for a fully staged dance production in various venues, including a fall dance cabaret led by faculty, a winter faculty concert with guest choreographers, and a spring student choreographed concert directed by faculty. Admission by audition only. Prerequisites: audition, department stamp, concurrent enrollment in TDMV 163, TDMV 110 or TDMV 111 or TDMV 120 or TDMV 122 or TDMV 130 or TDMV 133. May be taken four times for credit.

TDPF 163. Dance Repertory (1–4)
The study and aesthetic examination of major choreographic works by dance faculty or distinguished guest artists. Students will experience the creative process, staging, production, and performance of a complete dance work in conjunction with a conceptual study of its form and function. Admission by audition only. Prerequisites: concurrent enrollment in TDPF 160 or TDPF 161 or TDPF 162. May be taken four times for credit.

TDPF 164. Performance Laboratory (2–4)
A faculty directed dance theatre project culminating in a public performance. Both purely choreographic approaches to creating work and collaboration with visual design, musical composition, texts, film, and video will be explored, as well as participation in production elements. Prerequisites: audition and department stamp.

TDPF 165. Practicum—Scenery (2–4)
A production performance-oriented course that introduces fundamentals of scenery construction and its theatrical operation. Laboratory format allows students to work through the scenery production process culminating in a crew assignment for a fully mounted theatrical production. Prerequisite: department stamp required.

TDPF 166. Practicum—Costume (2–4)
A production performance-oriented course that introduces fundamentals of costume construction and its integration into theatre operations. Laboratory format allows students to work through the costume production process culminating in a crew assignment for a fully mounted theatrical production. Prerequisite: department stamp required.

TDPF 167. Practicum—Lighting (2–4)
A production performance-oriented course that introduces fundamentals of stage lighting and sound and its technical operation. Laboratory format allows a student to work through the lighting and sound production process culminating in a crew assignment for a fully mounted theatrical production. Prerequisite: department stamp.
TDGR 200. Dynamics (1)
A daily program of physical, vocal, and speech exercises designed to prepare the student to move in a focused way into specific class areas with minimum amount of warm-up time. The exercises work on development of flexibility, strength, and coordination throughout the body. Strong emphasis is placed on physical and mental centering within a structured and disciplined approach to preparation. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 201. Stage Combat (2)
A study of the dramatic elements of stage violence, and practical work in developing the physical skills necessary to fully realize violent moments on the stage. At the core of the study is the process from text to convincing theatrical action. Physical work revolves around basic principles of energy, focus, and center inherent in unarmed and weapons combat. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 202. Joint Stock (3)
The process of collaborative creation from idea to performance. Prerequisite: admission to the M.F.A. program or consent of instructor.

TDGR 203. Seminar and Supervision for ArtsBridge Scholars (1)
A workshop to address the specific pedagogical requirements and techniques to be employed by students as ArtsBridge (outreach) Scholars and Mentors of ArtsBridge Scholars. Instructor will mentor the students on-site as well as in seminars. Prerequisites: graduate standing and consent of instructor.

TDGR 204A. Text Analysis (4)
Topics to be covered will include (1) concept of poetic language; lexical and syntactic analysis of dialogue; (2) the semantic context of dialogue; (3) thematic structure, from motive to theme; (4) the concept of dramatic character or hero; (5) dramatic narrative; (6) the material of drama; the relationship of myth and ritual to drama; (7) analysis versus interpretation; (8) practical applications. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 204B. Contemporary Theories of Theatre (4)
An investigation of contemporary theories of theatre with an emphasis on structural and poststructural perspectives on text and textuality. The seminar will focus on adapting contemporary techniques of close reading to the interpretive and creative process in the theatre. Prerequisites: TDGR 204A, admission to M.F.A. Theatre program or consent of instructor.

TDGR 204C. Collective Creation (4)
The culmination of the TDGR 204 sequence, in which students in all disciplines create and perform publicly presented original theatre pieces. Prerequisites: TDGR 204B, admission to M.F.A. Theatre program or consent of instructor.

TDGR 205. Improvisation for the Theatre (3)
A course designed to introduce improvisational techniques to professional acting students. A variety of approaches to the art of improvisation will be presented and practiced, both serious and comic. Small and large group improvisations will be offered. Prerequisite: admission to the M.F.A. program or consent of instructor.

TDGR 206. Faculty Directed Production (4)
Faculty directed production, from the rehearsal process through public performance. All participants will enroll in the same section, the number of units depending upon degree of involvement. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 207. Production (4)
The collaborative process from the rehearsal process through public performance. All participants will enroll in the same section, the same number of units. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 209. Commedia and Comic Techniques (3)
A course designed to provide actors with tools, both physical and verbal, to play comedy. Included will be commedia dell’arte techniques, the work of masks, circus techniques, mime, and scene work from comic scripts. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 210A. Process I—Part I (4)
The actors focus on the nature of the acting process, using various exercises to stimulate imagination and to inspire instinctual choices. Later work includes improvisational and imaginative experiences to explore character and text. The class culminates in intensive scene work chosen for the particular actor to model the improvisational approach with scripted material. The class is a combination of both actors and directors so that a common language is developed. Prerequisite: admission to the M.F.A. program or consent of instructor.

TDGR 210B. Process I—Part II (4)
Intensive studio examination of realistic texts using improvisational and imaginative techniques to realistically texts commonly from American theatre. Second course in a three course sequence. Prerequisites: TDGR 210A and admission to the M.F.A. program or consent of instructor.

TDGR 210C. Process I—Part III (4)
The intensive study of the dramatic and fictional work of Anton Chekhov and an actor’s approach to that work. This course includes many of the techniques begun in earlier classes and applies them to this material. Also included is a study of Chekhov’s short stories and plays, and involves adapting and staging these works. Third course of a three course sequence. Prerequisites: TDGR 210B and admission to the M.F.A. program or consent of instructor.

TDGR 211A. Speech for the Actor (2–4)
Introduction of the principles of phonetics and articulation. Constant study and drill to prepare the actor for standard speech and flexibility. Prerequisite: admission to the M.F.A. Theatre program or consent of instructor.

TDGR 211B. Speech for the Actor (2–4)
Continued introduction of the principle of phonetics and articulation. Constant study and drill to prepare the actor for standard speech and flexibility. Second course in a three-course series. Prerequisites: TDGR 211A and admission to the M.F.A. program or consent of instructor.

TDGR 211C. Speech for the Actor (2–4)
Continued introduction of the principle of phonetics and articulation. Constant study and drill to prepare the actor for standard speech and flexibility. Third course in a three-course series. Prerequisites: TDGR 211B and admission to the M.F.A. program or consent of instructor.

TDGR 212. Acting Practicum (2)
One-on-one laboratory workshop that examines practical applications of accents, speech and voice work, dialect, movement and combat work specific and ancillary to the productions in which the students have been cast. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 213. Dance Theatre Topics Seminar (2)
A topics seminar in current dance theatre history, issues and research, with varying content by faculty. Prerequisite: admission to the M.F.A. program or consent of instructor.

TDGR 213A-B-C. Movement for Theatre I (2-2-2)
An intensive studio course in the art of movement as a basis for theatre performance. Theory and practice of energy, flow, weight, spatial focus, time consumption, and the shape factor. (S/U grades only.) Prerequisites: THGR or TDGR 213A for B, THGR or TDGR 213B for C; admission to the M.F.A. Theatre program.

TDGR 214. Dance Theatre Topics: Collaborative Processes (2)
This seminar examines the nature of collaborative creative processes and artistic relationships between choreographers and other primary artists in the creation of interdisciplinary dance theatre, from the initial concepts, themes, and inspiration through the research, rehearsal and final presentation. Prerequisite: admission to the M.F.A. program or consent of instructor.

TDGR 214A. Voice for Theatre I—Part I (3)
Voice exercises designed to “free the voice” with emphasis on diaphragmatic breathing, articulation exercises, and singing exercises. Course designed to broaden pitch, range, projection, and to expand the full range of potential characterizations. Prerequisites: admission to the M.F.A. program or consent of instructor.
TDGR 214B. Voice for Theatre II—Part I (3)
Voice exercises designed to “free the voice” with emphasis on diaphragmatic breathing, articulation exercises, and singing exercises. Course designed to broaden pitch, range, projection, and to expand the full range of potential characterizations. Second course in a three-course sequence.
Prerequisites: TDGR 214A and admission to the M.F.A. program or consent of instructor.

TDGR 214C. Voice for Theatre I—Part III (3)
Voice exercises designed to “free the voice” with emphasis on diaphragmatic breathing, articulation exercises, and singing exercises. Course designed to broaden pitch, range, projection, and to expand the full range of potential characterizations. Third course in a three course series.
Prerequisites: TDGR 214B and admission to the M.F.A. Theatre program or consent of instructor.

TDGR 215. Dance Theatre Seminar (2)
This seminar focuses on the aesthetic concepts that form the foundation for the creation, performance, research, and critical analysis of dance theatre. Students will discuss critical theory in related arts and develop individualized projects that advance their creative and intellectual goals.
Prerequisite: admission to the M.F.A. Theatre program or consent of the instructor.

TDGR 216. Principles of Curriculum Theory (2)
This comprehensive seminar provides an assessment of the field of curriculum theory as preparation for teaching general dance education courses. Conceptual thinking, problem solving, current publications, methods of inquiry, assessment, and a range of practical teaching issues will be discussed. Enrollment is open to the M.F.A. Theatre program or consent of instructor.

TDGR 217. New Media and Technology (2)
This seminar explores the interaction of new media and technologies for collaboration, research, and creation in performance. Students will pursue diverse and innovative research in technology as a medium for new forms of expression in dance theatre. Prerequisite: admission to the M.F.A. Theatre program or consent of instructor.

TDGR 218. Dance Theatre: Professional Practice (2)
This seminar focuses on the skills and tools needed for the professional practice of self-production in performance. Areas introduced include grant writing, press kits, media relations, marketing, Web sites, documentation, budgets, artistic management, and nonprofit organization administration.
Prerequisite: admission to the M.F.A. Theatre program or consent of instructor.

TDGR 219. Directing Process Studio (4)
Preparation, presentation, and discussion of representative scenes from various periods of dramatic literature.
Prerequisite: admission to the M.F.A. Theatre program or consent of instructor.

TDGR 220. Advanced Contemporary Dance (2)
Designed for graduates with advanced training in contemporary modern dance and intermediate to advanced training in ballet. Emphasis is on increasing composition and performance skills in ballet through contemporary modern dance aesthetics.
Prerequisite: admission to the M.F.A. Theatre program or consent of instructor.

TDGR 220A. Process II: Classical Text (1-4)
An intensive studio examination of problems and potentials associated with the theatrical realization of the classical text.
Prerequisite: admission to the M.F.A. Theatre program or consent of instructor.

TDGR 220B. Process II: Classical Text (1-4)
An intensive studio examination of problems and potentials associated with the theatrical realization of the classical text. This course is a continuation of TDGR 220A.
Prerequisite: TDGR 220A and admission to the M.F.A. Theatre program or consent of instructor.

TDGR 220C. Process II: Classical Text III (4)
An intensive studio examination of problems and potentials associated with the theatrical realization of the classical text. This course is a continuation of TDGR 220B.
Prerequisites: TDGR 220B and admission to the M.F.A. Theatre program or consent of instructor.

TDGR 221. Graduate Studio: Contemporary Movement Practices (2)
Designed for development of a movement practice in various modalities including contemporary dance, yoga, Pilates, and Alexander. Emphasis on advanced technical skills, expressive style, and actor formation of the voice. Aesthetic concepts will be explored. Incorporates applied physiological principles of human movement.
Prerequisite: admission to the M.F.A. Theatre program or consent of instructor.

TDGR 221A—B. Speech for the Actor II (3-3)
Advanced work in phonetics and articulation. Intensive study of the expressive voice and the actor’s ability to solve problems related to vocal projection, and performance skills in ballet through contemporary training in ballet.
Prerequisites: graduate standing. THGR or TDGR 221A
Prerequisite for THGR or TDGR 221B: admission to the M.F.A. Theatre program.

TDGR 222. Topics in World Dance (2)
Course designed for study of specific world dances. Historical and contemporary context of each performance of music and dance will be explored. Prerequisite: admission to the M.F.A. Theatre program or consent of instructor.

TDGR 222A—B. C. Theatre Production II (1-4)
Ranging from staged reading of new plays, documentary drama, or synthetically created dramatic text to totally integrated production of full-length plays (faculty or student directed), and incorporating the creative contribution of directors, actors, playwrights, and critics, this intensive course is designed to serve both an M.A. and graduate students.
Prerequisite: admission to the M.F.A. Theatre program or consent of instructor.

TDGR 223. Improvisation Ensemble (2)
A course for dance theatre practitioners to exchange ideas, work with scores, text, and other material in a supportive and focused environment. Students will participate as group leaders allowing participants to explore new areas of their artistic practice.
Prerequisite: admission to the M.F.A. program or consent of instructor.

TDGR 223A—B. Movement for Theatre II (3-3)
An advanced course in the art of movement for the theatre, building on the knowledge gained in Theatre 213. (S/U grades only.)
Prerequisites: THGR or TDGR 223A for B;
Prerequisite for THGR or TDGR 223A for B: admission to the M.F.A. Theatre program.

TDGR 224A—B. Voice for Theatre II (3-3)
Advanced voice training designed to help the actor fuse voice, emotion, and body into a fully realized reflection of the text. (S/U grades only.)
Prerequisites: THGR or TDGR 224A for B; admission to the M.F.A. Theatre program.

TDGR 225A—B. Singing for the Actor II (1-1)
Continuing vocal technique for the musical theatre. More complicated musical material investigated and prepared.
Prerequisite: admission to the M.F.A. Theatre program.

TDGR 227. Directing Seminar (1–6)
A seminar focusing on the current directing projects of all graduate directing students. Depending upon individual student needs, the work may include play selection, historical or sociological research, and discussion of emerging directorial concepts and rehearsal process, and post-production evaluation.
Prerequisite: admission to the M.F.A. Theatre program.

TDGR 228. Graduate Workshop (1–4)
A workshop in which students from music and theatre departments study examples of various forms of music theatre and collaboratively develop creative projects that are presented at the end of the two-quarter sequence.
Prerequisite: admission to the M.F.A. Theatre program or consent of instructor.

TDGR 230. Acting Process III: Actors’ Studio (4)
An advanced studio for graduate actors and directors, this work will explore a single text from the modern theatre under the direction of a master teacher-artist. Concentration will be on multiple possible modes of encountering a text, varied interpretation and performance realization, and the development of a theatre ensemble.
Prerequisite: admission to the M.F.A. Theatre program.

TDGR 231A. Professional Preparation for the Actor (4)
A twice-weekly seminar focusing on the actor’s confrontation with the industry, including in-depth preparation for auditions, cold readings, and meetings/meetings/interviews with producers, casting directors, agents, and managers. Actors will also begin to create material that could be crafted into solo performances.
Prerequisite: admission to M.F.A. Theatre program or consent of instructor.

TDGR 233. Acting for the Camera (1)
This course is designed to aid the actor in the transition from stage to film work. Examination of film production and its physical characteristics and the acting style needed for work in film and television. Students will rehearse and perform in simulated studio setting.
Prerequisite: admission to the M.F.A. Theatre program.

TDGR 235. Singing for the Actor III (1)
Continuing vocal technique for the musical theatre. More complicated musical material investigated and prepared.
Prerequisite: admission to the M.F.A. Theatre program.

TDGR 239. Skills (4)
A unifying approach to acting skills (voice, movement, and speech) designed to result in providing the graduating actor with a daily regimen appropriate for professional work.
Prerequisite: admission to the M.F.A. Theatre program.

TDGR 240. Directing Seminar I (1-6)
A seminar focusing on the current directing projects of all graduate directing students. Depending upon individual student needs, the work may include play selection, historical or sociological research, and discussion of emerging directorial concepts and rehearsal process, and post-production evaluation.
Prerequisite: admission to the M.F.A. Theatre program.

TDGR 242. Director Designer Collaboration Seminar (4)
A seminar focusing on the creative application of design solutions to problems presented by specific texts, and how they function in directorial and design production concepts.
Prerequisite: admission to M.F.A. Theatre program or consent of instructor.

TDGR 243. Director/Playwright/Choreographer Lab (4)
Collaborative process between directing and playwriting students providing a focused exploration of a broad range of directing and writing methodologies. Students work in teams to develop and create pieces based on the methodology of guest directors.
Prerequisite: admission to M.F.A. Theatre program or consent of instructor.

TDGR 244. New Plays Workshop (2)
A course where playwrights and actors work together to develop new plays—in-progress.
Prerequisite: admission to the M.F.A. Theatre program or consent of instructor.

TDGR 245. Directing Practicum (4)
Students enrolled in this course will work on productions in the function of a director. This will include staging, creative interpretation, blocking, etc.
Prerequisite: admission to the M.F.A. Theatre program.

TDGR 249A. Music Theatre Workshop (4)
A workshop in which students from music and theatre departments study examples of various forms of music theatre and collaboratively develop creative projects that are presented at the end of the two-quarter sequence.
Prerequisite: admission to the M.F.A. Theatre program or consent of instructor.

TDGR 249B. Music Theatre Workshop (4)
Continuation of workshop in which students from music and theatre departments study examples of various forms of music theatre and collaboratively develop creative
projects that are presented at the end of the two-quarter sequence. **Prerequisite:** admission to M.F.A. Theatre program or consent of instructor.

TDGR 250. Playwriting Seminar (4)
A seminar focusing on the current playwriting project of all graduate playwriting students. Work for each quarter is individually determined according to student needs, but may include exploration of an inceptive idea, development of a scenario or other structural work, and writing dialogue. Students present work to be discussed in class. May include group or individual playwriting exercises. **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 251. Playwriting Practicum (2)
Creative writing project developing original scripts from outline to the final play. Plays may vary depending on the quarter, but will include writing of a realistic one-act, a nonrealistic one-act, a one-act documentary or dramatization of fiction, a full-length play. **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 252. Dramaturgy Seminar (4)
The seminar will deal with all dramatic issues pertinent to departmental productions: production research, textual analysis, translation, adaptation, rehearsal process, and critique. Concurrently with the dramaturgy issues of the given year, the seminar will discuss possible choices of plays for future production seasons. **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 254. Television Writing (4)
A one-quarter course covering the hour-long format (five weeks) and situation comedies (five weeks). Includes study and discussion of television script format and structure. Students will create the concept and structure for specific scripts in each genre. **Prerequisite:** admission to M.F.A. Theatre program or consent of instructor.

TDGR 256. Contemporary Plays (1-4)
A guided reading course focusing exclusively on very recent plays in an attempt to become aware of what is being written now. Course may be repeated for credit. **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 257A–B. Screenwriting (4-4)
Students will develop the concept for an original piece for television or film and will write the screenplay. Student work will be presented in seminar at each phase of the development. **Prerequisites:** admission to the M.F.A. Theatre program and THGR or TDGR 250.

TDGR 258A–B. Dramatization and Adaptation (4-4)
Seminar will deal with dramatization and adaptation of literary texts for the purpose of theatrical production. The class will study some significant examples of such practice from the past, and subsequently, students will develop their own projects of dramatization, adaptation, or modernization of texts. **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 260. New-Play Festival (4)
The collaborative process of new-play development through readings, rehearsals, and public performance. M.F.A. actors, directors, playwrights, and stage managers enroll in each quarter and collaborate in creating the annual festival of full-length and one-act plays. **Prerequisite:** admission to M.F.A. Theatre program or consent of instructor.

TDGR 262. Crossing Boundaries: Design Implications (4)
Conceiving interactive designs. A project/performance-based course, concentrating on the conception of designs adaptable to improvisatory contexts, in which technological strategies such as real-time processing and control and rendering of images are encouraged and discussed. **Prerequisite:** admission to M.F.A. Theatre program or consent of instructor.

TDGR 267. Automated Lighting (4–6)
Introduces the design student to the technology, control, and creative use of automated lighting in the entertainment lighting field. The class involves substantial independent research. Students create both theoretical and realized design projects. **Prerequisite:** admission to M.F.A. Theatre program or consent of instructor.

TDGR 268. Storyboarding (4)
Course will cover multiple applications of storyboarding as a tool of communication and expression; comic books, theatre, opera, film, TV, and commercial applications will be explored. Individual and team assignments will be given to develop the basic vocabulary and techniques. **Prerequisite:** admission to M.F.A. Theatre program or consent of instructor.

TDGR 269A. Photoshop II (4)
Course will introduce the basic functions and applications of Photoshop as they may be applied to theatrical design. Emphasis on using Photoshop as an artistic tool. **Prerequisite:** admission to M.F.A. Theatre program or consent of instructor.

TDGR 269B. Photoshop III (4)
Advanced Photoshop techniques will be explored and applied to the creation of multimedia projects. **Prerequisite:** admission to M.F.A. Theatre program or consent of instructor.

TDGR 270A. Design Studio I (4)
This course will focus on beginning-level problems in theatre design, including text analysis, research, conceptualization, and visual expression. Students will work on individual projects in lighting, costume, and scenic design. The course will include group critiques of completed designs and works in progress. 270A, Scenic Design (fall); 270B, Costume Design (winter); 270C, Lighting Design (spring). **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 270B. Design Studio II: Costume Design (4)
This course will focus on beginning-level problems in theatre design, including text analysis, research, conceptualization, and visual expression. Students will work on individual projects in lighting, costume, and scenic design. The course will include group critiques of completed designs and works in progress. 270A, Scenic Design (fall); 270B, Costume Design (winter); 270C, Lighting Design (spring). **Prerequisites:** THGR 270A, graduate standing, consent of instructor.

TDGR 270C. Design Studio I: Lighting Design (4)
This course will focus on beginning-level problems in theatre design, including text analysis, research, conceptualization, and visual and auditory expression. Students will work on individual projects in sound, lighting, costume, and scenic design. The course will include group critiques of completed designs and works in progress. 270A, Scenic Design (fall); 270B, Costume Design (winter); 270C, Lighting Design (spring). **Prerequisites:** THGR 270A or TDGR 270A, THGR 270B or TDGR 270B, graduate standing, consent of instructor.

TDGR 270D. Design Studio I: Sound Design (4)
This course will focus on beginning-level problems in theatre design, including text analysis, research, conceptualization, and visual and auditory expression. Students will work on individual projects in sound, lighting, costume, and scenic design. The course will include group critiques of completed designs and works in progress. 270A, Scenic Design (fall); 270B, Costume Design (winter); 270C, Lighting Design (spring). **Prerequisites:** THGR 270A, THGR 270B, graduate standing, consent of instructor.

TDGR 271. Design Seminar (2)
A seminar focusing on all aspects of the design profession, including current projects of graduate design students. The work may also include portfolio presentations, research papers, and guest lectures. **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 272. Master Class in Design (1–4)
Special topics in design taught in an intensive workshop format by professionals in the respective fields of study. Topics could include, but are not limited to, sound design techniques, new developments in set design, AutoCAD. **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 273. Fashioning the Body (4)
A survey/history of artistic and cultural stylistic change as embodied in clothing from early Western civilization to the contemporary period. **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 274. Advanced Scenic Design (4)
This course explores advanced problems in scenic design through development and critical review of creative class projects and production works-in-progress. **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 275. Advanced Lighting Design (4)
Creative projects and topics in lighting design to develop the student’s techniques and professional practices. Work to include studies in design research, concepts, psychological considerations, professional procedures and systems, paperwork, and organization. Various scales of production projects will be addressed by the student for presentation and critique, and may be discussed and researched into the designer's calendar. **Prerequisites:** second- or third-year design students only; admission to the M.F.A. Theatre program.

TDGR 276. Advanced Costume Design (4)
Projects in costume design, emphasizing script analysis, research, conceptualization, and visual expression. Studio work includes costume rendering in various media for specific plays. **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 278. Special Topics in Theatre Design (1–6)
A course designed to expose the theatre design student to a variety of specialized topics, including millinery, pattern drafting and draping, scenic painting, model making, figure drawing, drafting, fitting, rendering. Topics will vary from quarter to quarter. **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 279. Design Practicum (4)
This course covers the artistic, aesthetic, and practical aspects of the designer's work as they develop and execute the design toward a fully realized production. **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 280A. Stage Management 1 (4)
The first course in the three-quarter introductory stage management series, this course further explores the stage manager's role, focusing on the technical rehearsal period through the opening of a production. **Prerequisites:** TDGR 280A; admission to M.F.A. Theatre program or consent of instructor.

TDGR 280B. Stage Management 2 (4)
The second course of the three-quarter introductory stage management series, this course further explores the stage manager's role, focusing on the technical rehearsal period through the opening of a production. **Prerequisites:** TDGR 280A; admission to M.F.A. Theatre program or consent of instructor.

TDGR 280C. Stage Management 3 (4)
The final course in the three-part introductory stage management series focuses on the stage manager's role once a production has opened. The course will also address topics such as new plays, tours, dance, multimedia productions, and music. **Prerequisites:** TDGR 280A and TDGR 280B; admission to M.F.A. Theatre program or consent of instructor.

TDGR 282. Advanced Sound Design (4)
Creative projects to develop student's techniques and professional practices. Studies include research, concepts, collaboration, professional procedures, systems and organization. Various scales of projects will be addressed for presentation and critique; may be theoretical or productions in the Department calendar. **Prerequisite:** admission to the M.F.A. program or consent of instructor.

