Environmental Systems

PROGRAM FACULTY

Mark H. Thiemens, Professor, Chemistry and Biochemistry, Program Director
Jane Teranes, Lecturer, Associate Director
Eric E. Allen, Assistant Professor, Marine Biology, SIO
Donna Blackman, Research Geophysicist, SIO
Ronald S. Burton, Professor, Marine Biology, SIO
Richard T. Carson, Professor, Economics
Christopher D. Charles, Professor, Oceanography, SIO
Elsa S. Cleland, Assistant Professor, Biology
Clark Gibson, Professor, Political Science
Sarah T. Gille, Associate Professor, MAE, SIO
Joshua S. Graff Zivin, Associate Professor, International Relations and Pacific Studies
Kim Giest, Professor, Physics
Amro M. Hamdoun, Assistant Professor, Marine Biology, SIO
Philip Hastings, Professor, Marine Biology, SIO
Myr C. Hendershott, Professor, Oceanography, SIO
David R. Hilton, Professor, Geochemistry, SIO
William S. Hodgkiss, Professor, Electrical Engineering, SIO
David A. Holway, Associate Professor, Biology
Miriam Kastner, Professor, Geosciences, SIO
Lisa Levin, Professor, Integrative Oceanography, SIO
Paul Linden, Professor, MAE
Kim McDonald, Lecturer, Director of Science Communication
Joel Norris, Associate Professor, Climate Sciences, SIO
Brian Palenik, Professor, Marine Biology, SIO
Keith Pezzoli, Lecturer, Urban Studies and Planning
Frank L. Powell, Professor, Medicine/Director, White Mountain Research Station
Jeffrey B. Remmel, Professor, Mathematics
Lisa Shaffer, Executive Director, Environmental Sustainability Initiative
John Sclater, Professor, Marine Geophysics, SIO
Richard C. J. Somervillle, Professor Emeritus, Climate Sciences, SIO
Hubert Staudigel, Research Geophysicist, SIO
Lynne Talley, Professor, Physical Oceanography, SIO
Lisa Tauxe, Professor, Geosciences, SIO
David Woodruff, Professor, Biology
Junjie Zhang, Assistant Professor, International Relations and Pacific Studies
OFFICE: 188 Galbraith Hall, Revelle College

There can be little doubt that in the twenty-first century the global human community is facing a substantial growth in the educational consequences in providing food, energy, materials, and basic services to a population of almost 6.5 billion inhabitants. The Environmental Systems Program (ESYS) recognizes the growing demand for environmental specialists and is designed to prepare undergraduates to enter a broad spectrum of environmental careers and graduate programs in, for example, the natural sciences, the social sciences, public policy, law, and business.

This interdisciplinary program recognizes that local, national, regional, international, and global environmental problems do not fit neatly into traditional academic departments. A measurable part of society’s inability to effectively manage complex environmental problems stems from the lack of specialists who can apply analytical tools that cross disciplinary boundaries. Many environmental specialists possess little training in the natural sciences including both the fundamental ideas and methodologies of the earth and environmental sciences. The environmental systems major was created to address both of these shortcomings.

To encourage and foster an interdisciplinary focus in the major, the Environmental Systems Program is supported by a wide range of UC San Diego faculty representing the natural sciences, the social sciences, the humanities, engineering, and medicine. The program includes a required lower-division core, an upper-division “integrating course sequence,” two other upper-division courses and statistics, an advanced track, and a senior integrative project and seminar. There is a strong emphasis on a rigorous natural science foundation as well as an introduction to the policy sciences for all students enrolled in the major. The Environmental Systems Program places a significant value on interdisciplinary problem solving and all majors are expected to complete an integrative Senior Project in their final year. The Senior Project is designed by the student to focus on an interdisciplinary environmental problem or research topic. Appropriate topics for the Senior Project could conceivably include biodiversity conservation, coastal zone management, environmental health, climate change, environmental justice, and/or urban air quality. An important component of the Senior Project is an off-campus or laboratory internship where students might work on, for example, the development of a comprehensive management plan for a threatened ecosystem. The Senior Seminar provides a venue for the presentation and group evaluation of the ESYS Senior Projects.

