Electrical and Computer Engineering (ECE)

PROFESSORS
Anthony S. Acampora, Ph.D., Emeritus Research Professor
Victor C. Anderson, Ph.D., Emeritus (not in-residence)
Peter M. Asbeck, Ph.D., Skyworks Endowed Chair
H. Neal Bertram, Ph.D., Emeritus Research Professor
William S. C. Chang, Ph.D., Emeritus Research Professor
William A. Coles, Ph.D.
Pamela C. Cosman, Ph.D.
Rene L. Cruz, Ph.D.
Sujit Dey, Ph.D.
Sadik C. Esener, Ph.D.
Shaya Fainman, Ph.D., Cymer Professor in Advanced Optical Technologies
Joseph Ford, Ph.D.
Eric Fullerton, Ph.D., CMRR Endowed Chair
Ian Gafton, Ph.D.
Carl W. Helstrom, Ph.D., Emeritus
Ramesh C. Jain, Ph.D., Emeritus
Andrew B. Kahng, Ph.D.
Kenneth Kreutz-Delgado, Ph.D.
Walter T. Ku, Ph.D., Emeritus
Lawrence E. Larson, Ph.D., Chair, CWC Industry Endowed Chair in Wireless Communications
S. S. Lau, Ph.D.
Sing H. Lee, Ph.D., Emeritus
Yu Hwa Lo, Ph.D.
Robert Lugannani, Ph.D.
Huey-Lin Luo, Ph.D., Emeritus
Elias Masry, Ph.D., Emeritus
D. Asoka Mendis, Ph.D., Emeritus Research Professor
Laurence B. Milstein, Ph.D., Ericsson Endowed Chair
Farrokh Najmabadi, Ph.D., Director, Center for Energy Research
Truong Q. Nguyen, Ph.D.
Alon Orlishky, Ph.D., Qualcomm Professor of Information Theory and its Applications
George Papen, Ph.D., Vice Chair
Kevin B. Quest, Ph.D.
Stojan Radic, Ph.D.
Bhaskar Rao, Ph.D., Director, Center for Wireless Communications; Ericsson Endowed Chair in Wireless Access Networks
Ramesh Rao, Ph.D., Qualcomm Endowed Chair, Director, Calit2, San Diego Division
Gabriel Rebeiz, Ph.D.
Barnaby J. Rickett, Ph.D., Emeritus Research Professor
Manuel Rothenberg, Ph.D., Emeritus Research Professor
M. Lea Rudee, Ph.D., Emeritus Research Professor
Victor H. Runsey, Ph.D., Emeritus (not in-residence)
Vitali Shapiro, Ph.D., Emeritus
Paul H. Siegel, Ph.D., Director and Professor, Center for Magnetic Recording Research
Daniel Sievenpiper, Ph.D.
Bang-Sup Song, Ph.D., Charles Lee Powell Endowed Chair in Wireless Communications
David Sworder, Ph.D.
Yuan Taur, Ph.D.
Mohan Trivedi, Ph.D.
Charles W. Tu, Ph.D., Associate Dean, Jacobs School of Engineering
Alexander Vardy, Ph.D.
Andrew J. Viterbi, Ph.D., Emeritus
Harry H. Wieder, Ph.D., Emeritus
Jack K. Wolf, Ph.D., Stephen O. Rice Professor of Electrical and Computer Engineering
Edward T. Yu, Ph.D.
Paul Yu, Ph.D., Associate Vice Chancellor, Research Initiatives
Kenneth A. Zeger, Ph.D.
ASSOCIATE PROFESSORS
Paul M. Chau, Ph.D.
Massimo Franceschetti, Ph.D.
Clark C. Guest, Ph.D.
Tara Javid, Ph.D.
George J. Lewak, Ph.D., Emeritus
Bill Lin, Ph.D.
Vitaliy Lomakin, Ph.D.
Shayan Mookherjea, Ph.D.
Anthony V. Sebald, Ph.D., Emeritus
Nuno Vasconcelos, Ph.D.
Deli Wang, Ph.D.
Kenneth Y. Yun, Ph.D., Emeritus
ASSISTANT PROFESSORS
James F. Buckwalter, Ph.D.
Young-Han Kim, Ph.D.
Gert Lanckriet, Ph.D.
Zhaoqiu Liu, Ph.D.
Curt Schurgers, Ph.D.
Jie Xiang, Ph.D.

ADJUNCT PROFESSORS
C. K. Cheng, Ph.D., Professor, Computer Science and Engineering
Pankaj K. Das, Ph.D., Emeritus, Rensselaer Polytechnic Institute
Madhu Gupta, Ph.D., Professor, San Diego State University
Rajesh Gupta, Ph.D., Professor, Computer Science and Engineering
Rolf Hecht-Nielsen, Ph.D., Hecht-Nielsen Confabulation Inc.
Robert Hecht-Nielsen, Ph.D., Hecht-Nielsen Confabulation Inc.
John A. Hildebrand, Ph.D., Professor, Marine Physical Laboratory, Scripps Institution of Oceanography
William S. Hodgkiss, Ph.D., Professor, Marine Physical Laboratory, Scripps Institution of Oceanography
James U. Lemke, Ph.D., Center for Magnetic Recording Research
Roberto Padovani, Ph.D., Qualcomm
Nasser Peyghambarian, Ph.D., Professor, University of Arizona
John Proakis, Ph.D., Professor, Northeastern University
Lui-Joo Shan, Ph.D., Professor, Physics
Jin-Joo Song, Ph.D., ZN Technology
Edward T. Yu, Ph.D., Professor, University of Texas at Austin

ASSOCIATED FACULTY
Gustaf O. S. Arrehenius, Ph.D., Professor, Marine Research Division, Scripps Institution of Oceanography
George Tynan, Ph.D., Associate Professor, Mechanical and Aerospace Engineering

AFFILIATED FACULTY
Prab Bandaru, Ph.D., Professor, Mechanical and Aerospace Engineering

OFFICES:
Undergraduate Affairs, Room 2705
Graduate Affairs, Room 2718
Engineering Building Unit 1, Warren College
http://www.ece.ucsd.edu/

PROGRAM MISSION STATEMENT
To educate tomorrow's technology leaders.

PROGRAM EDUCATIONAL OBJECTIVES
- To provide our students with training in the fundamental science and mathematics that underlie engineering, and with a general breadth and depth in engineering and in engineering design so that they are prepared for graduate school and for engineering careers. Students should have both proficiency in a specific technical area, and the flexibility and broad knowledge base needed for life-long engineering careers in a changing technical environment.
- To ensure that our students are educated in the classical sense. In particular, that they are broadly aware of social and environmental issues and of the impact of their profession on these issues.
- To assist our students in preparing themselves to work effectively in their profession. Specifically, to develop communications, teamwork, and leadership skills.

PROGRAM OUTCOMES AND ASSESSMENT
Program outcomes have been established based on the Program Educational Objectives. Graduates of the ECE Program in Electrical Engineering are expected to have
1. An understanding of the underlying principles of, and an ability to apply knowledge of mathematics, science, and engineering to electrical engineering problems
2. An ability to design and conduct experiments, as well as to analyze and interpret data
3. A knowledge of electrical engineering safety issues
4. An ability to design a system, component, or process to meet desired needs
5. An ability to collaborate effectively with others
6. An ability to function on multidisciplinary teams
7. An ability to use the techniques, skills, and modern engineering tools necessary for engineering
practice, including familiarity with computer programming and information technology
8. An understanding of professional and ethical responsibility
9.
 a. An ability to communicate effectively in writing
 b. An ability to communicate effectively in speech
 c. An ability to communicate effectively with visual means
10. The broad education necessary to understand the impact of engineering solutions in a global and societal context
11. A recognition of the need for, and the ability to engage in, lifelong learning
12. A knowledge of contemporary issues

THE UNDERGRADUATE PROGRAMS

The Department of Electrical and Computer Engineering offers undergraduate programs leading to the B.S. degree in electrical engineering, engineering physics, and computer engineering, and the B.A. degree in electrical engineering and society. Each of these programs can be tailored to provide preparation for graduate study or employment in a wide range of fields. The Electrical Engineering Program is accredited by the Accreditation Board for Engineering and Technology (ABET).

The Electrical Engineering Program has a common lower-division and a very flexible structure in the upper-division. After the lower-division core, all students take six breadth courses during the junior year. They must then satisfy a depth requirement which can be met with five courses focused on some specialty, and a design requirement of at least one project course. The remainder of the program consists of seven electives, which may range as widely or as narrowly as needed.

The Engineering Physics Program is conducted in cooperation with the Department of Physics. Its structure is very similar to that of electrical engineering except the depth requirement includes seven courses and there are only five electives.

The Computer Engineering Program is conducted jointly with the Department of Computer Science and Engineering. It has a more prescribed structure. The program encompasses the study of hardware design, data storage, computer architecture, assembly languages, and the design of computers for engineering, information retrieval, and scientific research.

The B.A.-Electrical Engineering and Society Program intends to better prepare engineering students in the areas of social sciences and the humanities, as a response to the globalization of engineering and technology. We recognize that “engineering only” training may not be sufficient when students seek alternate career paths besides engineering upon graduation, such as in the law, finance, and public policy sectors.

For information about the program and about academic advising, students are referred to the section on ECE departmental regulations. In order to complete the programs in a timely fashion, students must plan their courses carefully, starting in their freshman year. Students should have sufficient background in high school mathematics so that they can take freshman calculus in the first quarter.

For graduation, each student must also satisfy general-education requirements determined by the student’s college. The six colleges at UC San Diego require widely different numbers of general-education courses. Students should choose their college carefully, considering the special nature of the college and the breadth of education required. They should realize that some colleges require considerably more courses than others. Students wishing to transfer to another college should see their college advisor.

Electrical engineering (twenty-four units)
Chem. 6A.
Phys. 2A-B-C-D or Phys. 4A-B-C-D-E. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the mathematics placement test permits them to start with Math. 20B or higher may take Phys. 2A in the fall quarter of the freshman year.
Chemistry (four units)
Chem. 6A.
Programming Course (four units)
ECE 15.
Electrical engineering (twenty-four units)
ECE 25, 30, 35, 45, 65, and 75.

Additional Notes

1. Students with AP math credit are strongly advised to take Math. 208 in the fall quarter, leaving room for a GER in the winter quarter.
2. The ECE undergraduate Web site shows several scheduling options. Please refer to the Web site and consult with the staff advisors in the undergraduate offices, rooms 2705 and 2707 in EBU1.

Upper-Division Requirements (total of seventy-two units)

a. Electrical Engineering BREADTH Courses (twenty-four units)
Courses required of all electrical engineering majors:
 - The six courses, ECE 101, 102, 103, 107, 108, and 109 are required of all electrical engineering majors and they are an assumed prerequisite for senior-level courses, even if they are not explicitly required. Although the courses are largely independent, there are some prerequisites. ECE 102 is a prerequisite for ECE 108. Students who delay some of the breadth courses into the spring should be careful that it does not delay their depth sequence. For the ECE 109 requirement, credit will not be allowed for ECON 120A, Math. 180A-B, Math. 183, or Math. 186.

b. Electrical Engineering DESIGN Course (4 units)
 - Note: In order to fulfill the design requirement, students must complete one of the following courses with a grade C− or better. Graduation will not be approved until a written copy of the design project is submitted to the ECE undergraduate office. ECE 111, 118, 191 cannot be used to satisfy both the Design and Depth requirements.
 - The electrical engineering design requirement can be fulfilled in any of the following three ways:
 1. Take ECE 191: Engineering Group Design Project
 2. Take ECE 190: Engineering Design This course requires the department stamp. Specifications and enrollment forms are available in the undergraduate office.
 3. Take one of the following courses:
 • ECE 111: Advanced Digital Design Project
 • ECE 118: Computer Interfacing
 • ECE 155B or 155C: Digital Recording Projects
 - Students who wish to take one of these courses to satisfy the design requirement must fill out an enrollment form and have departmental approval for the design credit prior to taking the course. The project must meet the same specifications as ECE 190.

c. Electrical Engineering ELECTIVES (twenty-four units)
 - Three upper-division engineering, mathematics, or physics courses.
 - Three additional electives which students may use to broaden their professional goals.

(For additional information, please refer to the section on “Elective Policy for Electrical Engineering and Engineering Physics Majors.”)
d. Electrical Engineering Depth Requirement (twenty units)

Students must complete a “depth requirement” of at least five quarter courses to provide a focus for their studies. This set must include a clear chain of study of at least three courses which depend on the “breadth” courses. Students may choose one of the approved depth sequences listed below, or propose another with the approval of their faculty advisor. Some of the approved sequences have lower-division prerequisites and thus list six courses. Students choosing one of these sequences will have to complete only two “professional” electives. Guidelines for meeting the depth requirement can be obtained from the undergraduate office. ECE 111, 118, 191 cannot be used to satisfy both the Design and Depth requirements.

Electronics Circuits and Systems
ECE 163, 164, 165, and any two of ECE 111, 118, 161A, 161B, 161C, and 166.

Electronic Devices and Materials
ECE 135A, ECE 135B, 136L, 139, and 183.

Controls and Systems Theory
ECE 171A, 171B, 174, 175, and 118 or 191.

Machine Intelligence

Photonics
ECE 181, 182, 183, 184, and 185.

Communications Systems
ECE 161A, 153, 154A-B-C.

Networks
ECE 153, 159A, 159B, 158A-B.

Queueing Systems
ECE 171A, 174, 159A-B, and Math. 181A.

Signal and Image Processing
ECE 161A, 161B, 161C, 153, and ECE 172A or 174.

Computer Design
CSE 12, 21, and 141, ECE 158A, 111 or 118, and 165.

Software Systems
CSE 12, 21, 100, 101, 141, and 120.

B.S. ENGINEERING PHYSICS

Students must complete a total of 180 units for graduation, including the general-education requirements. Note that 146 units (excluding GER) are required.

All students will initially be placed in pre-major status. Upon successful completion of the following courses (with a minimum 2.0 GPA by the end of the first three quarters for a transfer student, six quarters if an incoming freshman), students will be admitted into full Engineering-Physics major status.

1. Math. 20A-B-C
2. Phys. 2A-B
3. ECE 15, 25, and 35

To initiate the change from pre-major status to major status, transfer students must see the ECE undergraduate advisor by the end of their third quarter at UCSD; incoming freshmen by the end of their sixth quarter.

Please refer to the section “Undergraduate Regulations and Requirements” for important details.

Lower-Division Requirements (total of seventy-four units)

Mathematics (twenty-four units)
Math. 20A-B-C-D-E-F.

Physics (sixteen units)
Phys. 2A-B-C-D or Phys. 4A-B-C-D-E. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the mathematics placement test permits them to start with Math. 20B or higher may take Phys. 2A in the fall quarter of the freshman year.

Physics Lab (two units)
Phys. 2DL is required.

Chemistry (four units)
Chem. 6A.

Programming Course (four units)
ECE 15.

Electrical engineering (twenty-four units)
ECE 25, 30, 35, 45, 65, and 75.