TDGR 286. Special Topics in Stage Management (1–6)
A course for M.F.A. students in stage management. Topics will focus on various aspects of theatre administration, and advanced stage management, including nonprofit theatre, commercial theatre, advanced production venues, musicals/dance, production management, theatre development, business problems, and theatre marketing. **Prerequisite:** admission to the M.F.A. Theatre program.
TDGR 288. Stage Management Seminar (4)
A weekly seminar in which all graduate stage managers participate. Includes discussions of problems encountered on current productions, paperwork, methodology, and production approaches. **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 289. Introduction to Doctoral Studies (4)
Seminar acquaints doctoral students of all levels with research methods, theoretical models, publishing protocol, professional preparation, and pedagogical approaches particular to theatre and performance studies. Course assignments are tailored to students’ scholarly interests and progress toward degree. **Prerequisite:** admission to Ph.D. program in theatre or consent of instructor.

TDGR 290. Dramatic Literature and Theatre History Prior to 1900 (4)
Selected material from following topics: Classical Drama, Asian Drama, Medieval and Early Modern Drama, Shakespeare, European Drama 1600–1900. May be taken eight times as content varies. **Prerequisite:** admission to Ph.D. program in Theatre.

TDGR 291. Dramatic Literature and Theatre History 1900 to the Present (4)
Selected material from following topics: European Theatre 1900–Present, American Theatre 1900–Present, Contemporary Theatre and Performance. May be taken eight times as content varies. **Prerequisite:** admission to Ph.D. program in Theatre.

TDGR 292. Cultural and Critical Theory (4)
Selected material from following topics: Performance Theory, Dramatic Theory, Critical Theory, Cultural Studies. May be taken eight times as content varies. **Prerequisite:** admission to Ph.D. program in Theatre.

TDGR 293. Directed Studies (4–12)
Individual or small group directed study.

TDGR 294. Dissertation Research (4–12)
Research and preparation of doctoral dissertation.

TDGR 295. Acting Practicum (2)
This course covers the artistic, aesthetic, and practical aspects of the actors’ work as they develop and execute the character/role toward a fully realized production. **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 296. Stage Management Practicum (4)
Taken each term by all graduate stage management students. The class focuses on the development of knowledge and skills necessary for the contemporary stage manager. Seminar format is augmented by lab work that may include departmental productions. **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 297. Thesis Research (2–12)
Thesis research for M.F.A. degree. (S/U grades only.) **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 298. Special Projects (0–4)
Advanced seminar and research projects in theatre. (S/U grades only) **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 299. Thesis Project (2–12)
Specific projects in theatre individually determined to meet the developing needs, interests, and abilities of M.F.A. candidates. (S/U grades only) **Prerequisite:** admission to the M.F.A. Theatre program.

TDGR 500. Introduction to Apprentice Teaching (4)
This course, designed to meet the needs of the graduate students who serve as teaching assistants, includes analysis of texts and materials, discussion of teaching techniques, conducting discussion sections, formulation of topics and questions for papers, and examinations and grading. 2 units = 25% TAship. 4 units = 50% TAship. **Prerequisites:** graduate standing and consent of the instructor.

TDGR 501. Teaching—Non-Departmental (4)
Consideration of pedagogical applications in the teaching of literacy, historical and philosophical text at the undergraduate level. Pedagogical aids for the teaching of composition and supervised teaching in sections of undergraduate courses such as the Revelle Humanities sequence and in the CAT programs of Sixth College. **Prerequisite:** admission to the M.F.A. Theatre program.
THE MAJOR PROGRAM

Students interested in Third World studies may focus on a theme, problem, or geohistorical area. A Third World studies program of study must be interdisciplinary. Students must choose course offerings from at least three disciplines (anthropology, economics, history, literature, political science, sociology, etc.).

A Third World studies major requires a minimum of twelve upper-division courses plus three lower-division courses from the Third World studies sequence (TWS 21, 22, 23, 24, 25, or 26). Students at Eleanor Roosevelt College may substitute up to two courses, Making of the Modern World 4 and 5, for two of the three-course lower-division sequence, but must take at least one course in the TWS 21–26 sequence. Selection of a specific concentration, discipline, or department should be determined in consultation with a Third World studies faculty member or program advisor.

Students majoring and minoring in Third World studies are encouraged to experience their areas first-hand by studying abroad in any number of ways. Most convenient, depending on the area, is the University of California’s Education Abroad Program, whereby students can gain UC credit for study at foreign universities. This is especially convenient for students who cannot find sufficient courses at UC San Diego pertaining to such regions as the Caribbean and the Indian subcontinent. Moreover, Latin America, Asia, and Africa course work is available in these regions through the Education Abroad Program and various programs available through other U.S. universities.

DOUBLE MAJOR

Students interested in Third World studies as a double major must have at least ten upper-division courses that are unique to each departmental major. The courses required for Third World studies may cover one or more disciplines. Courses may focus on a theme or problem or on a geo-historical area. The remaining two courses may overlap with the other major requirements. Approval from both departments is required for overlaps. Students should consult a Third World studies faculty member or program advisor for approval of a major program.

MINOR

A student may minor in Third World studies by selecting two courses from the lower-division Third World studies sequence (TWS 21, 22, 23, 24, 25, or 26) and five upper-division courses in disciplines dealing with the Third World.

Third World studies faculty members offer courses in the Departments of Anthropology, Communication, Literature, Political Science, Sociology, History, and in the Third World Studies Program. Appropriate courses in other departments may also be considered. Students should consult departmental and program listings for Third World area offerings.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

See listings also under the Departments of Anthropology, Communication, History, Literature, Political Science, and Sociology for other Third World area offerings.

LOWER-DIVISION

21-22-23-24-25-26. Third World Literatures (4-4-4-4-4-4)

An introduction to the cultures of various Third World countries through close reading of selected literary texts. TWS 21 focuses on African literature, TWS 22 deals with Latin American literature, TWS 23 examines Chinese literature, TWS 24 examines Caribbean literature, TWS 25 focuses on Middle Eastern literature, and TWS 26 treats literature of the Indian Subcontinent. Topics will vary each quarter. (F, W, S)

UPPER-DIVISION

132. Literature and Third World Societies (4)

This course will investigate novelistic and dramatic treatments of European society in the era of nineteenth-century imperialism, Third World societies under the impact of colonialism, and the position of national minorities inside the United States to the present day. Attention will center on the interplay between the aesthetic merits and social-historical-philosophical content of the works read.

135. Bilingualism: Research and Field Studies (4)

A study of sociolinguistic findings on bilingualism throughout the world and an evaluation of bilingual education theories. The students will also engage in surveys of local communities to assess bilingualism and educational needs of bilingual communities. Prerequisite: upper-division standing.

190. Undergraduate Seminars (4)

Seminars will be organized on the basis of topics with readings, discussions, and papers. Specific subjects to be covered will change each quarter depending on particular interest of instructors or students. May be repeated for credit.

197. Field Work (4)

In an attempt to explore and study some unique processes and aspects of community life, students will engage in research in field settings. Topics to be researched may vary, but in each case the course will provide skills for carrying out these studies.

198. Directed Group Studies (2 or 4)

Directed group study on a topic or in a field not included in the regular department curriculum, by special arrangement with a faculty member. Prerequisite: upper-division standing.

199. Independent Study (2 or 4)

Tutorial, individual guided reading and research projects (to be arranged between student and instructor) in an area not normally covered in courses currently being offered in the department. (P/NP grades only.) Prerequisites: upper-division standing and consent of instructor. (F, W, S)

Third World studies offerings in other departments:

ANTHROPOLOGY: REGIONAL

ANRG 104. Traditional African Societies and Cultures

ANRG 170. Traditional Chinese Society

ANRG 173. Chinese Popular Religion

ANRG 182. Ethnography of Island Southeast Asia
ANTHROPOLOGY: SOCIOCULTURAL
ANSC 131. Urban Cultures in Latin America
ANSC 142. Anthropology of Latin America
ANSC 165. Contemporary South Asia

COMMUNICATION AND CULTURE
COCU 179. Colonialism and Culture

ETHNIC STUDIES
ETHN 142. Medicine, Race, and the Global Politics of Inequality

HISTORY
HIAF 111. Modern Africa since 1880
HIAF 112. West Africa since 1880
HIAF 113. Small Wars and the Global Order: Africa and Asia
HIAF 120. History of South Africa
HIAF 130. African Society and the Slave Trade
HIAF 160. Special Topics in the Economic History of Africa
HIAF 161. Special Topics in African History
HIAE 113. The Fifteen-Year War in Asia and the Pacific
HIAE 130. History of the Modern Chinese Revolution: 1800–1911
HIAE 132. History of the People's Republic of China
HIAE 137. Women and Family in Chinese History
HILA 100. Latin America: Colonial Transformation
HILA 102. Latin America in the Twentieth Century
HILA 112. Economic and Social History of Andean Region
HILA 113. Lord and Peasant in Latin America
HILA 114. Dictatorships in Latin America
HILA 115. The Latin American City: A History
HILA 116. Encounter of Two Worlds: Early Colonial Latin America
HILA 120. History of Argentina
HILA 121. History of Brazil
HILA 122. Cuba: From Colony to Social Republic
HILA 126. From Columbus to Castro: Caribbean Culture and Society
HILA 127. History, Culture, and Power
HILA 131. A History of Mexico
HILA 132. A History of Contemporary Mexico
HILA 160. Topics in Latin America Colonial History: 1500–1820
HILA 161. History of Women in Latin America
HILA 162. Special topics in Latin America
HINE 114. History of the Islamic Middle East

LITERATURE

English
LTEN 188. Contemporary Caribbean Literature

Spanish (texts read in Spanish)
LTSP 130B. Development of Latin American Literature

LTSP 133. Spanish American Literature: Twentieth Century
LTSP 134. Argentine Literature
LTSP 135. Mexican Literature
LTSP 136. Peruvian Literature
LTSP 137. Caribbean Literature
LTSP 140. Spanish-American Novel
LTSP 141. Spanish-American Poetry
LTSP 142. Spanish-American Short Story
LTSP 172. Indigenista Themes in Spanish-American Literature
LTSP 173. Problems in Spanish and Spanish-American Literary History

LITERATURES OF THE WORLD
(TEXTS READ IN ENGLISH)

LTAF 110. African Oral Literature
LTAF 120. Literature and Film of Modern Africa
LTAM 110. Latin American Literature in Translation
LTAM 111. Comparative Caribbean Discourse
LTAM 120. Mexican Literature in Translation
LTEA 100A. Classical Chinese Poetry in Translation
LTEA 100B. Modern Chinese Poetry in Translation
LTEA 110C. Contemporary Chinese Fiction in Translation
LTEA 136. Special Topics in Japanese Literature
LTCS 133. Globalization and Culture

POLITICAL SCIENCE
POLI 130H. Vietnam: The Politics of Intervention
POLI 134A. Comparative Politics of Latin America
POLI 134B. Politics in Mexico
POLI 134D. Selected Topics in Latin American Politics
POLI 134N. Politics in Central America
POLI 144AB. Selected Topics in International Political Economy
POLI 145B. Conflict and Cooperation in International Politics
POLI 146A. The U.S. and Latin America: Political and Economic Relations
POLI 150A. Politics of Immigration

SOCIOLOGY: B
SOCB 114. Culture and Ethnicity

SOCIOLOGY: C
SOCC 139. Social Inequality: Class, Race, and Gender

SOCIOLOGY: D
SOCD 151. Comparative Race and Ethnic Relations
SOCD 158. Islam in the Modern World
SOCD 179. Social Change
SOCD 182. Ethnicity and Indigenous Peoples in Latin America

Students wishing to include additional related courses from these and other departments should consult a Third World studies advisor.
Thurgood Marshall College

OFFICE: Provost, Thurgood Marshall College Administration Building

HONORS PROGRAM

The Thurgood Marshall College Honors Program is designed to address one of the greatest responsibilities and challenges of public higher education: the education of students of exceptionally high academic achievement. The program provides the organization and the environment within which students are encouraged to pursue individual excellence.

Honors activities and events are designed to introduce Thurgood Marshall students to the excitement of pioneering research and innovative scholarship in all disciplines at UC San Diego and to create opportunities for discussion on public issues with locally and nationally known figures. This happens primarily through the honors seminar, offered every quarter, and open to all class levels of honors students.

To qualify for the honors program, incoming transfer and freshmen students must check the Marshall College Honors eligibility criteria on the Marshall Web site: http://marshall.ucsd.edu. Continuing UCSD students are eligible upon successful completion of at least twelve graded units with a 3.8 or better cumulative GPA. All honors students must maintain a 3.50 or better cumulative GPA.

Thurgood Marshall College annually recognizes superior achievement. The Provost Award is presented at commencement to a graduating senior who is recognized for outstanding academic achievement and breadth of scholarship. In addition, students may be eligible for universitywide and departmental honors, Provost Honors, Thurgood Marshall College Honors, Phi Beta Kappa membership, and participation in small honors classes in science.

PUBLIC SERVICE MINOR

Thurgood Marshall College sponsors the Public Service Minor at UCSD, which encourages students to understand the history and practices of public service and to participate in the development of civic skills. This minor is open to all UCSD students in good standing. Please see “Public Service Minor” in the departmental listings or visit the Web site at http://publicsvcminor.ucsd.edu.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

10. Thurgood Marshall College Methods of Inquiry (2)
In this course, students learn analytical thinking strategies routinely used by professional scholars, historians, and social planners. Each student applies methodologies from the materials presented in lectures, films, and readings relevant to the current course work. Prerequisite: department stamp. (P/NP only.)

15. Introduction to Public Service in America (4)
This course is designed to study, discuss, and analyze the history and current role of public service in the United States. Students will be introduced to the different roles held by the three sectors of the American economic structure (government, business, and nonprofit/public service) with opportunity to provide a critical analysis of those roles within American society.

20. Thurgood Marshall College Honors Seminar (1)
Weekly seminar conducted by UCSD faculty and distinguished guest lecturers on topics related to the core curriculum: diversity, justice, and imagination. (P/NP only.)

90. Undergraduate Seminar (1)
These seminars are designed to expose undergraduate students, especially freshmen and sophomores, to exciting research conducted by UCSD faculty. Prerequisite: none. (P/NP only.)

198. Thurgood Marshall College Directed Group Studies (4)
Directed group studies of a creative project. Designated for TMC students to work as a group on a project supervised by faculty; not included in regular curriculum, where group emphasis would be more beneficial and constructive than individual special studies. Prerequisites: upper-division standing (ninety units) including lower-division writing requirement (DOC 2 and DOC 3), minimum overall GPA of 2.5 and consent of instructor.

199. Marshall College Special Project (1–4)
Individual, independent research, or creative work intended to satisfy Marshall College graduation requirement. Designated for Marshall College students, topics are supervised by Marshall faculty in association with the honors seminar and honors projects. A written application describing the project is required. See Office of the Provost. Prerequisites: upper-division students with 2.5 GPA and 90 units and approval of the provost or faculty designee. Honors standing required for honors projects. (P/NP only)
Since 1997, the UC San Diego Washington Center has provided students an opportunity to intern in the nation's capital while continuing their academic coursework. The program is open to all students who have completed ninety units toward graduation with a 2.5 grade-point average. Students earn fourteen units of academic credit, continue to be registered full-time, and fulfill university residency requirements.

Students maintain financial aid eligibility; the amount can be adjusted to reflect the additional costs of the program. In addition, eligible students are considered for the University of California President's Washington Scholarship Program. Students live in the University of California Washington Center, located in the heart of Washington, D.C.

Internship—Students work twenty-four hours per week as interns in federal agencies, interest groups, trade associations, the national news media, museums, research institutions, or in other organizations related to policy, politics, science, and culture and geared to the interests and objectives of individual students. Political Science 197I: six or eight units of academic credit.

Research Seminar—Drawing on the internship experience, each student participates in a seminar and undertakes an independent research project. Political Science 194 (or depending on the student’s major, one of the cross-listed equivalents): four units of academic credit.

Elective Course—Each student also enrolls in one upper-division seminar course at the Washington Center. These courses are taught by the different campuses' resident faculty and change each quarter. Typically they include a mix of political science, international relations, other social sciences, history, and the arts and humanities. In addition to regular instruction, these seminars may take advantage of the Washington locale and often include guest speakers and fieldwork activities.
Urban Studies and Planning

FACULTY
Mirle Rabinowitz Buswell, Ph.D., USP Lecturer
Steven P. Erie, Ph.D., Professor, Political Science, Director of USP
Nancy Kwak, Ph.D., Assistant Professor, History
April Linton, Ph.D., Assistant Professor, Sociology
Isaac Martin, Ph.D., Associate Professor, Sociology
Gabriel Mendes, Ph.D., Assistant Professor, Ethnic Studies
Natalia Molina, Ph.D., Associate Professor, Ethnic Studies
Keith Pezzoli, Ph.D., Lecturer, USP Supervisor of Field Studies
Michelle White, Ph.D., Professor, Economics

AFFILIATED FACULTY
David Abel, J.D., USP Lecturer
Marisa Abrajano, Ph.D., Assistant Professor, Political Science
Amy Bridges, Ph.D., Professor, Political Science
Erik Bruvold, USP Lecturer
Edwin Teddy Cruz, Associate Professor, Visual Arts
Gary Fields, Ph.D., Associate Professor, Communication
Greg Freeman, USP Lecturer
Kathleen Garcia, USP Lecturer
Carlos Graizbord, M Architecture, USP Lecturer
Zoltan Hajnal, Ph.D., Associate Professor, Political Science
Lawrence Herzog, Ph.D., Visiting Professor
James Ingram, Ph.D., Political Science Lecturer
David Janssen, Ph.D., USP Lecturer
Grace Kim, Ethnic Studies Lecturer
Thad Kousser, Ph.D., Associate Professor, Political Science
Leslie Lewis, USP Lecturer
Jack McGrory, USP Lecturer
Susan Peerson, USP Lecturer
Denise de Alcantara Pereira, Ph.D., USP Lecturer
Wayne Raffesberger, USP Lecturer
Oscar Romo, USP Lecturer
Abraham Shragge, Ph.D., USP Lecturer
Kenneth E. Sulzer, USP Lecturer
Julie Wartell, USP Lecturer
K. Wayne Yang, Ph.D., Assistant Professor, Ethnic Studies

OFFICE: Social Science Building, Room 315
http://usps.ucsd.edu

THE URBAN STUDIES AND PLANNING PROGRAM

The great majority of U.S. citizens, and a growing proportion of people throughout the world, live in cities. Cities provide the environment in which people work, learn, play, and make decisions together. Local governments make critical interventions in the quality of life. At the same time, the cities of the world are increasingly linked in a global economic system, making diverse contributions to the international division of labor.

Urban studies and planning (USP) is an interdisciplinary program providing students with a variety of perspectives for understanding the development, growth, and cultural landscape of cities and the communities within them. Course work introduces students to the ways different disciplines understand cities and the societies of which they are a part. Upper-division requirements educate students about the parameters within which urban choices are made.

One of the outstanding features of the Urban Studies and Planning Program is the upper-division research requirement. During a two-quarter sequence designed to be taken in the fall and winter of the senior year, all USP majors are guided through a research internship and writing process. The upper-division field studies sequence allows students to work on specific policy projects in the San Diego region. Eligible students may choose to enroll in USP 190 in the spring to write an honors thesis. The honors option is an opportunity to do advanced research and writing that builds on work already completed in the senior sequence.

Urban studies and planning is an undergraduate community of students with diverse interests and goals. After graduation some majors pursue graduate work in social science disciplines. Others pursue graduate study in public policy, law, planning, or architecture. Urban studies has always also attracted students interested in medicine and public-health issues, who continue to study in these areas at schools of medicine or public health. Urban studies and planning provides students with a solid liberal arts background for graduate study or for professional work in a number of fields. Many students find employment opportunities through their internship placement. More generally, graduates of urban studies and planning will have the analytic skills to think clearly and act creatively about the problems and prospects of the urban environment.

THE URBAN STUDIES AND PLANNING MAJOR

A bachelor of arts degree in urban studies and planning will be given to students who satisfactorily complete the general-education requirements of Muir, Revelle, Marshall, Warren, Roosevelt, or Sixth College in addition to the urban studies and planning courses described below. The undergraduate program in urban studies and planning requires a three-quarter lower-division sequence in urban studies (USP 1-2-3), Political Science 30, and twelve courses in upper-division urban studies and planning.

In accordance with campus academic regulations, courses used to satisfy the major cannot be applied toward a minor, although some overlap is allowed for double majors. All lower-division and upper-division requirements must be taken for a letter grade. A 2.0 grade point average is required in the major, and students must earn at least C– in each course used for the major. Transfer students should consult the USP major affairs advisor to determine whether courses taken elsewhere satisfy USP major requirements. No more than one special studies course, USP 198 or USP 199, will be accepted to count toward the major.

LOWER-DIVISION REQUIREMENTS
Students majoring in urban studies and planning must complete the introductory sequence: USP 1, History of U.S. Urban Communities (4) USP 2, Urban World System (4) USP 3, The City and Social Theory (4) and Political Science 30, Political Inquiry (4) (Psychology 60, Introduction to Statistics or Sociology 60, The Practice of Social Research may be substituted for Political Science 30.)

UPPER-DIVISION REQUIREMENTS
The upper-division requirements in urban studies and planning are
1. three foundation courses
2. one research methods course to be taken junior year
3. two senior sequence courses
4. six upper-division elective courses

Foundation Courses
Foundation courses provide the conceptual tools for the major. Students are to choose three of
USP 102. Urban Economics (Economics 135) (4)
USP 103. U.S. Cities in the Twentieth Century (HIUS 148) (4)
(USP 165/Hius 147, History of the American Suburb may be substituted for USP 103.)
USP 104. Ethnic Diversity and the City (Ethnic Studies 105) (4)
USP 105. Urban Sociology (Sociology 153) (4)
USP 107. Urban Politics (Political Science 102E) (4)
USP 124. Land Use Planning (4)
(USP 173, History of Urban Planning and Design may be substituted for USP 124.)

Research Methods Courses
Students are to choose one course of
USP 125. The Design of Social Research (4)
USP 129. Research Methods: Studying Racial and Ethnic Communities (Ethnic Studies 190) (4)
USP 130. Field Work in Racial and Ethnic Communities (Ethnic Studies 107) (4)
USP 191. GIS for Urban Community Planning (4)
USP 193. San Diego Community Research (4)

Senior Sequence Requirement
In their senior year, all students must complete the senior sequence: USP 186 in the fall, and USP 187 in the winter. These courses must be taken in order. The sequence develops each student’s ability to (1) critically review literature research; (2) formulate interesting research questions of their own; (3) design an original research project and investigative strategy; (4) conduct research; and (5) analyze, interpret, and write up findings. The final requirement of USP 186 is a research proposal. By the end of USP 187, each student must complete a Senior Research Project.

Because the senior sequence includes an internship, no other internship or field placement will be counted toward the major.
Upper-Division Elective Courses

Students are encouraged to pick an area of concentration, and choose upper-division electives listed under that cluster. Students may also define their own area of concentration and design an appropriate curriculum drawn from courses offered by USP and other related departments. USP 199, Independent Study taken for Pass/Not Pass counts for one USP upper-division elective course.

Urban/Regional Policy and Planning

USP 100. Introduction to Urban Planning

USP 101/Political Science 160AA. Introduction to Policy Analysis

USP 102/Economics 135. Urban Economics

USP 107/Political Science 102E. Urban Politics

USP 109/Political Science 103A. California Government and Politics

USP 110/Political Science 102J. Advanced Topics in Urban Politics

USP 111/Political Science 102JJ. Field Research in Urban Politics

USP 113/Political Science 103B. Politics and Policymaking in Los Angeles

USP 115/Political Science 103C. Politics and Policymaking in San Diego

USP 116. California Local Government: Finance and Administration

USP 120. Urban Planning, Infrastructure, and Real Estate

USP 122. Redevelopment Planning, Policymaking, and Law

USP 124. Land Use Planning

USP 133/Sociology 152. Social Inequality and Public Policy

USP 137. Housing and Community Development Policy and Practice

USP 170. Sustainable Planning

USP 171. Sustainable Development

USP 173. History of Urban Planning and Design

USP 174. Regional Governance and Planning Reconsidered

USP 180. Transportation Planning

USP 181. Public Transportation

USP 187. USP 190. Senior Honors Seminar (4)

Prerequisites for enrolling in USP 190 are a minimum 3.5 GPA in the major, senior standing, USP 186 and USP 187, and consent of instructor. Majors who plan to enroll in USP 190 must declare their intent fall quarter in USP 186.
THE MINOR PROGRAM

The urban studies and planning minor consists of seven courses in urban studies and planning, selected with the prior approval of the USP student affairs advisor. Students who wish to minor in urban studies may do so by taking any two courses from among the lower-division sequence and the upper-division foundation courses, and five upper-division courses from among those that serve the USP major. All courses must be taken for a letter grade not lower than a C-. Prerequisite: upper-division standing or consent of instructor.

EDUCATION ABROAD PROGRAM

Students are encouraged to participate in UC Education Abroad Program (EAP) or Opportunities Abroad Program (OAP) while still making progress toward completing their USP major. For more information on EAP, see the Education Abroad Program or visit http://programsabroad.ucsd.edu. Students considering this option are advised to discuss their plans with the USP student affairs advisor before going abroad.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

LOWER-DIVISION

1. History of US Urban Communities (4)
 This course charts the development of urban communities across the United States both temporally and geographically. It examines the patterns of cleavage, conflict, and consensus that have shaped urban life. Social, cultural, and economic forces will be analyzed for the roles they have played in shaping the diverse communities of America's cities.