THE ENVIRONMENTAL SYSTEMS MAJOR

The requirements for completion of the environmental systems major include a lower-division core, two upper-division courses, a three course upper-division integrating sequence (ESYS 101, ESYS 102, ESYS 103), an upper-division statistics course, advanced courses in one of four tracks, and the Senior Project (ESYS 190A and Senior Seminar (ESYS 190B). It is suggested that the integrating course sequence of Esys 101, 102 and 103 be completed by the sophomore year, if possible. Environmental Systems 101. Environmental Biology Environmental Systems 102. The Solid and Fluid Earth Environmental Systems 103. Environmental Challenges: Science and Solutions Environmental Systems 190A. Senior Project (two quarters) Environmental Systems 190B. Senior Seminar

ENVIRONMENTAL SYSTEMS MAJOR TRACKS

There are four advanced tracks in which students must complete a minimum of seven upper-division courses. Students will select courses following the requirements below in consultation with a faculty advisor.

Earth Sciences

Ecology, Behavior, and Evolution

Environmental Chemistry

Environmental Policy

It is possible to complete the requirements for any of the Environmental Systems tracks with five upper-division electives and a specialization that consists of two additional upper-division electives from any other track. For example, a student interested in the policy and scientific dimensions of habitat conservation planning for endangered species might plan a course of study to include five advanced courses from the Ecology, Behavior, and Evolution track and two advanced courses from the Environmental Policy track.

EARTH SCIENCES TRACK

Required lower-division course: SIO 50. Introduction to Earth and Environmental Sciences

Required upper-division courses:
SIO 102. Introduction to Geochemistry
MATH 183. Statistical Methods

Upper-division electives: Students complete a minimum of seven courses selected from the following list.
SIO 100. Introduction to Field Methods
SIO 104/255. Paleobiology and History of Life
SIO 105. Sedimentology and Stratigraphy
SIO 110. Introduction to GIS and GPS for Scientists
SIO 112. Urban Landscapes
SIO 120. Introduction to Mineralogy
SIO 144/252A. Introduction to Isotope Geochemistry
SIO 160. Introduction to Tectonics
SIO 162. Structural Geology
SIO 199. Independent Study
ESYS 120. Science and Environmental Writing
ESYS 199. Independent Study
BIEB 132. Introduction to Marine Biology
BIEB 134. Introduction to Biological Oceanography
SIO 210. Physical Oceanography
SIO 240. Marine Geology
SIO 260. Marine Chemistry
SIO 263. Aqueous Chemistry
SIO 280. Biological Oceanography
Chemistry 149A, Environmental Chemistry
Chemistry 173/273. Atmospheric Chemistry

Other courses may be substituted by petition.

Curriculum Guide Planning

FALL

Freshman
- Chem. 6A
- Math. 20A or Math. 10A
- SIO 50

Sophomore
- Phys. 2A or 1A, 1AL
- Poll. 160AA/USP 101
- ESYS 101

Junior
- UD elective
- Math. 183

Senior
- ESYS 190A
- UD ESYS elective

WINTER

Freshman
- Chem. 6B
- Math. 20B or Math. 10B
- BILD 3

Sophomore
- Phys. 2B or 1B, 1BL
- Econ. 1
- ESYS 103/MAE 124

Junior
- SIO 102
- UD elective

Senior
- ESYS 190A
- UD ESYS elective

SPRING

Freshman
- Chem. 6C
- Math. 10A

Sophomore
- Phys. 1A, 1AL
- Econ. 1
- BILD 3

Senior
- UD elective

ECOLOGY, BEHAVIOR, AND EVOLUTION TRACK

Required upper-division courses:
BICD 100. Genetics
BIEB 100. Biometry (satisfies upper-division statistics requirement)

Upper-division electives: (a total of seven courses required, one of which must be a lab course, selected from the courses below):
BIBC 100. Structural Biochemistry
BIBC 102. Metabolic Biochemistry
BIBC 103. Biochemical Techniques
BIBC 120. Nutrition
BIBC 130/SIO 281. Marine Biochemistry
BICD 110. Cell Biology