Additional Notes
1. Students with AP math credit are strongly advised to take Math. 20B in the fall quarter, leaving room for a GER in the winter quarter.
2. The ECE undergraduate Web site shows several scheduling options. Please refer to the Web site and consult with the staff advisors in the undergraduate offices, rooms 2705 and 2707 in EBU1.

Upper-Division Requirements (seventy-two units)

a. Engineering Physics BREADTH Courses (twenty-four units)
The electrical engineering breadth courses ECE 101, 102, 103, 107, 108, and 109, are also required of engineering physics majors. However, because of the scheduling of Math. 110, Phys. 110A and 130A, they can only be taken in a specific order (please consult the ECE Web site). For the ECE 109 requirement, credit will not be allowed for ECON 120A, Math. 180A-B, Math. 180B, or Math. 186.

b. Engineering Physics DESIGN Course (four units)
Note: In order to fulfill the design requirement, students must complete one of the following courses with a grade C– or better. Graduation will not be approved until a written copy of the design project is submitted to the ECE undergraduate office.

The engineering physics design requirement can be fulfilled in any of the following three ways:
1. Take ECE 191: Engineering Group Design Project
2. Take ECE 190: Engineering Design. This course requires the department stamp. Specifications and enrollment forms are available in the undergraduate office.
3. Take one of the following courses:
 - ECE 111: Advanced Digital Design Project
 - ECE 118: Computer Interfacing
 - ECE 155B or 155C: Digital Recording Projects

Students who wish to take one of these courses to satisfy the design requirement must fill out an enrollment form and have departmental approval for the design credit prior to taking the course. The project must meet the same specifications as ECE 190.

c. Engineering Physics ELECTIVES (sixteen units)

- One upper-division engineering, mathematics, or physics course.
- Three additional electives which students may use to broaden their professional goals.

(For additional information, please refer to the section on “Elective Policy for Electrical Engineering and Engineering Physics Majors.”)

d. Engineering Physics DEPTH Courses (twenty-eight units)

All B.S. engineering physics students are required to take Phys. 110A, 130A-B, 140A, Math. 110, ECE 123 and 166; or ECE 135A and 135B; or ECE 182 and (181 or 183).

Elective Policy for Electrical Engineering and Engineering Physics Majors

1. Technical Electives

Technical electives must be upper-division engineering, math or physics courses (except for the bioengineering track). At most one lower-division course in engineering may be used but it must receive prior approval from the ECE department. Certain courses listed below are not allowed as electives because of overlap with ECE courses.

Physics
Students may not receive upper-division elective credit for any lower-division physics courses. Students may not receive credit for both Phys. 100A and ECE 107, Phys. 100B and ECE 107, Phys. 100C and ECE 123.

MathematicalMath. 180A overlaps ECE 109 and 153, and therefore will not qualify for elective credit of either type. Math. 183 or Math. 186 will not be allowed as an elective. Math. 163 will only be allowed as a professional elective. All lower-division mathematics is excluded from elective credit of either type.
Bioengineering

The following series of courses will provide "core" preparation in bioengineering and will satisfy up to five courses of the ECE elective requirements:
- BILD 1, BILD 2, BE 100, BE 140A-B.

The bioengineering department will guarantee admission to these courses for ECE students on a space available basis.

CSE

The following courses are excluded as electives: CSE 1, 2, 5A-B, 8-A-B, 11, 12A (duplicates ECE 158A), 140 (duplicates ECE 25), 140L (duplicates ECE 36), 143 (duplicates ECE 165). CSE 12, 20, and 21 will count toward the three professional electives ONLY.

Mechanical and Aerospace Engineering (MAE)

Credit will not be allowed for MAE 105, 139, 140, 143B, or 170.

Special Studies

Courses 195–199: At most four units of 195–199 may be used for elective credit.

2. Professional Electives

Normally these will be upper-division courses in engineering, mathematics, or physics. Students may also choose upper-division courses from other departments provided that they fit into a coherent professional program. In such cases, a lower-division prerequisite may be included in the electives. Courses other than upper-division engineering, mathematics, or physics must be justified in terms of such a program, and must be approved by a faculty advisor.

Biology and Chemistry

Of the three electives intended to allow for the professional diversity, one lower-division biology or chemistry course from BILD 1, 2, Chem. 68-C may be counted for credit in combination with two upper-division biology or chemistry courses. Furthermore, this count will only if the student can demonstrate to a faculty advisor that they constitute part of a coherent plan for professional/career development. Upper-division biology and chemistry courses will count toward the three professional electives but not the three math/physics/engineering electives.

Economics

Suitable electives would include Econ. 1 and 3 followed by the courses in one of the following tracks:
- Macroeconomics: Econ. 110A-B.
- Monetary economics: Econ. 111, and another economics upper division elective.
- Economics 1 and 2 followed by two courses in one of the following tracks:
 - Public and Environmental: Econ. 118, 130, 131, 132, 133, 137, 145.
 - Labor and Human Resources: Econ. 137, 139, 140.

Note: Econ. 100A can be substituted for Econ. 2 Econ. 1 and 100A followed by two courses in one of the following tracks:
- Microeconomics: Econ.100B-C.
- Financial Markets: Econ. 120B and 173A.
- Human Resources: Econ. 100B and 136.

Note: Econ. 120A, and 158A-B will not be allowed as professional electives. If Economics is chosen for professional electives, only three technical electives are required for electrical engineering majors; only one technical elective is required for engineering physics majors.

B.S. COMPUTER ENGINEERING

Students wishing to pursue the computer engineering curriculum may do so in either the ECE or CSE department. The set of required courses and allowed electives is the same in both departments; please note that the curriculum requires twenty upper-division courses. The Computer Engineering Program requires a total of 151 units (not including the general-education requirements).

The Computer Engineering Program offers a strong emphasis on engineering mathematics and other basic engineering science as well as a firm grounding in computer science. Students should have sufficient background in high school mathematics so that they can take freshman calculus in their first quarter. Courses in high school physics and computer programming, although helpful, are not required for admission to the program.

Lower-Division Requirements (total of seventy-five units)

Mathematics (twenty units)
- Math. 20A-B-C-D-F.

Physics (sixteen units)
- Phys. 2A-B-C-D, or Phys. 4A-B-C-D. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the mathematics placement test permits them to start with Math. 20B or higher may take Phys. 2A in the fall quarter of the freshman year.

Computer Science (twenty-seven units)
- CSE 11 or 88*, 12, 15L, CSE 20 or Math. 15A, CSE 21 or Math. 15B, CSE 30, CSE 70, and CSE 91.
- *CSE 8A and CSE 8B are not required if a student completes CSE 11. CSE 11 is a faster paced version of CSE 8A and CSE 8B. Students will select which course they wish to take. Students without programming experience in a compiled language are advised to take CSE 8A and then CSE 8B instead of CSE 11.

Electrical Engineering (twelve units)
- ECE 35, ECE 45, ECE 65.

Upper-Division Requirements (total of seventy-six units)

1. All B.S. computer engineering students are required to take CSE 100 or Math. 176, CSE 101 or Math. 188, CSE 105 or Math. 166, CSE 120, 131, 139, 140, 140L (CSE 140 and 140L must be taken concurrently), 141, 141L (CSE 141 and 141L must be taken concurrently).

2. In addition, all B.S. computer engineering students must fulfill the following upper-division ECE requirements:
- Engineering Probability and Statistics ECE 109. This course can be taken in the sophomore year.
- Electronic Circuits and Systems ECE 102 and 108. The department recommends that these courses be taken in the junior year.
- Linear systems ECE 101.

3. Technical electives: All B.S. computer engineering majors are required to take six technical electives.
- One technical elective must be either ECE 111 or ECE 118.
- Of the remaining five technical electives, four must be ECE or CSE upper-division or graduate courses.
- The remaining course can be any upper-division course listed under the non-CSE/ECE electives. (See the section on electives below.)

Electives

The discipline of computer engineering interacts with a number of other disciplines in a mutually beneficial way. These disciplines include mathematic,
ics, computer science, and cognitive science. The following is a list of upper-division courses from these and other disciplines that can be counted as technical electives.

At most four units of 197, 198, or 199 may be used towards technical elective requirements. ECE/ CSE 195 cannot be used towards course requirements. Undergraduate students must get instructor’s permission and departmental stamp to enroll in a graduate course.

Students may not get duplicate credit for equivalent courses. The UC San Diego General Catalog should be consulted for equivalency information and any restrictions placed on the courses. Additional restrictions are noted below. Any deviation from this list must be petitioned.

Mathematics

All upper-division courses except Math. 168A-B, 179A-B, 183, 184A-B, 189A-B, and 195-199. If a student has completed CSE 167, then he or she cannot get elective credit for Math. 155A. Students may receive elective credit for only one of the following courses: CSE 164A, Math. 174, Math. 173, Phys. 105A-B, MAE 107, CENG 100. No credit for any of these courses will be given if Math. 170A-B is taken. Students will receive credit for either Math. 166 or CSE 105 (but not both), either Math. 188 or CSE 101 (but not both), and either Math. 176 or CSE 100 (but not both).

Computer Science and Engineering

All CSE upper-division courses except CSE 195. Students will receive credit for either CSE 123A or CSE 158A (but not both).
Cognitive Science

 Students may not get credit for both CSE 150 and Advanced Programming Methods for Cognitive Science 108F or for both CSE 151 and Artificial Intelligence Modeling II 182.

Mechanical and Aerospace Engineering (MAE)
 All upper-division MAE courses except MAE 140, and MAE 195-199.
 Students may receive elective credit for only one of the following courses: CSE 164A, Math. 174, Math. 173, Phys. 105A-B, CENG 100, MAE 107. Students may only get credit for one of the two courses, CSE 167 or MAE 152.

Economics
 Students cannot take Economics 120A since it duplicates ECE 109.

Linguistics
 Phonetics 110, Phonology I 111, Phonology II 115, Morphology 120, Syntax I 121, Syntax II 125, Semantics 130, Mathematical Analysis of Languages 160, Computers and Language 163, Computational Linguistics 165, Psycholinguistics 170, Language and the Brain 172, and Sociolinguistics 175.

Engineering
 Team Engineering 101 (see course description under the Jacobs School of Engineering section).

Music
 Computer Music II 172, Audio Production: Mixing and Editing 173.

Psychology
 Engineering Psychology 161.

B.A. ELECTRICAL ENGINEERING AND SOCIETY
 Students must complete a total of 180 units for graduation, including the general-education requirements (GER). Note that 144 units (excluding GER) are required.

Lower-Division Requirements (total of eighty units)

Mathematics (twenty-four units)
 Math. 20A-B-C-D-E-F.

Physics (sixteen units)
 Phys. 2A-B-C-D or Phys. 4A-B-C-D-E. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the mathematics placement test permits them to start with Math. 20B or higher may take Phys. 2A in the fall quarter of the freshman year.

Chemistry (four units)
 Chem. 6A.

Programming Course (four units)
 ECE 15.

Electrical Engineering (twenty units)
 ECE 25, 30, 35, 45, 65, and 75.

Elective Courses in Social Sciences and Humanities Studies (eight units)
 These can be prerequisite courses for the upper-division depth sequence in social sciences/humanities. For instance, for history studies, this can be two history lower-division courses (HILD 2, 7, 10–12). Historically oriented HUM, MMW, and CAT courses would count as well. At least one lower-division course should have a writing component. For economics studies, this can be two lower-division courses (ECON 1, and ECON 4 for the finance track); or one lower-division course (ECON 1) plus one upper-division course for the data analysis track. For political science, the following courses may be utilized: PS10, PS11, PS12, PS13, PS30. For sociology studies, students will choose two lower-division courses from SOCI 1A, 1B, and 30, of which L30 is highly recommended.

 Other courses in social sciences/humanities will be available after an agreement between ECE and the respective departments/programs is established and approved.

Additional Notes
 1. Students with AP math credit are strongly advised to take Math. 20B in the fall quarter, leaving room for a GER in the winter quarter.
 2. The ECE undergraduate Web site shows several scheduling options. Please refer to the Web site and consult with the staff advisors in the undergraduate offices, rooms 2705 and 2707 in EBU1.

Upper-Division Requirements (total of sixty-four units)

a. Electrical Engineering BREADTH Courses (twenty-four units)
 Courses required of all electrical engineering majors:
 The six courses—ECE 101, 102, 103, 107, 108, and 109—are required of all electrical engineering majors and they are an assumed prerequisite for senior-level courses, even if they are not explicitly required. Although the courses are largely independent, ECE 102 is a prerequisite for ECE 108. Students who delay some of the BREADTH courses until the spring should be careful to not have delayed their depth sequence.

b. Electrical Engineering DESIGN Course (four units)
 Note: In order to fulfill the design requirement, students must complete one of the following courses with a grade C– or better. When taking this course, the student has the option of having a portion of the project related to his/her social sciences/humanities study. Graduation will not be approved until a written copy of the design project is submitted to the ECE undergraduate office.

 The electrical engineering design requirement can be fulfilled in any of the following three ways:
 1. Take ECE 191. Engineering Group Design Project
 2. Take ECE 190. Engineering Design. This course requires the department stamp. Specifications and enrollment forms are available in the undergraduate office.
 3. Take one of the following courses:
 • ECE 111. Advanced Digital Design Project
 • ECE 118. Computer Interfacing
 • ECE 155B or 155C. Digital Recording Projects
 Students who wish to take one of these courses to satisfy the design requirement must fill out an enrollment form and have departmental approval for the design credit prior to taking the course. The project must meet the same specifications as ECE 190.

c. Electrical Engineering ELECTIVES (twelve units)
 Three upper-division engineering, mathematics, or physics courses.

d. Social Sciences/Humanities Studies Depth Requirement (twenty-four units)
 Students must complete a “depth requirement” of at least six quarter courses to provide a focus for their studies. Sample depth programs for history and economics students are discussed below. Students may choose this demonstrated sequence or they may propose another with the approval of their faculty co-advisor from the respective social sciences/humanities department.

History Studies (six courses, twenty-four units)
 • At least four of these should belong to the specific field the student is pursuing (e.g., History of: East Asia, United States, Europe, Science, etc.).
 • At least one course should be in the field of history of science and technology.
 • At least one course should be a colloquium (i.e., a small course, with an emphasis on essay writing).