2. Urban World System (4)
 Examines cities and the environment in a global context. Emphasizes how the world's economy and the earth's ecology are increasingly interdependent. Focuses on biophysical and socio-economic concerns rooted in the contemporary division of labor among cities, Third World industrialization, and the post-industrial transformation of U.S. cities.

3. The City and Social Theory (4)
 An introduction to the sociological study of cities, focusing on urban society in the United States. Students in the course will examine theoretical approaches to the study of urban life; social stratification in the city; urban social and cultural systems; ethnic communities, suburbia, family life in the city, religion, art, and leisure.

87. Freshman Seminar I (1)
 This Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

UPPER-DIVISION

100. Introduction to Urban Planning (4)
 This course is designed to provide an introduction to the fundamentals of urban planning. It surveys important topics in urban planning, including economic development, urban design, transportation, environmental planning, housing, and the history of urban planning.

101. Introduction to Policy Analysis (4)
 This course will explore the process by which the preferences of individuals are converted into public policy. Also included will be an examination of the complexity of policy problems, methods for designing better policies, and a review of tools used by analysts and policy makers. Prerequisite: upper-division standing or consent of instructor.

102. Urban Economics (4)
 (Same as Economics 135.) Economic analysis of why and where cities develop, problems they cause, and public policies to deal with these problems. Determination of urban land use, reasons for suburbanization. Transportation and congestion in cities, zoning, poverty and housing, urban local government. Prerequisites: Economics 1A-B or 1-2 and Mathematics 10A or 20A.

103. American Cities in the Twentieth Century (4)
 (Same as HIUS 148.) This course surveys changes in U.S. cities since about 1900. Case studies of individual cities illustrate the social, political, and environmental consequences of rapid urban expansion, as well as the ways in which "urban problems" have been understood historically. Prerequisite: upper-division standing or consent of instructor.

104. Ethnic Diversity and the City (4)
 (Same as Ethnic Studies 105.) This course will examine the city as a crucible of ethnic identity exploring both the racial and ethnic dimensions of urban life in the U.S. from the Civil War to the present. Prerequisite: upper-division standing.

105. Urban Sociology (4)
 (Same as Sociology 153.) Introduces students to the major approaches in the sociological study of cities and to what a sociological analysis can add to our understanding of urban processes. Prerequisite: upper-division standing or consent of instructor.

107. Urban Politics (4)
 (Same as Political Science 102E.) This survey course focuses upon the following six topics: the evolution of urban politics since the mid-nineteenth century; the urban fiscal crisis; federal/urban relationships; the "new" politics; urban power structure and leadership; and selected contemporary policy issues such as downtown redevelopment, poverty, and race.

109. California Government and Politics (4)
 (Same as Political Science 103A.) This survey course explores five topics: 1) the state's political history; 2) campaign finance, the mass media, and elections; 4) the California role in national politics. Prerequisite: upper-division standing.

110. Advanced Topics in Urban Politics (4)
 (Same as Political Science 102J.) Building upon the introductory urban politics course, this advanced topics course explores issues such as community power, minority empowerment, and the politics of growth. A research paper is required. Students wishing to fulfill the paper require-ment with field research should enroll in the subsequent Political Science 102JJ course offered Summer Session II. Prerequisites: upper-division standing, consent of instructor.

111. Field Research in Urban Politics (4)
 (Same as Political Science 102JJ.) To be taken with the approval of the Political Science 102J instructor, this course allows students to do original field research on topics in urban politics. This course is offered in Summer Session II subsequent to a spring 102J course. May not be used to fulfill any major or minor requirements in political science or urban studies and planning. Prerequisites: USP 110/Political Science 102J and consent of instructor.

113. Politics and Policymaking in Los Angeles (4)
 (Same as Political Science 103B.) This course examines politics and policymaking in the five-county Los Angeles region. It explores the historical development of the city,
suburbs, and region; politics, power, and governance; and major policy challenges facing the city and metropolitan area. Prerequisite: upper-division standing.

115. Politics and Policymaking in San Diego (4) (Same as Political Science 103C.) This course examines how major policy decisions are made in San Diego. In analyses of the region’s power structure (including the roles of non-governmental organizations and the media), governance systems and reform efforts, and the politics of major infrastructure projects. Prerequisite: upper-division standing or consent of instructor.

116. California Local Government: Finance and Administration (4) This course surveys public finance and administration. It focuses on California’s and America’s major metropolitan centers. Prerequisite: upper-division standing or consent of instructor.

120. Urban Planning, Infrastructure, and Real Estate (4) This course will explore the interrelationships of urban planning, public infrastructure, and real estate development. These three issues are critical to an examination of the region: the growth of California’s and America’s major metropolitan centers. Prerequisite: upper-division standing or consent of instructor.

122. Redevelopment Planning, Policymaking, and Law (4) This course examines key elements of land use, planning, and law as related to urban redevelopment. It focuses on San Diego case studies, including the Petco Park/ East Village redevelopment project and the Navel Training Center (NTC) Redevelopment Area (Liberty Station). Prerequisite: upper-division standing or consent of instructor.

124. Land Use Planning (4) Introduction to land use planning in the United States: zoning and subdivision, regulation, growth management, farmland preservation, environmental protection, and comprehensive planning. Prerequisite: upper-division standing or consent of instructor.

125. The Design of Social Research (4) Research methods are tools for improving knowledge. Beginning with a research question, students will learn to select appropriate methods for sampling, collecting, and analyzing data to improve their research activities and research results. Prerequisite: upper-division standing or consent of instructor.

129. Research Methods: Studying Racial and Ethnic Communities (4) (Same as ETHN 190.) The course offers students the basic research methods and skills to study ethnic and racial communities. The topics to be explored include human and physical geography, transportation, employment, economic structure, cultural values, housing, health, education, and intergroup relations. Prerequisite: upper-division standing or consent of instructor.

130. Field Work in Racial and Ethnic Communities (4) (Same as ETHN 107.) This is a research course examining social, economic, and political issues in ethnic and racial communities through field work. Topics are examined through a variety of research methods which may include interviews, archival research, library, and historical research. Prerequisite: upper-division standing.

132. African Americans, Religion, and the City (4) (Same as Ethnic Studies 188.) This course details the history of African-American migration to urban areas after World War I and World War II and explores the role of religion in their lives as well as the impact that their religious experiences had upon the cities in which they lived. Prerequisite: upper-division standing.

133. Social Inequality and Public Policy (4) (Same as SOC 152.) Primary focus on understanding and analyzing poverty and public policy. Analysis of how current debates and public policy initiatives mesh with alternative social scientific explanations of poverty. Prerequisite: upper-division standing.

135. Asian and Latina Immigrant Workers in the Global Economy (4) (Same as ETHN 129.) This course will explore the social, political, and economic implications of global economic restructuring, immigration policies, and welfare reform on Asian and Latina immigrant women in the United States. We will critically examine these larger social forces from the perspectives of Latina and Asian immigrant women workers, incorporating theories of race, class, and gender to provide a careful reading of the experiences of immigrant women on the global assembly line. Prerequisite: upper-division standing.

137. Housing and Community Development Policy and Practice (4) History, theory, and practice of U.S. housing and community development. Public, private, and nonprofit sectors shape urban housing and policy decisions at the federal, state, local and neighborhood levels. Prerequisite: upper-division standing.

143. The U.S. Health Care System (4) This course will provide an overview of the organization of health care within the context of the community with emphasis on the political, social, and cultural influences. It is concerned with the socio-cultural, economic, and demographic trends of health and health-related programs in the United States to include sponsorship, financing, training and utilization of health personnel. Prerequisite: upper-division standing or consent of instructor. (Offered winter quarter.)

144. Environmental and Preventive Health Issues (4) This course will analyze needs of populations, highlight current public health problems such as chronic and communicable diseases, environmental hazards of diseases, psychiatric problems and additional diseases, new social mores affecting health maintenance, consumer health awareness and health practices, special needs of economically and socially disadvantaged populations. The focus is on selected areas of public and environmental health, namely: epidemiology, preventive services in family health, communicable and chronic disease control, and occupational health. Prerequisite: upper-division standing or consent of instructor. (Offered fall quarter.)

145. Aging—Social and Health Policy Issues (4) This course will provide a brief introduction to the nature and problems of aging, with emphasis on socioeconomic and health status; determinants of priorities of social and health policies will be examined through analysis of the structure and organization of selected programs for the elderly. Field visits will constitute part of the course. Prerequisite: upper-division standing.

147. Case Studies in Health Care Programs/ Poor and Underserved Population (4) The purpose of this course is to identify the special health needs of low income underserved populations and to review their status of care, factors influencing the incidence of disease and health problems, and political and legislative measures related to access and the provision of care. Selected current programs and policies that address the health-care needs of selected underserved populations, such as working poor, inner city populations, recent immigrants, and persons with severe disabling mental illness will be studied. Offered in alternate years. Prerequisite: upper-division standing or consent of instructor. (Offered spring quarter.)

165. History of the American Suburb (4) (Same as HUS 147.) This lecture course explores the development of suburbs in America, from the early nineteenth century to the contemporary era. Topics include suburban formation, class, ethnic and racial dimensions, government influence, and social and cultural responses to suburbs. The class will explore competing theories of suburbanization as it surveys the major literature. Prerequisite: upper-division standing.

166. History of San Diego (4) Course surveys the social, political, economic, cultural and environmental history of the San Diego region from pre-colonial times to the present, with an emphasis on the urban development that has occurred since 1900. Prerequisite: upper-division standing.

167. History of New York City (4) (Same as HUS 123.) New York City breathes history. Whether it is in the music, the literature, or the architecture, the city informs our most basic conceptions of American identity. This course examines the evolution of Gotham from its colonial era to today. Prerequisite: upper-division standing or consent of instructor.

170. Sustainable Planning (4) This course will explore the different factors and processes that shape a sustainable city. Contemporary green planning techniques and values will be evaluated. The course will also discuss planning, design, and implementation of sustainable facilities that will reduce sprawl. Prerequisite: upper-division standing or consent of instructor.

171. Sustainable Development (4) Sustainable development is a concept invoked by an increasingly wide range of scholars, activists, and organizations dedicated to promoting environmentally sound approaches to economic development. This course critically examines the diverse, often contradictory, interests in sustainability. It provides a transdisciplinary overview of emergent theories and practices. Prerequisite: upper-division standing.

173. History of Urban Planning and Design (4) The analysis of the evolution of city designs over time; study of the forces that influence the form and content of a city: why cities change; comparison of urban planning and architecture in Europe and the United States. Prerequisite: upper-division standing.

174. Regional Governance and Planning Reconsidered (4) Regional planning and local governance in California, focusing upon San Diego. Current system, the state/local relationship, and the incentives and disincentives for restructuring regional and local governance and planning. Prerequisite: upper-division standing.

177. Urban Design Practicum (4) This course is designed to introduce the student to the theory and practice of urban design, the form of the built environment, and how it is created. There is an emphasis on the development within a larger urban context. Prerequisite: upper-division standing or consent of instructor.

178. Urban Design for Redevelopment (4) This course addresses inner-city and suburban redevelopment focusing on urban design, and ethnic issues using advanced physical planning and urban design methods. Also included will be the environmental-impact assessments of redevelopment projects. Prerequisite: upper-division standing.

179. Urban Design, Theory, and Practice (4) Roles of the urban designer; preparing schematic proposals and performance statements, identifying opportunities for and constraints on designers. Each student will prepare a practical exercise in urban design using various urban design methods. Prerequisite: upper-division standing.

180. Transportation Planning (4) Introduction to the history and current state of urban transportation planning, including the relationship between transportation and urban form; role of automobile, mass transit, and alternative modes; methods for transportation systems analysis; decision-making, regulatory, and financing mechanisms; and public attitudes. Prerequisite: upper-division standing.

181. Public Transportation (4) Livable cities rely on balanced transportation systems that can mitigate the negative impacts of a car-oriented environment and society. This course will explore the role of public transit in creating a balanced transportation system. A variety of public transportation systems will be analyzed. Prerequisite: upper-division standing or consent of instructor.
186. Senior Sequence Research Proposal (6)
Introduces students to the theory and practice of social research including the challenges of writing a scholarly proposal. Students are required to complete 100 hours of an internship experience while critically examining the relations between social science and society. Prerequisites: upper-division standing, USP major.

187. Senior Sequence Research Project (6)
An intensive research, internship, and writing experience that culminates in an original senior research project. Students learn about the theoretical, ethical, and technical challenges of scholarly research and publication. Prerequisite: USP 186.

190. Senior Honors Seminar (4)
Each student enrolled will be required to write an honors essay, a substantial research paper on a current urban policy issue, under the supervision of a member of the faculty. Most often the essay will be based on their previous fieldwork courses and internship. This essay and other written exercises, as well as class participation, will be the basis of the final grade for the course. The seminar will rotate from year to year among the faculty in urban studies and planning. Prerequisites: USP 186, USP 187, major GPA 3.5, and permission of instructor.

191. GIS for Urban and Community Planning (4)
Introduction to Geographic Information Systems and using GIS to make decisions: acquiring data and organizing data in useful formats, demographic mapping, geocoding. Selected exercises examine crime data, political campaigns, banking and environmental planning, patterns of bank lending and finance. Prerequisites: upper-division standing, USP major.

193. San Diego Community Research (4)
Using the San Diego region as a case study, students will be introduced to the process of collecting, evaluating, and presenting urban and regional data using a variety of methods, including aggregate data analysis, historical research, and ethnography. Prerequisite: upper-division standing.

(Same as Cognitive Science 194, Communication 194, Earth Science 194, History 193, Political Science 194, Sociology E/194.) Course attached to six-unit internship taken by students participating in the UCDC program. Involves weekly seminar meetings with faculty and teaching assistant and a substantial research paper. Prerequisites: department approval and participating in UCDC program.

195. Teaching Apprentice–Undergraduate (2–4)
Introduction to teaching activities associated with course. Responsibilities include preparing reading materials assigned by the instructor, attending course lectures, meeting at least one hour per week with the instructor, assisting instructor in grading, and preparing a summary report to the instructor. Prerequisites: consent of instructor and an A in the course in which the student plans to assist.

198. Directed Group Study (2–4)
Directed group study on a topic or in a field not included in the regular departmental curriculum by special arrangement with a faculty member. Prerequisites: upper-division standing and consent of instructor.

199. Independent Study (2–4)
Reading and research programs and field-study projects to be arranged between student and instructor, depending on the student's needs and the instructor's advice in terms of these needs. Prerequisites: upper-division standing and consent of instructor.
Visual Arts

PROFESSORS
David Antin, M.A., Emeritus
Eleanor Antin, B.A., Emerita
Sheldon G. Brown, M.F.A.
Norman Bryson, Ph.D.
Harold Cohen, Diploma of Fine Arts, Emeritus
Steve Fagin, M.A.
Ana Gallaccio, M.F.A.
Jean-Pierre Gorin, Licence de Philosophie
Helen Mayer Harrison, M.A., Emerita
Newton A. Harrison, M.F.A., Emeritus
Louis J. Hock, M.F.A.
Fred S. Lonidier, M.F.A.
Kim R. MacConnel, M.F.A., Emeritus
Babette M. Mangolte
Lev Manovich, Ph.D.
Sheldon A. Nodelman, Ph.D.
Rubén Ortíz-Torres, M.F.A.
Patricia A. Patterson, Emerita
Faith Ringgold, M.A., Emerita
Jerome Rothenberg, M.A., Emeritus
Kuiyi Shen, Ph.D.
Ernest R. Silva, M.F.A.
Haim Steinbach, M.F.A.
Lesley Stern, Ph.D.
John C. Welchman, Ph.D.

ASSOCIATE PROFESSORS
Amy Adler, M.F.A.
Amy J. Alexander, M.F.A.
Benjamin Bratton, Ph.D.
Jordan Crandall
Edwin Teddy Cruz, M.Des.S.
Ricardo Dominguez, M.A.
Jack M. Greenstein, Ph.D.
Grant Kester, Ph.D.
Standish D. Lawder, Ph.D., Emeritus
Elizabeth Newsome, Ph.D.
Kyong Park, B.S.
Jennifer Pastor, M.F.A.
Cauleen Smith, M.F.A., Acting
Susan L. Smith, Ph.D.
Phel Steinmetz, Academic Senate Distinguished Teaching Award

LECTURERS WITH SECURITY OF EMPLOYMENT
Claudio Fenner-Lopez, M.A., Emeritus
Brett Stalbaum, M.F.A.

LECTURER WITH POTENTIAL FOR SECURITY OF EMPLOYMENT
Michael Triglio, M.F.A.
OFFICE: 216 Mandeville Center for the Arts
http://visarts.ucsd.edu

The Department of Visual Arts offers courses in painting, drawing, sculpture, performance, computing in the arts, film, video, photography, and art history/criticism (including that of film and video). A bachelor's degree from this department provides students with a solid liberal arts background and is preparatory training for careers as artists, art historians, filmmakers, video artists, photographers, digital media artists, and art critics. It also provides students the initial skills required for teaching and work in museums, television, and the commercial film, photography, and internet industries.

By its composition, the Department of Visual Arts is biased in the direction of actively producing artists and critics whose presence at the center of the contemporary art world necessitates reconsideration and reevaluation of artistic productions, their information structure, and significance. Consequently, a flexible introductory program of historically based courses has been devised mainly to provide the student an opportunity to concentrate on areas involving significantly different aesthetic and communication structures. A series of studio courses, in which painting and sculpture are included, is presented to bring the student into direct contact with the real contingencies compelling redistribution of aesthetic attitudes and reinterpretation of genres. Because of the exploratory nature of our program, the department is prepared to emphasize new media that would traditionally be considered to have scant relation to the visual arts. Thus, courses in theatrical events, linguistic structures, etc., are provided. In this context, theoretical courses with a media orientation, as in film, video, photography, or computing, are also offered.

The Department of Visual Arts is located in the Mandeville Center for the Arts. In addition, the master of fine arts program office, as well as faculty and graduate students' studios/research spaces are located in the Visual Arts Facility sited in Sixth College. Ph.D. student offices are located in the Literature Building.

Additional facilities and equipment are available to undergraduates in both the Mandeville Center and at the campuswide Media Center, providing the opportunity to study painting, drawing, photography, computing in the arts, 16mm film, performance, sculpture, and video. Facilities at the Media Center include portable video recording equipment, video and audio editing suites, non-linear editing, and production studios. Additional film equipment available includes an animation stand, optical printer, two sound-mixing studios, and numerous film editing suites. Courses in computing in the arts take place in the Silicon Graphics/Mac/NT lab located at the Visual Arts Facility, the INTEL-shared lab in the Applied Physics and Mathematics building, and a dedicated ICAM lab in building 201 University Center.

The University Art Gallery displays a continually changing series of exhibitions, and the Mandeville Annex Gallery, located on the lower level, is directed by visual arts undergraduate students. A gallery and performance space, located in the Visual Arts Facility, are directed by graduate students.

THE UNDERGRADUATE PROGRAM

COLLEGE REQUIREMENTS

The Department of Visual Arts teaches courses applicable toward the Muir, Sixth, and Warren general-education requirements; the Marshall humanities requirement, the Eleanor Roosevelt and Revelle fine arts requirements. Optional minors may be taken within any college.

MINOR IN VISUAL ARTS

The Department of Visual Arts offers minors in seven areas of study: studio painting/drawing/sculpture, photography, computing, art history, history and criticism of film and video, digital video and film production, and ICAM. A minor consists of seven specific courses, of which at least five must be upper-division. Because the requirements differ for each minor, prospective visual arts minors should consult with the departmental advisor for a complete list of appropriate classes acceptable for the minor.

Students are advised to begin their program in the second year; otherwise, they cannot be guaranteed enough time to complete the classes required for a minor.

Art History (VA26)

Required Courses
20. Introduction to Art History
 Choose one from
 21A. Introduction to Art of the Americas or Africa and Oceania
 21B. Introduction to Asian Art
 Choose one course from three of the five Distribution Areas A–E.
 Please refer to the Art History major for the course options in each area:
 • European Pre-Modern: Ancient and Medieval
 • European early Modern: Renaissance and Baroque
 • Modern and Contemporary
 • Arts of the Americas
 • Arts of Asia
 Choose two additional Art History courses from any area A–E.

Studio Minor (VA28)

Required Courses
22. Formations of Modern Art
111. Structure of Art
 Choose one course from
 1. Introduction to Art-Making: Two-Dimensional Practices
 2. Introduction to Art-Making: Motion- and Time-Based Art
 3. Introduction to Art-Making: Three-Dimensional Practices
 Choose four courses from:
 104A. Performing the Self
 104BN. Verbal Performance
 104CN. Personal Narrative
 105A. Drawing: Representing the Subject
 105B. Drawing: Practices and Genre
 105C. Drawing: Portfolio Projects
 105D. Aesthetics in Chinese Calligraphy
 105E. Chinese Calligraphy Installation
 106A. Painting: Image Making
 106B. Painting: Practices and Genre
 106C. Painting: Portfolio Projects
 107A. Sculpture: Making the Object
 107B. Sculpture: Practices and Genre
 107CN. Sculpture: Portfolio Projects

2010-2011 UC SAN DIEGO GENERAL CATALOG • VISUAL ARTS 1
ICAM: Interdisciplinary Computing and the Arts (VA29)

Required Courses
ICAM 40/VIS 40. Introduction to Computing in the Arts
ICAM 110. Computer Arts: Current Practice
ICAM 150/VIS 159. History of Art and Technology
Choose one from
1. Introduction to Art-Making: Two-Dimensional Practices
2. Introduction to Art-Making: Motion and Time-Based Art
3. Introduction to Art-Making: Three-Dimensional Practices
MUS 4. Introduction to Western Music
Choose one from
ICAM 101/VIS 140. Digital Imaging: Image and Interactivity
ICAM 103/MUS 170. Musical Acoustics
Choose two from
ICAM 102/VIS 145A. Time and Process Based Digital Media I
145B. Time and Process Based Digital Media II
ICAM 120. Virtual Environments
ICAM 130/VIS 149. Seminar in Contemporary Computer Topics
MUS 171. Computer Music I
MUS 172. Computer Music II
MUS 176. Music Technology Seminar
132. Installation Production and Studio
141A. Computer Programming for the Arts I
141B. Computer Programming for the Arts II
147A. Electronic Technologies for Art I
147B. Electronic Technologies for Art II

Computing (MO53)

Required Courses
22. Formations of Modern Art
VIS 40/ICAM 40. Introduction to Computing in the Arts
111. Structure of Art
VIS 159/ICAM 150. History of Art and Technology
Choose three upper-division Computing courses:
ICAM 101/VIS 140. Digital Imaging: Image and Interactivity
ICAM 102/VIS 145A. Time and Process Based Digital Media I
145B. Time and Process Based Digital Media II
147A. Electronic Technologies for Art I
147B. Electronic Technologies for Art II

Photography (MO54)

Required courses
22. Formations of Modern Art
60. Introduction to Digital Photography
111. Structure of Art
158. Histories of Photography
VIS 159/ICAM 150. History of Art and Technology
164. Photographic Strategies
165. Camera Techniques

History and Criticism of Film and Video (MO72)

Required courses
70N. Introduction to Media
84. History of Film
111. Structure of Art
Choose four upper-division courses in the history and/or criticism of film and video. (Courses numbered 150–157 except 156N)
*Five unique upper-division courses in media history/criticism are required if you are also completing a Visual Arts major or minor.

Digital Video and Film Production (MO71)

Required courses
70N. Introduction to Media
84. History of Film
111. Structure of Art
174. Media Sketchbook
Choose one upper-division course in digital video and film production listed below:
171. Digital Cinema: Theory and Production
175. Editing: Theory and Production
176. 16 mm Filmmaking
177. Scripting Strategies
178. Sound: Theory and Production
Choose two upper-division courses in the history and/or criticism of film and video listed below:
150. History of Silent Cinema
151. History of Experimental Film
152. Film in Social Context
153. The Genre Series
154. Hard Look at the Movies
155. The Director Series
157. Video History and Criticism
1945. Fantasy in Film
*Five unique upper-division courses in media are required if any of these courses overlap with your major or minor.
**Students may not major in Visual Arts Media (VA27) and minor in Digital Video and Film Production.

EDUCATION ABROAD PROGRAM

Students are often able to participate in the UC Education Abroad Program (EAP) and UC San Diego’s Opportunities Abroad Program (OAP) while still making progress toward completing their major. Financial aid is applicable to study abroad and special study abroad scholarships are readily available. Students considering this option should discuss their plans with an Education Abroad advisor before going abroad, and courses taken abroad must be approved by the departmental faculty advisor. More information on EAP/OAP is detailed in the Education Abroad Program of the UC San Diego General Catalog or on their Web site http://programsabroad.ucsd.edu/pao/. Interested students should contact the Programs Abroad Office in the International Center.

RESIDENCY REQUIREMENTS

A minimum of two-thirds of the course work completed for the major must be taken at UCSD. Students who transfer to UCSD in their second or third year may petition to substitute courses taken at other colleges and universities for major requirements.

Visual Arts 111, Structure of Art, must be taken at UCSD by all students, including transfer students, in the art history, media, and studio majors.

HONORS PROGRAMS

The department offers honors programs in art history, in media, and in studio for outstanding students.