BICD 120. Fundamental of Plant Biology
BICD 130. Embryos, Genes, and Development
BICD 134. Human Reproduction and Development
BIEB 102. Introductory Ecology—Organisms and Habitats
BIEB 121. Ecology Laboratory
BIEB 126. Plant Ecology
BIEB 131. Marine Invertebrate Ecology Lab
BIEB 132. Introduction to Marine Biology
BIEB 134. Introduction to Biological Oceanography
BIEB 140. Biodiversity
BIEB 144. Quantitative Ecology
BIEB 150. Evolution
BIEB 156. Population Genetics
BIEB 164. Behavioral Ecology
BIEB 165. Behavioral Ecology Laboratory
BIEB 166. Animal Communication
BIEB 167. Animal Communication Lab
BIEB 176/ANBI 132. Conservation and the Human Predicament
BIMM 100. Molecular Biology
BIMM 110. Molecular Basis of Disease
BIMM 114. Virology
BIMM 120. Bacteriology
BIMM 121. Laboratory in Microbiology
BIMM 124. Medical Microbiology
BIMM 126. Marine Microbiology
BIMM 127/SIO 288. Marine Microbiology Laboratory
BIPN 100. Mammalian Physiology I
BIPN 102. Mammalian Physiology II
BIPN 105. Animal Physiology Lab (6)
BIPN 106. Comparative Physiology (4)
ESYS 120. Science and Environmental Writing
ESYS 150. Environmental Perils
ESYS 199. Independent Study

Other courses may be substituted by petition.

Curriculum Guide Planning

FALL

Freshman
- Chem. 6A
- Math. 10A

Sophomore
- Phys. 1A, 1AL
- Econ. 1
- BILD 3

Junior
- ESYS 101
- UD elective

Senior
- ESYS 190A
- UD elective

WINTER

Freshman
- Chem. 6B
- Math. 10B

Sophomore
- Phys. 1B, 1BL
- Econ. 1
- Chem. 140A
- Econ. 131

Junior
- *Chem. 149A
- ESYS 101
- *Chem. 173
- ESYS 103/MAE 124

Senior
- ESYS 190A
- UD elective

*Choose 2 out of 4

ENVIRONMENTAL POLICY TRACK

Required upper-division course

One upper-division Statistics course—Math 183

Statistical Methods or Economics 120A Econometrics

Upper-division electives: Students complete a minimum of seven courses selected from the following:
Economics 116. Economic Development
Economics 125. Economics of Population Growth
Economics 130. Public Policy
Economics 132. Energy Economics
Environmental Systems 120. Science and Environmental Writing

Environmental Systems 150. Environmental Perils
Environmental Systems 199. Independent Study
Political Science 102L. The Politics of Regulation
Political Science 125. The Politics of Conservation in Developing Countries
Political Science 125A. Communities and the Environment
Political Science 150A. Politics of Immigration
Political Science 160AB. Introduction to Policy Analysis

WINTER

<table>
<thead>
<tr>
<th>ESYS 102</th>
<th>Chem. 6BL</th>
<th>UD elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR-GN 487/289. Applied Environmental Issues</td>
<td>IR-GN 488/206. Corporate Strategy and the Environment</td>
<td></td>
</tr>
<tr>
<td>IR-GN 490/290. Special Topics in Pacific International Affairs (petition only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR-GN 453/253. Sustainable Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR-GN 458/258. International Environmental Policy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPRING

<table>
<thead>
<tr>
<th>UD elective</th>
<th>UD elective</th>
</tr>
</thead>
</table>

BILD 3

<table>
<thead>
<tr>
<th>Math. 10B</th>
<th>Math. 10C</th>
</tr>
</thead>
<tbody>
<tr>
<td>USP 90. Perspectives on Environmental Issues (1) USP 170. Sustainability Planning USP 171. Sustainable Development</td>
<td>Other courses may be substituted by petition. These graduate courses are offered through the Graduate School of International Relations and Pacific Studies. Enrollment in these courses requires the permission of the instructor.</td>
</tr>
</tbody>
</table>

Lower-Division Courses

Any two of the following lower-division courses, if they are not lower-division requirements for the student’s major, may be applied to satisfy eight of the total units necessary for the minor:

- **Biology 3**
- **Math. 10A-B-C**
- **Chemistry 6A-B-6BL-C**
- **Physics 1A-AL, 1B-8L, 1C-CL**
- **Economics 1**
- **Scripps Undergraduate Education (SIO): any lower-division course**
- **Environmental Systems 10**
- **Environmental Studies 30**

Required Core Courses

- **Environmental Systems 101, offered every fall quarter**
- **Environmental Systems 102, offered every winter quarter**
- **Environmental Systems 103, offered every spring quarter**

Note: ESYS 102 and ESYS 103 all have significant prerequisites; students planning an Environmental Systems minor should check course descriptions and prerequisites carefully.

