Correspondence Directory

Campus Directory Information

<table>
<thead>
<tr>
<th>UNDERGRADUATE</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Admissions</td>
<td>Office of Admissions and Relations with Schools</td>
<td>Building 301, University Center, 0021, (858) 534-4831</td>
</tr>
<tr>
<td>Campus Tours</td>
<td>Office of Admissions and Relations with Schools</td>
<td>Price Center Theater, 0075, (858) 822-1455</td>
</tr>
<tr>
<td>Educational Opportunity Program (EOP)</td>
<td>Office of Admissions and Relations with Schools</td>
<td>Building 301, University Center, 0021, (858) 534-4831</td>
</tr>
<tr>
<td>Financial Aid (Loans and Grants)</td>
<td>Financial Aid Office</td>
<td>Building 201, University Center, 0013, (858) 534-4480</td>
</tr>
<tr>
<td>International Students’ Affairs</td>
<td>Office of International Education</td>
<td>International Center, 0018, (858) 534-3730</td>
</tr>
<tr>
<td>Housing</td>
<td>Housing Administration</td>
<td>Trailer 310, University Center, 0041, (858) 534-4010</td>
</tr>
<tr>
<td>On-Campus</td>
<td>Office of Housing Services</td>
<td>Student Center Building A, 0309, (858) 534-3670</td>
</tr>
<tr>
<td>Off-Campus</td>
<td>Career Services Center</td>
<td>Career Services Center, 0330, (858) 534-4500</td>
</tr>
<tr>
<td>Part-Time Employment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Campus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Campus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provosts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eleanor Roosevelt College</td>
<td>Eleanor Roosevelt College Admin. Building</td>
<td>ERC Campus, 0546, (858) 534-2247</td>
</tr>
<tr>
<td>John Muir College</td>
<td>H&SS Building, Room 2126</td>
<td>Muir Campus, 0106, (858) 534-3583</td>
</tr>
<tr>
<td>Revelle College</td>
<td>Revelle Provost Building</td>
<td>Revelle Campus, 0321, (858) 534-3262</td>
</tr>
<tr>
<td>Earl Warren College</td>
<td>Computer Science and Engineering (EBU 3), Room 1100</td>
<td>Warren Campus, 0422, (858) 534-4350</td>
</tr>
<tr>
<td>Sixth College</td>
<td>Pepper Canyon Hall, 2nd Floor</td>
<td>University Center, 0054, (858) 822-5955</td>
</tr>
<tr>
<td>Registration</td>
<td>Admissions & Registrar</td>
<td>Building 301, University Center, 0021R, (858) 534-3150</td>
</tr>
<tr>
<td>Residence Status</td>
<td>Admissions & Registrar</td>
<td>Building 301, University Center, 0021R, (858) 534-4586</td>
</tr>
<tr>
<td>Scholarships</td>
<td>Financial Aid Office</td>
<td>Building 201, University Center, 0013, (858) 534-4480</td>
</tr>
<tr>
<td>Student Activities</td>
<td>University Events Office</td>
<td>Price Center, 0078, (858) 534-4090</td>
</tr>
<tr>
<td>Transfer Student Services</td>
<td>Office of Admissions and Relations with Schools</td>
<td>Building 301, University Center, 0021, (858) 534-4831</td>
</tr>
</tbody>
</table>

GRADUATE

Dean of Graduate Studies	Office of Graduate Studies	Building 518, Eleanor Roosevelt College, 0003, (858) 534-3555
Admissions		
Affirmative Action	Office of Graduate Studies	Building 518, Eleanor Roosevelt College, 0003, (858) 534-3871
Fellowships	Office of Graduate Studies	Building 518, Eleanor Roosevelt College, 0003, (858) 534-3556
Financial Aids (Loans and Grants)	Financial Aid Office	Building 201, University Center, 0013, (858) 534-3807
Graduate Women’s Program	Office of Graduate Studies	Building 518, Eleanor Roosevelt College, 0003, (858) 534-3555
Housing	Graduate Apartments	9224 B Regents Road, 0907, (858) 534-2952
Residential Apartments Office		
Teaching and Research Assistantships		
(Address the appropriate department of instruction.)		

SCHOOL OF MEDICINE

| Admissions | Admissions Office | 162 Medical Teaching Facility, 0621, (858) 534-3880 |

Published at the University of California, San Diego, Publications Office, 9500 Gilman Drive # 0941, La Jolla, California 92093-0941, VOLUME 40: July 2007.
ON THE COVER:

UC San Diego’s new Student Services Center opened May 2007 as a central hub for student life and gateway for visitors. Located at the heart of the campus at the corner of Rupertus Way and Myers Drive, the five-story building houses over 400 employees and serves as a centralized resource for student services. More than 40,000 visitors are expected annually. As an expression of UCSD’s commitment to sustainability, recycled and low-toxin materials have been used throughout the building, and the architecture maximizes energy efficiency while creating an inviting work, meeting, and activity environment.

Back cover photos by Matt Hale and Katie Koteen
NOTE: While efforts have been made to assure the accuracy of statements in this catalog, it must be understood that all courses, course descriptions, designations of instructors, and all curricular and degree requirements contained herein are subject to change or elimination without notice. Students should consult the appropriate department, school, college, or graduate division for current information, as well as for any special rules or requirements imposed by the department, school, college, or graduate division.

UCSD on the World Wide Web: http://www.ucsd.edu

The departmental Web sites referenced in this catalog are maintained by independent operators and do not necessarily reflect approved curricular and course information.
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropology</td>
<td>120</td>
</tr>
<tr>
<td>Applied Ocean Science</td>
<td>162</td>
</tr>
<tr>
<td>Audiology</td>
<td>183</td>
</tr>
<tr>
<td>Bioinformatics Graduate Program</td>
<td>186</td>
</tr>
<tr>
<td>Bioinformatics Undergraduate Program</td>
<td>191</td>
</tr>
<tr>
<td>Biological Sciences, Division of</td>
<td>192</td>
</tr>
<tr>
<td>Biomedical Sciences</td>
<td>212</td>
</tr>
<tr>
<td>California Cultures in Comparative Perspective Minor</td>
<td>215</td>
</tr>
<tr>
<td>Chemistry and Biochemistry</td>
<td>217</td>
</tr>
<tr>
<td>Chinese Studies</td>
<td>231</td>
</tr>
<tr>
<td>Classical Studies</td>
<td>232</td>
</tr>
<tr>
<td>Clinical Psychology</td>
<td>241</td>
</tr>
<tr>
<td>Clinical Research</td>
<td>243</td>
</tr>
<tr>
<td>Cognitive Science</td>
<td>244</td>
</tr>
<tr>
<td>Communication</td>
<td>254</td>
</tr>
<tr>
<td>Comparative Studies in Language, Society, and Culture</td>
<td>264</td>
</tr>
<tr>
<td>Contemporary Issues</td>
<td>265</td>
</tr>
<tr>
<td>Critical Gender Studies</td>
<td>265</td>
</tr>
<tr>
<td>Culture, Art, and Technology</td>
<td>270</td>
</tr>
<tr>
<td>Dimensions of Culture</td>
<td>271</td>
</tr>
<tr>
<td>Economics</td>
<td>272</td>
</tr>
<tr>
<td>Education Abroad Program (EAP)</td>
<td>280</td>
</tr>
<tr>
<td>Education Studies</td>
<td>282</td>
</tr>
<tr>
<td>Eleanor Roosevelt College</td>
<td>295</td>
</tr>
<tr>
<td>Engineering, Jacobs School of</td>
<td>296</td>
</tr>
<tr>
<td>Bioengineering (BE)</td>
<td>299</td>
</tr>
<tr>
<td>Chemical Engineering Program (CENG)</td>
<td>314</td>
</tr>
<tr>
<td>Computer Science and Engineering (CSE)</td>
<td>319</td>
</tr>
<tr>
<td>Electrical and Computer Engineering (ECE)</td>
<td>337</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering (MAE)</td>
<td>357</td>
</tr>
<tr>
<td>Structural Engineering (SE)</td>
<td>372</td>
</tr>
<tr>
<td>English as a Second Language</td>
<td>382</td>
</tr>
<tr>
<td>Entry Level Writing</td>
<td>382</td>
</tr>
<tr>
<td>Environmental Studies</td>
<td>383</td>
</tr>
<tr>
<td>Environmental Systems</td>
<td>384</td>
</tr>
<tr>
<td>Ethnic Studies</td>
<td>388</td>
</tr>
<tr>
<td>Film Studies</td>
<td>398</td>
</tr>
<tr>
<td>Freshman Seminar Program</td>
<td>399</td>
</tr>
<tr>
<td>German Studies</td>
<td>399</td>
</tr>
<tr>
<td>Health Care—Leadership of Healthcare Organizations</td>
<td>400</td>
</tr>
<tr>
<td>Health Care—Social Issues</td>
<td>402</td>
</tr>
<tr>
<td>History</td>
<td>403</td>
</tr>
<tr>
<td>Human Development Program</td>
<td>423</td>
</tr>
<tr>
<td>Humanities</td>
<td>427</td>
</tr>
<tr>
<td>International Migration Studies Minor</td>
<td>428</td>
</tr>
<tr>
<td>International Relations and Pacific Studies, Graduate School of (IR/PS)</td>
<td>430</td>
</tr>
<tr>
<td>International Studies</td>
<td>441</td>
</tr>
<tr>
<td>Italian Studies</td>
<td>448</td>
</tr>
<tr>
<td>Japanese Studies</td>
<td>448</td>
</tr>
<tr>
<td>Judaic Studies</td>
<td>450</td>
</tr>
<tr>
<td>Language and Communicative Disorders</td>
<td>453</td>
</tr>
<tr>
<td>Latin American Studies</td>
<td>454</td>
</tr>
<tr>
<td>Law and Society</td>
<td>460</td>
</tr>
<tr>
<td>Linguistics</td>
<td>462</td>
</tr>
<tr>
<td>Literature</td>
<td>477</td>
</tr>
<tr>
<td>Making of the Modern World, The</td>
<td>505</td>
</tr>
<tr>
<td>Management, Rady School of</td>
<td>506</td>
</tr>
<tr>
<td>Marine Biodiversity and Conservation</td>
<td>509</td>
</tr>
<tr>
<td>Materials Science and Engineering Program</td>
<td>510</td>
</tr>
<tr>
<td>Mathematics</td>
<td>513</td>
</tr>
<tr>
<td>Mathematics and Science Education</td>
<td>526</td>
</tr>
<tr>
<td>Middle East Studies</td>
<td>527</td>
</tr>
<tr>
<td>Molecular Pathology</td>
<td>528</td>
</tr>
<tr>
<td>Muir College</td>
<td>530</td>
</tr>
<tr>
<td>Music</td>
<td>530</td>
</tr>
<tr>
<td>Neurosciences</td>
<td>546</td>
</tr>
<tr>
<td>Philosophy</td>
<td>549</td>
</tr>
<tr>
<td>Physics</td>
<td>558</td>
</tr>
<tr>
<td>Political Science</td>
<td>572</td>
</tr>
<tr>
<td>Psychology</td>
<td>582</td>
</tr>
<tr>
<td>Public Health—Epidemiology</td>
<td>593</td>
</tr>
<tr>
<td>Public Health—Health Behavior</td>
<td>593</td>
</tr>
<tr>
<td>Public Service Minor</td>
<td>594</td>
</tr>
<tr>
<td>Religion, Study of</td>
<td>594</td>
</tr>
<tr>
<td>Revelle College</td>
<td>598</td>
</tr>
<tr>
<td>Russian and Soviet Studies</td>
<td>598</td>
</tr>
<tr>
<td>Science Studies</td>
<td>599</td>
</tr>
<tr>
<td>Science, Technology, and Public Affairs</td>
<td>600</td>
</tr>
<tr>
<td>Scripps Institution of Oceanography</td>
<td>601</td>
</tr>
<tr>
<td>Senior Seminar Program</td>
<td>617</td>
</tr>
<tr>
<td>Sixth College</td>
<td>617</td>
</tr>
<tr>
<td>Sociology</td>
<td>618</td>
</tr>
<tr>
<td>Space Science and Engineering</td>
<td>631</td>
</tr>
<tr>
<td>Theatre and Dance</td>
<td>631</td>
</tr>
<tr>
<td>Third World Studies</td>
<td>648</td>
</tr>
<tr>
<td>Thurgood Marshall College</td>
<td>650</td>
</tr>
<tr>
<td>UC San Diego Washington Program (UCDC)</td>
<td>651</td>
</tr>
<tr>
<td>Urban Studies and Planning</td>
<td>651</td>
</tr>
<tr>
<td>Visual Arts</td>
<td>656</td>
</tr>
<tr>
<td>Warren College</td>
<td>674</td>
</tr>
<tr>
<td>Appendix</td>
<td>675</td>
</tr>
<tr>
<td>Nondiscrimination and Affirmative Action Policy</td>
<td></td>
</tr>
<tr>
<td>Statement for the University of California</td>
<td>675</td>
</tr>
<tr>
<td>Notice to Students of Their Privacy Rights/FERPA</td>
<td>676</td>
</tr>
<tr>
<td>UCSD Sexual Harassment Prevention and Policy</td>
<td>677</td>
</tr>
<tr>
<td>The Regents of the University of California</td>
<td>678</td>
</tr>
<tr>
<td>Chancellors of the UC Campuses</td>
<td>679</td>
</tr>
<tr>
<td>University Professors</td>
<td>679</td>
</tr>
<tr>
<td>UCSD Academic and Administrative Officers</td>
<td>680</td>
</tr>
<tr>
<td>Organized Research Units, Institutes, Laboratories, and Projects</td>
<td>682</td>
</tr>
<tr>
<td>UCSD Medical Center</td>
<td>683</td>
</tr>
<tr>
<td>UCSD School of Medicine</td>
<td>683</td>
</tr>
<tr>
<td>UCSD Endowed Chairs</td>
<td>684</td>
</tr>
<tr>
<td>UC San Diego Foundation</td>
<td>686</td>
</tr>
<tr>
<td>UCSD Board of Overseers</td>
<td>686</td>
</tr>
<tr>
<td>UCSD Facts and Figures</td>
<td>687</td>
</tr>
<tr>
<td>Catalog Index</td>
<td>689</td>
</tr>
<tr>
<td>Campus Map</td>
<td>700</td>
</tr>
</tbody>
</table>
Academic and Administrative Calendar, 2007–2008

Fall Quarter, 2007
- Fall quarter begins: Monday, September 24
- Instruction begins: Thursday, September 27
- Veterans Day: Monday, November 12
- Thanksgiving holiday: Thursday–Friday, November 22–23
- Instruction ends: Friday, December 7
- Final exams: Monday–Saturday, December 10–15
- Fall quarter ends: Saturday, December 15
- Christmas holidays: Monday–Tuesday, December 24–25
- New Year holidays: Monday–Tuesday, December 31–January 1

49 Days of Instruction • 60 Days in Quarter

Winter Quarter, 2008
- Winter quarter begins: Friday, January 4
- Instruction begins: Monday, January 7
- Martin Luther King, Jr. holiday: Monday, January 21
- Presidents’ Day holiday: Monday, February 18
- Instruction ends: Friday, March 14
- Final exams: Monday–Saturday, March 17–22
- Winter quarter ends: Saturday, March 22

48 Days of Instruction • 56 Days in Quarter

Spring Quarter, 2008
- Spring quarter begins: Thursday, March 27
- Cesar Chavez holiday: Friday, March 28
- Instruction begins: Monday, March 31
- Memorial Day holiday observance: Monday, May 26
- Instruction ends: Friday, June 6
- Final exams: Monday–Friday, June 9–13
- Spring quarter ends: Friday, June 13
- Commencement*: Saturday–Monday, June 21–23

49 Days of Instruction • 57 Days in Quarter

Independence Day
- Independence Day: Friday, July 4, 2008

Labor Day
- Labor Day: Monday, September 1, 2008

* Commencement date due to a regional event
Fall Quarter, 2008

Fall quarter begins ... Monday, September 22
Instruction begins ... Thursday, September 25
Veterans Day ... Tuesday, November 11
Thanksgiving holiday .. Monday–Friday, November 27–28
Instruction ends ... Friday, December 5
Final exams ... Monday–Saturday, December 8–13
Fall quarter ends ... Saturday, December 13
Christmas holidays .. Wednesday–Thursday, December 24–25
New Year holidays .. Wednesday–Thursday, December 31–January 1

49 Days of Instruction • 60 Days in Quarter

Winter Quarter, 2009

Winter quarter begins ... Friday, January 2
Instruction begins ... Monday, January 5
Martin Luther King, Jr. holiday .. Thursday, January 19
Presidents’ Day holiday .. Monday, February 16
Instruction ends ... Friday, March 13
Final exams ... Monday–Saturday, March 16–21
Winter quarter ends ... Saturday, March 21

48 Days of Instruction • 56 Days in Quarter

Spring Quarter, 2009

Spring quarter begins ... Thursday, March 26
Cesar Chavez holiday ... Friday, March 27
Instruction begins ... Monday, March 30
Memorial Day holiday observance Monday, May 25
Instruction ends ... Friday, June 5
Final exams ... Monday–Friday, June 8–12
Spring quarter ends .. Friday, June 12
Commencement ... Saturday–Monday, June 13–15

49 Days of Instruction • 57 Days in Quarter

Independence Day .. Friday, July 3, 2009
Labor Day ... Monday, September 7, 2009
Fall Quarter, 2009

Fall quarter begins ... Monday, September 21
Instruction begins ... Thursday, September 24
Veterans Day ... Wednesday, November 11
Thanksgiving holiday ... Thursday–Friday, November 26–27
Instruction ends ... Friday, December 4
Final exams ... Monday–Saturday, December 7–14
Fall quarter ends ... Saturday, December 12

Veterans Day ... Wednesday, November 11

49 Days of Instruction • 60 Days in Quarter

Winter Quarter, 2010

Winter quarter begins ... Friday, January 1
Instruction begins ... Monday, January 4
Martin Luther King, Jr. holiday .. Monday, January 18
Presidents’ Day holiday .. Monday, February 15
Instruction ends ... Friday, March 12
Final exams ... Monday–Saturday, March 15–20
Winter quarter ends ... Saturday, March 20

48 Days of Instruction • 56 Days in Quarter

Spring Quarter, 2010

Spring quarter begins ... Thursday, March 25
Cesar Chavez holiday .. Friday, March 26
Instruction begins ... Monday, March 29
Memorial Day holiday observance .. Monday, May 31
Instruction ends ... Friday, June 4
Final exams ... Monday–Friday, June 7–11
Spring quarter ends ... Friday, June 11
Commencement ... Saturday–Monday, June 12–14

49 Days of Instruction • 57 Days in Quarter

Independence Day ... Monday, July 5, 2010
Labor Day ... Monday, September 6, 2010
Academic and Administrative Calendar, 2010–2011

Fall Quarter, 2010

- Fall quarter begins: Monday, September 20
- Instruction begins: Thursday, September 23
- Veterans Day: Thursday, November 11
- Thanksgiving holiday: Thursday–Friday, November 25–26
- Instruction ends: Friday, December 3
- Final exams: Monday–Saturday, December 6–11
- Fall quarter ends: Saturday, December 11
- Christmas holidays: Thursday–Friday, December 23–24
- New Year holidays: Thursday–Friday, December 30–31

49 Days of Instruction • 60 Days in Quarter

Winter Quarter, 2011

- Winter quarter begins: Monday, January 3
- Instruction begins: Monday, January 3
- Martin Luther King, Jr. holiday: Monday, January 17
- Presidents’ Day holiday: Monday, February 21
- Instruction ends: Friday, March 11
- Final exams: Monday–Saturday, March 14–19
- Winter quarter ends: Saturday, March 19

48 Days of Instruction • 55 Days in Quarter

Spring Quarter, 2011

- Spring quarter begins: Thursday, March 24
- Cesar Chavez holiday: Friday, March 25
- Instruction begins: Monday, March 28
- Memorial Day holiday observance: Monday, May 30
- Instruction ends: Friday, June 3
- Final exams: Monday–Friday, June 6–10
- Spring quarter ends: Friday, June 10
- Commencement: Saturday–Monday, June 11–13

49 Days of Instruction • 57 Days in Quarter

- Independence Day: Monday, July 4, 2011
- Labor Day: Monday, September 5, 2011
Undergraduate Admission Information and Enrollment Deadlines

<table>
<thead>
<tr>
<th></th>
<th>FALL QUARTER 2007</th>
<th>WINTER QUARTER 2008</th>
<th>SPRING QUARTER 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENROLLMENT BEGINS (Continuing Students)</td>
<td>May 9</td>
<td>Nov. 7</td>
<td>Feb. 13</td>
</tr>
<tr>
<td>BILLING STATEMENTS AVAILABLE ON TRITONLINK</td>
<td>Aug. 31</td>
<td>Nov. 30</td>
<td>Mar. 7</td>
</tr>
<tr>
<td>ENROLLMENT BEGINS (New Students)</td>
<td>Aug. 21</td>
<td>Dec. 12</td>
<td>Mar. 10</td>
</tr>
<tr>
<td>DEADLINE DAY TO ENROLL WITHOUT LATE FEES</td>
<td>Sept. 26</td>
<td>Dec. 21</td>
<td>Mar. 27</td>
</tr>
<tr>
<td></td>
<td>Oct. 5</td>
<td>Dec. 21</td>
<td>Apr. 4</td>
</tr>
<tr>
<td>QUARTER BEGINS</td>
<td>Sept. 24</td>
<td>Jan. 4</td>
<td>Mar. 27</td>
</tr>
<tr>
<td>LAST DAY FOR STUDENTS WHO MET ENROLLMENT DEADLINE TO PAY REGISTRATION FEES WITHOUT $50 LATE PAYMENT FEE</td>
<td>Sept. 26</td>
<td>Dec. 21</td>
<td>Mar. 27</td>
</tr>
<tr>
<td></td>
<td>Oct. 5</td>
<td>Jan. 11</td>
<td>Apr. 4</td>
</tr>
<tr>
<td>LATE REGISTRATION PERIOD</td>
<td>Sept. 27–Oct. 12</td>
<td>Jan. 7–Jan. 18</td>
<td>Mar. 31–Apr. 11</td>
</tr>
<tr>
<td>INSTRUCTION BEGINS</td>
<td>Sept. 27</td>
<td>Jan. 7</td>
<td>Mar. 31</td>
</tr>
<tr>
<td>ADD/CHANGE/DROP PERIOD</td>
<td>Sept. 27–Oct. 12</td>
<td>Jan. 7–18</td>
<td>Mar. 31–Apr. 4</td>
</tr>
<tr>
<td>DEADLINE TO REQUEST WAIVER OF MANDATORY HEALTH INSURANCE FEE</td>
<td>Sept. 21</td>
<td>Dec. 10</td>
<td>Mar. 24</td>
</tr>
<tr>
<td>Undergraduates</td>
<td>Oct. 12</td>
<td>Jan. 18</td>
<td>Apr. 11</td>
</tr>
<tr>
<td>DEADLINE DAY TO PAY REGISTRATION FEES TO AVOID CANCELLATION OF CLASSES</td>
<td>Oct. 12</td>
<td>Jan. 18</td>
<td>Apr. 11</td>
</tr>
<tr>
<td>FINAL DAY TO ADD COURSES</td>
<td>Oct. 12</td>
<td>Jan. 18</td>
<td>Apr. 11</td>
</tr>
<tr>
<td>LAST DAY TO APPLY FOR PART-TIME STATUS</td>
<td>Oct. 13–Nov. 30</td>
<td>Jan. 19–Mar. 7</td>
<td>Apr. 12–May 30</td>
</tr>
<tr>
<td>CHANGE/DROP PERIOD CONTINUES</td>
<td>Oct. 26</td>
<td>Feb. 1</td>
<td>Apr. 25</td>
</tr>
<tr>
<td></td>
<td>Oct. 26</td>
<td>Feb. 1</td>
<td>Apr. 25</td>
</tr>
<tr>
<td></td>
<td>Nov. 30</td>
<td>Mar. 7</td>
<td>May 30</td>
</tr>
<tr>
<td>INSTRUCTION ENDS</td>
<td>Dec. 7</td>
<td>Mar. 14</td>
<td>June 6</td>
</tr>
<tr>
<td>FINAL DAY TO FILE “REQUEST TO RECEIVE GRADE INCOMPLETE”</td>
<td>Dec. 17</td>
<td>Mar. 24</td>
<td>June 16</td>
</tr>
<tr>
<td>QUARTER ENDS</td>
<td>Dec. 15</td>
<td>Mar. 22</td>
<td>June 13</td>
</tr>
<tr>
<td>COMMENCEMENT</td>
<td></td>
<td></td>
<td>June 21–22</td>
</tr>
</tbody>
</table>

* If open—contact Undergraduate Admissions for details, (858) 534-4831. Students applying for winter or spring quarter admission and also applying for financial aid are urged to apply early, as mid-year funds for winter and spring applicants may be limited to only bank loans, Federal Pell Grant, and/or Renewal Cal Grant.
ADMISSION

Graduate admissions information is available at http://graduateapp.ucsd.edu and in the Graduate Studies section of this catalog. Application deadlines are specific to each graduate program and are available at http://ogs.ucsd.edu/admissions/programs.

GRADUATE ENROLLMENT DEADLINES

<table>
<thead>
<tr>
<th></th>
<th>FALL QUARTER 2007</th>
<th>WINTER QUARTER 2008</th>
<th>SPRING QUARTER 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW STUDENT ENROLLMENT</td>
<td>June 11–Sept. 17</td>
<td>Dec. 3–7</td>
<td>Mar. 10–14</td>
</tr>
<tr>
<td>APPLICATION FOR INTERCAMPUS EXCHANGE PROGRAM</td>
<td>Aug. 17</td>
<td>Dec. 5</td>
<td>Feb. 27</td>
</tr>
<tr>
<td>FILING APPROVED LEAVE OF ABSENCE</td>
<td>Oct. 5</td>
<td>Jan. 18</td>
<td>Apr. 11</td>
</tr>
<tr>
<td>DEADLINE DAY TO ENROLL WITHOUT LATE FEES</td>
<td>Sept. 14</td>
<td>Dec. 14</td>
<td>Mar. 14</td>
</tr>
<tr>
<td>QUARTER BEGINS</td>
<td>Sept. 24</td>
<td>Jan. 4</td>
<td>Mar. 27</td>
</tr>
<tr>
<td>NEW STUDENT ENROLLMENT</td>
<td>Sept. 27</td>
<td>Jan. 7</td>
<td>Mar. 31</td>
</tr>
<tr>
<td>APPLICATION FOR INTERCAMPUS EXCHANGE PROGRAM</td>
<td>Sept. 29</td>
<td>Dec. 20</td>
<td>Mar. 31</td>
</tr>
<tr>
<td>LATE REGISTRATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day for continuing students who met enrollment deadline to pay registration fees without $50 late payment fee. Enrollment and payment of fees after this date requires payment of $50 for late enrollment and $50 for late payment of fees, totaling $100.</td>
<td>Sept. 20</td>
<td>Dec. 20</td>
<td>Mar. 31</td>
</tr>
<tr>
<td>FINAL DAY TO ADD OR DROP VIA THE WEB</td>
<td>Oct. 5</td>
<td>Jan. 18</td>
<td>Apr. 11</td>
</tr>
<tr>
<td>DEADLINE TO CHANGE GRADING OPTION</td>
<td>Oct. 19</td>
<td>Feb. 1</td>
<td>Apr. 25</td>
</tr>
<tr>
<td>DEADLINE FOR DROPPING CLASSES WITHOUT “W” APPEARING ON THE TRANSCRIPT</td>
<td>Oct. 19</td>
<td>Feb. 1</td>
<td>Apr. 25</td>
</tr>
<tr>
<td>MASTER’S DEGREE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filing for advancement to candidacy with completion in same quarter</td>
<td>Oct. 5</td>
<td>Jan. 18</td>
<td>Apr. 11</td>
</tr>
<tr>
<td>Filing approved thesis</td>
<td>Dec. 14</td>
<td>Mar. 21</td>
<td>June 12</td>
</tr>
<tr>
<td>DOCTOR OF PHILOSOPHY DEGREE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filing draft dissertation with doctoral committee for current quarter completion</td>
<td>Nov. 2</td>
<td>Feb. 8</td>
<td>May 2</td>
</tr>
<tr>
<td>Filing approved dissertation and related materials</td>
<td>Dec. 14</td>
<td>Mar. 21</td>
<td>June 12</td>
</tr>
<tr>
<td>DROPPING CLASSES WITHOUT PENALTY OF “F” GRADE</td>
<td>Nov. 26</td>
<td>Mar. 7</td>
<td>June 6</td>
</tr>
<tr>
<td>INSTRUCTION ENDS</td>
<td>Dec. 7</td>
<td>Mar. 14</td>
<td>June 6</td>
</tr>
<tr>
<td>REMOVING INCOMPLETE GRADES (I) ASSIGNED IN PRIOR QUARTER</td>
<td>Dec. 11</td>
<td>Mar. 25</td>
<td>June 13</td>
</tr>
<tr>
<td>QUARTER ENDS</td>
<td>Dec. 15</td>
<td>Mar. 22</td>
<td>June 13</td>
</tr>
<tr>
<td>COMMENCEMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPLETION OF REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final date for completion of all requirements for degrees to be awarded at end of quarter</td>
<td>Dec. 15</td>
<td>Mar. 22</td>
<td>June 13</td>
</tr>
</tbody>
</table>

Dates are subject to change; see quarterly schedule of classes for changes.
History

UCSD is one of the ten campuses which make up the University of California system. The other campuses are located in Berkeley, Davis, San Francisco, Santa Cruz, Santa Barbara, Riverside, Los Angeles, Irvine, and Merced. Each has its own distinct academic and social character, and each offers programs and facilities which set it off from the others.

As a member of the ten-campus family of the University of California, UCSD is a university in scale and scope. Graduate and undergraduate programs, offered in a wide range of disciplines, lead to the bachelor’s, master’s, M.B.A., Ed.D., M.D., Ph.D., and Pharm.D. degrees. UCSD’s Scripps Institution of Oceanography is internationally renowned, and UCSD’s School of Medicine has won national acclaim for excellence. UCSD’s Graduate School of International Relations and Pacific Studies is the only school of international affairs in the UC system. The UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences enrolled its charter class in 2002, and the Rady School of Management enrolled Executive MBA students in 2004 and full-time students in 2005. At both the undergraduate and graduate levels, UCSD’s curricula and programs have been highly ranked in recent surveys of American higher education.

UCSD enrolled its first undergraduates in 1964. Nevertheless, the campus can trace its origins in this area as far back as the late 1800s. At that time, zoologists on the Berkeley campus, seeking a suitable location for a marine field station, found La Jolla a very desirable site. The facility they established became a part of the University of California in 1912 and was eventually named the Scripps Institution of Oceanography. In the late 1950s, when the Regents of the University of California decided to situate a general campus in the San Diego region, the Scripps Institution formed the nucleus of the new campus.

Today UCSD is recognized throughout the academic world for its faculty and for its graduate and undergraduate programs. The faculty now includes eight Nobel laureates (four of whom hold joint appointments with the nearby Salk Institute); three recipients of the National Medal of Science; one winner of the Pulitzer Prize; sixty-three members of the National Academy of Sciences; eighty-two Fellows of the American Academy of Arts and Sciences; fourteen Fellows of the American Philosophical Society; eight fellows of the Econometric Society; fourteen members of the National Academy of Engineering; five members of the International Academy of Astronautics; twenty-five members of the Institute of Medicine; and three members of the National Academy of Education.

UCSD houses a chapter of Phi Beta Kappa, the best-known honor society for the liberal arts and sciences in America. The campus is one of 265 four-year institutions selected for this distinction since the society was founded in 1776, and more than 200 current faculty and staff are members.

UCSD is a member of the Western Association of Schools and Colleges (WASC) and is fully accredited by the Senior College Commission of WASC. WASC is located at 985 Atlantic Avenue, Suite 100, Alameda, CA 94501, and may be reached at (510) 748-9001 or by fax at (510) 748-9797.

University and Community

There are certain facts about UCSD to consider in making your choice. Among them are:

• UCSD, a four-year undergraduate campus, is also a full-fledged graduate and research institution. UCSD faculty and scholars are continually involved in research and developmental projects that put this campus on the cutting edge of science, technology, and the arts and humanities.

• San Diego has become one of America’s major centers for high-technology electronics and biomedical industries. Students concentrating on sciences or engineering are actively sought by these industries to fill summer jobs and career positions. Off-campus internships also are available to UCSD students in all fields of study.

• UCSD is recognized nationally as a major center for the arts and humanities, including music and theater.

• Undergraduates are offered opportunities to participate in certain research projects conducted by UCSD faculty. A number of UCSD undergraduates have developed computer skills that have led to their employment by leading computer manufacturers, and still others have gone on to form their own software enterprises as a direct result of their UCSD training.

• UCSD’s unique small-college structure encourages undergraduates to play a more active role in student government, social life, and athletics than is generally open to them in other major universities. Opportunities for involvement in student governance are especially strong as there are student governing bodies at the campus level as well as within the six individual colleges.

• Campus athletic facilities include the Recreational and Intramural Athletic Center (RIMAC), two gymnasiums, two swimming pools, and numerous tennis and handball courts. The university’s recreational and intramural athletic programs are among the most varied and extensive in the nation today.

Major Fields of Study

UCSD offers a wide variety of nationally recognized majors in a broad array of fields, summarized on page 14. (For a listing of graduate programs, refer to the section of this catalog titled “Graduate Studies.”)

The academic departments of UCSD are listed on page 13. Details and requirements of the various individual courses are found in the “Courses, Curricula, and Programs of Instruction” section. UCSD has limited the number of its academic departments. For example, there is only one Department of Literature. This system has proved especially valuable to undergraduates who choose to avoid overspecialization early in their studies.

A number of special, individually oriented programs use the combined resources of two or more departments. Among these are Chinese Studies, Classical Studies, Computing and the Arts, Critical Gender Studies, Earth Sciences, Environmental Systems, Human Development, German Studies, International Studies, Italian Studies, Japanese Studies, Judaic Studies, Latin American Studies, Study of Religion, Russian and Soviet Studies, the Education Studies
Program, Third World Studies, and Urban Studies and Planning.

Engineering students may choose from a number of majors in the Department of Bioengineering (BE), the Department of Computer Science and Engineering (CSE), the Department of Electrical and Computer Engineering (ECE), the Department of Mechanical and Aerospace Engineering (MAE) or the Department of Structural Engineering (SE). All five departments seek to educate the engineer of tomorrow.

Undergraduates interested in premedicine and prelaw majors should note that a variety of departments can serve their needs. For premed students, the common choices are biology, chemistry, psychology, and bioengineering. Some students are electing double majors or are combining nontraditional majors with science majors. For prelaw students, nearly any undergraduate major will qualify a student for admission to a law school.

Should you need help in deciding on a major, many UCSD professionals are available to aid you. Among them are the deans of academic advising in the provosts' offices of the six colleges, faculty members, and departmental advisors. Additional specialists in Career Services Center and in Psychological and Counseling Services are available to help you appraise your personal aptitudes.

Summer Session

UCSD offers Summer Session, consisting of courses selected from the regular undergraduate curriculum and taught by UCSD faculty. UCSD is in transition toward state-supported year-round instruction.

The Summer Session Program offers open enrollment to UCSD students, students of other colleges and universities, qualified high school juniors and seniors, and the general public.

Summer Session courses are shorter and more intensive. Students may be able to progress more rapidly toward their degree, make up course deficiencies, or explore new areas of study.

Summer Session enrollment and registration policy and procedures are available at http://summersession.ucsd.edu. UC students pay a per-unit fee equivalent to the fee paid for fall, winter, or spring.

Contact summer@ucsd.edu or call (858) 534-5258.

What UCSD Does NOT Offer

Although the range and variety of programs offered at UCSD are very wide, there are certain disciplines which are not available on this campus. In some instances, the absence of a particular program reflects the academic philosophy of the UCSD campus and its faculty. In others, the absence of a curriculum is temporary, awaiting the availability of funds, personnel, or facilities before a program can be offered. In still others, programs have not been included which would, in the university's judgment, unnecessarily duplicate comparable offerings on other UC campuses or at other institutions.

Among undergraduate majors currently not available at UCSD are:

1. Business.
2. Oceanography. Although UCSD does not offer an undergraduate major in oceanography, some marine science courses are offered by the Scripps Institution of Oceanography. Students planning to pursue oceanography at the graduate level may select from a large number of undergraduate courses in the physical, biological, and earth sciences to build a firm foundation for later graduate work. Graduate-level work in oceanography is offered by the Scripps Institution of Oceanography.
3. Nursing.
4. Industrial Arts.
5. Journalism. Although no major in journalism is offered, the Department of Literature offers a major in writing that can emphasize journalistic writing, and the development of writing skills is stressed in many disciplines. Many courses offered in the humanities and social sciences will provide the kind of broad-based preparation needed by practicing journalists. Several student newspapers are published on campus, providing ample "laboratory" opportunities for students to practice journalism.
6. Geography.
7. Physical Education. Note: There is no intercollegiate football team at UCSD.

The Colleges of UCSD

UCSD undergraduates enjoy the benefits of a great university without the disadvantages of bigness found in many of today's mega-universities. The master plan conceived by UCSD's planners borrowed from the Oxford and Cambridge concept to provide a family of colleges, each with its own special academic and social flavor. UCSD's students gain a sense of belonging through affiliation with one of the campus's semiautonomous colleges.

There are six colleges: Revelle, John Muir, Thurgood Marshall, Earl Warren, Eleanor Roosevelt, and Sixth College. Each is independent, yet all are interrelated: all university academic and support facilities are available to all students, regardless of their college affiliation.

Each college has its own educational philosophies and traditions, its own set of general-education requirements, and its own administrative and advising staff. The objective is to give students and faculty the advantages of a small, liberal arts college combined with the best features of a major university.

Students applying to UCSD should select a college in order of their preference.

Details regarding the individual colleges are given in the “Choosing a College at UCSD” section of the catalog.

Recreation at UCSD

UCSD's undergraduate colleges are situated on a parklike site at La Jolla. La Jolla has some of the finest beaches and coves, art galleries, and other attractions in the nation.

Much of UCSD's recreational and social life centers on the waterfront, with surfing, SCUBA diving, and beach activities among the favorite diversions of UCSD students. Throughout the area, students find a variety of amusements, ranging from the small-town atmosphere of waterfront Del Mar to the primitive wilderness of Mexico's Baja California peninsula.

The city of San Diego, some twelve miles south of the campus, offers a wide range of recreational opportunities, including Old Town (California's birthplace), Sea World on Mission Bay, and the world-famous San Diego Zoo and Wild Animal Park. A year-round calendar of major league sporting events is offered in the city's Sports Arena, PETCO Park, and in San Diego Qualcomm Stadium.
There are numerous theaters in San Diego. A year-round program of contemporary and classical professional theater may be enjoyed in the Old Globe and the adjacent Cassius Carter Centre Stage, and special summer theater fare is featured on the park’s outdoor Festival Stage.

On-campus entertainment includes a year-round series of movies and cultural programs, dances, chamber music, and rock-band concerts sponsored by the University Events Office. The Department of Theatre and Dance presents plays in both the 500-seat Mandell Weiss Theatre and the 500-seat Forum Theatre. The Department of Visual Arts offers a continuing series of art shows in the Mandeville Art Gallery and displays of student art in other campus galleries.

Informal meeting places on campus are hubs of student activity throughout the day and evening, among them the Muir Rathskeller, Marshall College Mountain View Lounge, and the Price Center.

Mountains, Deserts, and Beaches

Many Southern Californians enjoy the out-of-doors. The San Diego metropolitan area enjoys the most comfortable year-round climate in the United States.

Fishing opportunities are plentiful offshore in kelp beds west of La Jolla and surrounding the Coronado Islands in Mexican waters. Fresh water fishing is available in nearby lakes. An hour’s drive to the east, the Laguna Mountains provide pleasure during all seasons for campers and hikers. Beyond the Lagunas lies the vast Anza-Borrego Desert with its breathtaking display of wildflowers every spring.

The peninsula of Baja California, one of the world’s last great wilderness areas, stretches for 900 miles southward from the international gateway at Tijuana. It is the site every year of the grueling Baja cross-country auto race.

Sports at UCSD

Through its intercollegiate athletic and intramural programs, UCSD provides its students with one of the more extensive and competitive sports programs in the United States. UCSD fields a wide variety intercollegiate athletic teams along with several club sports teams, while the intramural program provides for student competition in a wide variety of sports in three categories of play: men, women, and coed.

Need More Information?

Check the Following:

How do I apply for admission? See pages 36 and 46. (See also “Note,” below.)

What’s the grading system at UCSD? See page 64.

How should I decide which college to choose at UCSD? See page 15.

What services and facilities are available to students at UCSD? See page 93.

Note: An admissions packet for students interested in applying to UCSD can be obtained from any California high school or community college counselor’s office, by writing to the Office of Admissions on any University of California campus, or online at http://www.ucop.edu/pathways/appctr.html.
Departmental Undergraduate Majors

ANTHROPOLOGY
- Anthropological (Archaeology) .. B.A.
- Anthropology ... B.A.
- Anthropology (Biological) .. B.A.

BIOENGINEERING (BE)
- Bioengineering .. B.S.
- Bioengineering: Premedical ... B.S.
- Bioengineering: Biotechnology B.S.
- Bioengineering: Bioinformatics B.S.

BIOLOGICAL SCIENCES, DIVISION OF
- General Biology ... B.S.
- Biology with a Specialization in Bioinformatics B.S.
- Physiology and Neuroscience .. B.S.
- Biochemistry and Cell Biology B.S.
- Ecology, Behavior, and Evolution B.S.
- Human Biology ... B.S.
- Microbiology ... B.S.
- Molecular Biology .. B.S.

CHEMICAL ENGINEERING PROGRAM
- Chemical Engineering .. B.S.

CHEMISTRY AND BIOCHEMISTRY
- Chemistry ... B.S.
- Biochemistry/Chemistry .. B.S.
- Chemical Education ... B.S.
- Chemical Physics ... B.S.
- Chemistry/Earth Sciences .. B.A./B.S.
- Molecular Synthesis ... B.S.
- Pharmacological Chemistry ... B.S.
- Bioinformatics from the Department of Chemistry and Biochemistry .. B.S.

COGNITIVE SCIENCE
- Cognitive Science ... B.A./B.S.
- Cognitive Science/Clinical Aspects of Cognition B.S.
- Cognitive Science/Computation B.S.
- Cognitive Science/Human Cognition B.S.
- Cognitive Science/Human Computer Interaction B.S.
- Cognitive Science/Neuroscience B.S.

COMMUNICATION
- Communication .. B.A.

COMPUTER SCIENCE AND ENGINEERING (CSE)
- Computer Science ... B.A./B.S.
- Computer Engineering .. B.S.
- Computer Science with Specialization in Bioinformatics B.S.

ECONOMICS
- Economics ... B.A.
- Management Science .. B.S.
- Economics—Mathematics ... B.A.

EDUCATION (see Footnote 1)

EDUCATION STUDIES (see Footnote 1)

ELECTRICAL AND COMPUTER ENGINEERING (ECE)
- Computer Engineering .. B.S.
- Electrical Engineering .. B.S.
- Engineering Physics .. B.S.

ENGINEERING (see BE, CSE, ECE, MAE, and SE)
- English (see Literature) .. B.A.
- **ETHNIC STUDIES**
 - Ethnic Studies ... B.A.
- **HISTORY**
 - History ... B.A.
- **LINGUISTICS**
 - Cognition and Language ... B.A.
 - Language and Society ... B.A.
- **LITERATURE**
 - Literatures in English ... B.A.
 - French Literature ... B.A.
 - German Literature ... B.A.
 - Italian Literature ... B.A.
 - Russian Literature ... B.A.
 - Spanish Literature .. B.A.
 - Literature/Composite ... B.A.
 - Literature/Cultural Studies B.A.
 - Literature/Writing .. B.A.
 - Literatures of the World ... B.A.
- **MATHMATICS**
 - Mathematics .. B.A.
 - Applied Mathematics .. B.A.
 - Mathematics—Computer Science B.A.
 - Mathematics—Applied Science B.A.
 - Mathematics—Economics ... B.A.
 - Mathematics—Scientific Computation B.S.
 - Mathematics—Secondary Education B.A.
 - Probability and Statistics B.S.
- **MECHANICAL AND AEROSPACE ENGINEERING (MAE)**
 - Aerospace Engineering ... B.S.
 - Engineering Sciences ... B.S.
 - Mechanical Engineering ... B.S.
 - Environmental Engineering B.S.
- **MUSIC**
 - Computing and the Arts ... B.A.
 - Music ... B.A.
 - Music/Humanities ... B.A.
- **PHILOSOPHY**
 - Philosophy ... B.A.
- **PHYSICS**
 - General Physics .. B.A.
 - General Physics/Secondary Education B.A.
 - Physics ... B.S.
 - Physics/Biophysics .. B.S.
 - Physics with Specialization in Computational Physics B.S.
 - Physics with Specialization in Earth Sciences B.S.
 - Physics with Specialization in Materials Physics B.S.
 - Physics with Specialization in Astrophysics B.S.
- **POLITICAL SCIENCE**
 - Political Science ... B.A.
- **PRELAW (see Footnote 2)**
- **PREMEDICAL (see Footnote 3)**
- **PSYCHOLOGY**
 - Psychology ... B.A./B.S.
- **SOCIOLOGY**
 - Sociology ... B.A.
- **STRUCTURAL ENGINEERING (SE)**
 - Engineering Sciences ... B.S.
 - Structural Engineering .. B.S.
- **THEATRE**
 - Dance ... B.A.
 - Theatre ... B.A.
 - Theatre and Dance ... B.A.
- **VISUAL ARTS**
 - Art History/Criticism ... B.A.
 - Art History/Criticism and Computing and the Arts B.A.
 - Art History/Criticism and Media B.A.
 - Art History/Criticism and Studio B.A.
 - Computing and the Arts ... B.A.
 - Media .. B.A.
 - Studio .. B.A.
- **INTERDISCIPLINARY MAJORS**
 - Chinese Studies ... B.A.
 - Classical Studies .. B.A.
 - College Special Individual Majors B.A.
 - Critical Gender Studies ... B.A.
 - Earth Sciences .. B.S.
 - Environmental Systems—Earth Sciences B.S.
 - Environmental Systems—Ecology, Behavior and Evolution B.S.
 - Environmental Systems—Environmental Chemistry B.S.
 - Environmental Systems—Environmental Policy B.A.
 - German Studies ... B.A.
 - Human Development .. B.A.
 - International Studies ... B.A.
 - Anthropology Economics ... B.A.
 - Economics ... B.A.
 - History ... B.A.
 - Linguistics .. B.A.
 - Literature ... B.A.
 - Political Science .. B.A.
 - Sociology ... B.A.
 - Italian Studies .. B.A.
 - Japanese Studies .. B.A.
 - Judaic Studies .. B.A.
 - Latin American Studies .. B.A.
 - Religion, Studies in .. B.A.
 - Russian and Soviet Studies B.A.
 - Third World Studies .. B.A.
 - Urban Studies and Planning B.A.

Footnote 1: The teaching credential in California requires an academic major, plus professional preparation courses in education, an approved program of practice teaching or an internship, and a full year of college work beyond the baccalaureate. The UCSD Education Studies Program leads to a single subject (secondary) or multiple-subjects (elementary) credential.

Footnote 2: Law schools do not require any particular major, but they do require evidence of good scholarship in demanding subjects. Almost any undergraduate major can qualify a student for consideration by a law school. The UCSD career services staff includes professional prelaw advisors.

Footnote 3: Like law schools, medical schools do not generally demand a particular major but ask for a solid background in the sciences upon which medicine is built. Most premed students major in biology, chemistry, physics, or bioengineering, but a substantial number major in the humanities and social sciences. The UCSD career services staff includes professional premedical advisors.
One of the features that sets UC San Diego apart from most major universities in the United States is its family of undergraduate colleges: Revelle, John Muir, Thurgood Marshall, Earl Warren, Eleanor Roosevelt, and Sixth.

The division of the campus community into small colleges was patterned after the concept which has served Oxford and Cambridge so successfully for centuries. The planners of the UCSD campus were convinced that students learn more, and find greater fulfillment in their personal lives, when joined academically and socially with a relatively small group of students. At the same time, the advantages of size in a university, including a faculty of international renown, first-rate teaching and research facilities, laboratories, libraries, and other amenities, were to be an important part of the design.

The result was an arrangement which combined the academic advantages of a large research university with the finest features of a small liberal arts college—the UCSD college system. Each of these semi-autonomous undergraduate colleges has its own residence facilities, staff, traditions, general-education requirements, and distinctive educational philosophy. The system was inaugurated with the opening of Revelle College in 1964. In the intervening years, five more colleges—John Muir, Thurgood Marshall, Earl Warren, Eleanor Roosevelt, and Sixth—have been established. Although many American university campuses have a separate college structure, in most cases, these colleges are designed to serve specific disciplines, such as engineering or business administration. At UCSD, however, any undergraduate may select from the full range of majors available. The choice of a college is not based on your major, but on your preferences in terms of the various educational philosophies and environments offered by the colleges.

UCSD’s college system allows undergraduates to choose from among six distinct general-education curricula supplementing their major requirements. These curricula range from a very structured liberal arts program to a program with a broad range of electives. By contrast, most universities offer only one general-education curriculum.

Students must rank the colleges in order of preference when applying for admission. Brief summaries of the various college curricula and philosophies follow. Later in this section, these variations are spelled out in considerable detail, college by college.

Revelle College Programmatic Theme

Revelle College stresses the broad character of general education. A structured liberal arts curriculum establishes a strong educational foundation for any major. All students complete a highly respected core humanities sequence and courses in the arts and social sciences. Students either meet proficiency in a foreign language or complete the fourth quarter of college-level instruction. All students also complete sequences in calculus and science, with separate courses available for science and non-science majors. Throughout the final two years, students concentrate on developing professional competence in an academic discipline.

Revelle College is distinguished by its emphasis on specific general-education requirements and high academic standards. A high percentage of Revelle College students enroll in graduate or professional schools (law, medicine, management, etc.), graduate with double majors, design individualized interdisciplinary majors, work on a research project, and graduate with university honors.

John Muir College Programmatic Theme

John Muir College has established a set of general-education and graduation requirements that ensures breadth and depth of learning and encourages the students of the college to take an active role in their own intellectual development. Students complete four year-long sequences drawn from the social sciences; the natural sciences or mathematics; and two sequences out of the following three areas: the humanities, fine arts, or foreign languages. Many choices are available for each of these year-long sequences. Students complete two analytical writing courses in addition to the four year-long sequences. Muir has a one-course U.S. cultural diversity graduation requirement in addition to a minimum number of 18 upper-division four-unit courses (72 upper-division units) among the 180 units required to graduate.

Muir’s general-education and graduation requirements accommodate a wide range of interests and aptitudes. Muir’s academic advisors meet with students on a one-to-one basis to help students make informed decisions. The general structure and options of the general-education requirements make Muir College particularly attractive to exceptionally able and well-prepared students with well-defined or developing academic interests.

John Muir is distinguished by its atmosphere of friendliness, informality, and deep concern for the rights and welfare of others. Concern for one’s fellow students goes well with Muir’s educational philosophy, which stresses individual choice and development. The environment thus created fosters responsibility for informed academic decisions, consequences of academic choices, and, ultimately, well-rounded students.

Thurgood Marshall College Programmatic Theme

The dedicated focus of Thurgood Marshall College is the active development of the student as scholar and citizen. The college, a small liberal arts and sciences community, is characterized by an open, friendly environment in which students pursue any major in the natural and physical sciences, social sciences, engineering, humanities, and fine arts offered at the university.

The college’s educational philosophy is guided by the belief that, regardless of a student’s major, a broad liberal arts education must include an awareness and understanding of the diversity of cultures that comprise contemporary American society, and the richness that socio-cultural diversity brings to the lives of American people.

Integral to the Marshall experience is the unique, three-quarter core sequence, “Dimensions of Culture—Diversity, Justice, and Imagination.” This interdisciplinary, issues-oriented curricular experience explores both the diversity of American experiences across race, religion, class, and gender, and also the shared resources all Americans draw on when their different identities and interests conflict. Students also choose courses in mathematics or logic, natural/physical...
Choosing a College at UCSD

In addition to the strong academic program, Thurgood Marshall College is proud of its emphasis on the student as citizen. Students are encouraged to integrate educational alternatives and public service opportunities, such as Partners at Learning (PAL), for which they earn academic credit, into their curriculum. Through PAL and other options, such as study abroad, internships, public service and leadership activities, students develop skills learned in the classroom and apply them to real-world experiences. Toward that end, the Student Leadership Program is especially designed to encourage active participation in the governance of the college and in community service.

Thurgood Marshall College’s hallmark is community, where students are encouraged to be active participants in their university education and take advantage of the abundance of opportunities to learn and develop as exemplary scholars and citizens in a multicultural twenty-first century.

Earl Warren College
Programmatic Theme

Earl Warren College was founded in 1974 and named in honor of the former governor of California and Chief Justice of the United States Supreme Court. Consistent with Earl Warren’s principles, the college is committed to preparing students for life intellectually, socially, and professionally as responsible citizen-scholars. Warren’s guiding philosophy, “Toward a Life in Balance,” helps students define their individual educational and career paths. The college strives to provide all students with an experience that underscores the harmony necessary between academic and cocurricular endeavours.

Earl Warren’s focus on the individual’s relationship with society is reflected in the required course Ethics and Society. This class examines ethical principles and their social and political applications to contemporary issues. All students enroll in the two-quarter Warren College Writing Program, which stresses written argumentation based on primary and secondary sources. The college sponsors two interdisciplinary minors, open to all UCSD undergraduates. The law and society minor emphasizes the interrelationship of legal, social, and ethical issues in their historical context. The health care-social issues minor analyzes complex social and ethical implications of healthcare policies and delivery systems.

Additionally, Warren College is home to the Academic Internship Program, which offers qualified UCSD juniors and seniors the chance to acquire valuable work experience related to academic and career interests.

Warren College’s general-education requirements and academic philosophy guarantee that students will acquire both the breadth and depth necessary to successfully compete in graduate school, professional school, or the workplace. The college’s requirements include a major and two additional programs of study that encompass academic areas outside of a student’s major. Additional courses in formal skills and cultural diversity provide an essential educational complement. Warren students are encouraged to pursue academic internships as well as study abroad; both opportunities create well-rounded students with heightened cultural and intellectual curiosity. Earl Warren College offers students flexibility in fulfilling their general-education requirements, and provides a vibrant and welcoming home for the pursuit of rigorous academic study and personal growth.

Eleanor Roosevelt College
Programmatic Theme

Eleanor Roosevelt College (ERC) emphasizes a comprehensive general education designed to prepare students to compete successfully in the global and multicultural economy of the twenty-first century. Successful professional people will need to understand their own cultural heritage as well as those of people from other societies with whom they will be interacting in their workplaces and communities.

The perspectives gained at ERC prepare students well for the future, whatever their goals and their major field of study, and whether they plan to go on to graduate school, professional school, or the worlds of science and technology, business, or the arts.

At the core of the curriculum are six courses comprising The Making of the Modern World (MMW). This interdisciplinary sequence was developed by faculty from anthropology, history, literature, political science, and sociology. It teaches students to think historically and analytically, as well as across disciplines, about both Western and non-Western societies, and the ways humans have organized their experience in different places and times.

ERC students receive exposure to natural science, quantitative methods, foreign language, and fine arts, and each selects a geographic region for in-depth study. Interested students are encouraged and assisted in finding ways to study, work, or travel in other countries to expand their horizons.

A friendly and supportive campus community, ERC is also distinguished by its emphasis on helping each individual reach his or her full potential intellectually, and in those skills, contributing to effective participation and leadership.

As Eleanor Roosevelt wrote, “Whether or not they have made the world they live in, the young must learn to be at home in it, to be familiar with it. They must understand its history, its peoples, their customs and ideas and problems and aspirations.” ERC students and graduates find themselves as much “at home” in the world as any of their generation, and more than most!

Sixth College
Programmatic Theme

Sixth College opened in 2002. As the newest college at UCSD, Sixth is characterized by a spirit of creativity and collaboration. The college theme, Culture, Art, and Technology, embraces the rich opportunities available in new interdisciplinary approaches to learning and practice. In doing so, it bridges the divisions traditionally separating social and natural science, humanities, technology, and the arts. By piloting educational initiatives and building partnerships with such groups as the Center for Telecommunication and Information Technology (Calt2), the Center for Research in Computing and the Arts, the Jacobs School of Engineering, and the University Events Office, we are developing opportunities for our students to participate in meaningful creative learning experiences across the entire campus, as well as the larger community. A supportive yet challenging integrated learning environment, both in and out of the classroom, helps our students develop the cultural competence and understanding necessary to become fully engaged, effective global citizens in the twenty-first century.

Sixth College’s theme is woven into an educational philosophy and curriculum intended to prepare students for a future that demands ethical integrity, creativity, self-understanding, critical reasoning, appreciation of the powers and implications of science and technology, and flexibility. Students will learn interactive skills and approaches needed for success in an increasingly global society: teamwork, cross-cultural understanding,
strong writing and multimedia communication skills, and information technology fluency.

All students must complete the three-quarter core sequence in Culture, Art, and Technology (CAT). The sequence, with its imbedded writing program, develops our students’ abilities to achieve a reflexive understanding of themselves and their society by approaching issues and problems from interdisciplinary perspectives. It examines the foundations, historical interactions, and future possibilities of culture, art, and technology in relation to the problems and potentials afforded by human nature and the larger environment on which we depend. The Sixth College breadth requirements build on the core approach by including courses in art making and information technology fluency, as well as social science, humanities, natural science, mathematics and logic, and statistical methods. The curriculum culminates in a capstone experience that offers our students the opportunity to engage with the real world in a meaningful way through a self-directed, community- or team-based practicum project followed by an upper-division writing.

GRADUATION REQUIREMENTS IN THE UCSD COLLEGES

Unless otherwise indicated, the figures in this chart refer to the number of COURSES rather than the number of units. Most UCSD courses carry four quarter-units of credit, and a student usually takes four courses each quarter. Academic disciplines are classified as humanities/fine arts, social sciences, and mathematics/natural sciences/engineering. The term “non-contiguous” refers to a discipline that is different from that of the major. Students must meet the Entry Level Writing requirement prior to enrolling in the writing courses of their respective college. Each college’s cultural diversity requirement can be fulfilled as noted by an asterisk (*) below.

GENERAL EDUCATION

<table>
<thead>
<tr>
<th>REVELLE COLLEGE</th>
<th>JOHN MUIR COLLEGE</th>
<th>THURGOOD MARSHALL COLLEGE</th>
<th>ELEANOR ROOSEVELT COLLEGE</th>
<th>SIXTH COLLEGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMANITIES5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Includes intensive instruction in university-level writing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOREIGN LANGUAGE 0-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proficiency exam or number of courses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINE ARTS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art, music, theatre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYSICS AND CHEMISTRY4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At least one course from each area (Sequences available for science and non-science majors.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOLOGY1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALCULUS3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Sequences are available for science and non-science majors.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCIAL SCIENCES2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two lower-division courses in the social sciences chosen from an approved list, to include two courses in the same social science, and at least one course in American cultures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMERICAN CULTURES3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At least one course in American Cultures from an approved list (TAG students exempt.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AREA OF FOCUS3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focused on one subject noncontiguous to the major.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANALYTICAL WRITING2-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A three-course sequence in one of the disciplines from the:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCIAL SCIENCES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A three-course sequence in either:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATHEMATICS (CALCULUS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One of the disciplines from the NATURAL SCIENCES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One course in biology, chemistry, and physics. (Courses are available for science and non-science majors.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUMANITIES2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Includes cultural diversity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINE ARTS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NATURAL SCIENCES3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One course in biology, chemistry, and physics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATHEMATICS AND LOGIC2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Courses are available for science and non-science majors.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINE ARTS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISCIPLINARY BREADTH4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noncontiguous to the major. Two must be upper-division; one must include writing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUBLIC SERVICE (optional)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The four-unit public service option may be used to fulfill one course in disciplinary breadth.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRITING2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETHICS AND SOCIETY1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORMAL SKILLS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two courses to be selected from a list including calculus, symbolic logic, computer programming, and statistics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROGR Ams. OF CO NCENTRATION*12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(For B.A./B.S. degrees in arts/sciences)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWO programs of concentration, each typically consisting of three lower-division and three upper-division courses. Both programs must be noncontiguous to the major and to each other.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR AREA STUDIES6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(For B.S. degrees in engineering)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUBLIC SERVICE (optional)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two area studies each consisting of three courses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One area of study in humanities/fine arts and one in social sciences.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE MAKING OF THE MODERN WORLD6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Includes two six-unit courses with intensive instruction in university-level writing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOREIGN LANGUAGE 0-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proficiency exam or number of courses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINE ARTS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To include study of both Western and non-Western art.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NATURAL SCIENCES2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Courses are available for science and non-science majors.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUANTITATIVE/FORMAL SKILLS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Courses are available for science and non-science majors.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REGIONAL SPECIALIZATION3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To include at least two courses taken at the upper-division level.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CULTURE, ART, AND TECHNOLOGY3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-quarter sequence includes two (six-unit) courses of intensive instruction in university-level writing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFORMATION TECHNOLOGY FLUENCY1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This requirement may be satisfied with courses from a variety of departments.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODES OF INQUIRY7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two courses in social sciences, two courses in humanities, two courses in natural sciences, one course in math/logic (different options available for science and non-science majors)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNDERSTANDING DATA1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One course in statistical methods (different options available for science and non-science majors)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCIE TAL AND ETHICAL CONTEXTS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One course in ethnic or gender studies; one course in ethics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ART MAKING2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two courses in music, theatre (including dance), or visual arts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRACTICUM2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capstone project with a four-unit course in upper-division writing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Choosing a College at UCSD

New students and advise continuing students academic orientation/enrollment programs for all career goals. With their interests, academic preparation, and plans and course schedules which are compatible continuing students in developing educational academic advice and services that assist new and have primary responsibility for providing students. The college academic advising staff academic advice and direction to undergraduate campus units responsible for providing official academic advising offices are designated as the college's chief administrative officer and College Administration
certainty of their practicum project for their entire educational experience at UCSD.