The art history honors program will provide outstanding students with pre-professional experience. It consists of an issue-oriented seminar followed by a directed group study and will result in an exhibition with catalogue, a scholarly conference with a mock publication and/or series of research papers. Students who meet the criteria may, with permission of the art history faculty advisor or the art history honors seminar instructor, enroll in the art history honors program during the last quarter of their junior year or as a senior. This program is open to juniors and seniors who meet eligibility requirements: minimum major GPA of 3.5 (3.3 overall), completion of all lower-division art history requirements, completion of all upper-division art history distribution requirements, and completion of Art Historical Methods (VIS 112) and at least one additional art history seminar. The level of distinction will be determined by the faculty committee on the basis of work in the honors seminar and on the research project.

The media honors program will help students develop high-quality professional portfolios. The honors thesis project is a sequence of individual studies that runs the length of an academic year to provide sufficient time for ideas to develop and critically aware work to be produced. Students may agree to work with different faculty advisors each term or may engage a single advisor for the year. To be eligible for the honors thesis sequence, students must have at least a 3.5 GPA in the major and have approval of all the advisors with whom they will work. Qualified students may begin their sequence the last quarter of their junior year or during their senior year. At the end of the third quarter, all involved media faculty will meet to critique the overall quality of the final thesis work to determine level of distinction.

Through exhibition, verbal and written presentations and course work, the studio honors program is intended to give the student as strong a technical, critical, and theoretical base as possible. The program is open to juniors and seniors with a minimum 3.5 GPA in the major (3.0 overall), who have completed all lower-division studio requirements and all upper-division groups I, II, III, and IV (subgroup A) requirements.

Students interested in participating in an honors program should consult with the departmental advisor.

DOUBLE MAJOR WITHIN THE DEPARTMENT

There are three double majors within the Department of Visual Arts: Art History/Theory/Criticism paired with either studio, media, or ICAM. Students interested in a double major within the department must have at least ten upper-division...
courses that are unique to each departmental major and the remaining courses may overlap with other major requirements. Students should consult with the departmental advisor for additional information.

MAJOR REQUIREMENTS

Twenty courses are required in studio, media, and ICAM and eighteen courses in art history for the attainment of the bachelor of arts degree. A minimum of twelve of these courses must be upper-division, however, some majors may require more upper-division courses.

All courses taken to satisfy major requirements must be taken for a letter grade, and only grades of C- or better will be accepted in the visual arts major.

STUDIO MAJOR

The studio major is aimed at producing a theoretically based, highly productive group of artists. Lower-division courses are structured to expose students to a variety of ideas in and about the visual arts. Introductory skills are taught, but their development will occur at the upper-division level in conjunction with the student's increasing awareness of the range of theoretical possibilities in the field. The curriculum includes courses in drawing, painting, sculpture, performance, photography, video, 16mm film, many offerings in art history/criticism, as well as new courses in digital imaging and electronics.

Group I: Lower-Division

Foundation Level

Five courses required.
1. Introduction to Art Making: Two-Dimensional Practices
2. Introduction to Art Making: Motion and Time Based Art
3. Introduction to Art Making: Three-Dimensional Practices
4. Formations of Modern Art
5. Introduction to Art History
6. Introduction to the Arts of the Americas or Africa and Oceania
7. History of Film

Group II: Upper-Division

Entry Level

Five courses required.
8. Structure of Art
9. Choose four from
10. Introduction to Computing in the Arts
11. Introduction to Digital Photography
12. Introduction to Media
13. Performing the Self
14. Drawing: Representing the Subject
15. Painting: Image Making
16. Sculpture: Making the Object

Note: Required for Visual Arts studio, media, and art history majors.

Group III: Upper-Division

Intermediate Level

Two courses required.

104BN. Verbal Performance
105B. Drawing: Practices and Genre
105D. The Aesthetics of Chinese Calligraphy
106B. Painting: Practices and Genre
107B. Sculpture: Practices and Genre
140/ICAM 101. Digital Imaging: Image and Interactivity
147A. Electronic Technologies for the Art I

Group IV: Upper-Division

Advanced Level

Five courses required.

Group A

Choose two from

104CN. Personal Narrative
105C. Drawing: Portfolio Projects
105E. Chinese Calligraphy as Installation
106C. Painting: Portfolio Projects
107CN. Sculpture: Portfolio Projects
147B. Electronic Technologies for the Art II

Group B

Group A must be completed before Group B can be taken.

Choose three from

108. Advanced Projects in Art
110A. Contemporary Issues and Practices
110B. New Genres/New and Old Technologies
110C. Proposals, Plans, Presentations
110D. Visual Narrative/Tableau
110E. Art in Public Places/Site Specific Art
110F. Installation: Cross-Disciplinary Projects
110G. The Natural and Altered Environment
110H. Image and Text Art
110I. Performing for the Camera
110J. Ritual Performance
110K. Installation Performance
130. Special Projects in Visual Arts
132. Installation Production and Studio

Group V: Upper-Division

Non-Studio

Three courses required.

Upper-division art history, film history, and theory/criticism courses such as
113CN. History of Criticism III: Contemporary (1950–Present)
117B. Theories of Representation
117I. Western and Non-Western Rituals and Ceremonies
124CN. Nineteenth-Century Art
125A. Twentieth-Century Art
125BN. Contemporary Art
152. Film in Social Context

*VIS 40, 60, or 70N can be taken to fulfill Group II entry level studio requirements, but will not count toward the fifteen upper-division courses needed to fulfill the major requirements.

Group I—Required Courses

Two courses.

Honors Program in Studio

110M. Studio Honors I
110N. Studio Honors II

The Studio Honors I and the attached Studio Honors II count as one course towards the fulfillment of a Group IV requirement.

ART HISTORY/THEORY/CRITICISM MAJOR

The major in art history, theory, and criticism is designed both for students who desire a broadly based education in the humanities and for those who plan to pursue a career in an art-related profession. In both cases, the foundation for study is proficiency in the languages of artistic expression. Through the study of art history, students learn to treat works of art as manifestations of human belief, thought, and experience in Western and non-Western societies from prehistory to the present day. Courses in criticism review the theoretical approaches that are used to understand artistic achievement. By combining art historical and critical study, the program promotes in the student an awareness of the cultural traditions that have shaped his or her intellectual outlook and provides a framework for informed judgment on the crucial issues of meaning and expression in contemporary society.

Majors are encouraged to take relevant courses in allied disciplines such as history, communication, anthropology, and literature, and in such area programs as classics and Italian studies. In addition, students who plan to apply to graduate schools are strongly advised to develop proficiency in one or more foreign languages, as is dictated by their area of specialization.

FOUNDATION LEVEL—Lower-Division

Five courses required.

20. Introduction to Art History
22. Formations of Modern Art
23. Information Technologies in Art History

Choose one from

21A. Introduction to the Art of the Americas or Africa and Oceania
21B. Introduction to Asian Art

13. Information Technologies in Art History

Note: VIS 23 should be completed by the end of the sophomore year or taken the first time it is offered after a junior declares an art history major or transfers into the program. VIS 23 is a prerequisite for VIS 112.

ADVANCED LEVEL—Upper-Division

Thirteen courses required.

1154. Hard Look at the Movies
1157. Video History and Criticism
1158. Histories of Photography
1159/ICAM 150. History of Art and Technology
1194S. Fantasy in Film

*seminar
These two courses are required for all art history and criticism majors:

111. Structure of Art

112. Art Historical Methods

Note: Majors must complete VIS 112 by the end of their junior year and are strongly advised to do so earlier.

*Required of Visual Arts art history, media, and studio majors.

GROUP II—Distributional Requirement

Six courses. Choose one course from each of the following areas:

A. European Pre-Modern: Ancient and Medieval

120A. Greek Art
120B. Roman Art
120C. Late Antique Art
120D. Prehistoric Art
121AN. The Idea of Medieval Art
121B. Castles, Cathedrals, and Cities
121D. The Illuminated Manuscript in the Middle Ages
128A. Topics in Pre-Modern Art History
129A. * Seminar in Pre-Modern Art History

B. European Early Modern: Renaissance and Baroque

122AN. Renaissance Art
122CN. Defining High Renaissance Art
122D. Michelangelo
122GS. The City in Italy
122F. Leonardo's La Gioconda
123AN. Between Spirit and Flesh: Northern Art of the Early Renaissance
123BN. * Jan van Eyck
124AN. Baroque Art
128B. Topics in Early Modern Art History
129B. * Seminar in Early Modern Art History

C. Modern and Contemporary

124BN. Art and the Enlightenment
124CN. Nineteenth Century Art
125A. Twentieth Century Art
125BN. * Contemporary Art
125DN. * Marcel Duchamp
125F. Latin American Film
128C. Topics in Modern Art History
129C. * Seminar in Modern Art History
158. Histories of Photography
159/ICAM 150. History of Art and Technology

D. Arts of the Americas

126AN. Pre-Columbian Art of Ancient Mexico and Central America
126BN. The Art and Civilization of the Ancient Maya
126C. * Problems in Mesoamerican Art History
126D. * Problems in Ancient Maya Iconography and Inscriptions
126HN. Pacific Coast American Indian Art
126I. Southwest American Indian Art
126J. African and Afro-American Art
126K. Oceanic Art
126L. Latin American Art, 1890–1950
126Q. Latin American Art, 1950–Present
126R. Latin American Photography
128D. Topics in Art History of the Americas
129D. * Seminar in Art History of the Americas

E. Arts of Asia

127B. Arts of China
127C. Arts of Modern China
127D. * Early Chinese Painting
127E. * Later Chinese Painting
127F. * Japanese Buddhist Art
127G. * Twentieth-Century Chinese Art
127H. Twentieth-Century Art in China and Japan
127P. Arts of Japan
127Q. * Japanese Paintings and Prints
128E. Topics in Art History of Asia
129E. * Seminar in Art History of Asia

F. Theory

113BN. * History of Criticism II: Early Twentieth Century (1900–1950)
113CN. * History of Criticism III: Contemporary (1950–Present)
117A. * Narrative Structures
117B. * Theories of Representation
117E. * Problems in Ethnoaesthetics
117F. Theorizing the Americas
117G. Critical Visual Theory and Practice since 1980
117H. Constructing Gender in Fifth-Century BC Athens and Eighteenth-Century France
117L. * Western and Non-Western Rituals and Ceremonies
128F. Topics in Art Theory and Criticism
129F. * Seminar in Art Theory and Criticism

*seminar

Students must take at least three upper-division seminars in addition to VIS 112. These three additional seminars may come from any area and be taken in fulfillment of the distribution requirements or as open electives.

In accordance with standard university policy, the department requires that students take two-thirds of the upper-division courses in their major at UCSD. The distribution requirement must be fulfilled with courses taken at UCSD. Courses taken abroad or at other U.S. institutions do not count towards, and will not be substituted for, the six-course distribution requirement.

GROUP III—Electives

Five courses.

Students are required to take five upper-division courses in addition to VIS 111, VIS 112, and those used to fulfill the distribution requirements. At least three of these must be courses in art history or theory. For the remaining two, choose from the following:

- any upper-division art history course(s) in history or theory
- any upper-division course(s) in media history and criticism (e.g., VIS 150, 151, 152, 153, 154, 155, 156N, 157);
 - up to two upper-division courses in studio or media production; or
 - with permission of art history faculty advisor, one upper-division course in a related department or program such as anthropology, history, literature, or critical gender studies.

- two two-unit curatorial practices workshop courses (VIS 128P) count as one course towards the fulfillment of an elective.

Honors Program in Art History

129G. * Art History Honors Seminar
129H. * Art History Honors Directed Group Study

*seminar

The completion of both the Art History Honors Seminar and the Art History Honors Directed Group Study counts as one course towards the fulfillment of the Group III requirement.

Students who meet the criteria may, with permission of the art history faculty advisor or the Art History Honors Seminar instructor, enroll in the Art History Honors Program during the last quarter of their junior year or as a senior. This program is open to juniors and seniors who meet eligibility requirements. Please consult with the departmental advisor for these requirements.

MEDIA MAJOR

With a visual arts foundation, the program is designed for students who want to become creative videomakers, filmmakers, photographers, and computer artists, encouraging the hybridity of media. The curriculum combines hands-on experience of making with practical and theoretical criticism, provides historical, social, and aesthetic backgrounds for the understanding of modern media, and emphasizes creativity, versatility, and intelligence over technical specializations. It should allow students to go on to more specialized graduate programs in the media arts, to seek careers in film, television, computing, or photography, or to develop as independent artists. All media majors should see the Visual Arts Undergraduate advisor upon entrance into UCSD.

FOUNDATION LEVEL—Lower-Division

Six courses required.

Group A

1 or 2 or 3. Introduction to Art Making
22. Formations of Modern Art
84. History of Film

Group B

40/ICAM 40. Introduction to Computing in the Arts
670. Introduction to Digital Photography
70N. Introduction to Media

All six courses listed under Groups A and B above are required. VIS 70N is prerequisite for use of the Media Center facilities; no further production courses may be taken until VIS 70N is completed.

INTERMEDIATE LEVEL—Upper-Division

Nine courses required: six from Group A and three from Group B.

Group A

Two courses required. Required courses for all emphases:

111. Structure of Art
174. Media Sketchbook
Choose One Emphasis
Four courses required.

Computing Emphasis
Three courses plus one from photography or video and digital cinema.
140/ICAM 101. Digital Imaging: Image and Interactivity
145A/ICAM 102. Time- and Process-Based Digital Media I
147A. Electronic Technologies for Art I

Photography Emphasis
Two courses plus two from computing or video and digital cinema.
164. Photographic Strategies
165. Camera Techniques

Video and Digital Cinema Emphasis
Three courses plus one from computing or photography.
171. Digital Cinema—Theory and Production
175. Editing—Theory and Production
176. 16mm Filmmaking
177. Scripting Strategies
178. Sound—Theory and Production

GROUP B—History, Criticism, and Theory
Three courses required.
113BN. History of Criticism II: Early Twentieth Century (1900–1950)
113CN. History of Criticism III: Contemporary (1950–Present)
117B. Theories of Representation
150. History of Silent Cinema
151. History of Experimental Film
152. Film in Social Context
153. The Genre Series
154. Hard Look at the Movies
155. The Director Series
156N. Special Problems in Film History and Theory
157. Video History and Criticism
158. Histories of Photography
159/ICAM 150. History of Art and Technology

Note: Any courses in the art history distributional requirement may be taken to fulfill the Group B requirement.
VIS 158 is required for all students with a photography emphasis.
VIS 159/ICAM150 is required for all students with a computing emphasis.

ADVANCED LEVEL—Upper Division
Five courses required.
180A. Documentary Evidence and the Construction of Authenticity in Current Media Practices
180B. Fiction and Allegory in Current Media Practices
183A. Strategies of Self
183B. Strategies of Alterity

Three of the above are required for the photography and video and digital cinema emphases and two are required for the computing emphasis. The A and B portion of VIS 180 and VIS 183 courses cannot be taken concurrently.

Electives
Three courses required.

Computing Emphasis
Three courses required.
145B. Time- and Process-Based Digital Media II
147B. Electronic Technologies for Art II
149/ICAM 130. Seminar in Contemporary Computer Topics

Photography Electives
Two courses required.
166. Advanced Camera Techniques
167. Social Engagement in Photography
168. Color Techniques in Photography

Video and Digital Cinema Electives
Two of the courses below required.
181. Sound and Lighting
182. Advanced Editing
184. Advanced Scripting

• to give students necessary technical, theoretical, and historical backgrounds so they can contribute to the development of new aesthetics for computer media
• to prepare students to mediate between the worlds of computer science and technology, the arts, and the culture at large by being equally proficient with computing and cultural concepts
• to give students sufficient understanding of the trajectories of development in computing so they can anticipate and work with the emerging trends, rather than being locked in particular software currently available on the market

Lower-Division
Eight courses required.

Arts
Four courses required.
MUS 4. Introduction to Western Music
VIS 1. Introduction to Art-Making: Two-dimensional Practices
VIS 22F. Formations of Modern Art
VIS 77N. Introduction to Media

Computer Science
One course required.
CSE 11. Introduction to Computer Science: JAVA

Note: CSE 11 is an accelerated course in the JAVA programming language. CSE 8A/BL and 8B, which cover the same material in a non-accelerated format, may be substituted.

Mathematics
Two courses required.
Math. 20A. Calculus for Science and Engineering
Math. 20B. Calculus for Science and Engineering

Note: MATH 20A and 20B are accelerated calculus courses for Science and Engineering. MATH 10A, 10B, and 10C, which cover similar material in a non-accelerated format, may be substituted.

Computing and the Arts
One course required.
ICAM 40/VIS 40. Introduction to Computing in the Arts

Upper-Division
Twelve courses required.

Survey
One course required.
ICAM 110. Computing in the Arts: Current Practice

Foundation
Three courses required.
ICAM 101/VIS 140. Digital Imaging: Image and Interactivity
ICAM 102/VIS 145A. Time- and Process-Based Digital Media I
ICAM 103/MUS 170. Musical Acoustics

Advanced
Four courses required.
Choose three from
ICAM 120. Virtual Environments
ICAM 130/VIS 149. Seminar in Contemporary Computer Topics
VIS 109. Advanced Projects in Media
VIS 151. Special Projects in Media
VIS 132. Installation Production and Studio
VIS 141A. Computer Programming for the Arts I
VIS 147A. Electronic Technologies for Art I
VIS 174. Media Sketchbook
MUS 171. Computer Music I
MUS 173. Audio Production: Mixing and Editing
MUS 174A-B-C. Recording/MIDI Studio Techniques
MUS 175. Musical Psychoacoustics
MUS 176. Music Technology Seminar

Choose one from
VIS 141B. Computer Programming for the Arts II
VIS 145B. Time- and Process-Based Digital Media II
VIS 147B. Electronic Technologies for Art II
MUS 172. Computer Music II

Theory and History
Two courses required.
ICAM 150/VIS 159. History of Art and Technology and one of
VIS 150. History of Silent Cinema
VIS 151. History of the Experimental Film
VIS 152. Film in Social Context
VIS 153. The Genre Series
VIS 154. Hard Look at the Movies
VIS 155. The Director Series
VIS 156N. Special Problems in Film History and Theory
VIS 157. Video History and Criticism
VIS 158. Histories of Photography
VIS 194. Fantasy in Film
MUS 111. Topics/World Music Traditions
MUS 114. Music of the Twentieth Century

Senior Project
Two courses required.
ICAM 160A. Senior Project in Computer Arts I
ICAM 160B. Senior Project in Computer Arts II

Note: Enrollment in production courses is limited to two per quarter. Production courses are numbered VIS 109, 131, 132, 140/ICAM 101, 141A-B, 145A/ICAM 102, 145B, 147A-B, 174. ICAM 120, 160A-B.

MASTER OF FINE ARTS PROGRAM

The program is designed to provide intensive professional training for the student who proposes to pursue a career within the field of art—including art making, criticism, and theory. The scope of the UC San Diego program includes painting, sculpture, performance, installation art, public art, photography, film, video, and digital media. The program is unique in that the course of study provides for and encourages student mobility within this range of traditional and media-based components. It also offers opportunities for collaborative work.

The educational path of students is focused around their particular interests in art. The department seeks to provide an integrated and comprehensive introduction to the possibilities of contemporary art production, the intellectual structures that underlie them, and the "world view" which they entail. Art-making activities are considered serious intellectual endeavors, and all students in the program find themselves confronted by the need to develop their intellectual and critical abilities in working out their artistic positions. A body of theory-oriented courses is required. Therefore, we have no craft-oriented programs or facilities; nor do we have any courses in art education or art therapy. The courses offered are intended to develop in the student a coherent and informed understanding of the past and recent developments in art and art theory. The program also provides for establishing a confident grasp of contemporary technological possibilities, including those involved in film, video, photography, and the electronic media.

The program includes formal education in lecture and seminar courses as well as study groups, studio meetings, independent studies, and quarterly departmental critiques. Course work is intended to place art making in critical and intellectual context but doesn't underestimate the central importance of the student's own work. In fact, this aspect of the student's activity is expected to be self-motivated and forms the core around which the program of study operates and makes sense.

No two students will necessarily follow the same path through the degree program, and the constitution of individual programs will depend upon the analysis of their individual needs and interests, worked out by students in collaboration with their individual faculty advisors.

Admission Requirements

Grade-Point Average—An overall GPA of 3.00 and a 3.50 in a student's undergraduate major is required.
Art History—Students are expected to have had at least four semester courses or six quarter courses in art history and/or film history/criticism at the undergraduate level. Those who have a broader art history background will have a better chance of being awarded teaching assistantships. Students without this requirement can be admitted, but they may be expected to make up the six courses in excess of the seventy-two units required for the degree. If there are questions concerning this requirement, check with the department student affairs advisor.
Statement—Students are required to submit an essay of one-to-three pages on the direction of their work and its relationship to contemporary art. This essay should be critical in nature, refer explicitly to the student's own work, and may refer to other artists, recent events in art history, and issues in domains other than art that have bearing on the student's process, thought, and work.
Work—Students are asked to submit documentation of their best work and upload images and files into our online portfolio Web site. Access to the website is given once a UCSD online application has been filed through the Office of Graduate Studies. A printed catalog, this would include a critical essay of approximately 1,500 words.

Please note that no application will be processed until all required information has been received. Students should submit applications with the application fee to the graduate admissions office using the UCSD online application on or before Thursday, January 18, 2011. Official transcripts should be sent directly to the department and postmarked no later than January 18, 2011. The statement of purpose and letters of recommendation must be sent electronically through the online application.

REQUIREMENTS FOR THE DEGREE

The M.F.A. is considered a terminal degree in studio work, and is a two- to three-year program. The following requirements must be completed in order to receive the M.F.A.:

First Year Review—This review takes place in the third quarter in residence. Students make a formal presentation of their work to a faculty committee; this includes a position paper and an oral examination. This presentation is considered a departmental examination, and if at its conclusion the student's work is judged to be inadequate, the student may be dismissed regardless of GPA, or may be reviewed again in the fourth quarter.

Seventy-two units of course work, including a four-unit apprentice teaching course, are required. Students may select sixteen of these units (four courses) from upper-division undergraduate course offerings. (See listings in this catalog.) There are six required Visual Arts core seminars:

• Contemporary Critical Issues (VIS 201)
• Art Practice Seminar (VIS 202)
• Working Critique Seminar (VIS 203)
• Introduction to Graduate Studies in Art Practice (VIS 205)
• one course in either Art Practice/Theory group or the Art History/Theory/Criticism group
• one additional seminar in Art Practice/Theory group (VIS 210-219)

Specific information on other course distribution requirements can be obtained from the department. One additional graduate course is required and must be taken in another department.

Students who remain registered in the third (optional) year must average one graduate course per quarter.

THE M.F.A. FINAL PRESENTATION

Presentation of Work—During the last quarter in residence, each student is required to present to the public a coherent exhibition or screening of his or her work.

Oral Examination—A committee of three Department of Visual Arts faculty members and one faculty member from another department will administer an oral examination to each student covering the student's work and its relationship to the field of art.

Thesis—Students are required to submit some form of written work for the M.F.A. degree. Four options are available:
1. Catalog—The student would design and have printed an actual catalog. This would include a critical essay of approximately 1,500 words.
2. Critical paper—The student would write a critical paper of 3,000 words analyzing his or her process and the relationship of his or her work to recent art history, with references to contemporary styles and specific artists.
3. Analytical essay on some phase of art—Students who have focused on both art production and art
the histories and theoretical assumptions of the engaging art objects and practices and what are disseminated? What are the alternative modes of and contexts (social, intellectual, institutional, and societies, and with reference to categories such as artistic identities constructed across distinct epochspast, in the urbanized West and in other cultures, in doctoral student in art and media history, whatever seminars address the core questions about artworks Categories/Constructs under the heading recent developments in the field in the seminars time, place, and media specific seminars listed under New Visions Theories/...

4. Critical thesis—Students whose emphasis is essentially critical and who do not present an M.F.A. exhibition would write a forty- to fifty-page thesis—the topic to be decided by the student and his or her advisor.

ADMISSION

Applicants may apply to the Ph.D. program only. The policy of UCSD is to admit in the fall quarter only. Applications for admission must be postmarked January and selections will be made by April 1. For concentrations under which the M.A. is granted, see below. Prior to matriculation, students must have obtained a bachelor’s or master’s degree in art history, art practice, or another field approved by the departmental committee on graduate studies, such as (but not limited to) history, literature, anthropology, or philosophy.

Applicants must submit their academic transcripts, scores on the Graduate Record Examination, three letters of recommendation, a statement of purpose (no more than 750 words), and a sample of written work (e.g., senior honors thesis, M.A. thesis, or other research or critical paper, preferably in art or media history). An overall GPA of 3.00 and a 3.50 in a student’s undergraduate major are required. The Test of English as a Foreign Language (TOEFL) is required for international applicants. Applicants must have a good reading knowledge of at least one foreign language at the time they enter the program.

Please note that no application will be processed until all required information has been received. Students should submit applications with the application fee to the graduate admissions office on or before Tuesday, January 11, 2011. The Statement of Purpose and letters of recommendation must be submitted online along with the application. Official transcripts should be sent directly to the department and postmarked no later than Tuesday, January 11, 2011. Students are asked to upload their writing samples and images (for art practice concentration) into our online portfolio Web site. Access to the Web site is given once a UCSD online application has been filed through the Office of Graduate Studies.