Upper-Division Electives

At least two additional upper-division courses from the advanced tracks in the Environmental Systems major. The lists of upper-division electives are reviewed and updated each quarter. They are available in the Environmental Systems Office and on the program Web site (http://esys.ucsd.edu). Students are advised to consult with the Environmental Systems program advisors or associate director.

SPECIAL STUDIES COURSES

Special Studies in the environmental systems is offered as ESYS 199. This course is subject to consent of the instructor and approval by the Environmental Systems faculty advisor. This course is open to students who have accrued at least ninety quarter-units and have a GPA of at least 3.0. No more than two quarters of environmental systems special studies may be counted toward the environmental systems major.

Study abroad through the Education Abroad Program or Opportunities Abroad Program can enhance a student’s major, particularly as an opportunity for diverse field experiences. However, careful planning is important to meet all major requirements. Please contact the Environmental Systems Office as early as possible if you are planning to study abroad.

Courses

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

Many of the courses that are used to fulfill the requirements of the environmental systems major are offered by other departments and programs. Most of these courses are offered on a regular basis. Students should consult the Schedule or contact the Environmental Systems office in order to obtain current information. The courses below are offered directly through the Environmental Systems Program.

Lower-Division

ESYS 10. Introduction to Environmental Systems (4)

This course explores the interdisciplinary character of environmental issues through an examination of a particular topic (climate change, for example) from numerous disciplinary perspectives [e.g., biology, chemistry, physics, political science, and economics]. Prerequisite: none. (F)

ESYS 87. Freshman Seminar (1)

The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate college, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students with preference given to entering freshmen. (F)

ESYS 90. Perspectives on Environmental Issues (1)

Provides an introduction to environmental systems. Faculty members from departments in the natural sciences, geosciences, and social sciences will offer perspectives in these areas. (F)

Upper-Division

ESYS 101. Environmental Biology (4)

This course surveys biochemical and physiological processes governing the relationship between organisms and their environments, such as those involved in element cycling and cellular homeostasis. The course introduces biological perspectives on human activities ranging from antibiotic use to genetic engineering. Prerequisite: BILD 1 or 2 or equivalent, or consent of instructor. (F)

ESYS 102. The Solid and Fluid Earth (4)

Earth’s dynamic physical systems interact in complex ways with profound impact on our environment. Processes such as volcanism and weathering enable geochemical exchange between solid and fluid (ocean and atmosphere) systems. Sea-level and climate changes interface with tectonic processes. Prerequisites: Math. 10A, Chem. 6A, Physics 1A or consent of instructor. (W)

ESYS 103/MAE 124. Environmental Challenges: Science and Solutions (4)

This course explores the impacts of human, social, economic, and industrial activity on the environment. It highlights the central roles in ensuring sustainable development played by market forces, technological innovation, and government regulation on local, national, and global scales. Prerequisite: Math 10A-C or Math 208 or consent of instructor. (S)

ESYS 120. Science and Environmental Writing (4)

Course designed to improve the written communication of science majors through frequent writing assignments that develop the practical skills needed to communicate science to lay audiences. Topics include news writing, news releases, grant writing, broadcast script writing, and editorial writing. Prerequisites: upper-division standing in...
science or mathematics major and completion of college composition requirement (or consent of instructor). (W)

ESYS 150. Environmental Perils (4)
An advanced field-oriented course for engineering and science students stressing the geologic basis for environmental perils such as earthquakes, erosion, flooding, and waste disposal. Two one-hour lectures, and a two-hour lab/field trip each week. **Prerequisites:** Math 10 A-B-C sequence and Physics 1A,1AL; 1B,1BL; 1C,1CL sequence or equivalent. (S)

ESYS 190A. Senior Project (8)
All majors are required to complete an integrative Senior Project in their senior year. The Senior Project is designed by the student to focus on an interdisciplinary environmental problem or research topic and is developed either individually or as part of a team over two quarters. Appropriate topics could include biodiversity conservation, environmental health, and/or global change. An important component of the Senior Project is an off-campus or laboratory internship. **Prerequisites:** ESYS 103 and upper-division standing, departmental approval, majors only. (F,W)

ESYS 190B. Environmental Systems Senior Seminar (4)
The seminar provides a venue for the development, presentation, and evaluation of the Environmental Systems Integrative Project. The seminar will include work on research methods as well as paper presentation skills. **Prerequisites:** Completion of ESYS 190A or ESYS 190A(W) sequence, senior standing and majors only. (S)

ESYS 199. Independent Study (2-4)
Individually guided readings or projects in the area of environmental systems.