College Administration

The provost is a faculty member who acts as the college's chief administrative officer and academic dean. In addition to the provost, each college has a dean of academic advising and a dean of student life.

The academic departments and the college academic advising offices are designated campus units responsible for providing official academic advice and direction to undergraduate students. The college academic advising staff have primary responsibility for providing academic advice and services that assist new and continuing students in developing educational plans and course schedules which are compatible with their interests, academic preparation, and career goals.

The college academic advising offices conduct academic orientation/enrollment programs for all new students and advise continuing students about college general-education and graduation requirements. The advising staff of each college provide general academic and curricular information, clarify academic rules and regulations, review all aspects of academic probation, monitor academic progress, assist students with decision-making strategies, and give information about prerequisites and screening criteria for majors.

In conjunction with the academic departments and the Office of the Registrar, the advising offices certify students for graduation and facilitate their academic adjustment to the university.

Moreover, college academic advisors are available to counsel students about educational alternatives; selection of courses and majors; program changes; new academic opportunities; and special programs such as exchange programs, honors programs, outreach programs, etc.

With a central concern for student development, dean's staff members provide a variety of nonacademic services such as coordinating educational and social programs; overseeing residential programs; assisting students with decisions and procedures regarding withdrawal from school; coordinating disciplinary procedures, both academic and social; and making referrals to other student services on campus. (See also section on "Student Services and Programs.") Whatever the question or concern, the provost and his or her staff are ready at all times to assist undergraduates.

Phi Beta Kappa

The UCSD chapter of Phi Beta Kappa elects student members on the basis of high scholastic achievement in academic programs emphasizing the liberal arts and sciences. Phi Beta Kappa was founded in 1776 at the College of William and Mary in Virginia and is the oldest, most prestigious, academic honor society in America. See also "Honors" in the index.

Honors

Each college awards honors to outstanding students on the basis of criteria approved by the Academic Senate. These honors are posted on students' transcripts and noted on their diplomas. For further details, see "Honors" in the index.

MINOR/ADDITIONAL GRADUATION REQUIREMENTS

<table>
<thead>
<tr>
<th>REVELLE COLLEGE</th>
<th>JOHN MUIR COLLEGE</th>
<th>THURGOOD MARSHALL COLLEGE</th>
<th>ELEANOR ROOSEVELT COLLEGE</th>
<th>SIXTH COLLEGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Minor</td>
<td>Optional Minor—"One U.S. cultural diversity course to be chosen from an approved list as part of the major, optional minor, elective, or an appropriate general-education course.</td>
<td>Optional Minor</td>
<td>Optional Minor—Students may choose a noncontiguous minor in lieu of a program of concentration. *One cultural diversity in U.S. society course to be chosen from an approved list as part of the major, programs of concentration/area studies, or elective.</td>
<td>Optional Minor</td>
</tr>
</tbody>
</table>

MINIMUM NUMBER OF COURSES REQUIRED FOR GRADUATION

| B.A./B.S. degrees require a minimum of 46 courses (184 units); at least 15 courses (60 units) must be upper-division. | B.A./B.S. degrees require 45 courses (180 units). At least 18 courses (72 units) must be upper-division. | B.A./B.S. degrees require 45 courses (180 units). At least 60 units must be upper-division. | B.A./B.S. degrees require 45 courses (180 units). At least 15 courses (60 units) must be upper-division. | B.A./B.S. degrees require a minimum of 45 courses (180 units). At least 15 courses (60 units) must be upper-division. |

Note: Students normally may pursue any major, except for college individualized majors, regardless of the college they choose. Majors are identical regardless of the student's chosen college. Most majors require twelve to eighteen upper-division courses based upon adequate lower-division preparation; such preparation may be part of the general-education requirements. Majors in certain engineering programs may require as many as twenty-one upper-division courses.
Revelle College, the first college on the UCSD campus, was named in honor of Dr. Roger Revelle, former university-wide dean of research and for many years director of UCSD’s Scripps Institution of Oceanography. Dr. Revelle is perhaps best known for his prediction of the Greenhouse Effect.

The initiation of Revelle College in 1958 provided the faculty with the opportunity to design a complete undergraduate curriculum for some of the country’s best-prepared students. The faculty asked the fundamental question, What should an educated person know? The Revelle College general-education requirements offer a specific but broad introduction to the academic disciplines of the university. A student graduating from Revelle College will have attained:

1. a basic knowledge of calculus; foreign language; the physical, biological, and social sciences; the fine arts; and the humanities
2. preprofessional competence in an academic discipline
3. an understanding of an academic area outside his or her major discipline.

Although the basic-knowledge requirement above is from a wide-range sampling of disciplines, the specific courses that satisfy the requirement are professional introductions to the subjects. For example, the humanities requirement is satisfied by a fine-tuned, five-quarter core course taught by some of the university’s most respected senior faculty, and an intensive writing program is integrated into the course. The physical sciences courses require basic mathematics, and the language requirement is four courses (or the equivalent). There are two calculus sequences: One is designed for students who will use calculus in their major; the other is an overview, often taken by life sciences, social science, humanities, and art students.

General-Education Requirements

Students are encouraged to meet the general-education requirements and the prerequisites to the major early in their university career.

Freshmen with Advanced Placement credits can use many of these advanced courses to meet general-education requirements (see Advanced Placement chart in “Undergraduate Admissions, Policies and Procedures”). Transfer students may meet all general-education requirements before entering by following articulation agreements with community colleges or taking, at any institution, courses which Revelle College judges approximately equivalent in content to those at UCSD.

The general-education requirements are:

1. Satisfaction of the general University of California requirements in Entry-Level Writing and American History and Institutions.
2. A five-course sequence in an interdisciplinary humanities program including two six-unit courses with intensive instruction in university-level writing. Written work is also required in the remaining (four-unit) three-quarter courses.
3. One course in the fine arts.
4. Two lower-division courses from the same department chosen from Anthropology, Critical Gender Studies, Economics, Human Development, Linguistics, Political Science, Psychology, Sociology, or Urban Studies and Planning.
5. At least one course in American Cultures from an approved list, available on http://revelle.ucsd.edu. (TAG students exempt.)
6. Three courses in calculus.
7. Five courses in the physical and biological sciences to include four quarters of physics and chemistry and one quarter of biology.
8. Basic conversational and reading proficiency in a modern foreign language, or advanced reading proficiency in a classical language. This requirement can be met by passage of a UCSD proficiency exam offered in a selected number of languages (in which case the result is posted to the transcript), or by completion of the fourth quarter (or third semester) of foreign language instruction with a passing grade, or with an equivalent Advanced Placement Exam score of 4 or an SAT II Language Exam score of 700 or higher.

Transfer Students

Students transferring to UCSD must complete the requirements of the chosen undergraduate college. Students are strongly advised to complete all lower-division preparation for the major prior to enrollment at UCSD. The college academic advising staff will review the transfer course work for applicability to general-education and college graduation requirements. Students are encouraged to choose carefully the UCSD undergraduate college which best fits their general-education program or course work. Academic departments will review courses applicable to students' majors. See “Undergraduate Admissions, Policies and Procedures, “University of California Transfer Agreement.”
9. Three courses in an area unrelated to the major and focused in one department, subject area, or topic.

1. UC ENTRY-LEVEL WRITING REQUIREMENT AND AMERICAN HISTORY AND INSTITUTIONS

Satisfaction of the university requirements in writing (UC Entry-Level Writing Requirement) and American History and Institutions. (See “UC Entry-Level Writing Requirement,” “Undergraduate Registration,” “Academic Regulations,” “Humanities,” and “Undergraduate Admissions, Policies and Procedures: American History and Institutions.”)

2. HUMANITIES

The humanities requirement confronts students with significant humanistic issues in the context of a rigorous course. It is also an introduction to the academic disciplines of history, literature, and philosophy and provides training and practice in rhetorical skills, and particularly persuasive written expression.

Students may satisfy this requirement by completing the five-quarter interdisciplinary (history, literature, and philosophy) humanities sequence. Students must satisfy the UC Entry-Level Writing Requirement before registering for Humanities 1.

Intensive writing instruction in university-level writing is integrated in Humanities 1 and 2. Writing assignments are required in the remaining three courses.

For course descriptions, see “Courses, Curricula, and Programs of Instruction: Humanities.”

3. FINE ARTS

One course is required. It serves as an introduction to creativity in theatre, dance, music, or visual arts. (See “Courses, Curricula, and Programs of Instruction: Theatre and Dance, Music, and Visual Arts.”)

4. SOCIAL SCIENCES

Two lower-division courses from the same department chosen from Anthropology, Critical Gender Studies, Economics, Human Development, Linguistics, Political Science, Psychology, Sociology, or Urban Studies and Planning.

5. AMERICAN CULTURES

At least one course in American Cultures from an approved list, available on http://revelle.ucsd.edu. (TAG students exempt.)

6. CALCULUS

Three quarters of calculus are required. There are two beginning-year sequences which meet the Revelle College calculus requirement. Both sequences include integral and differential calculus. Freshman placement in these sequences depends upon the student's preparation in mathematics. Students are urged to keep their mathematical skills at a high level by taking mathematics during their senior year in high school. (See “Courses, Curricula, and Programs of Instruction: Mathematics.”)

7. NATURAL SCIENCES

The natural science courses present current developments in the fundamental concepts of modern physics, chemistry, and biology.

Students choose their five required physical and biological science courses from the following sequences depending upon their interests, prior preparation, and intended majors. The Department of Chemistry offers Chemistry 11, 12, 13 (for non-science majors), Chemistry 6A-B-C, and 6AH-BH-CH (honors). The Department of Physics offers four acceptable sequences: Physics 1A-B-C, 2A-B-C-D, and 4A-B-C-D-E, and 11A (for non-science majors). The Department of Biology offers Biology 1 or 3 or 10 (for non-science majors) to meet the Revelle biology requirement. (See “Chemistry,” “Physics,” and “Biology” in the “Courses, Curricula, and Programs of Instruction” section of this catalog.)

Students planning to major in a science must consult the appropriate departmental listing under “Courses, Curricula, and Programs of Instruction” to find the additional preparation needed for their major.

8. FOREIGN LANGUAGE

Revelle College students are required to demonstrate basic conversational and reading proficiency in any modern foreign language, or advanced reading proficiency in a classical language or complete the fourth quarter of foreign language instruction with a passing grade.

Modern foreign language programs are currently offered in Chinese, French, German, Hebrew, Italian, Japanese, Korean, Russian, Spanish, and classical language programs are offered in Greek, Latin, and Hebrew. Students who have preparation in other languages should contact Revelle College Academic Advising for information on a proficiency examination. This exam may also be taken by native speakers of any foreign language without further course study.

9. AREA OF FOCUS

Three courses in an area noncontiguous to the major are required. The three courses must be interrelated and should focus on some discipline, subject area, or topic. For the purposes of this requirement, the humanities/arts, the social sciences, and the natural sciences/engineering/mathematics are considered three different areas. Courses from a single department will be considered focused. Courses from more than one department should be approved prior to enrolling. The area of focus is not posted to the diploma or transcript.

These three courses may not be used on any other requirements. These courses may be upper-division or lower-division but one should keep in mind that graduation requirements stipulate that at least sixty units of all work must be from upper-division courses. The courses may be taken pass/not pass and Advanced Placement or International Baccalaureate credits may be used.

Students may complete an optional noncontiguous minor to replace this requirement, if they wish to do so.

Sample Program

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREIGN LANGUAGE</td>
<td>Humanities 1</td>
<td>Humanities 2</td>
</tr>
<tr>
<td>Calculus</td>
<td>Foreign Language</td>
<td>Foreign Language</td>
</tr>
<tr>
<td>Natural Science</td>
<td>Calculus</td>
<td>Calculus</td>
</tr>
<tr>
<td>UC Entry-Level Writing Requirement</td>
<td>Natural Science</td>
<td>Natural Science</td>
</tr>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Preparation</td>
<td>Major Preparation</td>
<td>Major Preparation</td>
</tr>
<tr>
<td>SOCIAL SCIENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sociology</td>
<td>Humanities 4</td>
<td>Humanities 5</td>
</tr>
<tr>
<td>Anthropology</td>
<td>Humanities 3</td>
<td></td>
</tr>
</tbody>
</table>

* Science majors may want to take part of the social science requirement in the junior year to allow time for additional science laboratories and/or calculus.

Transfer Students

Transfer students may enter Revelle College by following community college articulation agreements which can be viewed at www.ASSIST.org or by signing up for specific Transfer Admissions.
Guarantee (TAG) plans or by following the Intersegmental General Education Transfer Curriculum (IGETC). However, Revelle College does not accept IGETC as satisfaction of all its lower-division requirements. Revelle accepts IGETC courses to meet requirements with additional classes in science, calculus, and foreign language. (Students are exempt from the language requirement if they can pass proficiency in a foreign language. Note: Proficiency exams are not available in all languages. Consult Revelle College Academic Advising for more information.) Science and mathematics majors will need these additional classes in preparation (or to meet prerequisites) for their major. The additional math/science classes or language classes can be taken at the community college or after transfer to UCSD. See details on our Web site at http://revelle.ucsd.edu/prosp/igetc.html.

The Major

All undergraduate majors offered at UCSD are available to Revelle College students. An exceptional student who has some unusual but definite academic interest for which a suitable major is not offered on the San Diego campus may, with the consent of the provost of the college and with the assistance of a faculty advisor, plan his or her own major. The Revelle Individual Major must be submitted no later than three quarters before the student’s intended graduation and be approved by the Executive Committee of the college before it may be accepted in lieu of a departmental or interdepartmental major. The faculty advisor will supervise the student’s work, and the provost must certify that the student has completed the requirements of the individual major before the degree is granted.

Students who fail to attain a grade-point average of at least 2.0 in work taken in the prerequisites for the major, or in the courses in the major, may, at the option of the department, be denied the privilege of entering or of continuing in that major. Students majoring in bioengineering, bioinformatics, ICAM, CSE, ECE, or math/computer science need to be aware of additional screening for acceptance into the major.

Optional Minor

A minor is not required in Revelle College. However, if a student wishes to complete a Department Minor or a Project Minor and have it posted to the transcript, he or she may do so. If a student completes either of these types of minors in a field noncontiguous to that of the major, it will replace the three-course noncontiguous area of focus general education requirement. There are two types of minors available at Revelle College:

1. Department Minor—All courses for the minor are taken in one department and they are chosen with the advice and approval of a minor advisor in that department.
2. Project Minor—A project minor focuses on a topic or period chosen by the student. The project is often interdepartmental and interdisciplinary. The program must have the approval of a minor advisor. (See Academic Regulations: Undergraduate Minors and Programs of Concentrations.)

The current university guidelines for the minor require seven courses (twenty-eight units), five of which must be upper-division. Students who entered prior to January 1, 1998, may complete their six course (twenty-four unit), three upper-division course minors.

Enhancing Your Education

Students may participate in the UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP) while still making regular progress toward graduation. Information on EAP/OAP is detailed in the Education Abroad Program section of the UCSD General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit the Web site at http://www.icenter/pao. Financial aid recipients may apply aid to the program and special study abroad scholarships are readily available.

Programs are now available for sophomores, juniors, and seniors. With careful planning students should be able to fulfill some general-education, major, and/or minor requirements while studying abroad.

Pass/Not Pass Grading Option

1. No more than one-fourth of an undergraduate student’s total course units taken at UCSD and counted in satisfaction of degree requirements may be graded on a Pass/Not Pass basis.
2. Courses used to satisfy the noncontiguous area of focus may be taken on a Pass/Not Pass basis. Use of Pass/Not Pass grades on the optional minor is decided by the department.
3. Courses taken as electives may be taken on a Pass/Not Pass basis.
4. The following general education courses may be taken Pass/Not Pass: American cultures, fine arts, language and area of focus. Non-science majors may take courses for the natural science requirement Pass/Not Pass.
5. Upper-division courses to be counted toward a departmental major may not be taken on a Pass/Not Pass basis. Individual departments may authorize exceptions to this regulation.

The Graduation Requirements

To graduate from Revelle College, a student must:
1. Satisfy the University of California requirements, including the UC Entry-Level Writing Requirement and American History and Institutions.
2. Satisfy the general-education requirements.
3. Successfully complete a major consisting of at least twelve upper-division courses as stipulated by the department and meet the department’s major residence requirement if applicable.
4. Complete a minimum of fifteen upper-division courses (60 units).
5. Pass at least 184 units for the B.A./B.S. degree. (No more than 3.0 units of physical education, whether earned at UCSD or transferred from another institution, may be counted towards graduation.)
6. Attain a C average (2.0) or better in all work attempted at the University of California (exclusive of University Extension). Departments may require a C average in all upper-division courses used for the major and/or at least C– grades in each course used for the major.
7. Meet the senior residence requirement. (See “Academic Regulations: Senior Residence.”)

Honors

Particularly well-prepared students are invited to join a freshman honors program, which includes weekly participation in small faculty seminars (Revelle 20). Acceptance into the honors program at admission is automatic for Regents Scholars and National Merit Scholars as
John Muir College admitted its first students in the fall of 1967 and moved to its present quarters in 1970. The college was named for John Muir (1838–1914), a Scottish immigrant who became a famous California naturalist, conservationist, and author. Muir explored the Sierra Nevada and Alaska, and worked for many years for the cause of conservation and the establishment of national parks and forests. Please visit our Web site at http://provost.ucsd.edu/muir.

The Character of the College

Naming a college affirms certain ideas and values. John Muir was committed to learning, self-sufficiency, and the betterment of humankind. Throughout his life he was open to new ideas and experiences which he shared with others through his writings and activism. In keeping with his example, the college has, through its interdisciplinary studies programs, developed courses covering contemporary issues, a major and minor in critical gender studies, and minors in film studies and environmental studies. It has also established an individualized major called the Muir Special Project. And it has inaugurated an exchange program with Dartmouth College, one of the most distinguished undergraduate institutions in the United States. Each quarter a small group of UCSD students attend Dartmouth, while a similar number come from Dartmouth to Muir. By these and other means, the college maintains at UCSD the heritage of the remarkable man for whom it was named.

The General-Education Philosophy and Requirements

John Muir College faculty established Muir’s general-education program to guide students toward a broad and liberal education while allowing them substantial choice in the development of that education. This is accomplished by granting students the responsibility and flexibility to customize to a high degree their general-education courses within a broad framework of learning.

General-education requirements at Muir College include the completion of one three-quarter sequence from each of the following areas:

- Social Science
- Mathematics (calculus) or Natural Sciences
- Humanities
- Fine Arts
- Foreign Languages

In addition, two three-quarter sequences from two of the three following areas are required:

- Mathematics (calculus) or Natural Sciences
- Humanities
- Fine Arts
- Foreign Languages

The freedom to choose carries with it the responsibility on the part of the student to plan carefully. Before making a final selection of courses, students should request from the Academic Advising unit of the Office of the Provost a list of general-education requirements and approved sequences in each area. As they plan, students should be aware that:

1. Only complete sequences may be applied to the general-education requirement. Ordinarily, an entire sequence from one department is taken in one academic year.
2. Courses taken to satisfy only the general-education requirements and not for a major or minor may, in general, be taken Pass/Not Pass.
3. Units obtained from advanced placement may be applied toward the 180 units needed for graduation; some units may be used to fulfill some of the general-education requirements.

For students who transfer to Muir College from another institution, the general-education requirements will be interpreted in this way: two semester-courses or three quarter-courses in one subject represented on the approved list normally will be accepted as completing one of the four required sequences. After the Office of Admissions evaluates a student’s transcript, the Academic Advising unit of the Office of the Provost makes an evaluation of prior work for each student at the time of his or her first enrollment.

In addition to the four-year-long sequences, Muir College has the following two general-education requirements:

- Composition Requirement: A two-course sequence in critical thinking, rhetorical analysis, and expository writing. Freshman students fulfill this requirement with Muir College Writing 40 and Muir College Writing 50. TAG- and IGETC-certified transfer students have the option of completing an upper-
division Muir College Writing course. The writing courses should be completed during the first year of attendance and are offered for a letter grade only.

- **U.S. Cultural Diversity Requirement:** One four-unit course exploring the diversity of the United States. A list of acceptable courses may be obtained from the Academic Advising unit of the Office of the Provost.

Pass/Not Pass Grading Option

Muir students are reminded that to take a course Pass/Not Pass, they must be in good academic standing (2.0 GPA). No more than one-fourth (25 percent) of an undergraduate student’s total UCSD course units counted in satisfaction of degree requirements may be in courses taken on a Pass/Not Pass basis. All major-related courses and most minor courses must be taken for a letter grade. Students are advised to check with their major or minor department regarding restrictions or exceptions.

Enhancing Your Education

Students may enhance their undergraduate education by participating in the UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP) while still making regular progress toward graduation. Information on EAP/OAP is detailed in the Education Abroad Program section of the UCSD General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit the Web site at http://pao.ucsd.edu. Financial aid recipients may apply aid to the EAP program, and special study abroad scholarships are available.

Many programs are now available for sophomores, as well as juniors and seniors. **With careful planning** students should be able to fulfill some general education, major, and/or minor requirements while studying abroad.

Major Programs and Special Projects

A Muir College student may pursue any of the approximately 125 undergraduate majors offered at UCSD. Most major programs at UCSD require a pattern of prerequisites at the lower-division level before students may enroll in upper-division major courses. **Students must declare a major upon accumulating ninety units.** Careful planning will assure the student access to a wide range of majors. Students are strongly encouraged to consult regularly with the college academic advisors as well as departmental major advisors concerning the selection of appropriate courses so as to graduate by the 200 unit maximum limitation.

Each academic department has, in its section of this catalog, a paragraph entitled “The Major Program.” **Students are encouraged to read these sections carefully,** for they indicate both the extent and the nature of courses required for the specific program. The following points are useful to keep in mind:

1. A substantial command of at least one foreign language is required by some departments (e.g., international studies, linguistics, literature).
2. Specific science courses are required by many departments. For example, the Department of Computer Science and Engineering and the Department of Electrical and Computer Engineering require Physics 2A-B-C-D or Physics 4A-B-C-D-E; the Department of Chemistry and Biochemistry requires Physics 1A-B-C, Physics 2A-B and C or D, or Physics 4A-B-C-D-E, etc.
3. The physical and life sciences, applied sciences (the School of Engineering majors) together with certain social sciences (including cognitive science and economics), require at least one year of calculus.

The Muir Special Project (MSP) major is a **B.A. degree only** and is intended for students who have specific talents and interests which are not accommodated by one of the departmental majors. Each proposal and senior thesis or project must be approved by the Muir provost. The MSP normally includes regular course work and independent study representing up to fifteen upper-division four-unit courses as well as a project or thesis. The project may be one of two kinds: creative work of some sort (e.g., a book of poetry, a collection of musical compositions), or a detailed program of study and research in a particular area. The latter results in a long paper representing a synthesis of knowledge and skill acquired. In either case, a tenured member of the UCSD faculty must serve as an advisor to a student doing the project. It should be understood that the demands of a special project major are great, and this option is not appropriate for a student who simply does not want the discipline of a normal major. For a course to be included as part of a Muir Special Project, the student must earn in it a grade of C– or better. Please note: there is no MSP minor available. Further information may be obtained from the Muir Academic Advising Office.

Graduation Requirements

To receive a degree of bachelor of arts or bachelor of science, a John Muir College student must:

1. Declare graduation by completing the electronic Degree and Diploma Application. This must be done by **Friday of the eighth week** of the quarter of anticipated graduation. Students who plan to graduate at the end of a summer session must complete the above-mentioned process **early in spring quarter**. Fees may be assessed if students apply after the eighth week of the quarter of anticipated graduation. **Degrees are not automatically granted:** students must file their intention to graduate online at http://degree.ucsd.edu.
2. Meet the general university requirement in Entry Level Writing (formerly Subject A). (See “Undergraduate Admissions, Policies, and Procedures.”)
3. Satisfy the University of California requirement in American History and Institutions (See “Undergraduate Admissions, Policies, and Procedures.”)
4. Meet the Muir College requirement in writing proficiency. This requirement asks that the student demonstrate an ability to write English according to standards appropriate for all college work. (See Muir College course listings: “The Writing Program.”)
5. Fulfill the general-education requirements.
6. Fulfill the U.S. cultural diversity requirement.
7. To receive a B.A. or B.S. degree, students must complete a minimum of forty-five four-unit courses (180 units) which includes a minimum of eighteen upper-division courses (72 units).
8. Show some form of concentration and focus of study. Ordinarily this is accomplished by completing a department or interdisciplinary major. Students in the college may attempt any major upon completion of the prerequisites. (Some departments require students to attain a minimum GPA in prerequisite courses and apply for admission to majors in the departments. Refer to the
departments for current detailed information.) Students who do not choose to meet this requirement by means of a departmental or interdisciplinary major and who qualify may propose a special project major. (See the section, “Major Programs and Special Projects,” above.)

9. Satisfy the residency requirement which stipulates that 36 of the last 45 units passed be taken at UCSD as a registered Muir College student. Students planning to study abroad during the senior year should be aware that they must return to complete a minimum number of twenty-four units at UCSD. Such students should see their college Academic Advisor for clarification.

10. Accumulate a grade-point average of at least 2.0 overall and in most majors. Departments may require a C average in all upper-division courses used for the major or C– grades in each course used for the major. Students should consult with their department to determine which grading regulation applies.

11. Make up all incomplete grades. Students may not graduate with “NRs,” “IPs,” or “Incomplete” entries on their transcript. Therefore, they should be sure that all Incompletes have been cleared and final grades have been properly recorded by the end of the quarter in which they plan to graduate.

12. Complete all requirements for the degree during the quarter in which students file to graduate. If the degree requirements are completed after the expiration of the deadline in a quarter, but before the beginning of the next quarter, students must retract their Degree and Diploma Application and reapply to graduate for the subsequent quarter.

13. Retract the electronic Degree and Diploma Application if unable to satisfy all graduation requirements, including grade changes, by the end of the proposed graduating quarter. Students will graduate at the end of the quarter in which deficiencies are satisfied.

14. It is the students’ responsibility to contact their department advisor to verify that they have satisfied departmental requirements for graduation.

While John Muir College does not call for the completion of a minor to fulfill its requirements for the degree of bachelor of arts or bachelor of science, it does acknowledge the completion of an approved departmental minor on a student’s transcript. No upper-division courses may be used to satisfy both a major and a minor.

For a minor, students are required to complete twenty-eight units of interrelated work, of which at least twenty units must be upper-division. Departments or programs may establish more stringent criteria than the minimum. A formal request for the minor must be approved by the department or program and college by the quarter before graduation.

Upon satisfaction of the graduation requirements, Muir College will recommend that students be awarded the degree of bachelor of arts or bachelor of science.

Honors
Quarterly provost’s honors, departmental honors, Latin honors, membership in the Caledonian Society of John Muir College, and Phi Beta Kappa honors are awarded. Please note that graduating seniors must have letter grades for eighty units of work completed at the University of California for college honors. For additional information, see “Honors” in the Index.

Honorary Fellows of Muir College
*Hannes Alfvén, Scientist and Nobel laureate
*Georg von Békésy, Psychologist and Nobel laureate
*Oscar (Budd) Boetticher, Filmmaker
*David Brower, Conservationist
*Francis H.C. Crick, Scientist and Nobel laureate
*Ernst Krenek, Composer
*Ernest Mandeville, Philanthropist
*William J. McGill, Educator
*Jonas Salk, Scientist
*Claude E. Shannon, Mathematician
*John L. Stewart, Founding Provost
*Earl Warren, Jurist and Statesman
*Robert Penn Warren, Poet and Novelist
*Mandell Weiss, Philanthropist
*Deceased
Thurgood Marshall College, formerly known as Third College, was founded in 1970. From its inception, the college has enriched the lives of undergraduates with its intellectual and philosophic commitment to the development of students as both scholars and citizens. In July of 1993, the college was renamed in honor of the famous lawyer and Supreme Court Justice, Thurgood Marshall. Justice Marshall was widely known and recognized for his historic contributions to American life and dedication to breaking down barriers to education, civil rights, freedom of speech, women's rights, and the right to privacy. Thurgood Marshall College, its faculty, staff, and students are committed to furthering the ideals and dreams of Justice Marshall; accordingly, students are provided opportunities to develop as both scholars and citizens.

Thurgood Marshall's 3,800 students pursue any major in a variety of disciplines. About 40 percent choose majors in biology, the physical sciences, mathematics, and engineering; 35 percent select majors in the social sciences; and 25 percent pursue majors in the humanities and fine arts areas. One of the primary aims of the college is to prepare its students for the pursuit of a rigorous academic curriculum which in turn promotes entry into graduate/professional schools or into the career of one's choice.

Educational Philosophy

The educational philosophy of Thurgood Marshall College is guided by the belief that regardless of a student's major, a broad liberal arts education must include an awareness and understanding of one's role in society. Therefore, the distinctive core sequence, which serves as the centerpiece of the general-education requirements, emphasizes a critical examination of the human condition in our diverse American society. This three-quarter core sequence, “Dimensions of Culture—Diversity, Justice, and Imagination,” challenges students to develop an informed awareness of the many cultural perspectives that have shaped American society. The core sequence is designed as an interdisciplinary, contemporary issues-oriented curricular experience that explores both the diversity of American experiences across race, religion, class, and gender, and also the shared resources all Americans draw on when their different identities and interests conflict. Other general-education requirements include courses in mathematics, the physical and biological sciences, humanities, and the arts.

Wishing to uphold the ideals set forth by the college's namesake, Thurgood Marshall students are encouraged to develop their skills not only as scholars, but also as citizens. Therefore, it is our belief that scholarship and social responsibility are mutually compatible. In this regard, our students receive academic credit for participating in the Partners-at-Learning Program (PAL) by taking courses which train and place them as tutors and mentors in local inner-city elementary schools and high schools, as well as the on-campus model school, The Preuss School, and the Gompers Charter Middle School in Southeast San Diego. Because this activity shares importance with other academic experiences, completion of one of these specific public service courses, offered through Education Studies, satisfies an upper-division general-education requirement.

Further underpinning the educational philosophy of Thurgood Marshall College is the belief that the best preparation for a complex, interdependent, and rapidly changing world is a broad liberal arts education, complemented by in-depth study in areas of the student's choice. This educational approach has several major advantages:

1. It guarantees a basic understanding of the principal branches of knowledge: the humanities and arts, social sciences, the natural sciences, and mathematics.
2. It enables students with well-defined interests and goals to begin work in their chosen field of study as first-year students.
3. It allows students who have not decided on a major to sample an array of potential majors while simultaneously satisfying the general-education requirements of the college.

General-Education Requirements

General-education requirements are established by Thurgood Marshall College faculty to be broad and flexible enough to encourage students to integrate other alternatives, such as public service, internships, study abroad, research, special studies, etc., into their academic program. This permits students flexibility in pursuit of their academic goals and in the practical application of their liberal arts degree, whether they wish to enter the work force or continue their education in graduate or professional school. These courses are designed to introduce students to the academic focus of the college, provide a broad liberal arts and science background, and furnish students with the academic skills and the basic knowledge necessary to pursue any departmental or interdisciplinary major.

The general-education requirements for first-year students are composed of a core sequence and a menu of choices within a liberal arts framework:

1. **DIVERSITY, JUSTICE, AND IMAGINATION:** This is a three-course interdisciplinary sequence. Two of the three courses are six-units and include intensive instruction in university-level writing. This is a required sequence for all first-year students. All courses must be completed at UCSD and taken on a letter-grade basis only. (See “Dimensions of Culture” in the departmental listings.)
2. **FINE ARTS:** One course in either music, theatre, or visual arts (non-performance).
3. **NATURAL SCIENCES:** Three courses. Choose one course each in biology, chemistry, and physics. Courses are available for science and non-science students.
4. **QUANTITATIVE/FORMAL SKILLS:** Choose two courses in mathematics or one course in mathematics or statistics and one in computing or logic. Courses are available for science and non-science students.
5. **HUMANITIES AND CULTURE:** Two courses. Choose one course each from ethnic studies and Third World studies.
6. **DISCIPLINARY BREADTH:** Four courses. Students choose four courses from a variety of disciplinary breadth areas: humanities/foreign language; social sciences; natural sciences; math/engineering. Courses used to satisfy the disciplinary breadth requirement come from fields outside the major field of study. Two of these courses must be upper-division. At least
one upper-division course must include significant writing.

7. PUBLIC SERVICE (optional): This four-unit public service option may be used to fulfill one course in Disciplinary Breadth for any major and fulfills the upper-division writing requirement. (See "Partners at Learning" and Education Studies Program listings.)

The Thurgood Marshall College Curriculum and Academic Affairs Committee publishes an annual fact sheet with specific course choices which may be used to meet these requirements. Contact the college academic advising office for additional information or refer to the college Web site.

Graduation Requirements

To receive a bachelor’s degree from Thurgood Marshall College, a student must:

1. Satisfy the university English Language Writing Requirement (ELWR). (See "Undergraduate Admissions, Policies and Procedures.")
2. Satisfy the university requirement in American History and Institutions. (See "Undergraduate Admissions, Policies and Procedures.")
3. Fulfill the general-education requirements as described.
4. Complete a departmental or interdisciplinary major.
5. Satisfy the college residency requirement (thirty-five of the last forty-five units must be completed as a registered Thurgood Marshall College student).
6. Successfully complete a minimum of 180 units for the B.A./B.S. degree. At least 60 of these units must be completed at the upper-division level.
7. A 2.0 or better GPA is required for graduation.

Transfer Students

Transfer students have a variety of academic options available to complete lower-division general education prior to transfer. Specific details regarding appropriate general-education agreement are in the section on "Undergraduate Admissions" and through the community college. Students may also contact UCSD Transfer Student Services prior to transfer. Also, the college Web site contains pertinent information.

Majors and Minors

Majors: Thurgood Marshall College students may pursue any of the departmental or interdisciplinary majors offered at UCSD. The majority of the academic departments have established lower-division prerequisites. Generally, these prerequisites must be completed prior to entry into upper-division major courses. Many of these courses may be counted for general-education credit as well. Students are strongly encouraged to work closely with department faculty and college advisors. For details on the specific major departments, refer to the "Courses, Curricula, and Programs of Instruction" section of this catalog.

Minors are optional. However, students are encouraged to keep as many options open as possible. A minor provides an excellent opportunity to complement the major field of study.

Students are required to complete twenty-eight units of interrelated work, of which at least twenty units must be upper-division.

See your college or department for further information.

Pass/Not Pass Grading Option

1. Courses to be counted toward a departmental major or as prerequisites to the major must be taken on a letter-grade basis.
2. Only one upper-division course to be counted toward a college independent studies minor may be taken on a Pass/Not Pass basis.
3. Courses taken toward completion of the college general-education requirements, with the exception of Dimensions of Culture (Diversity, Justice and Imagination), may be taken on a Pass/Not Pass basis, while at the same time the restrictions for prerequisites to majors and courses counted toward a minor must be observed.
4. Courses taken as electives may be taken on a Pass/Not Pass basis, while at the same time the restrictions on the majors and minors must be observed.
5. No more than one-fourth of the total University of California, San Diego units may be completed on a Pass/Not Pass basis.

Honors

Quarterly provost’s honors, honors at graduation, departmental honors, and Phi Beta Kappa are awarded to Thurgood Marshall College students. For additional information see “Honors” in the Index or speak with the academic honors program advisor in the academic advising office.

Enhancing Your Education

Students are able to enhance their undergraduate education by participating in the UC Education Abroad Program (EAP) and UCSD Opportunities Abroad Program (OAP) while still making regular progress toward graduation. Information on EAP/OAP is detailed in those sections in the General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit the Web site at http://www.icenter/pao. Financial aid recipients may apply aid to the program, and special study abroad scholarships are readily available.

College-Sponsored Programs

INDIVIDUAL STUDIES MAJOR

The Individual Studies major allows students to pursue a coherent course of study not formally offered at UCSD. To apply for the major, students must have a 3.25 grade point average. A written proposal with supporting documentation from a faculty advisor, a list of prerequisite courses, and a proposed curriculum plan are required. Students pursuing this major must be goal-oriented and self-directed.

PARTNERS-AT-LEARNING PROGRAM (PAL)

Students may participate in the Partners-at-Learning Program (PAL) by taking specified Education Studies (EDS) courses which train and place them as tutors and mentors in local elementary and high schools, as well as the on-campus Preuss School, and the Gompers Charter Middle School in Southeast San Diego. Participation in the PAL program can be counted toward satisfying the Public Service option at Thurgood Marshall College. This campuswide program is open to all students in good standing and at the junior level. (See EDS in the department listing—specifically EDS 130, 134, 136, 138, and 139).

PRICE PUBLIC AFFAIRS FORUM

The Price Public Affairs Forum invites leading public figures to speak on important contemporary issues. Such wide-ranging topics as “Race and Justice in America,” “Women’s Role in the Workplace,” and “The Modern American Family”
have been presented. These forums are open to the general public.

PUBLIC SERVICE MINOR

Thurgood Marshall College sponsors the Public Service Minor at UCSD, which encourages students to understand the history and practices of public service and to participate in the development of civic skills. This minor is open to all UCSD students in good standing. Please see “Public Service Minor” in the departmental listings.

AFRICAN-AMERICAN STUDIES MINOR

The African-American Studies Minor is an interdisciplinary program that seeks to provide comprehensive understanding and appreciation of African-American history, social politics, culture, and art. Please see “African-American Studies Minor” in the departmental listings.

THURGOOD MARSHALL COLLEGE HONORS PROGRAM

The Thurgood Marshall College Honors Program sponsors activities and events designed to introduce students to the excitement of pioneering research and innovative scholarship in all disciplines at UCSD and to create opportunities for discussion on public issues with locally and nationally known figures. (See Thurgood Marshall College Honors Program in the departmental listings.)

THURGOOD MARSHALL INSTITUTE

The Thurgood Marshall Institute is deeply devoted to undergraduate research, public debate, and vital policy papers. The institute has organized and supported faculty and student group research projects in education and public law; hosted conferences and symposia on pressing issues; trained junior and senior high school instructors in the teaching of the United States Constitution and its amendments; and commissioned political drama on radio and on stage.

UCSD-MOREHOUSE/SPelman STUDENT EXCHANGE PROGRAM

The UCSD-Morehouse/Spelman Student Exchange Program was established in the fall quarter of 1989. This formal exchange program was developed by Thurgood Marshall College and is open to all UCSD undergraduates. Morehouse and Spelman Colleges are located in Atlanta, Georgia.

The purpose of the program is to provide a unique opportunity for students to live and study at important institutions of higher learning that are significantly different from the social and educational environment typical of California state colleges and universities. Similarly, the exchange students coming to UCSD from Morehouse and Spelman will have an opportunity to experience an exciting and very different educational environment. See the program coordinator in the college academic advising office for additional information.

STUDENT LEADERSHIP PROGRAM

Complementary to its strong academic programs, Thurgood Marshall College is proud of its emphasis on the student as citizen. The Student Leadership Program is especially designed to encourage active involvement in the governance of the college and participation in community and public service programs. College life outside of the classroom and laboratory is a vital part of each student's undergraduate experience. The college offers a wide variety of opportunities for students to shape the nature and character of student life. This active participation allows students to develop self-confidence and strong interpersonal, organizational, and leadership skills. The friendly and outgoing manner of Thurgood Marshall students contributes to a sense of community and mutual respect. This spirit of cooperation is a college hallmark.

Honorary Fellows of the College

Maryann Callery, College Activist
* Cesar Chavez, Civil Rights Activist
Ernesto Galarza, Novelist and Educator
Samuel Goldwyn, Jr., Film Producer and Director
Joseph W. Watson, Educator, Professor, Vice Chancellor
Marian Wright Edelman, President, Children's Defense Fund

*Deceased
Earl Warren College opened in the fall of 1974, and currently enrolls more than 4,000 students. The college is named for the former Chief Justice of the United States and the only three-term governor of California. A native Californian, Justice Warren earned his college and law school degrees at the University of California. During his governorship, he served as an ex-officio member of the Board of Regents of the University of California for eleven years. He also saw public service as District Attorney of Alameda County and as Attorney General of California.

As governor during an era of lightning growth for California, Earl Warren developed the State Department of Mental Hygiene and led reforms of the prison system in California by establishing the Board of Corrections and the Prisoner Rehabilitation Act. In his final role as a public servant, he was Chief Justice of the United States Supreme Court, which, under his leadership, elaborated a doctrine of fairness in such areas as criminal justice, voting rights, legislative districting, employment, housing, transportation, and education.

The college derives its core values from Earl Warren’s judicial examination of the relationship between the individual and society. All students in the college explore this critical nexus and its profound implications in the required course Ethics and Society. Earl Warren College also administers two campus-wide interdisciplinary minors, Law and Society and Health Care-Social Issues (open to all UCSD students), that further pursue the study of the college’s guiding precept. The college employs the scales of justice in its logo, and the symmetry of this image led to the adoption of the college’s philosophy, “Toward a life in balance.” Warren College strives to encourage students in the discovery of that essential balance through their years at UCSD and beyond.

Whether students wish to continue their education in graduate or professional school, to seek an immediate career, or to pursue other options, the college stands ready to assist. The Earl Warren College administration encourages students to identify their abilities and interests, examine career possibilities, and prepare for the future over the course of their undergraduate years at UCSD. The required, two-course Warren College Writing Program provides a strong grounding in written argumentation and prepares students for the demands of crafting college-level analytical papers. The Warren College Writing Center offers all Warren students extracurricular assistance in honing their writing skills. The college-administered Academic Internship Program affords students the opportunity to explore classroom theory in a professional work environment. In addition, Earl Warren College is a strong supporter of international education and encourages students to pursue the many opportunities that are available for study abroad.

The college’s students and faculty represent all disciplines offered at UCSD. Graduation requirements, which consist primarily of a major and two secondary areas of academic focus, enable students to cover a wide range of material while concentrating on specific topics in depth. The diversity of its academic program has made Earl Warren College an exciting home for students who seek flexibility in designing their own educational paths.

General-Education Requirements

The Earl Warren College faculty firmly believes that each student should have the opportunity to develop a program best suited to his or her individual interests within a framework that ensures both depth and breadth of study. All students are required to have significant exposure to the social sciences, arts and humanities, and the sciences. The faculty and staff of the college provide extensive advising on individual academic programs and possible career implications within each program. Students who enroll at Earl Warren College are required to work within the following academic plan:

Warren College Writing Program: Each student must complete a two-course sequence in writing, Warren Writing 10A-B, within four quarters following successful completion of the UC Entry Level Writing requirement for a letter grade only.

Ethics and Society: After completion of Warren Writing 10A-B, all students must complete a course titled “Ethics and Society” offered jointly by the Departments of Political Science and Philosophy (Political Science 27/Philosophy 27). This course must be taken by the end of the second year at UCSD for a letter grade only.

Formal Skills: All students must satisfy the formal skills requirement by completing two courses chosen from an approved list that includes calculus, computer programming, statistics, and symbolic logic.

Programs of Concentration/Area Studies:

These ensure a significant exposure to the three disciplines: humanities/fine arts, social sciences and sciences. All students are required to complete two focused collections of courses outside the areas of their majors.

For students other than B.S. Engineering majors, two Programs of Concentration are needed. Each program requires six courses outside the discipline of the major. A minimum of three courses must be upper division. In lieu of a Program of Concentration, a student may choose to declare a minor in a department or an interdisciplinary program.

For B.S. Engineering majors, each student must complete two Area Studies, one in the humanities/fine arts and one in the social sciences. Each of these Area Studies consists of three courses. A minimum of one course must be upper division. In lieu of an Area Study, a student may choose to declare a minor in a department or an interdisciplinary program.

All interdisciplinary Programs of Concentration and Area Studies must be approved by the Earl Warren College Academic Advising office. All minors must be approved by academic departments or programs.

Advanced Placement Credit

Advanced Placement (AP) units may be substituted for corresponding lower-division course work in a Program of Concentration or Area Study. In general, a maximum of twelve units may be applied toward a Program of Concentration and a maximum of eight units may be applied to an Area Study.

Majors

Earl Warren College students may pursue any of the departmental or interdisciplinary majors offered at UCSD. For details on the specific major department requirements, refer to the "Course,
Curricula, and Programs of Instruction” section of this catalog.

A student may declare a double major upon the approval of both academic departments and the academic advising office. If the two majors are from noncontiguous disciplines, one Program of Concentration or Area Study from the third discipline will be required. If the two majors are from the same discipline, two Programs of Concentration or Area Studies will be required from each of the remaining noncontiguous disciplines.

EARL WARREN COLLEGE INDIVIDUAL STUDIES MAJOR

This major is designed to meet the needs of students who have a definite academic interest for which a suitable major is not offered at UCSD. The student must submit a written proposal explaining the merits of the program and why it cannot be accommodated within existing UCSD majors. The proposal must first be approved by a faculty advisor and then approved by the College Executive Committee.

Minors

In lieu of a Program of Concentration or Area Study, Earl Warren students may pursue a departmental minor to fulfill general-education requirements. An approved departmental minor applied toward the general-education requirement will be posted to the student’s official transcript. Upper-division courses taken for the departmental minor may not overlap with courses in the major, the Programs of Concentration, or the Area Studies.

Pass/Not Pass Grading Option

Programs of Concentration and Area Studies courses may be fulfilled by courses taken on the Pass/Not Pass basis. Major requirements and prerequisites are required to be taken on a graded basis. The total number of Pass/Not Pass units may not exceed one-fourth (25 percent) of a student’s total UCSD units.

Graduation Requirements

To receive a B.A. or B.S. degree from Earl Warren College a student must:

1. Satisfy the University of California requirements in [American History and Institutions](http://warren.uscd.edu/academiclife/honors) and in UC Entry Level Writing Requirement. (See “Undergraduate Admissions, Policies, and Procedures.”)

2. Fulfill the general-education requirements described above.

3. Complete one course in **Cultural Diversity in U.S. Society**, to be chosen from an approved list. This course may overlap with the major, the general-education requirements, or an elective.

4. Successfully complete a major chosen from those regularly offered at UCSD or, with permission, an Earl Warren College Individualized Study major.

5. Attain a minimum cumulative GPA of 2.0.

6. Satisfy the senior residency requirement that thirty-six of the last forty-five units passed must be completed as a registered Earl Warren College student.

7. Pass a minimum of 180 units for the B.A./B.S. degree. A minimum of 60 of these units must be taken at the upper-division level.

Transfer Students

For students who completed their lower-division general-education requirements at an accredited four-year college or students who completed a system-wide or campus-wide approved core curriculum in a California community college prior to entering UCSD, the only additional general-education requirements are two upper-division courses noncontiguous to the discipline of the major. For these students, the cultural diversity graduation requirement, #3 above, is waived. All other transfer students must complete the Earl Warren College general-education requirements. (See “Warren College” in the section “General Education Requirements.”)

Warren College Honors Program

The Warren Honors Program offers students educational, cultural, and social experiences designed to broaden their intellectual interests. The activities vary annually and are planned to foster student interaction and promote a sense of community. Entering freshmen with a high school GPA of 3.8 or above and SAT I scores of 700 reading/700 math/700 writing are eligible to participate in the Honors Program. Students remain in the program until thirty-six units of UCSD credit are completed. After that, a cumulative GPA of 3.7 on all units completed at UCSD must be maintained to remain in the program. Students who do not qualify for the Honors Program at the time of admission, and all transfer students, may join as soon as a cumulative GPA of 3.7 is attained on twelve or more units completed at UCSD.

Warren College Scholars Seminar

Freshmen who meet the Warren Honors Program requirements may qualify for admission to the Scholars Seminar by submitting a writing sample. Students who are invited to participate in the two interdisciplinary seminars enroll in Warren 11A-B. The seminars replace the required Warren College writing courses and must be taken for a letter grade. http://warren.uscd.edu/academiclife/honors.

Warren College Interdisciplinary Programs

LAW AND SOCIETY

The Law and Society Program at UCSD offers courses, speakers, and events that emphasize the interrelationship and complexity of legal, social, and ethical issues in their historical context. The interdisciplinary minor offers students the opportunity to examine the role of the legal system in society and to study specific legal issues from the perspectives of the social sciences and the humanities. Students benefit from the program by learning how to analyze and understand legal implications related to policy and decision making. The program is administered by Warren College and is open to all undergraduate students at UCSD with an interest in law. http://warren.ucsd.edu/law.

HEALTH CARE—SOCIAL ISSUES

The Health Care—Social Issues Program at UCSD is designed to enhance student competence in analyzing complex social and ethical implications related to health care issues by offering an interdisciplinary minor, events, and speakers from a wide range of disciplines. Students gain an understanding of how the economy, culture, technology, social, and psychological processes affect modern health care. The curriculum complements science, humanities, and social science majors and enriches student participation in the health care professions. The program is administered by Earl Warren College and is available to all UCSD students with a general interest in health care. http://warren.ucsd.edu/health.
Educational Enrichment

Students are encouraged to earn credit toward graduation by participating in a study abroad program through the University of California’s Education Abroad Program (EAP). Earl Warren College offers students an option to complete an EAP Program of Concentration with an emphasis in either humanities/fine arts or social sciences.

EAP participants study in over 150 institutions in thirty-five countries. Students may choose to study abroad for a full academic year or for a shorter term. Most EAP programs require a minimum 2.5–3.0 cumulative GPA and junior standing at the time of participation.

Academic Internship Program

Earl Warren College administers an Academic Internship Program available to students from all six colleges. The program is based on the conviction that quality education results from a combination of classroom theory and practical experience. Participants work full- or part-time for a public or private organization. Placements match students’ major areas of academic study and correlate with their career goals. Students may enroll for one, four, eight, or twelve units per quarter, with a maximum of four internships and/or sixteen units of internship credit. Although most placements are in the San Diego area, the Academic Internship Program is international in scope and varied in offerings. Students might work for a senator in Washington; the governor in Sacramento; a legal-aid office in Los Angeles; a business, a T.V. station, research lab, or social service agency in San Diego; a public relations firm in London; or any number of other possibilities. Working closely with faculty advisors, students write research papers that integrate their academic backgrounds and internship experience. For more information, see listing under “Academic Internship Program.”

Honors

Quarterly provost’s honors, honors at graduation, departmental honors, and Phi Beta Kappa honors are awarded. For additional information, see “Honors” in the Index.

Honorary Fellow of the College

Harry N. Scheiber, Historian

Eleanor Roosevelt is widely regarded as one of the most visionary and influential American public figures of the twentieth century, and her life and achievements continue to inspire men and women everywhere. She was one of the first to champion human and civil rights for all Americans during the Great Depression and the Second World War. After the war, she was the architect of the United Nations Universal Declaration of Human Rights. In the decades that followed, her tireless efforts to promote international understanding and human rights earned her worldwide respect and the title “First Lady of the World.”

The College

Eleanor Roosevelt College (ERC) was established in 1988, and is currently home to almost 3,400 men and women. The college serves students interested in pursuing academic excellence, developing intellectual capacities and understanding and human rights earned her worldwide respect and the title “First Lady of the World.”

General Education

The general-education requirements at ERC are designed to provide all students with a broad intellectual foundation. The curriculum offers undergraduates opportunities to learn about the various fields that may be open to them, thus assuring that their choices in selecting a major, pursuing graduate study, or seeking employment will be based on clear understandings about the nature of the work and their own interests and talents.

Advanced Placement Credits

University credit may be granted for College Board Advanced Placement Tests on which a student earns a score of 3 or higher. The credit may be applied toward general-education requirements (approximately half of which can be met by Advanced Placement credit), elective units for graduation, as subject credit for use in a minor, or as a prerequisite to a major. For further details, see the advanced placement chart in “Undergraduate Admissions, Policies and Procedures.”

ERC academic counselors provide information about advanced placement or courses that meet the general education requirements of the college. Students should take advantage of the counseling available in the Academic Advising Office to help them effectively incorporate the college general-education requirements into their academic program.

ERC General-Education Requirements for Students Entering as Freshmen

The Making of the Modern World (six quarters)

This interdisciplinary sequence of six courses incorporates humanities (literature, history, and philosophy) and social sciences as well as writing. The courses examine Western and non-Western societies, cultures, and state systems both historically and comparatively. The Making of the Modern World (MMW) is taught by faculty from...
many disciplines, including anthropology, history, literature, political science, and sociology.

MMW is designed to help students search for connections—between past and present, among the societies and civilizations that have inhabited the earth, and among the ways that humans have used to make sense of their experience.

At ERC, the university writing requirement is met through MMW and relies on those courses for its content. Instruction and practice in writing, in turn, help students master the course content and analyze and synthesize the material. In all fields, written communication skills are among the most important qualifications graduates take to the job market and graduate school. Writing is assigned in MMW 2–6; the second and third quarters include intensive writing instruction and carry two additional units of credit. For more details, see “The Making of the Modern World” in the department listings.

Natural Sciences (two quarters)

Two courses are to be chosen from selected offerings in biology, chemistry, physics, and/or earth sciences.

Quantitative Methods (two quarters)

Two courses are to be chosen from selected offerings in pre-calculus, calculus, statistics, symbolic logic, or computer programming.

For students majoring in scientific fields, these courses are preparation for major study; for students who will continue their studies outside the sciences, they provide a basic understanding and appreciation of methods and developments in the fields. Many of the selected courses are designed for non-science majors.

Foreign Language (zero to four quarters)

ERC students are required to demonstrate basic conversational and reading proficiency in a modern foreign language, or advanced reading proficiency in a classical language, by completing the fourth quarter of foreign language instruction (or equivalent) with a passing grade.

Students may also complete this requirement by demonstrating advanced language ability on a special proficiency exam. Students considering this option should consult with an ERC academic counselor during their first year at UCSD.

Advanced placement scores in language or literature, and IB scores in language, may exempt students from all or part of the ERC language requirement.

College-level language study is a prerequisite for study abroad in most non-English speaking countries and enhances understanding of those societies. Students wishing to study abroad in non-English speaking countries may need to take additional language classes, and will need to take all language courses for letter grades.

Fine Arts (two quarters)

Two four-unit courses are required, to include study of both Western and non-Western music, theatre, dance, and/or visual arts. These courses help students appreciate the rich range of human expression to be found in cultures and ages other than their own.

Regional Specialization (three quarters)

Each ERC student selects three courses dealing with a single geographic region of the world. The college has defined regions broadly enough to assure course availability and narrowly enough to ensure coherence of subject matter. These courses may be chosen from offerings in humanities, social sciences, and fine arts. At least two of the three must be taken at the upper-division level. See “Minors” below about application of this course work to an optional ERC minor.

Upper-Division Writing Requirement

To demonstrate competency in written English at the upper-division level, students submit to the Academic Advising Office a paper or papers of specified lengths that were written for one or more upper-division courses and graded C– or higher. Papers are returned to students after Academic Advising Office staff certify that they meet the upper-division writing requirement.

Sample Program

A program like the sample one shown here would lead to completion of most general-education requirements during the first two years of college. Some variation will occur depending upon a student’s academic preparation, choice of major, and individual interests and priorities. For example, students planning to major in science, math, or engineering will be taking many prerequisite courses for their major; those courses typically also fulfill the general-education requirements in natural sciences and/or quantitative methods.

Transferring to ERC

Transfer students may meet most ERC general-education requirements before entering UCSD if they have followed articulation agreements with community colleges, or taken courses elsewhere that ERC deems equivalent in content to UCSD courses that meet the college’s requirements.

All transfer students must take three quarters of MMW, and it is recommended that the three courses be taken in sequence. Students who have not met their freshman writing requirement elsewhere must complete it by taking MMW 2 and/or MMW 3 as part of this three-course requirement.

All transfer students must also take two upper-division regional specialization courses and satisfy the upper-division writing requirement. See “Graduation Requirements” below.

Grading Options

1. No more than 25 percent of total UCSD units counted in satisfaction of degree requirements may be taken on a Pass/Not Pass basis.
2. Electives may be taken on a Pass/Not Pass basis except if they are to be applied to majors or minors. Check with the appropriate department or college for rules applying to specific majors or minors.
3. Courses that meet the following ERC general-education requirements may be taken Pass/Not Pass: fine arts, foreign language, natural sciences, quantitative methods, and one regional specialization course. All other general-education courses must be taken for letter grades.
Leadership and Community

ERC students are recognized for their strong sense of community. These bonds are created in part by common classroom experiences in MMW. They also grow from shared explorations in a variety of college programs in which students take active roles: college and campus-wide student government, service to the campus and the larger community, the acquisition of leadership skills, and sports and social activities.

The college is home to UCSD’s International House, which offers informative and dynamic discussions for the campus community at its weekly International Affairs Group meetings. ERC also hosts (with the Programs Abroad Office) a retreat each fall to welcome back study abroad returnees from all six colleges and assist with their re-integration into the UCSD community.

Expanding Horizons

Students whose interests extend beyond our borders are encouraged and assisted in finding opportunities to spend part of their college career in another country. There are many options, including short-term or year-long academic programs, work opportunities, and career-related internships.

At one time or another, men and women from ERC have studied in more than forty different countries in Europe, Africa, Latin America, the Middle East, and Asia.

Students on university financial aid who participate in the UC Education Abroad Program pay UCSD fees and retain their financial aid packages, which are budgeted to include study abroad expenses. In addition, there are a number of sources for scholarship aid designated for study abroad.

Majors

An ERC student may pursue any of the approximately 150 undergraduate majors offered at UCSD. Students may complete more than one major, provided they comply with all Academic Senate regulations concerning double majors.

To declare a double major, a student must have accrued at least ninety but no more than 135 units, have at least a 2.50 GPA, and meet university requirements regarding total maximum number of units earned and quarters attended at UCSD.

Most majors require the completion of specified “pre-major” or prerequisite courses at the lower-division level before enrollment in upper-division major courses. For some majors, admission to upper-division course work is contingent upon a satisfactory GPA in certain pre-major courses. Students are strongly encouraged to work closely with department advisors as well as college academic counselors to assure adequate and timely preparation for their majors.

Completion of certain majors may take more than four years or the minimum 180 units required for graduation. Time-to-graduation in other instances may be affected by a student’s level of preparation for upper-division work in the major or by a decision to change major. See “The Undergraduate Program(s)” in respective department listings.

ERC Individual Studies Major

ERC offers an Individual Studies major to meet the needs of students who have defined academic interests for which suitable majors are not offered at UCSD. Students who find themselves in this situation should consult a college academic counselor at the first opportunity.

This major includes regular course work and often independent study, representing a minimum of twelve upper-division four-unit courses. A regular member of the faculty serves as advisor to the student. Students admitted to the Individual Studies major may enroll in ERC 199, an independent study course supervised by a faculty member, who tailors the content to fit the major.

Qualifying seniors pursuing an Individual Studies major may undertake an honors thesis research project (ERC 196) under the tutelage of their faculty mentor. See “Eleanor Roosevelt College” in the department listings.

Further information about an Individual Studies major may be obtained from the ERC Academic Advising Office.

Minors and ERC Special Minors

Minors are not required at ERC. However, completion of a minor can be an educational or pre-professional asset. All students have the option of completing any approved departmental or inter-departmental minor.

Alternatively, students may wish to combine foreign language course work with an associated regional specialization to earn an ERC Special Minor in, for example, Asian Studies or Middle Eastern Studies. Such minors must conform to Academic Senate policies: For students entering the University before January 1998, this means completion of at least six courses (twenty-four units), of which at least three (twelve units) must be at the upper-division level. Students entering in January 1998 or later must complete at least seven courses (twenty-eight units), of which at least four (sixteen units) must be at the upper-division level. Upper-division courses applied toward a minor may not be used to meet the requirements of the major.

Internships

As a way to combine classroom theory and practical experience, juniors and seniors are encouraged to consider internships under programs available to any UCSD student and administered by the Academic Internship Program, Career Services, or UCSD Associated Students.

Participants work for various lengths of time in enterprises that match their major interests and career goals. Most placements are local, but some are in such locations as Washington, D.C., Sacramento, Los Angeles, or London.

Working with faculty advisors, students enrolled in academic internships write research papers integrating their work experience with their formal studies, and they can earn up to sixteen units of credit in increments of four, eight, or twelve per quarter.

Graduation Requirements

To graduate with a baccalaureate degree from the University of California, an Eleanor Roosevelt College student must:

1. Satisfy two University of California requirements: the Entry Level Writing requirement in English composition and the American History and Institutions requirement. See “Undergraduate Admissions, Policies and Procedures.”

2. Fulfill the ERC general-education requirements as described.

3. Complete an approved departmental or inter-departmental major, meeting all requirements as specified by the major department or program.

4. Satisfy the senior residency requirement that thirty-five of the final forty-five units must be completed as a registered UCSD student.
Students studying abroad in their senior year may petition to have this requirement waived.

5. Complete and pass a minimum of 180 units for the Bachelor of Arts or Bachelor of Science degree. At least sixty of those (fifteen courses) must be at the upper-division level. The B.S. degree is awarded in biology, physics, cognitive science, chemistry, earth sciences, management science, and designated engineering and psychology programs; the B.A. is awarded in all other majors.