AREAS OF CONCENTRATION

During the first year of study, each student must declare an area of major concentration in consultation with his or her individual faculty advisor and with the approval of the Ph.D. graduate advisor. The major concentration may be selected from the following: ancient art; medieval art; Renaissance art; early modern art; modern art (nineteenth and twentieth centuries); contemporary art; media studies (film, video, photography, digital media); Meso-American art; and art practice. A student may also choose, in consultation with his or her advisor and the Ph.D. graduate advisor, a field of emphasis that cuts across the areas within the department (e.g., art or media theory and criticism) or, with appropriate approvals, one that involves another department (e.g., early modern art history and history). Once the field of emphasis is established, it will be the responsibility of the student and his or her advisor to devise a program of courses, independent study and outside reading, over and above the required program, that will ensure that the student will attain command of the major field of emphasis.

FOREIGN LANGUAGE REQUIREMENTS

Students will be required to demonstrate reading knowledge of at least two of the foreign languages required for advanced study in art history, theory, and criticism. One should be the language most directly relevant to the student’s area of specialization. The student and his or her individual advisor will jointly determine the examination languages. Foreign language requirements will normally be satisfied by passing examinations requiring sight translation of texts in art history, theory, and criticism. Students are required to pass their entering language examination in order to be advanced to their second year in the program. The first-year language examination will be offered during the fall quarter of the entering year. The second required language examination will be offered during the fall quarter.
quarter of the second year in the program. Students must pass both language examinations by the end of their second year to continue in the program.

EXAMINATIONS

No later than the first quarter of the third year, the student, in consultation with his or her individual advisor, will form a qualifying examination committee that will consist of four members drawn from the visual arts department faculty and one tenured faculty member outside the department. The composition of the qualifying examination committee and the dissertation defense for students in the Art Practice degree program is: four department faculty (two art history, theory, and criticism faculty, and at least one tenured studio faculty) and one tenured faculty member outside the department. This committee will conduct the qualifying examination required by university policy and oversee completion of the dissertation. The membership of the committee must be approved by the Ph.D. graduate advisor and ultimately the dean of Graduate Studies. The qualifying examination will consist of a three-hour written examination, followed within the next two days by a two-hour oral examination, in the student's major field. A student must have completed all required course work and passed all language examinations before taking the qualifying examination, which will be held no later than the end of the third year. Upon successful completion of the qualifying examination, the student will be advanced to candidacy. A student who fails either the written or the oral examination may petition the committee and Ph.D. graduate advisor to repeat the examination. Any student who fails a second time will not be advanced to candidacy. In some cases, the committee and graduate program director may judge such student eligible to receive a terminal M.A. (see below).

DISSERTATION

Following successful completion of the qualifying examinations, the student will complete a doctoral dissertation in his or her field of emphasis. Upon selection of the dissertation topic, a colloquium will be held at which the student will present a prospectus that outlines the topic and program of research for discussion by the graduate group and for approval by his or her committee. After the committee has reviewed the finished dissertation, the student will defend his or her thesis orally. Students in the Art Practice concentration will submit a written dissertation project, the nature of which will be determined by language in contemporary performance art. Students interested in an M.A. only are not admitted to our program.

M.A. DEGREE

All students will apply for and be admitted to the Ph.D. Program. An M.A. degree may be awarded to continuing Ph.D. students upon successful completion of the following: (1) at least twelve two-unit courses, including VIS 204, Re-Thinking Art History, and two seminars from the group VIS 210–219; (2) a three-hour written examination in a designated field of emphasis (see "Examinations" above); (3) one language examination; and (4) an M.A. thesis. The M.A. is not automatically awarded; students must apply in advance to the Ph.D. graduate advisor and in accordance with university procedures, no later than the first two weeks of the quarter in which they expect to receive the degree.

Students interested in an M.A. only are not admitted to our program.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

Note: The following list of courses represents all visual arts offerings; not all courses offered each year.

LOWER-DIVISION

1. Introduction to Art-Making: Two-Dimensional Practices (4)
An introduction to the concepts and techniques of art making with specific reference to the artists and issues of the twentieth century. Lectures and studio classes will examine the nature of images in relation to various themes. Drawing, painting, found objects, and texts will be employed. Prerequisite: none. This course is offered only one time each year.

2. Introduction to Art-Making: Motion and Time Based Art (4)
An introduction to the process of art making utilizing the transaction between people, objects, and situations. Emphasis is placed on developing fundamental control of the processes and materials through lectures, field, and lab experience. Basic discussion of image making included. Prerequisite: none. Materials fee required.

70N. Introduction to Media (6)
Operating as both a lecture and production course, this introductory class provides a technical foundation and theoretical context for all subsequent production-oriented film and video studies. In the laboratory, the student will learn the basic skills necessary to initiate video production. Completion of Visual Arts 70N is necessary to obtain a media card. Prerequisite: none. Materials fee required.

84. History of Film (4)
A survey of the history and the art of the cinema. The course will stress the origins of cinema and the contributions of the earliest filmmakers, including those of Europe, Russia, and the United States. Prerequisite: none. Materials fee required. This course is offered only one time each year.

87. Freshman Seminar (1)
The Freshman Seminar program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students with preference given to entering freshmen. Prerequisite: none.

UPPER-DIVISION

104A. Performing the Self (4)
Using autobiography, dream, confession, fantasy, or other means to invent one’s self in a new way, or to evoke the variety of selves in our imagination, the course experiments with and explores the rich possibilities available to the contemporary artist in his or her own persona. Prerequisites: two from VIS 1, 2, 3 and 111.

104BN. Verbal Performance (4)
The course is designed to introduce the student to the part played by language in contemporary performance art.
Monologues, musically derived sound poetry, vocalizations, verbally inscribed installations, and the uses of language and voice in film and video are some of the areas explored.

Prerequisite: VIS 104A.

104CN. Personal Narrative (4)
The course will explore personal experiential materials to more fully understand the relationship of voice, style, language, with personal, identity, self-awareness, and desire. Instructor and student will discuss student work as well as published personal narrative.

Prerequisite: VIS 104BN.

105A. Drawing: Representing the Subject (4)
A studio course in beginning drawing covering basic drawing and composition. These concepts will be introduced by the use of models, landscapes, and conceptual projects.

Prerequisites: two from VIS 1, 2, 3 and 111.

105B. Drawing: Practices and Genre (4)
A continuation of VIS 105A. A studio course in which the student will investigate a wider variety of technical and conceptual issues involved in contemporary art practice related to drawing.

Prerequisite: VIS 105A.

105C. Drawing: Portfolio Projects (4)
A studio course in drawing, emphasizing individual creative problems. Class projects, discussions, and critiques will focus on issues related to intention, subject matter, and context.

Prerequisite: VIS 105B.

105D. The Aesthetics of Chinese Calligraphy (4)
This course examines Chinese calligraphy as an art form. This conceptually based introductory course combines fundamentals with creative explorations. Students are exposed to traditional and contemporary forms of Chinese calligraphy while encouraged to experiment with basic aesthetic grammars.

Prerequisite: VIS 105A.

105E. Chinese Calligraphy as Installation (4)
This course concerns East-West aesthetic interactions. What are the possibilities when calligraphy, an ancient form of Chinese art, is combined with installation, a contemporary artistic Western practice? Emphasis is placed on such issues as cultural hybridity, globalization, multiculturality, and commercialization.

Prerequisite: VIS 105D.

106A. Painting: Image Making (4)
A studio course focusing on problems inherent in painting—transferring information and ideas onto a two-dimensional surface, color, composition, as well as manual and technical procedures. These concepts will be explored through the use of models, still life, and landscapes.

Prerequisites: two from VIS 1, 2, 3 and 111.

106B. Painting: Practices and Genre (4)
A continuation of VIS 106A. A studio course in which the student will investigate a wider variety of technical and conceptual issues involved in contemporary art practice related to painting.

Prerequisite: VIS 106A.

106C. Painting: Portfolio Projects (4)
A studio course in painting emphasizing individual creative problems. Class projects, discussions, and critiques will focus on issues related to intention, subject matter, and context.

Prerequisite: VIS 106B.

107A. Sculpture: Making the Object (4)
A studio course focusing on the problems involved in transferring ideas and information into three-dimensions. Course will explore materials and construction as dictated by the intended object. Specific problems to be investigated will be determined by the individual professor.

Prerequisites: two from VIS 1, 2, 3 and 111.

107B. Sculpture: Practices and Genre (4)
A studio course in which the student will investigate a wider variety of technical and conceptual issues as well as materials involved in contemporary art practice related to sculpture.

Prerequisite: VIS 107A.

107CN. Sculpture: Portfolio Projects (4)
A studio course in sculpture emphasizing individual creative problems. Class projects, discussions, and critiques will focus on issues related to intention, subject matter, and context.

Prerequisite: VIS 107B.

108. Advanced Projects in Art (4)
A studio course for serious art students at the advanced level. Stress will be placed on individual creative problems. Specific orientation of this course will vary with the instructor. Topics may include film, video, photography, performance, printmaking. May be repeated twice for credit.

Prerequisite: consent of instructor, department stamp required.

109. Advanced Projects in Media (4)
Individual or group projects over one or two quarters. Specific project organized by the student(s) will be realized during this course with instructor acting as a close advisor.

Prerequisites: consent of instructor prior to enrollment.

Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B.

108. New Genre/New Media Old Technologies (4)
Advances the idea of different materials, methods, and practices raised at the intermediate level in drawing, painting, and sculpture, and explores and utilizes new and traditional media in studio production of work. emphasis on multiple media, combining traditional and electronic media, as well as different genres, in an attempt to prepare new directions for the student’s ideas.

Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B.

109. Proposals, Plans, Presentations (4)
Exposes the use of the maquette, or sketch, in the process of developing, proposing and planning visual works in various media for public projects, site specific works, group exhibitions and personal presentations. The student will work on synthesizing ideas and representing them in alternate forms that deal with conception, fabrication and presentation.

Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B.

110. Art in Public Space/Site-Specific Art (4)
Course takes painting, sculpture, and related media out of the studio/gallery and into the public sphere by examining the contemporary history of public artworks, both traditional and nontraditional site-specific work, focusing on production, critical discussion, and writing.

Prerequisites: two from VIS 104CN, 105C, 106C, 107CN, or 147B, or consent of instructor.

110E. Art in Public Space/ Site-Specific Art (4)
Course takes painting, sculpture, and related media out of the studio/gallery and into the public sphere by examining the contemporary history of public artworks, both traditional and nontraditional site-specific work, focusing on production, critical discussion, and writing.

Prerequisites: two from VIS 104CN, 105C, 106C, 107CN, or 147B, or consent of instructor.

110F. Installation: Cross-Disciplinary Projects (4)
Attempts to expand the idea contained in a singular work, or object, into the space of the gallery, forms such as comic, or light, drawing or story boards, and the use of photo, video, and computing.

Prerequisites: two from VIS 104CN, 105C, 106C, 107CN, or 147B, or consent of instructor.

110G. The Natural and Altered Environment (4)
Explores the natural and altered environment as a basis for subject as well as place of work pertaining to the environment.

Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B.

110H. Image and Text Art (4)
Devoted to the study and practice of the multiple ways in which writing and other forms of visible language have been incorporated into contemporary and traditional artworks, including artists' books, collaging and poster art, visual and concrete poetry, typographical experiments, and calligraphies.

Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B.

110I. Performing for the Camera (4)
The dematerialization of the performer into a media based image—video, film, slides, still photographs, using the camera as a spy, a co-conspirator, a friend or a foe—employing time lags, spatial derangement, image deconstruction, along with narrative, text, history, to invent time based pieces that break new ground while being firmly rooted in an understanding of the rich body of work done in this area over the last three decades.

Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B.

110J. Ritual Performance (4)
The course will explore forms of art making that use dance and music, traditional and non-traditional, as a way to deal with the contemporary history of public artworks with traditional and nontraditional site-specific work, focusing on the studio/gallery and into the public sphere by examining the contemporary history of public artworks, both traditional and nontraditional site-specific work, focusing on production, critical discussion, and writing.

Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B.

111. The Art of the Essay (4)
The art historian as performer working with materials, objects, props, technology, to create multi-layered, experimental, interesting three-dimensional art spaces in which the artist's body, voice, actions, or memory, moves through, enlivens, or haunts the physical space.

Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B.

111M. Studio Honors I (4)
An advanced studio course intended for the productive, motivated, and self-disciplined student with a clear and unified body of work. The intent is to help refine and expand the student’s work and ideas towards an exhibition and verbal written position.

Prerequisite: consent of the instructor, department stamp required.

111N. Studio Honors II (4)
The second advanced studio course in the Honors Program in Studio, the successful completion of which will lead towards an honors degree in the studio major. The course builds on the critical and technical issues raised in Studio Honors I.

Prerequisite: VIS 111M.

111. The Structure of Art (4)
This course will address the structure of significance in art. We will consider the modes of signification in a wide range of representational and nonrepresentational artworks from architecture through drawing, painting, sculpture, photography, video, and film to performance. Examples will be selected from various places and epochs. This course is required for transfer students. This course is offered during winter quarter only.

112. Art Historical Methods (4)
A critical review of the principal strategies of investigation in the history and present art historical practice, a scrutiny of their contexts and underlying assumptions, and a look at alternative possibilities. The various traditions for formal and iconographic analysis as well as the categories of historical description will be studied. Required for all art history and criticism majors.

Prerequisites: VIS 23 and one upper-division art history course; two recommended.

113AN. History of Criticism I: Early Modern (4)
Introducing Classical, Medieval, and Renaissance theories of the image, we concentrate on developments in the eighteenth and nineteenth centuries: Neo-Classicism, Romanticism, Realism, and Symbolism.

Prerequisites: one from VIS 20, VIS 21A, VIS 21B, VIS 22 or upper-division standing.

113BN. History of Criticism II: Early Twentieth Century (1900–1950) (4)
The principal theories of art and criticism from Symbolism until 1945: formalism and modernism, abstraction, Surrealism, Marxism, and social art histories, phenomenology, existentialism.

Prerequisite: none; VIS 112 or two upper-division courses in art history strongly recommended.

113CN. History of Criticism III: Contemporary (1950–Present) (4)
Recent approaches to the image in art history and visual culture: structuralism, semiotics, psychoanalysis,
post-structuralism, post-modernism, feminism, post-colonialism, cultural studies. Prerequisite: none; VIS 112 or two upper-division courses in art history strongly recommended.

117A. Narrative Structures (4)
A discussion of major Western theories of representation with a critique of their applicability to art. Material is drawn from a variety of historical periods from Antiquity to Modern. Emphasis is given to theories special significance for art history, but some attention is given to representation theories in other contexts. Readings may include selections from such modern theorists as Peirce, Panofsky, Gombrich, Benveniste, Barfield, Barthes, Goodman, Foucault, Broyson, Summers, and Mitchell and from classic texts by Plato, Aristotle, John of Damascus, Alberti, and Leonardo.
Prerequisite: none; one or more upper-division courses in art history strongly recommended. Note: Majors must have taken VIS 23.

117B. Theories of Representation (4)
This seminar will address and critique various approaches to studying the art of non-Western societies with respect to their own aesthetic and cultural systems. Students are encouraged to explore comparative philosophies of art and art history from the perspectives of Western aesthetic scholarship.
Prerequisite: none; VIS 21A or 21B or 112 or two upper-division courses in art history strongly recommended.

117C. Late Antique Art (4)
During the later centuries of the Roman Empire, the ancient world underwent a profound crisis. Beset by barbarian invasions, torn by internal conflict and drastic social change, inflamed with religious passion which was to lead to a transformation of the individual, the world, and the divine, this momentous age saw the conversion of the Roman world to Christianity, the transfer of power from Rome to Constantinople, and the creation of a new society and culture. Out of this ferment, during the centuries from Constantine to Justinian, there emerged a new art forms that represent the new vision of an otherworldly reality: a vaulted architecture of apocalyptic space, a new art of mosaics that dissolved surfaces in light, and a figurative language both abstractly symbolic and urgently expressive. The great creative epoch transformed the heritage of classical Greco-Roman art and laid the foundations of the art of the Christian West and Moslem East for the next thousand years.
Prerequisite: none; VIS 20 or 120B recommended.

120A. Greek Art (4)
This course offers new approaches to understanding Michelangelo's greatest creations. By considering how each work relates to the setting for which it was intended, by regarding critical literature and artistic borrowings as evidence about the works, and by studying the thought of the spiritual reformers who counseled Michelangelo, new interpretations emerge which show the artist to be a deeply religious man who invested his works with both public and private meanings.
Prerequisite: upper-division standing; or one of the following courses: VIS 20, 21, 22, or 23, or any upper-division course in art history and criticism in European history.

122CN. Defining High Renaissance Art (4)
Since the sixteenth century, the names of Leonardo da Vinci, Raphael, and Bramante have conjured up images of the highest artistic achievement. This course shows the intellectual concerns common to the artist and scientific productions of Leonardo help illuminate the distinctive character of the art of two of his greatest contemporaries.
Prerequisite: none; VIS 20, 122AN, or 122BN recommended.

123AN. Between Spirit and Flesh: Northern Art of the Early Renaissance (4)
The art of the Early Renaissance in Northern Europe is marked by what appears to be striking conflict: on the one hand, a new love of nature and of the pleasures of court society; and on the other, an intensified spirituality and focus on personal devotion. This course explores these provocative cross-currents in works by master painters like Jan van Eyck and Hieronymus Bosch as well as lesser known mass-produced objects of everyday use.
Prerequisite: none; VIS 20, 121AN, and/or 122AN recommended.

123BN. Jan van Eyck (4)
Intensive study of the career of Jan van Eyck, whose magical paintings have always fascinated us with their microscopically detailed naturalism and subtly disguised spiritual meanings. Masterpieces such as the Arnolfini Wedding are emphasized.
Prerequisite: none; VIS 112 or two upper-division courses in art history recommended.

124AN. Baroque Art (4)
This course discusses the achievement of such major artists as Caravaggio, Giorgia, Bernini, Borromini, Rubens, Rembrandt, Velasquez, and Vermeer within a culture marked by increasing intellectual specialization, the entrenchment of modern national boundaries, the co-existence of rival religious organizations, the formations of artistic academies, and the rise of an art market serving the flourishing middle class.
Prerequisite: none; VIS 20 recommended.

124BN. Art and the Enlightenment (4)
Eighteenth century artists and critics were convinced that art could be a force to improve society. This course places Roccoco and Neo-Classical artists such as Watteau, Fragonard, Tiepolo, Hogarth, Reynolds, Vigee Lebrun, Blake, and David, within the context of art academies, colonialism, the Grand Tour, Enlightenment conceptualizations of history and nature, and the American and French Revolutions.
Prerequisite: none; VIS 20 or 22 recommended.

124CN. Nineteenth-Century Art (4)
A critical survey discussion of the crises of the Enlightenment, Romanticism, Realism and Naturalism, Academic Art and History Painting, representations of the New World, the Pre-Raphaelites, Impressionism, International Symbolism, Post-Impressionism, and the beginnings of Modernism.
Prerequisite: none; VIS 20 or 22 recommended.
125A. Twentieth-Century Art (4)
A critical survey outlining the major avant-gardes after 1900: Fauvism, Cubism, Metaphysical Painting, Futurism, Dada, Surrealism, Neo-Plasticism, Purism, the Soviet avant-garde, Socialist Realism, and American art before Abstract Expressionism. Prerequisite: none; VIS 20 or 22 recommended.

125BN. Contemporary Art (4)
Art after Abstract Expressionism: Happenings, Post-painterly Abstraction, Minimalism, Performance, Earth Art, Conceptual Art, Neo-Expressionism, Post-Conceptualism and development in the 1990s, including non-Western contexts. We also explore the relation of these tendencies to Postmodernism, Feminism, and ideas of postcoloniality. Prerequisite: none; VIS 20 or 22 recommended.

125DN. Marcel Duchamp (4)
A critical examination of the work of one of the most radical twentieth century artists. In Duchamp's four dimensional perspective, the ideas of art-object, artist, and art itself are deconstructed. The Large Glass and Etant Donnees... are the twin foci of an oeuvre without boundaries in which many twentieth-century avant-garde devices such as chance techniques, conceptual art, and the fashioning of fictive identities, are invented. Prerequisite: none.

125F. Latin American Film (4)
An overview of film and filmmaking in Latin America and its reception in a national context and beyond. Prerequisite: upper-division standing.

126AN. Pre-Columbian Art of Ancient Mexico and Central America (4)
An introduction to the cities and monuments of the ancient civilizations which flourished in Mexico and Central America before the Spanish Conquest. This course will cover the major cultures of Mesoamerica, including the Olmec, Aztec, and neighboring groups. Prerequisite: none; VIS 21 recommended.

126BN. The Art and Civilization of the Ancient Maya (4)
This course offers a history of Maya society from its formative stages to the eve of the Spanish Conquest through an investigation of its art and archeology. Special attention is given to its unique calendar and writing systems. Prerequisite: none; VIS 21 recommended.

126C. Problems in Mesoamerican Art History (4)
Topics of this seminar will address special problems or areas of research related to the major civilizations of ancient Mexico and Central America. Course offerings will vary to focus upon particular themes, subjects, or interpretive problems. Prerequisite: upper-division standing. VIS 21A recommended. Student may not receive credit for VIS 126B and VIS 126C.

126D. Problems in Ancient Maya Iconography and Inscriptions (4)
This seminar focuses upon the art, architecture, and inscriptions of the ancient Maya. Topics will vary within a range of problems that concern hieroglyphic writing, architecture, and visual symbols the Maya elite used to mediate their social, political, and spiritual words. Prerequisite: upper-division standing. VIS 21A recommended.

126HN. Pacific Coast American Indian Art (4)
Explores the art and expressive culture of American Indians of far western United States, including California and Pacific Northwest. Social and cultural contexts of artistic traditions and their beliefs in the ways in which their practices are transmitted, ceremonialism, beliefs, and creative visions of their makers. Prerequisite: upper-division standing. VIS 21A recommended. Student may not receive credit for VIS 126CN and VIS 126HN.

126I. African and Afro-American Art (4)
The dynamic, expressive arts of selected West African societies and their subsequent survival and transformation in the New World will be studied. Emphasis will be placed on Afro-American modes of art and ceremony in the United States, Haiti, and Brazil. Prerequisite: upper-division standing. VIS 21A recommended. Student may not receive credit for VIS 126DN and VIS 126J.

126K. Oceanic Art (4)
An examination of the relation of art to ritual life, mythology, and social organization in the native Polynesian and Melanesian cultures of Hawaii, New Guinea, the Solomon Islands, and Australia. Prerequisite: upper-division standing. VIS 21A recommended. Student may not receive credit for VIS 126E and VIS 126K.

126L. Latin American Art: Modern to Postmodern, 1890–1950 (4)
A survey of major figures and movements in Latin American art that have dominated for century and a half and into the mid-twentieth century. Prerequisite: upper-division standing.

126M. Modern Latin American Art to the Present (4)
A survey of major figures and movements in Latin American art from the mid-twentieth century to the present. Prerequisite: upper-division standing.

126P. Latin American Art: Modern to Postmodern, 1890–1950 (4)
A survey of major figures and movements in Latin American art that have dominated for century and a half and into the mid-twentieth century. Prerequisite: upper-division standing.

126R. Latin American Photography (4)
An overview of the history of photography, concentrating on developments in Latin America. Prerequisite: upper-division standing.

127B. Arts of China (4)
Course will survey major trends in the arts of China from a thematic point of view, explore factors behind the making of works of art, including political and religious meanings, and examine contexts for art in contemporary cultural and philosophical phenomena. Prerequisite: upper-division standing. VIS 21B recommended.

127C. Arts of Modern China (4)
Course will explore Chinese art of the twentieth century. By examining artworks in different media, we will investigate the most compelling of the multiple realities that Chinese artists have constructed for themselves. Prerequisite: upper-division standing. VIS 21B recommended.

127D. Early Chinese Painting (4)
Explore representations of figures and landscapes from the dawn of Chinese painting through the Yuan dynasty, with stress on developments in style and subject matter, and relationships to contemporary issues in philosophy, religion, government, and culture. Prerequisite: upper-division standing. VIS 21B recommended.

127E. Later Chinese Painting (4)
Explores major schools and artists of the Ming and Qing periods, including issues surrounding court patronage of professional painters, revitalization of art through reviving ancient styles, commercialization's challenges to scholar-artist art, and the influences of the West. Prerequisite: upper-division standing. VIS 21B recommended.

127F. Japanese Buddhist Art (4)
Explore the development of Buddhist art and architecture in Japan. Focus on the role of art in Buddhist practice and philosophy and the function of syncretic elements in Japanese Buddhist art. Prerequisite: upper-division standing. VIS 21B recommended.

127G. Japanese Painting and Prints (4)
Explore the development of Buddhist art and architecture in Japan. Focus on the role of art in Buddhist practice and philosophy and the function of syncretic elements in Japanese Buddhist art. Prerequisite: upper-division standing. VIS 21B recommended.

127H. Japanese Art and Architecture (4)
Explore the development of Buddhist art and architecture in Japan. Focus on the role of art in Buddhist practice and philosophy and the function of syncretic elements in Japanese Buddhist art. Prerequisite: upper-division standing. VIS 21B recommended.

127I. Japanese Painting and Prints (4)
Explore the development of Buddhist art and architecture in Japan. Focus on the role of art in Buddhist practice and philosophy and the function of syncretic elements in Japanese Buddhist art. Prerequisite: upper-division standing. VIS 21B recommended.

127J. Japanese Art and Architecture (4)
Explore the development of Buddhist art and architecture in Japan. Focus on the role of art in Buddhist practice and philosophy and the function of syncretic elements in Japanese Buddhist art. Prerequisite: upper-division standing. VIS 21B recommended.