HISC 105. History of Environmentalism
HISC 106. The Scientific Revolution
HISC 107. The Emergence of Modern Science
HISC 108. Science and Technology in the Twentieth Century
HISC 109. Science in Western Civilization
HISC 111. The Atomic Bomb and the Atomic Age
HISC 115. Making Modern Medicine
HISC 131. Science Technology and Law
HISC 173/273. Darwin and Darwinism
HILD 2A. United States History
HILD 7A. Race and Ethnicity
HILD 10. East Asia: The Great Tradition
HILD 11. East Asia and the West
HILD 12. Twentieth-Century East Asia
HIUS 140. Economic History of the United States
HIUS 151. American Legal History 1865 to the Present
HIUS 187. Social Movements in the United States
HIUS 148. American Cities in the Twentieth Century
HIEU 143. European Intellectual History
HIGR 222. European History
HILA 102. Latin America in the Twentieth Century

Economics Studies
Track A: Finance (six courses, twenty-four units)
- Intermediate Microeconomic sequence: ECON 100A-B-C
- Finance sequence: ECON 173A-B
- One elective course from the following: ECON 104, 105, 109, 113, 119, 120B, 141, 142, 143, 147, 150, 151, 155, 171, 172A

Track B: Data Analysis (seven courses, twenty-eight units, one of them can be taken during lower-division years)
- Intermediate Microeconomic sequence: ECON 100A-B-C
- Data Analysis sequence: ECON 120B-C
- Two elective courses from the following: ECON 104, 105, 109, 119, 121, 125, 150, 151, 152, 155, 173A, 173B, 174, 176, 178
- Other upper-division courses for satisfying the depth sequences for other studies in social sciences/humanities will be available after an agreement is established between ECE and the respective department/program in social sciences/humanities.

Political Science Studies (six courses, twenty-four units)
Policy Analysis
At least four courses from
PS 160AA. Introduction to Policy Analysis
PS 160AB. Introduction to Policy Analysis
PS 162. Environmental Policy
PS 163. Analyzing Politics
PS 165. Special Topic: Policy Analysis
PS 168. Policy Assessment
PS 170A. Introductory Statistics for Political Science and Public Policy

and at least two courses from
PS 100H. Race and Ethnicity
PS 102J. Advanced Topics in Urban Politics
PS 103A. California Government and Politics
PS 103B. Politics and Policymaking in Los Angeles
PS 103C. Politics and Policymaking/San Diego
PS 125. Politics of Conservation
PS 125A. Communities and the Environment
PS 126AA. Modern Capitalism
PS 142A. United States Foreign Policy
PS 142B. U.S. Foreign Economic Policy
PS 142J. National Security Strategy
PS 142M. U.S. Foreign Policy/Regional Security

Sociology Studies (six courses, twenty-four units)
Students may specialize in one of four departmental concentrations or complete the “general sociology” track.

Students will choose eight courses, two lower-division and six upper-division courses from their choice of concentrations in Science and Medicine, Law and Society, Economy and Society, International Studies, or General Sociology. Note: SOCL 30 and SOCC 168T are highly recommended for all tracks.

Concentration in Science and Medicine (eight courses, thirty-two units)
Students will choose two lower division courses from SOCL 1A, 1B, and 30, of which L30 is highly recommended; and six upper division courses from the list below, in which SOCC 168T is highly recommended.

Lower-Division
L 1A. The Study of Society
L 1B. The Study of Society
L 30. Science, Technology, and Society (highly recommended)

Upper-Division
C 168T. Sociology of Technology (highly recommended)
B 113. Sociology of the AIDS Epidemic
C 134A. The Making of Modern Medicine
C 135. Medical Sociology
C 136A. Sociology of Mental Illness: An Historical Approach
C 136B. Sociology of Mental Illness in Contemporary Society
C 138. Genetics and Society
C 149. Sociology of the Environment
C 167. Science and War
C 168E. Sociology of Science

Concentration in Law and Society (eight courses, thirty-two units)
Students will choose two lower division courses from SOCL 1A, 1B, and 30, of which L30 is highly recommended; and six upper division courses from the list below, in which SOCC 168T is highly recommended.

Lower-Division
L 1A. The Study of Society
L 1B. The Study of Society
L 30. Science, Technology, and Society (highly recommended)

Upper-Division
C 168T. Sociology of Technology (highly recommended)
B 113. Sociology of the AIDS Epidemic
C 134A. The Making of Modern Medicine
C 135. Medical Sociology
C 136A. Sociology of Mental Illness: An Historical Approach
C 136B. Sociology of Mental Illness in Contemporary Society
C 138. Genetics and Society
C 149. Sociology of the Environment
C 167. Science and War
C 168E. Sociology of Science

Concentration in International Studies (eight courses, thirty-two units)
Students will choose two lower-division courses from SOCL 1A, 1B, and 30, of which L30 is highly recommended; and six upper-division courses from the list below, in which SOCC 168T is highly recommended.

Lower-Division
L 1A. The Study of Society
L 1B. The Study of Society
L 30. Science, Technology, and Society (highly recommended)

Upper-Division
C 168T. Sociology of Technology (highly recommended)
B 111. Human Rights
B 112. Social Psychology
B 142. Social Deviance
B 143. Suicide
B 146. Law Enforcement in America
B 160L. Law and Culture
B 173. Elite Crime
C 140. Sociology of Law
C 140F. Law and the Workplace
C 141. Crime and Society
C 147. Organizations, Society, and Social Justice
C 159. Special Topics in Social Organizations and Institutions
C 163. Migration and the Law

Concentration in Economy and Society (eight courses, thirty-two units)
Students will choose two lower-division courses from SOCL 1A, 1B, and 30, of which L30 is highly recommended; and six upper-division courses from the list below, in which SOCC 168T is highly recommended.

Lower-Division
L 1A. The Study of Society
L 1B. The Study of Society
L 30. Science, Technology, and Society (highly recommended)
D 181. Modern Western Society
D 182. Ethnicity and Indigenous Peoples in Latin America
D 183. Minorities and Nations
D 185. Globalization and Social Development
D 187. African Societies Through Film
D 188A. Community and Social Change in Africa
D 188B. Chinese Society
D 188F. Modern Jewish Societies and Israeli Society
D 188D. Latin America: Society and Politics
D 188J. Change in Modern South Africa
D 189. Special Topics in Comparative-Historical Sociology

General Sociology (eight courses, thirty-two units)

Students will choose two lower-division courses from SOCL 1A, 1B, and 30, of which 30 is highly recommended; and six upper-division courses, including one from EACH of the following four concentrations:

Science and Medicine
Law and Society
Economy and Society
International Studies

Note: SOCL 30 and SOCC 168T are highly recommended as two of the eight total courses.

Sample of a four-year program for the B.A. in Engineering Majors

1. Lower-Division Requirements (total of seventy-six units excluding GERs)

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMEN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 20A</td>
<td>Math. 20B</td>
<td>Math. 20C</td>
</tr>
<tr>
<td>ECE 15 (Computer Programming)</td>
<td>ECE 25 (Intro to ECE 35 (Intro to EE, EE, Digital) Analog)</td>
<td></td>
</tr>
<tr>
<td>Chem. 6A</td>
<td>GER</td>
<td>GER</td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 20F</td>
<td>Math. 20D</td>
<td>Math. 20E</td>
</tr>
<tr>
<td>Phys. 2C</td>
<td>Phys. 2D</td>
<td>GER</td>
</tr>
<tr>
<td>ECE 30 (Intro to EE)</td>
<td>ECE 45 (Circuits ECE 65 and Systems) (Components and Circuit Lab)</td>
<td></td>
</tr>
<tr>
<td>GER</td>
<td>S/H Elective</td>
<td>S/H Elective</td>
</tr>
</tbody>
</table>

2. Upper-Division Requirements (total of sixty-eight units excluding GERs)

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE 101 (Linear Systems)</td>
<td>ECE 107 (Electromagnetism)</td>
<td>GER</td>
</tr>
<tr>
<td>ECE 102 (Active Circuits)</td>
<td>ECE 108 (Digital Circuits)</td>
<td>Depth #1</td>
</tr>
<tr>
<td>ECE 109 (Prob. and Statistics)</td>
<td>ECE 103 (Devices and Materials)</td>
<td>Depth #2</td>
</tr>
<tr>
<td>GER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth #3</td>
<td>Depth #5</td>
<td>Depth #6</td>
</tr>
<tr>
<td>Depth #4</td>
<td>E. Elective</td>
<td>E. Elective</td>
</tr>
<tr>
<td>E. Elective</td>
<td>E. Elective</td>
<td>E. Elective</td>
</tr>
<tr>
<td>GER</td>
<td>GER</td>
<td>GER</td>
</tr>
</tbody>
</table>

Notes:
- Depth = Depth sequence courses
- S/H Elective = Social sciences/humanities elective courses
- E. Elective = Electrical engineering elective courses, which can be engineering, mathematics, or physics courses. Three of these electives must be upper division. The fourth may be either lower or upper division.
- GER = General-Education Requirements

MINOR CURRICULA

ECE offers three minors in accord with the general university policy that a minor requires five upper-division courses. Students must realize that these upper-division courses have extensive lower-division prerequisites (please consult the ECE undergraduate office). Students should also consult their college provost’s office concerning the rules governing minors and programs of concentration.

Electrical Engineering: Twenty units chosen from the breadth courses ECE 101, 102, 103, 107, 108, 109.

Computer Engineering: Twenty units chosen from the junior year courses ECE 102, 108, ECE 100, 101, 105, 120, 140, 140L, 141, 141L.

The department will consider other mixtures of upper-division ECE, CSE, physics, and mathematics courses by petition.

UNDERGRADUATE ADMISSIONS, POLICIES, AND PROCEDURES

FRESHMAN ELIGIBILITY

1. Computer Engineering
Freshmen students who have declared Computer Engineering on their application will be directly admitted into the major.

2. Electrical Engineering
Freshmen students who have declared Electrical Engineering on their application will be directly admitted into the major.

3. Engineering Physics
All students will initially be placed in pre-major status. Upon successful completion of the following courses (with a minimum 2.0 GPA by the end of the first three quarters if a transfer student, six quarters if an incoming freshman), students will be admitted into full Engineering-Physics major status.
 1. Math. 20A-B-C
 2. Phys. 2A-B
 3. ECE 15, 25, and 35

To initiate the change from pre-major status to major status, transfer students must see the ECE undergraduate advisor by the end of their third quarter at UCSD; incoming freshmen by the end of their sixth quarter.

Please refer to the section “Undergraduate Regulations and Requirements” for important details.

TRANSFER STUDENTS ELIGIBILITY

It is strongly recommended that transfer students complete the following course preparation for engineering majors:
- Calculus I—for Science and Engineering (Math. 20A)
- Calculus II—for Science and Engineering (Math. 20B)
- Calculus and Analytic Geometry (Math. 20C)
- Differential Equations (Math. 20D)
- Linear Algebra (Math. 20F)
- Complete calculus-based physics series with lab experience (Phys. 2A-B-C)
- Chemistry 6A (except computer science and computer engineering majors)
- Highest level of introductory computer programming language course offerings at the community college*

*Refer to the UC San Diego General Catalog to select major prerequisite requirement for computer language courses.

1. Computer Engineering
Applicants seeking admission as transfer students will be directly admitted into the Computer Engineering major.

2. Electrical Engineering
Applicants seeking admission as transfer students will be directly admitted into the electrical engineering major.

3. Engineering Physics
Students are accepted into the pre-major and must complete the following courses in order to be accepted into the engineering physics major: Math. 20A-B-C, Phys. 2A-B, ECE 15, 25, and 35. Students who wish to enter in the engineering physics major must contact the department before the beginning of the fall quarter, submitting course descriptions and transcripts for courses used to satisfy their lower-division requirements. Normally, admission will be for the fall quarter; students entering in the winter or spring quarter should be aware that scheduling difficulties may occur because upper-division sequences normally begin in the fall quarter.

GRADE REQUIREMENT IN THE MAJOR

Courses required for the major must be taken for a letter grade. All major courses must be completed with a grade of C– or better.

A GPA of 2.0 is required in all upper-division courses in the major, including technical electives. The grade of D will not be considered an adequate prerequisite for any ECE course and will not be allowed for graduation. The engineering design requirement must be completed with a grade of C– or better.
ADVISING

Students are required to complete an academic planning form and to discuss their curriculum with the appropriate departmental advisor immediately upon entrance to UCSD, and then every year until graduation. This is intended to help students in: a) their choice of depth sequence, b) their choice of electives, c) keeping up with changes in departmental requirements. A faculty advisor will be assigned by the ECE department undergraduate office.

NEW TRANSFER STUDENTS IN ELECTRICAL ENGINEERING AND ENGINEERING PHYSICS

The entire curriculum is predicated on the idea of actively involving students in engineering from the time they enter as freshmen. The freshman courses have been carefully crafted to provide an overview of the engineering mindset with its interrelationships among physics, mathematics, problem solving, and computation. All later courses are specifically designed to build on this foundation. All transfer students should understand that the lower-division curriculum is demanding. Transfer students will be required to take all lower-division requirements or their equivalent. Transfer students are advised to consult the ECE Web site for sample recommended course schedules and for the ECE course requirement guide.

NEW TRANSFER STUDENTS IN COMPUTER ENGINEERING

Transfer students are advised to consult the ECE Web site for sample recommended course schedules and for the ECE course requirement guide.

Students who do not have any programming experience are encouraged to take the CSE 8A-B sequence instead of CSE 11. Experience has shown that most students who are not familiar with programming and take CSE 11 have to retake the class because the accelerated pace makes it difficult to learn the new material.

Note: Transfer students are encouraged to consult with the ECE undergraduate office for academic planning upon entrance to UCSD.

ECE HONORS PROGRAM

The ECE Undergraduate Honors Program is intended to give eligible students the opportunity to work closely with faculty in a project, and to honor the top graduating undergraduate students.

ELIGIBILITY FOR ADMISSION TO THE HONORS PROGRAM

1. Completion of all ECE requirements with a minimum GPA of 3.5 in the major based on grades through winter quarter of the senior year.
2. Formal participation (i.e., registration and attendance) in the ECE 290 graduate seminar program in the winter quarter of their senior year.
3. Completion of an eight-unit approved honors project (ECE 193H: Honors Project) and submission of a written report by the first day of spring quarter of the senior year. This project must contain enough design to satisfy the ECE B.S./four-unit design requirement.
4. The ECE honors committee will review each project final report and certify the projects which have been successfully completed at the honors level.

PROCEDURE FOR APPLICATION TO THE HONORS PROGRAM

Between the end of the winter quarter of their junior year and the second week of the fall quarter of their senior year, interested students must advise the department of their intention to participate by submitting a proposal for the honors project sponsored by an ECE faculty member. Admission to the honors program will be formally approved by the ECE honors committee based on GPA and the proposal.

UNIT CONSIDERATIONS

Except for the two-unit graduate seminar, this honors program does not increase a participant's total unit requirements. The honors project will satisfy the departmental design requirement and students may use four units of their honors project course as a technical elective.

THE GRADUATE PROGRAMS

FIVE-YEAR B.S./MASTER’S PROGRAM

Undergraduates in the ECE department who have maintained a good academic record in both departmental and overall course work are encouraged to participate in the five-year B.S./master’s program offered by the department. Participation in the program will permit students to complete the requirements for the M.S. or M.Eng. degree within one year following receipt of the B.S. degree. Complete details regarding admission to and participation in the program are available from the ECE Undergraduate Affairs office.

ADMISSION TO THE PROGRAM

Students should submit an application for the B.S./master’s program, including three letters of recommendation, by the program deadline during the spring quarter of their junior year. Applications are available from the ECE Undergraduate Affairs office. No GREs are required for application to the B.S./master’s program. A GPA of at least 3.0 required for the major that are completed at the time of application (a minimum of twenty-four units of upper-division course work).