6. Earn a cumulative GPA of 2.0 or higher.

Honors Recognition

Students who earn a quarter GPA of 3.5 or higher are notified of having achieved Provost’s Honors. Students who maintain GPAs of 3.5 or higher for a full academic year are awarded Provost’s Honors certificates.

Every spring, ERC holds an academic honors recognition event to which high achieving students are invited, and graduating seniors are encouraged to invite individual faculty as their guests.

Also each spring, UCSD’s chapter of the Phi Beta Kappa Society invites to membership seniors who have demonstrated outstanding academic achievement (3.65 GPA), breadth in their academic programs (including humanities, language, and quantitative methods), and good character, among other criteria. See “Phi Beta Kappa” in the index.

At Commencement, ERC graduates with extraordinarily outstanding overall academic records are named Provost’s Scholars. Graduates with final cumulative GPAs equivalent to approximately the top 14 percent of UCSD graduates become eligible for University Honors and receive their degrees Cum Laude (with honors), Magna Cum Laude (with high honors), or Summa Cum Laude (with highest honors).

ERC Honors Program

The Freshman and Sophomore Honors programs at ERC have been established to provide exceptionally motivated and capable students with enhanced educational experiences in association with faculty and other honors students.

Selected new students are invited to enroll in the Freshman Honors Seminar. During fall quarter, students meet with a variety of faculty members to learn more about their research and about academic enrichment opportunities at UCSD. Seminar members also participate in other enriching academic and cultural events.

The Freshman Honors Seminar continues during winter quarter (and some years through spring quarter) with faculty speakers who focus on international themes. In winter (and spring) quarters, these seminars carry one unit of credit each (ERC 20). See “Eleanor Roosevelt College” in the department listings.

Sophomores who have earned cumulative grade-point averages (GPAs) of 3.5 or higher have opportunities to pursue independent study with individual faculty for credit (ERC 92). See “Eleanor Roosevelt College” in the department listings.

Additional honors opportunities are offered in MMW. Students with excellent grades in MMW 1, 2, and 3 and high cumulative GPAs are eligible to take honors sections of MMW (4H, 5H, and 6H). These students attend regular MMW lectures and meet in separate honors discussion sections. They also attend special guest lectures and enrichment activities related to course content.

At the upper-division level, students may qualify to enroll in honors programs offered by their major departments. These programs usually include research under the direction of a faculty mentor and the writing and presentation of an honors thesis.
Sixth College

http://sixth.ucsd.edu

Sixth College, the newest of UCSD’s six undergraduate colleges, draws on its theme, Culture, Art, and Technology, to meet the lifelong educational needs of students in the twenty-first century. New global challenges demand new approaches to visualization, problem solving, information handling, and communication across cultural and disciplinary boundaries. Intellectual flexibility, creative, critical thinking, ethical judgment, fluency in assessing and adapting to technological change and the ability to engage effectively in collaboration with others from a wide range of backgrounds will be critically important to our graduates. To help prepare our students for the future, Sixth College offers an integrated learning environment that emphasizes collaborative learning, creative imagination, interdisciplinary inquiry, and written, visual, kinetic and auditory investigation, argument, and expression. Students will learn to use digital as well as traditional communication and research tools. The college is committed to help students develop skills necessary for lifelong learning, including self-reflection with information technology and the crucial ability to learn from experts.

Sixth College offers students opportunities to explore its theme, Culture, Art, and Technology, both within its academic program and through non-classroom based programs that provide our students with learning, work, and research experiences both on and off campus.

Sixth College challenges students to examine the multi-dimensional interactions between culture, art, and technology, in order to imagine the future and create new forms of inquiry and communication. Teamwork, artistic expression, interdisciplinary ways of thinking and knowing, and multicultural awareness are core educational goals.

Sixth College students will be encouraged to engage with the outlying community through the practicum. More than an ethical obligation to service, such an engagement is integral to the process of learning to listen across cultures and to consider implications of diverse agencies of change. Sixth College is committed to pioneer meaningful application of evolving technologies inside and outside the classroom. For example, wireless communication technology is incorporated into the very design of this college’s physical infrastructure and curricular planning, allowing Sixth College to pioneer radically new teaching, communication, community, and lifelong learning paradigms. On campus and off, students will be linked in many ways — by digital media, by team-based course and extracurricular projects and learning exercises, by social and local community engagement (e.g., practicum project), and by diverse cultural and intellectual events that seamlessly connect many aspects of residential life and student affairs programming with the college curriculum. All these linkages help ensure that Sixth College students have the opportunity to develop, learn, and act as integral members of a sustaining local and larger community.

Culture, Art, and Technology

All students will take a three-quarter core sequence titled Culture, Art, and Technology (CAT). CAT is a highly interdisciplinary sequence integrating learning in arts and humanities, social sciences, and science and engineering. It introduces students to thinking across disciplines so they can identify interactions, recognize patterns, and provide opportunities for learning by inquiry in a collaborative environment. Exercises and instruction that develop fluency with information technology and information literacy, as well as writing and communication skills, will be embedded in the core sequence.

Practicum

Sixth College Practicum is an academic learning experience in which students address a real-world problem by undertaking a project. Under faculty mentorship, the students plan, execute, and reflect upon the project and its effectiveness. The practicum reflects Sixth College’s commitment to form bridges within the UCSD campus units and to San Diego’s communities, to engage students in communal issues and to foster students’ ethical obligation to service. Such an engagement is an integral part of the process of learning to listen across cultures and to consider the implications of various agencies of change.

General-Education Requirements

The Sixth College breadth requirements have three primary goals: (1) to produce breadth of knowledge and connections across that breadth, (2) to encourage creative imagination, and (3) to accomplish these activities from an ethically informed perspective. The aim is to allow students to discover the richness of UCSD’s academic life and to see relationships among the sciences, social sciences, engineering, arts, and the humanities. Because Sixth College emphasizes cross-disciplinary ways of thinking, it is critical for students to appreciate the different modes of inquiry within academic disciplines. For information about courses available to satisfy the general-education requirements, please visit the academic advising office in the Sixth Administration Building or check the Web site at sixth.ucsd.edu.

1. Culture, Art, and Technology: Three courses. Core Sequence CAT 1, 2, and 3. Includes two (6 unit) quarters of intensive instruction in university-level writing.

2. Information Technology Fluency: One course. This requirement may be satisfied with courses from a variety of departments.

3. Modes of Inquiry: Seven courses. Two courses in social sciences, two courses in humanities, two courses in natural sciences, one course in math/logic (different options available for science and non-science majors).

4. Understanding Data: One course in statistical methods (different options available for science and non-science majors).

5. Societal and Ethical Contexts: Two courses. One course in ethnic or gender studies AND one course in ethics.

6. Art Making: Two courses in literature, music, theatre (including dance), or visual arts.

7. Practicum: Upper-division students must complete a Practicum Project that extends outside the classroom, for which they will receive four units of credit. They must also take the Practicum Reflective Writing course,
in which they write about their Practicum Project experience. See the Sixth College advising center for details.

Graduation Requirements

In order to graduate from Sixth College all students must:

1. Satisfy the University of California requirements in Entry Level Writing and American History and Institutions (See Academic Regulations: Entry Level Writing Requirement; and American History and Institutions).

2. Satisfy the general-education requirements including the practicum and the practicum writing requirement.

3. Successfully complete a major according to all regulations of that department.

4. Complete at least 60 units at the upper-division level.

5. Pass at least 180 units for the B.A./B.S. degree. No more than 3 units in physical education (activity) courses may count toward graduation.

6. Attain a C average (2.0) or better in all work attempted at the UC. Departmental requirements may differ. Students are responsible for checking with the department of the major for all regulations.

7. Meet the senior residence requirement. (See Academic Regulations: Senior Residence).

Transfer Students

Transfer students may meet all or most of Sixth College's lower-division requirements before entering UCSD if they have followed transfer agreements or preparation programs. Specific details regarding appropriate general-education agreements are in the catalog section on "Undergraduate Admissions." Additional resources of information for transfer students include UCSD Transfer Services, the Sixth College Web site, and the student's community college.

Majors and Minors

Majors: Sixth College students may pursue any of the departmental or interdisciplinary majors offered at UCSD. The majority of the academic departments have established lower-division prerequisites. Generally, these prerequisites must be completed prior to entry into upper-division major courses. Many of these courses may count for general-education credit as well. Students are strongly encouraged to work closely with department faculty and college advisors. For details on the specific major departments, refer to the "Courses, Curricula, and Programs of Instruction" section of this catalog.

Minors are optional. However, students are encouraged to keep as many options open as possible. A minor provides an excellent opportunity to complement the major field of study.

Students are required to complete twenty-eight units of interrelated work, of which at least twenty units must be upper-division.

Pass/Not Pass Grading Option

Some general-education requirements may be fulfilled by courses taken on the Pass/Not Pass basis. Sixth College students are reminded that major requirements and prerequisites must be taken on a graded basis. In accordance with University Academic Regulations, the total number of Pass/Not Pass units may not exceed one-fourth of a student's total UCSD units.

Honors

In addition to the College Honors Program (see under Sixth College), there are many types of Honors at UCSD.

- **Provost Honors**—awarded each quarter based on completion of twelve graded units with a GPA of 3.5 or higher. For each year of Provost's Honors, a certificate of merit is awarded.

- **Departmental Honors**—Outstanding students often enroll in departmental honors programs, and they may receive university honors at graduation. They may also be eligible to be invited to membership by the UCSD chapter of Phi Beta Kappa, the nation's oldest, most respected academic honor society.

- **College Honors designation at graduation**—College honors awarded include: *summa cum laude*, *magna cum laude*, and *cum laude.*

Expanding Your Educational Horizons

CHICANO/A–LATINO/A ARTS AND HUMANITIES (CLAH) MINOR
http://clah.ucsd.edu/

Sixth College sponsors the CLAH minor at UCSD, which encourages students to examine the art, literature, history, music, theater, and language of Spanish-speaking people in the United States, from the nineteenth century to the present. This minor is open to all UCSD students in good standing. Two years or equivalent college-level Spanish language instruction (may include one lower-division language course) are required.

LEADERSHIP AND COMMUNITY
http://sixth.ucsd.edu/

Collaboration and connectedness are central values of Sixth College. These values are reflected in Sixth’s commitment to providing meaningful opportunities for students to contribute to the direction and evolution of UCSD’s youngest college. Student leadership opportunities include serving on the Sixth College Student Council or in campus-wide student governance roles. Additionally, students assume leadership in the Sixth community through service as resident advisors, orientation leaders, and members of the Sixth College Executive Committee. These opportunities and others not only contribute to shaping what Sixth College is and will become, but also foster in students the development of life skills that prepare them to be effective citizens and leaders in a world of ever increasing complexity and diversity.

Undergraduate Research

Research opportunities for undergraduates at UCSD

UCSD encourages all undergraduates to become involved in the research life of the university. Every academic department has opportunities for undergraduates to work with faculty on the cutting edge research projects for which UCSD is world-renowned. Working closely with faculty, students will deepen their knowledge and skills in areas of special academic interest, while experiencing what it means to be part of an intellectual community engaged in research. Information can be found through Undergraduate Research at UCSD: http://ugr.ucsd.edu; Academic Enrichment Program: http://aep.ucsd.edu/, and Summer Research Opportunities http://sea.ucsd.edu/summer_research/.
Pacific Rim Undergraduate Experiences (PRIME)
http://www.pragma-grid.net/PRU/index.htm

This undergraduate research program provides opportunities to participate in an international research and cultural experience that will prepare students for the global workplace of the twenty-first century. Students will live and work at an international host site either in Japan, Taiwan, China, or Australia, and gain greater cultural understanding of a new region.

California Institute for Telecommunications and Information Technology (Calit2)
http://www.calit2.net/

Ensures that California maintains its leadership in the rapidly changing telecommunications and information technology marketplace. The institute encourages undergraduate participation in its research activities and provides undergraduate summer research scholarships.

Community Work

TIES (Teams in Engineering Service)
http://www.jacobsschool.ucsd.edu/TIES/

TIES is a new and innovative academic program putting UCSD undergraduates and their technical and creative skills to work for San Diego non-profit organizations. Multidisciplinary teams of UCSD students design, build, and deploy projects that solve technology-based problems for community partners.

PAL (Partners at Learning)
http://www-tep.ucsd.edu/service.shtm

PAL is the service-learning division of UCSD’s Teacher Education Program. PAL classes give UCSD students meaningful opportunities to learn about and experience issues of equity and education in San Diego’s K–12 schools. Through PAL, UCSD students serve as tutors and mentors in K–12 classrooms throughout San Diego County. Each year PAL students contribute about 20,000 hours of service to underserved schools.

Cultural Enrichment

The Center for Research in Computing and the Arts (CRCA)
http://www-crca.ucsd.edu/

CRCA is an organized research unit of UCSD whose mission is to facilitate the invention of new art forms that arise out of the developments of digital technologies. Current areas of interest include interactive networked multimedia, virtual reality, computer-spatialized audio, and live performance techniques for computer music and graphics. Through Sixth College’s partnership with CRCA students have opportunities to participate in special events, meet artists, and engage in research.

ArtPower!
http://www.artpower.ucsd.edu/

ArtPower!, administered through the University Events Office, brings to the UCSD campus world artists in a wide variety of genres, including music, dance, and the spoken word. Sixth College has developed a partnership with ArtPower!, providing students with opportunities to connect to and engage with professional artists in a variety of formal and informal activities.

Programs Abroad Office (PAO)
http://pao.ucsd.edu/pao/

Through the Programs Abroad Office, students can take advantage of a variety of international opportunities, including study, work, volunteer, and internship programs abroad! Each year UCSD sends about 1,000 students overseas. Students may choose from the University of California’s systemwide Education Abroad Program (EAP) that has educational opportunities in thirty-five countries, or from the Opportunities Abroad Program (OAP) that links students with worldwide opportunities sponsored by organizations and universities other than the University of California.

Professional Preparation

Academic Internship Program (AIP)
http://aip.ucsd.edu/

The program offers qualified juniors and seniors the opportunity to acquire valuable work experience related to academic and career interests. Although most internships are in the San Diego area, the Academic Internship Program is national in scope, including the popular Washington, D.C. program, and international, including the London program. An extensive library lists more than 2,000 available internships in varied settings including, but not limited to, TV and radio stations, law offices, medical research labs and clinics, government agencies, high-tech and biotech companies, engineering, advertising and public relations firms, and financial institutions. Students also can work with the internship office to set up their own positions.

Departmental Internships

Most departments offer internships for their majors; the courses are numbered 197 (see individual departments for additional information).
All communications concerning pre-applicant undergraduate admission for U.S. citizens should be addressed to:

Office of Admissions and Relations with Schools
Student Affairs
University of California, San Diego
9500 Gilman Drive, Dept. 0021
La Jolla, CA 92093-0021
E-mail: admissionsinfo@ucsd.edu
(858) 534-4831
http://admissions.ucsd.edu

Definitions

An application to the University of California, San Diego is processed and evaluated as a freshman or transfer, California resident; freshman or transfer, nonresident; or freshman or transfer, international applicant. See definitions below:

An Undergraduate Applicant
A student who wishes to complete a program of studies leading to a bachelor of arts or a bachelor of science degree.

A Freshman Applicant
A student who has graduated from high school but who has not enrolled since then in a regular session in any accredited college-level institution. This does not include attendance at a summer session immediately following high school graduation.

A Transfer Applicant
A high school graduate who has been a registered student in another accredited college or university or in college-level extension classes other than a summer session immediately following high school graduation. A transfer applicant may not disregard his or her college record and apply for admission as a freshman.

An undergraduate student can earn transfer credit upon successful completion of college-level work which the university considers consistent with courses it offers. Such credit may be earned either before or after high school graduation. The acceptability of courses for transfer credit is determined by the Office of Admissions and Relations with Schools.

For more information regarding transferring to UCSD call or write:
University of California, San Diego
Transfer Student Services
Office of Admissions and Relations with Schools
Student Affairs
9500 Gilman Drive, Dept. 0021
La Jolla, CA 92093-0021
(858) 534-4831
E-mail: admissionsinfo@ucsd.edu
http://admissions.ucsd.edu/dev3/transfers

A Nonresident Applicant
A student who holds or expects to hold any nonimmigrant visa.

A Nonresident Applicant
A student who lives outside the state of California and who is required to present a higher scholarship average than is required of California residents to be eligible for admission to the university, in addition to paying the nonresident tuition fees.

An International Applicant
A student who wishes to complete a program of studies leading to a bachelor of arts or a bachelor of science degree.

Educational Opportunity Programs

The Educational Opportunity Program (EOP) is a recruitment and academic support program established by the university to increase the enrollment of educationally disadvantaged and low-income students. Students are provided with pre-admission counseling, and academic and personal support services. EOP eligibility is based on family income level.

Services available to EOP students cover a broad range of needs. Recruitment and application-related services include pre-admission counseling, application fee waivers, application follow-up, and deferral of the Statement of Intent to Register fee. Academic support for EOP students is offered through the Office of Academic Support and Instructional Services (OASIS).

The method of applying is online at http://www.universityofcalifornia.edu/apply. EOP applicants must be California residents. To apply for EOP, check the appropriate box in the UC application designated for the Educational Opportunity Program. Fill in the information requested in the application pertaining to family size and income, parental education level and occupation. This information is used in conjunction with other information from the admission application in determining eligibility for EOP.

Financial aid is available to eligible EOP students from the regular state, federal, and university sources administered through the UC San Diego Financial Aid Office. Although EOP eligibility does not guarantee financial aid, the low-income ceilings for EOP eligibility mean that most EOP applicants should qualify for substantial financial assistance. Financial aid information is available from the UCSD Financial Aid Office at http://fao.ucsd.edu. Admissions information can be sought from your high school or community college counselor or the Office of Admissions and Relations with Schools. For additional information about EOP eligibility requirements, program services, or general information regarding UCSD, call or write:

University of California, San Diego
Office of Admissions and Relations with Schools
Student Affairs
9500 Gilman Drive, Dept. 0021
La Jolla, CA 92093-0021
(858) 534-4831
E-mail: admissionsinfo@ucsd.edu
http://admissions.ucsd.edu

Undergraduate Colleges and Majors

COLLEGES

Even though you may be uncertain about your major, your application for admission must include the name of the UC San Diego college with which you want to affiliate (Revelle, John Muir, Thurgood Marshall, Earl Warren, Eleanor Roosevelt or Sixth College). You must indicate
a second and third choice in the event your first choice college closes early. Applicants may be reassigned to another college by the Office of Admissions and Relations with Schools if enrollment quotas prohibit first choice. Applicants who do not indicate a UCSD college preference will be assigned a college.

In the “Choosing a College” section, which describes the educational philosophies of the six colleges at UCSD, you will find information concerning the requirements of each college. It is very important that you read that section of the catalog carefully, and that you decide which of the colleges is the right one for you.

You can also find information about UCSD’s six colleges, and much more, on the Web site of the Office of Admissions and Relations with Schools (http://admissions.ucsd.edu).

IMPACTED MAJORS

It sometimes becomes necessary to limit enrollment in certain majors. When this occurs the affected majors will be listed in the General Catalog as soon as possible. When the catalog does not reflect these conditions, newly admitted students will be notified of them in the university’s admissions letter. Currently, the following majors are considered impacted for freshmen: computer science, and computer engineering (within the computer science and engineering department); and computer engineering (within the electrical and computer engineering department), bioengineering and bioengineering; biotechnology. Freshmen considering applying to these majors must also select an alternate major on the UC application. Students admitted to UCSD who are not admitted directly into one of these majors will be admitted into their alternate major, provided it is not impacted.

POST-SCREENING OF ELECTRICAL ENGINEERING MAJORS

Effective fall 2006 the electrical engineering major within the Department of Electrical and Computer (ECE) Engineering is no longer considered an impacted major. Entering freshmen and transfer students who have indicated the desire to major in electrical engineering will be admitted directly to the major. Continuing UCSD students who wish to transfer into the electrical engineering major will be evaluated under the rules that are in effect for the year in which they enter the major. Effective fall 2006, to remain in good standing as an electrical engineering major, a student must complete a minimum of eight progress review courses with a C- or better during his or her first five quarters for freshmen or during the first three quarters for continuing UCSD and transfer students. The average GPA from any six of the progress review courses, including at least two from electrical engineering progress review courses, must exceed 2.50.

The Required Review of Student Progress for Electrical Engineering majors is explained in greater detail under the Department of Electrical and Computer Engineering (ECE) section of this catalog.

PRE-MAJORS

The following majors admit freshmen to pre-major status only: bioengineering: premedical, engineering physics, human development, ICAM-visual arts, ICAM-music, literature/writing, math-computer science, visual arts-media (computing emphasis).

As a pre-major, you must satisfy all prerequisites before admission to the major. The set of conditions, determined on a department-by-department basis, and approved by the San Diego Committee on Educational Policy, is explained in detail under the department listing in this catalog.

Other departments may be approved to offer pre-majors by the Committee on Educational Policy subsequent to this publication. Please refer to “Major Fields of Study” in the introduction to the catalog.

Undergraduate Admissions

MINIMUM REQUIREMENTS

The university’s minimum undergraduate admission requirements, which are the same on all University of California campuses, are based on three principles. They are: (1) the best predictor of success in the university is high scholarship in previous work; (2) the study of certain subjects in high school gives a student good preparation for university work and reasonable freedom in choosing an area for specialized study; and (3) standardized assessment tests provide a broad base for comparison, and mitigate the effects of differing grading practices.

The academic requirements for admission are minimum entrance standards. Students admitted to UCSD are chosen from a large number of highly competitive applicants, most of whom will have greatly exceeded the minimum requirements. Therefore, selection depends on additional factors.

Academic preparation is the principal basis for gaining admission to UCSD. Students are encouraged to pursue the most rigorous academic curriculum possible, including honors and Advanced Placement (AP) courses, in order to prepare for the university experience. High test scores are necessary in conjunction with strong performance in classes and a consistent pattern of courses. Overall performance must be well above minimum requirements in order to admit you to the campus and major of your choice.

UCSD Admission Policy and Selection Criteria

The undergraduate admission policy at the University of California, San Diego is designed to select a highly qualified and diverse student body. As a major public institution of higher education serving the teaching, research, and public service needs of California, UC San Diego strives to reflect the diversity of the population of the state. This undergraduate admission policy has been developed by the San Diego campus in compliance with the University of California Policy on Undergraduate Admissions that “seeks to enroll a student body that, beyond meeting the University’s eligibility requirements, demonstrates high academic achievement and exceptional personal talent, and that encompasses the broad diversity of California.”

Freshman Selection

The number of applicants to UCSD far exceeds the number of spaces available, and it has become necessary to adopt standards which are much more demanding than the minimum requirements to admit students. The San Diego campus has developed the following procedures for the selection of applicants to be admitted from its pool of eligible candidates:

COMPREHENSIVE REVIEW

All UC eligible applicants will receive a review which considers a combination of factors—academic, personal characteristics, and achievement, including:

- Uncapped grade-point average (maximum of eight semesters of approved honors,
AP/IB HL, or UC-transferable college-level courses)
- Scores of all required examinations
- Number of “a–g” courses beyond the minimum specified for UC eligibility
- Eligibility in the Local Context (ELC)
- Educational environment
- Low family income
- First-generation college attendance
- Demonstrated leadership
- Special talents, achievements, and awards
- Volunteer/community service
- Sustained participation in pre-collegiate/academic development and enrichment programs
- Special circumstances and/or personal challenges

Academic achievement constitutes approximately 75 percent of the overall comprehensive review score. Applicants with the highest level of academic, personal characteristics, and achievement will be admitted in sufficient numbers to meet UCSD’s enrollment goals.

Advanced-Standing Selection

Admitted applicants will be selected primarily on the basis of academic performance, as assessed by review of the GPA in all UC-transferable courses and the total number of UC-transferable units completed one full term prior to the initial quarter of attendance at UCSD.

Applicants who have satisfactorily completed sixty transferable semester units (ninety quarter units) one full term prior to the term of admission will be considered for admission. California community college applicants must have a competitive GPA (based on the strength of the applicant pool) in UC-transferable courses. Applicants with the highest level of academic, personal characteristics, and achievement will be admitted in sufficient numbers to meet UCSD’s enrollment goals.

Admission as a Freshman Applicant

MINIMUM REQUIREMENTS

To be eligible for admission to the university as a freshman you must meet the high school diploma requirement, the subject requirement, the scholarship requirement, and the examination requirement, which are described below.

HIGH SCHOOL DIPLOMA REQUIREMENT

You must earn a diploma from a high school in order to enter the university as a freshman. The Certificate of Proficiency, awarded by the California State Department of Education upon successful completion of the High School Proficiency Examination, proficiency tests from other states, and the General Education Development (GED) certificate, will be accepted in lieu of the regular high school diploma. Subject, scholarship, and examination requirements discussed below must also be met.

SUBJECT REQUIREMENT

A student applying for admission as a freshman to the University of California must have completed a minimum of fifteen units of high school work during grades nine through twelve. At least seven of the fifteen units must have been earned in courses taken during the last two years of high school. (A one-year course is equal to one unit; a one-semester course is equal to one-half unit.)

These units must have been earned in academic or college preparatory courses, as specified below. Lists of approved courses are compiled by the UC Office of the President for high schools in California. Lists are specific to each high school and are available through your high school’s counseling office, and on Web site (http://www.ucop.edu/a-gGuide/ag/a-g/welcome.html). A detailed description of the “a–g” requirements can be found at http://pathstat1.ucop.edu/ag/a-g. Applicants from high schools outside California may find the following guidelines helpful in determining acceptability of courses.

Specific “a–g” Course Requirements

(a) HISTORY/SOCIAL SCIENCE

Two units (equivalent to two yearlong courses or four semesters) are required. Coursework must include:

World History, Cultures, and Geography—One year, which can be met by a single integrated course or by two one-semester courses; and

U.S. History/American Government (Civics)—One year of U.S. History, or one-half year of U.S. History combined with one-half year of American government (civics)

(b) ENGLISH

Four units (equivalent to four yearlong courses or eight semesters) of college preparatory composition and literature are required. Both reading and writing components must be included in the courses.

Reading—Acceptable courses must require extensive reading of a variety of literary genres, including classical and/or contemporary works. Reading assignments must include full-length works. Excerpts from anthologies, articles, etc., can be supplemental but cannot constitute the main component of reading assignments.

Writing—Courses must also require substantial, recurrent practice in writing extensive, structured papers. Student must demonstrate understanding of rhetorical, grammatical, and syntactical patterns, forms, and structures through responding to texts of varying lengths in unassisted writing assignments.

(c) MATHEMATICS

Three units (equivalent to three one-year courses) of college preparatory mathematics are required. Four units are strongly recommended.

Elementary Algebra

Geometry—Courses must include topics in two- and three-dimensional geometry.

Advanced Algebra
(d) LABORATORY SCIENCE

Two units (equivalent to two one-year courses) of laboratory science are required (three units are strongly recommended) by a course that either
1. Covers the core concepts in one of the fundamental disciplines of biology, chemistry, or physics; or
2. Has as a prerequisite of biology, chemistry, or physics, and builds upon that knowledge. Such a course may include elements of another scientific discipline.

(e) LANGUAGE OTHER THAN ENGLISH

Two units (equivalent to two one-year courses) of coursework in a single language. Three units are recommended.

Minimum Performance Objectives—Courses should emphasize speaking and understanding, and include instruction in grammar, vocabulary, reading, and composition. At this level, emphasis should not be on the ability to describe grammatical features of the language. The minimum performance objectives after two years of high school study should be the following:

- The ability to sustain a brief conversation on simple everyday topics demonstrating good use of the whole sound system (good pronunciation), and the basic structural patterns in the present, past, and future tenses, the subjunctive, and commands.
- Summarize orally and in writing, the main points of a relatively simple reading passage not involving specialized vocabulary.

Classical languages (Latin, Greek) and American Sign Language (ASL) are acceptable to fulfill the (e) requirement.

(f) VISUAL AND PERFORMING ARTS (VPA)

One year-long approved arts course from a single VPA discipline: dance, drama/theater, music, or visual art.

Intention—To provide a meaningful experience and breadth of knowledge of the arts. Approved VPA courses must be directed at acquiring concepts, knowledge, and skills in the arts disciplines.

Prerequisites—Acceptable courses need NOT have any prerequisite courses.

Co-Curricular Work—Work outside class must be required: for example, portfolio/ performance preparation, reading, writing, research projects, and/or critical listening/viewing.

Course Standards—Courses should provide students with an experience that implements the intent of the California State Board of Education approved Visual and Performing Arts (VPA) Content Standards. Each VPA course shall sufficiently address the state content standards under all five component strands:
1. Artistic Perception
2. Creative Expression
3. Historical and Cultural Context
4. Aesthetic Valuing
5. Connection, Relations, and Application

(g) COLLEGE PREPARATORY ELECTIVE COURSES

One unit (equivalent to two semester courses) is required. Course(s) can be taken in 9–12 grades but must fall within the following subject areas: visual and performing arts (non-introductory-level courses), history, social science, English, advanced mathematics, laboratory science, and language other than English.

Intent—To encourage prospective UC students to fill out their high school programs with courses that will meet one or more of a number of objectives:

- To strengthen general study skills, particularly analytical reading, expository writing, and oral communications;
- To provide an opportunity to begin work that could lead directly into a major at the university; and
- To experience new areas of academic disciplines that might form the basis for future major or minor studies at the university.

Quality—All courses are expected to meet standards of quality similar to those required for the “a–f” requirements.

Alternatives—Courses such as political science, economics, geography, humanities, psychology, sociology, anthropology, journalism, speech or debate, computer science, computer programming, and others may also qualify. In addition, courses that are interdisciplinary, drawing knowledge from two or more of these fields, are also acceptable. Approved alternative courses must provide academically challenging study at the same level as advanced courses in the “a–f” subject matter fields. These elective courses must be at the eleventh or twelfth grade level, have appropriate prerequisites, and present material at a sufficient depth to allow students to achieve mastery of fundamental knowledge that prepares them for university work or a future career path.

Courses Satisfying the “g” Requirement

History: Courses should enable students to establish a breadth of understanding of history and should provide an understanding of the human past, including its relation to the present. Courses should develop a student’s ability to think critically, to evaluate historical data, and to analyze and synthesize evidence. All history courses should require extensive reading and writing.

Social Science: Courses should be in one of the social sciences: anthropology, economics, geography, political science, psychology, or sociology. Courses could also be interdisciplinary in nature, drawing knowledge from two or more of these fields. Course objectives should include as many of the following as are applicable to the field: (1) an understanding of the development and basic features of major societies and cultures, (2) an examination of the historic and contemporary ideas that have shaped our world, (3) an understanding of the fundamentals of how differing political and economic systems function, (4) an examination of the nature and principles of individual and group behavior, and (5) a study of social science methodologies. A social science course must include a body of basic knowledge, extensive reading, and written and oral exposition. Courses that are designed to meet state-mandates social studies graduation requirements are acceptable provided that they meet the above criteria. Courses with applied, service, or career-related content are acceptable only if those components are used to augment the strong academic content of the course.
English: Courses should require substantial reading with frequent and extensive practice in writing that is carefully evaluated and criticized, as noted in the “b” English requirement (above). Courses in journalism, speech, debate, creative writing, or advanced-level ESL are acceptable electives if they meet the general requirements in reading and writing stated above.

Advanced Mathematics: Courses with second-year algebra as a prerequisite such as trigonometry, linear algebra, pre-calculus (analytic geometry and mathematical analysis), calculus, probability, and statistics are acceptable. A computer science course is acceptable if it fulfills the following objectives: (1) enables students to express algorithms in a standard language; (2) requires students to complete substantial programming projects; and (3) involves the study and mastery of various aspects of computer science (e.g., how computers deal with data and instructions, the internal components of a computer, and the underlying computer logic).

Laboratory Science: Acceptable courses should cover topics from the biological or physical sciences and include laboratory activities. A terminal course designed only to meet graduation requirements is not acceptable.

Language Other Than English: Elective courses in the same language used to satisfy the “e” requirement must have at least two years of the language as a prerequisite. In order for a second language other than English to qualify as an elective, at least two years of this language must be completed.

Visual and Performing Arts (VPA): Advanced courses in the Visual and Performing Arts can meet the “g - Elective” requirement, but must still address the five components of the state VPA standards. Advanced courses should enable students to understand and appreciate artistic expression and, where appropriate, to talk and write with discrimination about the artistic material studied. Courses devoted to artistic performance and developing creative artistic ability should have prerequisites (either one year of introductory coursework or experience approved by the instructor) and should assume proficiency beyond the introductory level. Courses must require on the average the equivalent of a five-period class per week. Work outside of the class must be required (e.g., portfolio/performance preparation, reading, writing, research projects, and critical listening/viewing).

HONORS LEVEL COURSES

The University of California encourages students to take demanding advanced academic courses in all fields. Accordingly, the grades in up to four units of eleventh and twelfth grade honors courses will be counted on a scale A=5, B=4, C=3, if these courses are certified by the high school and the University of California as offered at an honors level. Honors credit will also be given for up to two of these four units taken in tenth grade. Grades lower than C do not earn honors credit.

EXAMINATION REQUIREMENT

Freshman applicants must submit the following test scores:

- The ACT Assessment plus Writing or the SAT Reasoning Test. The verbal, mathematics, and writing scores on the SAT must be from the same sitting. Students who take the ACT must report each test score and the composite score.

- Two SAT Subject Tests in two different areas, chosen from the following: history literature, mathematics (Level 2 only), science, or language other than English.

Students applying for admission to the fall term must take these tests no later than December of their senior year, preferably earlier, to ensure that their application receives prompt and full consideration.

Note: Freshman applicants who have graduated from high school in spring 2005 or earlier are required to have taken SAT I (or ACT) and three SAT II: Subject Tests prior to high school graduation.

If tests are repeated, the university will accept the highest score received. See your counselor for information and registration forms or write to the College Board ATP, P.O. Box 6200, Princeton, New Jersey 08541-6200; Web site: http://www.collegeboard.org. For ACT information, write to the ACT Registration Unit, P.O. Box 168, Iowa City, Iowa 52240; Web site: http://www.act.org.

WRITING REQUIREMENT

As a UC undergraduate, you must demonstrate proficiency in writing. Admitted students who do not meet the Entry Level Writing requirement (previously known as the Subject A requirement) prior to April 1 are required to achieve a passing score on the UC Analytical Writing Placement Examination (previously known as the Subject A Examination). Notice of this exam will be sent to all admitted students from the Educational Testing Service. There will be a $65 fee.

Freshman Eligibility

CALIFORNIA RESIDENTS (MINIMUM REQUIREMENTS)

(Refer also to “Admission as a Freshman Applicant.”)

Please be advised that these are minimum eligibility requirements. The San Diego campus has been unable to accommodate all minimally eligible applicants. You must exceed these requirements in order to be considered for admission. See “UCSD Admission Policy and Selection Criteria.”

Eligibility Index: You must earn the required combination of GPA and college admission test scores as specified in the university’s Eligibility Index. Beginning with the fall 2007 term, California applicants must earn at least a 3.0 (3.4 for nonresidents) in their “a–g” courses to meet the scholarship requirement.

Because of recent changes to the ACT and SAT tests, the index is being revised and was unavailable at press time. The new index, along with an online calculator you can use to assess your eligibility, will be available at http://www.universityofcalifornia.edu/admissions/scholarshipreq in late spring 2006.

NON-CALIFORNIA RESIDENTS (MINIMUM REQUIREMENTS)

(Refer also to “Admission as a Freshman Applicant” and “Freshman Eligibility: California Residents.”)

Please be advised that these are minimum eligibility requirements. The San Diego campus has been unable to accommodate all minimally eligible applicants. You must exceed these requirements in order to be considered for admission. See “UCSD Admission Policy and Selection Criteria.”

Scholarship: An applicant who is not a resident of California is eligible to be considered for admission to the university with a grade-point average of 3.40 or better, calculated on the required high school subjects and achieve a correlating test score indicated in the Eligibility Index (below) for Nonresidents. These subjects, referred to as “a through g,” are the same for the nonresident as for the resident.
High school Advanced Placement courses and UC-transferable college courses are considered honors courses for admission purposes for non-California resident applicants. Please note: College entrance exams are also required of non-California residents.

Additional Preparation for University Work: Freshman Applicants

High school courses required for admission to the university are listed at the beginning of this section. This list is not intended to constitute an outline for a valid high school program. The courses listed were chosen for their value as predictors of success in the university. These required courses add up to fifteen “Carnegie” units, while graduation from high school requires from fifteen to nineteen. Courses beyond our requirements should be chosen to broaden your experience, and should fit in with your personal plans for the future.

For example, besides taking courses in chemistry, physics and biology, a science major will find more than three years of mathematics essential. A science major without a working knowledge of trigonometry and at least intermediate algebra is likely to be delayed in getting a degree. If you have an interest in languages or plan a college program with a language other than English requirement, you should have completed more than the two years of language other than English needed for admission.

The “a through g” requirements for admission are minimum entrance standards. Completing the required high school courses with satisfactory grades will not automatically prepare you for freshman work in every subject, much less in your major or program of study. Many entering students discover that they are not adequately prepared for basic courses, such as English composition and calculus, which they are expected to take in their freshman year. Also, many undergraduate majors, particularly those in sciences and mathematics, require more high school preparation than that necessary for admission.

For these reasons, you are advised to take courses that will prepare you beyond minimum levels of competence in reading, writing, and mathematics. A student who is well prepared for university work will have taken four years of English in high school, four years of mathematics, two to three years of language other than English, three years of laboratory science, two or more years of history/social science, and one or more years of visual and performing arts.

Reading: Freshman-level university work demands a great amount, and high level, of reading. Proficiency in reading and understanding technical materials and scholarly works is necessary. Learn to read analytically and critically, actively questioning yourself about the author’s intentions, viewpoint, arguments, and conclusions. Become familiar and comfortable with the conventions of standard written English and with various writing strategies and techniques. Your reading experience should include original works in their entirety (not just textbooks and anthologies) that encompass a wide variety of forms and topics.

Writing: Prospective students must learn to write clearly and skillfully. You will be expected to write papers for English and many other university classes, and many exams will include essays. You will have to think critically and analyze what you learn in class and in outside reading, and present your ideas in a clear and persuasive manner. By university standards, a student who is proficient in English composition is able to: (a) understand the assigned topic; (b) select and develop a theme by argument and example; (c) choose words which clearly and precisely convey the intended meaning; (d) construct effective sentences; (e) demonstrate an understanding of the rules of standard written English; and (f) punctuate, capitalize, and spell correctly.

If you plan to attend the university, it is imperative that you take English courses in high school that require the development and practice of these skills. You must take at least four years of English composition and literature that stress expository writing; the development of persuasive critical thinking on the written page.

Mathematics: Many fields require preparation in mathematics beyond that necessary for admission to the university. Courses in calculus are included in all majors in engineering and the physical, mathematical, and life sciences, as well as in programs leading to professional degrees in fields such as medicine, dentistry, optometry, and pharmacy. Moreover, many majors in the social sciences, business, and agriculture require statistics or calculus, and sometimes both.

Most students take calculus or statistics, if required, during the freshman year. The university strongly recommends that students take four years of mathematics in high school, including pre-calculus in the senior year. Courses in mathematics should include basic operations with numerical and algebraic functions; operations with exponents and radicals; linear equations and inequalities; polynomials and polynomial equations; functions and their graphs; trigonometry, logarithms, and exponential functions, and applications and word problems.

Students who are not prepared to take calculus or statistics during the freshman year will have to take one or more preparatory mathematics classes at the university. This could affect their success in other courses and delay their entire undergraduate program.

Laboratory Science: The university requires two years of laboratory science in high school, but many majors require additional science courses. Programs in the biological sciences and some natural resource fields require high school biology, chemistry, and physics. Programs in the physical sciences, mathematics, engineering, agriculture, and the health sciences require chemistry and physics, and recommend biology.

College Credit: Freshman Applicants

There are many steps you can take to earn credit which will be applicable to your graduation from college. Some of these steps may be taken even before you graduate from high school. Among them are the following:

College Courses

Many high schools have arrangements with nearby postsecondary institutions, allowing you to take regular courses while you are still in high school. Many of these courses are accepted by the university exactly as they would be if you were a full-time college student if courses are posted for credit on the college transcript.

No matter how many college units you earn before graduating from high school, you will still apply as a freshman.

College Board Advanced Placement

The university grants credit for all College Board Advanced Placement Tests on which a student scores 3 or higher. The credit may be subject credit, graduation credit, or credit toward general-education or breadth requirements. Students who enter the university with AP credit do not have to declare a major earlier than other students, nor are they required to graduate earlier.
Students are encouraged to take AP tests when appropriate. Counselors should advise a student who is fluent in a language other than English to gain AP credit. AP test scores will not adversely affect a student’s chances for admission.

The university grants credit for Advanced Placement tests as described in the AP chart in the catalog. Credit is expressed in quarter-units.

The chart also details requirements met by AP tests by college. Even if subject credit or credit toward specific requirements is not mentioned in the college lists, students receive university credit as described in the chart for all AP tests on which they score 3 or higher. If a student is exempt from a particular course at UCSD, duplication of this course does not earn academic credit.

Admission as a Transfer Applicant

UC San Diego welcomes transfer students. The campus’ Transfer Student Services provides admissions counseling and a variety of programs and services for prospective transfer students. The university defines a transfer applicant as a high school graduate who has been a registered student in another accredited college or university or in college-level extension classes other than a summer session immediately following high school graduation. A transfer applicant may not disregard his or her college record and apply for admission as a new freshman.

Each year UCSD receives more applications from eligible transfer students than the campus can accommodate. In addition to satisfying UC minimum requirements, only transfer students who have completed ninety or more transferable quarter-units by the end of spring term are considered for admission. Priority is given to students transferring from California community colleges. See “Advanced-Standing Selection.”

UCSD admits transfer applicants at the junior level only. To be competitive, applicants need to present an academic profile stronger than that represented by the minimum UC admissions requirements, and they should complete preparation for their intended field of study.

IMPACTED MAJORS

It sometimes becomes necessary to limit enrollment in certain majors. When this occurs the affected majors will be listed in the General Catalog as soon as possible. When the catalog does not reflect these conditions, newly admitted students will be notified of them in the university’s admissions letter. Currently, the following majors are considered impacted for transfer applicants: bioengineering and bioengineering: biotechnology; computer science, and computer engineering (within the computer science and engineering department); computer engineering (within the electrical and computer engineering department). Transfer students interested in applying to any of the above majors must select an alternate major on the UC application. Qualified applicants not admitted directly to the major will be admitted to their alternate major, provided it is not impacted.

POST-SCREENING OF ELECTRICAL ENGINEERING MAJORS

Effective fall 2006 the electrical engineering major within the Department of Electrical and Computer (ECE) Engineering is no longer considered an impacted major. Entering freshmen and transfer students who have indicated the desire to major in electrical engineering will be admitted directly to the major. Continuing UCSD students who wish to transfer into the electrical engineering major will be evaluated under the rules that are in effect for the year in which they enter the major. Effective fall 2006, to remain in good standing as an electrical engineering major, a student must complete a minimum of eight progress review courses with a C- or better during his or her first five quarters for freshmen or during the first three quarters for continuing UCSD and transfer students. The average GPA from any six of the progress review courses, including at least two from electrical engineering progress review courses, must exceed 2.50.

The Required Review of Student Progress for Electrical Engineering majors is explained in greater detail under the Department of Electrical and Computer Engineering (ECE) section of this catalog.

PRE-MAJORS

The following majors admit transfer students to pre-major status only: bioengineering: pre-medical, engineering physics, human development, ICAM-music, ICAM-visual arts, literature/writing, math-computer science, visual arts-media (computing emphasis).

As a pre-major, you must satisfy all prerequisites before admission to the major. The set of conditions, determined on a department-by-department basis, and approved by the San Diego Committee on Educational Policy, is explained in detail under the department listing in this catalog.

Other departments may be approved to offer pre-majors by the Committee in Educational Policy subsequent to this publication. Please refer to “Major Fields of Study” in the introduction to the catalog.

Transfer Eligibility

CALIFORNIA RESIDENTS (MINIMUM UC REQUIREMENTS)

As a transfer applicant you must meet one of the requirements described below to be considered for admission to the university. Admission to UCSD is very competitive. You must exceed the minimum UC admission requirements.

1. If you were eligible for admission to UC when you graduated from high school—meaning you satisfied the subject, scholarship, and examination requirements, or were identified by the university during your senior year in high school as eligible under the Eligibility in the Local Context (ELC) program—you are eligible to transfer if you have a C (2.0) average in your transferable course work.

2. If you met the scholarship requirements but did not satisfy the subject requirement, you must take transferable college courses in the missing subjects, earning a C or better in each required course, and have an overall C average in all transferable course work to be eligible to transfer.

3. If you were not eligible for admission to UC when you graduated from high school because you did not meet the scholarship requirements, you must have:

 a. Completed ninety quarter-units (sixty semester-units) of UC transferable college credit with a grade point average of at least 2.4, and;

 b. Completed a course pattern requirement, earning a grade of C or better in each course, to include:

 - two UC transferable college courses (three semester- or four to five quarter-units each) in English composition, and;
 - one UC transferable college course (three semester- or four to five quarter-units each) in mathematical...
NON-CALIFORNIA RESIDENTS (MINIMUM UC REQUIREMENTS)

The minimum admission requirements for nonresident transfer applicants are the same as those for residents, except that nonresidents must have a grade-point average of 2.8 or higher in all UC transferable college course work.

SECOND BACCALAUREATE/LIMITED STATUS APPLICANTS

For the past several years, UCSD has not accepted applications from students who have earned a four-year degree. Please check with the Office of Admissions and Relations with Schools for information on whether applications for second baccalaureate or limited status are being accepted.

If there is a policy change, applications received by the admissions office from nondegree seeking students, or those who have earned a four-year degree, will be reviewed by the college provost's office. Limited status (nondegree seeking) applicants and those seeking a second B.A. or B.S. will be held to the same restrictions as are other newly admitted students; fields that have restrictions for admission (such as engineering) will also be restricted to these applicants. Students will be screened according to the amount of space available in the college. Admissions will be on an individual basis, and there is no guarantee of admission to the undergraduate college or to a particular major. Applicants seeking a second B.A. or B.S. degree will be given consideration on a space-available basis with a lower priority than all other admitted students. Applicants for a second B.A. or B.S. will have limited status until such time as they have met the prerequisites to the major, filed a program approved by the major department and had their proposed program reviewed and approved or disapproved by the college. Limited status students are not awarded on-campus housing.

Limited status students will be eligible to apply for a Guaranteed Student Loan if they have not exceeded the duration limit of eighteen quarters of postsecondary attendance. Academic transcripts will be required from all institutions attended prior to the Financial Aid Office's certifying of the application.

Determining Your Grade-Point Average

Your grade-point average for admission purposes is determined by dividing the total number of acceptable units you have attempted into the number of grade points you earned on those units. You may repeat courses that you completed with a grade lower than C (2.0).

The scholarship standard is expressed by a system of grade points and grade-point averages earned in courses accepted by the university for advanced-standing credit. Grade points are assigned as follows: for each unit of A, four points; B, three points; C, two points; D, one point; and F, no points.

Credit from Another College

The university gives unit credit to transfer students for courses they have taken at other accredited colleges and universities, including some extension courses. To be accepted for credit, the courses must be consistent with those offered at the university, as determined by the Office of Admissions and Relations with Schools. Applications from students who have more than 135 quarter-units (ninety semester-units) of transfer credit and meet selection criteria are considered to have excess units (senior standing). Applicants in this category may be reviewed for admission if space permits.

Many students who plan to earn a degree at the university find it to their advantage to complete their freshman and sophomore years at a California community college. Each community college offers a full program of courses approved for transfer credit. The university will award graduation credit for up to seventy semester- (105 quarter-) units of transferable course work from a community college. Courses in excess of seventy semester-units will receive subject credit and may be used to satisfy university subject requirements.

The transferability of units from California community colleges and all other postsecondary institutions is as follows: (1) the UC Office of the President determines unit transfer policies which are binding upon, and implemented by, each campus’ admissions office; (2) applicability of transferred units to breadth (general-education) requirements is determined for each UCSD college by its provost (see also “Transfer Agreements” below); (3) applicability of units toward the major is determined by the appropriate UCSD academic department. Before applying to UCSD you may obtain more information on many of these matters from the Office of Admissions and Relations with Schools.

Applicants who have completed courses at a postsecondary institution outside the U.S. should have these records sent to the Office of Admissions and Relations with Schools as soon as possible. Advanced standing credit for appropriate courses will be decided on an individual basis.

Note: The University of California does not give credit for CLEP examinations.

University of California/UC San Diego Transfer Agreements and Preparation Programs

UC San Diego strongly recommends that transfer students complete lower-division breadth and general-education (B/GE) requirements prior to transfer. Transfer students are also strongly advised to complete all lower-division preparation for the major prior to enrollment.

The University of California, San Diego has established five transfer agreements and preparation programs. These agreements and programs, Transfer Admission Guarantee (TAG), UniversityLink, UC Transfer Reciprocity, Intersegmental General-Education Transfer Curriculum Agreement, and Articulation, allow students to fulfill all or most lower-division B/GE requirements prior to transfer.

Transfer students may fulfill their lower-division B/GE requirements with any of these agreements or programs, or they may fulfill them at UCSD. Completion of IGETC or UC Reciprocity agreements will satisfy the lower-division requirements of Earl Warren, Thurgood Marshall,
Sixth, or John Muir College only. Students who follow IGETC or UC Reciprocity are welcome to apply to Eleanor Roosevelt or Revelle College. Courses completed prior to transfer will be applied toward the college’s own lower-division requirements. Revelle students must also complete the remainder of the college’s requirements. Students at Eleanor Roosevelt College must complete three academic quarters of the “Making of the Modern World” sequence in addition to the IGETC or UC Reciprocity requirements. They must also complete any of the college’s general education requirements which can be met by transfer coursework. The college will make every effort to apply as much transfer coursework as possible. Transfer applicants should refer to the catalog pages for individual departments’ specific courses for GPA requirements.

Transfer Admission Guarantee (TAG)

UCSD has established a Transfer Admission Guarantee (TAG) program with thirty-three California community colleges. Completing the provisions of the TAG contract will guarantee admission to the term and UCSD college of choice, but not the major. Prospective students completing the provisions of the TAG contract will be guaranteed admission to UCSD and to the college of choice, but not necessarily to an impacted major. Please refer to the catalog pages of individual departments for any specific courses or GPA requirements that may exist for transfer students hoping to be admitted to an impacted major. A list of impacted majors is on page 38 of the catalog. TAG also allows students to fulfill all or most lower-division B/GE requirements prior to transfer. TAG contracts must be signed and submitted by deadlines for specific terms. TAG community college counselors can give you information regarding this program.

Participating TAG colleges are: American River, City College of San Francisco, College of San Mateo, Cosumnes, Cuyamaca, DeAnza, Diablo Valley, El Camino, Folsom Lake, Foothill, Fullerton, Glendale, Grossmont, Imperial Valley, Irvine Valley, Los Angeles Pierce, Mira Costa, Moorpark, Mount San Antonio, Orange Coast, Palomar, Pasadena City, Sacramento City, Saddleback, San Diego City, San Diego Mesa, San Diego Miramar, Santa Barbara City, Santa Monica, Santa Rosa, Sierra, Southwestern, and West Valley.

UniversityLink

UniversityLink provides guaranteed admission to high school seniors who sign an agreement and successfully complete academic and program requirements at a participating community college. UniversityLink partnerships are currently established with the following colleges: Cuyamaca, East Los Angeles, Grossmont, Imperial Valley, Mira Costa, Palomar, San Diego City, San Diego Mesa, San Diego Miramar, and Southwestern.

Transfer Preparation Programs

The following avenues do not guarantee admission. However, they do allow you to fulfill your lower-division general-education requirements at the community college or other UC campus:

UC Transfer Reciprocity Agreement

Transfers who have attended any campus of the University of California and satisfied lower-division breadth and general-education (B/GE) requirements at that campus prior to transfer may consider these requirements satisfied for John Muir, Thurgood Marshall, Sixth, or Earl Warren college only. Students who follow UC Reciprocity are welcome to apply to Eleanor Roosevelt or Revelle college. Courses completed prior to transfer will be applied toward the college’s own lower-division requirements. Revelle students must also complete the remainder of the college’s requirements. Students at Eleanor Roosevelt College must complete three academic quarters of the “Making of the Modern World” sequence in addition to the UC Reciprocity requirements. They must also complete any of the college’s general education requirements which can be met by transfer coursework. The college will make every effort to apply as much transfer coursework as possible.

Transfers should obtain the “IGETC Certification” from their community college and submit it to the Office of Admissions and Relations with Schools. Students are encouraged to provide this certification prior to the start of classes at UCSD.

Articulation

UCSD has Articulation Agreements for general education breadth requirements with forty-four California community colleges, and major preparatory agreements for certain majors with a number of California community colleges. These agreements can be found on the ASSIST Web site (http://www.assist.org), which includes statewide transfer information.

International Applicants

International applicants must meet highly rigorous selection criteria for admission. Courses at UC San Diego are conducted in English, and every student must have sufficient command of that language to benefit from instruction. To demonstrate such command, students whose native language is not English will be expected to take the Test of English as a Foreign Language (TOEFL). Arrangements for taking this test may be made by writing to the Educational Testing Service, TOEFL Registration Office, P.O. Box 6151, Princeton, New Jersey 08541-6151, U.S.A. Online information is available at http://www.toefl.org. The minimum acceptable TOEFL score is 220 (computer-based exam) or 550 (paper-based exam).
In lieu of the TOEFL, a score of 7 (academic module) on the International English Language Testing System (IELTS) will also be accepted. Information is available at http://www.ielt.org.

The results of this test will be used to determine whether the applicant’s command of English is sufficient to enable him or her to pursue studies effectively at UCSD. International students whose command of English is slightly deficient will be required to take an English course and, therefore, a reduced academic program.

In addition to an adequate English-language background, international students must have sufficient funds available to cover all fees, living, and other expenses; and transportation connected with their stay in the United States (see "Fees and Expenses").

International students are required to obtain health insurance for themselves and dependents who accompany them. Suitable insurance policies and additional information are available at the Student Health Service and at the International Center.

Address all communications concerning undergraduate admission of international students to: University of California, San Diego, Office of Admissions and Relations with Schools, Student Affairs, 9500 Gilman Drive, Dept. 0021, University of California, San Diego, La Jolla, CA 92093-0021, e-mail: admissionsinfo@ucsd.edu.

How to Apply for Admission

Undergraduate admissions applications are available online in the fall at the UC Pathways Web site (http://www.universityofcalifornia.edu/apply). Follow the accompanying directions carefully. If you choose to print and mail your application, please send it to:

University of California
Undergraduate Application Processing Center
P.O. Box 4010
Concord, CA 94524-4010

You may apply to as many as eight campuses of the University of California on one application form.

Application Fees

The basic application fee of $60 entitles you to be considered at one campus of the university. For each additional campus you select, you must pay an extra $60 fee. These fees are not refundable. International nonimmigrant applicants pay a $70 application fee for each campus selected.

When to Apply for Admission

To make sure that you will be considered for admission to the university campus(es) you want to attend, and to the major or program of study you want to pursue, you must submit your completed application during the Priority Filing Period (see below).

If you plan to apply for financial aid, university housing, or other special programs where early application is important, you must also file during this time.

Priority Filing Period

<table>
<thead>
<tr>
<th>Quarter</th>
<th>File Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Quarter</td>
<td>November 1–30, 2006</td>
</tr>
<tr>
<td>Winter Quarter</td>
<td>July 1–31, 2007</td>
</tr>
<tr>
<td>Spring Quarter</td>
<td>October 1–31, 2007</td>
</tr>
</tbody>
</table>

Note: UCSD accepts winter and spring applications from Transfer Admission Guarantee (TAG) students only.

Adding a Campus

If you decide to apply to additional UC campuses after you submit your application, submit your request in writing to the processing service before the filing deadline. Be sure to note your application ID number, additional campus(es) to which you wish to apply, major(s), major code(s), and a check or money order for $60 for each additional campus you select, payable in U.S. dollars to the “Regents of the University of California.” International nonimmigrant applicants pay a $70 application fee for each campus selected. You may not substitute new campus choices for your original choices. Your request will be honored only if the campus(es) you choose still has space available. The processing service will notify you as to whether your application was accepted. Do not submit a second application form; it will not be processed.

Selecting Campuses and Programs of Study

You are encouraged to approach the selection of a university campus and a program of study very carefully. You may be familiar with only one or two of the university’s general campuses, probably those nearest to your home or mentioned more frequently in the news. You should seriously consider the many different educational alternatives and programs offered by other campuses of the university before completing your application. Your counselor and the university staff in the Office of Admissions and Relations with Schools can provide you with insights that will help you in the selection process.

College Choice

The application to UCSD must include a choice of undergraduate college (Eleanor Roosevelt, Thurgood Marshall, Earl Warren, Revelle, John Muir, or Sixth) before it can be processed. Selecting alternative UCSD college choices is also advisable since each college has enrollment quotas that limit the number of new freshmen and transfer students. The Office of Admissions and Relations with Schools will select an alternate college if an alternate choice is not indicated.

Transcripts

If you are admitted for the fall term, you must arrange to have official transcripts sent to the Admissions Office no later than July 15. If you attended school outside the United States, see the information in the box below.

Freshman Applicants: If you are admitted you must arrange to have an official, final high school transcript (showing your date of graduation) sent to the campus where you plan to enroll. Unless a campus requests it, do not send a sixth or seventh semester transcript.

Transfer Applicants: If you are admitted, you will be asked to submit official transcripts from all schools and colleges you have attended, including high school, regardless of your length of attendance or whether you believe the credit is transferable. Some campuses may request transcripts prior to admission.

Transcript Information for Applicants Who Have Attended School Outside the United States

The Admissions Office may make a preliminary evaluation of your application based on the information you provide on your application. However, if you are admitted, the university must receive an official academic record directly from
each institution you attended, beginning with grade nine, and up to, and including, the school or college/university you currently attend.

Each academic record must list the dates you attended the institution, the titles of courses and examinations you completed, the grades (marks) you received, the credit, hours or units earned, and any degree or diploma you may have received. In the United States, the academic record is called a “transcript.” It may be called by another name—such as leaving certificate, baccalauréat—in your country.

Because it may take some time for schools outside the U.S. to forward your records to the university, you are encouraged to send a legible photocopy of your official foreign academic records directly to the Admissions Office at each campus to which you apply. (Do not attach to your application for admission.)

The university recognizes that it may be difficult to obtain foreign records in the event of political upheaval or natural disaster; however, these situations are rare. Failure to provide official records may jeopardize your enrollment at the university.

The transcripts and other documents that you submit as part of your application become the property of the university; they cannot be returned to you or forwarded in any form to another college or university.

Checklist for Applicants

1. File an application on the University of California’s Pathways Web site (http://www.universityofcalifornia.edu/apply) during the November filing period. Fee may be paid by credit card, or you may ask the UC application processing services to bill you by mail.
2. You must select UC San Diego in order of preference. Be sure to sign the form.
3. Complete your personal statement.
4. Fill in the self-reported academic data and test information carefully and accurately.
5. Take the ACT Assessment plus Writing or the SAT Reasoning Test, and SAT Subject Tests (in two different areas) if you are a freshman applicant no later than December of your senior year. Refer to the Examination Requirement section on page 41 for full details.
6. Request that your school(s) send transcripts and other required documents directly to:

 Office of Admissions and Relations with Schools
 UCSD
 9500 Gilman Drive, 0021
 La Jolla, CA 92093-0021

 Final high school transcripts, and all college transcripts for transfer students, must be on file in the UCSD Office of Admissions and Relations with Schools by July 15.

Notification of Admission

Admission–Freshmen

If you are a freshman applicant and you filed during the priority filing period, UC San Diego will notify you whether you have been admitted beginning mid-March and no later than March 31. All offers of admission are provisional until the receipt and verification of your test results and official final high school transcript (and college transcript, if applicable). If you are offered admission based on your self-reported academic record, official documents will be used to verify the self-reported academic data you submit. Offers of admission will be rescinded if: a) there are discrepancies between your official transcripts and your self-reported academic record; b) you do not complete the courses listed as “in progress” or “planned”; or c) you do not complete your twelfth-grade courses at the same academic level as in previous course work.

Admission–Transfer

If you are applying to transfer, UCSD will send you notification between mid-March and May 1. All offers of admission are provisional until the receipt and verification of all official transcripts. If you are offered admission based on your self-reported academic record, your official high school transcript and transcripts from all colleges attended will be used to verify the self-reported academic data you submit. Offers of admission will be rescinded if: a) there are discrepancies between your official transcripts and your self-reported academic record; b) any college or school attended is omitted from your application; c) you do not complete the courses listed as “in progress” or “planned;” or d) the specified GPA is not maintained for courses “in progress” or “planned.”

These admission notification dates apply only to applicants who file within the priority periods. Applicants for winter and spring quarters are notified as soon as possible (within three months) following receipt of all appropriate documents.

After receipt of notification of admission:

1. Read the information in your online admission notification carefully, noting any special provision governing your admission.
2. Request that any outstanding transcripts be forwarded to the Office of Admissions and Relations with Schools by the stated deadline.
3. Complete and submit to the Office of Admissions and Relations with Schools the Statement of Intent to Register (SIR). (Do not forward to the UC office near you.)