127L. Arts of Japan (4)
Course is a survey of the visual arts of Japan, considering how the arts developed in the context of Japan's history and discussing how art and architecture were used for philosophical, religious, and material ends. Prerequisite: upper-division standing. VIS 21B recommended.

127Q. Japanese Painting and Prints (4)
Explore major trends in Japanese pictorial art from the seventh century to the nineteenth century, with focus on function, style and subject matter, and with particular emphasis on the relationship between Japanese art and that of continental Asia. Prerequisite: upper-division standing. VIS 21B recommended.

128A. Topics in Pre-Modern Art History (4)
A lecture course on a topic of special interest to visiting and permanent faculty. Topics vary from term to term and with instructor and may not be repeated. These courses fulfill upper-division distribution requirements. As the courses under this heading will be offered less frequently than those of the regular curriculum, students are urged to check for availability and descriptions of these supplementary courses in the annual catalogue listings. Like the courses listed under VIS 129 below, the letters following the course number indicate the area in which the courses fall. Students may take courses with the same number but of different content, with consent of instructor and/or program advisor. May be taken three times for credit. Prerequisite: none; courses in art history recommended.

128B. Topics in Early Modern Art History (4)
A lecture course on a topic of special interest in Renaissance or Baroque art. May be taken three times for credit. Prerequisite: upper-division standing; courses in art history (VIS 113AN–129F) are recommended.

128C. Topics in Modern Art History (4)
A lecture course on a topic of special interest on Modern or Contemporary art. May be taken three times for credit. Prerequisite: upper-division standing; courses in art history (VIS 113AN–129F) are recommended.

128D. Topics in Art History of the Americas (4)
A lecture course on the topic of special interest in the Anasazi cultures of America, the Pacific Islands, and Central America. Prerequisite: upper-division standing. Courses in art history (VIS 113AN–129F) are recommended.

128E. Topics in Art History of Asia (4)
A lecture course on the topic of special interest in India, China, and Japan. Prerequisites: upper-division standing. Courses in art history (VIS 113AN–129F) are recommended.

128F. Topics in Art Theory and Criticism (4)
A lecture course on a topic of special interest in art theory, art criticism, or the history of literature on art. May be taken three times for credit. Prerequisites: upper-division standing. Courses in art history (VIS 113AN–129F) are recommended.

128P. Curatorial Practices Workshop (2)
Students will be exposed to the professional context of institutional art research, preparation, exhibition and publication. The content of the course will evolve around the curatorial experience of the particular faculty member. May be repeated once for credit. Two- to six-unit curatorial practices workshops courses count as one course towards the fulfillment of a Group B requirement in the major. Prerequisites: VIS 112 or upper-division courses in art history (VIS 113AN–129F).

129A–F. Seminar in Art Criticism and Theory (4)
These seminar courses provide the opportunity for in-depth study of a particular work, artist, subject, period, or issue. Courses offered under this heading may reflect the current research interests of the instructor or treat a controversial theme in the field of art history and criticism. Active student research and classroom participation are expected. Enrollment is limited and preference will be given to majors. The letters following 129 in the course
number designate the particular area of art history or theory concerned. Students may take courses with the same number but of different content more than once for credit, with consent of the instructor and/or the program advisor. May be taken three times for credit. Prerequisite: VIS 112 or two upper-division courses in art history.

129A. Seminar in Pre-Modern Art History (4)
A seminar on an advanced topic of special interest in art criticism and/or art history. Students may take courses with the same number but of different content more than once for credit. Prerequisite: VIS 112 or two upper-division courses in art history (VIS 113AN–1129).

129B. Seminar in Early Modern Art History (4)
A seminar on an advanced topic of special interest in Renaissance or Baroque art. Prerequisites: VIS 112 or two upper-division courses in art history (VIS 113AN–1129).

129C. Seminar in Modern Art History (4)
A seminar on an advanced topic of special interest in the history and theory of art since 1945. May be repeated once for credit. Prerequisites: VIS 112 or two upper-division courses in art history (VIS 113AN–1129).

129D. Seminar in Art History of the Americas (4)
A seminar on an advanced topic of special interest in the Ancient Americas to Africa and the Pacific Islands. Prerequisites: VIS 112 or two upper-division courses in art history (VIS 113AN–1129).

129E. Seminar in Art History of Asia (4)
A seminar on an advanced topic of special interest in India, China, and Japan. Prerequisites: VIS 112 or two upper-division courses in art history (VIS 113AN–1129).

129F. Seminar in Art Theory and Criticism (4)
A seminar on an advanced topic of special interest in art theory, art criticism, or the history of literature on art. Prerequisites: VIS 112 or two upper-division courses in art history (VIS 113AN–1129).

129G. Art History Honors Seminar (4)
This research seminar, centered on a series of critical, theoretical, and/or historical issues that cut across subdisciplinary specializations, provides outstanding advanced students with the opportunity to undertake graduate-level research. The first part of a two-part sequence, this seminar is designed for the Art History Honors Group. Prerequisite: VIS 129H. Prerequisite: consent of instructor or art history faculty advisor, department stamp required. Note: The Art History Honors Seminar and the attached Art History Honors Directed Group Study counts as one course towards the fulfillment of the Group III requirement.

129H. Art History Honors Directed Group Study (4)
The second part of the honors program sequence, this course provides a forum for students engaged in research and writing to develop their ideas with the help of a faculty advisor and in conjunction with similarly engaged students. Prerequisites: consent of instructor or art history faculty advisor, department stamp required.

130. Special Projects in Visual Arts (4)
Special topic course may be offered. Prerequisites: consent of instructor or art history faculty advisor, department stamp required. Note: Special topic courses in Visual Arts may be offered. Consent of instructor or department stamp required.

131. Special Projects in Media (4)
Special topic course may be offered. Prerequisites: consent of instructor or art history faculty advisor, department stamp required. Note: Special topic courses in Media may be offered. Consent of instructor or department stamp required.

132. Installation Production and Studio (4)
Through discussions and readings, the class will examine the issues and aesthetics of installation art-making. Using media familiar to them, students will produce several projects. May be taken twice for credit. Studio and visual arts/media majors only. Prerequisites: from (VIS 104CN, 105C, 106C, 107CN, or 147B) or one from (VIS 180A, 180B, 183A, and 183B) or consent of instructor. Open to studio, media majors only.

140. Digital Imaging: Image and Interactivity (4)
(Cross-listed with ICAM 101.) Introduction to digital image involving images, texts, and interactive display and operates both within computer-mediated space (i.e., Web site) and in physical space (i.e., artist book). Interactive narrative and computational forms. Materials fee required. Prerequisite: VIS 40 or ICAM 40. Open to media, ICAM, and studio majors; computing and ICAM minors only. Two production course limitation.

141A. Computer Programming for the Arts I (4)
Introduces external APIs currently of interest in the arts (example: OpenGL2, J2ME, Servlets/JSP, Java3D) extending a common programming language (C++, Ctech, Java). Students gain API fluency through planning and coding software or software mediated art projects. CSE 11 or equivalent recommended. Materials fee required. Prerequisites: VIS 40 or ICAM 40 and (VIS 140 or ICAM 101). Open to ICAM majors and minors only. Two production course limitation.

141B. Computer Programming for the Arts II (4)
Students extend their programming capabilities to include the creation of reusable software libraries, packages, database APIs, tools, utilities, and applications intended to be publishable and useful to other practicing artists, or as preparatory work for the student’s senior thesis sequence. Materials fee required. Prerequisite: VIS 141A. Open to ICAM majors and minors only. Two production-course limitation.

145A. Time- and Process-Based Digital Media I (4)
(Cross-listed with ICAM 102.) Introduces time- and process-based digital media. Students will implement time- and process-based media will be studied and projects produced. Topics may include software art, software and hardware interfacing, interaction, and installation in an art context. CSE 5A or equivalent programming experience recommended. Materials fee required. Prerequisites: VIS 40 or ICAM 40 and (VIS 140 or ICAM 101). Open to media and ICAM majors and ICAM minors only. Two production-course limitation.

145B. Time- and Process-Based Digital Media II (4)
Students will implement time- and process-based projects under direction of faculty. Projects such as software and hardware interfacing, computer mediated performance, software art, installation, interactive environments, data visualization and sonification will be produced as advanced study and portfolio project. Materials fee required. Prerequisite: VIS 145A or ICAM 102. Open to media and ICAM majors; ICAM minors only. Two production course limitation.

147A. Electronic Technologies for Art I (4)
Develops artwork and installations that utilize digital electronics. Techniques in digital electronic construction and computer interfacing. Producing interactive control of light, sound, image, and electromechanics. Construction of devices which use the microprocessor to control devices, including the use of microcontroller and the interaction of physical elements and machines. Materials fee required. Prerequisite: VIS 1. Open to media, studio, and ICAM majors; ICAM minors only. Two production course limitation.

147B. Electronic Technologies for Art II (4)
Continuation of the electronics curriculum. Design of programmable microcontroller systems for creating artworks that are able to respond to complex sets of input conditions, perform algorithmic and procedural processing, and generate real-time output. Purchase of components kit required. Prerequisite: VIS 147A. Open to media, studio, and ICAM majors; computing and ICAM minors only. Two production course limitation.

149. Seminar in Contemporary Computer Topics (4)
(Cross-listed with ICAM 130.) Topics relevant to computer-based art and music-making, such as computer methods for making art/music, design of interactive systems, spatialization of visual/musical elements, critical studies. Topics will vary. May be repeated twice. Materials fee required. Prerequisites: VIS 140 or ICAM 101, VIS 145A or ICAM 102, and MUS 170 or ICAM 103 recommended. Open to studio, Studio and visual arts/media majors only; ICAM majors only. Two production course limitation.

150. History of Silent Cinema (4)
An investigation of silent films from early cinema to the development of a classical style in the twenties, exploring issues of spectatorship, analyzing differences between American and European cinema, and highlighting the interaction between film and other arts. Works by such film artists as Man Ray, Salvador Dali, Maya Deren, Stan Brakhage, and Michael Snow will be examined in depth. Materials fee required. Prerequisite: VIS 84 or consent of instructor.

151. History of the Experimental Film (4)
An inquiry into a specialized alternative history of film, consisting of experimental works made outside the conventions of the movie industry and which in their style and nature are closer to modernist painting, poetry, etc., than to the mainstream theatrical cinema. Works by such film artists as Man Ray, Salvador Dali, Maya Deren, Stan Brakhage, and Michael Snow will be examined in depth. Materials fee required. Prerequisite: VIS 84 or consent of instructor.

152. Film in Social Context (4)
This collection of courses gathers, under one cover, films that are strongly marked by period, geography, and the culture within which they received their dominating local quality. These courses pay particular attention to the stamp of place—climate, dress, habitation, language, music, politics—as well as the films moves that helped color such works as environmental. The series takes in the following subjects: Third World films, the Munich films (the new wave of Germans who made their first features in Munich following 1967), films of the American thirties and their relationship to current thought, American Westerns, Ethnographic Film, Brazil’s Cinema Novo, etc. Specific topics to be covered will vary with the instructor. May be repeated twice for credit. Materials fee required. Prerequisite: VIS 84 or consent of instructor.

153. The Genre Series (4)
A group of related courses exploring the conventions within such generic and mythic forms as the cowboy, shamus, chorus girls, and vampire films. May be repeated twice for credit. Materials fee required. Prerequisite: none; VIS 84 recommended.

154. Hard Look at the Movies (4)
Examines a choice of films, selected along different lines of analysis, coherent within the particular premise of the course. Films are selected from different periods and genres among Hollywood, European, and Third World films. May be repeated once for credit. Materials fee required. Prerequisite: VIS 84 or consent of instructor.

155. The Director Series (4)
A course that describes the director's experiences, looks, and structure of director-dominated films. A different director will be studied each quarter. The student will be required to attend the lecture in the course and to meet with the instructor at least once each week. May be repeated three times for credit. Materials fee required. Prerequisite: VIS 84 or consent of instructor.

156N. Special Problems in Film History and Theory (4)
Seminar on an advanced topic in the history and theory of film. Credit will vary from quarter to quarter. Prerequisite: VIS 84 or consent of instructor. Note: Materials fee required.

157. Video History and Criticism (4)
A lecture course that examines video as an art form, its relationship to the development from television and video art forms, and surveys current work in the medium. Materials fee required. Prerequisites: VIS 22, 84, and 111.

158. Histories of Photography (4)
Photography is so ubiquitous a part of our culture that it seems to defy any simple historical definition. Accordingly, this course presents a doubled account of the medium; it explores both the historical and cultural specificity of a singular photographic practice as well as the multitude of photographs that inhabit our world. Will examine a number of the most important photographic themes from the past 200 years. Prerequisite: none.

159. History of Art and Technology (4)
(Cross-listed with ICAM 150.) Aims to provide historical context for computer art by examining the interaction between the arts, media technologies, and sciences in different historical periods. Topics vary (e.g., Renaissance perspective, futurism and technology, and computer art of
the 1950s and 1960s. Prerequisite: none. Material fee required.

164. Photographic Strategies (4)
Introduction to the aesthetic problems in photography. Both historical and contemporary art practices will be examined. Students will create photo pieces to engage these conceptual issues. Material fee required. Prerequisites: VIS 60 and consent of instructor. Open to media majors and photography minors only. Two production-course limitation.

165. Camera Techniques (4)
An intermediate course designed to teach students to develop fiber-based black and white printing skills, to introduce the fundamentals of digital photography, and to address the issues of text in relation to image in art practices. Material fee required. Prerequisites: VIS 60 and consent of instructor. Open to media majors and photography minors only. Two production-course limitation.

166. Advanced Camera Techniques (4)
Advanced-level course working with refined techniques in traditional and digital photographic art practices. The student will also be instructed in the development of a portfolio for use in post-graduation career development. Material fee required (photo lab). Prerequisites: VIS 164, 165, and consent of instructor. Open to media majors only. Two production-course limitation.

167. Social Engagement in Photography (4)
This course will examine the use of photography to examine social issues. Working in both the documentary and fictional modes, students will produce projects on social concerns to present for critical feedback in class. Prerequisites: VIS 158, VIS 164, VIS 165.

168. Color Techniques in Photography (4)
Instruction in color photography and printing. Lectures on theory and demonstration in shooting and printing color negatives. Material fee required. Prerequisites: VIS 60, 164, 165. Open to media majors only. Note: Portfolio required for admission. Two production-course limitation.

171. Digital Cinema—Theory and Production (4)
A digital image is not a film image, and this reality and its technological and conceptual implications are what this course will attempt to map out, exploring its possibilities and the massive overload of media aesthetics it implies. Prerequisites: (VIS 40/ICAM 40), VIS 60, VIS 70N and VIS 174, plus one from VIS 1, VIS 2, VIS 3, VIS 22 or VIS 84. Open to media majors only. Two production-course limitation.

174. Media Sketchbook (4)
Video and film used both as production technology and as device to explore the fundamental character of film-making and time-based computer arts practices. Students perform all aspects of production with attention to developing ideas and building analytical/critical skills. Prerequisite: VIS 70N. Open to media and ICAM majors only. Two production-course limitation.

175. Editing—Theory and Production (4)
The evolving aims and grammars of editing practice in film and digital media will be examined. These histories will create a context for exploring contemporary editing strategies. The productions will be centered on digital editing practice. Prerequisites: (VIS 40/ICAM 40), VIS 60, VIS 70N, and VIS 174 plus one from VIS 1, VIS 2, VIS 3, VIS 22, or VIS 84. Open to media majors only. Two production-course limitation.

176. 16mm Filmmaking (4)
A technical foundation and creative theoretical context for film production will be explored. Students will produce a short film with post-synchronized sounds and final mixed-track. Prerequisites: (VIS 40/ICAM 40), 60, 70N and 174, plus one from VIS 1, VIS 2, VIS 3, VIS 22 or VIS 84. Open to media majors only. Two production-course limitation.

177. Scripting Strategies (4)
Script writing, reading, and analysis of traditional and experimental narrative film. The emphasis will be on the structural character of the scripting process and its language. Students will write several short scripts along with analytical papers. Prerequisites: VIS 70N and VIS 174. Open to media majors only. Two production-course limitation.

178. Sound—Theory and Production (4)
Sound design plays an increasing role in media production and has opened up new structural possibilities for narrative strategies. A critical and historical review of sound design and a production methodology component. Critical papers and soundtracks for projects will be required. Prerequisites: VIS 70N and VIS 174. Open to media majors only. Two production-course limitation.

180A. Documentary Evidence and the Construction of Authenticity in Current Media Practices (4)
Exploration of concepts in representational artworks by critically examining “found” vs. “made” recorded material. Advanced film/video, photography, computing work. Issues of narrative and structure; attention to formal aspects of media work emphasized. Cannot be taken same quarter as VIS 180B. Prerequisites: VIS 174 and one from VIS 140/ICAM 101, 145A, ICAM 102, 145B, 164, 165, 172, 175, 176, 177; VIS 177 strongly recommended. Open to media majors only. Two production-course limitation.

180B. Fiction and Allegory in Current Media Practices (4)
Exploration of choices in invention, emphasizing “made” over “found.” Advanced film/video, photography, and computing. Issues of narrative and structure, and formal aspects of media work emphasized. Cannot be taken same quarter as VIS 180A. Prerequisites: VIS 174 and one from VIS 140/ICAM 101, 145A/ICAM 102, 145B, 164, 165, 172, 175, 176; VIS 177 strongly recommended. Open to media majors only. Two production-course limitation.

181. Sound and Lighting (4)
Advanced course to gain sophisticated control of lighting and sound recording techniques with understanding of theoretical implications and interrelation between production values and subject matter. Interactions between sound and image in various works in film, video, or installation. Prerequisite: VIS 174, and three of the following courses depending on emphasis: VIS 164, 165, 172, 175, 176, 177. Open to media majors only. Two production-course limitation.

182. Advanced Editing (4)
Film/video editing and problems of editing from theoretical and practical points-of-view. Films and tapes analyzed on a frame-by-frame, shot-by-shot basis. Edit stock material and generate own materials for editing final project. Aesthetic and technical similarities/differences of film/video. Prerequisites: VIS 175 and two courses from the 180 and 183 series. Open to majors only. Two production-course limitation.

183A. Strategies of Self (4)
Looks at the way that self-identity is reflected and produced through various media practices. Focus is on the rhetorical strategies of biography and autobiography in media, and students compare and contrast these strategies with those drawn from related cultural forms. Cannot be taken same quarter as VIS 183B. Prerequisites: VIS 174 and one from VIS 140/ICAM 101, VIS 145A/ICAM 102, VIS 147A, VIS 164, VIS 165, VIS 175, VIS 176, VIS 177 strongly recommended. Open to media majors only. Two production-course limitation.

183B. Strategies of Alterity (4)
Looks at difference as it is reflected and constructed in various media practices. Course will examine a wide range of forms and genres such as ethnography, science fiction, crime narratives, documentary film, political drama, and animated shorts. Cannot be taken same quarter as VIS 183A. Prerequisites: VIS 174 and one from VIS 140/ICAM 101, VIS 145A/ICAM 102, VIS 147A, VIS 164, VIS 165, VIS 175, VIS 176, VIS 177 strongly recommended. Open to media majors only. Two production-course limitation.

184. Advanced Scripting (4)
Film/video production will be framed through the script writing process, focusing on the problems of longer duration, density, and adaptation from other media. Students will both read and analyze both historical and contemporary scripts and produce a thirty- to sixty-minute script. Prerequisites: VIS 177 and two courses from VIS 180A, VIS 180B, VIS 183A, VIS 183B. Open to media majors only. Two production-course limitation.

194S. Fantasy in Film (4)
This course will explore the path of the deliberately “un-real” in movies. Fantasy in film will be considered both in terms of its psychological manifestations and also in terms of imaginary worlds created in such willfully anti-realistic genres as science-fiction, horror, and musical films. Material fee required. Prerequisite: Upper-division standing. Offered in summer session only.

197. Media Honors Thesis (4)
This advanced-level sequence coordinates three consecutive independent research courses to culminate in a completed thesis project in the third quarter of study. After the project’s public presentation, the faculty involved in the project will determine whether the student will graduate with departmental honors. Prerequisite: consent of instructor. Note: Requires a written proposal, 3.5 GPA in the major, prior consent from all involved, and approvals by the department chair and provost.

198. Directed Group Study (2–4)
Directed group study on a topic or in a group field not included in regular department curriculum, by special arrangement with a faculty member. Prerequisite: consent of instructor. Note: Open only to upper-division students. Requires instructor’s, department chair’s, and provost’s approval. Pass/Not Pass grades only.

199. Special Studies in the Visual Arts (4)
Independent reading, research, or creative work under direction of a faculty member. Prerequisite: consent of instructor. Note: Open only to upper-division students. Requires instructor’s, department chair’s, and provost’s approval. Pass/Not Pass grades only.

ICAM 103. Musical Acoustics (4)
(Cross-listed with MUS 170.) An introduction to the acoustics of music with particular emphasis on contemporary digital techniques for understanding and manipulating sound. Prerequisites: MUS 1A, 2A, or 4.

ICAM 110. Computing in the Arts: Current Practice (4)
Designed around the presentations by visiting artists, critics, and scientists involved with contemporary issues related to computer arts. Lectures by the instructor and contextual readings provide background material for the visitor presentations. Prerequisite: none. Note: Material fee required.

ICAM 120. Virtual Environments (4)
Students create virtual reality artworks. Projects may be done individually or in groups. Exploration of theoretical issues involved will underlie acquisition of techniques utilized in the construction of virtual realities. Material fee required. Prerequisites: VIS 145A or ICAM 102; CSE 11 recommended. Open to ICAM majors and minors only. Two production-course limitation.

ICAM 160A. Senior Project in Computer Arts I (4)
Students pursue projects of their own design over two quarters with support from faculty in a seminar environment. Project proposals are developed, informed by project development guidelines from real-world examples. Collaborations are possible. Portfolio required for admission. Prerequisite: VIS 141B or VIS 145B or VIS 147B or MUS 172. Open to ICAM majors only. Department stamp required.

ICAM 160B. Senior Project in Computer Arts II (4)
Continuation of ICAM 160A. Completion and presentation of independent projects along with documentation. Prerequisites: ICAM 160A. Open to ICAM majors only. Department stamp required.

ICAM 198. Directed Group Study (2–4)
Directed group study on a topic or in a group field not included in regular department curriculum by special arrangement with a faculty member. May be repeated twice for credit. Prerequisites: consent of instructor. Note: Open only to upper-division students. Requires instructor approval. Pass/Not Pass grades only.

ICAM 199. Special Studies (2/4)
Independent reading, research or creative work under direction of faculty member. Prerequisites: department stamp and upper-division standing and consent of instructor required.

2010-2011 UC SAN DIEGO GENERAL CATALOG • VISUAL ARTS 13
217. Communities and Subcultures (4)
A critical examination of the practices of self-defined communities (e.g., Bauhaus, Shaker, Surrealists), which have attempted to change the social and spiritual quality of life by aesthetic means and of communities and subcultures defined by other means.

218N. Imaging Selves and Others (4)
Explores various strategies exhibited in a wide range of contemporary art practices engaging in the representation of personality, spirituality, and the physical self.

219. Special Topics in Art Practice/Theory (4)
Examines a topic of special interest to permanent and visiting faculty that is not addressed in the regular curriculum. As in other Art Practice/Theory seminars, students will both produce work and read and write critically about the topics. Topics will vary.

HISTORY/THEORY/CRITICISM

Categories/Constructs

230. “Art” as Category (4)
Explores the complex and changing criteria by which certain categories of objects and practices are designated as “art” in cultural and visual contexts.

231N. Confronting the Object (4)
Investigates the nature and status of art objects and practices and the forms of engagement with them through topics such as the practice and metaphors of description; phenomenological analysis; film analysis; and ekphrasis and visual analysis.

232. Artistic Identities (4)
Explores the historical, theoretical, and cross-cultural concepts of the artist/author and his/her varied and shifting identities as inscribed in works of art, recorded in biographical and critical literature, and enacted through social roles.

234N. Frames of View (4)
Critical and historical analysis of the institutions, social networks, and communicative media through which art is presented to its audiences. May also address theories of vision and visuality, spectatorship, public space, originality and reproduction, and public space.

235N. Frames of Analysis (4)
Historical critique and philosophical analysis of the central terminology and constructs of art history, theory, and criticism. May address such key terms as style, genre, and periodization or a topic such as theories of representation and narrative. Prerequisite: graduate standing or consent of instructor.

Theories/New Visions

240. Histories of Theory and Criticism: Platon to Post-Modernism (4)
Historical and critical investigations of art theory and criticism, antiquity to the present. May be taught as an historical overview or focus on a particular topic, e.g., Critical Currents Since World War II, Renaissance Foundations, From Culture to Popular Culture.

241. Topics in Contemporary Critical Theory (4)
Focused studies, changing from year to year, in contemporary theoretical positions and perspectives (e.g., New Social Theory, Post-Colonialism, Gender Theory) and one or more leading theorists (e.g., Deleuze, C. S. Peirce, Steinberg).

242. Theories of Media and New Media (4)
Critical study of the ways in which media (film, video, photography) and new media have been theorized. May be taught from an historical or comparative perspective or focus on a single theorist or theorist.

243. Aesthetic Theory (4)
Study of the philosophical concepts of the function of art and visual culture and the criteria for its evaluation in diverse epochs and cultures. May be taught as an historical overview or comparative study or focus on a single topic or theorist.

244. Studies in the Relationship of Theory and Practice (4)
Investigations of one or more artist-theorists or movements, contemporary or historical, that put in issue the interface between theory and practice. May also focus on a topic such as perspective, color, or narrative, or genre such as film or new media.