REQUIREMENTS FOR AWARD OF HONORS

1. Completion of all ECE requirements with a minimum GPA of 3.5 in the major based on grades through winter quarter of the senior year.
2. Formal participation (i.e., registration and attendance) in the ECE 290 graduate seminar program in the winter quarter of their senior year.
3. Completion of an eight-unit approved honors project (ECE 193H: Honors Project) and submission of a written report by the first day of spring quarter of the senior year. This project must contain enough design to satisfy the ECE B.S./four-unit design requirement.
4. The ECE honors committee will review each project final report and certify the projects which have been successfully completed at the honors level.

CONTINUATION IN THE PROGRAM

Once admitted to the B.S./master’s program, students must maintain a 3.0 cumulative GPA in all courses through the winter quarter of the senior year and in addition must at all times maintain a 3.0 cumulative GPA in their graduate course work. Students not satisfying these requirements may be re-evaluated for continuation in the program.

Admission for graduate study through the B.S./master’s program will be for the M.S. or M.Eng. degree only. Undergraduate students wishing to continue toward the Ph.D. degree must apply and be evaluated according to the usual procedures and criteria for admission to the Ph.D. program.

CURRICULUM

Students in the five-year B.S./master’s program must complete the same requirements as those in the regular M.S. program. Completion of the M.S. degree requirements within one year following receipt of the B.S. degree will generally require that students begin graduate course work in their senior year. All requirements for the B.S. degree should be completed by the end of the senior (fourth) year, and the B.S. degree awarded prior to the start of the fifth year. Courses taken in the senior year may be counted toward the B.S. degree requirements or the M.S. degree requirements, but not both. Students must have received their B.S. degree before they will be eligible to enroll as graduate students in the department.

The department offers graduate programs leading to the M.Eng., M.S., and Ph.D. degrees in electrical engineering. Students can be admitted into ECE graduate studies through either the M.Eng., M.S., or Ph.D. programs.

The Ph.D. program is strongly research oriented and is for students whose final degree objective is the Ph.D. If a student with a B.S. is admitted to this program, he or she will be expected to complete the requirements for the M.S. degree (outlined below) before beginning doctoral research. The M.S. is a technically intensive, research-oriented degree intended as preparation for advanced technical work in the engineering profession, or subsequent pursuit of a Ph.D. By contrast, the M. Eng. is intended to be a
The Focus Requirement: who will help select courses. Students will be assigned a faculty advisor immediately assigned a faculty academic advisor upon admission and subsequently at least once per academic year.

Support: The department makes every effort to provide financial support for Ph.D. students who are making satisfactory progress. Support may take the form of a fellowship, teaching assistantship, research assistantship, or some combination thereof. International students will not be admitted unless there is reasonable assurance that support can be provided for the duration of their Ph.D. Program Students in the M.Eng. and M.S. programs may also obtain support through teaching or research assistantships, but this is less certain.

Advising: Students should seek advice on requirements and procedures from the departmental graduate office and/or the departmental Web site. All students will be assigned a faculty academic advisor upon admission and are strongly encouraged to discuss their academic program with their advisor immediately upon arrival and subsequently at least once per academic year.

MASTERS OF ENGINEERING

The Master of Engineering (M. Eng.) program is intended primarily for engineers who desire master-level work but do not intend to continue with Ph.D.-level research. It differs from the M.S. program in that it is a terminal professional degree, whereas the M.S. may serve as an entry to a Ph.D. program.

Course Requirements

The total course requirements are forty-eight units (twelve quarter courses). At least thirty-six units must be at the graduate level. The choice of courses is subject to general focus and breadth requirements. Students will be assigned a faculty advisor who will help select courses.

1. The Focus Requirement: (five courses) The M.Eng. program should reflect, among other things, a continuity and focus in one subject area. The course selection must therefore include at least twenty units (five quarter courses) in closely related courses leading to the state of the art in that area. The requirement may be met by selecting five courses from within one of the focus areas listed below. In some cases it may be appropriate to select five closely related courses from two of the areas listed below. Such cases must be approved by a faculty advisor and the ECE Graduate Affairs Committee.

2. The Breadth Requirement: (two courses) A graduate student often cannot be certain of his or her future professional career activities and may benefit from exposure to interesting opportunities in other subject areas. The breadth requirement is intended to provide protection against technical obsolescence, open up new areas of interest, and provide for future self-education and interaction with people from related and sometime disparate disciplines. The minimum breadth requirement is eight units (two quarter courses) of ECE/CSE graduate courses selected from among the courses listed below, in an area distinctly different from that of the focus requirement.

3. Technical Electives: (two courses) Two technical electives may be any graduate courses in ECE, CSE, Physics, or Mathematics. Other technical courses may be selected with the approval of the faculty advisor and the ECE Graduate Affairs Committee. Technical electives may include a maximum of four units of ECE 298 (Independent Study), or ECE 299 (Research).

4. Professional Electives: (three courses) The three professional electives may be used in several ways: for the IPCore 401, 420, 421 series in business, management, and finance; for upper-division undergraduate technical courses specified as prerequisites for graduate-level focus, breadth, or technical elective courses taken to satisfy the M.Eng. degree requirements; or for additional graduate technical electives. Use of other courses to satisfy the Professional Elective requirement must be approved by the faculty advisor.

Scholarship Requirement: The forty-eight units of required course work must be taken for a letter grade (A–F), except for ECE 298 or 299, for which only S/U grades are allowed. Courses for which a D or F is received may not be counted. Students must maintain a GPA of 3.0 overall.

MASTERS OF ENGINEERING PROGRAM FOCUS COURSES

Please consult the ECE graduate office or the ECE Web site for the current list of focus areas and courses.

1. Applied Physics

ECE 222A-B-C. Electromagnetic Theory
ECE 230A-B-C. Solid State Electronics
ECE 236A-B-C-D. Semiconductors
ECE 238A-B. Materials Science
MS 201A-B-C. Materials Science
ECE 240A-B-C. Optics
ECE 241A-B-C. Optics

2. Communications and Signal Analysis

ECE 250. Random Processes
ECE 251AN-BN-CN-DN. Digital Signal Processing
ECE 252A-B. Speech Compression and Recognition
ECE 253A-B. Digital Image Analysis
ECE 254. Detection Theory
ECE 255AN. Information Theory
ECE 255BN-CN. Source Coding
ECE 256A-B. Time Series Analysis
ECE 257A-B. Wireless Communications
ECE 258A-B. Digital Communications
ECE 259AN-BN-CN. Channel Coding
ECE 275A-B. Statistical Parameter Estimation
ECE 285. Special Topic: Computer Vision; Pattern Recognition (offerings vary annually)

3. Electronic Circuits and Systems

Allied Ph.D. research areas: Computer Engineering, Electronic Circuits and Systems.

ECE 222A-B-C. Applied Electromagnetic Theory
ECE 230A-B-C. Solid State Electronics
ECE 236A-B-C. Semiconductor Hetero-structure Materials
ECE 250. Random Processes
ECE 260A-B-C. VLSI Circuits
ECE 264A-B-C-D. Analog IC Design
ECE 265A-B. Wireless Circuit Design
CSE 240A, 240B. Computer Architecture
CSE 242A, 243A. Computer Aided Design
ECE 251AN-BN-CN-DN. Digital Signal Processing

TRANSFERRING TO THE PH.D. PROGRAM

Although the M. Eng. is intended as a terminal degree, the department recognizes that degree goals can change, including the possibility that a student admitted to the M. Eng. may wish to pursue a Ph.D. To this end, we outline below the procedure that must be followed to effect such a change. At the outset, however, we stress that this option should not be used in an attempt to circumvent the normal Ph.D. admissions process. Students who fail to meet the standards for the Ph.D. program at the time of admission have little chance of being allowed into the Ph.D. program at a later date.

Students in the M.Eng. program wishing to be considered for admission to the Ph.D. program should consult their academic advisor as soon as possible. Transfer from M. Eng. to the Ph.D. program is possible provided that the student

• Satisfy all requirements for initial admission to the Ph.D program, including submission of GRE General Test Scores, and be approved for consideration for transfer to the Ph.D program by the ECE Graduate Admissions Committee.

• Identify a faculty member who agrees, in writing, to serve as that student’s academic and Ph.D. research advisor.

• In consultation with the academic advisor, design and complete a program of course work that satisfies all course requirements and constraints for a Ph.D discipline appropriate to their research. All students in the Ph.D. programs are required to
satisfy all Ph.D. degree requirements as described below. Should the student not be admitted to the Ph.D. program, this program of course work will serve, with the approval of the academic advisor and the ECE Graduate Affairs Committee, to satisfy the course work requirements for the M.S. or M.Eng. degree (see below).

- Pass the comprehensive examination at the level required for continuation in the Ph.D. program. A student failing to pass the comprehensive exam at this required level will not be admitted to the Ph.D. program, and will instead continue in the M.S. or M.Eng. degree program (see below).
- Maintain a GPA of at least 3.4 in the appropriate core graduate courses.

A student who has fulfilled all of the above requirements should, after passing the departmental comprehensive exam, submit a petition to change their degree objective from M.Eng. to Ph.D.

MASTER OF SCIENCE

The ECE department offers M.S. programs in electrical and computer engineering. The M.S. program in computer engineering is jointly administered with the Department of Computer Science and Engineering. The M.S. programs are research oriented, are intended to provide the intensive technical preparation necessary for advanced technical work in the engineering profession or subsequent pursuit of a Ph.D. The M.S. degree may be earned either with a thesis (Plan 1) or with a research project followed by a comprehensive examination (Plan 2). However, continuation in the Ph.D. program requires a comprehensive examination so most students opt for Plan 2.

Course Requirements: The total course requirements for the master of science degrees in electrical engineering and in computer engineering are forty-eight units (twelve quarter courses) and forty-nine units, respectively, of which at least thirty-six units must be in graduate courses. Note that this is greater than the minimum requirements of the university. The department maintains a list of core courses for each disciplinary area from which the thirty-six graduate course units must be selected. The current list may be obtained from the department graduate office or the official Web site of the department. Students in interdisciplinary programs may select other core courses with the approval of their academic advisor. The course requirements must be completed within two years of full-time study. Students will be assigned a faculty advisor who will help select courses and approve their overall academic curriculum.

Scholarship Requirement: The forty-eight units of required course work must be taken for a letter grade (AF), except for graduate research (e.g. ECE 298, 299) for which only S/U grades are allowed. Courses for which a D or F is received may not be counted. Students must maintain a GPA of 3.0 overall.

Thesis and Comprehensive Requirements: The department offers both M.S. Plan 1 (thesis) and M.S. Plan 2 (written comprehensive exam). Students in the M.S. program may elect either Plan 1 or Plan 2 any time. Students in the M.S. Plan 1 (thesis) must take twelve units of ECE 299 (Research) and must submit a thesis as described in the general requirements of the university. Students in the M.S. Plan 2 (written comprehensive exam) may count four units of ECE 299 (Research) toward the thirty-six graduate units required and must pass the departmental written comprehensive examination not later than the end of the fall quarter of their second year of study. Students who pass the written examination at the M.S level will receive a terminal masters degree, if they do not already have one.

Students in the computer engineering discipline may elect to take examinations in the Department of Computer Science and Engineering, in accordance with the CSE guidelines, in place of the written comprehensive examination in ECE.

Transfer to the Ph.D. Program: Students in the M.S. program wishing to be considered for admission to the Ph.D. program should consult their academic advisor as soon as possible. Transfer from the M.S. to the Ph.D. program is possible provided that the student:

- Satisfy all requirements for initial admission to the Ph.D. program, including submission of GRE general test scores, and be approved for consideration for transfer to the Ph.D. program by the ECE Graduate Admissions Committee.
- Identify a faculty member who agrees, in writing, to serve as that student's academic and Ph.D. research advisor.
- In consultation with the academic advisor, design and complete a program of course work that satisfies all course requirements and constraints for a Ph.D. discipline appropriate to the student's research. All students in the Ph.D. program are required to satisfy all Ph.D. degree requirements as described below. Should the student not be admitted to the Ph.D. program, this program of course work will serve, with the approval of the academic advisor and the ECE Graduate Affairs Committee, to satisfy the course work requirements for the M.S. degree.
- Pass the comprehensive examination at the level required for continuation in the Ph.D. program. A student failing to pass the comprehensive exam at this required level will not be admitted to the Ph.D. program, and will instead continue in the M.S. degree program.
- Maintain a GPA of at least 3.4 in the appropriate core graduate courses.

A student who has fulfilled all of the above requirements should, after passing the departmental comprehensive exam, submit a petition to change his or her degree objective from M.S. to Ph.D.

THE DOCTORAL PROGRAMS

The ECE department offers graduate programs leading to the Ph.D. degree in ten disciplines within electrical and computer engineering, as described in detail below. The Ph.D. is a research degree requiring the intensive technical preparation necessary for advanced technical work in the engineering profession or subsequent pursuit of a Ph.D. degree. The Ph.D. program consists of forty-eight units (twelve quarter courses), of which at least thirty-six units must be in graduate courses. Note that this is greater than the minimum requirements of the university. The department maintains a list of core courses for each disciplinary area from which the thirty-six graduate course units must be selected. The current list may be obtained from the ECE department graduate office or the official Web site of the department. Students in the interdisciplinary programs may select other core courses with the approval of their academic advisor. The course requirements must be completed within two years of full-time study.

Students in the Ph.D. programs may count no more than eight units of ECE 299 towards their course requirements.

Students who already hold an M.S. degree in electrical engineering must nevertheless satisfy the requirements for the core courses. However, graduate courses taken elsewhere can be substituted for specific courses with the approval of the academic advisor.

Scholarship Requirement: The forty-eight units of required course must be taken for a letter grade (AF), except for ECE 299 (Research) for which only S/U grades are allowed. Courses for which a D or F is received may not be counted. Students must maintain a GPA of 3.0 overall. In addition, a GPA of 3.4 in the core graduate courses is generally expected.

Comprehensive Exam (Ph.D. Preliminary): Ph.D. students must find a faculty member who will agree to supervise their thesis research. This should be done before the start of the second year of study. They should then devote at least half their time to research and must pass the Ph.D. Preliminary Examination by the end of their second year of study. This is an oral exam in which the student presents his or her research to a committee of three ECE faculty members, and is examined orally for proficiency in his or her area of specialization. The outcome of the
1. Applied Ocean Sciences: This program in applied science related to the oceans is interdepartmental with the Graduate Department of the Scripps Institution of Oceanography (SIO) and the Department of Mechanical and Aerospace Engineering (MAE). It is administered by SIO. All aspects of man's purposeful and unusual intervention into the sea are included.