 A Medical History form and to send it to the Office of Student Health Services. The Form can be downloaded from the UCSD Website.

 The university requires the information on the Form to complete the enrollment of each student.

 The student will be expected to comply with the requirements of the university and the campus to which the student is admitted. The student is expected to read and sign the Statement of Intent to Register (SIR), the Office of Admissions and Relations with Schools provides information to various campus offices including the Financial Aid Office, Housing and Dining Services, and your college provost. You will then receive additional information from each of these offices. The $100 nonrefundable fee (if required) accompanying your SIR is applied toward payment of the university registration fee for the quarter of your admission. International applicants outside the territorial United States are not required to submit the $100 deposit with the Statement of Intent to Register. Even though you may be admitted to more than one campus of the University of California, you can return SIR to only one campus.

Statement of Intent to Register (SIR)

Upon receipt of your Statement of Intent to Register (SIR), the Office of Admissions and Relations with Schools provides information to various campus offices including the Financial Aid Office, Housing and Dining Services, and your college provost. You will then receive additional information from each of these offices. The $100 nonrefundable fee (if required) accompanying your SIR is applied toward payment of the university registration fee for the quarter of your admission. International applicants outside the territorial United States are not required to submit the $100 deposit with the Statement of Intent to Register. Even though you may be admitted to more than one campus of the University of California, you can return SIR to only one campus.

Student Health Requirement

Entering students are required to complete a Medical History form and to send it to the
<table>
<thead>
<tr>
<th>EXAM AND UNITS FOR UNIVERSITY CREDIT</th>
<th>UCSD COURSE EXEMPTIONS (OR USE ON MAJOR)</th>
<th>REVELLE COLLEGE</th>
<th>MUIR COLLEGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art (Studio)</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Drawing Portfolio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 2D Portfolio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 3D Portfolio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8-unit maximum for all tests)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art-History</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>Score of 4 or 5 = BILD 1 and 2</td>
<td>Score of 4 or 5 meets Revelle biology requirement.</td>
<td>Score of 4 or 5 exempts BILD 1 and 2.</td>
</tr>
<tr>
<td>Chem.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>Score of 4 or 5 = exempt Chem. 4 or 11.</td>
<td>Partial completion of natural science requirement.</td>
<td>Score of 3 exempts Chem. II. Score of 4 exempts Chem. II. (May take 6AH, 6BH, and 6CH for credit) Score of 5 exempts Chem. II. (May take 6AH, 6BH, and 6CH for credit)</td>
</tr>
<tr>
<td>Computer Science</td>
<td>Score of 4 on A = exempt CSE 8A and 8AL.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td>Score of 5 AP Micro = Econ. 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>Score of 4 or 5 = exempt Earth Science 10.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Science</td>
<td>Score of 4 or 5 = exempt Earth Science 10.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geography, Human</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>Score of 4 or 5 = exempt Latin 1, 2, 3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>Score of 4 = exempt Ling. 1C/1CX.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td>Score of 4 or 5 = exempt Lit. 2B.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>Score of 4 or 5 = exempt Math. 20A or 10A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Music</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td>B exam = elective credit and exempt Phys. 10.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8-unit maximum for all tests)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychology</td>
<td>Score of 4 or 5 = exempt Psych. 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The University of California grants credit for all College Board Advanced Placement Tests on which a student scores 3 or higher. The credit may be subject credit for use on a minor or prerequisites to a major, or credit toward general-education requirements or elective units toward graduation.

The number of units granted for AP tests are not counted toward the maximum number of credits required for formal declaration of an undergraduate major or the maximum number of units a student may accumulate prior to graduation. Students who enter the university with AP credit do not have to declare a major earlier than other students, nor are they required to graduate earlier.
<table>
<thead>
<tr>
<th>THURGOOD MARSHALL COLLEGE</th>
<th>WARREN COLLEGE</th>
<th>ELEANOR ROOSEVELT COLLEGE</th>
<th>SIXTH COLLEGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 units of elective credit.</td>
<td>2 courses toward Visual Arts or Humanities PofC, or Area Study.</td>
<td>1 course toward Group B fine arts requirement. 2D or 3D toward fulfillment of 1 of the 2 GE courses in Fine Art.</td>
<td>1 course toward Art Making.</td>
</tr>
<tr>
<td>May apply 1 course toward fine arts.</td>
<td>2 courses toward Visual Arts or Humanities PofC, or Area Study.</td>
<td>1 course toward Group B fine arts requirement.</td>
<td>1 course toward Narrative, Aesthetic and Historical Reasoning.</td>
</tr>
<tr>
<td>1 course of natural science requirement. May also apply 1 course toward disciplinary breadth if noncontiguous to major.</td>
<td>2 courses toward Science and Technology or Fundamentals of Bio PofC. Score of 4 or 5 meets 2 courses toward Biology or Sci & Tech PofC, or Fundamentals of Biology PofC. May not take Bio 1 or 2 or BILD 10.</td>
<td>Score of 3, 4, or 5 fulfills the natural science requirement.</td>
<td>Score of 3, 4, or 5: meets 1 course toward Analytical Methodologies/Scientific Method.</td>
</tr>
<tr>
<td>May apply 1 course of natural science requirement and may apply 1 course toward disciplinary breadth if noncontiguous to major.</td>
<td>Score of 3 meets 2 courses toward Science and Technology PofC. Score of 4 meets 2 courses toward Science & Technology PofC; 1 course may apply toward Chemistry PofC, for Chemistry A). Score of 5 requires both Chemistry 6ABC, BBH; only 2 courses may count toward Science and Technology PofC.</td>
<td>Score of 3, 4, or 5 fulfills the natural science requirement.</td>
<td>Score of 3, 4, or 5: meets 1 course toward Analytical Methodologies/Scientific Method.</td>
</tr>
<tr>
<td>All exam = 1 course toward mathematics/computer/statistics requirement.</td>
<td>A exam: 2 units of elective credit; score of 4 on A exam: 4 units of elective credit; score of 5 on A exam meets 1 course toward Formal Skills requirement or Science and Technology PofC.</td>
<td>A exam = 2 units elective credit AB exam = 1 of 2 courses quantitative/formal skills requirement.</td>
<td>1 course toward Information Technology Fluency requirement.</td>
</tr>
<tr>
<td>Score of 5 may apply 1 course toward disciplinary breadth if noncontiguous to major.</td>
<td>Each score of 3 or 4 meets 1 course toward a Perspectives in Social Science PofC. Each score of 5 meets 1 course toward a Perspectives in Social Science or Economics PofC.</td>
<td>4-8 units of elective credit.</td>
<td>Score of 4, or 5: 1 course toward Social Analysis. Score of 3: elective credit.</td>
</tr>
<tr>
<td>8 units of elective credit.</td>
<td>Score of 3, 4 or 5 satisfies Entry Level Writing requirement.</td>
<td>8 units of elective credit.</td>
<td>Either test: satisfies Entry Level Writing requirement, 8 units elective credit.</td>
</tr>
<tr>
<td>4 units of elective credit.</td>
<td>1 course toward Science and Technology PofC. Meets 1 course toward natural science requirement.</td>
<td>1 course toward Analytical Methodologies/Scientific Method.</td>
<td>1 course toward Analytical Methodologies/Scientific Method.</td>
</tr>
<tr>
<td>Score of 5 may apply 1 course toward disciplinary breadth if noncontiguous to major.</td>
<td>1 course toward Perspectives in Social Science PofC or Political Science PofC or Political Science Area Study (also satisfies American History and Institutions requirement).</td>
<td>4 units of elective credit.</td>
<td>Score of 4 or 5 fulfills Social Analysis requirement.</td>
</tr>
<tr>
<td>Score of 5 may apply 1 course toward disciplinary breadth if noncontiguous to major.</td>
<td>1 course toward Perspectives in Social Science PofC or Political Science PofC or Political Science Area Study.</td>
<td>4 units of elective credit.</td>
<td>Score of 4 or 5 fulfills Social Analysis requirement.</td>
</tr>
<tr>
<td>May apply 2 courses toward disciplinary breadth if noncontiguous to major.</td>
<td>2 courses toward History or Humanities PofC or Area Study; may take HUID 2A, 2B, or 2C to complete sequence(s).</td>
<td>8 units of elective credit.</td>
<td>1 course toward Narrative, Aesthetic and Historical Reasoning.</td>
</tr>
<tr>
<td>May apply 2 courses toward disciplinary breadth if noncontiguous to major.</td>
<td>2 courses toward History or Humanities PofC or Area Study.</td>
<td>1 course may apply toward regional specialization. See ERC academic counselor for details</td>
<td>1 course toward Narrative, Aesthetic and Historical Reasoning.</td>
</tr>
<tr>
<td>May apply 2 courses toward disciplinary breadth if noncontiguous to major.</td>
<td>2 courses toward History or Humanities PofC or Area Study.</td>
<td>8 units of elective credit.</td>
<td>1 course toward Narrative, Aesthetic and Historical Reasoning.</td>
</tr>
<tr>
<td>May apply 2 courses toward disciplinary breadth if noncontiguous to major.</td>
<td>Score of 3 meets 2 courses toward a Foreign Language and Culture PofC or Area Study; score of 4 meets 2 courses toward a Foreign Language and Culture PofC, or Area Study; score of 5 meets 2 courses toward a Foreign Language and Culture, Literature, or Humanities PofC, or Area Study.</td>
<td>3-8 units of elective credit.</td>
<td>1 course toward Narrative, Aesthetic and Historical Reasoning.</td>
</tr>
<tr>
<td>May apply 1-2 courses toward disciplinary breadth if noncontiguous to major.</td>
<td>Score of 3, 4 or 5 either test meets 1 course toward Classical Studies PofC, or Humanities PofC or Area Study.</td>
<td>Must take the Latin Proficiency exam.</td>
<td>1 course toward Narrative, Aesthetic and Historical Reasoning.</td>
</tr>
<tr>
<td>May apply 2 courses toward disciplinary breadth if noncontiguous to major.</td>
<td>Score of 3 meets 2 courses toward a Foreign Language and Culture or 1 course toward Literature, Humanities PofC or Area Study; score of 4 meets 2 courses toward a Foreign Language and Culture; score of 5 meets 2 courses toward a Foreign Language and Culture, Literature, or Humanities PofC or Area Study.</td>
<td>Meets language proficiency requirement.</td>
<td>1 course toward Narrative, Aesthetic and Historical Reasoning.</td>
</tr>
<tr>
<td>If AP exam may apply 1 course toward math and statistical requirement. If BC exam may apply 2 courses toward math and statistical requirement.</td>
<td>AB exam meets 1 course of formal skill requirement; BC exam completes 2 courses formal skills requirement.</td>
<td>AB exam = 1 course toward quantitative/formal skills requirement.</td>
<td>AB or BC exam: 1 course toward Structured Reasoning.</td>
</tr>
<tr>
<td>1 course toward fine arts requirement and 1 course toward the disciplinary breadth requirement if noncontiguous to major.</td>
<td>Completes Formal Skills requirement.</td>
<td>1 course toward Group B fine arts requirement.</td>
<td>1 course toward Art Making.</td>
</tr>
<tr>
<td>8 exam = 1 course of natural science requirement and 1 course toward disciplinary breadth if noncontiguous to major.</td>
<td>4 units of C exam = 1 course of nat. sci. requirement. 8 units of C exam = 1 course of natural science requirement and 1 course toward disciplinary breadth if noncontiguous to major.</td>
<td>8 exam: score of 3, 4 or 5 meets 2 courses toward Science and Technology PofC.</td>
<td>Physics B or Physics C exam: 1 course toward Analytical Methodologies/Scientific Method.</td>
</tr>
<tr>
<td>May apply as 1 course toward disciplinary breadth requirement if noncontiguous to major.</td>
<td>1 course toward Psychology or Perspectives in Social Science P of C or Area Study.</td>
<td>4 units of elective credit.</td>
<td>1 course toward Social Analysis.</td>
</tr>
<tr>
<td>4 units of elective credit.</td>
<td>1 course toward Formal Skills.</td>
<td>1 course toward quantitative/formal skills req.</td>
<td>May apply toward breadth requirements</td>
</tr>
</tbody>
</table>

A student cannot receive credit for a UCSD course which duplicates AP credit. Where the chart says “exempt” or “equal to a UCSD course number,” that course may not be taken for credit. Students who are fluent in a language other than English should not overlook the opportunity to get AP credit by taking the foreign/literature exams.

Note: Please see college academic advisor for clarification of any questions you may have.
Student Health Center. Forms and complete instructions are usually sent to entering students well in advance of registration, or they may be obtained at the Student Health Center. Information submitted to the Student Health Service is kept confidential and is carefully reviewed to help provide individualized health care.

Mandatory Health Insurance: The University of California has established mandatory health insurance as a non-academic condition of enrollment for undergraduates. Health insurance packages will be available for year-round coverage. The cost will be factored into grants, loans, and work-study programs offered to students who receive financial assistance. Students already covered by adequate health insurance can waive the requirement. The new campus-based insurance plans will not replace the primary medical care and referral services provided by the Student Health Service.

Hepatitis B Immunization: The California State Legislature mandates that first-time enrollees at the University of California who are eighteen years of age or younger provide proof of full immunity against Hepatitis B prior to their enrollment. All students who accept UCSD’s offer of admission, and who will still be eighteen years old by the beginning of the Fall Quarter, will receive the Hepatitis B information in the mail from the campus. The immunization consists of a series of three vaccinations. You can receive further information through your health care provider or county health department.

Students are urged also to submit a physical examination form completed by their family physician, particularly if they plan to take part in intercollegiate athletic competition. Routine physical examinations are not provided by the Student Health Service. An optional student health plan that provides additional benefits off campus may be purchased at the time registration fees are paid. Student health insurance is also mandatory for all international and graduate level students and is a condition of enrollment.

Reapplication

An application for admission is effective only for the quarter for which it is submitted. If you are ineligible for admission, or if you are admitted and do not register, you must file a new application to be considered for a later quarter. The selection criteria in effect for the new term must be met.

If you have been admitted to the university, enrolled, and paid registration fees, but did not attend, contact your undergraduate college for information on refunding your registration fees.

Fees and Expenses

The exact cost of attending the University of California, San Diego will vary according to personal tastes and financial resources of the individual. Generally, the total expense for three quarters, or a college year, is estimated at approximately $21,000 for California residents living away from home.

It is possible to live simply and to participate moderately in the life of the student community on a limited budget. The university can assist the student in planning a budget by indicating certain and probable expenses. For information regarding student employment, loans, scholarships, and other forms of financial aid at UC San Diego, see “Campus Services and Facilities” in this catalog.
INTERSEGMENTAL GENERAL-EDUCATION TRANSFER CURRICULUM (IGETC)

Summary Outline

Completion of the Intersegmental General-Education Transfer Curriculum (IGETC) will permit a student to transfer from a community college to a campus in the University of California system without the need, after transfer, to take additional lower-division, general-education courses. It should be noted that completion of the IGETC is not a requirement for transfer to UC, nor is it the only way to fulfill the lower-division, general-education requirements of UC prior to transfer. Depending on a student’s major and field of interest, the student may find it advantageous to take courses fulfilling the general-education requirements of the UC campus or college to which the student plans to transfer. IGETC is applicable at Earl Warren, Sixth, Thurgood Marshall, and John Muir colleges only. Courses completed prior to transfer will be applied toward the college’s own lower-division requirements. Revelle students must also complete the remainder of the college’s requirements. Students at Eleanor Roosevelt College must complete three academic quarters of the “Making of the Modern World” sequence in addition to the IGETC requirements. They must also complete the remainder of the college’s general education requirements.

Transfers should obtain the “IGETC Certification” from their community college and submit it to the Office of Admissions and Relations with Schools. Students are strongly encouraged to provide the IGETC certification prior to the start of classes at UCSD.

<table>
<thead>
<tr>
<th>English Communication:</th>
<th>One course, English Composition, three semester- (four to five quarter-) units; this course is a prerequisite to Critical Thinking.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>One course, Critical Thinking-English Composition, three semester- (four to five quarter-) units; strong emphasis on writing; prerequisite: English Composition.</td>
</tr>
<tr>
<td>Mathematical Concepts and Quantitative Reasoning:</td>
<td>One course, Mathematics/Quantitative Reasoning, three semester- (four to five quarter-) units.</td>
</tr>
<tr>
<td>Arts and Humanities:</td>
<td>Three courses, at least one course in arts, and at least one course in humanities, nine semester- (twelve to fifteen quarter-) units.</td>
</tr>
<tr>
<td>Social and Behavioral Sciences:</td>
<td>Three courses in at least two disciplines or an interdisciplinary sequence, social and behavioral sciences, nine semester- (twelve to fifteen quarter-) units.</td>
</tr>
<tr>
<td>Physical and Biological Sciences:</td>
<td>One course in each area, at least one must include a laboratory; two courses, seven to nine semester- (nine to twelve quarter-) units.</td>
</tr>
<tr>
<td>Language Other than English:</td>
<td>Proficiency equivalent to two years’ high school study in the same language.</td>
</tr>
</tbody>
</table>

ESTIMATED EXPENSES FOR UNDERGRADUATE RESIDENTS OF CALIFORNIA

<table>
<thead>
<tr>
<th>Budget Category</th>
<th>Living With Parents</th>
<th>University Housing</th>
<th>Off Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resident Fees</td>
<td>$6,684.60</td>
<td>$6,684.60</td>
<td>$6,684.60</td>
</tr>
<tr>
<td>Room and Board</td>
<td>$2,631</td>
<td>$9,657</td>
<td>$8,501</td>
</tr>
<tr>
<td>Books and Supplies</td>
<td>$1,504</td>
<td>$1,504</td>
<td>$1,504</td>
</tr>
<tr>
<td>Transportation</td>
<td>$1,965</td>
<td>$1,097</td>
<td>$1,925</td>
</tr>
<tr>
<td>Personal Expenses</td>
<td>$1,594.40</td>
<td>$1,598.40</td>
<td>$1,665.40</td>
</tr>
<tr>
<td>Health Insurance Fee/Allowance</td>
<td>$738</td>
<td>$738</td>
<td>$738</td>
</tr>
<tr>
<td>Basic Budget Totals</td>
<td>$15,117</td>
<td>$21,279</td>
<td>$21,018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory Orientation Fees</th>
<th>Entering Freshmen</th>
<th>Entering Transfers</th>
<th>Non-Resident Tuition for Undergraduates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$130</td>
<td>$45</td>
<td>$18,168 + $516 Education Fee</td>
</tr>
</tbody>
</table>

Note: Fees are subject to change by Board of Regents. These fee levels will be implemented if the university's budget is funded consistent with the agreement with the governor and sufficient funds are provided by the state to buy-out the fee increases previously approved by the regents.
Undergraduate Registration

Enrollment in Courses
Prior to the quarter for which they have been admitted, new students will receive information from their college regarding orientation dates, course enrollment, and fee-payment deadlines. Enrollment materials will be provided at the college provost’s offices on the days assigned for new students’ registration. New freshman students admitted for the fall quarter will be invited to attend a new student orientation during the summer preceding fall quarter.

New Student Orientation/Enrollment
Orientation programs are designed to acquaint students with the nature, functions, and purposes of UCSD’s college system, and to show students how to deal with a variety of requirements set by the university, college, and academic departments. Although all six colleges have the same goals for students, each has developed its own distinctive program. The professional staffs of Revelle, Muir, Marshall, Warren, Roosevelt, and Sixth Colleges have designed programs for their respective students and the students’ parents.

New students will be made aware of the opportunities offered by their college and the UCSD community as a whole.

All new students are required to attend an orientation session, and they will be charged a fee for the program. Parents’ attendance is optional and varies across the colleges, and a fee is typically charged. Details will be provided by the college.

Enrollment and orientation are two distinct and separate events occurring at different times. All new students, regardless of their college orientation schedule, enroll online (but not on campus) during the same enrollment period. The colleges’ academic advisors guide students through this online process. Details of both the orientation and enrollment proceedings are posted on the colleges’ respective Web sites after the final publicized deadline for Statement of Intent to Register (SIR), which is determined by the Office of Admissions.

In addition to the Summer Orientation, students should attend Welcome Week—the week before the official opening of the fall quarter and the beginning of classes.

Continuing Student Enrollment
Continuing students (those currently registered or eligible to register) should refer to TritonLink for enrollment information, dates, and fee payment instructions: https://tritonlink.ucsd.edu

Definitions
Students are considered enrolled when they have requested space in at least one course and space in classes has been reserved. Students are not considered registered until they have both enrolled in courses and paid registration fees. Waitlisting a class does not constitute enrollment.

Enrollment is processed using WebReg in TritonLink on the Web. Continuing undergraduate students are assigned a start time, after which they may enroll in classes. Start times are based on the number of units completed. Students who have completed more units will receive earlier start times than students with fewer units.

Students are responsible for all courses in which they are enrolled. Students should check TritonLink/WebReg to confirm class enrollments.

Approval for Enrollment for More than 200 Units
The undergraduate program consists of four four-unit courses each quarter, or sixteen units per quarter, for four years. Students must complete a minimum of thirty-six units in three consecutive quarters in order to satisfy the minimum progress requirements (see “Minimum Progress” in the “Academic Regulations” section). Undergraduate students wishing to take more than twenty-two units of credit in a quarter will need their college provost’s approval.

Approval for Enrollment for More than 200 Units
The minimum unit requirement for the bachelor’s degree is 184 quarter-units in Revelle College and 180 quarter-units in Muir, Marshall, Warren, Roosevelt, and Sixth Colleges. A student is expected to complete the requirements for graduation within this minimum unit requirement. The bachelor of science degree may require satisfaction of additional units, depending upon the student’s major. Candidates for B.S. degrees in engineering are permitted 230 units (240 for engineering majors in Revelle and Roosevelt colleges).

Approval for Enrollment for More than 200 Units
Under special circumstances, students may extend their undergraduate training beyond the minimum. Non-engineering students who are attempting to achieve more than 200 quarter-units will not be permitted to register without their college provost’s approval. Other exceptions will be granted only for compelling academic reasons and only with the approval of the college provost and the concurrence of the Committee on Educational Policy.
calculation; all other transfer units are excluded. Advanced placement and international baccalaureate units are excluded. (See information regarding “Minimum Unit Limitation” in the “Academic Regulations” section of this catalog.)

Enrollment and Registration Holds

A student may have a “hold” placed on his or her enrollment or registration (payment of fees) and/or academic transcripts for the following reasons:

1. Failure to respond to official notices.
2. Failure to settle financial obligations when due or to make satisfactory arrangements with the Student Business Services Office.
3. Failure to present certification of degrees and/or status on leaving previous institution(s).
4. Failure to comply with admission conditions.

Each student who becomes subject to a hold action is given advance notice and ample time to deal with the situation. However, if the student fails to respond, action will be taken without further notice, and he or she is entitled to no further services of the university, except assistance toward reinstatement.

Undergraduate students wishing to have their status restored must secure a release from the office initiating the hold action. Reinstatement is not final until the registration process is completed.

Change of Address

UCSD has identified electronic mail as the recognized and official means of communication by which university officials, at their discretion, may send communications to students. Such communications may be sent exclusively using electronic mail. Students can use TritonLink to request and maintain their university-assigned e-mail address.

In addition, students who change their local or permanent addresses are expected to update their address via TritonLink. Students will be held responsible for communications from any university office sent to the last address on record and should not claim indulgence on the plea of not receiving the communication.

California Residence for Tuition Purposes

TUITION FEE FOR NONRESIDENT STUDENTS

If you have not been living in California with intent to make it your permanent home for more than one year immediately before the residence determination date for each term in which you propose to attend the university, you must pay a nonresident tuition fee in addition to all other fees. The residence determination date is the day instruction begins at the last of the University of California campuses to open for the quarter—and for schools on the semester system, the day instruction begins for the semester.

LAW GOVERNING RESIDENCE

The rules regarding residence for tuition purposes at the University of California are governed by the California Education Code and implemented by Standing Orders of the Regents of the University of California. Under these rules, adult citizens and certain classes of aliens can establish residence for tuition purposes. There are particular rules that apply to the residence classification of minors. (See below.)

WHO IS A RESIDENT?

If you are an adult student (at least eighteen years of age) you may establish residence for tuition purposes in California if: (1) you are a U.S. citizen; (2) you are a permanent resident or other immigrant; or (3) you are a nonimmigrant who is not precluded from establishing a domicile in the United States. Nonimmigrants who are not precluded from establishing domicile in the United States include those who hold valid visas of the following types: A, E, G, H-1, H-4, I, K, L, 0-1, O-3, or R. To establish residence you must be physically present in California for more than one year and you must have come here with the intent to make California your home as opposed to coming to this state to go to school. Physical presence within the state solely for educational purposes does not constitute the establishment of California residence, regardless of the length of your stay. You must demonstrate your intention to make California your home by severing your residential ties with your former state of residence and establishing those ties with California. If these steps are delayed, the one-year duration period will be extended until you have demonstrated both presence and intent for one full year. Effective fall 1993, if your parents are not residents of California or you were not previously enrolled as a UC student, you will be required to be financially independent in order to be a resident for tuition purposes. Your residence cannot be derived from your spouse, registered domestic partner, or your parents.

REQUIREMENTS FOR FINANCIAL INDEPENDENCE

You will be considered “financially independent” if one or more of the following applies: (1) you are at least twenty-four years of age by December 31 of the calendar year for which you are requesting residence classification; (2) you are a veteran of the U.S. Armed Forces; (3) you are a ward of the court or both parents are deceased; (4) you have legal dependents other than a spouse or registered domestic partner; (5) you are married, a registered domestic partner, or a graduate student or a professional student, and you were not claimed as an income tax deduction by your parents or any other individual for the tax year immediately preceding the term for which you are requesting resident classification; or (6) you are a single undergraduate student and you were not claimed as an income tax deduction by your parents or any other individual for the two tax years immediately preceding the term for which you are requesting resident classification, and you can demonstrate self-sufficiency for those years and the current year; (7) your parents are residents of the State of California; (8) you reach the age of majority in California while your parent(s) were residents of this state AND the California resident parent(s) leave the state to establish a residence elsewhere AND you continue to reside in the State of California with all your ties here after your parent(s) departure. (Note: Financial dependence will not be a factor in residence status for graduate student instructors, graduate student teaching assistants, research assistants, junior specialists, postgraduate researchers, graduate student researchers, and teaching associates who are employed forty-nine percent or more of full time or awarded the equivalent in University-administered funds, e.g., grants, stipends, or fellowships at the University of California in the term for which classification is sought.)

ESTABLISHING INTENT TO BECOME A CALIFORNIA RESIDENT

Indications of your intent to make California your permanent residence can include the following: registering to vote and voting in California elections; designating California as your permanent address on all school and employment records, including military records if you are in the military service; obtaining a California driver’s license or, if you do not drive, a California Identification Card; obtaining...
California vehicle registration; paying California income taxes as a resident, including taxes on income earned outside California from the date you establish residence; establishing a California residence in which you keep your personal belongings; and licensing for professional practice in California. The absence of these indicia in other states during any period for which you claim residence can also serve as an indication of your intent. Your intent will be questioned if you return to your former state of residence when the university is not in session. Documentary evidence is required, and all relevant indications will be considered in determining your classification.

GENERAL RULES APPLYING TO MINORS

If you are an unmarried minor (under age eighteen), the residence of the parent with whom you live is considered to be your residence. If you have a parent living, you cannot change your residence by your own act, by the appointment of a legal guardian, or by the relinquishment of your parent’s right of control. If you lived with neither parent, your residence is that of the parent with whom you last lived. Unless you are a minor alien present in the U.S. under the terms of a nonimmigrant visa that precludes you from establishing domicile in the U.S., you may establish your own residence when both your parents are deceased and a legal guardian has not been appointed. If you derive California residence from a parent, that parent must satisfy the one-year durational residence requirement.

SPECIFIC RULES APPLYING TO MINORS

Divorced/Separated Parents

You may be able to derive California resident status from a California resident parent if you move to California to live with that parent on or before your eighteenth birthday. If you begin residing with your California parent after your eighteenth birthday, you will be treated like any other adult student coming to California to establish residence.

Parent of Minor Moves from California

You may be entitled to resident status and not be required to establish financial independence if you are a minor U.S. citizen or eligible alien whose parent(s) was a resident of California who left the state within one year of the residence determination date if:

1. you remained in California after your parent(s) departed;
2. you enroll in a California public post-secondary institution within one year of your parent(s)’ departure; and
3. once enrolled, you maintain continuous attendance in that institution.

Two-Year Care and Control

You may be entitled to resident status if you are a U.S. citizen or eligible alien and you have lived continuously with an adult who is not your parent for at least two years prior to the residence determination date. The adult with whom you are living must have been responsible for your care and control for the entire two-year period and must have been residing in California during the one year immediately preceding the residence determination date.

EXEMPTIONS FROM NONRESIDENT TUITION

Member of the Military

If you are an undergraduate student and a member of the U.S. military stationed in California on active duty or the spouse, registered domestic partner, or dependent child, you may be exempt indefinitely from the nonresident tuition fee. Graduate students continue to be eligible for this exception only until they have lived in California one year from the date they arrived in California with ties to the state. You must provide the residence deputy on campus with a statement from your commanding officer or personnel officer stating that your assignment to active duty in California is not for educational purposes. The letter must include the dates of your assignment to the state.

Child or Spouse of Faculty Member

To the extent funds are available, if you are an unmarried dependent child under age twenty-one or the spouse or registered domestic partner of a member of the university faculty who is a member of the Academic Senate, you may be eligible for a waiver of the nonresident tuition fee. Confirmation of the faculty member’s membership on the Academic Senate must be secured each term this waiver is granted.

Child or Spouse of University Employee

You may be entitled to resident classification if you are a full-time university employee, an unmarried dependent child, the spouse, or registered domestic partner, of a full-time university employee whose assignment is outside of California (e.g., Los Alamos National Laboratory). Your parents’ or spouse’s employment status with the university must be ascertained each term.

Child of Deceased Public Law Enforcement or Fire Suppression Employee

You may be entitled to a waiver of the nonresident tuition fee if you are the child, spouse, or registered domestic partner, of a deceased public law enforcement or fire suppression employee who was a California resident at the time of his or her death and who was killed in the course of fire suppression or law enforcement duties.

Dependent Child of a California Resident

A student who has not been an adult resident of California for more than one year, and who is the dependent child of a California resident who has been a resident for more than one year immediately prior to the residence determination date, may be entitled to a waiver of the nonresident tuition until the student has resided in California for the minimum time necessary to become a resident so long as continuous attendance is maintained at an institution.

Native American Graduates of a BIA High School

If you are a graduate of a California high school operated by the Federal Bureau of Indian Affairs, you may be eligible for an exemption from the nonresident fee.

Employee of a California Public School District

Any person holding a valid credential authorizing service in the public schools of the state of California who is employed by a school district in a full-time certificate position may be eligible for a nonresident tuition waiver.

Student Athlete in Training at U.S. Olympic Training Center; ARCO

Any amateur student athlete in training at the United States Olympic Training Center in Chula Vista may be eligible for a waiver of the nonresident tuition until he or she has resided in the state the minimum time necessary to become a resident.

Graduate of California High School (AB 540)

A student who attended high school in California for three or more years (ninth grade...
included) and graduated from a California high
school (or attained the equivalent) may be
exempt from nonresident tuition.

Surviving Dependents of California Residents
Killed in 9/11/01 Terrorist Attack

A student who was a dependent of a Califor-
nia resident who was killed in the September 11,
2001, terrorist attacks on the World Trade Center,
the Pentagon Building, or the crash of United
Airlines Flight 93. Eligible students must meet
the financial need requirements for the Cal Grant
A program.

Recipients of the Congressional Medal
of Honor

Any undergraduate student who is a recipient
of a Congressional Medal of Honor or who is the
child of a recipient of the Congressional Medal of
Honor. The recipient must be a California resident
or must have been a California resident at the time
of his or her death. The student may not be older
than twenty-seven, and the student's annual
income may not exceed the national poverty level.

MAINTAINING RESIDENCE DURING
A TEMPORARY ABSENCE

If you are a nonresident student who is in the
process of establishing a residence for tuition
purposes and you return to your former home
during noninstructional periods, your presence
in the state will be presumed to be solely for
educational purposes and only convincing evi-
dence to the contrary will rebut this presump-
tion. A student who is in the state solely for
educational purposes will NOT be classified as
a resident for tuition purposes regardless of
the length of his or her stay.

If you are a student who has been classified as
a resident for tuition purposes and you leave the
state temporarily, your absence could result in
the loss of your California residence. The burden
will be on you (or your parents if you are a
minor) to verify that you did nothing inconsis-
tent with your claim of continuing California resi-
dence during your absence. Steps that you (or
your parents) should take to retain a California
residence include:

1. Continue to use a California permanent
 address on all records—educational, employ-
 ment, military, etc.
2. Satisfy California resident income tax obliga-
 tions. (Note: If you are claiming California resi-

dence, you are liable for payment of income
taxes on your total income from the date you
establish California residence. This includes
income earned in another state or country.)

3. Retain your California voter’s registration and
 vote by absentee ballot.
4. Maintain a California’s driver’s license and
 vehicle registration. If it is necessary to change
 your driver’s license and/or vehicle registration
 while you are temporarily residing in another
 state, you must change them back to Califor-
nia within the time prescribed by law.

PETITION FOR RESIDENT CLASSIFICATION

You must submit petition and documentation
by mail or drop off by the Registrar’s Office for a
change of classification from nonresident to resi-
dent status. All changes of status must be initi-
ated prior to the first day of class for the term for
which you intend to be classified as a resident.

TIME LIMITATION ON
PROVIDING DOCUMENTATION

If additional documentation is required for
residence classification but is not readily accessi-
ble, you will be allowed until the end of the
applicable term to provide it.

INCORRECT CLASSIFICATION

If you were incorrectly classified as a resident,
you are subject to a nonresident classification
and to payment of all nonresident tuition fees
not paid. If you concealed or furnished falsified
information or were classified incorrectly as a result, you are also subject
to university discipline. Resident students who
become nonresidents should immediately notify
the campus residence deputy.

INQUIRIES AND APPEALS

Inquiries regarding residence requirements,
determinations, and/or recognized exceptions
should be directed to the Residence Deputy,
Office of the Registrar, 9500 Gilman Drive, La
Jolla, CA 92093-0021, or the Legal Analyst-
Residence Matters, Office of the General
Counsel, University of California, 1111 Franklin
Street, 8th Floor, Oakland, CA 94607-5200. No
other university personnel are authorized
to supply information relative to residence
requirements for tuition purposes.

A complete version of the regulations is avail-
able in the Office of the Registrar. Please note that
changes may be made in the residence require-
ments between the publication of this statement
and the relevant residence determination date.
Any student, following a final decision on resi-
dence classification by the residence deputy, may
appeal in writing to the legal analyst within thirty
calendar days of notification of the residence
deputy’s final decision.

Payment of Registration Fees

BILLING STATEMENT AND
PAYMENT INFORMATION

Registration at UCSD is a two-step process:
(1) enrollment in classes and (2) payment of
fees. You must enroll first so that your fees can
be assessed. You can pay fees anytime after you
enroll in classes. An E-Bill notice will be e-mailed
to your UCSD e-mail address after enrollment;
however, if you wait to enroll just prior to the
enrollment deadline, you will not receive an E-
Bill notice. Pay by E-check on TritonLink or make
cheques payable to: UC Regents. Mail checks to
UCSD Cashier’s Office, 9500 Gilman Dr., La Jolla,
CA 92093-0009. Be sure to include your student
PID number on your check and include the
remittance stub from TritonLink or the top por-
tion of your billing statement. Fees are due and
payable by the published deadline whether or
not an E-Bill notice is received. Your current
account activity and balance are available on
TritonLink during normal TritonLink hours.
Your monthly billing statement from the
university will list your charges and credits.
charges include registration fees, housing, park-
ing, and other indebtedness. Credits include pay-
ments and, if you are a financial aid recipient, the
funds which are disbursed through UCSD, e.g.,
Pell Grants, scholarships, and Stafford and
Perkins Loans. Credits will offset against the
statement’s charges, and you will either pay the
remaining amount on the statement or receive a
refund if there is a credit. If you have any ques-
tions about the entries, use the phone numbers
listed online to contact the appropriate office.

E-Bill notices are sent to students’ UCSD e-
mail address and up to three other authorized
payers’ e-mail addresses that the student sets up
on TritonLink. See http://www-act.ucsd.edu/go/
ebill.html for more information on E-Bill.

If your fees are fully paid by financial aid or
other programs and you decide not to attend
UCSD, it is very important that you contact
your college and initiate withdrawal/leave of absence procedures immediately. Graduate students should refer to the “Graduate Studies” section of the catalog for leave of absence or withdrawal procedures. Failure to do this may result in F grades being assigned to your courses.

Financial Aid/Credit Balances and Refunds

Student financial aid, graduate support, or fee waivers awarded to pay registration fees will be directly credited to your student account and appear on your billing statement as a credit. Financial aid will not be credited to your account until you have completed the enrollment process. Financial aid recipients are expected to be enrolled full-time. Student Business Services will refund all financial aid, including outside agency scholarships and private loans, through direct deposit. For those students who choose not to sign up for direct deposit, refund checks will be mailed to the current mailing address on TritonLink. All Federal Perkins Loan borrowers must complete the information sheet or references and Perkins Loan master promissory note. Loan funds will not be released (credited) to student accounts until the master promissory note is signed. You may complete these documents during your financial aid award and acceptance process, by going to the Student Business Services Web site: http://sbs.ucsd.edu, or in person at the Student Business Services Office.

Loan Counseling

It is required by federal law and/or university policy that all students receiving Perkins, Stafford (subsidized/unsubsidized), or university loans have a pre-loan counseling session wherein they are informed of the rights, obligations, and consequences attached to the loans. These counseling sessions are called entrance interviews. These sessions can be conducted online and provide the student with an understanding of the issues involved in receiving a loan. Also, all graduating students and students who withdraw or take a leave of absence who have received a loan must have final counseling before they leave school. These sessions are called exit interviews. At this time, students are individually told how much they owe on student loans, what their repayment amounts will be, and when their repayments will begin. In both sessions, all counseling content and documentation is made available. You may complete your exit interview by going to the Student Business Services Web site: http://sbs.ucsd.edu, or in person at the Student Business Services Office. Please call (858) 822-4585 for more information.

Registration and Other Payments through the Central Cashier’s Office

Registration payments must be made by mail, E-check, or in the Cashier’s Office drop box as early as possible. The Central Cashier’s Office receives payments for all university debts. The mailing address of the Cashier’s Office is: Central Cashier’s Office, UCSD, 9500 Gilman Drive, La Jolla, CA 92039-0009. (Make checks or money orders payable to: UC Regents.)

INDEBTEDNESS COUNSELING AND STUDENT BUSINESS SERVICES HOLD RELEASES

Entering college for the first time can be an overwhelming experience. And part of that experience is learning to handle your own finances. Most students have no real problem, but sometimes things can get out of control. Student Business Services staff members will counsel you on campus indebtedness which you may have already incurred and how to prevent such conditions in the future. It is the policy of the University of California that no student can continue in the next academic quarter if that individual owes the university money. Consequently, when a student owes the university money, an automatic hold prevents him or her from future registration, and from receiving financial aid and transcripts until the bill is paid. It is recognized that there are occasional problems and situations which may be taken into account. On occasion, after counseling, the Student Business Services Office may authorize a Time Payment Agreement (TPA) with a student.

If a student does not resolve their balance, their account may be assigned to an outside collection agency and reported to a credit bureau.

TRITON REGISTRATION INSTALLMENT PLAN

The UCSD Triton Registration Installment Plan (TRIP) is available for students who desire an alternative method of financing their registration fees on a short-term basis. All students in good financial and academic standing are eligible for the program, except for those students whose financial aid or graduate support will pay their registration fees. A prerequisite to apply for the program is enrollment for the term. The Triton Registration Installment Plan allows registration fees to be paid in up to three installments each quarter. On a three-month plan, the first payment is required by the quarterly registration due date. The remaining payments are itemized on the student’s next two monthly UCSD Billing Statements. There is a $30 per quarter nonrefundable application fee for California residents and a $45 quarterly nonrefundable application fee for nonresidents that must be submitted with the first payment. This fee is used strictly to offset the costs of the program. Students may enroll online using TritonLink.

LOCATION

The Student Business Services (SBS) Office is located on the third floor of the student Academic Services Facility. The Central Cashier’s Office is at the intersection of Myers and Rupertus Drives in the Student Academic Services Facility.

OFFICE HOURS

The Central Cashier’s Office is open from 8:00 a.m. to 4:00 p.m. Monday through Friday. The Student Business Services Office is open from 8:00 a.m. to 4:30 p.m. Monday through Friday, except on Thursday, when the office opens at 10:00 a.m.

DEADLINES AND PENALTY FINES

Students should refer to TritonLink for actual deadline dates.

All prior delinquent debts must also be paid. Health insurance is mandatory for all students, both graduate and undergraduate, as a condition of enrollment. All students will be assessed the cost of the policy provided by the campus. Undergraduates who already have adequate health insurance should access TritonLink to request a waiver of this premium. An additional charge will be made for failure to pay required fees or deposits by the dates announced in this catalog and on TritonLink. Please note that students who enroll in courses but fail to pay fees by the published deadline will be assessed a late payment fee. Students who fail to enroll in courses prior to the enrollment deadline will be assessed a late enrollment fee and a late payment fee. Currently these fines are $50 each. (See “Miscellaneous Expenses” on the next page.)

With the exception of appeals to the legal analyst regarding a student’s residence classification, no claim for remission of fees will be considered
unless such claim is presented during the fiscal year to which the claim is applicable.

Receipts are issued for all payments made in person at the Central Cashier's Office, and these should be carefully preserved. No student will be entitled to a refund except after surrender to the Cashier's Office of the student's original receipt, if issued, or cancelled check or money order receipt.

EXEMPTION FROM FEES

Except for miscellaneous fees and service charges, no fees of any kind are assessed any surviving child of a California resident who was an active law enforcement or active fire suppression official and who was killed in the performance of active duties or died as a result of an accident or injury caused by external violence or physical force incurred in the performance of such duties.

No fees of any kind are assessed a student who was a dependent of a California resident who was killed in the September 11, 2001, terrorist attacks on the World Trade Center, the Pentagon Building, or the crash of United Airlines Flight 93. Eligible students must meet the financial need requirements for the Cal Grant A program. No fees of any kind are assessed any undergraduate student who is a recipient of a Congressional Medal of Honor or who is the child of a recipient of the Congressional Medal of Honor. The recipient must be a California resident or must have been a California resident at the time of his or her death. The student may not be older than twenty-seven, and the student's annual income may not exceed the national poverty level.

Students who believe themselves entitled to one of these exemptions must apply for a fee exemption at the Office of the Registrar before registering. Without this authorization, students will not be permitted to register without payment of the entire fee. Graduate students should apply to the dean of Graduate Studies.

NONRESIDENT TUITION

Students who have not established and maintained California residence for at least one year immediately prior to the residence determination date for the term during which they propose to attend the university, and who do not otherwise qualify for resident classification under California law, are charged, along with other fees, a nonresident tuition fee each quarter. The residence determination date is the day instruction begins at the last of the University of California campuses to open for the quarter. Final classifications are made by the residence deputy, who is located in the registrar's office, on the basis of a Statement of Legal Residence completed by the student and signed under oath. Prospective students who have questions regarding their residence status should consult the General Catalog or contact the residence deputy.

UNIVERSITY REGISTRATION FEE

The university registration fee is $765 per year for undergraduates and must be paid at the time of registration. It covers services that benefit the student and are complementary to, but not a part of, the instructional program, and it includes recreational activities, student organizations, and the Student Health Service. No part of this fee is refunded to students who do not make use of these privileges.

In addition, there is a campus activity fee of $63 per year for undergraduates, a university center fee of $112.50 per year for all students to be used for the construction and operation of the student centers, and a $276 per year recreational facility fee. Note: Fees are subject to change. Please refer to TritonLink for the most current fee information.

EDUCATIONAL FEE

The educational fee was established by the regents for all students beginning fall quarter 1970. The educational fee is a charge assessed against each registered student to cover part of the cost of the student's education at the University of California. The educational fee is $5,868 per year for resident undergraduates and $6,426 per year for nonresident undergraduates. The educational fee may be reduced by one-half for students approved on part-time status. Note: Fees are subject to change. Please refer to TritonLink for the most current fee information.

Mandatory Health Insurance

All undergraduate, graduate, professional, and international undergraduates are required to have health insurance as a condition of enrollment. Undergraduates are automatically enrolled in the Undergraduate Student Health Insurance Plan (USHIP). The Graduate Student Health Insurance Plan (GSHIP) provides coverage for graduate and professional students. USHIP and GSHIP premiums are automatically assessed and paid with registration fees each quarter. For full information, including the plan brochures, click on “about USHIP Plan” and “about GSHIP Plan” or contact the Student Insurance Office at (858) 822-5981 or (858) 534-2123.

MISCELLANEOUS EXPENSES, FEES, FINES, AND PENALTIES

Books and supplies average about $469 per quarter. However, students should be aware of the following possible expenses:

- Statement of Intent to Register fee
 - New undergraduate: $100
- Application fee (each campus)
 - Domestic: 60
 - International: 70
- Duplicate Photo I.D. Card: 15
- Transcript of record: 6
- Verification of Student Data/Status: 6
- Muir Activity (per quarter): 7
- Eleanor Roosevelt (per quarter): 5
- Revelle Activity (per quarter): 7
- Sixth College Activity (per quarter): 8
- Thurgood Marshall Activity (per quarter): 2
- Warren College Activity (per quarter): 4
- Late enrollment: 50
- Return check collection: 35
- Return e-check collection: 35
- Late payment of fees (late registration): 50
- Duplicate diploma: 25
- Statement late charge: 25
(See also “Withdrawal from the University.”)

Note: Fees are subject to change. Please refer to TritonLink for the most current fee information.

RETURNED CHECK POLICY

Several facilities at UCSD accept personal checks for payments and/or cash. Any individual who writes checks with insufficient funds will be subject to all legal action deemed appropriate by the university. In addition, anyone who writes to the university three or more checks that are subsequently returned will have their check writing privileges permanently revoked.

PARKING

Students who park motor vehicles on the campus are subject to parking fees. Parking permits may be purchased through TritonLink or at the parking office in the Gilman parking structure. A copy of the campus parking regulations may be obtained from the cashier at the time of permit purchase.
Part-Time Study at the University of California

GENERAL POLICY

1. Degree programs in the university may be open to part-time students wherever good educational reasons exist for so doing.
2. No majors or other degree programs will be offered only for part-time students, except as specifically authorized by the Academic Senate.
3. For the purposes of this statement of policy and procedures, the following definition applies:
 A part-time undergraduate student is one who is approved to enroll for ten units or fewer, or an equivalent number of courses, per quarter.

ADMISSIONS AND ENROLLMENT

1. The same admissions standards that apply to full-time students will apply to part-time students.
2. Approval for individual students to enroll on a part-time basis will be given for reasons of occupation, family responsibilities, health, or, for one quarter only, graduating senior status.
3. Approval to enroll as a part-time student shall be given by the appropriate dean or provost.
4. Students must apply for part-time study prior to the end of the second week of the quarter and must be enrolled in ten or fewer units at that time (including any units taken through UCSD Extension) to qualify for reduced fees.

PROCEDURES

Students must apply for part-time status on the Part-Time Study application form available at their colleges prior to the end of the second week of the quarter. Approval for part-time study is granted for one academic year only—fall through spring quarters, winter through spring quarters, or spring quarter only. Students must reapply for approval each fall quarter and substantiate reasons for request. Approval for part-time study will automatically exempt students from the thirty-six unit-per-year minimum progress requirement. Students who are receiving financial assistance should contact their college financial aid office regarding eligibility requirements.

REDUCED FEES

Undergraduate students who have been approved for part-time study and who are enrolled in ten units or fewer at the end of the second week of classes are eligible for a reduction of one-half of the educational fee and one-half of nonresident tuition, if applicable. Students who drop to ten or fewer units after this date will receive no reduction, and any student who receives a reduction in fees will be billed for the difference if the number of units increases to ten and one-half or more anytime in the quarter.

Undergraduates enrolled in Education Abroad and other special programs are excluded from this reduced fee policy. Employees of the university enrolled as students in the Employee Program have fees reduced by waiver from the Personnel Office and are not eligible to receive this further reduction. Extension courses taken by students in the Complimentary Enrollment Program will be included in the unit count whether or not the credit is accepted as part of a university degree program. Questions concerning this policy may be addressed to the Office of the Registrar.
Undergraduate Degree Requirements

Each of the undergraduate colleges on the San Diego campus has specific requirements for a degree. (See “Choosing a College at UCSD.”)

Changes in Requirements

When a change in graduation requirements is introduced, it is implemented so that continuing students (as defined below) are not substantially hindered in the orderly pursuit of their degrees. Since changes in requirements vary greatly in character, this principle will have different implications for different changes. For purposes of this policy, ‘continuing students’ are those who began higher education at UCSD or elsewhere before the change. Colleges and departments may deny protection under this policy to a student who has interrupted his or her education for more than two years.

Students transferring to UCSD from another UC campus who have completed their lower-division general-education requirements at a UC campus are considered to have met UCSD’s lower-division general-education requirements at Thurgood Marshall College, Warren College, Sixth College, and John Muir College. A letter certifying satisfaction of general education requirements under the UC reciprocity agreement must be sent to the Academic Advising Office of the student’s college. UCSD upper-division general education requirements must be satisfied. (See “Graduation Requirements” for each undergraduate UCSD college.)

Students transferring to UCSD from California Community College campuses may elect to satisfy their lower-division general-education and breadth requirements prior to transfer by completing general-education/breadth requirements using the UCSD Articulation Agreement on file at the California Community Colleges; following the Intersegmental General Education Transfer Agreement; or signing a TAG (Transfer Admission Guarantee) contract and completing TAG requirements prior to entering UCSD. See “New University of California Transfer Agreements” in the “Undergraduate Admissions, Policies and Procedures” section of this catalog.

Requirements for the Bachelor’s Degree

All course work required for a degree must be completed by the end of the quarter filed for graduation.

Every candidate for a bachelor’s degree must have completed a major.

1. A major shall require the equivalent of twelve or more upper-division courses (forty-eight or more units).

2. Requirements for majors shall be determined by departments and programs, subject to the approval of the Committee on Educational Policy.

3. Double Majors: With the approval of both departments or programs and of the college provost, a student may declare a double major after reaching junior level (90 UC units) and no later than 135 units, with a minimum cumulative grade point average of 2.50.

a. A student with a double major must fulfill the separate requirements of each major, and the equivalent of at least ten upper-division courses (forty units) must be unique to each major. Courses taken in fulfillment of lower-division requirements may overlap to any degree.

b. The two majors may not be within the School of Engineering, nor, except with the approval of the Committee on Educational Policy, within a single department.

c. A student who has declared a double major is not subject to the maximum-unit limitations of Regulation 600.C. and may accrue up to 240 units.

d. A student with a double major may graduate only upon completion of all requirements for both majors. Both majors will be noted on the student’s transcript and diploma. If the two majors lead to different degrees (B.A. and B.S.), that fact will be noted on the transcript, and the two degree designations will appear on one diploma.

e. A student who has declared a double major may graduate in one major upon completion of all requirements for that major, but may not continue in the University for completion of the second major.

4. An undergraduate student must have declared a major or pre-major upon completion of ninety units.

Other requirements for graduation shall be determined by the colleges in conformity with universitywide regulations and subject to approval by the San Diego Division of the Academic Senate.

American History and Institutions

A knowledge of American history and of the principles of American institutions under federal and state constitutions is required of all candidates for the bachelor’s degree. This requirement may be met in any one of the following ways:

1. By having passed with a grade of C or better one high-school unit in American history, or one-half high-school unit in American history and one-half high-school unit in civics or American government.

2. By completing with a grade of P or C– or better any one-quarter course of instruction accepted as satisfactory by the Committee on Educational Policy and Courses. Any of the following courses are suitable for fulfilling the requirement: HILD 2A-B-C; HILD 7A-B-C; or any course listed under HIUS (other than HIUS Colloquia); Political Science 10, 100A, 100B, 100C, 102C, 102H, 104A, 110EA-EB, 110J, 142A; and Ethnic Studies 112A-B, 125, 130, 131, 149, 167, 170A-B.

3. By presenting proof of having received a score of 550 or more on the SAT II Subject Test of the College Entrance Examination Board (CEEB) in American History.

4. By presenting proof of having received a grade of 3 or higher on the Advanced Placement Test in American History administered by the Educational Testing Service, Princeton, New Jersey.

5. By presenting proof of having satisfied the present requirement as administered at another collegiate institution within the state.
6. By presenting proof of successful completion of an acceptable one-quarter or one-semester course, with a grade of C or better, in either American history or American government at a community college within the state.

7. By presenting proof of successful completion of an acceptable one-quarter or one-semester course, with a grade of C or better, in either American history or American government at a recognized institution of higher education, junior college included, in another state.

8. An alien attending the university on an F-1 or J-1 student visa may, by showing proof of temporary residence in the United States, petition for exemption from this requirement through the office of his or her college provost.

UC ENTRY LEVEL WRITING REQUIREMENT (FORMERLY SUBJECT A: ENGLISH COMPOSITION)

The University of California requires all undergraduate students (including international students) to demonstrate a minimum proficiency in English composition (the Entry Level Writing requirement). This proficiency can be demonstrated by:

1. Submitting a score of 680 or better on either the Writing Test, English Composition, or the English Composition with Essay Test, SAT II Subject Tests of the College Entrance Examination Board (CEEB) (Note: not to be confused with the verbal portion of the Scholastic Assessment Test (SAT I)); or

2. Submitting a score of 3, 4, or 5 on the CEEB Advanced Placement Test in English; or

3. Submitting a score of 5 or better in the International Baccalaureate Higher Level examination in English (Language A only); or

4. Submitting proof of completion, prior to enrollment at UCSD, of an acceptable transfer-level college course of four quarter-units or three semester-units in English composition with a grade of C or better; or

5. Writing a passing essay on the UC Analytical Writing Placement Exam (which is required of all students who have not otherwise met the requirement). This exam is administered statewide during May and on campus at the start of fall quarter. This examination may be taken only once.

6. Achieving a minimum score on the ACT Assessment Writing Test (English/Writing score).

All students who have not previously satisfied the Entry Level Writing requirement must take the UC Analytical Writing Placement Exam prior to enrollment at UCSD. Students who fail this examination must enroll each quarter in an approved Entry Level Writing requirement course until they satisfy the Entry Level Writing requirement. Students satisfy the requirement by achieving a grade of C or better in SDCC 1 (English Composition–Entry Level Writing Requirement) and by passing the Entry Level Writing Requirement Exit Examination at the end of SDCC 1. The exit examination is administered by the Basic Writing Office. Students whose performance on the Analytical Writing Placement Exam indicates they need work in English as a Second Language must enroll in ESL courses for three quarters (or until released by the ESL director) before enrolling in SDCC 1. Students must enroll in SDCC 1 (or ESL) during their first quarter of residence at UCSD. For further information on SDCC 1, refer to “Entry Level Writing Requirement” in the catalog section “Courses, Curricula, and Programs of Instruction.” For further information on ESL, see “English as a Second Language” in the catalog section “Courses, Curricula, and Programs of Instruction.”

The Entry Level Writing requirement must be satisfied during a student’s first year of residence. Students will be barred from enrollment at the university if they fail to satisfy the Entry Level Writing requirement by the end of their third quarter of enrollment at UCSD. (Exceptions: Students in need of ESL course work may have up to three extra quarters of residence in which to satisfy the Entry Level Writing requirement.) Students will not be allowed to enroll in university-level writing courses at UCSD until the Entry Level Writing requirement has been satisfied.

Students who have been barred from enrollment because of failure to satisfy the Entry Level Writing requirement will be allowed to present evidence of further work in composition. If the Basic Writing Office director approves, these students may take an Entry Level Writing requirement examination a final time. Students performing successfully on this final examination will be eligible to apply for re-enrollment at the university.

For further information about the UC Entry Level Writing requirement or the Proficiency Test, please visit the Basic Writing Office, 3232 Literature Building, or call (858) 534-6177.

Senior Residence

Each candidate for the bachelor’s degree must complete thirty-five of the final forty-five units in residence in the college or school of the University of California in which the degree is to be earned.

Under certain circumstances exceptions may be granted by the provost, such as when a student attends classes on another UC campus as an approved visitor or participates in the UC Education Abroad, the UCSD Opportunities Abroad, Dartmouth, Spelman, Morehouse, or University of New Mexico exchange programs.

Note: Courses taken through the UCSD Extension Concurrent Enrollment Program will not apply toward a UCSD student’s senior residency requirement. For further details see “Graduation Requirements” in the Index.

Maximum Unit Limitation

1. An undergraduate student may register for no more than 200 course units. An exception is permitted for candidates for B.S. degrees in engineering, for whom the limits are 240 units in Revelle and Roosevelt Colleges and 230 units in all other colleges. Other exceptions will be granted only for compelling academic reasons and only with the approval of the college provost and the concurrence of the Committee on Educational Policy.

2. Transfer units applicable toward general-education requirements or major requirements are included in the maximum unit calculation; all other transfer units are excluded. Advanced Placement and international baccalaureate units are excluded.

Special kinds of study—e.g., laboratories, reading programs, studio work—may be required in addition to the basic course work in given curricula.

Graduation Credit for Physical Education Courses

No more than three units of physical education, whether earned at UCSD or transferred from another institution, may be counted toward graduation.
Undergraduate Minors and Programs of Concentration

A minor curriculum—or “minor” for short—is a set of courses on a well-defined subject. For students entering after January 1, 1998: a minor shall consist of at least twenty-eight units, of which at least twenty units must be upper-division. For sound academic reasons and with the approval of the Committee on Educational Policy, a minor may be established with fewer than twenty upper-division units. All minor curricula must be approved by the Committee on Educational Policy and be published in this General Catalog. A student may not apply toward the minor any upper-division course that has been used to satisfy the requirements of his or her major curriculum. A student’s successful completion of a minor curriculum will be recorded on his or her transcript at graduation.

Certain colleges require their students to complete one or more “programs of concentration” before graduation, and the courses or types of courses acceptable for programs of concentration are determined by the faculty of the college or a subcommittee thereof. A program of concentration is not necessarily a minor. Indeed, a program of concentration is a minor only if it meets the criteria in the above paragraph, and only then may it be listed on a student’s transcript as a minor. Otherwise it will be recorded as a concentration at graduation.

Honors

COLLEGE HONORS AT GRADUATION

The Academic Senate has established the following standards for award of college honors at graduation:

There shall be a campus-wide requirement for the award of college honors at graduation. No more than 14 percent of the graduating seniors on campus shall be eligible for college honors. Normally, no more than the top 2 percent shall be eligible for summa cum laude and no more than the next 4 percent for magna cum laude, although minor variations from year to year shall be permitted. The remaining 8 percent are eligible for cum laude. The ranking of students for eligibility for college honors shall be based upon the grade-point average. In addition, to be eligible for honors, a student must receive letter grades for at least eighty quarter-units of course work at the University of California. Each college may award honors at graduation only to those who are eligible to receive college honors.

DEPARTMENT HONORS

Each department or program may award honors to a student at graduation in accordance with the following criteria:

1. The student must have completed a special course of study within the department or program. The requirements for this special course of study shall be approved by the divisional Committee on Educational Policy and published in the catalog. The requirements must include 8–12 units of supervised research or other creative activity leading to the preparation of a paper or other appropriate project. Public presentation of the project, through performance, participation in the undergraduate research conference, or other appropriate means, shall explicitly be encouraged.

2. The department or program shall establish formal procedures and criteria for application and admission to the program, which shall normally include a GPA of 3.5 in the major as a prerequisite. Students with a GPA lower than 3.5 may be admitted by exception if they show promise of success in research or creative activity.

3. Each student whose project earns the equivalent of a grade of “B” or better and who has maintained a GPA of at least 3.25 in the major shall be entitled to the designation “with distinction” on the diploma after the departmental or program name. Subject to the approval of the Committee on Educational Policy, each department or program shall establish criteria for the award of the designations “with high distinction” and “with highest distinction.”

Honors awarded by departments may be designated on the diploma by the words “with distinction,” “with high distinction,” and “with highest distinction” after the departmental or program name. Currently the departments and majors listed below are approved to award honors to graduating seniors: Anthropology, Biology, Chemistry, Chinese Studies, Classical Studies, Cognitive Science, Communication, Critical Gender Studies, Earth Sciences, Economics, Electrical and Computer Engineering, German Studies, History, Human Development, International Studies, Japanese Studies, Judaic Studies, Linguistics, Literature, Management Science, Muir Special Project, Music, Philosophy, Physics, Political Science, Psychology, Roosevelt Individual Studies, Sociology, Study of Religion, Theatre and Dance, Urban Studies and Planning, and Visual Arts.

PROVOST HONORS

Provost honors are awarded quarterly based upon the completion of twelve graded units with a GPA of 3.5 or higher with no grade of D, F, or NP recorded for the quarter.

PHI BETA KAPPA

Phi Beta Kappa is the oldest and most prestigious academic honor society for undergraduates in the liberal arts and sciences in America. UCSD is one of only 278 four-year institutions that have been granted chapters since the society was founded in 1776. In addition, there are approximately fifty active PBK alumni associations in major cities around the country.