Times/Terrains

250N. Seminar in Ancient Art (4)
The arts of Greece, Rome, and allied cultures in the ancient world. Topics will vary, e.g., Roman Portraiture: Self and Social Mask; The Invention of Perspective and Revolution in Two-Dimensional Representation; The “Modern” Art of Antiquity (late third to early fourth century A.D.). May be taken three times for credit. Prerequisite: graduate standing or consent of instructor.

251. Seminar in Medieval Art (4)
European art from late antiquity through the fourteenth century and the historical processes by which “medieval” art has been constructed as a category. Topics may include Devotional Vision and the Sacred Image; Medieval Comic Genres; Neo-Medievalism, Fifteenth Century to Today. May be taken three times for credit. Prerequisite: graduate standing or consent of instructor.

252. Seminar in Renaissance Art (4)
Concentrates on the art of the Renaissance in Italy and the North through a changing series of topics, e.g., Vision and Composition in Perspective; The Sistine Chapel; Envisioning Jan Van Eyck; Renaissance Print-Making; Leonardo da Vinci; La Gioconda. May be taken three times for credit. Prerequisite: graduate standing or consent of instructor.

253. Seminar in Early Modern Art (4)
European and American art, 1580s to 1850. Topics might include Deconstructing the Enlightenment: Images of Disorder; Escaping History: Genre Painting, Rococo to Impressionism; Politics and Love in the Art of Jacques-Louis David; Art and Urbanism in Baroque Rome. May be taken three times for credit. Prerequisite: graduate standing or consent of instructor.

254. Seminar in Modern Art (4)
European and American art, ca. 1850 to 1960. Questions in Impressionism and Post-Impressionism; The Cubist Revolution: Marcel Duchamp and the Anti-Formalist Tradition; American Modernism; Reckoning with Abstract Art; Issues of Dada and Surrealism; Soviet Avant-Gardes. May be taken three times for credit. Prerequisite: graduate standing or consent of instructor.

255. Seminar in Contemporary Art (4)
Theoretical and critical discussions of recent U.S. and international art, 1960s to the present. Art/theory transcendence; Mixed Media Practices; Conceptual Art; Art After Appropriation; Global Art at the Millennium; New Genres of Public Art; Mike Kelly and the Conceptual Vernacular: Art and Activism. May be taken three times for credit. Prerequisite: graduate standing or consent of instructor.

257. Seminar in Meso-American Art (4)
Topics relating to the art and civilizations of Precolumbian Mexico and Central America, either specifically art historical (such as iconographic, formal, and stylistic analysis) or encompassing a spectrum of interdisciplinary and cultural/historical problems. May be taken three times for credit. Prerequisite: graduate standing or consent of instructor.

258. Seminar in Chinese Art (4)
Advanced studies in the secular and religious art traditions of China. From year to year, the seminar may focus on early China (Neolithic to the end of the T’ang dynasty), in later dynasties (Sung, Yuan, Ming) or on art of the People’s Republic. May be taken three times for credit. Prerequisite: graduate standing or consent of instructor.

259. Seminar in Latin American Art (4)
Historical and theoretical problems in the art of Mexico, Central, and South America art from the colonial period to today, as well as from the Hispanic traditions of the American Southwest. May be taken three times for credit. Prerequisite: graduate standing or consent of instructor.
260. Seminar in North American Indian Art (4)
Topics for this seminar concern Native American art history from ancient to contemporary times. Seminars may focus on archaeological and art historical approaches, philosophy and aesthetics, archaeoastronomy, and cultural contexts. Issues of globalization and transculturation may be examined as well.

269. Contextual Studies: Special Topics (4)
Studies in the art of cultures and time periods not covered in the currently published curriculum (e.g., African Art, Japanese Art, Byzantine Art, Islamic Art) or of issues and genres crossing epochal, cultural, and media boundaries.

OTHER

280. Workshop in Critical Writing (4)
Practice in writing about art (both one's own and others) accompanied by analysis of selected contemporary critical writings.

281. Curatorial Practice (4)
Methodological investigation of and training in the practices of art museums, galleries, film and digital environments, public arts organizations, and the like. Instruction by museum and gallery curators and opportunities for participation in ongoing programs at local art institutions.

282. Special Projects in Art Practice (4)
Advanced workshop in specialized areas of art practice (e.g., Sound and Lighting, Editing).

295. Individual Studies for Graduate Students (1–12)
Individual research with the student’s individual faculty advisor in preparation for their comprehensive exhibitions for the M.F.A. degree or qualifying exam for the Ph.D. These units are intended to be with the chair of the student’s review committee. For the M.F.A. degree, these units can only be taken after completing the First Year Review. (Required, M.F.A., Ph.D.)

298. Directed Group Study (1–12)
Directed group study on specific topics not covered at present in the normal curriculum. Used as an experimental testing of courses that may be given regular course numbers if proved successful. Special arrangement with faculty member. Prerequisite: consent of department.

299. Graduate Research (1–4)
Graduate-level research under the direct guidance of a faculty member. Prerequisite: consent of instructor.

500. Apprentice Teaching (1–4)
Apprentice teaching in undergraduate courses given by the Department of Visual Arts. Graduate students are required to teach a minimum of one quarter (four units) within the department to fulfill degree requirements.

501. Apprentice Teaching in Culture, Art, and Technology (CAT) (4)
Consideration and development of pedagogical methods appropriate to undergraduate teaching in the interdisciplinary Sixth College Core Sequence, Culture, Art and Technology. Supervised by the Core Program faculty, director and associate directors for the Writing and Thematic Programs. Prerequisites: graduate student and consent of instructor.
THE WRITING CENTER

Within four quarters following successful completion of the UC Entry Level Writing Requirement, all students entering as freshman must complete a two-course sequence at UC San Diego in Warren Writing (10A and 10B). The purpose of the sequence is to teach and thereby enable students, through intensive practice, to read critically and write appropriately in a variety of academic contexts. Classes are seminar-size and center on discussion of student work.

In both 10A and 10B, student writing is duplicated and discussed by the class in a workshop setting. Instructors hold conferences with students individually during the quarter and provide written and oral commentaries on student work. The minimum writing requirement is 8,000 words per quarter.

ETHICS AND SOCIETY

All Warren students entering as freshmen must take two core courses in Ethics and Society. The courses are cross-listed as Political Science 27 and 28 and Philosophy 27 and 28 (see departmental listings). A student may enroll in these courses through either department. The courses are to be taken immediately following completion of Warren Writing 10A-B (or Scholars Seminar 11A-B). Poli./Phil. 27 must be taken before Poli./Phil. 28.

THE WRITING CENTER

OFFICE: EBU 3B, Computer Science and Engineering Building, Room 1109

The Writing Center, staffed by trained undergraduate mentors, provides academic support for all Warren College student writers. The center offers individual peer mentoring sessions on a one-time or ongoing basis. The center director also provides group workshops addressing specific writing tasks, such as application essays and timed essay exams. Writing mentors enroll in Warren 189 to receive training and supervision.

WARREN COLLEGE HONORS PROGRAM

OFFICE: EBU 3B, Computer Science and Engineering Building, Room 1102

The Warren College Honors Program offers students educational, cultural, and social experiences designed to broaden their intellectual interests. The activities vary each quarter and are planned to foster student interaction and promote a sense of community.

Entering freshmen with a high school GPA of 3.8 or above and SAT I scores of 700 reading/700 math/700 writing, or the ACT equivalent, are eligible to participate in the Honors Program. To remain in the program, students must maintain a cumulative GPA of 3.7 on all graded units completed at UC San Diego.

Students who do not qualify for the Honors Program at the time of admission and all transfer students may join as soon as a cumulative GPA of 3.7 is attained on twelve or more graded units completed at UC San Diego. In all subsequent quarters, students must maintain a cumulative GPA of 3.7 on all graded units completed at UC San Diego to remain in the program. Students in the Warren College Honors Program are not required to apply to the program or produce research projects in order to continue in the program.

Any Warren Honors student who writes a research paper for a departmental honors course may submit his or her paper to the Warren College Provost’s Office for consideration for the Michael Addison Award. The award is presented annually at commencement to the Warren Honors student who is judged to have written the most distinguished research paper. The submission must be accompanied by a letter of support from the faculty departmental honors advisor.

For more information, please contact the program coordinator at (858) 534-1709 or warren.honors@ucsd.edu.

WARREN SCHOLARS SEMINAR

The Warren Scholars Seminar offers an interdisciplinary curriculum that is designed to help students broaden their intellectual interests and prepare them for rigorous academic inquiry. Students enroll in both seminars, Warren 11A-B, which fulfill the college writing requirement. The seminars are taught by a Warren College lecturer and feature distinguished guest speakers from a variety of disciplines.

Entering first-year Honors Program students are admitted to the Warren Scholars Seminar by application and invitation.

Students in the Honors Program may serve as undergraduate assistants in Warren 11A-B (Warren 195, Apprentice Teaching). Undergraduate assistants participate in planning class meetings, introducing guest speakers, facilitating small-group discussions, and supporting students in the paper-writing process.

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

10A. The Writing Course A (4)

A workshop course in reading and writing required of all Warren College students. The course emphasizes argumentation and critical writing based on sources. (Letter grade only.) Prerequisites: satisfaction of the university entry level writing requirement and must be a Warren College student.

10B. The Writing Course B (4)

A workshop course in reading and writing required of all Warren College students who have completed 10A. The course continues the emphasis on argumentation and critical writing based on sources. (Letter grade only.) Prerequisites: completion of WCWP 10A and must be a Warren College student.

11A. Warren Scholars Seminar A (4)

The Warren College Scholars Seminar A allows students to develop and refine their expressive and analytical skills. The seminar offers an interdisciplinary approach to topics on the relation of individuals and society, and the function of evidence and observation in the formation of theories. The course emphasizes argumentation and critical thinking. (Letter grade only.) Prerequisites: limited to freshman Warren College Honors Program students upon approval of a submitted writing sample.

11B. Warren Scholars Seminar B (4)

The Warren Scholars Seminar B allows students to develop and refine their expressive and analytical skills by exploring a topic that offers viewpoints from a wide range of disciplines. The seminar emphasizes argumentation and critical writing. The topic will vary each year. (Letter grade only.) Prerequisite: Warren 11A or by consent of instructor.

189. Academic Mentoring and the Writing Process (2)

Students will gain a fundamental understanding of all stages of the writing process and will develop the necessary skills to serve as productive mentors for their peers. Prerequisites: students must have completed WCWP 10A and 10B (or WARR 11A and 11B) and Phil./Poli. 27 with B grade or higher, have upper-division standing, and a minimum GPA of 3.0. Enrollment is restricted to Warren students only. Submission of a writing portfolio and departmental authorization is required to enroll.

195. Apprentice Teaching (1)

Undergraduate instructional assistance. Responsible both in area of learning and instruction. Student must prepare reading materials assigned by the professors and lead student discussions in Warren 11A or 11B. (P/NP grade only.) Prerequisite: student must be in the Warren College Honors Program.
Appendix

Nondiscrimination and Affirmative Action Policy Statement for the University of California

It is the policy of the university not to engage in discrimination against or harassment of any person employed by or seeking employment with the University of California on the basis of race, color, national origin, religion, sex, gender identity, pregnancy (includes pregnancy, childbirth, and medical conditions related to pregnancy or childbirth), physical or mental disability, medical condition (cancer-related or genetic characteristics), ancestry, marital status, age, sexual orientation, citizenship, or service in the uniformed services (as defined by the Uniformed Services Employment and Reemployment Rights Act of 1994). This policy applies to admissions, access, and all employment practices, including recruitment, selection, promotion, transfer, merit increase, salary, training and development, demotion, and separation. This policy is intended to be consistent with the provisions of applicable state and federal laws and university policies.

University policy also prohibits retaliation against any employee or person seeking employment for bringing a complaint of discrimination or harassment pursuant to this policy. This policy also prohibits its retaliation against a person who assists someone with a complaint of discrimination or harassment, or participates in any manner in an investigation or resolution of a complaint of discrimination or harassment. Retaliation includes threats, intimidation, reprisals, and/or adverse actions related to employment.

In addition, it is the policy of the university to undertake affirmative action, consistent with its obligations as a federal contractor, for minorities and women, for persons with disabilities, and for covered veterans (disabled veterans, recently separated veterans; Vietnam-era veterans; veterans who served on active duty in the U.S. military, ground, naval, or air service during a war in a campaign or expeditions for which a campaign badge has been authorized; or armed forces service medal veterans) The university commits itself to apply every good faith effort to achieve prompt and full utilization of minorities and women in all segments of its workforce where deficiencies exist. These efforts conform to all current legal and regulatory requirements, and are consistent with university standards of quality and excellence.

Inquiries regarding the University of California, San Diego’s (UCSD) equal employment opportunity policies and student-related nondiscrimination policies may be directed to:

Student Affairs
Penny Rue
Vice Chancellor
Student Affairs
Bldg. 112 University Center, UCSD
9500 Gilman Dr. # 0015
La Jolla, CA 92093-0015
(858) 534-4370

Academic Affairs
Paul W. Drake
Senior Vice Chancellor
Academic Affairs
Bldg. 105 University Center, UCSD
9500 Gilman Dr. # 0001
La Jolla, CA 92093-0001
(858) 534-3130

Staff and Management
Steve W. Relyea
Vice Chancellor Business Affairs
Bldg. 110 University Center, UCSD
9500 Gilman Dr. # 0007
La Jolla, CA 92093-0007
(858) 534-3390

UCSD recognizes its obligation to provide program accessibility (as described in Section 504 of the 1973 Rehabilitation Act and the Americans with Disabilities Act of 1990) for persons with disabilities. For information as to the existence and location of services, activities, and facilities that are accessible to and usable by persons with disabilities, contact:

Penny Rue
Vice Chancellor Student Affairs
Sec. 504 Coordinator—Students
Bldg. 112 University Center, UCSD
9500 Gilman Dr. # 0015
La Jolla, CA 92093-0015
(858) 534-4370

Paul W. Drake
Senior Vice Chancellor Academic Affairs
Sec. 504 Coordinator—Faculty
Bldg. 105 University Center, UCSD
9500 Gilman Dr. # 0001
La Jolla, CA 92093-0001
(858) 534-3390

Barry J. Niman
Director, Accommodation Counseling & Consulting Services
ADA Coordinator
Torrey Pines Center South, Suite 348
9500 Gilman Dr. # 0944
La Jolla, CA 92093-0944
(858) 534-6743

Steve W. Relyea
Vice Chancellor Business Affairs
Sec. 504 Coordinator—Staff
Bldg. 110 University Center, UCSD
9500 Gilman Dr. # 0007
La Jolla, CA 92093-0007
(858) 534-3390

UC San Diego Policies and Procedures Applying to Student Activities

Students enrolling at UC San Diego are required to observe campus regulations, including but not limited to the Standards of Conduct and the Policies and Procedures Applying to Student Activities, which are available to students at http://ugr8.ucsd.edu/judicial/ as well as the following locations:

• Student Legal Services
• Center for Student Involvement
• College Dean Offices
• Office of Graduate Studies
• Office of the Student Affairs Dean, School of Medicine
• Student Policies and Judicial Affairs
• SIO, Graduate Student Department

Notification of Rights under FERPA for Postsecondary Institutions

The Family Educational Rights and Privacy Act (FERPA) affords students certain rights with respect to their education records. They are:

1. The right to refuse permission for any or all of the categories of personally identifiable information to be designated as directory information with respect to themselves.

2. The right to inspect and review the student’s education records within forty-five days of the day UC San Diego receives the student’s written request.

Students should submit written requests that identify the record(s) that the student wishes to inspect. The UCSD official to whom the request was submitted will notify the student of the time and place where the records may be inspected.

3. The right to request amendments of the student’s education records that the student believes are inaccurate or misleading.

The request may be submitted in writing to the UCSD official responsible for the record, clearly identifying the part of the record they want changed, and specifying why it is inaccurate or misleading. If the UCSD official decides not to amend the record as requested by the student, that official will notify the student of the decision and advise the student of the procedures to appeal the denial.

4. The right to consent to disclosures of personally identifiable information contained in the student’s education records, except to the extent that FERPA authorizes disclosure without consent.

Exceptions: One exception that permits disclosure without consent is disclosures to UCSD or UC officials with legitimate educational interests. A UCSD or UC official is a person employed by UCSD.
or UC in an administrative, supervisory, academic, research, or support staff position; a person or company with whom UCSD or UC has contracted (such as attorney, auditor, or collection agent); or a student serving on an official committee, such as a disciplinary or grievance committee. A UCSD or UC official has a legitimate educational interest if the information requested is relevant and necessary for the official to perform a task or determination that is an employment responsibility or to perform a task that is related specifically to the official’s participation in the student’s education or to perform a task that is related specifically to the discipline or the student, and provides a service or benefit to the student or the student’s family.

UCSD may also disclose personally identifiable information from an education record to appropriate parties, including parents of an eligible student, in connection with an emergency if knowledge of the information is necessary to protect the health or safety of the student or other individuals.

5. The right to file a complaint with the U.S. Department of Education concerning alleged failures by UCSD to comply with the requirements of FERPA. The name and address of the office that administers FERPA is

Family Policy Compliance Office
U.S. Department of Education
400 Maryland Ave. SW
Washington, DC 20202-4605

Questions about these rights or any other aspect of student records management by UCSD officials may be referred to the director of Student Policies and Judicial Affairs, Student Center, Building B, or by telephone at (858) 534-6225 or e-mail at judicialaffairs@ucsd.edu. The text of FERPA may be found in the government documents section of the UCSD Geisel Library. Copies of the UCSD student records policy, PPM 160-2, may be accessed electronically at http://adminrecords.ucsd.edu/ppm/docs/160-2.html.

Directory or Public Information

The following has been designated by UCSD as “directory information”: a student’s name, address (local and/or permanent), e-mail address, telephone numbers, date and place of birth; major fields of study; dates of attendance; grade level; enrollment status (e.g., paid or unpaid enrollment, undergraduate, full time, or part time); number of course units in which enrolled; degrees and honors received; the most recent previous educational institution attended; participation in officially recognized activities, including intercollegiate athletics; and the name, weight, and height of participants on intercollegiate UCSD athletic teams.

UCSD SEXUAL HARASSMENT PREVENTION AND POLICY

UC San Diego is committed to creating and maintaining a community where all persons who participate in UC San Diego programs and activities can work and learn together in an atmosphere free of all forms of harassment, exploitation, or intimidation. Every member of the UC San Diego community should be aware that UC San Diego is strongly opposed to sexual harassment and that such behavior is prohibited both by law and UC San Diego policy. Retaliation against a person who brings a complaint of sexual harassment is also strictly prohibited and may result in separate disciplinary action. UC San Diego will respond promptly and effectively to reports of sexual harassment and will take appropriate action to prevent, correct, and, if necessary, discipline behavior that violates this policy.

LAWS AND UNIVERSITY POLICIES PROHIBITING SEXUAL HARASSMENT

The University of California Policy on Sexual Harassment applies to UC San Diego, including the medical centers and all auxiliary university locations. The California Fair Employment and Housing Act and Title VII of the Federal Civil Rights Act of 1964, as amended, prohibit sexual harassment in employment. Title IX of the Education Amendments of 1972 prohibits sexual harassment in educational institutions that are recipients of federal funds.

DEFINING SEXUAL HARASSMENT

Sexual harassment is defined as unwelcome sexual advances, requests for sexual favors, and other verbal or physical conduct of a sexual nature when submission to or rejection of this conduct explicitly or implicitly affects a person’s employment or education; unreasonably interferes with a person’s work or educational performance; or creates an intimidating, hostile, or offensive working or learning environment. UC San Diego will respond to reports of any such conduct.

In determining whether the reported conduct constitutes sexual harassment, consideration shall be given to the record of the conduct as a whole and to the totality of the circumstances, including the context in which the conduct occurred.

Sexual harassment does not typically include verbal expression or written material that is relevant and appropriately related to course subject matter or curriculum. This policy is intended to protect members of the UC San Diego community from discrimination, not to regulate protected speech.

Sexual harassment may occur between persons of differing power or between peers. In addition, sexual harassment may involve a female harassing a male, or a male or female harassing a person of the same gender. Harassment that is not sexual in nature but is based on gender, gender identity, sex stereotyping, or sexual orientation also is prohibited if it is sufficiently severe to deny or limit a person’s ability to participate in or benefit from UC San Diego educational programs, employment, or services. In determining whether a hostile environment due to sexual harassment exists, UC San Diego may take into account acts of discrimination based on gender, gender identity, sex stereotyping, or sexual orientation.

CONSENSUAL RELATIONSHIPS

UC San Diego’s consensual relationship policy addresses potential ethical and legal issues that arise when individuals develop romantic or sexual relationships. In addition, the UC Regents have approved a systemwide faculty-student relationship policy that prohibits a faculty member from becoming romantically or sexually involved with students for whom the faculty member has or should expect to have supervisory responsibility.

PREVENTION AND EDUCATION

To implement UC San Diego’s policy regarding sexual harassment, the Office of Sexual Harassment Prevention and Policy (OSHPP) provides assistance in investigating and resolving complaints and provides education to the entire UC San Diego community. Emphasis is on prevention and early resolution. Copies of UC San Diego’s policy and procedures may be obtained at OSHPP at 201 University Center or http://oshpp.ucsd.edu. Sexual harassment prevention materials, including the university policy, are available in Spanish. Students are encouraged to review the interactive online education program, Preventing Sexual Harassment, available on the OSHPP Web page.

Under California state law, large employers are required to provide their supervisors with two hours of sexual harassment prevention training every two years. At the University of California, for the purpose of sexual harassment prevention training, supervisors include all faculty.

COMPLAINT RESOLUTION

UC San Diego has established guidelines for resolving sexual harassment complaints. There are several early resolution options, depending on the circumstances, including educational programs for targeted campus units or for particular individuals and mediation between the parties. Where early resolution is unsuccessful or inappropriate, a formal complaint may be filed and a formal investigation undertaken. There is no prescribed sequence, so choosing one option first does not prevent a complainant from choosing a different option for resolution later on.

Because complaints are most effectively resolved at the earliest possible stage, UC San Diego encourages early reporting of concerns or complaints regarding sexual harassment. If you believe you have been sexually harassed, you are encouraged to discuss your options and to learn about UC San Diego procedures by contacting OSHPP at (858) 534-8298. You may obtain advice without filing a complaint. Unreasonable delay in reporting sexual harassment or failure to utilize UC San Diego’s complaint resolution procedures may affect your legal rights.

A number of governmental agencies also accept complaints of sexual harassment, including the California Department of Fair Employment and Housing; the U.S. Equal Employment Opportunity Commission; and the Office for Civil Rights, U.S. Department of Education. The time deadlines for filing such complaints vary between 180 and 365 days.
RETAILIATION

Threats, other forms of intimidation, and retaliation against a faculty member, student, or staff employee for bringing a complaint of sexual harassment or for assisting another in bringing a complaint are prohibited. Retaliation is itself a violation of UC San Diego policy and applicable law, and is a serious offense. Complaints of retaliation may be brought through the sexual harassment complaint procedures. Acts of retaliation may result in discipline.

STUDENT SEX OFFENSE POLICY

UC San Diego does not tolerate sex offenses in any form, including sexual assault, sexual misconduct, harassment, exploitation, or intimidation. Reports of sex offenses may be made to the Sexual Assault & Violence Prevention Resource Center, the UC San Diego Police Department, the Office of Sexual Harassment Prevention and Policy, Counseling and Psychological Services, Student Health Service, and other campus resources outlined in the UC San Diego Sex Offense Policy. Investigations of reports of sex offenses are conducted by the Office of Sexual Harassment Prevention and Policy. A student who has been accused of a sex offense may seek assistance from Student Legal Services, Counseling and Psychological Services, the Office of Student Advocacy, and other campus resources outlined in the policy.

Sex offenses can be addressed both through university administrative procedures and through the criminal justice system. Any criminal proceeding is entirely separate from administrative proceedings of the university.

The UC San Diego Sex Offense Policy is available online at http://oshpp.ucsd.edu.

TITLE IX COMPLIANCE COORDINATOR/SEXUAL HARASSMENT OFFICER

Persons who wish to bring a complaint alleging a violation of Title IX of the Education Amendments of 1972 may contact the Title IX Coordinator as follows:

Lori Chamberlain, Title IX Compliance Coordinator/Sexual Harassment Officer
University of California, San Diego
9500 Gilman Dr. # 0024
La Jolla, CA 92093-0024
(858) 534-8298

University Officers

THE REGENTS OF THE UNIVERSITY OF CALIFORNIA

REGENTS EX OFFICIO

Governor of California and President of the Board of Regents
Arnold Schwarzenegger
President of the University
Mark G. Yudof
Speaker of the Assembly
Karen Bass
State Superintendent of Public Instruction
Jack O’Connell
President of the Alumni Associations of the University of California
Ronald W. Stovitz
Vice President of the Alumni Associations of the University of California
Yolanda Nunn Gorman

APPOINTED REGENTS

The term of office of appointed regents is twelve years, and terms expire on March 1 of the year indicated.