2. Applied Physics—Applied Optics and Photonics: These programs encompass a broad range of interdisciplinary activities involving optical science and engineering, optical and optoelectronic materials and device technology, communications, computer engineering, and photonic systems engineering. Specific topics of interest include ultrafast optical processes, nonlinear optics, quantum cryptography and communications, optical image science, multidimensional optoelectronic I/O devices, spatial light modulators and photodetectors, artificial dielectrics, multifunctional diffractive and micro-optics, volume and computer-generated holography, optoelectronic and micromechanical devices and packaging, wave modulators and detectors, semiconductor-based optoelectronics, injection lasers, and photodetectors. Current research projects are focused on applications such as optical interconnects in high-speed digital systems, optical multidimensional signal and image processing, ultrahigh-speed optical networks, 3D optical memories and memory interfaces, 3D imaging and displays, and biophotonic systems. Facilities available for research in these areas include electron-beam and optical lithography, material growth, microfabrication, assembly, and packaging facilities, cw and femtosecond pulse laser systems, detection systems, optical and electro-optic components and devices, and electronic and optical characterization and testing equipment.

3. Communication Theory and Systems: Communications theory and systems concerns the transmission, processing, and storage of information. Topics covered by the group include wireless and wireline communications, spread-spectrum communication, multi-user communication, network protocols, error-correcting codes for transmission and magnetic recording, data compression, time-series analysis, and image and voice processing.

4. Computer Engineering consists of balanced programs of studies in both hardware and software, the premise being that knowledge and skill in both areas are essential both for the modern-day computer engineer to make the proper unbiased tradeoffs in design, and for researchers to consider all paths towards the solution of research questions and problems. Toward these ends, the programs emphasize studies (course work) and competency (comprehensive examinations, and dissertations or projects) in the areas of VLSI and logic design, and reliable computer and communication systems. Specific research areas include computer systems, signal processing systems, multiprocessing and parallel and distributed computing, computer communications and networks, computer architecture, computer-aided design, fault-tolerance and reliability, and neurocomputing. The faculty is composed of interested members of the Departments of Electrical and Computer Engineering (ECE), Computer Science and Engineering (CSE), and related areas. The specialization is administered by both departments; the requirements are similar in both departments, with students taking the comprehensive exam, if necessary, given by the student's respective department.

5. Electronic Circuits and Systems: This program involves the study and design of analog, mixed-signal (combined analog and digital), and digital electronic circuits and systems. Emphasis is on the development, analysis, and implementation of integrated circuits that perform analog and digital signal processing for applications such as wireless and wireline communication systems, test and measurement systems, and interfaces between computers and sensors. Particular areas of study currently include radio frequency (RF) power amplifiers, RF low noise amplifiers, RF mixers, fractional-N phase-locked loops (PLLs) for modulated and continuous-wave frequency synthesis, pipelined analog-to-digital converters (ADCs), delta-sigma ADCs and digital-to-analog converters (DACs), PLLs for clock recovery, adaptive and fixed continuous-time, switched-capacitor, and digital filters, echo cancellation circuits, adaptive equalization circuits, wireless receiver and transmitter linearization circuits, mixed-signal baseband processing circuits for wireless transmitters and receivers, high-speed digital circuits, and high-speed clock distribution circuits.

6. Applied Physics—Electronic Devices and Materials: This program addresses the synthesis and characterization of advanced electronic materials, including semiconductors, metals, and dielectrics, and their application in novel electronic, optoelectronic, and photonic devices. Emphasis is placed on exploration of techniques for high-quality epitaxial growth of semiconductors, including both molecular-beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD); fabrication and characterization of materials and devices at the nanoscale; development of novel materials processing and integration techniques; and high-performance electronic devices based on both Group IV (Si/Ge) and III-V semiconductor materials. Areas of current interest include novel materials and high-speed devices for wireless communications; electronic and optoelectronic devices for high-speed optical networks; high-power microwave-frequency devices; nanoscale CMOS devices and circuits; heterogeneous materials integration; novel device structures for biological and chemical sensing; advanced tools for nanoscale characterization and metrology; and novel nanoscale electronic, optoelectronic, and photonic devices. Extensive facilities are available for research in this area, including several MBE and MOCVD systems; a complete microfabrication facility; electron-beam lithography and associated process tools for nanoscale fabrication; a Rutherford backscattering system; x-ray diffractometers; electron microscopy facilities; extensive scanning-probe instrumentation; cryogenic systems; and comprehensive facilities for DC to RF electrical device characterization and optical characterization of materials and devices.
7. Intelligent Systems, Robotics, and Control: This information sciences-based field is concerned with the design of human-interactive intelligent systems that can sense the world (defined as some specified domain of interest); represent or model the world; detect and identify states and events in the world; reason about and make decisions about the world; and/or act on the world, perhaps in real-time. A sense of the type of systems and applications encountered in this discipline can be obtained by viewing the projects shown at the Web site http://www.ece.ucsd.edu/grad/curricula/MS-PhD/ISR/index.php.

The development of such sophisticated systems is necessarily an interdisciplinary activity. To sense and succinctly represent events in the world requires knowledge of signal processing, computer vision, information theory, coding theory, and data-basing; to detect and reason about states of the world utilizes concepts from statistical detection theory, hypothesis testing, pattern recognition, time series analysis, and artificial intelligence; to make good decisions about systems.

stationary and our system must constantly adapt to a complicated suite of sensors, computers, and the medium. General areas of investigation addressed in order to obtain an effective fusion of a complicated suite of sensors, computers, and problem dynamics into one integrated system.

Faculty affiliated with the ISRC subarea are involved in virtually all aspects of the field, including applications to intelligent communications systems; advanced human-computer interfacing; statistical signal- and image-processing; intelligent tracking and guidance systems; biomedical system identification and control; and control of teleoperated and autonomous multiagent robotic systems.

8. Magnetic Recording: this is an interdisciplinary field involving physics, material science, communications, and mechanical engineering. The physics of magnetic recording involves studying magnetic heads, recording media, and the process of transferring information between the heads and the medium. General areas of investigation include: nonlinear behavior of magnetic heads, very high frequency loss mechanisms in head materials, characterization of recording media by micromagnetic and many body interaction analysis, response of the medium to the application of spatially varying vectorial head fields, fundamental analysis of medium nonuniformities leading to media noise, and experimental studies of the channel transfer function emphasizing non-linearities, interfaces, and noise. Current projects include numerical simulations of high density digital recording in metallic thin films, micromagnetic analysis of magnetic reversal in individual magnetic particles, theory of recorded transition phase noise and magnetization induced nonlinear bit shift in thin metallic films, and analysis of the thermal-temporal stability of interacting fine particles.

Research laboratories are housed in the Center for Magnetic Recording Research, a national center devoted to multidisciplinary teaching and research in the field.

9. Applied Physics—Radio and Space Science: The Radio Science Program focuses on the study of radio waves propagating through turbulent media. The primary objectives are probing of otherwise inaccessible media such as the solar wind and interstellar plasma. Techniques for removing the effects of the turbulent medium to restore the intrinsic signals are also studied.

The Space Science Program is concerned with the nature of the sun, its ionized and supersonic outer atmosphere (the solar wind), and the interaction of the solar wind with various bodies in the solar system. Theoretical studies include: the interaction of the solar wind with the earth, planets, and comets; cosmic dusty-plasmas; waves in the ionosphere; and the physics of shocks. A major theoretical effort involves the use of supercomputers for modeling and simulation studies of both fluid and kinetic processes in space plasmas. Students in radio science will take measurements at various radio observatories in the U.S. and elsewhere. This work involves a great deal of digital signal processing and statistical analysis. All students will need to become familiar with electromagnetic theory, plasma physics, and numerical analysis.

10. Signal and Image Processing: This program explores engineering issues related to the modeling of signals starting from the physics of the problem, developing and evaluating algorithms for extracting the necessary information from the signal, and the implementation of these algorithms on electronic and opto-electronic systems. Examples of research areas include filter design, fast transforms, adaptive filters, spectrum estimation and modeling, sensor array processing, image processing, image restoration, video processing, pattern recognition, and the implementation of signal processing algorithms using appropriate technologies. Signal and image processing techniques have found application in a number of areas such as sonar, radar, speech, geophysics, medical imaging, robotic vision, digital communications, and multimedia systems among others.

11. Nanoscale Devices and Systems: This program area will address the science and engineering of materials and device structures at length scales of ~100nm and below, at which phenomena such as quantum confinement and single-electron effects in electronics, near-field behavior in optics and electromagnetics, single-domain effects in magnetics, and a host of other effects in mechanical, fluidic, and biological systems emerge and become dominant. Engineering activities such as scaling of transistors and other circuit elements in microelectronics, design of new, artificial materials with engineered optical properties and of photonic components and systems based on these materials, engineering of high-density magnetic storage media and systems, development of new technologies for renewable energy conversion and storage, advancement of sensor technology, and others now depend upon engineering both solid-state and “soft” materials and device structures at the nanoscale. Furthermore, the integration of such technologies into complex systems, as well as consideration of system drivers and constraints as guides for the development of new materials and devices, is emerging as a critical aspect of nanotechnology.

RESEARCH FACILITIES

Most of the research laboratories of the department are associated with individual faculty members or small informal groups of faculty. Larger instruments and facilities, such as those for electron microscopy and e-beam lithography are operated jointly. In addition the department operates several research centers and participates in various university wide organized research units.

The department-operated research centers are the Center for Wireless Communications which is a university-industry partnership; the Institute for Neural Computation, and the Center for Information Theory and Application in conjunction with Calit2.

Department research is also associated with the Center for Astronomy and Space Science, the Center for Magnetic Recording Research, the California Space Institute, the Institute for Nonlinear Science, and Calit2 (http://www.calit2.net). Departmental researchers also use various national and international laboratories, such as the National Nanofabrication Facility, the National Radio Astronomy Laboratory, and the Center for Networked Systems (CSE).

The department emphasizes computational capability and maintains numerous computer laboratories for instruction and research. One of the NSF national supercomputer centers is located on the campus. This is particularly useful for those whose work requires high data bandwidths.

COURSES

For course descriptions not found in the UC San Diego General Catalog, 2010–11, please contact the department for more information.

The department will endeavor to offer the courses as outlined below; however, unforeseen circumstances sometimes require a change of scheduled offerings. Students are strongly advised to check the Schedule of Classes or the department before relying on the schedule below. For the names of the instructors who will teach the course, please refer to the quarterly Schedule of Classes. The departmental Web site http://www.ece.ucsd.edu includes the present best estimate of the schedule of classes for the entire academic
LOWER-DIVISION

1A-B-C. Mesa Orientation Course (1-1-1)
Students will be given an introduction to the engineering profession and our undergraduate program. Exercises and practicums will develop the problem-solving skills needed to succeed in engineering. Prerequisite: none. (F.W.S)

15. Engineering Computation (4)
Students learn the C programming language with an emphasis on high-performance numerical computation. The commonality across programming languages of control structures, data structures, and I/O is also covered. Techniques for using MATLAB to graph the results of C computations are developed. Prerequisites: a familiarity with basic mathematics such as trigonometry functions and graphing is expected but this course assumes no prior programming knowledge. (F.W)

25. Introduction to Digital Design (4)
This course emphasizes digital electronics. Principles included in lectures are used in laboratory assignments, which also serve to introduce experimental and design methods. Topics include Boolean algebra, combination and sequential logic, gates and their implementation in digital circuits. (Course material and/or program fees may apply.) Prerequisite: none. (F.W.S)

30. Introduction to Computer Engineering (4)
The fundamentals of both the hardware and software in a computer system. Topics include representation of information, computer organization and design, assembly and microprogramming, and computer technology in logic design. (Students who have taken CSE 30 may not take ECE 30 for credit.) Prerequisites: ECE 15 and 25 with grades of C– or better. (F.S)

35. Introduction to Analog Design (4)
Fundamental circuit theory concepts, Kirchoff's voltage and current laws, Thueven's and Norton's theorems, loop and node analysis, time-varying signals, transient first order circuits, steady-state sinusoidal response. (Course material and/or program fees may apply.) Prerequisites: Math. 20A–B; Math. 20C and Physics 28 must be taken concurrently. (F.W)

45. Circuits and Systems (4)
Introduction to linear and nonlinear components and circuits. Topics include terminal devices, bipolar and field-effect transistors, and large and small signal analysis of diode and transistor circuits. (Course material and/or program fees may apply.) Prerequisites: ECE 15, 25, and 35. (F.W.S)

65. Components and Circuits Laboratory (4)
A laboratory course covering the concept and practice of fabrication of diodes and field-effect transistors. (Course material and/or program fees may apply.) Prerequisite: Math. 20A–B, ECE 15, and ECE 35. (F.W.S)

70. Photonics of Everyday Life (4)
This course is a general elective for students interested in the impact of photonic technology in our everyday lives. Topics include digital camera and photography, photography vs. holography, holograms for counterfeiting, LCD display and optical storage (CD and DVD) in computers, some varieties of lasers, differences between laser light and ordinary light, optics for telescope, telescope, microscope, spectroscopy, and biophotonics. Prerequisite: simple concepts of calculus (see instructor), or Math. 10A or 20A. (W or S)

87. Freshman Seminar (1)
The freshman seminar program is designed to provide new students with the opportunity to engage in intellectual topics with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to 15 to 20 students, with preference given to entering freshmen. Prerequisite: none.