More than 200 UCSD faculty and staff were initiated at their own undergraduate colleges, and they make up the local chapter, Sigma of California. Each spring the campus chapter elects student members on the basis of high scholastic achievement and breadth of academic background. The minimum criteria for membership, evaluated at the end of winter quarter, include:

1. Successful completion of at least 160 quarter-units by the time of consideration and at least junior standing.

2. Cumulative GPA of 3.65 or higher for work at UCSD. GPAs from transfer work are considered, but the GPA at UC must be at least 3.65, as must the overall GPA. (Juniors are rarely invited into Phi Beta Kappa, and they are held to higher standards, including a minimum GPA of 3.80.)

3. A minimum of five courses in the humanities or equivalent subjects, explicitly excluding performance or studio courses as required by the National Society.

4. At least one year of college-level course credit in a second language or officially demonstrated equivalent literacy and proficiency.

5. At least one year of college-level course credits in mathematics, quantitative science, logic, or statistics (not all science courses fulfill this requirement).

6. Full-time enrollment at UCSD for at least two years (or completion of at least 70 graded credits at UCSD).
As required by the National Society of Phi Beta Kappa, when they consider a student for membership the reviewers examine the excellence of the individual’s academic record, the breadth and quality of the courses taken, and evidence that the student has pursued a serious line of work and is of good character. Invitations to membership are sent simultaneously by e-mail and by letter to each student’s permanent address, as maintained by the student on TritonLink. Letters are sent in mid-May, and initiation takes place in early June.

Application for Degree

Undergraduate seniors are required to file a Degree and Diploma Application form with their college academic advising office. Students should check with their college academic advising office for exact deadlines. Advising and counseling sessions should take place well before the quarter of graduation to ensure all degree requirements will be satisfied. Applications not on file by the deadline are subject to special approval. Students who have not completed all degree requirements by the end of the quarter filed for graduation must file a new application. Failure to file this application may delay the receipt of the diploma.

Specific Regulations

Progress toward Degrees

In order to apply the units of a course toward unit requirements for a degree, a student must receive an A, B, C, D, P, or S grade in the course. (Plus or minus suffixes (+/−) may be affixed to A, B, and C.) Further, an undergraduate student must have a 2.0 or higher grade-point average (GPA) to receive a bachelor’s degree, and a graduate student must have a 3.0 or higher GPA to receive a higher degree.

Probation

An undergraduate student is subject to academic probation if at the end of any term his or her GPA for that term or his or her cumulative GPA is less than 2.0.

Subject to Disqualification

An undergraduate student is subject to academic disqualification from further registration if at the end of any term his or her GPA for that term is less than 1.5 or if he or she has completed two successive terms on academic probation without achieving a cumulative GPA of 2.0. Continued registration of an undergraduate who is subject to disqualification is at the discretion of the faculty of the student's college or its authorized agent (generally the provost/Office of the Provost).

If a student is not currently in scholastic good standing or has been denied registration for the next ensuing quarter on the date on which he or she left the university, a statement of his or her status shall accompany his or her transcript. A student who has been disqualified from further registration at the University of California may not register for UCSD courses through Summer Session, through UCSD Extension by way of the concurrent enrollment mechanism, or in UCSD Extension courses offered at the 100 level. Students receiving financial assistance should refer to information in the Financial Aid section of this catalog. Unique scholarship eligibility requirements must be met.

Minimum Progress

A full-time undergraduate student is subject to disqualification from further registration if he or she does not complete thirty-six units in any three consecutive quarters of enrollment. Continued registration of an undergraduate who is subject to disqualification due to lack of minimum progress is at the discretion of the faculty of the student's college or its authorized agent (generally the provost/Office of the Provost).

Eligible students may file for an exemption from the minimum progress requirement by completing the Part-time Study application and receiving college approval prior to the end of the second week of the quarter. (See “Part-Time Study at the University of California.”)

Double Majors

See “Requirements for the Bachelor’s Degree” in this section.

Repetition of Courses

Repetition for credit of courses not so authorized by the appropriate Committee on Courses is allowed subject to the following limitations:

1. A student may not repeat a course for which a grade of A, B, C, I, P, or S is recorded on his or her transcript. (Plus or minus suffixes (+/−) may be affixed to A, B, and C.)

2. Courses in which a grade of D or F has been awarded may not be repeated on a P/NP or S/U basis. (Graduate students must petition and receive approval in advance to repeat a course for credit.)

3. Undergraduate students may repeat a course in which a grade of NP has been awarded for a P/NP or letter grade, if applicable. Graduate students may repeat a course in which a grade of U has been awarded on an S/U basis only.

4. Repetition of a course for which a student’s transcript bears two or more entries with grades among D, F, NP, or U requires approval of the appropriate provost or dean.

5. All grades received by a student shall be recorded on the student’s transcript. A student may receive degree credit for a course only once, unless the course has been approved for repetition.

6. The first sixteen units of courses that have been repeated by an undergraduate student and for which the student has received a grade of D, F, or NP, shall not be used in grade-point calculations, unless the course is repeated by a student who has admitted to or been found guilty of academic dishonesty; in which case, the units for both the initial course and the repeated course shall be counted in grade-point calculations.

Note: Although the University of California grade-point average will not include these repeated courses, other institutions/graduate programs, and agencies may recalculate the grade-point average to reflect all assigned grades.

Special Studies Courses

Subject to the limitations below, a student may earn credit for supervised special studies courses on topics of his or her own selection. An undergraduate taking one or more special studies courses must complete an application for each such course before the start of the course.

COURSE NUMBER

Ordinarily, special studies courses are numbered 97, 98, or 99 for lower division and 197, 198, or 199 for upper division. The 97 and 197 courses are for individually arranged field studies. The 98 and 198 courses are for directed group study. The 99 and 199 courses are for individual independent study.
LIMITATIONS
1. Enrollment requires the prior consent of the instructor who is to supervise the study and the approval of the department chair. The applicant shall show that his or her background is adequate for the proposed study.
2. A student must have completed at least thirty units of undergraduate study at UCSD and must have attained a UCSD grade-point average of at least 3.0 to enroll in a lower-division special studies course, and at least ninety units of undergraduate study and must have attained a grade-point average of at least 2.5 to enroll in an upper-division special studies course.
3. A student may enroll for no more than a total of four units of 98, 99, 198, and 199 Special Studies courses in one term.
4. Except as may otherwise be authorized by the CEP Subcommittee on Undergraduate Courses (e.g., for honors programs), only a grade of P or NP is to be assigned for undergraduates enrolled in any special studies course.
5. Subject to the approval of the CEP Subcommittee on Undergraduate Courses, a department may impose additional limitations on its supervised special studies courses.

EXCEPTIONS
On the advice of the instructor(s) and the department chair concerned, the provost of a student's college may authorize exceptions to the limitations (2) and (3) listed above.

PROCEDURES
1. Students must complete an "Application for UCSD Special Studies Course Enrollment," available in department offices and via TritonLink, and secure instructor and department chair approval.
2. Students must submit an approved form to the Office of the Registrar to enroll in a special studies course.
3. A student may enroll for no more than a total of four units of 98, 99, 198, and 199 Special Studies courses in one term.
4. Except as may otherwise be authorized by the CEP Subcommittee on Undergraduate Courses (e.g., for honors programs), only a grade of P or NP is to be assigned for undergraduates enrolled in any special studies course.
5. Subject to the approval of the CEP Subcommittee on Undergraduate Courses, a department may impose additional limitations on its supervised special studies courses.

Undergraduate Assistance in Courses
An undergraduate instructional apprentice is an undergraduate student who serves as an assistant in an undergraduate course under the supervision of a faculty member. The purpose of the apprenticeship is to learn the methodology of teaching through actual practice in a regularly scheduled course.

GUIDELINES
1. An undergraduate instructional apprentice shall be an upper-division student. He or she shall be involved only with lower-division courses.
2. Students are not permitted to assist in courses in which they are enrolled.
3. An undergraduate instructional apprentice must have a minimum grade-point average of 3.0. Departments may establish higher grade-point average requirements.
4. The faculty instructor is responsible for course content and for maintaining the overall quality of instruction, including supervision of undergraduate instructional apprentices. The faculty instructor is responsible for all grades given in the class.
5. The instructor is expected to meet regularly with the undergraduate instructional apprentice to evaluate the student’s performance and to provide the direction needed for a worthwhile educational experience.
6. An undergraduate instructional apprentice may receive credit on a Pass/Not Pass basis only (through registration in a 195 course), subject to approval by the Committee on Educational Policy.
7. A student may not be an instructional apprentice more than once for the same course for credit.
8. A student may not be an instructional apprentice in more than one course in a quarter.
9. The total credit accumulated as an apprentice shall not exceed eight units.

PROCEDURE
All departments/programs using undergraduate instructional apprentices shall submit to CEP a description of the role of the undergraduate instructional apprentice, as part of the petition for approval. Any deviation from the guidelines above must be explained and justified in a memo accompanying the petition. Any major change in the function or duty of the apprentice in a course shall also be approved by CEP. All UGIA applications must be received and approved by the CEP prior to the start of the quarter in which the student is to apprentice.

Writing Requirements
A student may register in an upper-division course only if the student has satisfactorily completed the writing requirement of his or her college or has obtained the consent of the instructor of the upper-division course. The requirement is waived for a student who has been admitted as a transfer student and has not completed three quarters of residence at UCSD.

Final Examinations
Final examinations are obligatory in all undergraduate courses except laboratory courses, or their equivalent, as individually determined by the Committee on Courses.

Religious Accommodation
It is the policy of the university to make reasonable efforts to accommodate students having bona fide religious conflicts with scheduled examinations by providing alternative times or methods to take such examinations. If a student anticipates that a scheduled examination will occur at a time at which his or her religious beliefs prohibit participation in the examination, the student must submit to the instructor a statement describing the nature of the religious conflict and specifying the days and times of conflict.

1. For final examinations, the statement must be submitted no later than the end of the second week of instruction of the quarter.
2. For all other examinations, the statement must be submitted to the instructor as soon as possible after a particular examination date is scheduled.

If a conflict with the student’s religious beliefs does exist, the instructor will attempt to provide an alternative, equitable examination which does not create undue hardship for the instructor or for the other students in the class.
Policy on Final Examinations

a. Academic Senate Regulations specify that final examinations are required in all undergraduate courses, unless an exception has been approved by CEP or the CEP Subcommittee on Undergraduate Courses. Final examinations are, however, normally not required in laboratory courses.

b. Final examinations may not be given at any time before examination week without explicit approval of CEP.

c. Although the instructor may give a final examination at an alternative time during final examination week with the approval of CEP, students must be permitted to take an equivalent examination at the originally scheduled time if they so desire.

d. An instructor may administer an examination at an alternative time if a valid reason is given by the student for not taking the regularly scheduled examination. Valid reasons include: serious illness and family disasters. Rescheduling as a result of a religious obligation is governed by the UCSD Policy on Religious Accommodation.

e. No student may be excused from assigned final examinations.

f. A final examination must, whenever practicable, be written and must be completed by all participants within a previously announced time limit.

g. Final examinations in non-laboratory courses may not exceed three hours duration.

h. No instructor may require a “take-home” final examination be turned in before the date and hour at which the examination for the course was scheduled by the Registrar’s Office.

i. Faculty members (including visiting faculty) must be available to students during final examination week up to the time when the final examinations of their courses are given and, physically present in the examination room for the entire final examination, except in special cases when an exam is given in more than one room. In cases where the approved absence of a course instructor cannot be avoided, the department chair or program director must seek CEP approval to designate another faculty member to administer the final examination. Nevertheless, faculty course instructors themselves must assign grades for the courses they teach.

j. CEP will not recommend approval of faculty absences during finals week unless arrangements to administer the final examination have been worked out in advance with the department chair or program director.

Policy on Midterm Examinations

a. Faculty are obliged to have posted in the Schedule of Classes the date and time of any midterm which is to be given outside of the regularly scheduled class hours.

b. Additionally, any midterm given outside of the regularly scheduled class hours must be announced in a syllabus distributed to the class at the beginning of the quarter.

Retention of Examination Papers

Instructors are required to retain examination papers for at least one full quarter following the final examination period, unless the papers have been returned to the students.

Credit by Examination

Credit by examination may be authorized and given by the instructor for a course with the concurrence of the student’s provost (or dean). The examination will cover work for the entire course. The student requesting credit by examination must have not already received a grade or a W in the course.

The student requesting credit by examination must be registered and in good academic standing.

A part-time student who, by registering to take a course by examination, surpasses the number of units allowed for part-time status, must register and pay fees as a full-time student.

If credit by examination is authorized, the student will receive a grade of A+, A, A-, B+, B, B-, C+, C, C-, D, or F unless the student’s petition for examination specifies the grade to be Pass or Not Pass. The student’s record will indicate that the course was attempted through credit by examination.

Use of Student Petition

For exceptional circumstances, students may request approval for variances to regulations and policies. This should be done by filling out an Undergraduate Student Petition (available on TritonLink, in the provosts’ offices, or the Office of the Registrar), securing the necessary approvals, and filing the petition with the appropriate department or college academic advising office.

Grading Policy

Grades in undergraduate courses are defined as follows: A, excellent; B, good; C, fair; D, poor; F, fail; I, incomplete (work of passing quality but incomplete for good cause); and IP (In Progress). The designations P (Pass) and NP (Not Pass) are used in reporting grades for some undergraduate courses. P denotes a letter grade of C– or better. A blank grade indicates no record or no report of grade was received from the instructor. W is recorded on the transcript indicating the student withdrew or dropped the course sometime after the beginning of the fifth week of a quarter.

Note: Students who drop certain laboratory courses after the second scheduled meeting period will receive a W grade.

Instructors have the option of assigning plus (+) and minus (–) suffixes to the grades A, B, and C. This option became available as of fall 1983.

Grade Points

For each student, the registrar will calculate a grade-point average (GPA) over courses taken at any campus of the University of California, not including Extension courses. Grade points per unit will be assigned as follows: A=4, B=3, C=2, D=1, F=0. When attached to the grades of B and C, plus (+) grades carry three-tenths of a grade point more per unit. The grade of A+, when awarded, represents extraordinary achievement but does not receive grade-point credit beyond that received for the grade of A. When attached to the grades of A, B and C, minus (–) grades carry three-tenths of a grade point less per unit than the unsuffixed grades. Courses in which an I, IP, P, NP, S, U, or W grade has been awarded will be disregarded in grade-point calculations. A graduate student’s GPA will be calculated over courses taken while in graduate standing.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Grade Points</th>
<th>Grade</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.0</td>
<td>C+</td>
<td>2.3</td>
</tr>
<tr>
<td>A</td>
<td>4.0</td>
<td>C</td>
<td>2.0</td>
</tr>
<tr>
<td>A-</td>
<td>3.7</td>
<td>C-</td>
<td>1.7</td>
</tr>
<tr>
<td>B+</td>
<td>3.3</td>
<td>D</td>
<td>1.0</td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
<td>F</td>
<td>0.0</td>
</tr>
<tr>
<td>B-</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The grade-point average is computed by dividing the total number of grade points earned by the total unit value of letter-graded courses completed.

At the end of each quarter, the instructor of each course will assign a letter grade to each student who was enrolled in that course at the end of the ninth week of instruction on the basis of the work required for the entire course. An I grade may be assigned if appropriate.

Changes in Grades

All grades except I and IP are final when filed by instructors on end-of-term grade reports. However, a final grade may be corrected when a clerical or procedural error is discovered. No change of a final grade may be made on the basis of revision or augmentation of a student’s work in the course. No term grade except Incomplete may be revised by further examination. No grade may be changed after one calendar year from the time it was recorded. Petitions for exceptions are referred to the Committee on Educational Policy.

No Report/No Record

A blank entry appearing on student transcripts in lieu of a grade indicates that no grade was assigned by the instructor. A blank entry will lapse automatically into an F, NP, or U if not replaced by a final grade by the last day of instruction of the subsequent quarter.

Pass/Not Pass

The Pass/Not Pass option is designed to encourage undergraduate students to venture into courses which they might otherwise hesitate to take because they are uncertain about their aptitude or preparation. Consistent with college policy, an undergraduate student in good standing may elect to be graded on a P/NP basis in a course. No more than one-fourth of an undergraduate student’s total UCSD course units may be graded on a P/NP basis. Departments may require that courses applied toward the major be taken on a letter-grade basis. Enrollment under this option must take place within the first four weeks of the course. A grade of Pass shall be awarded only for work which otherwise would receive a grade of C- or better. Units passed shall be counted in satisfaction of degree requirements, but such courses shall be disregarded in determining a student’s grade-point average.

If students wish to change their selected grading option after enrolling, they may use WebReg in TritonLink, or complete an Add/Change/Drop card and file it at the Registrar’s Office. The last day to change grading options is the end of the fourth week of instruction.

Only a grade of P or NP is to be assigned for courses numbered 97, 98, 99, 195, 197, 198, and 199. Subject to the approval of the CEP Subcommittee on Undergraduate Courses, departments may impose additional limitations or restrictions.

Only a grade of P or NP is to be assigned an undergraduate student’s work in a noncredit (0-unit) course.

Note: See “Choosing a College at UCSD” section for further information regarding the P/NP grading option.

The W Grade

When a student withdraws from the university or drops a course, other than a laboratory course, between the beginning of the fifth week of instruction and the end of the ninth week of instruction of a quarter, the registrar will assign a W to the student for each course affected. Only the registrar may assign a W.

Note: Students who drop certain laboratory courses after the second scheduled meeting period will receive a W grade.

Courses in which a W has been entered on the student’s transcript will be disregarded in determining a student’s grade-point average.

Adding and Dropping Courses and the W Grade

A student may, with the approval of the instructor (and advisor, if required), add a course to the study list before the end of the second week of instruction of a quarter.

A student may drop a course before the end of the ninth week of instruction via TritonLink, after first notifying the instructor and/or department.

A student who wishes to drop all courses is required to file an Undergraduate Request for Withdrawal form with the college academic advising or dean’s office.

1. A course dropped before the end of the fourth week of instruction will not appear on the student’s transcript.

Note: Students who drop certain laboratory courses after the second scheduled meeting period will receive a W grade.

2. If a student drops a course after the end of the fourth week of instruction and before the end of the ninth week of instruction, the registrar will assign a final grade of W to the student for that course.

3. A student may not drop a course after the end of the ninth week of instruction.

When an instructor has assigned a grade in a course in accordance with the Academic Senate policy on Integrity of Scholarship prior to the end of the ninth week of instruction, that grade may not subsequently be changed by dropping the course or withdrawing from the university.

Withdrawing From School and the W Grade

A student may withdraw from the university before the end of the ninth week of instruction of a quarter.

1. If a student withdraws before the end of the fourth week of instruction, no course entries will appear on the student’s transcript for that quarter.

Note: Students who drop certain laboratory courses after the second scheduled meeting period will receive a W grade.

2. If a student withdraws after the end of the fourth week of instruction and before the end of the ninth week of instruction, the registrar will assign a final grade of W to the student for each course in which the student was enrolled at the beginning of the fifth week of instruction.

3. Each student will receive a final grade for each course in which the student was enrolled at the end of the ninth week of instruction of the quarter.

When an instructor has assigned a grade in a course in accordance with the Academic Senate policy on Integrity of Scholarship prior to the end of the ninth week of instruction, that grade may not subsequently be changed by dropping the course or withdrawing from the university.

The In Progress (IP) Grade

For exceptional and compelling reasons, a course extending over more than one quarter may be authorized with the prior approval of
the Committee on Educational Policy and Courses (for undergraduate courses) or the Graduate Council (for graduate courses). In such courses an evaluation of a student’s performance may not be possible until the end of the final term. In such cases the instructor may assign the provisional grade IP (in progress).

IP grades shall be replaced by final grades if the student completes the full sequence. The instructor may assign final grades, grade points, and unit credit for completed terms when the student has not completed the entire sequence provided that the instructor has a basis for assigning the grades and certifies that the course was not completed for good cause. An IP not replaced by a final grade will remain on the student’s record.

In calculating a student’s grade-point average, grade points and units for courses graded IP shall not be counted. However, at graduation, courses still on the record as graded IP must be treated as courses attempted in computation of the student’s grade-point average in assessing a student’s satisfaction of Senate Regulation 634.

The Incomplete (I) Grade

Academic Senate regulations state that the Incomplete grade (I) for undergraduates shall be disregarded in determining a student’s grade-point average, except at point of graduation, when students must have an overall 2.0 (C) on all work attempted at the University of California. All work required for a degree must be completed by the end of the quarter the student filed for graduation. Students requesting an I grade the last quarter before graduation may have their graduation date delayed.

Undergraduate students whose work is of non-failing quality but incomplete for good cause, such as illness, must file a Request to Receive/Remove Grade Incomplete form.

Graduate students enrolled in graduate courses may request instructors to assign the grade of “Incomplete” in order to be permitted to complete required work within the following quarter. If the required work is not submitted by the end of the quarter following so that the grade can be reported by the instructor, the grade will automatically be changed to one of “Failure” by the registrar. Graduate students must file a Request to Receive/Remove Grade Incomplete form.

1. Students should complete their portion of the request form, including the reason they are requesting the Incomplete, and provide appropriate documentation to support their request (e.g. doctor’s note). The deadline for filing an Incomplete shall be no later than the first working day after final examination week.

2. The instructor has the option to approve or disapprove the request and should state on the form how and when the I is to be completed. If approved, the instructor submits the form with term grade reports.

3. Students must complete the work to remove the Incomplete on or before the date agreed upon with the instructor and in time for the instructor to assign a grade before the end of finals week the following quarter.

4. Failure to complete this work within the regulation time limit will result in the Incomplete lapsing to a permanent F, NP, or U grade.

A student who has received an I grade should not re-enroll in the course to make up the missing work. If the student were to re-enroll, the course would be considered a repeat and would not remove the prior quarter’s Incomplete, which would lapse to a permanent F, NP, or U grade.

INTENDED USE OF THE INCOMPLETE

The Incomplete is intended for use when circumstances beyond a student’s control prohibit taking the final exam or completing course work.

The Incomplete is not intended as a mechanism for allowing a student to retake a course. A student who has fallen substantially behind and needs to repeat a course can drop the course prior to the end of the ninth week of classes. Otherwise, the instructor should assign the appropriate final grade (D, F, NP, or U, for example).

An Incomplete may not be used simply to allow a bit more time for an undergraduate student who has fallen behind for no good reason. An I grade may be granted only to students who have a legitimate excuse. Examples of unacceptable reasons for approving an Incomplete include the need to rewrite a paper; the demands of a time-consuming job; the desire to leave town for a vacation, family gathering, or athletic contest; the desire to do well on GRE tests; and the like.

EXTENSION OF INCOMPLETE

For justifiable reasons, such as illness, students can petition to extend the Incomplete past one quarter. Petitions to extend the Incomplete must be submitted to the Academic Senate or the dean of OGSR (for graduate students), and must have the prior approval of the instructor and the department chair. Requests for extensions must be submitted before the Incomplete grade lapses to an F, NP, U grade. The extension cannot be made retroactively.

An I grade may be replaced upon completion of the work required by a date agreed upon with the instructor, but no later than the last day of finals week in the following quarter. If not replaced by this date, the I grade will lapse into an F, NP, or U grade, depending upon the student’s initial grading option.

Student Copy of Final Grades

At the end of each quarter students should check TritonLink for grade information. Grades are usually available ten working days after the end of final examinations. Students should examine their record for accuracy and report any omissions or errors to the Office of the Registrar immediately.

Transcript Requests

Application for an official transcript of record to be sent to another party or institution should be submitted to the registrar several days in advance of the time needed. An application for a transcript must bear the student’s signature. Please refer to the UCSD Registrar’s Web site at www.registrar.ucsd.edu for the most current transcript information.

Grade Appeals

A. 1. If a student believes that nonacademic criteria have been used in determining his or her grade in a course, he or she may follow the procedures described in this regulation.

2. Nonacademic criteria means criteria not directly reflective of academic performance in this course. It includes discrimination on political grounds or for reasons of race, religion, sex, or ethnic origin.

3. Appeals to this committee [see (B)(4)] shall be considered confidential.

B. 1. The student must attempt to resolve the grievance with the instructor within the first month of the following regular academic quarter.
2. If the grievance is not resolved to the student's satisfaction, he or she may then attempt to resolve the grievance through written appeal to the department chair or equivalent, who shall attempt to adjudicate the case with the instructor and the student within two weeks.

3. If the grievance still is not resolved to the student's satisfaction, he or she may then attempt to resolve the grievance through written appeal to the provost of the college, the dean of Graduate Studies, or the dean of the School of Medicine, who shall attempt to adjudicate the case with the instructor, the chair, and the student within two weeks.

4. If the grievance is not resolved to the student's satisfaction by the provost or dean, the student may request consideration of the appeal by the CEP Subcommittee on Grade Appeals (hereinafter called the Committee) according to the procedures outlined below. This request must be submitted before the last day of instruction of the quarter following the quarter in which the course was taken.

C. 1. The student's request for Committee consideration should include a written brief stating the nature of the grievance, including copies of any and all documents in his or her possession supporting the grievance. The submission of the brief to the Committee places the case before it and restricts any change of the challenged grade to a change initiated by the Committee, unless the Committee determines that all other avenues of adjudication have not been exhausted.

2. Upon receipt of the student's request, the Committee immediately forwards a copy of it to the instructor, the department chair or equivalent, and the provost or dean with a request for written reports of their attempts to resolve the complaint.

3. The Committee, after having determined that all other avenues of adjudication have been exhausted, shall review the brief and the reports to determine if there is substantial evidence that nonacademic criteria were used.
 a. If the Committee finds substantial evidence that nonacademic criteria were used, it shall follow the procedure in paragraph (D) below.
 b. If the Committee decides the allegations are without substance, it shall serve written notification of its findings to the complainant and to the instructor within two weeks. Within ten days the complainant or the instructor may respond to the findings. If there are no responses, or if after consideration of such responses the Committee sustains its decision, the grade shall not be changed.

D. 1. If the Committee determines that there is evidence that nonacademic criteria were used, it shall interview any individual whose testimony might facilitate resolution of the case. The complainant shall make available to the Committee all of his or her work in the course which has been graded and is in his or her possession. The instructor shall make available to the Committee all records of student performance in the course and graded student work in the course which is still in his or her possession. At the conclusion of the case each document shall be returned to the source from which it was obtained.

2. The Committee shall complete its deliberations and arrive at a decision within two weeks of its determination that evidence of the use of nonacademic criteria had been submitted. A record of the Committee's actions in the case shall be kept in the Senate Office for three years.

3. If the allegations of the complainant are not upheld by a preponderance of the evidence, the Committee shall notify the complainant and the instructor in writing. Within one week of such notification, the complainant and the instructor shall have the opportunity to respond to the findings and the decision of the Committee.

If there are no responses, or if after considering such responses the Committee sustains its decision, it shall so notify the complainant and the instructor in writing and the grade shall not be changed.

4. If the Committee determines that nonacademic criteria were significant factors in establishing the grade, it shall give the student the option of either receiving a grade of P or S in the course or retroactively dropping the course without penalty. A grade of P or S awarded in this way shall be acceptable towards satisfaction of any degree requirement, even if a minimum letter grade in the course had been required, and shall not be counted in the number of courses a student may take on a P/NP basis. If the student elects to receive a grade of P or S, the student may also elect to have a notation entered on his or her transcript indicating that the grade was awarded by the divisional grade appeals committee.
 a. The Committee shall serve written notification of its finding and its decision to the complainant and the instructor. The complainant and the instructor may respond in writing to the findings and the decision of the Committee within one week of such notification.
 b. If there are no responses, or if after considering such responses the Committee sustains its decision, the grade shall be changed; the Committee shall then instruct the registrar to change the grade to P or S or, if the student elected the drop option, to retroactively drop the course from the student's record. Copies of the Committee's instruction shall be sent to the complainant and the instructor.

E. These procedures are designed solely to determine whether nonacademic criteria have been used in assigning a grade, and if so to effect a change of that grade.

1. No punitive actions may be taken against the instructor solely on the basis of these procedures. Neither the filing of charges nor the final disposition of the case shall, under any circumstances, become a part of the personnel file of the instructor. The use of nonacademic criteria in assigning a grade is a violation of the Faculty Code of Conduct. Sanctions against an instructor for violation of the Faculty Code may be sought by filing a complaint in accordance with San Diego Division By-Law 230(D). A complaint may be filed by the student or by others.

2. No punitive actions may be taken against the complainant solely on the basis of
these procedures. Neither the filing of charges nor the final disposition of the case shall, under any circumstances, become a part of the complainant’s file. The instructor may, if he or she feels that his or her record has been impugned by false or unfounded charges, file charges against the complainant through the office of the vice chancellor for Student Affairs, the dean of Graduate Studies, or the associate dean for Student Affairs of the School of Medicine.

UCSD Policy on Integrity of Scholarship

Integrity of scholarship is essential for an academic community. The university expects that both faculty and students will honor this principle and in so doing protect the validity of university intellectual work. For students, this means that all academic work will be done by the individual to whom it is assigned, without unauthorized aid of any kind. Instructors, for their part, will exercise care in planning and supervising academic work, so that honest effort will be upheld.

The following policies apply to academic course work for both undergraduate and graduate students. A separate policy exists governing integrity of research. Medical students are governed by policies specified in the Handbook for School of Medicine Advisors and Students, as formulated by the School of Medicine Committee on Educational Policy.

INSTRUCTORS’ RESPONSIBILITY

At the beginning of the term the instructor shall state in writing (e.g., in the syllabus, information sheets, or Web site) what graded assignments and exams will be required of students. If there are any course-specific rules required by the instructor for maintaining academic integrity, the instructor shall also inform students in writing what kinds of aid and collaboration, if any, are permitted on graded assignments and exams. The UCSD Policy on Integrity of Scholarship states the general rules for student integrity.

STUDENTS’ RESPONSIBILITY

Students are expected to complete the course in compliance with the instructor’s standards. No student shall engage in any activity that involves attempting to receive a grade by means other than honest effort, for example:

No student shall knowingly procure, provide, or accept any unauthorized material that contains questions or answers to any examination or assignment to be given at a subsequent time.

No student shall complete, in part or in total, any examination or assignment for another person.

No student shall knowingly allow any examination or assignment to be completed, in part or in total, for himself or herself by another person.

No student shall plagiarize or copy the work of another person and submit it as his or her own work.

No student shall employ aids excluded by the instructor in undertaking course work.

No student shall alter graded class assignments or examinations and then resubmit them for regrading.

No student shall submit substantially the same material in more than one course without prior authorization.

A student acting in the capacity of an instructional assistant (IA), including but not limited to teaching assistants, readers, and tutors, has a special responsibility to safeguard the integrity of scholarship. In this role the student functions as an apprentice instructor, under the tutelage of the responsible instructor. An IA shall equitably grade student work in the manner agreed upon with the course instructor. An IA shall not make any unauthorized material related to tests, exams, homeworks, etc., available to any student.

Responsibility for Disposition of Cases of Academic Dishonesty

The responsibility for maintaining the standards of academic honesty rests with two university authorities: the faculty and the administration. Under the Standing Orders of the Regents, discipline is the exclusive responsibility of the campus administration, while authority over courses and curricula is delegated to the faculty through the Academic Senate. When a student has admitted to or has been found guilty of a violation of the standards of academic honesty, two separate actions shall follow.

(1) The instructor shall determine the student’s grade on the assignment and in the course as a whole. Any breach of academic honesty may be considered grounds for failure in the course, although less serious consequences may be incurred in less serious circumstances.

(2) The appropriate administrative authority shall impose a disciplinary penalty. For undergraduates, the appropriate administrative authority is the Council of Deans of Student Affairs. For graduate students, the appropriate administrative authority is the assistant dean of Graduate Studies. Sanctions will be imposed in accordance with guidelines authorized by the Committee on Educational Policy.

Procedures for Disposition of Cases of Academic Dishonesty

The procedure for disposition of cases of academic dishonesty is divided into three phases (A. initial phase; B. decision and resolution phase; C. appeals phase):

A. **The Initial Phase**

When an instructor has reason to believe that a student has violated UCSD’s Policy on Integrity of Scholarship, the instructor should proceed in one of two ways:

I. Call the student to a meeting to discuss the suspected violation. If the instructor decides that there is evidence of academic dishonesty, he or she must report the suspected violation to the Office of the Academic Integrity Coordinator (AIC).

II. Notify the AIC directly that there is a suspected violation of academic integrity.

Once the AIC has been notified by the instructor, the AIC shall notify the appropriate dean that a student is suspected of a violation of academic integrity and initiate record keeping to track the disposition of the case. For graduate students, the appropriate dean is the assistant dean of Graduate Studies. For an undergraduate student who is alleged to have acted alone or in concert with students from his or her own college, the appropriate dean is the dean of Student Affairs of the student’s college. If students from more than one college are allegedly involved in the same incident, the AIC will direct the case to the chair of the Council of Deans of Student Affairs.
The chair will then appoint one of the deans to proceed with the case for all students, regardless of college.

The dean shall contact the instructor and discuss the evidence in the case. If the instructor decides to proceed with the charges, the dean shall notify the student of the charges in writing and inform the student of the procedures for processing cases of academic dishonesty under the UCSD Policy on Integrity of Scholarship and where to obtain advice and assistance, such as from Student Legal Services. If the instructor is absent, the instructor’s department chair or program director may represent the instructor.

B. The Decision and Resolution Phase

The student shall have ten (10) business days following notification by the dean to meet with the dean to discuss the charges and possible administrative penalties. The student shall then decide whether:

I. to accept the charge of academic dishonesty, or

II. to deny the charge of dishonesty and to proceed to a formal hearing

Consequences of each of these decisions are presented below. If the student fails to respond to the written notification of alleged misconduct and does not meet with the dean, he or she shall be presumed to have taken decision I.

Decision I (Student accepts charge of academic dishonesty): If an undergraduate makes decision I, the dean shall notify the AIC of the student’s decision. The AIC shall notify the instructor and, if the course has been completed, request a grade assignment. The instructor shall assign a grade for the course and notify the AIC of the grade.

The dean shall also make a recommendation of any administrative penalty to the Council of Deans. The Council of Deans of Student Affairs shall decide the administrative penalty and notify the AIC of the decision. Notification to the AIC of the administrative penalties should take no longer than 30 business days from the time the dean is notified by the AIC of the charge.

Within (10) ten business days of being notified by the Council of Deans of Student Affairs, the AIC shall notify the student, the dean, and the instructor of the administrative penalty. Once the course has been completed and the AIC has notified the grade by the instructor, the AIC will notify the student, the dean, and the Registrar of the grade.

If a graduate student makes decision I, the assistant dean of Graduate Studies shall decide the administrative penalty and the instructor shall decide the course grade. Both shall notify the AIC of their decisions. The AIC shall then notify the student, the dean, and the Registrar of the grade, and the instructor of the administrative penalty.

A record of the administrative penalty shall be maintained in the office of the appropriate dean, the Council of Deans, and the AIC. A statement of the final disposition of the case shall be sent by the AIC to the chairperson of the department or program in which the violation occurred.

Decision II (Student denies charge and requests a formal hearing): If the student denies having committed the alleged act of academic dishonesty (decision II), he or she must submit a written request for a formal hearing to the appropriate dean within ten (10) business days of being notified of the charges by the dean. The dean shall transmit the written request to the AIC. Within thirty (30) calendar days after receipt of the request, the AIC shall schedule a formal hearing of the case by the Academic Dishonesty Hearing Board ("Hearing Board"). The AIC shall provide at least ten (10) business days’ notice to the student and the instructor of the time, date, and location of the hearing. The AIC shall be available to advise the instructor of the procedures and options for presentation of the case and, if the instructor so chooses, to present the case to the hearing board.

The Standing Hearing Board shall be composed of three faculty members appointed by the Academic Senate, one graduate student appointed by the assistant dean of Graduate Studies, one upper-division undergraduate student appointed by the vice chancellor of Student Affairs, and a college dean, who shall serve as the presiding officer. Members shall normally serve a two-year term. The presiding officer shall conduct the hearing and advise the hearing board on procedure, but shall not vote. If the student is enrolled in the same college as the presiding dean, a dean from another college shall serve as the presiding officer.

The hearing board shall be governed by the general UCSD rules of procedural due process. The Academic Senate will appoint a panel of six standing and seven alternate faculty members eligible to serve on the Standing Hearing Board. When standing members are not available, the formal hearing may be conducted with alternates appointed from the appropriate panel as listed below. To proceed with the hearing, however, the hearing board must have three of the faculty members present, at least one of which must be a member of the standing board. The AIC shall select alternates to the hearing board from the following panels:

1. A panel of seven faculty members appointed by the Academic Senate Committee on Committees.

2. A panel of upper-division (junior or senior) undergraduate students, one from each college, to be appointed by the college dean. Members of this panel must have completed at least one year on a standing judicial board at UCSD.

3. A panel of five graduate students to be appointed by the assistant dean, OGS.

The hearing board shall hold a formal hearing and decide on the basis of a preponderance of the evidence whether the student engaged in academic dishonesty. In cases in which the hearing board deems that expert advice is essential to its judgment, the hearing board, in consultation with the Committee on Committees, may appoint an ad hoc committee to advise it. The ad hoc committee shall consist of three faculty members with knowledge of the field in question. The members of the ad hoc committee shall be present at the hearing and shall advise the hearing board during the board’s deliberations. The final judgment on the case shall rest with the hearing board. Within five (5) business days from the date on which the hearing is completed, the presiding officer shall forward the hearing board’s findings to the appropriate dean, with copies to the AIC, department chairperson or program director, the instructor, and the accused student.

If the student is found guilty of academic dishonesty, the appropriate administrative
authority (for undergraduate students the Council of Deans of Student Affairs; for graduate students the assistant dean of Graduate Studies) shall then decide the administrative penalty and shall inform the student in writing within ten (10) business days after receipt of the notice of the hearing board’s final judgment. They shall also notify the instructor, the AIC, and the department chair or program director. The instructor shall then assign a grade for the course and notify the AIC of the grade within ten (10) business days. The AIC shall notify the student, the dean, and the Registrar of the grade.

If the hearing board finds the evidence insufficient to sustain the charge of academic dishonesty, the administrative authority and the instructor shall dismiss the matter without further action against the student, who shall be permitted either to complete the course without prejudice or to withdraw from it. The student shall notify the AIC of his or her decision, and the AIC shall notify the Registrar of the student’s decision. If the student withdraws from the course, it shall not be listed on his or her transcript.

C. The Appeals Phase: (Section I describes the appeal of the judgment of the hearing board, and Section II describes appeals of the academic action, administrative penalty, or both.)

I. Appeal of the Judgment of the Hearing Board: If the hearing board sustains the charge of academic dishonesty, an undergraduate student may appeal the judgment by writing to the Council of Provosts. Appeals must be made within five (5) business days of formal notification of the final disposition of the case. The Council of Provosts will consider the appeal within ten (10) business days from the date of appeal.

A graduate student or IA may submit an appeal to the dean of Graduate Studies. The basis for appeal of the hearing board’s judgment shall be: (i) that the standards of procedural fairness were violated, e.g., that the student did not have sufficient opportunity to present his or her side of the case; or (ii) that there exists newly discovered important evidence that has substantial bearing on the findings of the hearing board. If the appeal is sustained, the case shall be referred back to the hearing board for a new hearing. Except for such appeals, the judgment of the hearing board shall be final.

II. Appeal of the Academic Action, Administrative Penalty, or both: Within five (5) business days of receipt of the AIC’s notification, the student may appeal the instructor’s grade assignment, or the administrative officer’s administrative penalty, or both, by submitting a written request as provided below:

Request for Modification of Academic Action: A request for review of the grade assignment may be directed to the CEP Subcommittee on Grade Appeals. If the case has been heard by the hearing board, the CEP Subcommittee on Grade Appeals shall receive the report of the hearing board and accept its findings as to the facts of the case.

Request for Reduction of Administrative Penalty: An appeal of the appropriate authority’s administrative penalty shall be directed by an undergraduate student to Council of Provosts. The Council of Provosts will evaluate the student’s appeal and make a final decision within ten (10) business days of receiving the appeal. An appeal by a graduate student shall be directed to the dean of Graduate Studies.

Policies for Student Records and Timeline Extensions

Once an instructor has decided to proceed with a charge of academic dishonesty, he or she will refrain from assigning a course grade for the student until the charge has been resolved. If the course concludes before the charge is resolved, the instructor will assign an “IP” on the course grade sheet for the student’s grade and will indicate in the memorandum column that this IP is for a “Pending Charge of Academic Dishonesty.” Academic Records will note in attached text to the course (i.e., not on the student’s transcript) that the hold is for a “Pending Charge of Academic Dishonesty.” The student’s transcript will show an “IP” for the course until the charge is resolved. While a hold is in effect, the student shall not drop the course. The faculty hold shall not be removed by the Registrar until notification from the AIC, who shall release the hold once the charge is resolved and a grade has been assigned by the instructor. If a passing grade is assigned and a conflict arises with a duplicate, cross-listed, or equivalent course taken after the charge has been recorded, the AIC will direct the Registrar to drop the student from the duplicate course or remove the grade for the duplicate course from the student’s record.

If the student accepts the charge of academic dishonesty or is found guilty by the hearing board, the grade assigned by the instructor will be counted in the student’s GPA even if the course is retaken. Academic Records will permanently note in text attached to the course (i.e., not on the student’s transcript) that the grade was given as a result of “Academic Dishonesty.”

If the student withdraws from UCSD before the final disposition of the case, the following policy shall govern. If the student is found to have committed an act of academic dishonesty, and the instructor assigns him or her a final grade in the course, this grade shall be permanently entered on the transcript. If the administrative penalty is dismissal, the transcript shall bear a notation that readmission is contingent upon the approval from the chancellor. Any administrative penalty less severe than dismissal shall be imposed when the student returns to the university.

If a case of suspected academic dishonesty is also the subject of an administrative inquiry under the Policy on Integrity of Research, then the senior vice chancellor for Academic Affairs, in consultation with the hearing board, may make such modifications in procedure as are necessary to coordinate the two inquiries.

If the final decision in the case results in dismissal of the student, a record of the case and its outcome shall be established in the office of either the vice chancellor for Student Affairs or the dean of Graduate Studies, depending on the registration status of the student. If the administrative penalty is suspension or dismissal, the fact that the student was suspended or dismissed for academic dishonesty must be posted on the academic transcript for the duration of the penalty.

The AIC may extend any timelines in this policy when practical exigencies so dictate. If a delay is imposed, the affected individuals will be notified.
Reporting, Record Keeping, and Review of this Policy

The AIC shall report annually to the Academic Senate Committee on Educational Policy, the Council of Provosts, and the vice chancellor for Student Affairs on the number and character of misconduct, the pattern of decision-making (contested or uncontested), the severity of sanctions, both administrative and academic, and other relevant matters as decided by the Committee on Educational Policy.

Special Programs

Education Abroad Program and the Opportunities Abroad Program

Please refer to the "Courses, Curricula, and Programs of Instruction" section of this catalog, where the Education Abroad Program and the Opportunities Abroad Program are described in full.

Intercampus Transfer (ICT)

An undergraduate in good academic standing who is now, or was previously, registered in a regular session at any campus of the University of California and has not since registered at any other institution may apply for admission as a transfer in the same status to another campus of the university.

HOW TO APPLY

Intercampus transfers must complete the University of California Undergraduate Application form. These forms are available in the Office of the Admissions or at http://www.universityofcalifornia.edu/apply. You may apply to one or to as many as nine UC campuses of the university using one application form. Send your completed application to:

University of California
Admissions Application Processing Service
P.O. Box 23460
Oakland, CA 94623-0460

Mail only your application form if downloaded, fees, and essay to the processing service address above. Send your transcripts, test scores, and all other correspondence relating to your application directly to the Admissions Office at the university campus(es) to which you apply. The processing service will not forward them.

You may apply online using Pathways: http://www.ucop.edu/pathways.

APPLICATION FEES

The basic application fee entitles you to apply to one university campus. If you apply to more than one campus, you must pay an additional fee for each campus you select. These fees are not refundable.

WHEN TO APPLY

Priority dates for filing applications for intercampus transfer are identical to the application filing dates for new students: fall, November 1–30; winter, July 1–31; and spring, October 1–31. UC Berkeley fall semester, November 1–30.

A campus will accept applications after the priority period only if it still has openings. If you apply after the priority filing period to a campus that is no longer accepting applications, the Admissions Application Processing Service will notify you by mail that your application will not be forwarded to that campus. In this case, you may receive a full or partial refund of the application fee.

Please note: UCSD does not accept applications for winter and spring quarters. Consult the application for undergraduate admission for information regarding other campuses.

Intercampus Visitor (ICV)

Qualified undergraduates may take advantage of educational opportunities on other campuses of the University of California as an Intercampus Visitor (ICV). This program is designed to enable qualified students to take courses not available on their home campus, to participate in special programs, or to study with distinguished faculty members on other campuses of the university. Students who meet the following requirements should complete an application available in the Office of the Registrar.

1. An undergraduate student must have completed at least one year in residence on the home campus and have maintained a grade-point average of at least 2.0 (or equivalent) to apply as an intercampus visitor.

2. Approval of the appropriate provost office is required.

3. Some UC campuses have additional requirements. See the application for requirements and deadlines.

If students meet the above conditions, they should complete the ICV application form and return it to the Office of the Registrar on the home campus, on or before the appropriate deadlines. The ICV application is subject to approval of both the home and host campuses.

A nonrefundable fee is charged for each ICV application.

Simultaneous Enrollment of UCSD Students at other UC Campuses

UCSD students may enroll in classes at another UC campus for the same term providing the student:

• Has completed one quarter as a matriculated student at UCSD
• Is enrolled and paid for a minimum of twelve units for the current term at UCSD and maintains this status
• Is in good standing
• Has the appropriate academic preparation as determined by the host campus.

Financial aid is available only through UCSD. Students eligible for veterans, rehabilitation, social security, and other federal, state, or county benefits must secure eligibility certification through the UCSD financial aid office. Units taken at both campuses may be combined to establish full-time enrollment for financial aid.

ROTC

UCSD does not have an ROTC program. Students may, however, with the permission of their college, enroll in ROTC courses at another institution in conjunction with completing their degree programs at UCSD.

ROTC courses are conducted on the campuses of the University of San Diego and San Diego State University. Further information on these programs may be obtained from the ROTC advisor at the Aerospace Studies Department, (619) 594-5545, and the Military Science Department, (619) 594-4943, at San Diego State University, or the Department of Naval Science, (619) 260-4811, at the University of San Diego.
Absence/Readmission to the University

Undergraduate students absent for no more than one quarter are considered to be continuing students and should contact the Office of the Registrar for registration information.

Students in good academic standing who are absent for two or more consecutive quarters must file an application for readmission no later than four weeks prior to the beginning of the quarter. A nonrefundable fee is charged.

The Web site containing the online readmission application and information is: http://tritonlink.ucsd.edu. Select the “Academics” tab and then select “Readmission.”

Students in good academic standing who were absent for three quarters or more, should consult with a college academic advisor before enrollment to ensure adherence to graduation requirements.

Students who were on probation or subject to dismissal the last quarter of attendance at UCSD may be required to consult with an academic advisor prior to approval of the readmit application and establish a contract before enrollment.

Students who attended another institution since leaving UCSD must submit official transcripts for all academic work completed. This work must be of passing or higher quality.

In the case of major departments with approved screening criteria, students may be readmitted as pre-majors.

Withdrawal from the University

Enrolled or registered (paid fees) students who wish to withdraw either prior to or during the quarter are required to complete the Undergraduate Application for Withdrawal. The form should be filed with the student’s college academic advising or dean’s office. These forms serve two purposes: 1) a means to provide a refund of fees, if appropriate (see below); 2) automatic withdrawal from classes (see also “The W Grade”). Students considering withdrawing are urged to consult with their respective college. The colleges recognize that there are many reasons for students withdrawing from the university.

Refund Policy

NEW UNDERGRADUATE STUDENTS

Prior to the first day of instruction, the registration fee is refunded minus the statement of intention to register fee.

REFUND SCHEDULE

The following schedule of refunds is effective beginning with the first day of instruction and refers to calendar days (including weekends):

<table>
<thead>
<tr>
<th>Days</th>
<th>Refund Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1</td>
<td>100 percent</td>
</tr>
<tr>
<td>2–7</td>
<td>90 percent</td>
</tr>
<tr>
<td>8–18</td>
<td>50 percent</td>
</tr>
<tr>
<td>19–35</td>
<td>25 percent</td>
</tr>
<tr>
<td>36+</td>
<td>0 percent</td>
</tr>
</tbody>
</table>

The effective date of withdrawal used in determining the percentage of fees to be refunded is the date indicated on the withdrawal form by the college academic advising or dean’s office.

RETURN OF TITLE IV FEDERAL STUDENT AID

Financial aid recipients may be required to return some or all of their aid at the time of withdrawal. This requirement applies only to undergraduate students who withdraw prior to completing 60 percent of the quarter. Questions about financial aid repayment should be directed to the Financial Aid Office.

Auditing

Interested individuals, including registered students, are permitted to audit courses only with the explicit and continuing consent of, and under such rules as may be established by, the faculty member in charge of the course. The instructor is not obligated to devote time to the work of individuals not officially enrolled in the course. All persons auditing are required to abide by university policies and campus regulations.
At the University of California, San Diego all programs leading to master’s degrees and doctoral degrees (other than the M.D.) are under the jurisdiction of the Graduate Council and are administered by the Office of Graduate Studies.

The combined administrative responsibility for graduate studies and for research reflects the intention of the San Diego campus to emphasize the research character of graduate education. Doctoral and most master’s degrees are the culmination of creative effort and attest to the ability of the recipient to continue original inquiry. In addition to requiring original research, most of UCSD’s graduate programs expect their students to obtain teaching experience.

Much of the training that UCSD offers takes place outside the classroom—not only in seminars but in independent research and in tutorial work. Students can benefit from the many visitors from other universities; there are opportunities to study at other campuses of the University of California; and many students become involved in the research activities of UCSD’s research institutes and centers. La Jolla has become one of the most important intellectual centers of the West. Not only has UCSD attracted many of the world’s great scholars, but other research institutions located nearby such as the Salk Institute for Biological Studies, the Burnham Institute, and The Scripps Research Institute have enhanced the area’s reputation.

The Nature of Graduate Instruction

Graduate courses demand, on the part of both instructor and student, a capacity for critical analysis and a degree of research interest beyond those appropriate for undergraduate study. These courses generally carry a number in the 200 series and may be conducted in any of several ways: (1) as advanced lecture courses; (2) as seminars in which faculty and students present critical studies of selected problems within the subject field; (3) as independent reading or study under faculty supervision; or (4) as research projects conducted under faculty supervision. Graduate courses numbered 400–499 are designed for professional programs and may not be used to satisfy minimum graduate course requirements for degrees other than the specific degree program for which they are offered. Courses at the upper-division level (100–197) may be taken in partial satisfaction of the requirements for an advanced degree.

Graduate students may take lower-division courses (1–99) for a letter grade, but grades earned in those courses will not be considered in their overall grade-point average (GPA) for the purpose of determining good standing, except for students in the M.P.I.A. program who may take lower-division language courses for a letter grade and for inclusion in their GPA for the purpose of determining good standing.

The graduate student is accorded considerable liberty in choice of courses as long as minimum departmental core course, departmental requirements and grading standards, and residency requirements are met.

Administration

The Office of Graduate Studies

The Office of Graduate Studies is administered by the dean of Graduate Studies, who is responsible for graduate admissions; graduate degree programs; the administration of fellowships, traineeships, and other graduate student support; the development of new programs; and the maintenance of common standards of high quality in graduate programs across the campus.

The dean reports to the senior vice chancellor of Academic Affairs and to the Graduate Council, on the administration of graduate affairs.

The Graduate Council

The Graduate Council is a standing committee of the San Diego Division of the Academic Senate composed of faculty and graduate students. The primary function of the council is to exercise overall responsibility for graduate study programs and to implement systemwide policies, procedures, requirements, and standards.

The Graduate Advisor

The graduate advisor in a department, group, or school is the faculty member to whom graduate students direct requests for information about graduate study in a particular program. The graduate advisor’s duties include:

1. Advising the dean on admission of graduate students.
2. Advising graduate students regarding their programs of study and other matters pertinent to graduate work.
3. Appointing individual advisors for each graduate student.
4. Approving official study lists.
5. Acting on the petitions of graduate students.
6. Insuring that adequate records are maintained on all graduate students in the department, group, or school, and supplying relevant information as requested by the dean.
7. Assisting the dean of Graduate Studies in the application of university regulations governing graduate students, graduate study, and graduate courses.
8. Advising the chair of the department and the dean of Graduate Studies about developments of the graduate program in the department, group, or school.

Graduate Student Association

The Graduate Student Association (GSA) is the officially recognized graduate student government at UCSD. It represents all graduate and medical students—including those at Scripps Institution of Oceanography, the Graduate School of International Relations and Pacific Studies, Rady School of Management, the School of Medicine, and the School of Pharmacy and Pharmaceutical Sciences—in academic, administrative, campus, and university matters. The GSA Council, composed of six executive officers and representatives from each department, group and school, nominates graduate student representatives for appointment to campus governing bodies and committees, including the Graduate Council, the Registration Fee Committee, and the systemwide Student Body Presidents’ Council. The GSA also sponsors projects and social activities designed to improve the academic and social lives of students. Meetings are open to all...
graduate, School of Pharmacy, and School of Medicine students.

For more information contact the GSA at (858) 534-6504, or go to http://gsa.ucsd.edu.

Graduate Student Diversity

The University of California, San Diego actively recruits and admits qualified students to graduate programs who will enhance the diversity of UCSD graduate programs.

UCSD recognizes the value to students, faculty, staff, and the community in having a campus which reflects the full richness and talents of the people of California. Diversity is viewed as a campus strength and a critical component of higher education. The campus has a firm commitment to recruit and admit graduate students from all demographic groups including students from traditionally underrepresented backgrounds.

The Graduate Student Affairs Unit in the Office of Graduate Studies provides an array of counseling and advocacy services to assist U.S. citizens and permanent residents in applying to graduate school, obtaining financial support, and successfully completing graduate degree programs.

UCSD offers the San Diego Fellowship Program, which is designed to increase campus diversity. The fellowship provides two awards: The San Diego Fellowship and the Eugene Cota-Robles Fellowship. Incoming students who have overcome significant economic, educational, or social hardship in pursuit of their education, or whose presence would enhance campus or departmental diversity in other ways, are eligible to apply for awards through the San Diego Fellowship Program. Refer to the Fellowship and Traineeship section for more details.

In addition, a limited number of graduate student fellowships are available in specific science disciplines through the National Science Foundation, Alliance for Graduate Education and the Professoriate (AGEP) Program.

For assistance and further information about special opportunities for underrepresented students, contact the assistant dean, Office of Graduate Studies, 402 University Center, (858) 534-3555 or (858) 534-3678.

Career Services for Graduate Students

The Career Services Center offers a wide range of programs and services to assist graduate students with their career planning and job search needs. Individual career counseling is available on both an appointment and drop-in basis. In addition, workshops and special events are regularly offered covering such areas as resume writing, job search strategies, and nonacademic employment options. The Career Services Center houses a career reference library containing information on employers, job listings, alumni contact list, salaries, sample resumes, and publications pertinent to graduate students’ career issues. An online database and Internet access computer lab is also available to assist in placement efforts. For more information, see the “Career Services” section of this catalog or visit the Career Services Office.

General Requirements for Higher Degrees

Courses and Grades

Only upper-division and graduate courses in which a student is assigned grades A, B, C (including plus (+) or minus (–)), D, or S are counted in satisfaction of the requirements for all doctoral and master’s degrees. An Incomplete grade, as well as an NR, will automatically lapse to an F or U if it has not been removed when the final report for the degree is approved by the Office of Graduate Studies. (See also “Grades.”)

Undergraduate language courses and courses in the 400 series are only used for degree credit in the program for the M.P.I.A. degree offered by the Graduate School of International Relations and Pacific Studies. For course information see the section on “International Relations and Pacific Studies” elsewhere in this catalog.

Registration in the Final Quarter for the Award of the Degree

A student completing course work, using university facilities including the library, or making any demands upon faculty time (other than final reading of the thesis or dissertation, or administering the comprehensive or doctoral examination), must register in the final quarter in which the degree is to be conferred. Students who need only to submit their theses or dissertations, or to take the comprehensive or final examination may pay a filing fee in lieu of registration in the final quarter (see “Filing Fee”).

Master Degrees

Master of Advanced Study (M.A.S.)

The University of California offers graduate professional degree programs leading to the master of advanced study (M.A.S.) degree. This degree meets the needs of working professionals continuing in educational programs. While some M.A.S. programs are tailored to career advancement, other programs enable individuals to pursue new career directions or advanced study in the liberal arts. Each M.A.S. program accommodates flexible, part-time, academically qualified working adults who cannot be full-time students. All M.A.S. degree programs must be in conformity with one of the following two plans: Plan I. Thesis Plan or Plan II. Comprehensive Examination Plan. Pending program approval, an alternative capstone plan is a third option. Specific degree requirements, curriculum, and other details are available with each individual program.

Master of Arts (M.A.) and Master of Science (M.S.)

The master of arts and master of science degrees are offered under two plans: Plan I. Thesis, and Plan II. Comprehensive Examination. Since some departments offer both plans, with varying unit requirements, students should consult with their advisors before selecting a plan for completion of degree requirements.

Master of Business Administration (MBA)

The MBA is a professional degree that provides distinguished education in the theory and practice of management. The program provides a comprehensive education in the fundamental disciplines of business coupled with a focus on the business and management issues faced by technology and innovation driven companies. Students interested in becoming managers and leaders in such companies and in understanding the role that technologies play in driving the global business marketplaces will be well suited for the Rady School of Management. For degree requirements and curriculum, please refer to the school.
Master of Education (M.Ed.)

The Education Studies Program offers a master of education (M.Ed.)/multiple subject credential to authorize teaching grades K–6, and a master of education (M.Ed.)/single subject credential for teaching grades 7–12 is offered in the subject areas of biology, chemistry, geoscience, English, mathematics, and physics. Degree requirements, curriculum, and other details regarding the program may be obtained from the Department of Education Studies Program.

Master of Engineering (M.Eng.)

Several departments in the School of Engineering offer the master of engineering (M.Eng.). The M.Eng. is a terminal degree designed to address the technical needs of engineers. Degree requirements, curriculum, and other details regarding the program may be obtained from the Department of Electrical and Computer Engineering and the Department of Bioengineering.

Master of Fine Arts (M.F.A.)

The master of fine arts degree is offered in the Departments of Theatre and Dance, and Visual Arts under a modified thesis plan. A short written thesis that may be regarded as a position paper, presenting a descriptive background for the student's work, is required. There is no written final examination, but great weight is given to the candidate's final presentation and the oral defense of the thesis.

Master of Pacific International Affairs (M.P.I.A.)

The Master of Pacific International Affairs Program provides training for those interested in pursuing professional careers in international affairs and international management with an emphasis on the countries of the Pacific Rim. For degree requirements and curriculum, please refer to the International Relations and Pacific Studies description under the catalog listings of programs of instruction.

Programs of Study

PLAN I: THESIS PLAN

A minimum of at least thirty-six quarter-units are required: eighteen units in graduate courses, including a minimum of twelve units in graduate-level courses in the major field; twelve additional units in graduate or upper-division courses; and six units in research course work leading to the thesis. Consult your department for specific unit and course requirements.

Following advancement to candidacy, the student electing Plan I must submit a thesis. The thesis committee, appointed by the chair of the department or group and approved by the dean of Graduate Studies, consists of at least three faculty members, with at least two from the candidate's major department.

When all members of the committee have approved the thesis, a Final Report of the Thesis for the Master of Arts or Master of Science Degree under Plan I must be completed. The candidate submits the thesis to the Office of Graduate Studies and upon approval by the dean of Graduate Studies, files the thesis with the university archivist who accepts it on behalf of the Graduate Council. Acceptance of the thesis by the archivist with a subsequent second approval by the dean of Graduate Studies represents the final step in the completion of all requirements by the candidate for a master of arts or master of science degree on the San Diego campus.

PLAN II: COMPREHENSIVE EXAMINATION PLAN

A minimum of at least thirty-six quarter-units are required: twenty-four units in graduate courses, including a minimum of fourteen units in graduate-level courses in the major field; and twelve additional units in graduate or upper-division courses. Consult your department for specific unit and course requirements.

Apprentice Teaching

A maximum of six units of 500-level courses (apprentice teaching) may be credited toward the degree requirements.

Academic Residence

The minimum residence requirement is three academic quarters, at least one of which must follow advancement to candidacy. Academic residence is met by satisfactory completion of six units or more per quarter, some of which must be graduate level.

A candidate must be registered in the quarter in which the degree is to be awarded. (See “Registration in the Final Quarter for the Award of the Degree.”)

Advancement to Candidacy

After completing all preliminary requirements of the major with a GPA equivalent to 3.0 in upper-division and graduate course work undertaken, a total of no more than eight units of F and/or U grades, and a minimum of two quarters or more of residency, the student may file an Application for Candidacy for the Thesis or Comprehensive Examination, Plan I or II, for the Master of Arts or Master of Science Degree. An Application for Candidacy must be filed no later than two weeks after the first day of the quarter in which degree requirements are to be completed. (See “Academic Calendar.”)

Following advancement to candidacy, the student electing Plan II must pass a comprehensive examination administered by the major department. A Final Report of the Comprehensive Examination for the Master of Arts or Master of Science Degree under Plan II is used to report successful completion of the examination requirement.

Transferring Credit

With the approval of the major department and the dean of Graduate Studies, upper-division and graduate course work completed with a grade of B– or better while in graduate standing at another campus of the University of California may be accepted in satisfaction of one of the three quarters of residence and up to one-half of the quarter-units of credit required for the master's degree at UCSD.