Jesse Bernal (2010)*
Richard C. Blum (2014)
William de la Peña (2018)
Russell Gould, Chair (2017)
Eddie Island (2017)
Odessa Johnson (2012)
George Kieffer (2021)
Monica Lozano (2013)
Hadi Makarechian (2020)
George M. Marcus (2012)
Norman J. Pattiz (2014)
Bonnie Reiss (2020)
Frederick Ruiz (2016)
Leslie Tang Shilling (2013)
Bruce D. Varmer (2018)
Paul Wachtler (2016)
Charlene Zettel (2021)
Jesse Cheng, Student Regent Designate
Rex Hime, Alumni Regent Designate
Derek DeFreece, Alumni Regent Designate
Dan Simmons, Faculty Representative
Henry Powell, Faculty Representative
Juliann Martinez, Staff Advisor
Edward L. Abeysa, Staff Advisor

*Student Regent appointed to one year term July 1 to June 30

PRINCIPAL OFFICERS OF THE REGENTS

President of the Regents
Arnold Schwarzenegger

Chair of the Regents
Russell Gould
Vice Chair of the Regents
Sherry L. Lansing
Acting Treasurer
Marie Berggren
Ethics, Compliance and Audit
Sheryl Vacca
General Counsel
Charles F. Robinson
Secretary and Chief of Staff to the Regents
1111 Franklin Street, 12th Floor
Oakland, CA 94607
Diane M. Griffiths

UC SYSTEMWIDE ADMINISTRATION

President of the University
Mark G. Yudof
Executive Vice President
Bruce B. Darling
Executive Vice President—Business Operations
Nathan Brostrom
Interim Provost and Executive Vice President—Academic Affairs
Lawrence Pitts
Executive Vice President—Chief Financial Officer
Peter J. Taylor
Senior Vice President—Health Sciences and Services
John D. Stobo
Senior Vice President—External Relations
Daniel M. Dooley
General Counsel and Vice President for Legal Affairs
Charles F. Robinson
Senior Vice President—Chief Compliance and Audit Officer
Sheryl Vacca
Special Advisor to the President
Christopher F. Edley
Chief Investment Officer and Vice President for Investments and Acting Treasurer of the Regents
Marie N. Berggren
Director, Institutional Research
Kathleen Dettman
Executive Director—Issues Management, Policy Analysis and Coordination
Jenny Kao
Interim Chief of Staff and Associate Vice President—Policy and Analysis
Marsha Kelman
Interim Deputy Chief of Staff
Deanna Dudley

CHANCELLORS OF THE UC CAMPUSES

Berkeley
Robert J. Birgeneau
ACADEMIC AND ADMINISTRATIVE OFFICERS
UNIVERSITY OF CALIFORNIA, SAN DIEGO

CHANCELLOR
Marye Anne Fox

SENIOR VICE CHANCELLOR
Paul W. Drake, Academic Affairs

VICE CHANCELLORS
David A. Brenner, M.D., Health Sciences and Dean, School of Medicine
Arthur B. Ellis, Research
Anthony D. J. Haymet, Marine Sciences, Director, Scripps Institution of Oceanography and Dean, Graduate School of Marine Sciences
Gary C. Matthews, Resource Management and Planning
Steven W. Relyea, External and Business Affairs
Penny Rue, Student Affairs

ASSOCIATE CHANCELLORS
Sandra Daley
Clare Kristofco

ASSISTANT CHANCELLOR
Glynda Davis, Diversity

CHAIR, ACADEMIC SENATE
William S. Hodgkiss, 2009–10
Frank L. Powell, 2010–11

ACADEMIC DEANS
Arts and Humanities
Seth Lerner, Dean

Biological Sciences
Steve Kay, Dean

Extended Studies and Public Programs
Mary Lindenstein Walshok, Dean

Graduate School of International Relations and Pacific Studies
Peter Cowhey, Dean

Rady School of Management
Robert S. Sullivan, Dean

Graduate Studies
Kim E. Barrett, Dean

Jacobs School of Engineering
Frieder Seible, Dean

Physical Sciences
Mark Thiemens, Dean
Skaggs School of Pharmacy and Pharmaceutical Sciences
Palmer Taylor, Dean
Social Sciences
Jeffrey Elman, Dean

CHIEF OFFICERS

Chief of Staff—Chancellor’s Office
Clare Kristofco
Campus Counsel
Dan Park
University Librarian
Brian E. C. Schottlaender
Chief Diversity Officer
Sandra Daley

COLLEGE PROVOSTS

Revelle College
Don Wayne
John Muir College
Susan Smith
Thurgood Marshall College
Allan Havis
Earl Warren College
Steven Adler
Eleanor Roosevelt College
Alan Houston
Sixth College
Naomi Oreskes

ASSOCIATE VICE CHANCELLORS

Cathy Constable, Marine Sciences
Jeanne Ferrante, Faculty Equity
Boone Hellmann, Facilities Design and Construction
Juli Larsen, University Development
Barbara Sawrey, Undergraduate Education
Ed Spriggs, Student Affairs Resource Administration
Jeffrey Steindorf, Campus Planning
Suresh Subramani, Academic Planning and Resources
George Tynan, Research
Mary Lindenstein Walshok, Public Programs

ASSISTANT VICE CHANCELLORS

Armin Afashi, Alumni Affairs
Doug Bennett, Marine Sciences
Mae Brown, Admissions and Enrollment Services
Stephanie Burke, Audit and Management Advisory
Karen Calfas, Student Wellness
Linda Collins, Contract and Grant Administration
Marianne Generales, Research
Brian Gregory, Strategic Campus Resource Initiatives

——, Academic Affairs
Nancy Kossan, Real Estate
Don Larson, Controller, Business and Financial Services
Tom Leet, Human Resources
Sylvia Lepe-Askari, Campus Budget
Deborah J. McGraw, Academic Affairs Resource Administration
Jane Moores, Technology Transfer and Intellectual Property
Kristina Larsen, Academic Personnel
Gary Ratcliff, Student Life
Marlene Shaver, UCSD Foundation and Advancement Services
Shawn Sheffield, Health Sciences Resource Strategy and Planning
Russ Thackston, Auxiliary and Plant Services
Loren C. Thompson, Student Educational Advancement

DEAN OF INTERNATIONAL EDUCATION

Lynn C. Anderson

DEANS OF STUDENT AFFAIRS

Eleanor Roosevelt College
Patricia Scott
John Muir College
Patricia Mahaffey
Revelle College
Reene Barnett-Terry
Sixth College
James Stascavage
Thurgood Marshall College
Mentha Hynes-Wilson
Earl Warren College
Paul DeWine

DEANS OF ACADEMIC ADVISING

Eleanor Roosevelt College
Sarah Spear-Barrett
John Muir College
Kay Reynolds
Revelle College
Mirasol Espanola
Sixth College
Brigitte Benoist
Thurgood Marshall College
Anne Porter
Earl Warren College
Jacob Lacy

ORGANIZED RESEARCH UNITS, NON-ORU CENTERS, AND PROJECTS

Organized Research Units

MULTICAMPUS

Institute on Global Conflict and Cooperation
Susan Shirk, Director
Institute of Geophysics and Planetary Physics
Catherine Constable, Director
White Mountain Research Station
Frank Powell, Director

GENERAL CAMPUS

BioCircuits Institute
Jeff Hasty, Director
California Institute for Telecommunications and Information Technology (Calit2), San Diego Division
Ramesh Rao, Director
Center for Astrophysics and Space Sciences
George Fuller, Director
Center for Chronobiology
Stuart Brody and Susan Golden, Codirectors
Center for Comparative Immigration Studies
John Skrentny, Director
Center for Energy Research
Farrokh Najmabadi, Director
Center for Human Development
Terry Jernigan, Director
Center for Iberian and Latin American Studies
Christine Hunefeldt, Director
Center for Molecular Agriculture
Maarten Chrispeels, Director
Center for Research in Computing and the Arts
Sheldon Brown, Director
Center for Research in Language
Marta Kutas, Director
Institute of International, Comparative, and Area Studies
Gershon Shafir, Director
Institute for Neural Computation
Terrence Sejnowski and Gert Cauwenberghs, Codirectors
Institute for Pure and Applied Physical Sciences
M. Brian Maple, Director
Kavli Institute for Brain and Mind
Nicholas Spitzer and Jeffrey Elman, Codirectors
San Diego Supercomputer Center
Francine Berman, Director

SCHOOL OF MEDICINE

AIDS Research Institute
Douglas Richman, Director

Center for Academic Research Training in Anthropology
Fred Gage, Margaret Schoeninger, and Ajit Varki, Co-directors

Center for Research in Biological Systems
Mark Ellisman, Director

Clinical and Translational Research Institute
Gary Firestein, Director

Glycobiology Research and Training Center
Ajit Varki and Jeffrey Esko, Co-directors

Rebecca and John Moores UCSD Cancer Center
Dennis Carson, Director

Stein Institute for Research on Aging
Dilip Jeste, Director

SCRIPPS INSTITUTION OF OCEANOGRAPHY

Climate, Atmospheric Science, and Physical Oceanography (CASPO) Research Division
Art Miller, Director

Center for Marine Biotechnology and Biomedicine
William Fenical, Director

Geosciences Research Division
Steve Cande, Director

Integrative Oceanography Division
Elizabeth Venrick and Robert Guza, Co-directors

Marine Biology Research Division
Ronald Burton, Director

Marine Physical Laboratory
William Kuperman, Director

Non-ORU Centers

SCHOOL OF MEDICINE

Alzheimer's Disease Research Center
Douglas Galasko, Director

Academic Geriatric Resource Center
Ruth Covell, Director

Biostatistics and Bioinformatics
Gustavo Jimenez, Director

California NeuroAIDS Tissue Network
Igor Grant, Director

Center for Pain and Palliative Medicine
Mark Wallace, Director

Center for Community Health, Division of Community Pediatrics
— —

Center for AIDS Research
Douglas Richman, Director

Center for Neural Circuits and Behavior
Anirvan Ghosh, Director

General Clinical Research Center
Michael Ziegler, Director

HIV Neurobehavioral Research Center
Igor Grant, Director

Ludwig Institute for Cancer Research, San Diego Branch
Webster Cavenee, Director

BIOGEM-Biomedical Genomics Micoarray
Gary Hardiman, Director

SCRIPPS INSTITUTION OF OCEANOGRAPHY

Center for Clouds Chemistry and Climate
V. Ramanathan, Director

Center for Marine Biodiversity and Conservation
Jeremy Jackson, Director

Center for Marine Genomics
Terry Gaasterland, Director

Joint Institute for Marine Observations
W. Kendall Melville, Director

Center for Observations, Modeling and Prediction at Scripps
Bruce Cornuelle, Director

BIOLOGICAL SCIENCES

SD-CAB (San Diego Center for Algae Biotechnology)
Steve Mayfield, Director

ENGINEERING

Bernard and Sophia Gordon Engineering Leadership Center
Ingolf Krueger, Director

CASB (Center for Algorithmic and Systems Biology)
Pavel Pevzner, Director

CWC (The Center for Wireless Communications)
Bhaskar Rao, Director

Charles Lee Powell Structural Research Laboratories
Gil Hegemier, Director

Cymer Center for Control Systems and Dynamics
Miroslav Krstic, Director

Information Theory and Applications Center
— —

von Liebig Center for Entrepreneurism and Technology Advancement
Rosibel Ochoa, Director

INTERNATIONAL RELATIONS AND PACIFIC STUDIES

Center for U.S. Mexican Studies
Christopher Woodruff, Director

Center on Pacific Economies
Gordon Hanson, Director

Global Information Industry Center
Roger Bohn, Director

PHYSICAL SCIENCES

Center for NMR Spectroscopy and Imaging of Proteins
— —

Center for Theoretical Biological Physics
Herbert Levine and Jose Onuchic, Co-directors

Center for Computational Mathematics
Randolph Bank, Phillip Gill, and Michael Holst, Co-directors

Laboratory for Mathematics and Statistics
— —

SOCIAL SCIENCES

Center for Research on Educational Equity, Assessment, and Teaching Excellence
Hugh Mehan, Director

Laboratory of Comparative Human Cognition
Michael Cole, Director

Center for Environmental Economics
Ted Groves, Director

Center for Research on Gender in the Professions
Mary Blair-Loy, Director

Projects

African and African American Studies Project
Bennetta Jules-Rosette, Director

Project for Explaining the Origin of Humans
Ajit Varki, Director

Project for the Responsible Conduct of Research Education
Michael Kalichman, Director

Project in Econometric Analysis
Graham Elliott, Coordinator

Project in Geometry and Physics
James Bunch, Coordinator

Project on International Affairs
Barbara Walter, Director

Public Policy Research Project
Mathew McCubbins, Director

UCSD MEDICAL CENTER

Tom E. Jackiewicz, Chief Executive Officer, UC San Diego Medical Center

Thomas McAfee, Dean for Clinical Affairs, Health Sciences

Vacant, Chief Operating Officer, Medical Group

Edward Babakanian, Chief Information Officer

Lawrence S. Friedman, Medical Director, Ambulatory and Primary Care

Robert W. Hogan, Associate Director, Director of Finance, UCSD Medical Center

James D. Kaufman, Purchasing Manager

Dennis E. Goodrich, Director, Facilities and Safety Management, UCSD Medical Center

Timothy D. Jackiewicz, Chief Financial Officer, UC San Diego Medical Center

Dennis E. Goodrich, Director, Facilities and Safety Management, UCSD Medical Center
Walter F. Heiligenberg Professorship in Neuroethology
Stefan Leutgeb
Ingrid and Joseph W. Hibben Chair in Space Science and Education
—
Rebeca Hickel Chair in Elizabethan Literature
—
Chair in High Performance Computing
—
Larry L. Hillblom Foundation Endowed Chair in Geriatrics
Laura Dugan
Hwei-Chih and Julia Hsiu Chair in Chinese Studies
Joseph W. Esherick
Institute of the Americas Chair for Inter-American Affairs
Paul W. Drake
John Dove Isaacs Chair in Natural Philosophy
Stephen Mayfield
Kazuo Iwama Chair in Materials Science
Sungho Jin
Joan and Irwin Jacobs Endowed Chair in Bioengineering and Systems Biology
Shankar Subramaniam
Irwin Mark and Joan Klein Jacobs Chair of Information and Computer Science
Ronald Graham
Jeri-Ann and Gary E. Jacobs Endowed Chair in Social Sciences
David Lake
Helen A. Jarrett Chair in Alzheimer’s Disease Research
David Salmon
Chair of Judaic Studies
David Goodblatt
Nancy Kaehr Chair in Pediatric Research
Sanjay Nigam
Jerome Katzin Chair in Corporate Governance
David Schkade
Katzin Chair of Jewish Civilization
—
Norma Kershaw Chair in the Archaeology of Ancient Israel and Neighboring Lands
Thomas Levy
Tamara and Kevin Kinsella Chair in Neurobiology
—
Lawrence B. and Sallye K. Krause Chair in Korean Studies
Stephan Haggard
Stephen W. Kuffler Chair in Biology
Anirvan Ghosh
Ho Miu Lam Chair in China and Pacific Relations
Susan Shirk
Richard K. Lansche, M.D. and Tatiana A. Lansche Endowed Chair in Ophthalmology
Stuart Brown
George W. and Carol A. Lattimer Campus Professorship
David Meyer
Estelle and Edgar Levi Memorial Chair in Aging
Dilip Jeste
Benard L. Maas Chair in Inherited Metabolic Disease
Bruce Barshop
Mary Gilman Marston Chair in Psychiatry
Lewis Judd
Quinn Martin Chair in Drama
Visiting Professors
Bernd T. Matthias Chair in Physics
M. Brian Maple
Joseph E. Mayer Chair of Theoretical Chemistry
Andrew McCammon
McQuown Chair in Natural Science at SIO
George Sugihara
Endowed Chair in Modern Chinese History
Paul Pickowicz
Hajime Mori Chair in Japanese Language and Literature
—
Kenneth M. Moser Endowed Chair
Patricia Finn
Jerome Namais Chair
—
Professorship in Neuroregeneration
—
Nicholas Family Endowed Chair in Modern Greek History
Thomas Gallant
Elizabeth Hamman and Morgan Dene Oliver Chair in Marine Biodiversity and Conservation Science
—
Nancy Olmsted Chair in Pediatric Pulmonology
Paul Quinton
M. J. Orloff Family Endowed Chair in Surgery
Mark Talamini
The Marcie and Michael Oxman Professorship in Infectious Diseases
Joshua Fierer
Pacific Economic Cooperation Chair in International Economic Relations
Takeo Hoshi
George E. Palade Endowed Chair
Peter Novick
Stanford S. and Beverly P. Penner Endowed Chair in Engineering or Applied Science
Juan C. Lasheras
Edith and William Perlman Chair in Clinical Cardiology
Kirk L. Peterson
Distinguished Chair in Physical Chemistry
—
John G. Pickard Chair in Cardiac Surgery
—
Charles Lee Powell Endowed Chair in Mathematics I
—
Charles Lee Powell Endowed Chair in Mathematics II
—
Charles Lee Powell Chair in Wireless Communication
Bang-Sup Song
Presidential Chair in Energy and Combustion Research
Forman Williams
Presidential Chair in Philosophy
Patricia Churchland
Qualcomm Endowed Chair in Communications and Technology Policy
Peter Cowhey
Qualcomm Endowed Chair in Embedded Microsystems
Rajesh Gupta
Qualcomm Endowed Chair in Information Theory and its Application
Alon Orlitsky
Qualcomm Endowed Chair in Mobile Computing
Yuanyuan Zhou
Qualcomm Endowed Chair in Telecommunications and Information Technologies
Ramesh Rao
Gerry & Jeannie Ranglas Chair in Ancient Greek History
—
Helen Ranney Endowed Chair in Medicine
Kenneth Kaushansky
Anne Ratner Chair in Pediatric Ophthalmology
David Granet
Eric and Johanna Reissner Chair in the Department of Structural Engineering
Frieder Seible
Roger Revelle Chair in Environmental Science
—
Stephen O. Rice Chair in Magnetic Recording Research
Jack K. Wolf
Florence Riford Chair for Alzheimer’s Disease Research I
William Mobley
Florence Riford Chair for Research in Neurodegenerative Disease and Dementia
—
Florence Seeley Riford Chair for Acquired Immune Deficiency Syndrome Research
Douglas Richman
William E. and Mary B. Ritter Memorial Chair
Jeremy Jackson
Rohr Chair in Pacific International Relations
Miles Kahler
Paul D. Saltman Chair in Science Education
Robert Schmidt
San Diego County Heart Association Chair in Cardiovascular Research
—
Science Applications International Corporation Chair in Engineering
Amin Vahdat
Shiley Endowed Chair in Alzheimer’s Disease Research in Honor of Dr. Leon Thal
Roberto Malinow
Harold Simon Chair in International Health and Cross-Cultural Medicine
Steffanie Strathean
Skyworks Endowed Chair in High Performance Communications Devices and Circuits
Peter Asbeck
Sokwanlok Chair in Chinese International Affairs
Barry Naughton
Martin Stein Endowed Chair in Developmental and Behavioral Pediatrics
Sheila Gahagan
Herbert Stern Chair in Biology
William McGinnis
Structural Systems Research Chair
—
Tasch Endowed Chair in Parkinson’s Disease Research
—
Evelyn and Edwin Tasch Chair in Cancer Research
Thomas Kipps
Ronald R. Taylor Chair in Information Technology in Computer Science
Pavel Pevzner
Torrey Mesa Research Institute Chair in Plant Science
Julian Schroeder
Sandra and Monroe Trout Chair in Pharmacology
Palmer Taylor
Monroe E. Trout Chair in Surgery
Raul Coimbra
Harold Clayton Urey Chair in Chemistry
Clifford Kubiak
Endowed Chair in Urology
—
Vatz Family Chair in Philosophy
Paul M. Churchland
Alkiviadis Vassiliadis Endowed Chair in Byzantine Greek History
—
Arthur and Molli Wagner Chair in Acting
Kyle Donnelly
Sam M. Walton Chair for Cancer Research
John Pierce
Stefan E. Warschawski Endowed Chair in Mathematics
Kiran Kadiyala
Judith and Jack White Chair in Cardiology
Anthony DeMaria
Sheryl & Harvey White Chair in Management Leadership
Vish Krishnan
Muriel Jeanette Whitehill Chair in Bio-Medical Ethics
Theodore Friedmann
Winkler Endowed Chair for Type I Diabetes Research
—
Herman Wouk Chair of Modern Jewish Studies
Deborah Hertz
Daniel Yankelovich Endowed Chair on Social Thought
—
Samuel S. C. Yen Chair in Reproductive Medicine
—
Walter J. Zable Chair in Engineering
Frieder Seible

UC SAN DIEGO FOUNDATION

CHANCELLOR
Marye Anne Fox
PRESIDENT
Steven W. Relyea
CHAIR
Pauline Foster
VICE CHAIRS
Dr. John D. Cambon ’74
Julia Brown
TREASURER
Brian Walsh ’89
CHAIRS EMERITI
William E. Beamer
Dr. J. R. Beyster
Malin Burnham
Jerome S. Katzin
Richard C. Levi
R. Barry McComick
Duane J. Roth
Dr. Monroe E. Trout
TRUSTEES
Dr. Richard Atkinson
Mary Ann Beyster
Arthur Lipper
Bertha J. Lopez
Judith Morgan
Luis Osuna
Paul Peterson
Carmen Sandoval
Elsa Saxod
Gary Shaw
Abby Silverman
Robert Spanjian
Susan L. Taylor
Carol Veit
Robert Villareal
Fredrick Walker, Jr.
Robert Witty
Richard Ybarra
Tony Yip

Members are appointed for a three-year term, and terms expire in the year indicated.

2010-2011 UC SAN DIEGO GENERAL CATALOG • APPENDIX
9
On-campus student enrollment (Fall 2009)

On-campus student enrollment (Fall 2009)
Undergraduate 23,143
Revelle 3,757
John Muir 4,171
Thurgood Marshall 3,962
Earl Warren 4,162
Eleanor Roosevelt 3,687
Sixth 3,404
Graduate 4,231
School of Medicine and School of Pharmacy and Pharmaceutical Sciences 1,736
Total 29,110
Grade-point averages
Freshman 2.90
Sophomore 3.00
Junior 3.02
Senior 3.07
Number of undergraduates in most populous departments
Biology 5,768
Economics 2,486
Psychology 1,474
Political Science 1,261
Mechanical and Aerospace Engineering (MAE) 1,161
Chemistry 1,039
Communication 897
International Studies 876
Bioengineering 827
Computer Science and Engineering (CSE) 789
Miscellaneous
UCSD Extension enrollment 23,248
Summer Session enrollment 20,073
On campus teaching faculty members 2,200
Bound books in library collection 3,118,440

Based upon the previous year’s experience, 94 percent of all new freshmen enrolled at UCSD in the fall quarter are also enrolled in the subsequent fall quarter. Eighty-five percent of all students who begin their undergraduate studies as freshmen at UCSD complete their degree requirements here within six years. Questions or requests for more detailed information should be directed to the Office of Student Research and Information/Student Affairs.

Members of Honorary Societies/Faculty Prizes and Awards
A.B. Wood Medal Prize
Acoustical Society of America
Albert Lasker Award for Basic Medical Research
American Academy of Arts and Sciences
American Association of Physicians
American Chemical Society
American Council of Learned Societies Fellowship
American Geophysical Union
American Philosophical Association
American Philosophical Society
American Physical Society
American Society of Mechanical Engineers
Andrew Mellon Foundation Fellowship
Arthur C. Cope Scholar Award
Association for the Advancement of Artificial Intelligence Fellow
Balzan Prize
California Scientist of the Year
Council on Foreign Relations
Crafoord Prize
Dreyfus New Faculty Award
Econometric Society Fellow
Emmy Award
Fields Medal
Ford Foundation Fellowship
Fulbright Scholarship
Goldschmidt Medal
Guggenheim Fellowship
Harvey Prize
Howard Hughes Medical Investigator Award
Howard Hughes Medical Investigator Professors Award
Humboldt Fellowship
IEEE Fellow
IEEE/NPSS Early Achievement Award
Institute of Medicine
Jacob Javits Neuroscience Investigator Award
James B. Macelwane Medal
John Adam Fleming Medal
Keck Foundation: Distinguished Young Scholars Program
Klingenstein Fellowship
Kyoto Prize
Landis Award
LSE Seed Fund
MacArthur Fellowship
Maurice Ewing Medal
McDonnell-Pew Fellow
McKnight Scholar Award
MERIT Award (NIMH)
National Academy of Education Fellow in the Life Sciences
National Academy of Education
National Academy of Engineering
National Academy of Sciences
National Book Critic Circle Award
National Endowment for Humanities
National Endowment for the Arts
National Humanities Medal
National Kidney Foundation Young Investigator Award
National Medal of Science
National Science Foundation Creativity Award
New Innovator Award, National Institutes of Health
NIH Clinical Investigator Award
Nobel Peace Prize
Nobel Prize
NSF Early Career Development Program
Overton Prize
Packard Fellowship
Presidential Early Career Award for Scientists and Engineering (PECASE)
Pulitzer Prize
Residency at the Getty Center for Arts and Humanities
Residency at the National Humanities Center
Rockefeller Fellowship
Royal Society
Shaw Prize
Searle Scholar
Sloan Research Fellowship
Spencer Foundation Fellowship
Theodore Bullock Neuroscience Award
Truman Capote Award for Literary Criticism
Tyler Prize
Vannevar Bush Award
Walter H. Bucher Medal
William Bowie Medal
Wolf Prize
World Computer Smithsonian Award
Young Investigator Award, Biomedical Engineering Society
Young Investigator Award, Child Neurology Society
Young Investigator Award, International Society for Matrix Biology

*As of spring 2010