90. Undergraduate Seminar (1)
This seminar class will provide a broad review of current research topics in both electrical engineering and computer engineering. Typical subject areas are signal processing, VLSI design, electronic materials, and devices, radio astronomy, communications, and optical computing. Prerequisite: none. (F.W.S)

UPPER-DIVISION

100. Linear Electronic Systems (4)
Linear active circuit system and design topics. Include frequency response, pole/zero transformations; design and stability of filters using operational amplifiers. Integrated lab and lecture involves analysis, design, simulation, and testing of circuits and systems. Prerequisites: ECE 15, ECE 25, ECE 35, and ECE 45. Corequisite: ECE 102 (F.W)

101. Linear Systems Fundamentals (4)

102. Introduction to Active Circuit Design (4)
Design and stability of linear active circuits. Nonlinear models for diodes, bipolar and field-effect transistors. Design of analog transistor circuits, biasing, and small-signal transfer functions. Design of digital transistor circuits, logic levels, noise margins, and fanout. Circuit designs simulated by computer and tested in the laboratory. Prerequisites: ECE 65 and 101, with grades of C– or better. (F.W)

103. Fundamentals of Devices and Materials (4)
Introduction to semiconductor materials and devices. Semiconductor crystal structure, energy bands, doping, carrier statistics, drift and diffusion, p-n junctions, metal-semiconductor junctions. Bipolar junction transistors: current flow, amplification, switching, non-ideal behavior. Metal-oxide-semiconductor structures, MOSFETs, device scaling. Prerequisites: Physics 2D or Physics 4D and 4E with grades of C– or better. (F.W)

107. Electromagnetism (4)
Magnetostatics: vector calculus, Maxwell's equations; plane waves; skin effect. Electromagnetics of transmission lines: reflection and transmission at discontinuities, Smith chart, pulse propagation, dispersion. Rectangular waveguides. Dielectric and magnetic properties of materials. Electromagnetics of circuits. Prerequisites: Physics 2A–D or 4A–E and ECE 45 or 538 with grades of C– or better. (W.S)

108. Digital Circuits (4)
Digital integrated electronic circuits for processing technology. Analytical methods for static and dynamic characteristics. MOS field-effect transistors and bipolar junction transistors, circuits, fundamental properties, design techniques, programmable logic arrays, memory elements. (Course material and/or program fees may apply.) Prerequisites: Math. 20A–B, 21C–D, 20E, 20F, 20H, Math. 2A–D or 4A–E; (ECE 25, 35, 45, and 65);ECE 30 or CSE 30; ECE 102 with grades of C– or better. (W.S)

109. Engineering Probability and Statistics (4)
Axioms of probability, conditional probability, theorem of total probability, random variables, densities, expected values, characteristic functions, transformation of random variables, central limit theorem. Random number generation, engineering reliability, elements of estimation, random sampling, sampling distributions, tests for hypothesis. Students who completed Math. 180A–B, Math. 183, Math. 186, Econ. 120A, or Econ. 120AH will not receive credit for ECE 109. Prerequisites: Math. 20A–B or C or 21C, 20D or 21D, 20F, with grades of C– or better. (ECE 101 recommended.) (W.S)

111. Advanced Digital Design Project (4)
Advanced topics in digital circuits and systems. Use of computer and design automation tools. Hazard elimination, simulation, localization, and arbitration, pipelining, current technology in logic design. Topics will include: design automation; system synthesis; logic level design; microprogramming, current technology in logic design. Prerequisites: ECE 108 or CSE 140 with grades of C– or better. (F.W.S)

118. Computer Interfacing (4)
Interfacing computers and embedded controllers to the real world: busses, interrupts, DMA, memory mapping, concurrency, digital I/O, standards for serial and parallel communications, A/D, D/A, sensors, signal conditioning, video, and closed loop control. Students will design and construct an interfacing project. (Course material and/or program fees may apply.) Prerequisites: ECE 30 or CSE 30 and ECE 60A–B or ECE 53A–B. (S)

120. Solar System Physics (4)
General introduction to planetary bodies, the overall structure of the solar system, and space plasma physics. Course emphasis will be on the solar atmosphere, how the solar wind is produced, and its interaction with both magnetized and unmagnetized planets (and comets). Prerequisites: Math. 2A–C or 4A–D, Math. 20A–B, 20C or 21C with grades of C– or better. (S)

123. Antenna Systems Engineering (4)
The electromagnetic and systems engineering of radio antennas for terrestrial wireless and satellite communications. Antenna impedance, beam pattern, gain, and polarization. Dipoles, monopoles, paraboloids, phased arrays. Power and noise budgets for communication links. Atmospheric propagation and multipath. Prerequisite: ECE 107 with a grade of C– or better. (W or S)

134. Electronic Materials Science of Integrated Circuits (4)
Electronic materials science with emphasis on topics pertinent to microelectronics and VLSI technology. Concept of the course is to use components in integrated circuits to discuss structure, thermodynamics, reaction kinetics, and electrical properties of materials. Prerequisites: Physics 2C–D with grades of C– or better. (S)

135A. Semiconductor Physics (4)
Crystal structure and quantum theory of solids; electronic band structure; review of carrier statistics, drift and diffusion, p-n junctions; nonequilibrium carriers, imps, traps, recombination, etc; metal-semiconductor junctions and heterojunctions. Prerequisites: ECE 103 with a grade of C– or better. (F)

135B. Electronic Devices (4)
Structure and operation of bipolar junction transistors, junction field-effect transistors, metal-oxide-semiconductor diodes and transistors. Analysis of dc and ac characteristics. Charge control model of dynamic behavior. Prerequisite: ECE 135A with a grade of C– or better. (W)

136. Fundamentals of Semiconductor Device Fabrication (4)
Crystal growth, controlled diffusion, determination of junction depth and impurity profiles, techniques of epitaxy, ion implantation, oxidation, lithography, chemical vapor deposition, etching, process simulation and robust design for fabrication. Prerequisite: ECE 103 with a grade of C– or better. (S)

136L. Microelectronics Laboratory (4)
Laboratory fabrication of diodes and field effect transistors covering photolithography, oxidation, diffusion, thin film deposition, etching and evaluation of devices. (Course material and/or program fees may apply.) Prerequisite: ECE 103. (F.S)

138L. Microstructured Processing Technology Laboratory (4)
A laboratory course covering the concept and practice of microstructuring science and technology in fabricating devices and/or functional features relevant to sensors, lab-chips and related devices. (Course material and/or program fees may apply.) Prerequisite: upper-division standing for science and engineering students. (W)

139. Semiconductor Device Design and Modeling (4)
Device physics of modern field effect transistors and bipolar transistors, including behavior of submicron structures. Relationship between structure and circuit models of transistors. CMOS and BICMOS technologies. Emphasis on computer simulation of transistor operation and application in integrated circuits. Prerequisites: ECE 135A–B with grades of C– or better. (S)
145A. Acoustics Laboratory (4–4–4) Automated laboratory based on HP-GPIB controlled instruments. Software controlled data collection and analysis. Vibrations and waves in strings and bars of electromechanical systems and transducers. Transmissions, reflection, and scattering of sound waves in air and water. Aural and visual detection. Prerequisite: ECE 107 with a grade of C– or better or consent of instructor. (F,WS)

146. Introduction to Magnetic Recording (4) A laboratory introduction to the writing and reading of digital information in a disk drive. Basic magnetic recording measurements on state-of-art disk drives to evaluate signals, noise, erasure, and non-linearities that characterize this channel. Lectures on the recording process will allow comparison of measurements with basic voltage expressions. E/M/FEM software utilized to study geometric effects on the recorded and played transducers. Prerequisite: ECE 107 with a grade of C– or better. (W)

154A. Communications Systems I (4) Study of analog modulation systems including AM, SSB, DSB, VSB, FM, and PM. Performance analysis of both coherent and noncoherent receivers, including threshold effects in FM. Prerequisite: ECE 101 and 153 with a grade of C– or better. (W)

154B. Communications Systems II (4) Design and performance analysis of digital modulation techniques, including probability of error results for PSK, DPSK, and FSK. Introduction to effects of inter symbol interference and fading. Detection and estimation theory, including matched filter design and maximum-likelihood parameter estimation. Prerequisite: ECE 154A with a grade of C– or better. (W)

ECE 15154C. Communications Systems III (4) Introduction to information theory and coding, including entropy, average mutual information, channel capacity, block codes and convolutional codes. Prerequisite: ECE 154B with a grade of C– or better. (S)

155A. Digital Recording Systems (4) This course will involve modulation and coding techniques for digital recording channels. Prerequisites: ECE 109 and 153 with grades of C– or better and concurrent registration in ECE 154A required. Department stamp required. (F)

155B. Digital Recording Projects (II) (4) Students registered in this course work one-on-one with a researcher on a project involving the design and evaluation of a digital recording system based upon material covered in ECE 155A. Prerequisites: ECE 155A with grade of C– or better. Concurrent registration in ECE 154B. Department stamp required. (W,WS)

155C. Digital Recording Projects (III) (4) Students registered in this course work one-on-one with a researcher on a project involving the design and evaluation of a digital recording system based upon material covered in ECE 155A. The project can be a continuation of a project initiated in Digital Recording Projects I or it can be an entirely new project. Prerequisites: ECE 155B with grade of C– or better. Concurrent registration in ECE 154C. Department stamp required. (W,WS)

156. Sensor Networks (4) Characteristics of chemical, biological, seismic, and other physical sensors; signal processing techniques supporting distributed detection of salient events; wireless communication and networking protocols supporting formation of robust sensor fabrics; current experience with low power, low cost sensor deployments. Undergraduate students must take a final exam; graduate students must write a term paper. Projects in final project. Cross-listed with MAE 149 and SIO 238. Prerequisite: upper-division standing and consent of instructor, or graduate student in science and engineering. (S)

157A. Communications Systems Laboratory I (4) Experiments in the modulation and demodulation of baseband and passband signals. Statistical characterization of signals and impairments. (Course material and/or program fees may apply.) Prerequisite: ECE 154A with a grade of C– or better. (W)

157B. Communications Systems Laboratory II (4) Advanced Projects in communication systems. Students will plan and implement design projects in the laboratory, updating progress weekly and making plan/design adjustments based upon feedback. (Course material and/or program fees may apply) Prerequisite: ECE 154A with a grade of C– or better. (W)

158A. Data Networks I (4) Layered network architectures, data link control protocols and multiple-access systems, performance analysis. Flow control; prevention of deadlock and throughput degradation, routing, centralized and decentralized systems, static dynamic algorithms. Shortest path and minimum average delay algorithms. Comparisons. Prerequisite: ECE 109 with a grade of C– or better. ECE 159A recommended. (W)

158B. Data Networks II (4) Layered network architectures, data link control protocols and multiple-access systems, performance analysis. Flow control; prevention of deadlock and throughput degradation, routing, centralized and decentralized systems, static dynamic algorithms. Shortest path and minimum average delay algorithms. Comparisons. Prerequisite: ECE 158A with a grade of C– or better. (S)

159A. Queuing Systems: Fundamentals (4) Analysis of single and multiserver queuing systems; queue size and waiting times. Modeling of telephone systems, interactive computer systems and the machine repair complex. Prerequisite: ECE 109 with a grade of C– or better. (F)

159B. Queuing Systems: Computer Systems and Data Networks (4) M/G/1 queuing systems. Computer systems applications: priority scheduling; time-sharing scheduling. Open and closed queuing networks; modeling and performance of interactive computer systems. Elements of computer-communication networks: stability and delay analysis; optimal design issues. Prerequisite: ECE 159A with a grade of C– or better. (W)

161A. Introduction to Digital Signal Processing (4) Review of discrete-time systems and signals. Discrete-Time Fourier Transform and its properties, the Fast Fourier Transform, design of Infinite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters, implementation of digital filters. (Course material and/or program fees may apply.) Prerequisite: ECE 101 with grades of C– or better. (F,WS)

161B. Digital Signal Processing I (4) Sampling and quantization of baseband signals; A/D and D/A conversion, oversampling and noise shaping. Sampling of bandpass signals, undersampling, downconversion, and Hilbert transforms. Coefficient quantization, roundoff noise, limit cycles and overflow oscillations. INSEFFIT structure, lattice and wave digital filters. Systems will be designed and tested with Matlab, implemented with DSP processors and tested in the laboratory. Prerequisite: ECE 161A with a grade of C– or better. (W)

161C. Applications of Digital Signal Processing (4) This course discusses several applications of DSP: Topics covered: audio, image and video compression and coding; image and video compression and processing. A class project is required, algorithms simulated by Matlab. Prerequisite: ECE 161A with a grade of C– or better. (S)

163. Electronic Circuits and Systems (4) Analysis and design of analog circuits and systems. Feedback systems with applications to operational amplifiers, operational amplifier circuits. Stability, d.c. offset, compensation. Design of active filters. Switched capacitor circuits. Phase-locked loops. Analog-to-digital and digital-to-analog conversion. (Course material and/or program fees may apply.) Prerequisites: ECE 101 and 102 with grades of C– or better. (S)

164. Analog Integrated Circuit Design (4) Design of linear and non-linear analog integrated circuits including operational amplifiers, voltage regulators, drivers, power stages, oscillators, and multipliers. Use of feedback and evaluation of noise performance. Parasitic effects of interconnection circuit technology. Techniques for the simulation and testing of circuits. Prerequisite: ECE 102 with a grade of C– or better. ECE 163 recommended. (F)

165. Digital Integrated Circuit Design (4) VLSI digital systems. Circuit characterization, performance estimation, and optimization. Circuits for alternative logic styles and clocking schemes. Subsystems include ALUs, memory, processor arrays, and PLAs. Techniques of layout, parasitics, and custom design. Design and simulation using CAD tools. (Students who have taken CSE 143 may not take ECE 165 for credit.) Prerequisite: ECE 108 with a grade of C– or better. (S)

166. Microwave Systems and Circuits (4) Waves, distributed circuits, and scattering matrix methods. Passive microwave elements. Impedance matching. Detection and frequency conversion using microwave diodes. Design of transistor amplifiers including noise performance. Circuits designs will be simulated by computer and tested in the laboratory. (Course material and/or program fees may apply.) Prerequisites: ECE 102 and 107 with grades of C– or better. (F)

171A. Linear Control System Theory (4) Stability of continuous- and discrete-time single-input/ single-output linear time-invariant control systems emphasizing frequency domain methods. Transient and steady-state behavior. Stability analysis by root locus, Bode, Nyquist, and Nichols plots. Compensator design. Prerequisite: ECE 60B or ECE 53A–B or MAE 140 with a grade of C– or better. (S)

171B. Linear Control System Theory (4) Time-domain, state-variable formulation of the control problem for both discrete-time and continuous-time linear systems. State-space realizations from transfer function system description. Internal and input-output stability, controllability/observability, minimal realizations, and pole-placement by full-state feedback. Prerequisite: ECE 171A with a grade of C– or better. (S)

172A. Introduction to Intelligent Systems: Robotics and Machine Intelligence (4) This course will introduce basic concepts in machine perception. Topics covered will include edge detection, segmentation, texture analysis, image registration, and object recognition. Prerequisite: ECE 101 with a grade of C– or better. ECE 109 recommended. (F)

174. Introduction to Linear and Nonlinear Optimization with Applications (4) The linear least squares problem, including constrained and unconstrained quadratic optimization and the relationship to the geometry of linear transformations. Introduction to nonlinear optimization. Applications to signal processing, system identification, robotics, and circuit design. Prerequisite: Math. 20F with a grade of C– or better. (S)

181. Physical Optics and Fourier Optics (4) Ray optics, wave optics, beam optics, Fourier optics, and electromagnetic optics. Ray transfer matrix, matrices of canonical elements, micrometer based bandwidth, compensation. Design of active filters. Switched capacitor circuits. Phase-locked loops. Analog-to-digital and digital-to-analog conversion. (Course material and/or program fees may apply.) Prerequisites: ECE 101 and 102 with grades of C– or better. (S)
apply.) Prerequisites: ECE 103 and 107 with grades of C– or better. (S)

182. Electromagnetic Optics, Guided-Wave, and Fiber Optics (4)
Polarization optics: crystal optics, birefringence. Guided-wave optics: modes, losses, dispersion, coupling, switching. Fiber optics: step and graded index, single and multimode operation, demultiplexing, dispersion, fiber optic communications. Resonator optics. (Course material and/or program fees may apply.) Prerequisites: ECE 103 and 107 with grades of C– or better. (F)

183. Optical Electronics (4)
Quantum electronics, interaction of light and matter in atomic systems, semiconductors. Laser amplifiers and laser systems. Photodetectors: Electromagnetic, photocurrents, and photoacoustics, photonic switching. Fiber optic communication systems. Labs: semiconductor lasers, semiconductor photodetectors. (Course material and/or program fees may apply.) Prerequisites: ECE 103 and 107 with grades of C– or better. (W)

184. Optical Information Processing and Holography (4)
(Conjoined with ECE 241AL.) Labs: optical holography, photorefractive effect, spatial filtering, computer generated holography. Students enrolled in ECE 184 will receive four units of credit; students enrolled in ECE 241AL will receive two units of credit. (Course material and/or program fees may apply.) Prerequisite: ECE 182 with a grade of C– or better. (W)

185. Lasers and Modulators (4)
(Conjoined with ECE 241BL.) Labs: CO2 laser, HeNe laser, electrooptic modulator, acoustooptic modulator, spatial light modulators. Students enrolled in ECE 185 will receive four units of credit; students enrolled in ECE 241BL will receive two units of credit. (Course material and/or program fees may apply.) Prerequisite: ECE 183 with a grade of C– or better. (S)

186L. Optical Information Systems (4)
Lab covers concepts in optical data systems including free-space communications, remote sensing and wavelength-multiplexed optical fiber transmission. (Course material and/or program fees may apply.) Prerequisites: ECE 181 and 182 or 183 with grades of C– or better, or consent of instructor.