On the recommendation of the major department and with the approval of the dean of Graduate Studies, a maximum of eight quarter-units of credit for work completed with a grade of B– or better in graduate standing at another institution other than the University of California may be applied toward a master's degree at UCSD.
GRADUATE DEGREES OFFERED: 2007–2008

<table>
<thead>
<tr>
<th>Field</th>
<th>Degree(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropology</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Art History, Theory, and Criticism</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Audiology (Joint with San Diego State U.)</td>
<td>Au.D.</td>
</tr>
<tr>
<td>Bioengineering</td>
<td>M.S., Ph.D., M.Eng.</td>
</tr>
<tr>
<td>(Bioinformatics)</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Biology (Joint with San Diego State U.)</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>(Bioinformatics)</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Biology (Joint with San Diego State U.)</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Biomedical Sciences (Bioinformatics)</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>Business</td>
<td>MBA</td>
</tr>
<tr>
<td>Chemistry (Joint with San Diego State U.)</td>
<td>M.S.**, Ph.D.</td>
</tr>
<tr>
<td>Communication</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>Comparative Studies in Language, Society, and Culture</td>
<td>Ph.D. 5</td>
</tr>
<tr>
<td>Computer Science</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>(Bioinformatics)</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>(Computer Engineering)</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Earth Sciences</td>
<td>M.S.**, Ph.D.*</td>
</tr>
<tr>
<td>Economics</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>Economics and International Affairs</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Education</td>
<td>M.Ed.</td>
</tr>
<tr>
<td>Educational Leadership (Joint with C. State U. San Marcos)</td>
<td>Ed.D.</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>M.Eng.</td>
</tr>
<tr>
<td>(Applied Ocean Science)</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>(Applied Physics)</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>(Communication Theory and Systems)</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>(Computer Engineering)</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>(Electronic Circuits and Systems)</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>(Intelligence Systems, Robotics, and Control)</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>(Photonics)</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>(Signal and Image Processing)</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>Engineering Sciences (Aerospace Engineering)</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>(Applied Mechanics)</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>(Applied Ocean Science)</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>(Chemical Engineering)</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>(Engineering Physics)</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>(Mechanical Engineering)</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Engineering Sciences (Applied Mechanics)</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>(Joint with San Diego State U.)</td>
<td></td>
</tr>
<tr>
<td>Ethnic Studies</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>Health Law (Joint with California Western S. of Law)</td>
<td>M.A.S.</td>
</tr>
<tr>
<td>History (Judaic Studies)</td>
<td>M.A.</td>
</tr>
<tr>
<td>International Affairs</td>
<td>M.P.I.A.</td>
</tr>
<tr>
<td>Pacific International Affairs</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Political Science and International Affairs</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Language and Communicative Disorders</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>(Joint with San Diego State U.)</td>
<td></td>
</tr>
<tr>
<td>Latin American Studies</td>
<td>M.A.</td>
</tr>
<tr>
<td>Leadership of Healthcare Organizations</td>
<td>M.A.S.</td>
</tr>
<tr>
<td>Linguistics</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>Literature</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Comparative</td>
<td>M.A.</td>
</tr>
<tr>
<td>Creative Writing</td>
<td>M.F.A.***</td>
</tr>
<tr>
<td>English and American</td>
<td>M.A.</td>
</tr>
<tr>
<td>French</td>
<td>M.A.</td>
</tr>
<tr>
<td>German</td>
<td>M.A.</td>
</tr>
<tr>
<td>Spanish</td>
<td>M.A.</td>
</tr>
<tr>
<td>Marine Biodiversity and Conservation</td>
<td>M.A.S.</td>
</tr>
<tr>
<td>Marine Biology</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>Materials Science</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Mathematics (Bioinformatics)</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Mathematics (Applied)</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Statistics</td>
<td>M.S.</td>
</tr>
<tr>
<td>Mathematics and Science Education</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>(Joint with San Diego State U.)</td>
<td></td>
</tr>
<tr>
<td>Molecular Pathology</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Music</td>
<td>M.A., Ph.D., D.M.A.</td>
</tr>
<tr>
<td>Neurosciences</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>Oceanography</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>Philosophy</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>Physics (Bioinformatics)</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>(Biophysics)</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Political Science</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>Political Science and International Affairs</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Psychology</td>
<td>M.A.** Ph.D.*</td>
</tr>
<tr>
<td>Public Health (Epidemiology) (Health Behavior) (Joint with San Diego State U.)</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Sociology</td>
<td>Ph.D.*</td>
</tr>
<tr>
<td>Structural Engineering</td>
<td>M.S., Ph.D.</td>
</tr>
<tr>
<td>Teaching and Learning</td>
<td>Ed.D.</td>
</tr>
<tr>
<td>(Curriculum Design)</td>
<td></td>
</tr>
<tr>
<td>(American Sign Language)</td>
<td>M.A.</td>
</tr>
<tr>
<td>Theatre (Joint with U. of California, Irvine)</td>
<td>M.F.A.</td>
</tr>
<tr>
<td>Visual Arts</td>
<td>M.F.A.</td>
</tr>
</tbody>
</table>

*The master’s degree may be awarded to students pursuing work toward the Ph.D. after fulfillment of the appropriate requirements. See appropriate section of catalog.

§ Students who have completed some graduate study at UCSD and have been admitted to a doctoral program may apply for this interdisciplinary program.

**UCSD undergraduates in the junior or senior year may apply to their respective departments for admission to the integrated B.S./M.S. degree program. A similar program is available to UCSD undergraduates in several of the engineering and science specialties. Consult department personnel and/or catalog departmental listing for complete information.

*** Pending approval.
Courses used must be taken prior to matriculation at UCSD. In any case, no more than a total of one-half of the units required for a master’s degree may be transferred in from any UC or other institutions. Courses used for a previous degree may not be transferred. A letter from the institution from which the courses are being transferred will be required stating the courses were not used toward another degree.

Course work approved for transfer credit will not be included in calculating a student’s grade-point average, regardless of the source.

PLAN III: MODIFIED THESIS PROGRAM

Seventy-two quarter-units for Visual Arts and ninety quarter-units for Theatre, with a GPA equivalent to 3.0 in upper-division and graduate course work undertaken, are required for a master of fine arts degree. Information covering thesis preparation is contained in the publication, Preparation and Submission Manual for Doctoral Dissertations and Master’s Theses, which can be found on the Web site http://ogs.ucsd.edu/academic-policy/Preparation_and_Submission_Manual_for_Doctoral_Dissertations_and_Master_Theses_2006.pdf. The completed thesis is submitted to the thesis committee for review.

Following the filing of an Application for Candidacy for the Modified Thesis, Plan III, the candidate must submit a thesis. The thesis committee, appointed by the chair of the department and approved by the dean of Graduate Studies, consists of four faculty members; three from the department and one, preferably tenured, from outside the department.

When all members of the committee have approved the thesis, a Final Report of the Approved Thesis Examination, Plan III, for the Master of Fine Arts Degree. An application for Candidacy for the Modified Thesis, Plan III, for the Master of Fine Arts Degree. An application for candidacy must be filed no later than two weeks after the first day of the quarter in which degree requirements are to be completed. (See "Academic Calendar.")

Graduate Work Completed Elsewhere

In exceptional circumstances, a student may be given a leave of absence for the purpose of studying elsewhere. While appropriate credit may be allowed for course work completed elsewhere with a grade of B or better in a graduate program, the period involved will not reduce the UCSD academic residence requirement of six academic quarters for visual arts and eight quarters for theatre.

Doctoral Degrees

Doctor of Audiology (Au.D.)

The Au.D. is a professional doctoral degree offered jointly with San Diego State University (SDSU). The four-year degree program is designed for individuals who intend to specialize in clinical practice and to meet professional standards requiring a clinical doctorate as the entry-level degree for a certified audiologist. Graduates of this program will have the knowledge base, research exposure, and advanced clinical skills to enter the workforce in any setting, and be prepared to function as independent audiology professionals in the expanding health care arena. For degree requirements and curriculum, please refer to the Audiology section in the catalog.

Doctor of Education (Ed.D.)

The Ed.D. is a professional degree in which regional professional educators gain content knowledge as well as specific skills related to instructional leadership within the K–12 and postsecondary educational community. Advanced Ed.D. students will conduct research on professional practice within their own institution addressing specific local problems that have national implications for education. For degree requirements and curriculum, please refer to the Education Studies Program section in this catalog.

Doctor of Musical Arts (D.M.A.)

The DMA degree emphasizes the dual preparation for professional careers in the performance of contemporary music, as well as in the equally demanding area of teaching these skills on an advanced level. Candidates for this degree are expected to demonstrate musical excellence, artistic maturity, and the capability for doing original scholarly work. For degree requirements and curriculum, please refer to the Department of Music description under the catalog listings of programs of instruction.

Doctor of Philosophy (Ph.D.)

The doctor of philosophy degree is a research oriented degree which requires individual study and specialization within a field or the establishment of connections among fields. It is not awarded solely for the fulfillment of technical requirements such as academic residence and course work. Candidates are recommended for the doctorate in recognition of having mastered in depth the subject matter of their discipline and having demonstrated the ability to make original contributions to knowledge in their field of study. More generally, the degree constitutes an affidavit of critical aptitude in scholarship, imaginative enterprise in research, and proficiency in communication, including—in most departments—practice in teaching.

Program of Study

The student’s program of study is determined in consultation with the advisor who supervises the student’s activities until the appointment of the doctoral committee. A doctoral program generally involves two stages.
The first stage requires at least three quarters of academic residence and is spent in fulfilling the requirements established by the Academic Senate and by the major department, group, or school. When the department considers the student ready to take the qualifying examination, it arranges for the appointment of a doctoral committee. Immediately upon passing the qualifying examination administered by the doctoral committee, the student advances to candidacy.

The second or in-candidacy stage is devoted primarily to independent study and research and to the preparation of the dissertation. A minimum interval of three quarters of academic residence must elapse between advancement to candidacy and the filing and final defense of the dissertation.

Foreign Language Requirements

Some doctoral programs require candidates to demonstrate language proficiency in one or more languages as part of the formal requirements for the degree. In these cases, the testing of proficiency is the responsibility of the department, group, or school concerned.

Doctoral Time Limits

All graduate students in doctoral programs are subject to campus policy on time limits to their degree. Each graduate program has three time limits pertaining to students’ academic progress toward the doctoral degree:

1. the registered time by which a student must advance to doctoral candidacy;
2. the registered time during which a doctoral student is eligible for support; and
3. the registered time by which a student must complete all doctoral requirements. Students will not be permitted to continue in doctoral status beyond the pre-candidacy and total registered time limits. Students will not be permitted to receive UCSD-administered financial support beyond the support limit. Information about these time limits is given in the descriptions of each department’s graduate program in this catalog and departmental publications.

University policy requires that graduate students be continuously registered—unless on an approved leave of absence—from the first quarter of enrollment to completion of degree requirements. (See “Continuous Registration” and “Leave of Absence.”)

For purposes of calculating when precandidacy and total registered time limits are reached, accrued time is the elapsed time from first enrollment as a graduate student at UCSD less (a) time withdrawn or on approved leave of absence, and (b) time between completion of one graduate program at UCSD and first registration in another. For the support time limit, a maximum of three quarters of approved leave or withdrawal may be deducted from elapsed time in calculating accrued time. Time spent in graduate study at another institution or University of California campus prior to beginning graduate study at UCSD will not count toward accrued time, with the exception of students entering the doctoral program in electrical engineering, computer science, or music who have earned a master’s degree in that discipline. All of the following will count toward accrued time: time spent at UCSD as a master’s, non-degree, or intercampus exchange graduate student; time spent on leave beyond three quarters; time spent between completion of or withdrawal from a graduate program at UCSD and re-registration in the same field of study. Precandidacy and total registered time limits will not accrue during periods of leave of absence and/or withdrawal in excess of three quarters.

Further information may be obtained from departmental graduate coordinators or the Office of Graduate Studies.

Academic Residence

The minimum residence requirement for a doctoral degree is six quarters, three of which must be in continuous academic residence at UCSD. Residency is established by the satisfactory completion of six units or more per quarter, at least some of which must be at the graduate level. Joint doctoral students meet the UCSD academic residency requirement by successfully completing a minimum of thirty-six units of course work at UCSD.

A candidate must be registered in the final quarter in which the degree is to be awarded. (See "Registration in the Final Quarter.")

The Doctoral Committee

At least three weeks prior to a scheduled qualifying examination, the department requests approval for the appointment of the doctoral committee by the dean of Graduate Studies. This committee conducts the qualifying examination, supervises the preparation of and passes upon the dissertation, and administers the final examination.

The committee consists of five or more officers of instruction, no fewer than four of whom shall hold professorial titles of any rank. The committee members shall be chosen from two or more departments/programs; at least two members shall represent academic specialties that differ from the student’s field and one of these two must be a tenured UCSD faculty member from another department. Consult the departmental graduate coordinator or the Office of Graduate Studies for further details.

Reconstituted Doctoral Committee

For a variety of reasons a doctoral committee may need to be reconstituted. The request for reconstitution of the membership of a doctoral committee must be submitted on a reconstitution form to the dean of Graduate Studies by the chair of the candidate’s major department, group, or school no less than two weeks prior to the qualifying examination or defense of the dissertation. The request must include departmental affiliation of the members of the proposed reconstituted committee and the reason(s) for requesting the change.

Qualifying Examination and Advancement to Candidacy

The doctoral committee administers the qualifying examination and authorizes the issuance of the Report of the Qualifying Examination and Advancement to Candidacy. Formal advancement to candidacy requires the student to pay a candidacy fee to the cashier prior to submitting the form to the dean of Graduate Studies for approval. Students must maintain a GPA equivalent to 3.0 or better in upper-division and graduate course work undertaken with a total of no more than eight units of F and/or U grades in order to take the qualifying examination and advance to candidacy.

If the committee does not issue a unanimous report on the examination, the dean of Graduate Studies shall be called upon to review and present the case for resolution to the Graduate Council, which shall determine appropriate action.
Dissertation and Final Examination

A draft of the doctoral dissertation should be submitted to each member of the doctoral committee at least four weeks before the final examination. The form of the final draft must conform to procedures outlined in the publication, Preparation and Submission Manual for Doctoral Dissertations and Master's Theses, which can be found on the Web site http://ogs.ucsd.edu/academicpolicy/Preparation_and_Submission_Manual_for_Doctoral_Dissertations_and_Master_Theses_2006.pdf.

The doctoral committee shall supervise and pass on the candidate’s dissertation and conduct the final oral examination which shall be public and so announced. If the committee does not issue a unanimous report on the examination, the dean of Graduate Studies shall be called upon to review and present the case for resolution to the Graduate Council, which shall determine appropriate action.

The Report of the Final Examination and Filing of the Dissertation for the Doctoral Degree form is initiated by the department, group, or school, signed by members of the doctoral committee, and the chair of the (major) department, group, or school.

The candidate submits the dissertation to the Office of Graduate Studies and, upon approval by the dean of Graduate Studies, files the dissertation with the university archivist, who accepts it on behalf of the Graduate Council. Acceptance of the dissertation by the archivist, with a subsequent second approval by the dean of Graduate Studies, represents the final step in the completion by the candidate of all requirements for the doctoral degree. All dissertations and theses submitted in partial satisfaction of doctoral or master's degree requirements shall be catalogued with the university library, and dissertations shall be submitted to Proquest Information and Learning, for publication.

Candidate in Philosophy Degree

In several departments, as approved by the Graduate Council, the intermediate degree of candidate in philosophy (C.Phil.) is awarded to students upon advancement to candidacy for the Ph.D. degree. The minimum residence requirement for this degree is three quarters of continuous academic residence at UCSD. The C.Phil. degree cannot be conferred simultaneously with or following the award of a Ph.D. degree.

Postgraduate Appointments

A UCSD graduate student is not eligible for any UCSD postdoctoral appointment until all requirements for the doctoral degree have been completed. Such appointments may begin after the university archivist has accepted the dissertation and the Office of Graduate Studies has accepted the final report.

Special Degree Programs

Graduate Programs in the Health Sciences

The university offers research training programs in the health sciences leading to the doctor of philosophy degree. The purpose of these graduate programs is to prepare students for careers in research and teaching in the basic medical sciences. Program requirements are flexible, consisting of graduate courses and supervised laboratory or clinical investigation.

Graduate programs in the health sciences are offered by (1) regular campuswide departments with activities related to the health sciences, for example, the Departments of Bioengineering, Biology, Chemistry and Biochemistry, and Psychology and (2) interdisciplinary groups of faculty drawn from the School of Medicine and from campuswide departments or from San Diego State University.

The following departments or interdisciplinary graduate groups provide research-training opportunities in the biomedical sciences and should be contacted directly for further information: biomedical sciences, biochemistry (in either biology or chemistry and biochemistry), bioengineering, bioinformatics, biology, biophysics, chemistry, clinical psychology, molecular pathology, neurosciences, physics, psychology, public health (in either epidemiology or health behavior), and the Scripps Institution of Oceanography.

Ph.D.-M.D. Program

Students may meet the requirements for both the Ph.D. and M.D. degrees in programs offered jointly by the School of Medicine and the graduate programs in the health sciences. In most cases, students are first admitted to the School of Medicine and may then apply for admission to a relevant graduate program. However, those students who wish to be considered for admission to the Medical Scientist Training Program (MSTP) may apply for admission to the School of Medicine and the MSTP concurrently.

Elements of the first two years of the medical school curriculum satisfy many of the requirements of the graduate program, but additional courses will be required. Thus, the student must complete requirements for the Ph.D. in accordance with the regulations of a department or a group and must in addition meet the requirements for the professional degree. Students interested in such programs should consult the associate dean for Student Affairs, School of Medicine.

Joint Doctoral Programs

Certain departments of the University of California cooperate with similar departments on the several campuses in the California State University System to offer joint programs of study leading to the doctoral degree. At UCSD, joint doctoral programs in audiology, biology, chemistry, clinical psychology, language and communicative disorders, engineering sciences (applied mechanics), mathematics and science education, and public health (in either epidemiology or health behavior) are currently offered in conjunction with San Diego State University, and in educational leadership in conjunction with San Diego State University and California State University, San Marcos. A Ph.D. in drama and theatre is offered in conjunction with University of California, Irvine. Applicants interested in these joint programs should consult the Departments of Biology, Chemistry and Biochemistry, Communicative Disorders, Mechanical Engineering, Psychology, Surgery, Theatre and Dance; or the Office of the Dean, College of Engineering; or the Center for Research in Mathematics and Science Education; or the School of Public Health at San Diego State University. Joint doctoral students meet the UCSD academic residency requirement by successfully completing a minimum of thirty-six units of course work at UCSD.
Special Programs

Intercampus Exchange Program for Graduate Students

A graduate student registered on any campus of the University of California, who wishes to take advantage of educational opportunities for study and research available on another campus of the university, must apply to become an intercampus exchange student on that UC campus. UCSD students must have completed at least one quarter of study and be in good standing prior to beginning an exchange.

Informal arrangements between departmental faculty on the two campuses must be undertaken prior to submission of a student’s application to assure that space in desired courses, seminars, or facilities will be available.

No later than four weeks prior to the opening of the term on the host campus, a student must complete the Application for Intercampus Exchange Program for Graduate Students available at the Office of Graduate Studies. This application, approved by the student’s departmental graduate advisor and the graduate dean of the home campus, is forwarded to the Department, and the graduate dean on the host campus.

Students participating in an intercampus exchange must pay all required fees and enroll as appropriate at the home campus. Evidence of fee payment, at the home campus, must be presented to enroll in classes at the host campus.

An exchange student is not admitted to graduate standing at the host campus, but is considered a graduate student in residence at the home campus. Grades obtained in courses taken by the student enrolled in the intercampus student exchange program are transferred to the home campus for entry on the student’s official record. Library, health center, and other student privileges are extended by the host campus.

Off-Campus Study

(Other than Intercampus Exchange Program)

If the research and study program of a graduate student requires being off campus for extended periods of five weeks or more, the student may apply for off-campus study. During such periods a student is required to remain a registered student at UCSD and to carry twelve units of course work or research.

If the off-campus study is outside the state of California, one-half of the registration fee may be waived. All required fees including, but not limited to the full educational fee, student center fee, recreation facility fee, health insurance fee, and nonresident fee, if applicable, must be paid.

A graduate student who holds a fellowship, traineeship, or a research assistantship and desires to study off campus may do so under the following circumstances: The student must have completed at least one year of graduate study at UCSD, obtained the approvals of the academic department and the dean of Graduate Studies, and agreed to comply with the rules and regulations governing the award or appointment.

Regulations concerning accepting additional awards or compensation for appointments as outlined under the financial assistance section apply to off-campus study as well as on-campus study.

UCSD Extension

Students wishing to offer UCSD Extension course work taken prior to admission at UCSD as a graduate student in partial satisfaction of requirements for a master’s degree must file a General Petition with the Office of Graduate Studies. Acceptance of such course work is subject to the regulations on “Transferring Credit” (which are described elsewhere in this catalog) the recommendation of the major department, and approval of the dean of Graduate Studies, and will be considered upon satisfactory completion of course work in a regular session.

Complimentary Enrollment

Through a reciprocal agreement with UCSD Extension, a limited number of spaces in extension classes are open to full-time graduate students (registered for twelve units or more) in good standing without payment of additional fees. The number of spaces available for each quarter varies. The student must obtain a UCSD Application for Enrollment from the Office of Graduate Studies and personally secure the necessary approvals. Course work taken through Complimentary Enrollment cannot be used in partial satisfaction of requirements for a master’s degree, nor can it be used toward the twelve unit full-time enrollment requirement.

Education Abroad Program

Graduate students may apply to study at most Education Abroad Program (EAP) host institutions, provided that they meet EAP requirements and have completed at least one year of graduate work prior to departure, are in good standing, have the support of their academic department and graduate dean.

Costs vary according to location. Students pay fees to the University of California and are enrolled at UCSD while abroad. Full academic credit is received for courses satisfactorily completed.

At UCSD, complete information and application forms for the various overseas campuses may be obtained from the Programs Abroad Office, International Center, University Center, 0018 or on the Programs Abroad Web site http://orpheus.ucsd.edu/icenter/. In addition, the Programs Abroad Office also offers information and advisory services to graduate and undergraduate students interested in pursuing other activities involving study, research, work, or travel abroad.

For a detailed list of the countries with EAP study centers, see also Education Abroad Program in the chapter titled “Courses, Curricula, and Programs of Instruction.” Study abroad information is also available online by accessing the EAP Web site http://www.eap.ucsd.edu.

Postdoctoral Education

Postdoctoral education emphasizes scholarship and continued research training for individuals who have recently completed a doctoral degree. The postdoctoral scholar conducts research under the general oversight of a faculty mentor in preparation for a career position in academe, industry, government, or the nonprofit sector.

The Office of Research Affairs has responsibility for the administrative management of the Postdoctoral Scholar Program. Interested candidates should directly contact the department, research unit, or faculty member for information on available positions or training opportunities. The department or research unit initiates all appointments.

Postdoctoral scholars are eligible for the UC Postdoctoral Scholar Benefits Program, academic photo identification card, and access to campus resources (library, recreation facilities, etc.).
The following schedule of fees is anticipated for the 2007–08 academic year:

FEES PER QUARTER*

<table>
<thead>
<tr>
<th></th>
<th>Resident</th>
<th>Non-Resident</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$2,054.00</td>
<td>$4,898.00</td>
</tr>
<tr>
<td>Registration</td>
<td>245.00</td>
<td>245.00</td>
</tr>
<tr>
<td>Educational</td>
<td>37.50</td>
<td>37.50</td>
</tr>
<tr>
<td>Student Center</td>
<td>92.00</td>
<td>92.00</td>
</tr>
<tr>
<td>Recreational Facilities</td>
<td>12.00</td>
<td>12.00</td>
</tr>
<tr>
<td>Graduate Student Assoc.</td>
<td>449.00</td>
<td>449.00</td>
</tr>
<tr>
<td>Health Insurance</td>
<td>245.00</td>
<td>245.00</td>
</tr>
<tr>
<td>Totals</td>
<td>$2,889.50</td>
<td>$7,876.50</td>
</tr>
</tbody>
</table>

Miscellaneous Fees and Fines

Students should also be aware of the following charges:

- **Application fee for admission**
 - Domestic: $60
 - International: 80
- **Duplicate Photo-ID card**: 10
- **Petition for Readmission**: 40
- **Advancement to Candidacy for Ph.D.**: 65
- ** Transcript Record**: 6
- **Late payment of fees (Late registration)**: 50
- **Late enrollment**: 50
- **Late and retroactive Add/Drop**: 3
- **Returned check collection**: 35
- **Filing fee**: 119
- **UCSD Statement Late Charge**: 25

* Subject to change without notice. Updated information regarding fees may be found on the Web site http://ogs.ucsd.edu/financialinfo/gradstudent/tuition_fees/index.htm.

All receipts for payments made to the cashier, whatever their nature, should be carefully preserved. Not only do they constitute evidence that financial obligations have been discharged, but they may be required to support a claim that certain documents or petitions have been filed.

Fees for graduate students approved for enrollment in a half-time program (not to exceed six units) may be reduced by one-half of the Educational Fee and one-half of nonresident tuition for nonresidents.

California Residency and the Nonresident Tuition Fee

Each new student entering UCSD is required to submit a Statement of Legal Residence to the Office of the Registrar. No tuition is charged to students classified as residents of California. Nonresidents, however, are required to pay a quarterly tuition fee.

A complete statement covering California residence requirements, determination of residence for tuition purposes, and/or recognized exceptions appears in the section “Residence Requirements” or on the Web site http://registrar.ucsd.edu/ver2/info/residency/nonres.html. Additional information may be obtained from the Campus Residence Deputy, Office of the Registrar, Building 301, University Center. No other university personnel are authorized to supply information relative to residence requirements for tuition purposes. Students seeking to establish California residency for tuition purposes are advised to review the requirements and deadlines. Adherence to the published deadlines is the responsibility of each student and is essential. Exceptions to waive or extend deadlines are not considered.

To the extent funds are available, subject to change, waiver of nonresident tuition may be granted to spouses and dependent, unmarried children under age twenty-one of university faculty members who are qualified for membership in the Academic Senate. Inquiries should be directed to the Office of the Registrar or the Academic Senate Office.

University Registration Fee

The university registration fee is a quarterly fee required of all registered students, and it must be paid at the time of the student’s registration. This fee is for services which benefit the student and are complementary to, but not part of, the regular instructional programs of the university. No part of this fee is refunded to students who do not make use of these services; however, students who petition and are approved for out-of-state study will receive a waiver for one-half of the registration fee. Exemption from this fee may be granted to surviving children of certain deceased California fire fighters or police officers. Students who believe they may qualify for an exemption on this basis must consult with the Student Financial Services Office, Building 201, University Center, for a ruling.

Student Health Services and Insurance Plans

The Student Health Service (SHS) is a nationally accredited health care facility providing primary health care for no or minimal charge during the academic year for all students who pay the university registration fee. Students with the Student Health Insurance Plan (SHIP) in the spring have access to the SHS during the summer at no additional charge. Students without SHIP may be seen in the summer for a modest fee. Additional information on the wide variety of services available at SHS is available via the Web site http://studenthealth.ucsd.edu.

SHS provides primary health care to all students with SHIP. Access to SHIP benefits requires written SHS referral except in cases of emergency care or care 150 miles out of the UCSD area.

The Student Health Insurance Program (SHIP)

SHIP is a mandatory year-round insurance plan for graduate and professional students unless a waiver has been granted (see WAIVERS). Students must be enrolled in SHIP for the spring quarter in order to retain coverage through summer. Three quarterly payments will provide year-round coverage under SHIP. The spring quarter premium extends insurance coverage through the summer quarter. Benefits and additional information may be viewed at the Web site http://studenthealth.ucsd.edu.

Premium payment for SHIP is due with the payment of the registration fee. Premiums for students holding graduate academic appointment titles for a full academic term at 25 percent time or greater will be paid directly by the university. Premiums for most students holding fellowships and training grants are also paid directly. Loans to cover premiums may be available for students who receive need-based financial assistance.

For first-year students arriving on campus prior to the start of the academic calendar year, it is highly recommended that the student review current insurance status and purchase short term coverage if necessary. Insurance information may be obtained by calling the insurance counselor at (858) 534-2123.

REFUNDS

No premium refunds are permitted, except when a student withdraws on or prior to the first day of classes, in which case a full refund of the premium will be made and coverage for that quarter will be canceled effective from the first day of the quarter. If an insured enters the armed forces, a pro-rata refund of premium paid will
be made upon request. Refunds for all other fees are subject to the Refund Fee Schedule published in the Schedule of Classes. That refund schedule is effective beginning on the first day of the quarter and counts all calendar days. Students cannot expect exceptions to this schedule, regardless of the circumstances of the leave of absence/withdrawal request.

LEAVE OF ABSENCE

A student is eligible to be enrolled in SHIP when on approved leave of absence for a total of one academic quarter. A student on approved leave is responsible for his or her health insurance enrollment, premium payment, and Student Health Service fee payment. Enrollment in SHIP is through the Student Health Insurance Office.

WAIVERS

Students already insured under a policy containing benefits equal to or better than SHIP may be eligible for SHIP waivers for up to one academic year. Documents required for a waiver are: 1) student’s written request, 2) proof of present insurance and premium payment to the end of the quarter, 3) a copy of the summary of insurance benefits, and 4) a copy of the insurance identification cards. Submit written requests with all required documents directly to UCSD, Student Health Insurance Office, 9500 Gilman Drive, Dept. 0061, La Jolla, CA, 92093-0061 no later than the last business day of the first week of the quarter. The insurance coordinator will mail final decisions regarding waiver requests to the student.

Educational Fee

The educational fee was established as a required fee for all students beginning with the fall quarter 1970. It is used to cover a variety of educational costs as determined by the regents. The educational fee may be reduced by one-half for students enrolled in six units or fewer (see “Part-time Study”).

Student Center Fee

Every student is required to pay a student center fee each quarter.

Recreation Facility Fee

Every student is required to pay a recreation facility fee each quarter.

Reduced Fee Enrollments

1. One-half of the established registration fee may be waived for graduate students whose research or study requires them to remain outside the state of California for five weeks or more of the quarter. Students must file a General Petition for this privilege. The reduction pertains to one-half of the registration fee only. A student must pay, in addition, all required fees including, but not limited to, the educational fee, student center fee, recreation facility fee, health insurance fee, and nonresident tuition fee, if applicable.

2. Graduate students approved for enrollment in a half-time program (not to exceed six units) are eligible for a reduction in fees of one-half the educational fee, and, if applicable, one-half of the nonresident tuition fee.

3. A full-time employee who is not subject to nonresident tuition, who has worked full time for the university for at least six months prior to the latest date that registration will be accepted, and who meets the admission requirements of the university is eligible for two-thirds reduction of both the university registration fee and the university educational fee for up to nine units or three regular session university courses per quarter, whichever is greater. An employee so registered is ineligible for the services and facilities of the Counseling Center, recreation facilities, or the Student Health Services, other than those services to which the employee is regularly entitled (University of California Staff Personnel Policy 260.23). Authorization for this privilege is secured from the Staff Personnel Office for staff employees, or from the Academic Personnel Office for individuals on academic appointments.

Refund of Fees

Students who withdraw from the university during the first five weeks of instruction (35 calendar days) may receive partial refunds of fees, excluding health insurance, if applicable. The date of withdrawal, as related to the fee refund schedule, shall be the date on which notice of withdrawal is submitted to the Office of Graduate Studies (OGS). See Schedule of Classes for schedule of refunds.

Parking Fee

Students who park motor vehicles, including motorcycles, on the campus are subject to parking fees. (See “Parking,” in chapter entitled “Campus Services and Facilities.”)

Penalty Fees

Penalty fees (see “Fees”), are charged for failure to comply with normal deadline dates. To avoid such fines, students should fulfill all requirements in advance of the deadlines listed in the Schedule of Classes.

Transcript Fees

Students may obtain transcripts of their UCSD records from the Office of the Registrar for $6 for each copy. Transcripts must be requested several days in advance of date needed.

Late Fees

Students are responsible for meeting quarterly enrollment and registration (fees payment) deadlines which are published on TritonLink, in the Schedule of Classes, and a variety of student-directed Web sites and publications. A $50 late fee will be assessed for late enrollment and/or late registration up to $100 total. Late enrollment automatically causes late registration as payments cannot be credited to a student’s account until enrollment occurs. Late fee waivers are rarely granted and only in extenuating and verifiable circumstances. Only certain staff in the Office of Graduate Studies (OGS) are authorized to grant waivers.
Financial Assistance

Several kinds of financial assistance are available to graduate students at UCSD. These include fellowships and traineeships; assistantships in teaching, language instruction, and research; scholarships in full or partial payment of tuition and/or fees; and loans and grants-in-aid. Further details about these awards/appointments may be obtained from departmental, group, or school offices.

Descriptions in this section deal entirely with awards administered directly by the university.

Applicants for financial assistance should note the following: “Pursuant to Section 7 of the Privacy Act of 1974, applicants for student financial aid or benefits are hereby notified that mandatory disclosure of their Social Security number is required by the University of California to verify the identity of each applicant. Social Security numbers are used in processing the data given in the financial aid application; in the awarding of funds; in the coordination of information with applications for federal, state, university, and private awards or benefits; and in the collection of funds and tracing of individuals who have borrowed funds from federal, state, university, or private loan programs.”

Fellowships and Traineeships

Regents Fellowships, offered to students with excellent academic and research qualifications, provide a stipend of $20,000 for nine or ten months, plus tax-free resident fees and nonresident tuition, if applicable. These awards may be supplemented with a partial graduate student researcher or research fellowship from available departmental resources. The amount of the supplement varies by department.

The San Diego Fellowship is designed to increase the quality of education and research by enhancing campus diversity. Currently it provides a minimum stipend of $1,250 per month plus resident fees and one year of nonresident tuition. These awards are usually given for two years. Academic departments are responsible for two additional years of support for the Ph.D., D.M.A., or Ed.D. students awarded this fellowship. Look online at http://ogs.ucsd.edu/fellowships/ for further information.

The seven most outstanding nominees for the San Diego Fellowship are awarded the Cota-Robles Fellowship. Fellows receive an $18,000 stipend plus fees for two years. Non-resident fellows are eligible for a tuition scholarship in their first year. Doctoral fellows are guaranteed comparable departmental support for at least two additional years.

The Alliance for Graduate Education and the Professoriate (AGEP) program is funded by the National Science Foundation (NSF). This fellowship is awarded to eight eligible graduate students in selected programs in science, mathematics, and engineering. For further information, look online at http://ogs.ucsd.edu/agep/index.htm.

All other fellowship stipends are established by the department, group, or school and may vary in tenure from one to twelve months and in any amount up to a maximum of $3,000 per month. Fellowships awarded for one, two, or three quarters will also provide tax-free resident fees and nonresident tuition, if applicable. U.S. citizens and permanent residents are eligible for non-resident tuition scholarships only for their first three quarters at UCSD. Awardees must register for twelve units of upper-division and graduate-level work each quarter and must remain in good academic standing, as described under “Standards of Scholarship” of this catalog.

Fellows and trainees on twelve-month tenure are required to devote full time to graduate study and research during the summer as well as during the academic year. A brief resume of proposed summer graduate study or research, approved by the appropriate advisor, must be filed with the dean of Graduate Studies before the end of the spring quarter preceding the summer portion of the fellowship or traineeship tenure.

Some fellowships and traineeships offer the privilege of participation in the teaching or research programs of the university.

The principal types of fellowships/scholarships at UCSD are the following:

1. Regents Fellowships
2. San Diego and Cota-Robles Fellowships
3. Research Fellowships
4. U.S. Public Health Service Predoctoral Traineeships
5. Fee Scholarships
6. Tuition Scholarships (eligibility limited to international students and first-year domestic nonresident students, only)
Taxability of Awards

Under the 1986 Tax Reform Act, the taxability of awards is as follows:

1. Fellowships and Scholarships. The portion of the stipend used for tuition, fees, books, and course-related expenses required of all students in the course are not taxable income. The portion of a stipend used for other purposes are taxable income.

2. Graduate Student Researchers and Teaching Assistants. All compensation is taxable income.

3. Payment of tuition and fees under the Graduate Student Researcher Tuition and Fee Remission program and payment of partial fee remission and graduate student health insurance for those appointed 25 percent time or more as teaching assistants or other academic titles, is nontaxable income.

4. Grants for Travel to Scholarly Meetings and for Graduate Student Research Expenses. May be taxable.

Students are advised to review available tax materials and make their own decisions about tax withholding, reporting of income, excluding income from taxation, and filing required tax forms. UCSD departmental and central administrative staff are not able to advise students on individual tax matters.

Graduate student fellowships, scholarships and traineeships are not subject to withholding for taxes under the Federal Insurance Contributions Act (FICA). The salary of graduate students appointed as Teaching Assistants and Graduate Student Researchers, Readers, or Tutors, or who are employed on campus is exempt from FICA if the students are registered for a minimum of 6 units each quarter (including summer). Nonresident aliens on F-1 and J-1 visas are, by federal law, exempt from FICA.

Application Procedures

Entering students. The online application form for graduate admissions is used to apply for any of the following: fellowships, traineeships, scholarships, and assistantships (teaching, language, or research).

In order for an applicant to be considered for the ensuing academic year, all supporting materials must be received by the department application deadline. No assurance can be given that requests for fellowships, traineeships, or scholarships can be processed after stated deadlines.

Requests for assistantships may be accepted after the deadline, but most departments offer assistantships at the same time they consider applications for fellowships. Therefore, applicants for these appointments are strongly urged to submit their requests as early as possible.

Continuing and returning students. Consult with their departments.

Award Notification

The awarding of fellowships and similar awards for the following academic year will be announced not later than April 1. UCSD subscribes to the agreement of the Council of Graduate Schools of the United States, under which successful applicants for awards are given until April 15 to accept or decline such awards. An award accepted from one of the member universities may be resigned at any time through April 15. However, an acceptance given or left in force after that date commits the student not to accept another appointment without first obtaining formal release for that purpose.

Loans and Grants-in-Aid

An excellent package of grants-in-aid, work-study, and loans is available to graduate students who show evidence of financial need as determined by analysis of a completed Free Application for Federal Student Aid (FAFSA).

See section on financial assistance in chapter entitled “Campus Services and Facilities.”

Time Limits for Graduate Student Support

For Ph.D. and D.M.A. students, all financial support administered by UCSD (including fellowships, scholarships, and appointment but excluding loans) is restricted to students who are within their departmental support time limits (see “Ph.D. Time Limits” and description of each department’s graduate program).

M.F.A. and M.P.I.A. students can be supported for a maximum of ten quarters. M.A. and M.S. students can be supported for a maximum of seven quarters.

Fellowships and Research Awards from Outside the University

In addition to fellowships, traineeships, and loans administered by the university, other types of graduate student support are available through federal agencies and private foundations. Students wishing to explore such sources of support for their studies at UCSD are urged to consult one of the many directories available in the reference section of Geisel Library: the fellowship listings provided via UCSD’s SURF Fellowship database (http://research.ucsd.edu/surf/), the Community of Science Web site (http://www.cos.com), Grants Select (http://www.grantselect.com), and the University of California’s research opportunity page (http://www.ucop.edu/research/grad). Most application deadlines occur in the fall or early winter. Among the many organizations which award fellowships to students at UCSD are the Department of Defense; the Department of Education; the Ford Foundation; the Hertz Foundation; the Howard Hughes Medical Institute; Institute of International Education; the National Aeronautics and Space Administration; the National Science Foundation; the Social Science Research Council; and the Woodrow Wilson National Fellowship Foundation. Additional support is offered by the Office of Graduate Studies and the Graduate Fellowship Advisor.

General Policies and Requirements

Integrity of Scholarship

See “UCSD Policy on Integrity of Scholarship” in the Academic Regulations section of this catalog.

Student Conduct

Graduate students enrolling in the university assume an obligation to conduct themselves in a manner compatible with the university’s function as an educational institution. Rules concerning student conduct, student organizations, use of university facilities, and related matters are set forth in UC San Diego Campus Regulations Applying to Campus Activities, Organizations, and Students. Copies are available online at http://ugr8.ucsd.edu/judicial and at the Office of Graduate Studies, and the Office of Judicial Affairs.

Student Appeals

ACADEMIC APPEALS

The faculty of a department or program has primary responsibility for maintaining the excellence of graduate programs, and it is in the best position to judge its students’ academic performance. Consequently a graduate student appeal
of an academic decision should first be made to the individual faculty member who made the decision. If this does not result in a resolution that is satisfactory to the student, he or she may appeal to the department or program chair. Graduate students may appeal a course grade or Ph.D. or master’s qualifying or final exam result only if he or she believes that nonacademic criteria were applied in determining the course or exam grade. A student who wishes to appeal a course grade or exam result should follow the procedure described in “Grade Appeals” in the “Academic Regulations” section of the UCSD General Catalog.

NON-ACADEMIC APPEALS

Graduate students may appeal actions of departments, programs, individual faculty members, departments, or administrators relating to a student’s academic program or financial support if they believe that:

1. due process was not followed in arriving at a decision

OR

2. personal prejudice affected the judgment rendered.

A non-academic appeal may be submitted to the individual faculty member or administrator within one month of the date of learning of the action or the date that the student should have reasonably known of the action. If an appeal to an individual faculty member or administrator is not resolved to the student’s satisfaction, he or she may then submit a written appeal to the department or program chair, who shall attempt to adjudicate the case with the faculty member or administrator and the student within two weeks.

If the appeal is not resolved to the student’s satisfaction at the department or program level, he or she may then attempt to resolve the matter through written appeal to the dean of Graduate Studies, who will attempt to adjudicate the case within two weeks. The dean may take the appeal to the Graduate Council for review, which may extend the time required to reach a final resolution.

The student’s request for the dean’s review should include a written statement describing the nature of the grievance, along with copies of any and all documents in his or her possession supporting the grievance. Students are encouraged to contact the assistant dean for Student Affairs in the Office of Graduate Studies for assistance with the appeal process.

EMPLOYMENT APPEALS

Students holding an academic appointment, such as graduate student researcher, are subject to the Academic Personnel Manual Policy 140. A copy of this policy is available in the Office of Graduate Studies or it may be viewed online at http://www.ucop.edu/acadadv/acadpers/apm/welcome.html. Appeals by teaching assistant, readers, and tutors are covered by the ASE/UAW contract that may be viewed at http://ogs.ucsd.edu/ase/index.htm.

OTHER APPEALS

Grievances concerning violations of student rights are covered by the Student Conduct Code grievance procedures, which are available online at http://ugr8.ucsd.edu/judicial/23_00.htm #23.10. Examples of violations of students’ rights include those affecting rights to privacy or protection from discrimination. These grievances are handled by the Office of Student Policies and Judicial Affairs, (858) 534-6225, studentconduct@ucsd.edu.

Students who disagree with an instructor’s response to his or her request for disability accommodation may appeal the faculty decision or action to the CEP Subcommittee on Appeals for Accommodation of Students with Disabilities and Steps for Academic Accommodation, as provided at http://www-senate.ucsd.edu/manual/Appendices/app3.htm. A student’s appeal of a grade based on disability discrimination follows the Grade Appeal Process for resolution. A student’s challenge of any other action based on an alleged disability discrimination, must be lodged in accordance with Student Grievance procedures in the Student Conduct Code.

Student rights grievances should be made promptly to the decision-maker, if known to the student. If an appeal to an individual faculty member or administrator is not resolved to the student’s satisfaction, he or she may submit a written appeal to the appropriate committee, governmental body, unit manager, supervisor, or designated representative for review and disposition. Such appeal must be made not later than one hundred (100) calendar days from the date of the incident causing the grievance. If the appeal at this level is not resolved to the student’s satisfaction, the appeal may be continued as described in the Student Conduct Code procedures referenced to above.

Appeal and other rights for students accused of violating UCSD policies and procedures are outlined in the Student Conduct Code http://ugr8.ucsd.edu/judicial/22_00.html.

Exceptions

A student may request an exception to the normal procedures and requirements governing graduate studies by submitting a General Petition, available from the department. The petition must state clearly the reasons for requesting the exception and bear all required approvals before being submitted to the Office of Graduate Studies.

Within twelve months of action by UCSD with which the student disagrees, such as denial of a right to withdraw, dropping or adding a class, or other decisions related to the student’s transcript, a student may petition the dean of Graduate Studies for review. Petitions pertaining to matters that occurred in excess of twelve months in the past are submitted to the Committee on Educational Policy of the UCSD Academic Senate through the dean of Graduate Studies.

Requests for exceptions to time limits require a letter of explanation and support from the student’s research advisor, and support and justification from the program’s graduate advisor and endorsement by the department or group chair. Such requests are submitted to the Graduate Council through the dean of Graduate Studies. Exceptions to the time limits policy are granted only in the case of truly exceptional and unavoidable circumstances.

Grades

Standards of Scholarship

Only upper-division, graduate, and professional courses in which grades of A, B, C (including plus [+] or minus [-]), D, or S (Satisfactory) are earned can be counted in satisfaction of the requirements for a higher degree.

A student’s grade-point average (GPA) is computed by dividing the total number of grade points earned by the total unit value of graded upper-division, graduate, and professional courses undertaken at UCSD with the exception of those undertaken in UCSD Extension. Grades of S, U, I, IP, NR, and W are excluded in computing
a grade-point average. Lower-division course work units are not used in computing a graduate student’s grade-point average or in satisfying program requirements for a higher degree, with the exception of language courses taken by students in the M.P.I.A. program.

Each department or group prepares, not later than the second week of each spring quarter, a detailed, written evaluation of each of its doctoral or M.F.A. students. These evaluations are designed to inform students of their progress and to improve communications between faculty and graduate students. Evaluations are discussed with students who may elect to add written comments before signing the copy of the evaluation sent to the Office of Graduate Studies. A student’s signature on the evaluation indicates knowledge of the assessment but does not necessarily signify agreement.

To be in good standing academically a graduate student must meet departmental standards including a satisfactory spring evaluation, maintain a GPA of 3.0 or the equivalent in upper-division, graduate, and professional course work, and must not have accumulated more than a total of eight units of F and/or U grades overall, unless departmental standards specify more stringent grade requirements.

Good standing is a requirement for:
1. Holding academic and staff appointments.
2. Holding fellowship, scholarship, or traineeship appointments.
3. Participating in the Education Abroad Program (EAP)
4. Advancing to candidacy for a graduate degree.
5. Going on leave of absence.
6. Receiving a graduate degree from UCSD.

Graduate students who are not in good standing for any reason are subject to probation and/or disqualification from further graduate study.

Grading System

The grade of A+, when awarded, represents extraordinary achievement but does not receive grade-point credit beyond that received for the grade of A. The grades of A, B, and C may be modified by plus (+) or minus (−). When attached to the grades of B and C, plus (+) grades carry three-tenths of a grade point more per unit, and when attached to A, B, and C, minus (−) grades carry three-tenths of a grade point less per unit. Grades and grade points are described as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Grade Points per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.0</td>
</tr>
<tr>
<td>A</td>
<td>Excellent</td>
</tr>
<tr>
<td>A−</td>
<td>4.0</td>
</tr>
<tr>
<td>B+</td>
<td>3.7</td>
</tr>
<tr>
<td>B</td>
<td>Good</td>
</tr>
<tr>
<td>B−</td>
<td>3.0</td>
</tr>
<tr>
<td>C+</td>
<td>2.7</td>
</tr>
<tr>
<td>C</td>
<td>Fair</td>
</tr>
<tr>
<td>C−</td>
<td>2.3</td>
</tr>
<tr>
<td>D</td>
<td>Poor</td>
</tr>
<tr>
<td>F</td>
<td>Fail</td>
</tr>
<tr>
<td>S</td>
<td>Satisfactory (equivalent to B− or better)</td>
</tr>
</tbody>
</table>

Repetition of Courses

A student assigned a grade of D, F, or U may petition to repeat the course on the same grading basis for which it was first taken. That is, a course in which a grade of D or F has been received may not be repeated on an S/U basis. Conversely, a course in which a grade of U has been awarded may not be repeated on the basis of a letter grade. Degree credit for a course will be given only once, but the grade assigned for each enrollment shall be permanently recorded. Only the grade received in the repetition of the course will be used in calculating the overall grade-point average for the first sixteen units repeated. For additional units repeated, the grade assigned for each enrollment shall be used in calculating the grade-point average.

No Report/No Record

A blank entry appearing on student transcripts in lieu of a grade indicates that the student’s name appeared on a grade report but no grade was assigned by the instructor. A blank entry will lapse automatically into an F or U if not removed or replaced by a final grade by the last day of instruction of the subsequent quarter, and will be computed in the student’s GPA.

I (Incomplete)

The grade of I may be assigned by an instructor only when the student’s work is of passing quality but is incomplete. The student must complete and submit to the instructor the form, Request to Receive Grade Incomplete and Removal of Grade Incomplete, which will contain both the reason for requesting the grade I and the conditions to be met before the Incomplete can be replaced with a final grade. The Incomplete must be made up, the grade assigned, and the completed form filed with the Office of the Registrar no later than the end of final examination week the following quarter.

Incomplete grades assigned in the quarter before a graduate student withdraws or takes an approved leave of absence must be replaced by a final grade before the end of the academic quarter following to prevent the Incomplete from lapsing to F or U.
IP (In Progress)

An IP is assigned in a sequential course which extends over more than one quarter, and the evaluation of a student's performance may not be possible until the end of the course. A student who has dropped out without completing the entire sequence may be assigned final grades and unit credit for any quarter(s) completed, provided that the instructor has a basis for assigning the grades and certifies that the sequence was not completed for good cause. An IP not replaced by a final grade will remain on the student’s record. Courses graded IP are not used in calculating a student's grade-point average until graduation. At that time course units still graded IP on a student's record must be treated as units attempted in calculating the GPA; thus units graded IP will have the same effect on the overall GPA as an F or U.

S/U (Satisfactory/Unsatisfactory)

The minimum standard of performance for a grade of Satisfactory shall be the same as the minimum for a grade of B–.

With the approval of the Graduate Council, departments may offer graduate courses in which graduate students may elect to be evaluated on an S/U basis and courses in which S/U grading shall be the only grading option. Grading options for a given course are identified in course listings in the UCSD General Catalog.

In addition, and with the approval of the department and the instructor concerned, graduate students may elect to have the following courses graded on an S/U basis: any upper-division or lower-division course taken (provided they have obtained approval of the instructor and the department), and any graduate or upper-division course outside their major department. If departmental requirements have been fulfilled for advancement to candidacy for the doctoral degree, graduate students may take any course on an S/U basis.

Selection of S/U as a grading option must be made in the first two weeks of a quarter. Units graded Satisfactory shall be counted in satisfaction of degree requirements but shall be disregarded in determining a student’s grade-point average. No credit shall be allowed for work marked Unsatisfactory.

W (Withdrawal)

Students who discontinue graduate study any time during a quarter without formally withdrawing will receive failing grades for all course work undertaken. Formal withdrawal requires filing a Leave of Absence, Extension and/or Withdrawal form prior to leaving campus with the Office of Graduate Studies after receiving departmental approval and all other approvals listed on the form. When a student withdraws before the end of the fourth week of instruction, no course entries will appear on the transcript for that quarter. Students who withdraw from the university or drop a course between the beginning of the fifth week of instruction and the end of the ninth week of instruction will be assigned a W (Withdrawn) by the registrar for each course affected.

Courses in which a W has been assigned will be disregarded in determining a student’s grade-point average.

Final Grades

Students may access their full UCSD graduate academic record on TritonLink in the academic history module. The student must have the PAC numbers to access TritonLink. If lost or misplaced, the PAC number may only be obtained from the Office of the Registrar after providing proof of identification; the PID may be obtained through the departmental graduate program coordinator or the OAR.

While grade reports submitted by instructors at the end of the quarter are generally considered final, students should carefully examine their grade report or transcript for omissions and clerical errors and consult with instructors and the Office of the Registrar to clarify any discrepancies.

Admission Requirements

Academic

Applicants for graduate admission must present official evidence of receipt of a baccalaureate degree from an accredited institution of higher education or the equivalent, with training comparable to that provided by the University of California. A minimum scholastic average of 3.0 or better is required for course work completed in upper-division, or prior graduate study.

Non-Degree Study

There is no “student-at-large” classification at UCSD; application for admission must be made to a specific department or group. Applicants who wish to enroll for “course work only” within...
a department or group and who do not intend to pursue a higher degree at UCSD may request admission for non-degree study. Applicants for non-degree study must satisfy all admission requirements and are not eligible for fellowships or assistantships. Non-degree status is granted for up to one year; students may petition the dean of Graduate Studies for a second year of non-degree status.

Part-Time Study, Including Half-Time

Students who enroll in fewer than twelve graduate or upper-division units each quarter are considered part-time students. International students on F1 or J1 visas must be enrolled full-time each quarter. Students who are approved by their major department and by the dean of Graduate Studies for enrollment in a program of half-time study (maximum of six units or fewer) for reasons of occupation, family responsibilities or health, may be eligible for a reduction in fees. All other part-time students (7–11 units) pay the same fees as full-time students.

Part-time study may be pursued in several masters’ programs and a few doctoral programs at UCSD. In all instances, part-time students must satisfy the same admission requirements as full-time students and are eligible, at the discretion of a department, for appointment to 25 percent time teaching or research assistantships. Admitted students must file the petition for half-time study with the Office of Graduate Studies no later than the last day of the second week of the quarter to be eligible for a fee reduction.

Application Procedures

When to Apply

Each graduate program sets a unique application deadline. Most deadlines are set between December and February. A few programs accept applications for winter and spring admissions. For specific deadlines refer to the online application instructions at http://ogs.ucsd.edu or contact the specific program office. Applicants need not have completed their undergraduate programs prior to applying.

How to Apply

UCSD encourages the use of the online application and payment of the nonrefundable application fee by credit card. The online application can be accessed at http://ogs.ucsd.edu where detailed instructions for completion of the application are provided. If a paper mail-in application is necessary, it must be obtained from the academic department where the applicant is applying.

Additional program and application information can be obtained from each graduate program office. Access the UCSD Web site http://ucsd.edu and the appropriate program's graduate study information. Telephone numbers and campus addresses are listed with the department information in this catalog. The Graduate Admissions Application includes application for a fellowship, traineeship, scholarship, or assistantship. The primary documents required in support of an application are listed below. Each program may require additional documents.

Required Supporting Documents

All supporting documents, including letters of recommendation, should be completed using the online system. Any additional supplemental materials are mailed directly to the applicant's prospective major department.

ACADEMIC RECORDS

Applicants must request that official transcripts of all previous academic work, including certification of degrees received or documentation of status upon leaving each institution, be forwarded to their prospective major department. Only official records bearing the signature of the registrar and the seal of the issuing institution will be accepted. Applicants with academic work in progress who expect to complete a degree program before the intended date of enrollment at UCSD must submit evidence of degree conferral and a final academic record, as soon as they are available. The undergraduate degree must be completed prior to the start of graduate study.

SPECIAL NOTE TO INTERNATIONAL APPLICANTS

In all applications for graduate admission, official records bearing the signature of the registrar or other responsible academic officer and the seal of the issuing institution are required. However, true copies, facsimiles, or photostatic copies of foreign academic records will be accepted if, after the copies have been made, they have been personally signed and stamped by an educational official of the issuing institution, who certifies that they are exact copies of the original document. Properly signed copies should be sent instead of irreplaceable original documents. Unless academic records are issued in English by the institution itself, certified English translations must accompany official documents written in a language other than English.

Foreign academic records should show all courses attended each year, examinations passed, seminars completed, and grades or marks received in all institutions where formal records are maintained. Official evidence of degree conferral must also be supplied, together with evidence of rank in class if possible.

GRADUATE RECORD EXAMINATIONS (GRE) SCORES

Most graduate programs require that applicants take the GRE. Contact the specific program for further information. Applicants who are applying for admission to a department, group, or school which requires that they take the GRE should do so as early as possible to insure the timely receipt of their score results. Applicants must take the GRE no later than fall in order to meet most departmental deadlines for admission. Consult the GRE Information & Registration Bulletin or the GRE Web site http://gre.org for further information. Only official scores sent to UCSD by E.T.S. will be accepted for admission.

To facilitate the processing of applications for admission, applicants may forward to their proposed major department, group, or school a copy of their GRE examination score as soon as it is received, since official copies are not always immediately received by the appropriate department at UCSD.

LETTERS OF RECOMMENDATION

Applicants should arrange to have three letters of recommendation submitted online to UCSD. If paper letters are necessary they must be mailed to the prospective major department, group, or school. (Recommendation forms can be printed from the online application site). It is most important that letters of recommendation be completed by individuals in a position to analyze an applicant’s abilities and academic or professional promise.

INTERNATIONAL APPLICANT FINANCIAL STATEMENT

International applicants accepting admission to UCSD are required to certify that they possess
sufficient funds to cover all fees, transportation, and living expenses during the first academic year of graduate enrollment at UCSD. An International Application Financial Statement, for the purpose of indicating the amount and source of funds available for graduate study, is made available to applicants after accepting admission; the financial statement must be submitted to the Graduate Admissions office before visa forms can be provided.

Opportunities for employment, on or off campus, are extremely limited, and international applicants should not base their educational plans on the hope of finding employment after arriving in the United States.

Admissions
Examination Information

There are a variety of internationally administered examinations which may be taken to meet requirements for admission to graduate study or to satisfy certain requirements for advanced degrees. Several examinations of importance to UCSD applicants are listed here.

ENGLISH LANGUAGE TEST

All international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English must take the Test of English as a Foreign Language (TOEFL) or the International English Language Testing System (IELTS) exam and submit their test scores to the Office of Graduate Admissions.

The minimum TOEFL score for admission is 550 for the paper-based test (PBT), 213 for the computer-based test (CBT), or 80 for the Internet-based test (IBT). The minimum IELTS score is 7.0. Applicants admitted with low scores may be required to take an English proficiency test upon arrival at UCSD and to enroll in an English course until the required proficiency is attained.

Application: Information and forms are available online at http://toefl.org, or from TOEFL Services, P.O. Box 6151, Princeton, NJ 08541-6151, or from United States embassies, consulates, and related centers.

TEST OF SPOKEN ENGLISH (TSE)

The Test of Spoken English helps foreign students provide a reliable measure of proficiency in spoken English. This test is highly recommended for foreign applicants who wish to be considered for a teaching assistantship. Test information is available at http://tse.org.

Admission and Registration

Official admission to graduate study at the university is contingent upon review of an applicant’s record, receipt of final undergraduate transcript showing degree(s) awarded, receipt of official transcripts of all attended institutions, an affirmative recommendation by the prospective department, group, or school, and action by the Office of Graduate Studies. The dean of Graduate Studies or the prospective major department, group, or school may deny admission if an applicant’s scholastic record is distinguished, if the preparation is judged inadequate as a foundation for advanced work, or in the event that no further students can be accommodated for a given quarter. Only the official Certificate of Admission from the dean of Graduate Studies constitutes formal approval of admission to a graduate program at UCSD.

Official notification of admission by the dean of Graduate Studies will be sent well in advance of the beginning of the quarter for which application has been made. Applicants should call their prospective major department, if formal notification is not received four weeks prior to the beginning of the quarter for which they applied.

Admission to graduate standing does not constitute registration for classes. A student is not officially registered for classes until the entire registration procedure is completed each quarter. Information and all necessary registration materials will be available at department offices approximately two weeks before the opening of the quarter (see “Academic Calendar”).

Deferral and Reapplication

Applicants who are admitted but decide not to register in the quarter for which they first apply may request deferral of their application for a later quarter within the same academic year or the academic year immediately subsequent. Application for admission of an approved deferred applicant for the subsequent academic year may be made by submitting a statement of activities and official transcripts of any academic work undertaken since the first application to the department or group. Admission is not guaranteed to previously admitted applicants who have an approved deferral. In no case are application files retained for more than four consecutive academic quarters from the date of first application. Application after this period may be made only by completing a new application and providing all necessary documents, including payment of the graduate application fee.

Students who are denied admission must submit a new application and fee together with required documentation in order to be considered for admission in another academic year.

Readmission

A graduate student whose status has lapsed because of an interruption in registration must petition his or her department for readmission at least eight weeks prior to the first day of the quarter in which reenrollment is intended. Do not complete an Application for Admission. Students must submit supplementary transcripts of all academic course work undertaken since last enrolled at UCSD, pay a readmission fee of $60, and complete a General Petition and a supplementary Statement of Activities. In addition, a Statement of Legal Residence is required for all students returning after an absence of two quarters or more.

Readmission is not automatic.

Registration Requirements and Procedures

All students must enroll and pay fees on or before the deadline dates established by the Office of the Registrar for each quarter to avoid paying late fees. Enrollment materials are obtained at the major department. (See Schedule of Classes for current deadlines.)

Full-Time Student

A full-time student is required to be registered for twelve units each quarter of each academic year until the completion of all requirements for the degree, including the filing of the thesis or dissertation.

Part-Time Student

A part-time student is enrolled in fewer than twelve units a quarter but is admitted as a regular
student. A part-time student must pay full fees unless approved by the dean of Graduate Studies to enroll in half-time status for six units or fewer. A student must file the petition for half-time study with the Office of Graduate Studies no later than the last day of the second week of the quarter to be eligible for reduced fees. (See “Admissions Policies-Part-Time Study.”)

Schedule of Classes
Detailed information on registration and enrollment procedures is contained in the quarterly Schedule of Classes, found on the Office of Admissions and Records home page at: http://tritonlink.ucsd.edu. It is the responsibility of each graduate student to keep informed of and meet all enrollment and registration (fee payment) deadlines.

Priority Enrollment
CONTINUING STUDENTS
Continuing graduate students may enroll in classes through WebReg or by coming to the Registrar’s office any time during the quarterly enrollment period. A Personal Access Code (PAC) number is issued to graduate students by the Office of the Registrar. Students may also use WebReg to add, change, and drop classes. Students who do not use WebReg may complete Add/Drop Cards and file them with the Office of the Registrar any time during enrollment periods.

Complete instructions for enrolling by WebReg or Add/Drop Cards can be found in the quarterly Schedule of Classes and on TritonLink. Confirmation of classes is immediate by TritonLink.

NEW STUDENTS
New students are given academic advising in their respective academic departments and enroll just prior to or at the beginning of their first quarter at UCSD.

Student Photo-Identification Card
A validated Student Photo-Identification Card is the official ID for registered students and entitles the student to library privileges, a student health card, and use of other university facilities, as well as for purchasing tickets and/or admission to certain university events and voting in student body elections. Registration is validated electronically via the Campus ID card magnetic strip. Quarterly fees are required to be paid for registration validation.

If the Student Photo-Identification Card is lost, students may obtain a duplicate at the Campus Card Services Office, 508 University Center.

Registration Procedures
Students are considered enrolled when they have requested at least one course and space in it has been reserved. Every effort will be made to enroll students in their preferred class sections. Students are not considered registered until they have both enrolled in classes and paid registration fees.

Payment of Registration Fees
Please refer to the “Payment of Registration Fees” section in the “Undergraduate Registration” portion of this catalog or the quarterly Schedule of Classes which outlines procedures for payment of registration fees.

Note to Fellowship, Scholarship, or Traineeship Holders:
The first billing statement will be sent to each enrolled student about one month prior to the start of each quarter. Fees and tuition awarded to pay registration fees will be credited to the graduate student’s account and appear on the statement as a payment or credit. Each award recipient should carefully check the amounts listed on the statement against the graduate award letter and contact the Office of Graduate Studies immediately if there is a discrepancy. Graduate students with partial fee and/or tuition awards will be required to pay the balance by the fee deadline to complete their registration.

Fellowship, scholarship, or traineeship holders must enroll in and maintain full-time enrollment status (at least twelve units per quarter).

Note to Students on Academic Titles:
Students appointed 25 percent time or more as graduate student researchers on the tuition and fee remission program will have the amount of their required tuition/fees credited to their account prior to the beginning of the quarter. This payment will also appear on the student’s university billing statement.

Students appointed 25 percent time or more as teaching assistants, associates, and readers or, tutors guaranteed by the hiring department to work at least 110 hours (25 percent) for the quarter will have partial fee remission (including remission of the health insurance fee) credited to their university account prior to the beginning of the quarter. Students who are readers and/or tutors who are not guaranteed 25 percent time at the beginning of the quarter, but subsequently work 110 hours or more, are issued refunds for partial fee remission at the end of the quarter.

Teaching assistants appointed 25 percent time or more are eligible to apply for the TA Fee Deferment program. Under this program, the balance of resident fees (but not tuition) is deducted from the second and third check each quarter.

During the fall quarter only, teaching assistants and graduate student researchers appointed 25 percent time or more may be eligible to apply for the TA/GSR Loan program. For additional information, contact your graduate department or the Office of Graduate Studies.

Full-time graduate study and support requires enrollment in a minimum of twelve units each quarter.

Continuous Registration
All graduate students are required to be registered each quarter until all degree requirements have been completed, including filing of the thesis or dissertation and the final examination, or to be on an approved leave of absence.

A student who fails to register or to file an approved leave of absence form by the registrar’s deadline date (no later than the end of the second week each quarter) will be assumed to be withdrawn from UCSD and will be dropped from the official register of graduate students. In addition, all outstanding incomplete grades, and NRs assigned by the registrar, will lapse to F’s or U’s unless cleared by the end of the current quarter. A student who is on leave of absence or who has withdrawn from the university is not entitled to withdraw books from the library or to use other university facilities or faculty time. A student who is withdrawn must petition for readmission to resume study at a later date, pay the nonrefundable readmission fee, and be considered for readmission with all others requesting admission to that quarter.

Doctoral degree candidacy will lapse for graduate students who fail to register and are not granted a formal leave of absence. To be reinstated to candidacy, a graduate student must be
Late Registration/Deadline and Penalty Fees

Students will be assessed late fees if not enrolled and registered by the registrar’s published deadlines outlined in this catalog and the quarterly Schedule of Classes. Please refer to the “Graduate Admission Information and Enrollment Deadlines” portion of this catalog or to the quarterly Schedule of Classes for additional information.

A student who has not completed registration (enrolled and paid fees) by the deadline for change of program must petition for permission to register late and will pay late fees totaling $100, regardless of the source of fees payment.

A student whose registration in classes is cancelled for non-payment of fees and seeks reinstatement will be assessed both the late enrollment ($50) and late registration fees ($50), currently totaling $100, regardless of the source of fees payment.

Students are advised to consult the quarterly Schedule of Classes for current deadline dates.

Changes in Course Selection

Add/Drop Cards reflecting changes in class enrollment must be filed with the Office of the Registrar in order for the student to receive credit for added courses and be relieved of responsibility for dropped courses.

Add/Drop Cards must be completed in full and include correct course information and course codes as listed in the current Schedule of Classes.

After enrolling in courses, a graduate student may add courses, change sections of a given course, or change grading options up to the end of the second week of instruction without fee by completing an Add/Drop Card available at the Office of the Registrar. Students may also use WebReg. Students in some programs must obtain approval of their graduate advisor or department. See Schedule of Classes, “Changes of Programs.” Any requests to the dean of Graduate Studies for exception to this policy require written explanation and instructor verification of attendance/course work completion to date.

A graduate student may drop a class up to the end of the ninth week of classes by filing an Add/Drop Card with the registrar, after first notifying the instructor, and obtaining the approval of the graduate advisor or department and the dean of Graduate Studies. If the course is dropped before the end of the fourth week of classes, no course entry will appear on the student’s transcript. Courses dropped after the end of the fourth week of instruction and before the end of the ninth week of instruction will remain on the transcript as permanent entries showing course number and title, and the registrar will assign a final grade of W, signifying Withdrawal.

Students may not drop courses after the end of the ninth week of instruction and will receive the earned grade or an Incomplete, if applicable. When a grade in a course has been assigned in accordance with the Academic Senate policy on Integrity of Scholarship, a student may not subsequently change that grade by dropping the course or withdrawing from the university.

Enrollment Limits

A full-time graduate student in a regular quarter is expected to enroll in twelve units of upper-division or graduate course work with the exception that in the Graduate School of International Relations and Pacific Studies the normal course load is sixteen units. A student who wishes to take units in excess of these limits must obtain the approval of the graduate advisor or department chair.

Graduate students holding half-time appointments as graduate student researchers, teaching assistants, language assistants, readers, or other employment titles, or who receive support from traineeships, fellowships, or scholarships paid through the university or directly to the student, must enroll and register for twelve units of upper-division and/or graduate course work and research each quarter.

Teaching units (500 series) above the full-time program of twelve units are not considered an overload.

Graduate students approved for half-time study are limited to a maximum of six units of upper-division or graduate course work each quarter.

Leaves of Absence/Extension

A student who discontinues graduate study with the intention of resuming during a later quarter, with department approval, files a formal Leave of Absence, Extension and/or Withdrawal form prior to leaving the campus. Graduate students must have completed at least one quarter of academic residence and be in good standing (GPA 3.0 minimum or equivalent and no more than eight units of U or F) to be granted a leave. All graduate students are limited to a maximum of three quarters of leave and/or withdrawal.

Prior to the end of the second week of instruction of the quarter in which the leave is to begin, a student must complete a Leave of Absence form and obtain required signatures as listed under the clearance section of the form, and the approvals of the graduate advisor, chair of the (major) department, group, or school, and dean of Graduate Studies. Fee refund will be subject to the refund schedule published in the quarterly Schedule of Classes (see section on “Withdrawal”). A graduate student who enrolled in classes before requesting a Leave of Absence must also request a withdrawal from course work for the quarter of leave to avoid paying fees for that quarter. Graduate students may request an extension of an approved leave prior to the expiration of the leave, up to the maximum of three quarters in all degree programs. For an extension of an approved leave, the student must complete a new leave of absence form and obtain the signatures of the graduate advisor, chair of (major) department, housing, and dean of graduate studies.

Parenting Leave

A graduate student who is bearing a child, who has primary responsibility for the care of an infant immediately following birth, a child under the age of five, or adoption of a child under age five, and is in good academic standing will be granted, on request, a one-quarter extension of all unexpired doctoral time limits. During the quarter in which childbirth or adoption occurs, the graduate student may choose one of the following registration options:

1. Continue registering as a full-time graduate student and retain eligibility for support.
2. Reduce to part-time status (less than twelve units) and be eligible for up to 25 percent time employment on campus.
3. Take a leave of absence.

After the quarter in which childbirth or adoption occurs, a graduate student who has primary responsibility for caring for a child up to the age of five will be granted, on request, a leave of absence for the purpose of caring for the child for a maximum of two quarters (or three quarters, if a one-quarter extension has not been granted for the quarter in which childbirth or adoption occurred).

The total amount of time for which graduate students may receive extensions of time limits for parenting or childbearing may not exceed three quarters in a graduate student’s career at UCSD. Approved leaves for childbearing and parenting will not count in the three-quarter leave limit available to all graduate students.

A student who has a long-term loan is considered to be out of school while on a leave of absence and must set up an exit interview with the Loan Records Office before leaving the campus. Since rules and regulations pertaining to such loans are complex, it is to the student’s advantage to determine loan requirements prior to seeking a leave of absence.

A student on leave of absence may not (1) be employed by UCSD, UCSD Medical Center or UC Extension, or hold a fellowship, traineeship, or similar appointment administered by the university, (2) use university facilities, (3) complete a qualifying examination for advancement to candidacy, or (4) place demands on faculty, including discussion of thesis or dissertation work, either directly or by correspondence, during the period of leave.

A student may remain in student housing while on an approved leave of absence providing he or she has been a full-time student (twelve units or more) for three consecutive quarters immediately prior to the leave of absence and is eligible for university housing.

Students must return all borrowed library material if requesting a leave of absence or withdrawing.

Any student on an approved Leave of Absence must contact their major department to be reinstated and cleared for enrollment and registration.

A new Statement of Legal Residence is required for all graduate students returning from a leave of absence of two quarters or more.

Withdrawal

A student withdrawing from the university must obtain a Leave of Absence, Extension and/or Withdrawal form and secure appropriate signatures. The approved form must be filed with the Office of Graduate Studies.

Students who withdraw during the first thirty-five days of instruction will receive refunds of fees in proportion to the number of elapsed calendar days since the first day of instruction. The date of withdrawal used in calculating the refund shall be the date on which the approved notice of withdrawal is submitted to the Office of Graduate Studies.

A registered student who stops attending classes and fails to file a Leave of Absence, Extension, and/or Withdrawal form will receive a grade of F or U in each course, thus jeopardizing eligibility for readmission.

Return of Title IV Federal Student Aid

Financial aid recipients may be required to return some or all of their aid at the time of withdrawal. This requirement applies only to undergraduate students who withdraw prior to completing 60 percent of the quarter. Questions about financial aid repayment should be directed to Student Financial Services Office.

Bar from Registration/Nonacademic

After suitable warning, a student may be barred from further registration for a variety of nonacademic reasons, including failure to comply with official notices, to settle financial obligations when due, to provide final undergraduate transcripts, or other related matters.

Bar from Registration/Academic

Academic disqualification is determined by the dean of Graduate Studies in consultation with the student’s department, and normally relates to: unsatisfactory academic performance, e.g., failure to maintain a grade-point average of 3.0 or better; failure to meet departmental criteria of performance; failure to advance to candidacy or complete the degree within established time limits; accumulation of more than eight units of F or U grades; or failure to comply with conditions set at the time of admission to a graduate degree program.
Academic Services and Programs

Academic Advising

The college academic advising offices and the academic departments are the designated campus units responsible for providing official academic advice and direction to undergraduate students. The college academic advising offices and departments have primary responsibility for academic advice and services that assist new and continuing students to develop educational plans and course schedules which are compatible with their interests, academic preparation, and educational and career goals.

COLLEGE ADVISING OFFICES

Revelle College, Admin. Building, Mail Code 0321, (858) 534-3490

John Muir College, 2126 H&SS, Mail Code 0106, (858) 534-3580

Thurgood Marshall College, Admin. Building, Mail Code 0509, (858) 534-4110

Earl Warren College, Computer Science and Engineering (EBU 3), Mail Code 0422, (858) 534-4350

Eleanor Roosevelt College, Admin. Building, Mail Code 0546, (858) 534-9864

Sixth College, Pepper Canyon Hall, 2nd Floor, Mail Code 0054, (858) 822-5955

Specifically, the college academic advisors conduct academic orientation/enrollment programs for all new students and advise new and continuing students about college general-education and graduation requirements. The advising staff of each college provides general academic and curricular information, clarifies academic rules and regulations, reviews all aspects of academic probation, monitors academic progress, assists students with decision-making strategies, and provides information about major prerequisites as well as criteria for departments that screen students. In conjunction with the academic departments and the Office of the Registrar, the college advising offices certify graduation and generally facilitate students’ academic adjustment to the university.

Moreover, college academic advisors are available to counsel students about educational alternatives, selection of courses and majors, program changes, new academic opportunities, and special programs such as exchange programs, honors programs, outreach programs, etc.

See your college academic advisor for assistance with academic concerns or referral to appropriate academic support units.

Academic Computing Services

Help Desk
1313 Applied Physics and Mathematics, Muir College
(858) 534-3ACS (3227)

Administration and Director’s Office
1141–1161 AP&M
(858) 534-4050
http://acs.ucsd.edu/

Academic Computing Services (ACS) plays a variety of computing roles at UCSD. Among these are support of instructional computing, management of the main academic network, hardware repair, and administration of software site licenses.

Student Computing

The main function of ACS is to provide facilities for instructional computing. In addition to timesharing systems, ACS maintains over 1800 workstations of various types available across campus. These include Windows, Macintosh, and UNIX workstations located in public areas, computer labs, and libraries.

A wide variety of software is available on various platforms, including general word processing, spreadsheet and Web site design applications, compilers and program development tools, special purpose packages for electronic design, mechanical engineering, animation, statistics, genetic studies, and symbolic mathematics.

Beyond instructional computing, ACS provides facilities to students for popular activities such as e-mail, personal Web sites, and other network-based communications. Incoming students receive personal account information at orientation after submitting their Intent to Register form.

ACS has student assistants who are available at scheduled times in computer labs to help students use the facilities. These assistants complement other forms of support such as guidance from instructors and teaching assistants, and online documentation.

ACS provides both instructional and extracurricular computing services to students through a single “personalized” account. The goal is to make computing more convenient and flexible, to allow students to pursue academic computing interests on their own initiative.

Network Operations
(858) 534-1857
http://www-no.ucsd.edu

Network Operations plays a major role in the management of campus computer networks and services, including the student residential network (ResNet), the campus wireless network, a dial-in modem service, Web proxy, Internet connectivity, Active Directory, the campus e-mail gateway, and an e-mail registry of campus members and affiliates.

Students can obtain more information about ResNet at http://resnet.ucsd.edu and can obtain support at that Web site or by calling (858) 822-2800.

Wireless access is available in most campus buildings and common spaces. A UCSD network login and a wireless network card are required to attach to the network. For more information, students should see http://www-no.ucsd.edu (wireless).

To use campus dial-in lines, UCSD users must sign up and pay for dial-in service. Users will also need a network security username and password.

Network Operations can assist you in connecting your computer to make use of Internet services, including checking e-mail, managing spam, and subscribing to UCSD mailing lists.

For more information, e-mail userserv@ucsd.edu. Dial-in billing questions may be directed to (858) 822-2900.

Software Licensing and Distribution
(858) 534-9676
http://software.ucsd.edu

ACS manages agreements with several software vendors under which UCSD departments are able
Dedicated to providing UCSD undergraduates with research and other academic enrichment experiences beyond the classroom.

PROGRAM DESCRIPTIONS:

Faculty Mentor Program

The Faculty Mentor Program offers valuable research experience to juniors and seniors who want to prepare for graduate or professional school. Participants work as research assistants to UCSD faculty members for at least ten hours per week for two quarters. Students receive four units of 199 independent study credit each quarter, attend seminars on various topics, including how to write and present a research paper, and receive graduate school and fellowship information. At the conclusion of the program, students present their research papers at the annual Faculty Mentor Program Research Symposium.

Health and Medical Professions Preparation Program

HMP assists students in their undergraduate preparation for careers in the health professions. These include medicine, dentistry, pharmacy, veterinary, public health, nursing, and others. The program provides students with activities and resources including preprofessional seminars, review course scholarships, volunteer placement information, and mentorship opportunities. Participants have access to a Web site with information on upcoming conferences, health professional schools, etc. The program also serves as a clearinghouse for information about other campus resources available to the prehealth professional student.

Summer Research Program

The Summer Research Program offers a paid, full-time research experience to students who are interested in preparing for careers in research or university teaching. As research assistants, students work on their faculty mentor's projects for at least thirty hours per week. Students are trained in research skills, how to write and present a research proposal or paper, and how to prepare for the Graduate Record Examination (GRE). At the conclusion of the program, students present their papers at the annual UCSD Summer Research Conference.

McNair Program

The McNair Program is a U.S. Department of Education initiative designed to serve low-income, first-generation college students and underrepresented minorities who are interested in pursuing a Ph.D. It is a rigorous one-year program of scholarly activities that includes participation in the Faculty Mentor Program and the Summer Research Program. In addition, participants receive training in how to write and present a scholarly paper, preparation for the GRE, and assistance with the graduate school application process. All participants have the opportunity to present a paper at a minimum of two research conferences.

CAMP Science Program

The CAMP Science Program is funded by the California Louis Stokes Alliance for Minority Participation in Science, Engineering, and Mathematics (CAMP grant from the National Science Foundation. This program is designed to provide support and advancement opportunities to ethnically underrepresented students who are seeking bachelor's degrees in the sciences, mathematics, engineering, and technology. Participants in this program may attend informational and skill-building workshops, tour UCSD laboratories, local companies and research institutes, attend local and/or national conferences, participate in a book exchange program, attend study break dinners and coffee with faculty events, and are eligible to earn book scholarships. In addition, students are encouraged to participate in academic year and/or summer research, and pursue graduate school.

Computer Science, Engineering, and Mathematics Scholarship (CSEMS)

The Computer Science, Engineering, and Mathematics Scholarship (CSEMS) is a two- or four-year program providing research and outreach opportunities to low-income, academically talented students in the Jacobs School of Engineering and the Department of Mathematics. The chief objectives of the program are to promote full-time enrollment and degree completion.

University of California Leadership Excellence through Advanced Degrees (UC LEADS)

The University of California Leadership Excellence through Advanced Degrees (UC LEADS) is a selective two-year research program for undergraduates majoring in science, engineering, or mathematics. Students receive stipend support for two summers of research and support for
travel to conferences, membership in professional associations, and other research-related activities. UC LEADS participants work on well-defined projects under the supervision of faculty mentors. The UC LEADS experience will prepare students to be competitive applicants for admission to doctoral programs, preferably within the UC system, and eventually to assume leadership positions in society.

Undergraduate Research Conference

The UCSD Undergraduate Research Conference is an annual event where more than 100 students who have written outstanding research papers are invited to present their research. Invitation is by faculty nomination. Students present their papers at small roundtable discussions led by a faculty presider.

Education Abroad Program (EAP)

International Center (corner of Gilman Drive and Library Walk)
Mail Code 0018
(858) 534–1123
http://programsabroad.ucsd.edu
E-mail: abroad@ucsd.edu

The Education Abroad Program provides students enrolled at the University of California an opportunity for an intercultural experience at UC centers located in Australia/New Zealand, Africa, Asia, Europe, Latin America, and North America, while allowing normal progress toward a degree. The program is described in detail in the “Courses, Curricula, and Programs of Instruction” section of this catalog under the “Education Abroad” heading.

International Scholar Team

International Student and Scholar Office
International Center
(Corner of Gilman Drive and Library Walk)
Mail Code 0018
(858) 534–3730 phone
(858) 534–0909 fax
http://icenter.ucsd.edu

Four international scholar advisors, several support staff, and an outreach and volunteer coordinator make up the International Scholar Team, which operates under the umbrella of the International Student and Scholar Office (ISSO). The International Scholar Team is the official representative of UCSD for all matters concerning international scholars at UCSD and is exclusively authorized to represent UCSD in routine administrative filings with U.S. Citizenship and Immigration Services. It is also responsible for reporting changes of information in SEVIS, and guiding UCSD as needed to comply with other institutional requirements.

The International Scholar Team provides assistance to UCSD academic departments and ORUs in their efforts to recruit, employ, and serve international faculty, researchers, and postdoctoral fellows. Services include information and advising to support departments with their plans to hire and retain international employees and scholars, preparation of petitions to U.S. Citizenship and Immigration Services, employment authorization, etc.

The International Scholar Team provides one-on-one advising services directly to international scholars and their dependents on I-94 status compliance, international travel, financial planning, and health insurance; help for parents in finding and learning about schools and their requirements; and other matters of an immigration, regulatory, practical, or personal nature. The International Scholar Team provides application and filing support for social security numbers, drivers’ licenses, taxes, various immigration forms, etc.

Finally, the Friends of the International Center play a leading role in concert with the International Student Team to provide additional outreach, hospitality, and learning services and programs.

OASIS (Office of Academic Support and Instructional Services)

Third Floor, Center Hall
Mail Code 0045
(858) 534–3760

The Office of Academic Support and Instructional Services (OASIS) provides a variety of services to maximize student performance and retention at the University of California, San Diego.

MISSION

The mission of OASIS is to assist UCSD students in reaching their full potential by developing an appreciation for learning. OASIS strives to facilitate learning by concentrating on learners and supporting their academic, intellectual, and personal growth at UCSD. Services are designed to assist students to develop the academic skills to excel in their subject matter at UCSD and eventually in graduate or professional school.

SERVICES

A description of services offered each quarter is available at the OASIS office on the third floor.
of Center Hall. All students in any of the six colleges are eligible for OASIS services. Underrepresented students are strongly encouraged to use OASIS services in order to maximize their valuable contribution to UCSD.

The Academic Transition Program

The Academic Transition Program coordinates a residential Summer Bridge Program and professional and academic transition counseling for freshmen at UCSD. A variety of academic support and personal development activities are offered to facilitate a smooth transition from high school to UCSD’s fast-paced quarter system.

The Math and Science Tutorial Program

The Math and Science Tutorial Program is designed to support students in their desire to excel in mathematics and science courses. The program offers workshops for mathematics, physics, biology, and chemistry courses.

The Language and Writing Program

Students whose first language is not English are assisted in the Language and Writing Program. In addition, students doing academic work in Spanish or French language courses can participate in Language Program tutorial sessions conducted by bilingual staff. Language Program services include group or individual intensive reading and writing sessions, workshops on grammar and mechanics, and individual conferences where feedback on drafts of writing is provided.

The Student Support Services Program

The Student Support Services Program is a comprehensive U.S. Department of Education initiative designed to support the academic efforts of participating students. The program seeks to maximize the achievement and development of eligible students, particularly those who have been traditionally underrepresented due to race or ethnicity, gender, disability, and/or economic status. Student Support Services also strives to enhance each program participant’s eligibility for entrance to graduate and professional schools and to foster an institutional climate which will support the success of program participants. The program consists of intensive individual tutoring, professional counseling, peer mentoring, and various cultural enrichment activities.

The Research and Evaluation Program

Administered jointly by the Office of the Assistant Vice Chancellor for Student Educational Advancement and OASIS, the Research and Evaluation Program maintains data about students using OASIS services and conducts research projects which examine a particular problem or issue related to OASIS services. In addition, longitudinal studies of the effect of services on student users are undertaken, such as follow-up studies on the retention of Summer Bridge students. Evaluation activities that are essential to the provision of effective services to students are also the responsibility of this program.

Education Studies 116

OASIS offers a four-unit, upper-division course that provides instruction to all OASIS student staff members on the teaching-learning process. The course is designed to balance lectures and readings with supervised, practical experience.

Office of International Education

International Center
(corner of Gilman Drive and Library Walk)
Mail Code 0018
(858) 534-6442
http://icenter.ucsd.edu/

The International Center houses the offices of the international student and scholar advisors and advisors for the Education Abroad Program and the Opportunities Abroad Program, the Dean’s Office, as well as the Programs Abroad Resource Library. In addition, the center has American English tutors available to international students, scholars and spouses, and houses the office of all the community volunteers who provide a wealth of hospitality programs to international students, scholars, and spouses, including language tutors and host families.

The staff and community volunteers as well as the International Club also sponsor a variety of international/intercultural programs and services for all members of the UCSD community. These include lectures, language exchanges, linkages with international faculty specialists, and weekly international café lunches which are open to the entire campus.

Opportunities Abroad Program (OAP)

International Center (corner of Gilman Drive and Library Walk)
Mail Code 0018
(858) 534-1123
http://programsabroad.ucsd.edu
E-mail: abroad@ucsd.edu

The Opportunities Abroad Program (housed in the Programs Abroad Office, along with the Education Abroad Program) facilitates participation in programs abroad sponsored by institutions other than the University of California. OAP offers a resource library and advisory services enabling UCSD students to choose study, work, internship, and educational travel abroad programs best suited to their individual needs. Programs are available for students in all majors, for periods ranging from a quarter to a full academic year. Students participating in approved academic programs abroad transfer credit back to UCSD. They receive assistance with this as well as application, financial aid, predeparture, and re-entry issues through the OAP. Special study abroad scholarships are also available. Students participating in non-academic programs generally do not earn credit but in some instances may arrange to do so, for example, through the Academic Internship Program.

San Diego Supercomputer Center (SDSC)

Mail Code 0505
(858) 534-5000 (general inquiries)
(858) 534-5100
http://www.sdsc.edu

Over the past two decades, the San Diego Supercomputer Center (SDSC) has enabled science and engineering discoveries through advances in computational science and high-performance computing. Data is an overriding theme in SDSC activities. By developing and providing data cyberinfrastructure, the center acts as a strategic resource to science, industry, and academia, offering leadership in the areas of data management, grid computing, bioinformatics, geoinformatics, and high-end computing. The mission of SDSC is to extend the reach of the scientific community by providing data-oriented technology resources above and beyond the limits of what is available in the local laboratory, department, and university environment. SDSC is
an organized research unit of UCSD with a staff of scientists, software developers, and support personnel, primarily funded by the National Science Foundation (NSF).

Over the years, SDSC has served more than 10,000 researchers at 300 academic, government, and industrial institutions in the United States and around the world. Today, these scientists and engineers increasingly rely on the availability of integrated data cyberinfrastructure tools such as hardware, software, and human support to drive research and education. Cyber-infrastructure provides a broad and useful spectrum of integrated technologies to support increasingly complex, data-intensive, and collaborative scientific endeavors.

When an application’s or research project’s technological needs outgrow the capabilities of their home environment, cyberinfrastructure extends the reach of the scientist by providing needed storage, high-speed networking, archiving and preservation, high-performance computing, and other resources remotely. SDSC provides both the tools and the facilities that integrate a user’s home environment with a high-end, resource-rich, remote environment. Users can take advantage of SDSC’s visualization, interdisciplinary expertise, and other resources to extend their home environments and accomplish their goals.

To meet the modern scientist’s and engineer’s extreme data needs, the center provides an integrated set of software and user services including:

- An internationally renowned environment for data management, mining, curation, analysis, visualization, access and preservation, as well as leadership-class storage technologies
- A broad spectrum of software tools, portals, workbenches, and packages integrated to enable users to develop and deploy complex applications
- Professional user services that enable users to make the most out of cutting-edge hardware, software, and information resources
- A range of collaboration vehicles for working with partners on strategic and community applications, data collections, and projects
- An advanced cyberinfrastructure laboratory that provides an environment for designing, developing, and testing software and hardware systems at scale
- Data Central, a computational and storage infrastructure for community data collections. The Data Central team helps researchers from a wide variety of scientific domains to manage, mine, analyze, publish, and share datasets.

Along with these tools, SDSC also offers users full-time support including 24-hour helpdesk services, code optimization training, portal development, and a variety of other services.

SDSC was founded in 1985 with a $170 million grant from the National Science Foundation’s Supercomputer Centers program. From 1997 to 2004, SDSC extended its leadership in computational science and engineering to form the National Partnership for Advanced Computational Infrastructure (NPACI), teaming with approximately forty university partners around the country.

SDSC collaborates with eight partners—including the National Center for Supercomputing Applications at the University of Illinois, Argonne National Laboratory, the Center for Advanced Computing Research at the California Institute of Technology and the Pittsburgh Supercomputing Center—in the TeraGrid project. This multiyear effort builds and maintains the world’s most powerful and comprehensive distributed computational infrastructure for open scientific research.

The demanding research problems that are being tackled by the scientists using SDSC’s cyberinfrastructure tools are numerous and diverse. A few key programs focus on understanding the origin of the universe, visualizing earthquakes, providing data management for disaster recovery organizations, modeling proteins, simulating the human nervous system, and predicting climate changes.

COMPUTATIONAL RESOURCES

NSF funding along with grants from the NIH and other sources keep SDSC’s computational resources at the state of the art and support a variety of software development projects led by faculty and staff members. SDSC computational resources include the following:

- Blue Gene Data is a 17.1 teraflops IBM supercomputer that packs more than 6,000 processors in the space of only three racks. Blue Gene Data is among the top supercomputers in the world and offers researchers a powerful tool for data-intensive computing.

- Data Star is a 15.6 teraflops IBM Power 4 based supercomputer with total shared memory of 7 terabytes. Data Star is among the top supercomputers in the world and is targeted at large-scale, data intensive scientific research applications.

- Under the TeraGrid program, SDSC operates a large IA-64 based cluster with a total peak speed of 4 teraflops. This supercomputer is part of the national TeraGrid system connected to the other TeraGrid partners by a 20-Gbps cross-country backbone network.

- SDSC has more than one petabyte of online disk storage as well as 25 petabytes of archival tape storage capacity, the largest data storage installation at any educational institution in the world.

- Meteor is a Linux cluster with 200 Intel processors, the biggest Linux/Intel cluster on campus. Meteor is devoted to UCSD research.

- Sun Enterprise SunFire 15000 is a 72-processor system with 288 GB memory attached to SDSC’s storage area network.

- RockStar is a 128-node Sun Fire V60x supercomputer used for cluster management research.

- A visualization laboratory features advanced display systems.

- Data Central, the first nationally allocated storage infrastructure for community data collections.

RESEARCH ALLOCATIONS, RESOURCES, AND SUPPORT

UCSD faculty and students are eligible for free allocations of time on SDSC’s supercomputers, data, and other resources. Such allocations can support research projects or class curricula. Undergraduate and graduate students may obtain time through requests submitted by their advisors. All proposed projects must be nonproprietary. Requests for relatively small amounts of time (such as for class accounts or student projects) can be submitted any time and are reviewed shortly after receipt. To apply for larger amounts of time, requests must be submitted prior to the quarter in which the allocation is to begin (quarters begin January 1, April 1, July 1, and October 1). Allocations are typically made for twelve-month periods. See http://www.sdsc.edu/us/allocations.

The Academic Associates Program (AAP), formerly known as the Block Grant Program, was
started in 1995 to give University of California researchers free access to SDSC’s state-of-the-art resources. Resources include supercomputer time, high-performance storage, software and technical support, training, and workshops. Any UC researcher can request supercomputing time or storage resources online at http://www.sdsc.edu/user_services/aap. Administrators are available at each UC campus to help researchers with any questions or problems regarding the Academic Associates Program. For more information, contact Subhashini Sivagnanam, AAP liaison, at sivagnan@sdsc.edu or (858) 822-3662.

All researchers with access to SDSC’s resources are supported by SDSC’s consulting staff, who are available online (http://www.sdsc.edu/us/consulting), by phone, or by e-mail: 9 a.m.–5 p.m. (Pacific Time), Monday–Friday. Researchers and students with accounts are welcome to attend SDSC’s periodic training workshops (http://www.sdsc.edu/us/training).

ADDITIONAL OPPORTUNITIES FOR THE CAMPUS COMMUNITY

SDSC offers the following additional opportunities for UCSD faculty, staff, and students:

• Access to high-performance computers through UCSD classes—Many UCSD classes make use of the SDSC resources, providing a hands-on way to learn about high-performance computing. Check class listings for biology, chemistry and biochemistry, computer science and engineering, mechanical and aerospace engineering, Scripps Institution of Oceanography, and UCSD Extension.

• Seminars—SDSC hosts a wide variety of seminars on topics of interest to the high-performance computing and computational science community. Most are open to the UCSD community (http://www.sdsc.edu/CSSS).

• Publications—SDSC publishes a science magazine, EnVision, which is free to the campus community. For subscriptions, please contact Gretchen Rauen, gretchen@sdsc.edu, (858) 534-5111.

• Part-time and full-time employment—SDSC posts part-time and full-time professional job openings at the UCSD Career Services Center, or see http://www.sdsc.edu/about/Careers.html. Typical jobs are in research programming support, scientific writing, computer operations, and reception work.

• Tours—SDSC offers a tour for the public. Reservations are recommended and can be made by contacting the reception desk, (858) 534-5000. Special-interest tours for education and industry groups can be arranged by contacting Apryl Bailey at tours@sdsc.edu.

Additional information about SDSC can be obtained from the SDSC Web site (http://www.sdsc.edu) or by calling SDSC at (858) 534-5000.

UCSD Extension—Extended Studies and Public Programs

http://extension.ucsd.edu

UCSD Campus
9600 North Torrey Pines Road
Mail Code 1076H
(858) 534-3400
E-mail: unex-reg@ucsd.edu
Fax: (858) 534-8527

UCSD Extension is contributing to the health and vitality of the San Diego region through professional education and training and high-profile programs focused on cultural enrichment and regional economic development. This integrated approach to improving the quality of life in San Diego, and beyond, helps to build to a highly competitive workforce, a growing economy, and an unstoppable creative community.

For students interested in lifelong learning, Extension offers more than fourteen areas of study in fields ranging from the life sciences and engineering to arts and business leadership. Course work may be pursued across San Diego, online, at work, and overseas. A variety of delivery formats are available including individual courses, certificates, and lecture series.

Extension’s outreach programs are designed to improve the region’s economy through entrepreneurial development, research, public forums, and civic conversations. Programs include the California Office of Binational Border Health, Global CONNECT, San Diego Dialogue, and UCSD-TV.

To learn more, visit our Web site at extension.ucsd.edu—where there’s always something new™.

CONTINUING EDUCATION: AREAS OF STUDY

Art, Music, and Photography

Courses and workshops offered in art history, drawing, mixed media, painting, film, digital photography, harmonics, guitar, piano, and the annual UCSD Jazz Camp. For more information, call (858) 964-1051.

Biological, Pharmaceutical, and Marine Sciences

Courses and intensive programs offered in computer aided design, medicinal chemistry, computational biology and bioinformatics, drug discovery and development, regulatory affairs, quality assurance and control, biotechnology manufacturing, proteomics, microarrays, and biomedical product development. For more information, call (858) 882-8027.

Business

Courses offered in accounting, business management, communication, enterprise management, facilities management, finance, fraud examination, fundraising and development, human resources management, international business, marketing, meeting management, project management, purchasing and supply management, real estate, and urban planning. For more information, call (858) 882-8006.

Digital Media and Web Design

Courses offered in computer-aided design, graphic design, and multimedia and Web site design and development. An 18-month daytime or 24-month evening program is also available for digital design, Web development, multimedia, marketing practices, and portfolio creation. Internships available. For more information, call (858) 622-5739.

Education

State-approved credential programs offered in Adult Education/Vocational Education, as well as state-approved certificate programs in Cross-Cultural Language and Academic Development (CLAD), Reading and Education of the Gifted and Talented (GATE). Certificate programs and supplementary authorizations courses are offered for Teaching Mathematics and Science. Additional certificates are Teaching English to Speakers of Other Languages (TESOL), Community College Instructor, and Educational Therapy. For more information, call (858) 964-1045.

Engineering

Courses offered in communications engineering, wireless communications, RF engineering, network technologies, embedded computer
engineering, systems engineering, semi-conductor design, VLSI digital design, CDMA engineering, and SensorNets. Also, certificate programs in New Product Development, Lean Enterprise, Six Sigma, Green/Black Belt, and Professional Engineering Reviews. For more information, call (858) 622-5762.

English Language Studies

Courses and workshops offered in academic writing, intermediate business writing for non-native speakers, conversation improvement, grammar/vocabulary building, pronunciation and fluency, and accent reduction. For more information, call (858) 534-0049.

Foreign Languages and Travel Study

Courses offered in Arabic, Chinese (Mandarin), French, German, Italian, Japanese, Korean, Persian, Portuguese, Russian, Spanish, and translation and interpretation. Short-term Spanish language immersion programs abroad are available for adults. For more information, call (858) 964-1050.

Health Care and Behavioral Sciences

Courses offered in clinical trials, health care leadership and management, evidence based medicine, medical coding, emergency department nursing, case management, nurse re-entry program, legal nurse consulting, fitness instruction and lactation education. In behavioral sciences courses offered in alcohol and drug abuse counseling, art therapy, gerontology, and play therapy. For more information, call (858) 964-1010.

Humanities and Writing

Courses offered in copyediting, creative writing, feature writing, history, politics and culture, literature, technical communication, and theatre. Special programs such as Revelle Forum at the Neurosciences Institute and UCSD Jazz Camp round out a diverse and unique set of offerings in the San Diego area. For more information, call (858) 964-1051.

Law

Courses offered in bankruptcy law, business law, domestic relations law, civil litigation, evidence law, California litigation procedures, and law office procedures. Also offered are an ABA-approved paralegal program and a Professional Certificate in Intellectual Property. For more information, call (858) 882-8008.

Leadership and Management Development

For experienced managers taking on new levels of responsibility, programs include the Leadership and Management Program for Technology Professionals (LAMP), Healthcare Executive Leadership Program (HELP), and the Executive Program for Scientists and Engineers (EPSE). Entrepreneurs and others will find of interest courses in biotech business development, writing business plans, financing start-ups, IT governance, business process optimization and ERP essentials, six sigma, lean enterprise, and global supply chain management programs. For more information, call (858) 964-1336.

Occupational Health and Safety

Courses offered through the OSHA Training Institute in occupational health and safety for general industry and construction: hazardous materials, respiratory protection, fall arrest systems, industrial hygiene, ergonomics, and more. A professional certificate in Occupational Health and Safety is also available. For more information, call (858) 605-0109.

Technology

Courses offered in data management and analysis, software engineering, data warehousing, biological database design, data modeling, data mining, security engineering, Web analytics, Web services, Oracle, Microsoft Access, networking, BioJava, Perl for bioinformatics, C/C++, C#, J2EE, Java, Visual Basic, UNIX/Linux, and .NET. For more information, call (858) 622-5740.

HOW TO ENROLL

Online: http://extension.ucsd.edu
By phone: (858) 534-3400
In person:
La Jolla
9600 N. Torrey Pines Road, Bldg. C
La Jolla, CA 92039
Mission Valley
404 Camino Del Rio South
Suite 102
San Diego, CA 92108
Rancho Bernardo
11770 Bernardo Plaza Court
Suite 270
San Diego, CA 92128

Sorrento Mesa
AT&T Wireless Building
6925 Lusk Blvd.
San Diego, CA 92121

Concurrent registration: Permits individuals who are not officially matriculated UCSD students to enroll for credit in regular UCSD courses. Offered on a space-available basis with the approval of the course instructors. For more information, call (858) 534-3400.

Complimentary enrollment: UCSD Extension offers a limited number of complimentary enrollments to full-time UCSD students who may enroll in one free course of up to $270 (students must pay anything over that amount) on a first-come, first-served basis. For more information, call (858) 534-3400.

COMMUNITY AND REGIONAL ECONOMIC DEVELOPMENT

Academic Connections

http://www.academicconnections.ucsd.edu

Academic Connections provides students with access to the resources of a research university. This program gives motivated students the opportunity to explore different fields of study, pursue their interests, and better prepare for a university experience. A combination of summer residential programs, year-round academies, and distance education courses will extend the reach of the university, better serving the San Diego community and beyond.

California Office of Binational Border Health

http://www.extension.ucsd.edu/cobbh

The California Office of Binational Border Health serves as the California Department of Health Services liaison to Baja California and other Mexican health officials. The goal of COBBH is to protect and improve the health of California communities affected by border or binational conditions through outreach, research and education.

Global CONNECT

http://www.globalconnect.ucsd.edu

Global CONNECT links and engages networks of individuals and organizations committed to building international technology-based enterprises. Global CONNECT’s focus is on the role of research institutions, regional incubators, and initiatives that support innovation and entrepreneurship. Global CONNECT is active in three
areas: research and analysis on the dynamics of regional innovation, the provision of technical assistance to regions interested in developing technology commercialization programs, and education and training in areas essential to science-based business clusters. Global CONNECT manages a membership network of more than forty regions from around the globe. The membership shares best practices through international meetings, business-to-business activities, and a Web site.

Helen Edison Lecture Series
http://www.helenedison.ucsd.edu

The Helen Edison Lecture Series presents free public lectures on issues advancing humanitarian purposes and objectives. Past speakers have included John Kenneth Galbraith, Noam Chomsky, Luis Valdez, Toni Morrison, Carlos Fuentes, and Robert McNamara.

LAUNCH
http://www.extension.ucsd.edu/launch

Undergraduates can jumpstart their transition into the workplace with LAUNCH—a new educational offering designed by UCSD Extension. Ambitious students earn a certificate in their field of choice while working with an expert career coach to help land a first job upon graduation. Free information sessions offered year round.

San Diego Dialogue
http://www.sandiegodialogue.org

The San Diego Dialogue is a center of research on cross-border economic and social issues, as well as a convener of community forums on issues shaping the San Diego-Baja California region. The Dialogue also addresses issues related to infrastructure and public policy and provides the kind of technical assistance, education, and training that helps improve our regional futures.

A primary focus of the San Diego Dialogue is the Cross-Border Innovation and Competitiveness Initiative. Its focus is to help the region become more globally competitive in key science and technology sectors by leveraging cross-border assets and capabilities. Areas of focus include: the biomedical industry, software, semiconductor manufacturing, marine biotechnology, and automobile and aerospace manufacturing.

UC Professional Development Institute
http://www.ucpdi.ucsd.edu

The UC Professional Development Institute (UCPDI) is a leader in delivering standards-based professional development institutes and training materials focused on the needs of K−12 English learners. UCPDI’s primary goal is to improve and accelerate student achievement. UCPDI is one of only two providers approved by the state of California to offer standards-based intervention programs for English learners.

UCSD Economics Roundtable
http://www.econ.ucsd.edu/roundtable

The UCSD Economics Roundtable is a forum for more than 2,000 San Diego business and community leaders to exchange ideas and information with world class economists and financial experts. The UCSD Economics Roundtable has hosted several prominent guests including Ben Bernanke, Board of Governors of the Federal Reserve System, and Robert Shiller, professor of economics at Yale University.

Osher Lifelong Learning Institute (OLLI)
http://www.olli.ucsd.edu

The Osher Lifelong Learning Institute (OLLI) rekindles the zest for life for retired San Diego professionals. OLLI is a membership organization that inspires conversations between interesting people about stimulating topics, offering twenty different programs each quarter. Subjects include archaeology, science, tai chi, computing, live musical performances, literature, foreign languages, and master courses and lectures from UCSD faculty members.

UCSD-TV
http://www.ucsd.tv

UCSD-TV, the only broadcast television station operated by the University of California, is an Emmy® winning, non-commercial station that extends the resources of the university to the greater San Diego community and partners extensively with regional civic, cultural, and arts institutions in programming. UCSD-TV broadcasts on UHF Channel 35, Cox Communications, and Time Warner Cable. Programs from UCSD-TV and other University of California campuses are broadcast nationwide on UCTV and on demand.

The UCSD Libraries
http://libraries.ucsd.edu

The UCSD Libraries, a campuswide network of libraries serving programs of study and research in many fields, include the Arts Libraries (Art & Architecture Library and Music, Film, & Video Library), the Biomedical Library, the Center for Library & Instructional Computing Services (CLICS), the International Relations & Pacific Studies Library, the Mandeville Special Collections Library, the Medical Center Library, the Science & Engineering Library, the Scripps Institution of Oceanography Library, and the Social Sciences & Humanities Library.

The Libraries serve as physical and virtual centers for study, reading, and scholarship at UCSD. Their collections and services support undergraduate and graduate instructional programs, as well as advanced research. While each library may have varying rules and varying hours, all are open to all members of the UCSD community. Most libraries extend hours during final exam periods.

The Libraries’ Web site offers access to information about the Libraries and to digital services and collections, including the book catalog, e-journals, e-books, databases, and materials assigned for classes. New resources and services are added continually. The Libraries have an ongoing commitment to acquiring and offering materials in digital form. For materials not found at UCSD, the Libraries offer several quick and easy ways to borrow materials from other UC campuses and other universities.

Research assistance is available online and at each of the campus libraries and is designed to assist students and faculty with their course needs and research activities. Through their Instruction and Outreach Programs, the Libraries offer a variety of orientation and instructional opportunities intended to help students succeed in their academic and personal pursuits.

COMBINED UCSD LIBRARIES STATISTICS, 2006

<table>
<thead>
<tr>
<th>Category</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio and video materials</td>
<td>137,068</td>
</tr>
<tr>
<td>Slides and other pictorial items</td>
<td>291,677</td>
</tr>
<tr>
<td>E-books</td>
<td>142,804</td>
</tr>
<tr>
<td>Maps</td>
<td>129,309</td>
</tr>
<tr>
<td>Microforms</td>
<td>3,260,490</td>
</tr>
<tr>
<td>E-journals</td>
<td>18,822</td>
</tr>
<tr>
<td>Periodical and other serial publications</td>
<td>3,236,219</td>
</tr>
<tr>
<td>Received</td>
<td>32,229</td>
</tr>
<tr>
<td>Volumes</td>
<td>32,229</td>
</tr>
<tr>
<td>Audio and video materials</td>
<td>137,068</td>
</tr>
<tr>
<td>Slides and other pictorial items</td>
<td>291,677</td>
</tr>
<tr>
<td>E-books</td>
<td>142,804</td>
</tr>
<tr>
<td>Maps</td>
<td>129,309</td>
</tr>
<tr>
<td>Microforms</td>
<td>3,260,490</td>
</tr>
<tr>
<td>E-journals</td>
<td>18,822</td>
</tr>
<tr>
<td>Periodical and other serial publications</td>
<td>3,236,219</td>
</tr>
<tr>
<td>Received</td>
<td>32,229</td>
</tr>
<tr>
<td>Volumes</td>
<td>32,229</td>
</tr>
</tbody>
</table>

The UCSD Libraries, a campuswide network of libraries serving programs of study and research in many fields, include the Arts Libraries (Art & Architecture Library and Music, Film, & Video Library), the Biomedical Library, the Center for Library & Instructional Computing Services (CLICS), the International Relations & Pacific Studies Library, the Mandeville Special Collections Library, the Medical Center Library, the Science & Engineering Library, the Scripps Institution of Oceanography Library, and the Social Sciences & Humanities Library.

The Libraries serve as physical and virtual centers for study, reading, and scholarship at UCSD. Their collections and services support undergraduate and graduate instructional programs, as well as advanced research. While each library may have varying rules and varying hours, all are open to all members of the UCSD community. Most libraries extend hours during final exam periods.

The Libraries’ Web site offers access to information about the Libraries and to digital services and collections, including the book catalog, e-journals, e-books, databases, and materials assigned for classes. New resources and services are added continually. The Libraries have an ongoing commitment to acquiring and offering materials in digital form. For materials not found at UCSD, the Libraries offer several quick and easy ways to borrow materials from other UC campuses and other universities.

Research assistance is available online and at each of the campus libraries and is designed to assist students and faculty with their course needs and research activities. Through their Instruction and Outreach Programs, the Libraries offer a variety of orientation and instructional opportunities intended to help students succeed in their academic and personal pursuits.
THE ARTS LIBRARIES
http://artslib.ucsd.edu

Art & Architecture Library
West Wing, Geisel Library
(858) 534-4811

The Art & Architecture Library’s collections support the study of the visual arts and architecture and includes 86,000 volumes, 258,000 slides, and 500,000 digital images available through ARTstor. Collection strengths include art history; performance and environmental art; photography; painting; sculpture; digital art; architectural design, theory, and history; urban design; and landscape architecture. The Visual Resources collections (slides and digital images) provide visual materials for on-campus instructional purposes.

Music, Film, & Video Library
West Wing, Geisel Library
(858) 534-8074

The Music, Film, & Video Library’s collections include 32,500 volumes, 51,000 scores, and 90,000 recordings (music and spoken word) on CD, tape, LP, and CD-ROM. Collection strengths include materials supporting the study of twentieth and twenty-first century music and music theory. A digital audio reserves service (DAR) provides access to audio course reserve materials. Licensed audio resources include African American Song, Classical Music Library, Database of Recorded American Music (DRAM), and Smithsonian Global Sound for libraries, providing access to over 178,000 digital sound files. The film collection includes over 13,500 DVDs, videos, film prints, and laser discs. Collection strengths include feature films, documentaries, experimental film, and the Factual Film archive. Moving image materials on course reserve are available at the Film and Video Reserves service point.

BIOMEDICAL LIBRARY AND MEDICAL CENTER LIBRARY
Library Walk at Osler Drive
(858) 534-3253
http://biomed.ucsd.edu

The services and collections of the Biomedical Library and its branch Medical Center Library support the teaching, research, and patient care programs of the UCSD School of Medicine, the Skaggs School of Pharmacy and Pharmaceutical Sciences, the Division of Biological Sciences, and UCSD Healthcare. The Libraries combined collection of over 239,000 volumes and access to more than 4,000 current serials, over 3,000 in electronic form, provides in-depth access to the biomedical literature for UCSD students, faculty, and clinicians. The Medical Center Library is located in Hillcrest at the UCSD Medical Center, (619) 543-6520.

CLICS (Center for Library & Instructional Computing Services)
Galbraith Hall
(858) 822-5427
http://clics.ucsd.edu

CLICS has 182 computers distributed on two floors in a general purpose computing lab setting, giving students access to many scholarly and reference sources. CLICS’ staff teach approximately 4,000 students per year how to do university-level research to complete their course assignments. It is where students from all of the colleges mingle. There are small group rooms for collaborating on group projects, and one of the rooms is equipped with a device (CopyCam) that converts notes on the whiteboard to print, disk, or IP address. CLICS also has a presentation practice room equipped to project a student’s slideshow from their own laptop to a flat screen monitor so that students can rehearse for class presentations. CLICS is open 24/7 during exam week.

INTERNATIONAL RELATIONS & PACIFIC STUDIES LIBRARY
Robinson Complex, Bldg. 3
(858) 534-7785
http://irpslibrary.ucsd.edu

The IR/PS Library features materials on contemporary political, economic, and business affairs in East Asia, Latin America, and the rest of the Pacific Basin region. Its collection includes 120,000 volumes, 1,400 active periodical subscriptions, 132,338 microfiche, hundreds of online databases, thousands of electronic journals and e-books in English, Chinese, Japanese, Korean, Spanish, Portuguese, and other languages.

THE MANDEVILLE SPECIAL COLLECTIONS LIBRARY
West Wing, Geisel Library
(858) 534-2533
http://orpheus.ucsd.edu/speccoll/

The Mandeville Special Collections Library houses rare books, manuscripts, archives, original art, and other primary materials (250,000 books, 32 million manuscripts) which support specialized UCSD research and instructional programs. Areas of strength include experimental American poetry, the Spanish Civil War, Baja California, early voyages of exploration to the Pacific, twentieth-century science, Melanesian anthropology, California history, Dr. Seuss, and the history of UCSD. Students are encouraged to use the collections for their academic endeavors.

SCIENCE & ENGINEERING LIBRARY (S&E)
East Wing, Geisel Library
(858) 534-3257
http://sclib.ucsd.edu

S&E Library print and online resources support astronomy, biochemistry and chemistry, bioengineering, computer science, engineering, mathematics, and physics research and teaching. Computers, wireless Internet access, group study rooms, and a presentation practice room are available. Reference, instruction, and document delivery/interlibrary loan services are readily accessed in person or through the S&E Web site. S&E librarians have expertise in finding numeric property data, standards, patents, and other science and technology information. S&E provides course reserve materials for upper-division undergraduate and graduate courses in the physical sciences and engineering.

SCRIPPS INSTITUTION OF OCEANOGRAPHY LIBRARY
Robinson Complex, Bldg. 3
(858) 534-2533
http://siolibrary.ucsd.edu

Scripps Institution of Oceanography Library is one of the largest marine science libraries in the world. It has outstanding collections in marine biology, oceanography, climatology, and marine technology, and also specializes in geology, geophysics, and zoology.

SOCIAL SCIENCES & HUMANITIES LIBRARY
Geisel Library
(858) 534-3336
http://sshl.ucsd.edu

The Social Sciences & Humanities Library (SSHL) provides services and collections to support the teaching and research of students and faculty in the social sciences and humanities disciplines. Services and collections are designed for all levels, from first-year students to seasoned scholars. The library provides a complete range of public services including reference and
CSC offers a variety of study space for students including quiet floors, group study rooms, and open seating areas for discussion and collaboration. There are computers for research and general use. Collections comprise 1.5 million printed volumes; local San Diego, California, and U.S. government information; GIS; maps; social science databases; and full-text electronic resources.

Student Services and Programs

Vice Chancellor, Student Affairs
Building 112 University Center
Mail Code 0015
(858) 534-4370
http://vcsa.ucsd.edu

The Office of the Vice Chancellor of Student Affairs is responsible for the overall quality of life at UCSD for undergraduate and graduate students. The office provides coordination and direction to more than two dozen student service departments and works closely with other components of the campus to ensure that programs, services, policies, and procedures foster the development of students and the achievement of their academic and career goals.

Career Services Center
Located on Library Walk
Mail Code 0330
(858) 534-3750
http://career.ucsd.edu

The Career Services Center (CSC) helps students and alumni with virtually any career-related concern and offers a wide range of programs and services throughout the year. Online registration at http://career.ucsd.edu is required to use the center.

Exploring Career Options: Career advisors meet one-on-one with students to guide them through the phases of career development. Self-assessment tools, panel presentations, occupational resources, and networking programs are available to help students explore career options and determine career goals. CSC’s Career Information Library features career books, CDs, and videos, as well as computers for accessing career information on the Internet.

Internship Resources: All students are encouraged to gain practical work experience through internships. CSC is a one-stop shop for internship resources, information, and opportunities. Services include advising, workshops, internship listings, and the Internship SuperSite at http://career.ucsd.edu. The Internship Resource Library includes internship directories, career-specific internship books, and computer stations to help students find local, regional, and national internships, including the UCDC Program in Washington, D.C.

Graduate and Professional School Preparation and Admission: All students considering an advanced degree in any field after graduation from UCSD should visit CSC for advice and information on schools, admission requirements, applications, reference letters, tests, essays, fellowships, and interviews. Advisors assist students interested in any field of professional and graduate education, including medicine, law, business, teaching, and other health fields. Resources include over 2,000 professional and graduate school catalogs, directories, and brochures. Recruiters from across the country attend CSC’s Professional and Graduate School Info Fair and Law School Info Fair each fall.

Job/Internship Listings: CSC lists thousands of internships and part-time and full-time job listings year-round, including on-campus and off-campus work-study and non-work-study jobs. To access the listings, you must: 1) be currently enrolled at UCSD; or newly enrolled and have returned the UCSD Statement of Intent to Register; and 2) complete the online registration at http://career.ucsd.edu. Students are required to update their registration each academic year.

Job Search Preparation and Networking: Services include job search workshops, resume and curriculum vitae critiques, and practice interview workshops. Professional association and networking contacts are available for job search advice and career information. CSC presents networking events throughout the year to connect students with professionals.

Job Fairs and On-Campus Interviewing:
CSC presents a Science & Technical Job Fair (fall), Winter Job Fair and Spring Job Fair each year featuring recruiters from a variety of organizations.

Recruiters also conduct interviews on campus at CSC for career positions and internships.

Graduate Student Services: CSC offers special workshops and resources for master’s and Ph.D. students seeking academic or nonacademic careers. Resources include job search handbooks and a UCSD alumni contact list of nearly 700 Ph.D. recipients.

Alumni Services: University of California alumni are eligible to use all CSC programs and services. Alumni registration fee required.

Online Resources: The CSC Web site features helpful resources and links, in-depth information, and easy-to-print publications for UCSD students, alumni, faculty, staff, parents, and recruiters.

Calendar of Events: CSC offers a variety of information sessions, group workshops, and special presentations. A quarterly calendar is available online and at CSC.

For more information and building hours, call (858) 534-3750 or go to http://career.ucsd.edu.

College Dean of Student Affairs’ Offices
Revelle, Mail Code 0321, (858) 534-3492
http://revelle.ucsd.edu

Muir, Mail Code 0106, (858) 534-3587
http://muir.ucsd.edu

Marshall, Mail Code 0509, (858) 534-4390
http://marshall.ucsd.edu

Warren, Mail Code 0422, (858) 534-4731
http://warren.ucsd.edu

Roosevelt, Mail Code 0546, (858) 534-2237
http://roosevelt.ucsd.edu

Sixth, Mail Code 0054, (858) 822-5953
http://sixth.ucsd.edu

The offices of the college deans of student affairs perform many functions. They provide help, advice, counseling, and referral for students and parents in many areas including commuter, transfer, and residential matters. The deans’ offices develop and coordinate activities such as Orientation, Welcome Week, commencement; leadership and co-curricular learning opportunities; decisions about remaining in or withdrawing from school; college disciplinary matters; involvement in student governments; community service/volunteer opportunities; planning social, educational and cultural activities; assisting students with disabilities; and assisting in hearing procedures regarding grievances.
Contact your college dean of student affairs’ office for assistance, particularly if you do not know which university office or resource would best be able to assist you with your problem or concern.

Dining Services
Administration: Muir Commons Annex
Mail Code 0122
(858) 534-7587
http://hds.ucsd.edu

Students, faculty, staff, and members of the public are welcome at all UCSD Dining Services restaurants. Twelve locations serve a variety of high-quality and ethnically diverse food. Each offers a comfortable dining atmosphere with unique menus and convenient hours ranging from 7:00 a.m. to 1:00 a.m. Sample menus are online at http://hds.ucsd.edu.

UCSD’s college residence program includes housing space and a Dining Plan which can be used at any Dining Services location.

A Non-Resident Dining Plan is also available, offering a convenient, affordable dining option for off-campus students. For more information about Dining Plans, go to http://hds.ucsd.edu/diningplan.

TritonPlus, the campus debit account, offers an easy, convenient, and secure way to shop and dine at over forty locations, on and off campus. For more information, go to http://tritonplus.ucsd.edu.

Students use their official UCSD Campus Card to access Dining Dollars and TritonPlus.

Additional dining options on campus include six fast-food restaurants and a convenience store located at the Price Center; the Food Co-op and Grove Caffe at the Student Center; and Ché Cafe on Revelle campus. In addition, a limited selection of food may be purchased at portable food carts, convenience stores, and vending machines throughout UCSD.

Disabilities, Office for Students with (OSD)
202 University Center
Voice/TDD: (858) 534-4382
Fax: (858) 534-4650
http://osd.ucsd.edu

The Office for Students with Disabilities (OSD) facilitates student independence, self-advocacy, and academic success through access to campus programs, services, and facilities. OSD works with students, academic departments, and the colleges on development of effective planning and adaptation. OSD serves as a liaison to UCSD academic departments, the campus community, and off-campus disability-related agencies. Service coordination may include disability management counseling, note takers, sign language interpreters, realtime captionists, readers, typists, library/laboratory assistants, special equipment loans/minor repair, priority registration/enrollment assistance, on-campus housing coordination, exam accommodations, coordination with Transportation and Parking Services, OASIS, other campus departments, and referrals. OSD also provides disability awareness through maintenance of a resource library of books, periodicals, articles, films, video formats, an online quarterly newsletter, Aware, and in conjunction with CADRE, annual disability awareness events.

Students who have been diagnosed as having a disability and have some correlated limitation should consult promptly with a qualified specialist at the Office for Students with Disabilities (OSD), as only students registered with OSD are eligible for accommodation in classes. In order to implement an OSD-approved accommodation for examinations or assignments, students must meet with the course instructor within the first two weeks of the quarter and present a certificate from OSD recommending the appropriate accommodations.

If the student’s disability has been certified by OSD, the course instructor should accommodate the student’s needs. Faculty are not responsible for determining what accommodations are appropriate for a particular student. If an instructor is presented with a claim of a disability by a student who has not been certified by OSD, the course instructor should refer the student to OSD and not become personally involved in diagnosing or evaluating the seriousness of the disability. OSD is available to assist instructors in providing accommodation. If for any reason an instructor cannot meet the request, the department chair and OSD should be promptly consulted.

The full text of the Policy on Students with Disabilities and steps for Academic Accommodation have been posted to the Academic Senate Web site (as an Appendix to the San Diego Division Regulations) at the following address: http://www-senate.ucsd.edu/manual/app3.htm.