187. Introduction to Biomedical Imaging and Sensing (4)
Image processing fundamentals: imaging theory, image processing, pattern recognition; digital radiography, computerized tomography, nuclear medicine imaging, nuclear medical diagnostics; ultrasound imaging, microscopy imaging. Prerequisite: Math. 20A-B-F, 20C or 21C, 20D or 21D, Phys. 2A-D, ECE 101 (may be taken concurrently) with grades of C– or better. (F)

190. Engineering Design (4)
Students complete a project comprising at least 50 percent or more engineering design to satisfy the following features: student creativity, open-ended formulation of a problem statement/specifications, consideration of alternative solutions/realistic constraints. Written final report required. Prerequisites: students enrolling in this course must have completed all of the breadth courses and one depth course. Course project report is required to enroll in ECE 190. (Specifications and enrollment forms are available in the undergraduate office.)

191. Engineering Group Design Project (4)
Groups of students work to design, build, demonstrate, and report on an engineering project. All students give weekly progress reports of their tasks and contribute a section to the final project report. Prerequisites: completion of all of the breadth courses and one depth course. (F,WS)

192. Senior Seminar (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small setting to explore an intellectual topic in ECE (at the upper-division level). Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. ECE 192 is no longer valid for ECE design credit, students should take ECE 190 instead. Prerequisites: department stamp and/or consent of instructor.

193H. Honors Project (4–8)
An advanced reading or research project performed under the direction of an ECE faculty member. Must contain enough design to satisfy the ECE program’s four-unit design requirement. Must be taken for a letter grade. May extend over two quarters. A grade assigned at completion for both quarters. Prerequisite: admission to the ECE departmental honors program.

195. Teaching (2 or 4)
Teaching and tutorial activities associated with courses and seminars. Not more than four units of ECE 195 may be used for satisfying graduation requirements. (P/NP grades only.) Prerequisite: consent of the department chair.

197. Field Study in Electrical and Computer Engineering (4, 8, 12, or 16)
Directed study and research at laboratories and observatories away from the campus. (P/NP grades only.) Prerequisites: consent of instructor and approval of the department.

198. Directed Group Study (2 or 4)
Topics in electrical and computer engineering whose course in electromagnetics.) Prerequisite: ECE107 or an equivalent undergraduate course. (F,W,S)

199. Independent Study for Undergraduates (2 or 4)
Independent reading or research by special arrangement with a faculty member. (P/NP grades only.) Prerequisite: consent of instructor.

GRADUATE

200. Research Conference (2)
Group discussion of research activities and progress of group members. (Consent of instructor is strongly recommended.) (S/U grades only.) Prerequisite: graduate standing. (F,WS)

212A. Principles of Nanoscience and Nanotechnology (4)
Introduction to and rigorous treatment of electronic, photonic, magnetic, and mechanical properties of materials at the nanoscale. Concepts from theoretical physics, quantum mechanics, quantum optics, and electromagnetics will be introduced as appropriate. Students may not receive credit for both ECE 212A and ECE 212AN. Prerequisite: graduate standing. (F)

212BN. Nanoelectronics (4)
Quantum states and quantum transport of electrons, single-electron devices, nanoelectronic devices and systems concepts; introduction to molecular and organic electronics. Students may not receive credit for both ECE 212BN and ECE 212C. Prerequisites: ECE 212AN: graduate standing. (S)

212CN. Nanophotonics (4)
Photonic properties of artificially engineered inhomogeneous nanoscale composite materials incorporating dielectrics, semiconductors, and/or metals. Near-field localization effects and applications. Device and component applications. Students may not receive credit for both ECE 212CN and 212B. Prerequisites: ECE 212BN; graduate standing. (W)

222A. Antennas and Their System Applications (4)
Antennas, waves, polarization. Fris transmission and Radar equations, dipoles, loops, slots, ground planes, traveling wave antennas, array theory, phased arrays, impedance, frequency independent antennas, microstrip antennas, cell phone antennas, system level implications such as MIMO, multi-beam and phased array systems. (Recommended prerequisite: ECE 107 or an equivalent undergraduate course in electromagnetic.) Prerequisite: graduate standing. (F)

222B. Applied Electromagnetic Theory—Electromagnetics (4)
Graduate-level introductory course on electromagnetic theory with applications. Topics covered include Maxwell’s equations, plane waves in free space and in the presence of interfaces, polarization, fields in metallic and dielectric waveguides including surface waves; fields in metallic cavities, Green’s functions, electromagnetic field radiation and scattering. Prerequisites: ECE 222A; graduate standing. (W)

222C. Applied Electromagnetic Theory—Computational Methods for Electromagnetics (4)
Computational numerical techniques and analysis of electromagnetic fields, including the finite difference time domain (FDTD) method, finite difference frequency domain (FDFD) method, method of moments (MOM), and finite element method (FEM). Practice in writing numerical codes. Review of commercial electromagnetic simulators. Prerequisites: ECE 222B; graduate standing. (S/even years)

222D. Advanced Antenna Design (4)
Review of 222–B. Fourier transform, waveguide antennas. Mutual coupling, active impedance, Flouquet modes in arrays. Microstrip antennas, surface waves. Reflector and lens analysis: taper, spillover, aperture and physical optics methods. Impedance surfaces. Advanced concepts: Sub-wavelength propagation, etc. (chosen by instructor). (Recommended prerequisite(s): ECE 222A, ECE 222B, or equivalent.) Prerequisites: ECE 222C; graduate standing. (S/odd years)

230A. Solid State Electronics I (4)
This course is designed to provide a general background in solid state electronic devices and circuits. Course content emphasizes the fundamental and current issues of semiconductor physics related to the ECE solid state electronics sequences. (Recommended prerequisite: ECE 139 or equivalent.) Prerequisites: graduate standing. (F)

230B. Solid State Electronics II (4)
Physics of solid-state electronic devices, including p-n diodes, Schottky diodes, field-effect transistors, bipolar transistors, pnp structures. Computer simulation of devices, scaling characteristics, high frequency performance, and circuit models. Prerequisites: ECE 230A; graduate standing. (W)

230C. Solid State Electronics III (4)
This course is designed to provide a treatise of semiconductor devices based on solid state phenomena. Band structures carrier scattering and recombination processes and their influence on transport properties will be emphasized. (Recommended prerequisite: ECE 230A or equivalent.) Prerequisites: ECE 230B; graduate standing. (S)

235. Nanometer-Scale VLSI Devices (4)
This course covers modern research topics in sub-100 nm scale, state-of-the-art silicon VLSI devices. Starting with the fundamentals of CMOS scaling to nanometer dimensions, various device and circuit concepts, including RF CMOS, low power CMOS, silicon memory, silicon-on-insulator, SiGe bipolar, strained silicon MOSFET’s, etc. will be taught. The physics of nearballistic transport in an ultimately scaled 10 nm MOSFET will be discussed in light of the recently developed scattering theory. Prerequisite: graduate standing. (F)

236A. III-V Compound Semiconductor Materials (4)
This course covers the growth, characterization, and heterojunction properties of III-V compound semiconductors and group IV heterostructures for the subsequent courses on electronic and photonic device applications. Topics include material growth technologies, heterojunction properties of III-V compound semiconductors and group IV heterostructures, etc. (Recommended prerequisite(s): ECE 230A-B-C.) Prerequisite: graduate standing. (W)

236B. Optical Processes in Semiconductors (4)
Absorption and emission of radiation in semiconductors. Radiative transition and nonradiative recombination. Laser, microwave, and photodetector devices will be discussed. (Recommended prerequisite(s): ECE 230A and ECE 230C or equivalent.) Prerequisites: ECE 236A; graduate standing. (S)

236C. Heterojunction Field Effect Transistors (4)
Device physics and applications of isotype and anisotype heterojunctions and quantum wells, including band-edge discontinuities, band bending and space charge layers at heterojunction interfaces, charge transport normal and parallel to such interfaces, two-dimensional electron
gas structures, modulation doping, heterojunction and insulated gate field effect transistors. Prerequisites: ECE 236B; graduate standing. (S, alternating years)

236D. Heterojunction Bipolar Transistors (4)
Current flow and charge storage in bipolar transistors. Use of heterojunctions to improve bipolar structures. Transient electron velocity overshoot; Simulation of device characteristics. Analytical representation of device models and circuit applications. Elements of bipolar process technology, with emphasis on III-V materials. Prerequisites: ECE 236C; graduate standing. (F, alternating years)

238A. Thermodynamics of Solids (4)
The thermodynamics and statistical mechanics of solids. Basic concepts, equilibrium properties of alloy systems, thermodynamic information from phase diagrams, surfaces and interfaces, crystalline defects. Multiple listed with Materials Science 201A. Prerequisite: consent of instructor. (F)

238B. Solid State Diffusion and Reaction Kinetics (4)
Thermally activated processes. Boltzmann factor, homogeneous and heterogeneous reactions, solid state diffusion, Fick’s law, diffusion mechanisms, Kirkendall effects, Boltzmann-Manano analysis, high diffusivity paths. Multiple listed with Materials Science 201B. Prerequisite: ECE 238A. (W)

240A. Lasers and Optics (4)
Fresnel and Fraunhofer diffraction theory. Optical resonators, interferometry. Gaussian beam propagation and transformation. Laser oscillation and amplification, Q-switching and mode locking of lasers, some specific laser systems. Cross-listed with Materials Science 201B. Prerequisite: graduate standing. (F)

240B. Optical Information Processing (4)
Space-bandwidth product, superresolution, space-variant optical system, partial coherence, image processing with coherent and incoherent light, processing with feedback, real-time light modulators for hybrid processing, nonlinear processing. Optical computing and other applications. (Recommended prerequisite: ECE 182 or equivalent, introductory quantum mechanics or ECE 183.) Prerequisite: graduate standing. (F)

240C. Optical Modulation and Detection (4)
Propagation of waves and rays in anisotropic media. Electro-optical switching and modulation. Acousto-optical deflection and modulation. Detection theory. Heterodyne detection, incoherent and coherent detection. (Recommended prerequisites: ECE 181, ECE 183 or equivalent.) Prerequisites: ECE 240B; graduate standing. (S)

240A–B. Lasers and Optics (4-4)
Fresnel and Fraunhofer diffraction theory. Optical resonators, interferometry. Gaussian beam propagation and transformation. Laser oscillation and amplification, Q-switching and mode locking of lasers, some specific laser systems. Cross-listed with Materials Science 201B. Prerequisite: graduate standing. (F)

247A. Advanced BioPhotonics (4)
Basic physics and chemistry for the interaction of photons with matter, including both biological and synthetic materials; use of photonic radiation pressure for manipulation of objects and materials; advanced optical-electronic detection systems, devices and methods, including time resolved fluorescent and chemiluminescent methods, fluorescent energy transfer (FRET) techniques, quantum dots, and near-field optical techniques; underlying mechanisms of the light sensitive components including chloroplasts for photosynthetic energy conversion and the basis of vision processes. Cross-listed with BENG 247A. Prerequisite: graduate standing. (W)

247B. BioElectronics (4)
Topics to be covered will include photolithographic techniques for high-density DNA microarray production, incorporation of CMOS control into electronic DNA microarrays, direct electronic detection technology used in microarrays and biosensor devices, and focus on problems related to making highly integrated devices (lab-on-a-chip, in-vivo biosensors, etc.) from heterogeneous materials and components. Cross-listed with BENG 247B. Prerequisite: graduate standing. (W)

250. Random Processes (4)

251A. Digital Signal Processing I (4)
Discrete random sequences and random signal (FFT based) spectral estimation. Coherence and transfer function estimation; model-based spectral estimation; linear prediction and AR modeling. Levinson-Durbin algorithm and lattice filters. Univariate and multivariate random processes. Cross-listed with SIO 207B. SIO 207A is recommended for graduate students who have not had an undergraduate course in DSP. (Recommended prerequisites: ECE 153 in addition to either ECE 161 or 161A and SIO 207A or equivalent background.) Prerequisite: graduate standing. (W)

251B. Digital Signal Processing II (4)
Adaptive signal parameter estimation errors for recursive least squares and gradient algorithms, convergence and tracking analysis of LMD, RLS, and Kalman filtering algorithms, comparative performance of Weiner and adaptive filters, transversal and lattice filter implementations, performance analysis for equalization, noise cancelling, and linear prediction applications. Cross-listed with SIO 207C. (Recommended prerequisite: ECE 251A or ECE 251AN.) Prerequisites: graduate standing; ECE 251A (for ECE 251B); SIO 207B (for SIO 207C). (S)

251C. Filter Banks and Wavelets (4)
Fundamentals of multirate systems (Noble Identities, Polyphase representation, polyphase filter banks); QMF filters for 2-channels, M-channel perfect reconstruction systems, Paranaity perfect reconstruction filter banks, the wavelet transform (Multiresolution, discrete wavelet transform, filter banks and wavelet). (Recommended prerequisite: ECE 161 or equivalent.) Prerequisites: ECE 251B; graduate standing.

251D. Array Processing (4)
The coherent processing of data collected from sensors distributed in space for signal enhancement and noise rejection purposes or wavefield directionality estimation. Conventional and adaptive beamforming. Matched field processing. Sparse array design and processing techniques. Applications to acoustics, geophysics, and electromagnetics. Cross-listed with SIO 207D. (Recommended prerequisite: ECE 251A or ECE 251AN.) Prerequisites: graduate standing; ECE 251C (for ECE 251D); SIO 207C (for SIO 207D). (F)

252A. Speech Compression (4)
Speech signals, production and perception, compression theory, high rate compression using waveform coding (PCM, DPCM, ADPCM, . . .), DSP tools for low rate coding, LPC vocoders, subband transform coding, multi-band coding, maximum rate coding using code excited linear prediction (CELP). (Recommended prerequisite: ECE 161A.) Prerequisite: graduate standing. (W)

252B. Speech Recognition (4)
Signal analysis methods for recognition, dynamic time warping, isolated word recognition, hidden markov models, connected word, and context dependent speech recognition. Prerequisites: ECE 252A; graduate standing. (S)

Image quantization and sampling, image transforms, image enhancement, image compression. (Recommended prerequisites: ECE 109, 153, ECE 161, ECE 161A.) (W)

254. Detection Theory (4)
Hypothesis testing, detection of signals in white and colored Gaussian noise; estimation of signal parameters, maximum-likelihood detection, resolution of signals; detection and estimation of stochastic signals, applications to radar, sonar, and communications. (Recommended prerequisite: ECE 153.) Prerequisite: graduate standing. (F)

255AN. Information Theory (4)
Introduction to basic concepts, source coding theorems, capacity, noisy-channel coding theorem. Prerequisite: ECE 154A–B–C; consent of instructor. (F)

258B. Source Coding I (4)
Theory and practice of lossy source coding, vector quantization, predictive and differential encoding, universal coding, source-channel coding, asymptotic theory, speech and image applications. Prerequisites: ECE 250 and 259A or 259AN, or consent of instructor. (W)

256A–B. Time Series Analysis and Applications (4-4)
Stationary processes; spectral representation; linear transformation. Recursive and nonrecursive prediction and filtering; Wiener-Hopf and Kalman-Bucy filters. Series expansions and applications. Time series analysis; probability density, covariance and spectral estimation. Inference from sampled-data, sampling theorems; equal and non-equispaced data space, data applications to detection and estimation problem. Prerequisites: ECE 153. (F, W)

257A. Multisuser Communication Systems (4)
Congestion control, convex programming and dual controller, fair end-end rate allocation, max-min fair vs. proportional fairness. Markov Chains and recurrence, Lyapunov-Foster theorem, scheduling, stable (back-pressure) routing versus minimum delay routing versus shortest path routing. Prerequisite: graduate standing. (W)
257B. Principles of Wireless Networks (4)
This course will focus on the principles, architectures, and analytical methodologies for design of multi-user wireless networks. Topics to be covered include cellular approaches, call processing, digital modulation, MIMO technology, stochastic and networked ad-hoc networks, and wireless packet access. (Recommended prerequisites: ECE 159A and 154B, or equivalent.) Prerequisites: ECE 257A; graduate standing. (S)

257C. Stochastic Wireless Networks Models (4)
Elements of spatial point processes. Spatial stochastic models of wireless networks. Topological structure, interference, stochastic dependencies. Elements of network information theory/statistical physics models of information flow. Role of signal propagation/random fading models. Decentralized operation, route discovery, architecture, interference. (Recommended prerequisite: previous exposure to stochastic processes and information theory.) Prerequisites: ECE 257A–B. (S)

258A–B. Digital Communication (4-4)
Digital communication theory including performance of various modulation techniques, effects of inter-symbol interference, adaptive equalization, spread spectrum communication. Prerequisites: ECE 154A–B and ECE 254 or consent of instructor. (W,S)

259A. Algebraic Coding (4)
Fundamentals of block codes, introduction to groups, rings and finite fields, nonbinary codes, cyclic codes such as BCH and RS codes, decoding algorithms, applications. Students who have taken ECE 259BN may not receive credit for ECE 259A. Prerequisite: graduate standing. (W)

259B. Probabilistic Coding (4)
Convolutional codes, maximum-likelihood (ML) decoding, maximum a-posteriori (MAP) decoding, parallel and serial concatenation architectures, turbo codes, repeat-accumulate (RA) codes, the turbo principle, turbo decoding, graph-based codes, message-passing decoding, low-density parity check codes, threshold analysis, applications. Students who have taken ECE 259BN may not receive credit for ECE 259B. (Recommended prerequisites: ECE 154A–B–C.) Prerequisites: ECE 259A or 259AN; graduate standing. (W)

259C. Advanced Topics in Coding (4)
Advanced topics in coding theory. Course contents vary by instructor. Example course topics: Coded-modulation for bandwidth-efficient data transmission; advanced algebraic and combinatorial coding theory; space-time coding for wireless channels; constrained coding for digital recording. Students who have taken ECE 259BN may not receive credit for ECE 259C. Prerequisites: ECE 259A–B or 259AN–B; graduate standing. (S)

260A. VLSI Digital System Architectures and Architectures (4)
Custom and semi-custom VLSI design from both the circuit and system designer’s perspective. Energy limitations/random failures. Elements of MOS logic design. Introduction to microprocessor design. Course contents will be covered in the course. Prerequisites: ECE 254 or consent of instructor. (W,S)

260B. VLSI Integrated Circuits and Systems Design (4)
VLSI implementation methodology across block, circuit, and layout levels of abstraction. Circuit building blocks including embedded memory and clock distribution. Computer-aided design (synthesis, place-and-route, verification) and performance analyses, and small-group block implementation projects spanning RTL to tape-out using leading-edge EDA tools. (Recommended prerequisite: ECE 165.) Prerequisites: ECE 260A; graduate standing. (W)

260C. VLSI Advanced Topics (4)
Advanced design paradigms and practices and methodologies for modern system-on-chip design. Different design alternatives are introduced and analyzed. Advanced design techniques are used to design a hardwre-software system. Class discussion, participation, and presentations of projects and special topics assignments are emphasized. Prerequisites: ECE 260B; graduate standing. (S)

264A. CMOS Analog Integrated Circuits and Systems I (4)
Frequency response of the basic CMOS gain stage and current mirror configurations. Advanced feedback and stability analysis; compensation techniques. High-Performance CMOS operational amplifiers. Analysis of noise and distortion. (Recommended prerequisites: ECE 164 and ECE 153, or equivalent courses.) Prerequisite: graduate standing. (W)

264B. CMOS Analog Integrated Circuits and Systems II (4)
Non-ideal effects and their mitigation in high-performance operational amplifiers. Switched-capacitor circuit techniques: CMOS circuit topologies, analysis and mitigation of non-ideal effects, and filter synthesis. Overview of CMOS samplers, data converters, and PLLs. (Recommended prerequisite: ECE 251A or ECE 251AN.) Prerequisites: ECE 264A; graduate standing. (S)

264C. CMOS Analog Integrated Circuits and Systems III (4)
Integrated CMOS analog/digital systems: Analog to digital and digital to analog converters, Nyquist versus oversampling, linearization, jitter, randomization, calibration, speed versus resolution, pipeline, filtering, interpolation, averaging. (Recommended prerequisites: ECE 163 and 164.) Prerequisites: ECE 264B; graduate standing. (W)

264D. CMOS Analog Integrated Circuits and Systems IV (4)
PLL: Phase noise effect, VCO, phase detector, charge pump, integer/fractional-N frequency synthesizer, clock and data recovery, decision feedback, Filter: Continuous-time filter, I–Q complex filter, raised-cosine, Gaussian, delay, zero equalizers. (Recommended prerequisites: ECE 163 and 164.) Prerequisites: ECE 264C; graduate standing. (W)

265A. Communication Circuit Design I (4)
Introduction to noise and linearity concepts. System budgeting for optimum dynamic range. Design tradeoffs. Linearity analysis techniques. Down-conversion and up-conversion techniques. Modulation and de-modulation. Microwave and RF system design communications. Current research topics in the field. Prerequisite: ECE 166 or consent of instructor. (W)

265B. Communication Circuit Design II (4)
Radio frequency communication circuits: low-noise amplifiers, AGCs, mixers, filters, voltage-controlled oscillators. BJT and MOS technologies for radio frequency and microwave applications. Device modeling for radio frequency applications. Design and device modeling, noise, power dissipation and dynamic range. Current research topics in the field. Prerequisite: ECE 166 and ECE 265A or consent of instructor. (S)

265C. Power Amplifiers for Wireless Communications (4)
Design of power amplifiers for mobile terminals and base stations, with emphasis on high linearity and efficiency. After a discussion of classical designs (Class A, AB, B, C, D, E, F, and S), linearity enhancement techniques are presented. (Recommended prerequisite: ECE 264A and B; consent of instructor. (F)

267. Wireless Embedded and Networked Systems (4)
Study of wireless networked systems from a system design perspective, covering the protocol stack from physical to network layer with a focus on energy. Topics include digital communications, networking and programming, and a basic knowledge of these is recommended. Prerequisite: graduate standing. (F)

270A–B. C–C. Neurocomputing (4–4–4)
Neurocomputing is the study of biological information processing from an artificial intelligence engineering perspective. This course will present hardware network structures for arbitrary object (perceptual, motor, thought process, abstraction, etc.) representation, learning of pairwise object attribute descriptor antecedent support relationships, the general mechanism of thought, and situationally responsive generation of movements and thoughts. Experimental homework assignments strongly reinforce the fundamental concepts and provide experience with myriad associated technical issues. Prerequisite: graduate standing, an understanding of mathematics through basic linear algebra and probability, or consent of instructor. (F,W,S)

271A. Statistical Learning I (4)
Bayesian decision theory; parameter estimation; maximum likelihood; the bias-variance trade-off; Bayesian estimation; the predictive distribution; conjugate and noninformative priors; dimensionality and dimensionality reduction; principal component analysis; Fisher’s linear discriminant analysis; density estimation; parametric vs. kernel-based methods; expectation-maximization; applications. (Recommended prerequisite: ECE 109.) Prerequisite: graduate standing. (W)

271B. Statistical Learning II (4)
Linear discriminants; the Perceptron; the margin and large margin classifiers; learning theory; empirical vs. structural risk minimization; the VC dimension; kernel functions; reproducing kernel Hilbert spaces; regularization theory; Lagrangian optimization; duality theory; the support vector machine; boosting; Gaussian processes; applications. (Recommended prerequisite: ECE 109.) Prerequisites: ECE 271A; graduate standing. (W)

272A. Stochastic Processes in Dynamic Systems (4)
Stochastic processes, focusing on detailed discussion of discrete-time Markov chains. Demonstrate the relationship between basic stochastic systems under uncertainty, introducing ergodicity, diffusion, estimation, and detection. Extend to continuous-time Markov chains and optimization of stochastic dynamic systems. (Recommended prerequisite: ECE 250.) Prerequisite: graduate standing. (W)

273. Convex Optimization and Applications (4)
This course covers some convex optimization theory and algorithms. It will mainly focus on recognizing and formulating convex problems, duality, and applications in a variety of fields (system design, pattern recognition, combinatorial optimization, financial engineering, etc.). (Recommended prerequisite: basic linear algebra.) (F)

275A. Parameter Estimation I (4)
Linear least squares (batch, recursive, total, sparse, pseudo-inverse, QR, SVD); Statistical figures of merit (bias, consistency, Cramer-Rao lower-bound, efficiency); Maximum likelihood estimation (MLE); Sufficient statistics; Algorithms for computing the MLE including the Expectation Maximization (EM) algorithm. The problem of missing information; the problem of outliers. (Recommended prerequisites: ECE 109 and ECE 153.) Prerequisite: graduate standing. (W)

275B. Parameter Estimation II (4)
The Bayesian statistical framework; Parameter and state estimation of Hidden Markov Models, including Kalman Filtering and the Viterbi and Baum-Welch algorithms. A solid foundation is provided for follow-up courses in Bayesian machine learning theory. (Recommended prerequisite: ECE 153.) Prerequisites: ECE 275A; graduate standing. (W)

280. Special Topics in Electronic Devices and Materials/Applied Physics (4)
A course to be given at the discretion of the faculty at which topics of interest in electronic devices and materials or applied physics will be presented by visiting or resident faculty members. Subject matter will not be repeated, may be taken for credit more than once. Prerequisite: graduate standing. (F)

281. Special Topics in Nanoscience/Nanotechnology (4)
A course to be given at the discretion of the faculty at which topics of interest in nanoscience and nanotechnology will be presented by visiting or resident faculty members. Subject matter will not be repeated, may be taken for credit more than once. Prerequisite: graduate standing. (F)

282. Special Topics in Photonics/Applied Optics (4)
A course to be given at the discretion of the faculty at which topics of interest in photonics, optoelectronic materials, devices, systems, and applications will be presented by
visiting or resident faculty members. Subject matter will not be repeated, may be taken for credit more than once.
Prerequisite: graduate standing.

283. Special Topics in Electronic Circuits and Systems (4)
A course to be given at the discretion of the faculty at which topics of interest in electronic circuits and systems will be presented by visiting or resident faculty members. Subject matter will not be repeated, may be taken for credit more than once.
Prerequisite: graduate standing.

284. Special Topics in Computer Engineering (4)
A course to be given at the discretion of the faculty at which topics of interest in computer engineering will be presented by visiting or resident faculty members. Subject matter will not be repeated, may be taken for credit more than once.
Prerequisite: graduate standing.

A course to be given at the discretion of the faculty at which topics of interest in signal and image processing or robotics and control systems will be presented by visiting or resident faculty members. Subject matter will not be repeated, may be taken for credit more than once.
Prerequisite: graduate standing.

286. State-of-the-Art Topics in Computational Statistics and Machine Learning (4)
Class discusses both fundamental and state-of-the-art research topics in computational statistics and machine learning. Topics vary based upon current research, and have included: non-parametric Bayesian models; sampling methods for inference in graphical models; Markov Chain Monte Carlo (MCMC) methods.
Prerequisite: graduate standing.

287. Special Topics in Communication Theory and Systems (4)
A course to be given at the discretion of the faculty at which topics of interest in information science will be presented by visiting or resident faculty members. It will not be repeated so it may be taken for credit more than once.
Prerequisite: graduate standing.

290. Graduate Seminar on Current ECE Research (2)
Weekly discussion of current research conducted in the Department of Electrical and Computer Engineering by the faculty members involved in the research projects. (S/U grade only.)
Prerequisite: graduate standing.

291. Industry Sponsored Engineering Design Project (4)
Design, build, and demonstrate an engineering project by groups. All students give weekly progress reports on tasks and write final report, with individual exams and presentations. Projects/sponsorships originate from the needs of local industry. May count toward M.Eng. degree.
(Recommended prerequisites: ECE 230 or ECE 240 or ECE 251 or ECE 253 or ECE 258 or equivalent.)
Prerequisite: graduate standing.

292. Graduate Seminar in Electronic Circuits and Systems (2)
Research topics in electronic circuits and systems.
Prerequisite: graduate standing.

293. Graduate Seminar in Communication Theory and Systems (2)
Weekly discussion of current research literature.

294. Graduate Seminar in Electronic Devices and Materials/Applied Physics (2)
Research topics in electronic devices and materials or applied solid state physics and quantum electronics.

295R. Graduate Seminar in Signal and Image Processing/Robotics and Control Systems (2)
Weekly discussion of research topics in signal and image processing of robotics and control systems.
Prerequisite: graduate standing.

296. Graduate Seminar in Photonics/ Applied Optics (2)
Research topics of current interest in photonics and applied optics, including imaging, photonic communications, sensing, energy and signal processing.
Prerequisite: graduate standing.

298. Independent Study (1–16)
Open to properly qualified graduate students who wish to pursue a problem through advanced study under the direction of a member of the staff. (S/U grades only.)
Prerequisite: consent of instructor.

299. Research (1–16)
(S/U grade only.)

501. Teaching (1–4)
Teaching and tutorial activities associated with courses and seminars. Number of units for credit depends on number of hours devoted to class or section assistance. (S/U grade only.)
Prerequisite: consent of department chair.