Ethics and Spirituality, The Center for
Building 201 University Center
Mail Code 0081
(858) 534-2521

The Center for Ethics and Spirituality promotes dialogue on moral, ethical, spiritual and theological issues, questions, and concerns. Professional staff provides secular consultation, counseling, and education for the campus community.

Financial Aid

All financial assistance for undergraduate and medical students and need-based aid for graduate students is administered by the Financial Aid Office (FAO). Information relating to graduate student support in the form of fellowships and assistantships is presented in the catalog section entitled “Graduate Studies.”

The Financial Aid Office, which also includes the Undergraduate Scholarship Office and the Office of Veterans’ Affairs, is located in the Student Services Center, Third Floor North, 401 University Center, 9500 Gilman Dr., Mail Code 0013, La Jolla, CA 92093-0013, and can be contacted at the phone numbers below.

Financial Aid Office (858) 534-4480
Scholarship Office (858) 534-3263
Veterans Affairs (858) 534-4480
Medical School Financial Aid (858) 534-4664

Our e-mail addresses are: finaid@ucsd.edu, scholarships@ucsd.edu, vao@ucsd.edu (Veterans Benefits).

Other information about our services and programs is available on our Web site: http://fao.ucsd.edu.

Applications and requests for information should be addressed to the Financial Aid Office, 9500 Gilman Drive, Mail Code 0013, La Jolla, CA 92093-0013.

No student should leave the university for financial reasons before exploring all possible avenues of assistance with a Financial Aid Office counselor. All information contained herein is intended to serve as a general guide and is subject to change due to new and revised federal, state, and University of California regulations and procedures.

Applying for Financial Aid

A student is eligible for financial aid if she or he:

1. Is enrolled in at least one course each term or is not making satisfactory academic progress as defined by the University.
1. Is a United States citizen or eligible noncitizen.
2. Has a valid social security number.
3. Is not in default on a federal student loan or has made satisfactory arrangements to repay it.
4. Does not owe money back on a federal student grant or has made satisfactory arrangements to repay it.
5. Is registered with Selective Service (males at least eighteen years old, unless not required).
6. Is enrolled at UCSD (minimum of six units per quarter) in a degree or certificate program.
7. Is making satisfactory academic progress for financial aid recipients.

Students must maintain Satisfactory Academic Progress as a condition for maintaining eligibility for financial aid. For UCSD undergraduate financial aid recipients the standards are thirty-six units (or an average of twelve units per quarter for full-time enrollment) and an overall grade-point average of 2.0 during the current academic year and the following summer (similar unit requirements apply to graduate students who must maintain a 3.0 minimum GPA). Undergraduate students are considered for all financial aid sources up to their fifth year of college attendance (except for Cal Grants) and limited funding up to their sixth year. For graduate student duration requirements and for more detailed information on UCSD's Satisfactory Academic Progress standards for students enrolled full-time in a degree program, please see our Web site at http://www.ucsd.edu/financialaid. For policy information on approved part-time status students, limited status and extension students, please contact the Financial Aid Office.

For evaluation of financial need, all applicants must submit a Free Application for Federal Student Aid (FAFSA) or renewal FAFSA and, if requested, copies of the 2006 federal income tax returns, and any other required documents. The FAFSA form should be filed by March 2, 2007, the UCSD priority filing date, with the appropriate processing agency and must indicate the University of California, San Diego (list Federal School Code 001317) to receive a processed copy of the FAFSA. Late applicants will be considered for limited aid.

Receiving Financial Aid

UC financial aid for students with demonstrated financial need is funded by a combination, or "package", of gift and self-help aid. Grants and scholarships are awards that do not have to be repaid. Self-help aid may consist of a loan, which does have to be repaid, or a work-study award, earned by working a part-time job while attending school, or a combination of both. UCSD ensures that students in similar circumstances receive similar packages. Grant funds are directed to the most needy students. Students who are nonresidents of California should note that need-based financial aid funds are not sufficient to meet the additional cost of nonresident tuition ($18,168 during 2006–07). The family should be prepared to provide this amount from their own personal resources or educational loan programs. The various types of aid and programs which may be included in need-based packages are listed below:

Federal Pell Grant

The Federal Pell Grant program is designed to provide financial assistance to undergraduates attending postsecondary educational institutions. Amounts range from $400 to $4,050 for 2007–08.

University of California Grant Program

The University of California Grant Program provides grants to undergraduate and graduate students.

Federal Supplemental Educational Opportunity Grant (SEOG)

SEOG awards are federally funded and are available only to undergraduates. Awards may range from $100 to $4,000 per academic year.

Cal Grants (Undergraduate)

Cal Grants are awarded by the California Student Aid Commission to undergraduate California residents. All resident applicants for UCSD aid are required to apply for a Cal Grant. To be considered as a new winner, the FAFSA or renewal FAFSA and the GPA Verification Form must be postmarked prior to March 2, 2007. Current recipients must file a FAFSA or a renewal FAFSA each year to have their award renewed.

Work-Study

Federal and state work-study awards are employment programs that provide funds for student employment by the university or by public and private profit/nonprofit organizations. The work-study program provides experience in many fields, including experimental sciences, library work, recreation, computer sciences, peer counseling, and office work. Pay ranges from minimum wage and above. Job listings and referrals are provided through the Career Services Center.

Federal Perkins Loans

This loan carries a 5 percent interest rate. Students begin paying both the principal and interest six months after ceasing to be enrolled at least half-time.

Federal Subsidized Stafford Loans

The annual maximum allowed during the first year of undergraduate study is $3,500. Sophomores can borrow an annual maximum of $4,500, and the yearly limit for juniors and seniors is $5,500, with an undergraduate cumulative maximum of $23,000. Graduate students may borrow up to $8,500 per academic year with an aggregate sum up to $65,000, including the amount borrowed as an undergraduate. The interest rate is fixed at 6.8 percent. The federal government pays (subsidizes) the interest on the student’s behalf during in-school (enrolled in six units or more), grace, and authorized deferment periods. Repayment of principal and interest begins six months after the borrower leaves school or ceases to be enrolled as a half-time student.

Federal Unsubsidized Stafford Loans

Students who do not have financial need eligibility for the maximum Federal Stafford Loan may borrow under this program. The annual maximum and interest rate are the same as the Subsidized Stafford Loan. Independent undergraduates may borrow an additional $4,000 to $5,000 annually; graduate students may borrow an additional $12,000 annually. The maximums include amounts borrowed under the Federal Stafford Loan program. Aggregate maximums are $23,000 for dependent undergraduates, $46,000 for independent undergraduates, and $138,500 for graduate students. The interest is not paid on the student’s behalf. Interest begins accruing immediately after disbursement, but payment of principal and interest may be deferred until six months after ceasing to be enrolled for six units or more. The amount
scholarships are awarded

Federal PLUS Loans for Parents

Parents of dependent undergraduate students are eligible to borrow under this program if they have no adverse credit history and meet program eligibility requirements. The interest rate for this loan is fixed at 8.5. Parents are eligible to borrow up to the cost of education minus other financial aid (including other loans). The first payment is due within sixty days after disbursement by the lender.

Federal PLUS Loan for Graduate and Professional Students

Students registered in graduate and professional programs are eligible to borrow under this federal loan program if they have no adverse credit history and meet other program eligibility requirements. The interest rate for the loan is fixed at 8.5 percent. Students can borrow up to the cost of education minus other financial aid (including other loans). Students should first apply for the Federal Stafford Subsidized and Unsubsidized Loans before applying for the Grad PLUS.

Triton Registration Installment Plan (TRIP)

The UCSD Triton Registration Installment Plan (TRIP), administered by the Student Business Services (SBS), is a monthly payment arrangement and is available for students who desire an alternative method of financing their registration fees on a short-term basis. All students in good financial and academic standing are eligible for the program, except for those students whose financial aid or graduate support will pay their registration fees by the quarterly registration fee due date. A prerequisite to applying for the program is enrollment for the term. The TRIP allows registration fees to be paid in up to three installments each quarter. On a three-month plan, the first payment is required by the quarterly registration due date. The remaining payments are itemized on the student’s next two monthly UCSD Billing Statements. There is a $30 nonrefundable quarterly fee that must be submitted with the application to the Billing Services unit of the Student Business Services Office. This fee is strictly used to offset the costs of the program. For further information, please contact the Billing Services Unit at (858) 534-6806, or online at: http://sbs.ucsd.edu.

Short-Term Emergency Loans

The limited emergency loan funds, administered by the Financial Aid Office, are loaned in small amounts to help students in critical short-term emergencies, and usually must be repaid within thirty days. There currently is a service charge of $20 per emergency loan, and students must be enrolled in at least six units. Registration fees must be paid prior to applying. Applications and further information are available from the Financial Aid Office.

Federal Tax Credits

Two federal tax credits may benefit you or your parents, if the grants and scholarships you receive do not fully cover your fees. Both tax credits are tied to the tuition and fees paid for college.

The Hope Scholarship Credit (up to $1,500) is available for the first two years of at least-half-time enrollment in postsecondary education.

The Lifetime Learning Credit (up to $1,000 per tax year) is available for postsecondary enrollment at any level.

To find out more about these tax credits, consult your tax advisor or visit the U.S. Dept. of Education Web site http://www.ed.gov/unique/hope/ and the “Where Do You Want To Go” section on TritonLink.

Graduate Financial Assistance

See catalog section titled “Graduate Studies” for additional types of financial assistance available to graduate students.

THE UNDERGRADUATE SCHOLARSHIP PROGRAM

The purpose of the Undergraduate Scholarship Program at UCSD is to recognize outstanding achievement, to encourage academic excellence, and to offer support to meritorious students.

Scholarships are awarded on a competitive basis by the UCSD Faculty Committee on Undergraduate Scholarships and Honors. Merit scholarships are awarded on the basis of academic excellence. Restricted scholarships are awarded based on one or more additional criteria or restrictions such as financial need, study in a particular major, or leadership. Students who are awarded scholarships restricted by financial need must file a Free Application for Federal Student Aid (FAFSA) in order to receive the award. Additionally, undergraduate research scholarships are offered to current students which enable them to pursue special studies and projects under faculty supervision.

Scholarship Donors

UCSD is actively engaged in developing new scholarship opportunities. Many of these awards were established through the generous support of individual donors, foundations, businesses, and community organizations. Every gift toward undergraduate scholarships is appreciated and appropriately recognized. Further information about supporting scholarships at UCSD may be obtained from Kim Signoret-Paar, Director of Student Affairs Development. Ms. Signoret-Paar may be reached at (858) 822-1536 or kspaar@ucsd.edu. Her address is 9500 Gilman Drive, Mail Code 0937, La Jolla CA 92093-0937.

Scholarship Information

You may view a listing of scholarships, financial aid resources, and information on outside agency scholarship opportunities on the UCSD Financial Aid Office (FAO) Web site at: http://fao.ucsd.edu

Scholarship Office Address

The Scholarship Office is part of the UCSD Financial Aid Office and is located in Student Services Center, 401 University Center, Third Floor North, 9500 Gilman Dr., Mail Code 0013, La Jolla, CA 92093-0013, at the corner of Gilman Drive and Myers Drive. Office hours are from 8:00 a.m. to 4:30 p.m., Monday through Friday except Thursdays, open 10:00 a.m. to 4:30 p.m. For additional information regarding the scholarship program, contact the Scholarship Office at scholarships@ucsd.edu or (858) 534-3263.

HOW TO APPLY FOR SCHOLARSHIPS

Entering Students

The University of California Application for Undergraduate Admission and Scholarships is also used to apply for the UCSD Regents and other entering freshmen undergraduate scholarships. No other paperwork is required. The application is submitted in November for the following academic year. Because scholarships are awarded to entering students on a very competitive basis, students should carefully comply with instructions on the UC Application for Undergraduate Admission and Scholarships to ensure full consideration for all eligible scholarships. Entering students who receive a scholarship from UCSD will be notified in writing by April 1. We regret
that we are unable to mail denial notification letters to other applicants.

Current UCSD Students

Current UCSD students apply for scholarships annually during winter quarter for the following fall quarter by filing the UCSD Continuing Student Scholarship Application. This application is available online via TritonLink in February and is due in March. Current students who receive a scholarship from UCSD will be notified in writing by early June. Students who do not receive an award will not be notified due to the large volume of applications.

UCSD Undergraduate Scholarships

The scholarships listed below are generally available at UCSD. Although every effort is made to present the most accurate information, this listing is subject to change due to federal, state, and university funding limitations, and changes in policy or law.

Entering Freshman Awards

Regents Scholarship: The Regents Scholarship is the most prestigious scholarship awarded to outstanding entering freshmen on the basis of academic achievement. This scholarship is offered to entering freshmen for four undergraduate years. If a student is offered the Regents Scholarship and has financial need, the student will receive additional scholarship and/or grant funds up to the amount of demonstrated need for four undergraduate academic years, excluding non-resident tuition costs. Entering freshmen applying in the 2007–08 academic year without documented financial need will receive a four-year honorarium of $8,000, paid at $2,000 per year for the four years of their undergraduate appointment at UCSD. Entering freshmen apply for the Regents Scholarship through the admissions application. UCSD Regents Scholars are also eligible for certain undergraduate privileges and recognitions such as preferred class enrollment, extended housing benefits for four years (providing housing deadlines are met), UCSD college of choice at time of admission, extended student library privileges, and honors program.

Chancellor’s Scholarship: Awarded to outstanding entering freshmen on the basis of academic achievement, and other factors, which may include financial need, extracurricular and community activities, educational environment, and first-generation college attendance. As a Chancellor’s Scholar, students will receive the following undergraduate benefits: extended housing benefits (provided housing deadlines are met) and priority registration for four years as a UCSD scholar; and participation in the Study Abroad and Faculty Mentor Programs. This is a four-year undergraduate award, up to $20,000, paid in the amount of up to $5,000 annually.

The following scholarships are part of the Chancellor’s Scholarship Program:

- Albert C. and Elisabeth L. Boyer Scholarship
- Ernest N. Carter Hispanic Scholarship for Engineers
- Hispanic Scholarship Council Scholarship
- Charmaine and Maurice Kaplan Scholarship
- Logan L. Page Scholarship
- Elizabeth Stupp Kohl Scholarship for Women Engineers
- Madge E. Lawhead Scholarship
- LPL Financial Services Scholarship
- S. Falck Nielsen Scholarship
- Gerald and Inez Grant Parker Foundation Scholarship
- Ann Parode Scholarship
- Shimotoy Memorial Scholarship
- Justin D. Smith Family Scholarship

Alumni Regents Scholarships: The Alumni Regents Scholarship is awarded to Regents Scholars who have demonstrated outstanding leadership. The UCSD Alumni Association invites all Regents Scholars to submit an essay regarding their leadership experiences. This award supplements the standard Regents Scholarship award.

Recipients receive a $2,500 award per year, guaranteed for two years, as long as the student maintains a 3.0 cumulative GPA and thirty-six units per year. The award will be renewed in the junior and senior years provided the academic criteria are met, and the student verifies their continued leadership involvement while attending UCSD. If Regents Scholars do not receive this award in their freshman year, students can submit an application in subsequent years. As part of the program, the UCSD Alumni Association offers all Regents Scholars special access to alumni networking programs.

James Avery Scholarship: Awarded to an African-American student pursuing studies in the performing or visual arts at Thurgood Marshall College. This is a four-year award up to $4,000, paid in the amount of up to $1,000 annually.

Black Alumni Scholarship: Awarded to entering African-American students based on academic merit. This is a four-year award up to $4,000, paid in the amount of up to $1,000 annually.

Clayton H. Brace Scholarship: Awarded to an entering student with an interest in communications. This is a one-year award. The award amount varies.

CREATE Undergraduate Scholarship: Awarded to entering freshmen who have graduated from a San Diego high school participating in the UCSD CREATE program. The amount and term of the award varies.

Herbert Greenberg Memorial Scholarship: Awarded to entering freshmen based on academic merit and demonstrated financial need. The award amount and term varies.

Kelly J. Kolozsi Scholarship: This outside agency scholarship is awarded to students in the following priority: (1) Graduates of Menlo Atherton High School; (2) graduates of a high school in the Sequoia Union High School District. Preference is given to students diagnosed with a learning disability. This is a one-year award. The award amount varies. The recipients are chosen by the Kolozsi Scholarship Selection Committee.

McFarland Scholarship: Awarded to Native-American entering freshmen based on academic merit. This is a four-year award up to $10,000, paid in the amount of up to $2,500 annually.

Dr. A.R. Moossa Scholarship: Awarded to a premedical student who plans a career as a physician, who has financial need, is a full-time student with at least a 3.0 GPA. This is a four-year award up to $8,000, paid in the amount of up to $2,000 annually.

National Merit University-Sponsored Scholarships: Entering Students: As of fall 2006, UCSD no longer sponsors entering freshmen National Merit Scholarships.

Sheila Owens-Collins Scholarship: Awarded to an African-American student pursuing studies in the life sciences. This is a four-year award up to $4,000, paid in the amount of up to $1,000 annually.

George Parker Memorial Scholarship: Awarded based on financial need to students who were orphaned for at least three years prior to the age of 18, and/or who were raised in foster care for at least three years immediately prior to the age of 18. Students must show evidence of orphan or foster care status. This is a renewable award, paid in the amount of up to $2,000 annually.
Mary Pilott Scholarship: Awarded to meritorious graduates of San Jose High School Academy, as nominated by the high school principal. This is a one-year award up to $500.

Preuss School Scholarships at UCSD: Awarded to graduates of the UCSD Preuss School who have been admitted to UCSD, and who have high financial need. The award amount and term varies. The following scholarships are part of Preuss School Scholarship Program: Janice and Steven Chaffin Endowed Scholarship, Hispanic Scholarship Council Scholarship, Herbert and Renita Greenberg Scholarship, Preuss School Scholarship at UCSD Fund.

Ray and Betty Ramseyer Scholarship: Awarded to an entering student with an interest in the social sciences. This is a four-year award up to $4,000, paid in the amount of up to $1,000 annually.

Roger and Ellen Revelle Scholarship: Awarded to entering freshmen based on academic merit. This is a four-year award up to $20,000, paid at up to $5,000 annually.

Senior Gift Scholarship: This scholarship was established by UCSD graduating seniors and seeks to recognize outstanding freshmen and transfer students who have proven community service and philanthropic spirit, and who have financial need. This is a one-year award and the amount varies up to $1,000.

Ludwig and Ada Strauss Scholarship: Awarded to an academically outstanding entering freshman with demonstrated financial need. This is a one-year award up to $4,000.

Allene Huanani Wong Scholarship: Awarded to entering freshmen from Hawaii, with a preference for students majoring in science or engineering. This is a four-year award up to $10,000 per year.

Awarded to Students Transferring from Community Colleges

Engelhorn Family Scholarship: The Engelhorn Family Scholarships are awarded to transfer students who are participants in the UniversityLink program, have high financial need, with a preference for students who are first-generation college students. This is a two-year award, paid in the amount of up to $2,000 annually.

Current Student Awards

Alumni Leadership Scholarship: Awarded to full-time students who will be juniors in 2007–08, with a 3.0+ GPA, demonstrated financial need, and demonstrated campus or community leadership during UCSD undergraduate years. This is a two-year award up to $2,000 annually.

In addition to the above scholarships, other Alumni Leadership Scholarships have been made possible by individual donors. These scholarships may have special criteria. Please see the scholarship Web site for more information.

Bay Area Alumni Scholarship
Brutten Family Scholarship
Gregory T. Bryan Scholarship
Cambron Family Scholarship
Dottie Conway Memorial Scholarship
Kevin T. Hart Memorial Scholarship
William M. Fitzmaurice Scholarship
Violet and Matthew N. Lehrer Scholarship
Joseph H. Lima Scholarship
Karen Moraghan Scholarship
Nelson Family Scholarship
Patricia Ordenez Valva Scholarship
Vickerman/Munoz Family Scholarship
Walsh Chacon Malone Scholarship
Waxman Family Scholarship

Christopher B. Arrott—Gay, Lesbian, and Bisexual Scholarship: Awarded to gay, lesbian, or bisexual undergraduate students with a record of active service and involvement in the gay, lesbian, and bisexual community. This is a one-year award up to $1,000.

Charles and Clara Ash Scholarship: Awarded to students with demonstrated financial need. This is a one-year award. The award amount varies.

BAY SYSTEMS Scholarship: Awarded to full-time students who are seniors in the 2007–08 academic year, with a 3.2+ GPA, majoring in computer science, applied mathematics, computer or electrical engineering with a computer sciences emphasis, are U.S. citizens and plan to pursue a career in computer science in San Diego. This is a one-year award up to $5,000.

Earrett Bishop Scholarship: Awarded to upper division mathematics majors with financial need. Preference given to graduating seniors. The award amount varies up to $3,000.

The Darcy C. and Robert Bingham Scholarship: Awarded to full-time students who are in good academic standing and are employed with UCSD Recreation, UCSD Student Affairs, or UCSD. Students must work for an average of ten hours per week during the three-quarter academic year at UCSD, and must have worked at least one quarter prior to the submission of their application. This is a one-year award up to $1,500.

Boeing Engineering Scholarship: Awarded to full-time students majoring in electrical engineering, mechanical engineering, aerospace engineering, computer science, or computer engineering, who have demonstrated high financial need. This is a one-year award up to $2,000.

Tom Bond Revelle College Scholarship: Awarded to Revelle College students who will be seniors in 2007–08, have a 3.7+ GPA, and participated in extracurricular campus activity. This is a one-year award up to $1,000.

Ken Bowles Scholarship for CSE: Awarded to seniors majoring in Computer Science Engineering, with a 3.0+ GPA. Preference given to financial need students who have knowledge and/or experience with the UCSD Pascal application. This is a one-year award up to $2,000.

Braille Transcribers Guild: Awarded to students who are legally blind, or have substantial, uncorrectable vision loss, registered with the UCSD Office for Students with Disabilities. This award amount and term varies.

Julia Brown Undergraduate Scholarship: Awarded to full-time juniors or seniors in the 2007–08 academic year who intend to pursue a career in the health sciences (including medicine, research, and public health). The award is based on academic merit and financial need. This is a one-year award up to $5,000.

CK and Jenny Cheng CSE/ECE Scholarship: Awarded to undergraduate students majoring in computer science and engineering or electrical and computer engineering at the UCSD Jacobs School of Engineering, based on academic merit. The scholarship is a one-year award of approximately $300.

Conexant Systems Scholarship: Awarded to full-time students majoring in electrical engineering, computer engineering, or computer science, with junior or senior standing in 2007–08 who will graduate no earlier than December 2008. Potential candidates have an interest related to the semiconductor industry, possess a minimum 3.3 GPA, and are able to work in the United States. This is a one-year award up to $5,000.

Thomas E. Curtis Scholarship: Awarded to juniors or seniors in the 2007–08 academic year, majoring in the fields of biology, chemistry, or physics, who also demonstrate interest in the larger world around them, with leadership-level involvement outside the classroom, and have a minimum 2.75 GPA. This is a one-year award. The award amount varies, up to $2,000.
Richard L. and Fern W. Erion and Laidlaw-Erion Scholarships: Awarded to full-time UCSD students who will be seniors in 2007–08, with demonstrated financial need, as determined by information submitted on their 2007–08 FAFSA or renewal FAFSA. The award amount varies, up to $2,000.

Brython P. Davis Scholarship: Awarded to current students whose parent is or was a regular member of the U.S. Navy or Marine Corps. This is a one-year award. The award amount varies.

Klara D. Eckart Scholarship: Awarded to current students in the fields of computation, mathematics, or physics. This is a one-year award. The award amount varies, up to $1,000.

The Willis and Jane Fletcher Foundation and P and G Company Scholarship: This outside agency scholarship is awarded to a graduate of a San Diego County high school with demonstrated financial need. This is a one-year award up to $2,500.

Golf Course Builders Association Scholarship: Awarded to UCSD students enrolled in urban studies or related disciplines, with a career goal of golf course construction, design, or development, and have a 3.0+ GPA. This is a one-year award up to $1,000.

Jaye Haddad Memorial Scholarship: Awarded to students who have been diagnosed with cancer, with Acquired Immune Deficiency Syndrome, with AIDS-related conditions, or to students with physical disabilities. This is a one-year award up to $1,000.

E. Coke Hill Scholarship: Awarded to students with demonstrated financial need. This is a one-year award. The award amount varies.

Irvine Memorial Scholarship: Awarded to students based on academic merit. This is generally a one-year award. The award amount varies.

Jeffrey R. Leifer Scholarship: Awarded to current students who have demonstrated financial need and academic merit, are the first generation in their family to attend college, and graduated from California high schools that historically are underrepresented at UC campuses. This scholarship has been established through the generous contributions of Jeffrey R. Leifer. As a student at UCSD, he served as associated student body president and founded International Student Pugwash, a worldwide organization dedicated to issues surrounding ethics, technology, and society. This is a one-year award and the amount varies, up to $1,000.

Alice Marriott Scholarship: Awarded to students with demonstrated financial need. This is a one-year award. The award amount varies.

Thurgood Marshall College Scholarship: Awarded to students enrolled in Marshall College who have a 3.2 GPA by the end of spring quarter, and have completed a minimum of seventy-two graded quarter units. Transfer students need thirty-six graded UCSD units with a 3.2 GPA and 3.5 cumulative GPA in advanced standing work. Seniors who apply should have a minimum of thirty-six units remaining to be completed in the academic year the scholarship is awarded with a minimum 3.2 cumulative GPA. This is a one-year award up to $1,500.

Marx and Marshall—Gay and Lesbian Scholarship: Awarded to gay and lesbian students with a record of active service and involvement in the gay, lesbian, and bisexual community. This is a one-year award. Preference will be given to students with financial need. The award amount is up to $1,000. Recipients may reapply.

Michael Miller Engineering Scholarship for Transfer Students: Awarded to undergraduate transfer students who are majoring in engineering, have a 3.0+ GPA, and demonstrated financial need. This is a one-year award up to $2,500.

LaVerne Noyes Scholarship: Awarded to current students who have demonstrated financial need and are descendants of U.S. World War I Veterans (defined as four months of service in the U.S. military prior to November 11, 1918). This is a one-year award. The award amount varies.

Sven Peterson Memorial Scholarship: Awarded to a current freshman or sophomore, UCSD Warren College student, enrolled full-time, majoring in an area other than engineering or life sciences. The recipient must have been placed on the college provost's honors list at least one quarter during his or her academic career in advance of applying for the award and must maintain a 3.0 cumulative GPA. This award is up to $3,000 per year and may be renewable.

Tenie Remmel Memorial Scholarship: Awarded based on academic merit and demonstrated financial need to a full-time student in the Division of Physical Sciences. This is a one-year award of up to $1,000.

Gary C. Reynolds Scholarship: Awarded to students who will be juniors or seniors in 2007–08, who are mathematics-computer science majors, who show exceptional promise for making future contributions in their field of study. The amount of this award varies up to $2,000.

Elizabeth W. Russell Scholarship: Awarded to students who will be juniors or seniors in 2007–08 who are pursuing studies in studio art, art history, or art criticism/theory. The award amount varies.

Bevan Schroeder Memorial Scholarship: Awarded to students majoring in computer science engineering. Selection is based on academic merit, financial need, and involvement in campus activities. This is a one-year award up to $1,000.

Malcolm R. Stacey Memorial Scholarship: Awarded to Jewish students in the following priority: 1) undergraduate who is an orphan and preparing for graduate study in aeronautical engineering, 2) undergraduate in the field of aeronautical engineering, 3) a student in the division of engineering, and 4) a student in any field of study. This is a one-year award. The award amount varies.

William H. Stout Scholarship: Awarded to students based on academic merit. This is a one-year award. The award amount varies.

Russ Ty—Gay and Lesbian Scholarship: Awarded to gay and lesbian students based on academic merit and financial need. This is a one-year award. The award amount is a maximum of $1,000.

Visual Arts Endowment Scholarship: Awarded to full-time current students, with the intent to support talented undergraduates majoring in visual arts. This is a one-year award up to $4,000.

If you have any questions regarding graduate scholarships, they should be directed to the Office of Graduate Studies at (858) 534-3555.

UNDERGRADUATE RESEARCH SCHOLARSHIPS

These special awards are for current undergraduate students who wish to engage in special studies or research projects under faculty supervision. The work must be above and beyond the normal course of study. The subject matter does not have to be related to the student’s major, minor, or other course work. These are one-year awards; however, a student may submit a new application each year for consideration. Awards are up to $3,000.

Applications are available from the UCSD Financial Aid Office in February and are due in April. Winners are notified by the middle of June. All recipients are required to submit a brief final
summary report, including details of how the funds were used. Also, the sponsoring faculty member must submit a review and appraisal of the results of the project.

Amylin Pharmaceuticals, Inc., Summer Research Scholarship will give consideration to juniors or seniors in 2007–08, majoring in biology or bioengineering. Please note the project must be completed during summer 2007 and the student report and faculty assessment is due October 29, 2007. This is a one-year award up to $2,500.

David Marc Belkin Memorial Research Scholarship will give preference to those proposals designed to pursue special studies and projects in the general areas of environmental and ecological issues. The award amount varies up to $3,000.

Chancellor’s Research Scholarship will give consideration to proposals regardless of project topic. The maximum award amount is $3,000.

Dynes/Hellman Research Scholarship will give preference to those proposals designed to pursue special studies and projects in physics. This is a one-year award up to $3,000.

David Jay Gambee Memorial Research Fellowship will give preference to proposals which involve the student as an active citizen in university governance, the local community, or national and international affairs. Also receiving preference are proposals which lead to a heightened awareness of the relationship between environment and society. Service in the community through volunteer activities or participation in programs related to the Institute on Global Conflict and Cooperation is encouraged. The award amount varies up to $3,000.

Doris A. Howell Foundation Research Scholarship will give consideration to juniors or seniors in the 2007–08 academic year whose proposals are designed to improve the physical, mental, spiritual and behavioral health, and/or well-being of women, with a preference given to applications that study the prevention of disease such as diabetes, obesity, cancer, etc. Proposals may encompass all areas related to women’s health including biological, medical, cultural, economic, behavioral, psycho-social, or cross-cultural influences. The essay must describe how the project specifically addresses women’s health or well-being. The Howell Foundation for Research in Women’s Health is a not-for-profit spin-off of Soroptimist International of La Jolla. The maximum award is $2,500.

SCHOLARSHIPS FOR STUDY ABROAD

UCSD students study abroad through the UC Education Abroad Program (EAP) and the UCSD Opportunities Abroad Program (OAP). In addition to the UCSD scholarships listed above, study abroad students may also qualify for special awards restricted to EAP and OAP participants. All of the scholarships listed below require a separate application through the International Center, unless otherwise indicated.

For more information about these scholarships and other outside opportunities for study abroad, contact the Programs Abroad Office at the International Center at (858) 534-1123 or via e-mail to: abroad@ucsd.edu.

Betty Tate International Scholarships: Awarded based on financial need and students must have a minimum 2.8 GPA.

Chris Borton Memorial Study Abroad Scholarships: Awarded on the basis of academic merit and without consideration of financial need.

EAP Scholarships: Awarded primarily on the basis of financial need.

Eleanor Roosevelt College (ERC) Scholarships: Awarded to ERC students with financial need. Applicants should apply through ERC.

Ernest Mort International Scholarship for Revelle: Awarded to Revelle students studying abroad.

Fliesbach International Study Scholarship: Awarded to students majoring in visual arts, anthropology, theatre, or dance.

Friends of the International Center: Awarded predominantly on academic merit, with some consideration of financial need.

Judaic Studies Scholarship: Awarded to students bound for Israel, with preference given to students with a major or minor in Judaic studies. Applicant should apply through the Department of Judaic Studies.

So Family Endowed Undergraduate Scholarship: Awarded to students going to China, Hong Kong, and/or Taiwan.

INTERNSHIP PROGRAMS

University of California President’s Washington D.C. Scholarship: Awarded to students on internship in Washington D.C. with financial need and a 3.0 GPA. Applicants should apply through the Academic Internship Program Office: (858) 534-4355, or the UC/DC Program Office: (858) 534-2705.

International Center

(Corner of Gilman Drive and Library Walk)
Mail Code 0018
(858) 534-3730
Fax: (858) 534-0909
Facility reservation: (858) 534-6442
http://icenter.ucsd.edu/

The International Center assists U.S. students going abroad, as well as international students, scholars, and families, and facilitates interaction among all UCSD students, faculty, and staff with international interests. The International Center’s mission is to promote and support international exchange and education, and to:

• Provide the UCSD community with experiences that foster global perspectives, cross-cultural competence, and appreciation for diversity.

• Support UCSD international students, scholars, and study abroad participants with services that enhance the quality of their intercultural experience and contribute to their academic success.

• Facilitate UCSD’s participation in global scholarship and international educational exchange.

The International Center is made up of three distinct offices: the Programs Abroad Office (PAO); the International Student and Scholar Office (ISSO); and the Dean’s Office. Each office has its own focus.

PAO serves the needs of all UCSD students. It helps those thinking about study abroad to learn about the options available, and it guides students through the process of applying to an exchange program, going on the exchange, and returning. Orientation and advising are offered at every step of the way.

ISSO focuses on the needs of all international students and scholars at UCSD. It provides services to help internationals navigate the regulatory maze all the way through completion of the program, from getting a visa and complying with I-94 regulations to getting employment authorization, paying taxes, and traveling internationally.

Also, the Friends of the International Center is a dedicated group of community volunteers who work together with staff to create programs and outreach activities to support our students and scholars in their efforts to succeed, and to enrich the experiences of internationals and their dependents while at UCSD. Among some of the most successful outreach and volunteer
programs at the International Center are the Friday Cafés, the Friends Resale Shop (raising over $20,000 annually for international education), language tutoring, Wednesday Morning Coffee (for spouses), the energetic International Club, and many, many others.

Housing

COMMUTER STUDENT SERVICES

Commuter Student Services is a rental listing referral and housing information resource center. This office receives and maintains up-to-date available rentals from people in the community within the various areas near campus. The rental listings include individual houses, apartments, and condos, as well as roommates, rooms in private homes, and work-exchange situations.

The university is located in the midst of a resort area that results in relatively high rent in the coastal towns of San Diego County: Del Mar and Solana Beach to the north of campus, La Jolla, and Pacific Beach to the south. A general rule of thumb: the closer to the beach, the higher the rent.

Available through this office are helpful landlord/tenant materials such as: sample leases, room rental agreements, bus schedules, wall maps, a courtesy phone for local calling, and a variety of house-hunting aids.

Our Web site is useful for students and others unable to come into the office. Search through up-to-date rental listings and available roommates on our online database. Downloadable rental agreement forms are available. Links to local papers allow access to the classifieds. In addition, answers to frequently asked questions ease anxiety regarding a housing search.

Services are available to registered students, staff, faculty, and alumni of the University of California only. You must show a current UC ID card or official Letter of Acceptance to receive rental contacts. Rental referrals are not mailed, faxed, or given out over the telephone. The office staff will be happy to assist you with any housing questions or concerns. Our office is located in the Student Center, Building A, Suite 200–202 on the second floor.

For further information contact:
Commuter Student Services
9500 Gilman Drive, Dept. 0309
La Jolla, CA 92039-0309
(858) 534-3670
Fax: (858) 822-1440
E-mail: offcampushousing@ucsd.edu
http://commuter.ucsd.edu

ON-CAMPUS HOUSING

Housing and Dining Administrative Services
Building 201 University Center
Mail Code 0055
(858) 534-4010
http://housing.ucsd.edu
E-mail: housinginfo@ucsd.edu

UNDERGRADUATE RESIDENTIAL HOUSING

Each college houses students in residence halls and/or apartments that are part of a unique housing system on campus. While facilities at each college are occupied primarily by students registered at that college, students from other colleges may also be residents.

Residence Halls and Apartments

Residence halls are arranged in suites of eight to eleven students who share a study/living room and restroom facilities. Apartments are self-contained units with kitchens, bathrooms, living areas, and combinations of two, three, or four bedrooms. Typically four to five students share an apartment. While incoming freshmen are generally assigned space in residence halls, high demand for on-campus housing has resulted in the assignment of apartment spaces for many incoming freshmen. Rooms are furnished and provide ample space for effective studying, sleeping, and storing of personal belongings, books, and clothes.

Each college’s resident dean makes specific room assignments in early September when the majority of spaces are filled. Housing and Dining Administrative Services Office administers all other details related to housing contracts.

General Information

The Living On Campus Housing Application Instructions Information Brochure was mailed in mid-March to all who were admitted to UCSD. Only online applications were accepted and students were given instructions on how to apply for on-campus housing via TritonLink. To be eligible for on-campus housing, the Housing Application and the Statement of Intent to Register form must have been received by the specified deadline dates. The priority system for room assignment is explained in the Living On Campus Housing Brochure.

Housing application deadline for fall 2007–08 was May 4, 2007 for incoming freshmen. Due to high demand, transfer students will not receive on-campus housing. For the best selection of housing closest to campus, contact the UCSD Off-Campus Housing Office. Web site: http://offcampushousing.ucsd.edu, and e-mail: offcampushousing@ucsd.edu

The Housing and Dining Administrative Services Office recommends that freshmen, not offered housing by the first of June, call (858) 534-4010 for further information.

AFFILIATED HOUSING (OFF-CAMPUS)

The University of California, San Diego Affiliated Housing Team operates several housing complexes in an effort to provide the highest level of flexibility when selecting your residence.

Mesa Residential Apartments (located minutes off campus) are designed to house single graduate or medical students, couples with or without children, and single parents. Residents must be enrolled full-time in a degree-granting program or Education Studies. The Mesa Residential Apartments offer unfurnished one-, two-, and three-bedroom units. Each unit features carpeting, blinds/drapes, range/oven, and refrigerator. In addition, apartments are wired for cable television and feature private patios or balconies.

Gas and water are included in rent. Residents are required to pay electricity. The community is a parklike setting, and amenities include community rooms, coin-operated laundry rooms, co-op garden plots, storage space for each apartment, ample parking, playgrounds for children, and an outdoor sports area, providing courts for tennis, basketball, and volleyball.

One Miramar Street is UCSD’s newest graduate student housing community open in 2007. It is designed to house unmarried graduate and medical students without children. Residents must be enrolled full-time in a degree-granting graduate or medical course of study, or participating in Education Studies. One Miramar Street comprises 400 two-bedroom apartments with two single rooms and a shared living/dining/kitchen area. This new development is close to campus, includes an on-site café, central mailroom, and laundry facilities. Most of the two-bedroom units include patios, balconies, and impressive views of La Jolla.

Coast Apartments community consists of 106 apartments within eleven buildings on eleven and a half acres. Coast Apartments is a two-story walk-up garden community consisting of wood frame construction and composite roofs laced with pebbles.
All policies and procedures concerning the operation of Affiliated Housing, the eligibility for housing, and the application process are subject to change without notice.

For more detailed information on any of the above housing facilities and/or to apply, please visit our Web site: www.hds.ucsd.edu/hsgaffil.

Affiliated Housing Operations
9500 Gilman Drive, MC 0907
La Jolla, CA 92093-0907
(858) 822-3291
E-mail: ahoinfo@ucsd.edu

Psychological and Counseling Services

Central Location:
190 Galbraith
Mail Code 0304
(858) 534-3755
http://www.ucsd.edu/psychserv

Psychological and Counseling Services provide professional assistance with a wide array of personal difficulties that may interfere with academic success. Specific concerns for which students often seek assistance include loneliness and isolation, homesickness, parent/family/partner conflict, difficulty studying, concentrating or test-taking, challenges in interpersonal relations and communication, educational/career concerns, identity issues, sexuality, depression, and anxiety. Students often consult with counselors when experiencing a variety of life issues, transitions, or emotional situations. In order to enhance the UCSD student experience, Psychological and Counseling Services professionals also offer consultation to the university at large regarding a wide range of student issues.

Individual counseling, psychotherapy, marriage or relationship counseling, family sessions, and many issue-focused groups are provided to support the emotional and social growth of students. During the course of a year, special forums, psychotherapy groups, support groups, and psycho-educational groups are offered to students according to their needs and the demand for services. Listings are posted quarterly on the Web site.

Psychological and Counseling Services are geared toward developing a positive and robust mental health climate in the university community. The emphasis is on helping students maintain healthy lifestyles so that they may enjoy a sense of wellness, express themselves with confidence, manifest their creativity and productivity, manage stress successfully, and engage in interpersonal relations as they achieve their career goals.

Psychological and Counseling Services staff are clinical and counseling psychologists and psychologists-in-training. Student peer counselors present programs concerning a variety of topics to student groups throughout the year. In order to provide greater accessibility, the service has offices in all colleges in addition to the central location. Services are available to any currently enrolled undergraduate or graduate student, and appointments can be arranged by contacting the central office. The counseling relationship is private and confidential.

Recreation

Campus Recreation provides UCSD students with quality recreation programs. They are designed to meet leisure-time needs and interests through on-campus programs offering clubs, intramural sports, recreation classes, outings, and a myriad of activities and special event programming. Our goal is to provide opportunities promoting a lifetime of health-conscious options.

FACILITIES

RIMAC with arena, gymnasium, weight room, racquetball and squash courts, and equipment room.

Main and Recreation Gymnasium
Main Gym Weight Room
Indoor 25-Yard Natatorium Pool and Spa
Outdoor 50-Meter Canyonview Pools and Spa
Outback Indoor Climbing Center
UCSD Challenge Course
Tennis Courts
Playing Fields
Canyonview Weight Room
Golf Driving Range
Mission Bay Aquatics Center
Spanos Training Facility with weight training equipment, martial arts studio, and trainers’ facility
Running and Jogging Track
Par Courses
Sand Volleyball Courts
Outback Adventures equipment rentals

INTRAMURAL SPORTS

The Intramural Sports Program at UCSD is a balanced blend of team and individual sports activities that are designed to meet the diverse...
needs of the campus community. Sports offered include flag football, floor hockey, tennis, basketball, softball, soccer, bowling, volleyball, tube waterpolo, badminton, and dodgeball.

RECREATION CLUBS
Recreation Clubs are special-interest activity clubs open to the entire campus community. The clubs are designed to bring together people with common interests. Students may join or begin new recreation clubs and participate in the workouts, meetings, social gatherings, and special events that are part of the RecClub structure.

SPORT CLUBS
Sport Clubs are those teams that compete on an intercollegiate basis but without many of the restrictions of the formal Intercollegiate Athletic Teams. The clubs offer students the opportunity to become involved in somewhat less traditional competitive sports, while still enjoying the travel and competition against other institutions. Teams include badminton, dance sport, dance team, triathlon, equestrian, water ski, cycling, lacrosse, sailing, surfing, rugby, alpine ski/snowboard racing, ice hockey, and ultimate disc.

OUTBACK ADVENTURES
Outback Adventures (outdoor recreation program) is a passport to adventure and the great outdoors. The program offers fun, full-service trips (transportation, meals, instruction, equipment) in backpacking, rock-climbing, canoeing, kayaking, mountain-biking, and other outdoor pursuits. The Outback Adventures director will also arrange customized trips. In addition, the program offers instructional workshops, a resource library of maps and park information, and a camping and outdoor equipment rental service that includes downhill skiing and snowboard equipment, camping equipment, and game equipment. Outback also runs the indoor climbing center, with facilities for beginning to advanced climbers, rentals, and instruction as well as the UCSD Challenge Course, offering leadership and team building workshops.

AQUATICS
UCSD Campus Recreation Aquatics encompasses a wide range of aquatic activities. Student users can participate in competitive and training programs in swimming and water polo. Masters Programs in swimming, running, and triathlon provide an intensive competitive and training experience. Special events scheduled throughout the year range from student social activities to international team competitions. Additionally, an extensive recreational lap swim program is maintained to accommodate daily users from the campus and community.

INFORMAL RECREATION
Informal recreation provides individuals and groups of students the opportunity to make use of any and all of the physical activity facilities at UCSD. From jogging on the par course to shooting hoops in the gym, or playing racquetball in RIMAC, “open rec” time allows students to develop their own leisure activities.

MISSION BAY AQUATIC CENTER
Located on Santa Clara Point in Mission Bay, this facility and its programs provide students with an exclusive opportunity to participate in all aspects of aquatic recreation. From highly structured classes to equipment rentals, MBAC is a “first class” operation—(858) 488-1036.

PERSONAL WELLNESS
Our weightroom and Personal Wellness programs offer a free student personal wellness program with small groups and personalized comprehensive fitness program for sixty students each quarter. Nutrition counseling, personal fitness assessments, and massage therapy are also offered.

INTERCOLLEGIATE ATHLETICS AT UCSD
http://athletics.ucsd.edu

With twenty-three intercollegiate teams to choose from the UC San Diego Athletics program provides students with varying interests the opportunity to participate in a highly-competitive program. UCSD’s Tritons have competed in the NCAA Division III, achieving national prominence in nearly every sport. In 1998, UCSD won the Sears Directors’ Cup, which is awarded to the nation’s top overall athletics program in the NCAA Division III. In the fall of 2000, UCSD moved to Division II and immediately captured an NCAA Championship in Women’s Soccer while finishing runner-up in the NCAA Water Polo Championship.

Triton teams have captured ninety-four first-, second-, and third-place national finishes, led by Women’s Volleyball’s seven titles. Women’s Soccer has won six championships, followed by Women’s Water Polo with five, Women’s Tennis with four, Men’s Soccer with three and Men’s Golf with one national championship. Individually, 117 Tritons have won national championships while a remarkable 875 have earned All-American Recognition. Tritons have been named Academic All-Americans on 131 occasions and 23 student-athletes have been awarded the prestigious NCAA Postgraduate Scholarship.

Sports offered for men and women include basketball, crew, cross country, fencing, soccer, swimming and diving, tennis, track and field, volleyball, and water polo. Men’s baseball, men’s golf, and women’s softball are also offered.

With the move to Division II, most teams now compete in the California Collegiate Athletic Association, widely considered to be the top Division II athletic conference in the country.

In addition to athletic competition, UCSD students may get involved through support groups, game management, and internships. The UCSD Pep Band has grown steadily in recent years and is a fixture of spirit at all basketball and volleyball events. In 1999, the Triton Tide made its debut as a student booster club, and students may also join the UCSD Cheerleaders, the UCSD Twirl Flag Team, or the UCSD Dance Team. In addition to the student groups, Triton Athletic Associates, a booster group of parents, alumni, and friends assists UCSD Athletics with much-needed financial support. Students interested in a firsthand experience in the operations of an athletics program should check into opportunities to work in game management, which provides the staff for all home athletic events, or inquire about internships within the Athletics Department.

Student Office of Human Relations (SOHR)
Main Gym, Floor 2, Room 224
(858) 534-6708
http://sohr.ucsd.edu

The Student Office of Human Relations (SOHR) serves as an interpersonal and intergroup relations resource center, providing programs and services on issues relating to hate/bias incident reporting, anti-bias education/prevention
programs, intergroup dialogue education, and mediation of student intergroup conflicts, as well as supporting initiatives that promote a positive campus climate for all members of the UCSD community.

Student Health Service

Mail Code 0039
(858) 534-3300
http://studenthealth.ucsd.edu

Student Health Service (SHS) is accredited by the American Association for Ambulatory Health Care, Inc. (AAAHC). Our purpose is to promote and preserve the health and well-being of all registered students so that they may pursue their academic goals. Our staff of physicians, nurse practitioners, registered nurses, medical assistants, health educators, and other medical professionals is committed to helping students maintain healthy lifestyles. SHS is conveniently located along Library Walk west of the Price Center and south of Geisel Library. For more information about SHS and services offered, access our Web page at http://studenthealth.ucsd.edu.

General medical appointments are provided at no charge to all registration-paying students during the academic quarters. There is a $10 access fee for urgent care and first aid for students enrolled in the Student Health Insurance Plan (SHIP) and a $25 access fee for those not enrolled in SHIP. Summer access to SHS is at no additional charge for students enrolled in SHIP. Continuing students not enrolled in SHIP are charged a summer health fee to access Student Health Service.

Reduced fees are charged for pharmaceuticals, contraceptives, travel immunizations, and laboratory tests sent to our reference lab. If you are enrolled in SHIP, many fees are covered. There is a $10 co-payment for lab and a $20 co-payment each for X-ray, specialty appointments, and nutrition counseling for students without SHIP. A vision clinic is available at modest fees and offers eye glasses, designer frames, lenses, sunglasses, contacts, and eye exams. Students enrolled in SHIP are eligible for additional discounts.

Although undergraduate, graduate, medical, and international students may have unlimited visits with SHS, students requiring medical or surgical care from practitioners, hospitals, or clinics other than SHS should be prepared to assume the cost of such care. SHIP provides benefits for ambulance, emergency room, hospitalization, most outpatient services, surgery, and major medical expenses with a **written SHS referral** (applies when the student is within a 100-mile radius of UCSD; outside the 100-mile radius a referral is not needed for services). SHIP also includes benefits for a dental plan, pharmaceuticals, and discounts at the SHS Vision Clinic. The cost for SHIP is factored into grants, loans, and work-study programs offered to students who receive financial assistance. The fee for SHIP is paid by the university for graduate and professional students holding academic appointments of 25 percent time or more.

Students covered by private health insurance that meets university waiver criteria can opt out of SHIP by completing the waiver application online through TritonLink prior to posted deadlines. Waivers are processed each academic year. For additional changes, requests, and information, contact the Student Health Insurance Office. The campus-based insurance plans do not replace the primary medical care and referral services provided by the Student Health Service.

Brochures describing the Student Health Insurance Plan, limitations, exclusions, and open enrollment periods are available at Student Health Service and through the SHS Web page at http://studenthealth.ucsd.edu. The insurance coordinators are available to assist students with any questions at (858) 534-2124.

Student Policies and Judicial Affairs

Building B, Student Center
Mail Code 0329
(858) 534-6225
http://ugr8.ucsd.edu/judicial

Student Policies and Judicial Affairs (SP&JA) consists of the administration of student judicial affairs, which includes campus-wide coordination of student conduct, including graduate students, monitoring of compliance requirements, with applicable federal and state laws, and university policies and campus regulations, such as Right to Privacy as it affects students. In addition, the director also serves as the liaison to Campus Counsel and UC General Counsel for Student Affairs and other student-related legal matters and policy questions, and provides advice and recommendations for their disposition. Other programs encompassed by SP&JA include the Student Legal Services (SLS) Office, Student Office for Human Relations (SOHR), Student Conduct Coordinator (SCC), Community Law Project (CLP), and the Center for Ethics and Spirituality.

Student Legal Services

Building B, Student Center
Mail Code 0329
(858) 534-4374
http://sls.ucsd.edu
E-mail: sls@ucsd.edu

Student Legal Services (SLS) provides free, confidential legal counseling, education, and referrals to registered undergraduate and graduate UCSD students and student organizations individually and through clinics. Weekly legal clinics are available for landlord-tenant issues and other topics multiple times throughout the quarter. Student Legal Services assists students with civil and criminal issues. The office provides legal workshops by request for residential halls and student groups. Additionally, SLS advises the prelaw chapter of Phi Alpha Delta International legal fraternity, Delta Sigma Pi business fraternity, and helps coach the UCSD mock trial team. In collaboration with Student Educational Advancement and the IRS, SLS provides free income tax preparation through its Volunteer Income Tax Assistance (VITA) Program.

Student Safety & Sexual Assault Resource Center

Fifth Floor, Student Services Center
(858) 534-5793
http://studentsafety.ucsd.edu
E-mail: studentsafety@ucsd.edu

The Student Safety & Sexual Assault Resource Center (SARC), established in 1988, is the primary resource for educational programs on rape, sexual assault, and interpersonal violence prevention for UCSD students. SARC co-sponsors the R.A.D. (Rape Aggression Defense) self-defense workshops with the Police Department and the Women’s Center. In addition, SARC offers: (1) crisis intervention for student victims of rape, sexual assault, dating violence, and stalking, (2) accompaniment through the police, hospital, and judicial process, and (3) confidential counseling for student victims, family, and friends. If a sex offense occurs, staff explains the victim’s options to report to law enforcement and/or student judicial affairs and to utilize other resources, i.e., medical assistance, campus and community counseling, and student services.
University Centers

The facilities, services, and programs of the University Centers at UCSD complement the teaching and research functions of the university. Both the Price Center and the Student Center provide opportunities for students and the campus community to meet, relax, dine, and enhance their experiences outside the classroom or lab.

THE PRICE CENTER

Mail Code 0076
Administration office: (858) 534-7666
http://universitycenters.ucsd.edu

Centrally located, the Price Center is home to a variety of services geared to the needs of students and the campus community. The Price Center is the place for eating, studying, surfing the Internet, running errands, and catching the latest feature film at the Dolby Digital sound equipped movie theatre. With its computer resources, the Sun God Lounge is a perfect place to study. Services located in the Price Center include the university bookstore, a copy and technology center, a travel agency, a post office, a game room, a Ticketmaster outlet, and a flower stand. Many afternoons, sounds of bands and socializing fill the patio in the plaza. An equally vibrant indoor food court has a variety of fast-service restaurants such as: Subway, Round Table Pizza, Jamba Juice, Shogun of La Jolla, Rubio’s Baja Grill, Tacone, Food Co-op Satellite, Panda Express, and Espresso Roma. A large ballroom hosts major exhibits, conferences, meetings, concerts, and dances throughout the year. Fifteen state-of-the-art conference/meeting rooms are available for use by the campus community. Professional catering and high-tech audio and visual services can also be arranged. The Price Center is also home to many student organizations. In addition, Volunteer Connection; Associated Students; University Events Office; Leadership, Engagement, Activism and Development (LEAD); and the Office of Student Organizations and Leadership Opportunities are located in the Price Center.

THE STUDENT CENTER

Student Center Services
Mail Code 0323
Administration office: (858) 534-8929
http://universitycenters.ucsd.edu

Nestled in a eucalyptus grove, the wood exterior of the Student Center stands in contrast to the modern marble of the Price Center. The casual atmosphere and unique blend of services make the Student Center a special place. The main building is home to UCSD’s Student cooperatives: The General Store, Groundwork Books, and the Food Co-op. The UCSD Guardian newspaper, KSDT radio station, and SRTV are located here along with several student organizations and alternative campus media. The Commuter Student Services, which advocates for the needs of commuter students and helps students find off campus housing, is located on the second floor. The Student Center is a popular study spot with the inviting lounge and fireplace, comfortable outdoor study areas, and academic services such as A.S. Soft Reserves and A.S. Lecture Notes. The Women’s Center and LGBT Resource Center provides events, services, and special programs. There are also conference/meeting rooms, two ATMs, and the UCSD Bike Shop, which sells, repairs, and maintains bikes and bike accessories. Next to the main building is the Stage at the Pub where dances, concerts, and many other events occur. The Stage is connected to Porter’s Pub which serves lunch, dinner, and microbrew beer. Students, faculty, staff, alumni, and community members learn the art of neon pottery, glass blowing, and other crafts in classes offered at the Crafts Center. The work of artists from around the world is exhibited at the adjacent Grove Gallery. Nearby, specialty coffees, light cuisine, and an occasional musical performance are served up in the patio setting of the Grove Caffe, one of the most beautiful places on campus. Just south of the Student Center on the Revelle campus is the Ché Café, which serves a vegetarian menu at very affordable prices.

STUDENT INFORMATION CENTER (EDNA)

Price Center
Mail Code 0076
Administration Office: (858) 534-3362 (EDNA)
http://universitycenters.ucsd.edu

Located in the Price Center Plaza next to the theatre lobby, the information desk serves the campus community by providing information and a variety of other services benefiting the students, faculty, and the general public.

STUDENT GOVERNMENTS

Associated Students
Third Floor, Price Center
Mail Code 0077
A.S.: (858) 534-4451
Hours: 8:00 a.m.–4:30 p.m. Monday–Friday
http://as.ucsd.edu

The Associated Students (AS) and the Graduate Student Association (GSA) provide students with practical leadership experience in the areas of programming, financial planning, lobbying, and in the development of programs and services that are designed to meet the students’ needs. The Associated Students (AS) operates AS Lecture Notes, AS Soft Reserves, AS Challenge Course, AS Volunteer Connection, AS Undergraduate Scholastic Grants, AS Safe Ride, AS Academic Success Program, AS SRTV, KSRTD Radio, Grove Caffe, and the Holiday Airport Shuttle. The AS has an official liaison with the AS Student Initiated Outreach and Recruitment Commission (SIORC), AS Alliance, AS Women’s Commission, AS All-Campus, AS Commuter Board, AS AS All-Campus Transfer Student Association. The AS also sponsors a wide variety of programming events including speakers, concerts, and festivals.

The GSA takes a proactive stance on graduate concerns in the areas of housing, TA/RA work-related issues, mandatory health insurance, student fees, and legislative issues. The Student Government staff works with the AS and the GSA in providing logistical, accounting, and programmatic advice.

The AS and GSA both have opportunities for student involvement. They appoint students to various campuswide committees, some of which include topics in transportation, admissions, TA development, and student judicial/hearing boards. For a complete listing, see the respective Web sites. Additionally, both AS and GSA provide funding opportunities for student groups.

The Student leaders and staff of the AS, the GSA, and the Student Government Services office encourage you to get involved and take part in the many leadership opportunities available at UCSD.

STUDENT ORGANIZATIONS AND LEADERSHIP OPPORTUNITIES

Price Center
Mail Code 0078
(858) 534-0501
http://solo.ucsd.edu
The office of Student Organizations and Leadership Opportunities strongly supports the notion that the university must provide learning experiences for students both within and outside the classroom. Participating in leadership workshops, seminars, conferences, and in any of the over 400 student organizations is an integral part of the university experience. With so many organizations to choose from, there is bound to be one that sparks individual interest. If not, students can start their own organization! Registration for student organizations begins in the fall and continues throughout the academic year. The advisors are here to assist in selecting an organization or in starting one.

In addition, leadership seminars are organized to help strengthen the leadership potential of students. Listed below are some of the training programs we schedule each year:

- Improving interpersonal skills
- Public relations
- Interviewing techniques
- Fund raising
- Team building
- Running effective meetings
- Time management
- Careers in student affairs
- Budget management
- Motivation
- Stress management
- Ethics
- Publicity/advertising
- Recruiting volunteers
- Diversity

We invite you to stop by the Student Organizations Center on the third floor of the Price Center to learn more about student organizations and leadership opportunities!

University Events Office

Price Center, Third Floor
Mail Code 0078
(858) 534-0409
http://ueo.ucsd.edu

The University Events Office (UEO) is a multifaceted professional arts and events organization of UCSD with an outstanding reputation for bringing nationally and internationally recognized artists to the campus and local community. Our performances and events offer exceptional opportunities for discovery and participation in a variety of artistic disciplines that reflect our culture and challenge our understanding of the world in which we live. The University Events Office’s performance programs include:

- ArtPower! performing arts season
- RIMAC rock, hip-hop, and pop concerts
- Universitywide cultural celebrations
- Sneak previews (advance film screenings)
- UCSD Box Office

As the central campus resource for events, UEO serves as the advisor to the Associated Students (AS) Programming Office. UEO also advises campus event planners on budgeting, marketing, negotiation and contracting, and provides production planning and technical assistance for major campus events.

The UCSD Box Office, the central campus box office managed by UEO, provides ticket sales for campus events as well as events on the Ticketmaster system. The Box Office sells passes for area theatres, theme parks, and more.

The University Events Office is a department of Student Affairs at UCSD.

ARTPOWER! AT UC SAN DIEGO

Price Center, Third Floor
Mail Code 0078
(858) 534-TIXS
http://www.artpower.ucsd.edu

The university’s critically acclaimed performing arts season features artists of national and international renown in music, dance, and spoken word. ArtPower! provides exciting opportunities for the UCSD and San Diego communities to engage in discovery and dialogue with creative innovators in the arts. Performances by Bill T. Jones/Arnie Zane Dance Company, David Sedaris, and Emerson String Quartet have provided art power to UCSD.

UCSD BOX OFFICE

Price Center Plaza
Mail Code 0078
(858) 534-TIXS
http://boxoffice.ucsd.edu

The UCSD Box Office provides the UCSD and San Diego communities with full service ticketing to arts and entertainment events on and off campus. Tickets to ArtPower! performances, RIMAC rock/pop concerts, amusement park tickets, and a host of other fun-filled activities are available for purchase at the box office in person, by phone, or online. The UCSD Box Office is a program of the University Events Office.

Veterans’ Affairs

Located in the Financial Aid Office
Building 201 University Center
Mail Code 0013
(858) 534-4480
http://www.ucsd.edu/finaid

ELIGIBILITY

The following persons may be eligible for veterans’ educational benefits:

Chapter 35

Sons, daughters, spouses, and surviving spouses of veterans who died, or are permanently and totally disabled as the result of a service-connected disability, or persons missing in action, or captured in line of duty by a hostile force.

Chapter 30

A person who entered active duty for the first time after June 30, 1985, and served continuously for three years.

Chapter 1606

Persons who have a six-year obligation to serve in the Selected Reserve signed after June 30, 1985.

Chapter 1607 or Reserve Educational Assistance Program (REAP)

A new education benefit available to certain reservists who were activated for at least ninety days after September 11, 2001.

CalVet College Fee Waiver

California Veterans’ Dependents College Fee Waiver Program: A student who is the child of a deceased veteran or veteran with a service-connected disability may receive a waiver of the state-mandated registration and educational fees. Eligibility is determined by individual county veterans’ service offices.

OTHER SERVICES

In addition to certifying paperwork to initiate a student’s veterans’ benefits, the Financial Aid Office staff can answer questions about check problems or other programs administered by the Veterans Administration such as tutorial assistance and VA work-study, or can provide you a phone number so that you can make an inquiry to the Veterans Administration Regional Office.

Upon admission to the university, please contact the Financial Aid Office to request
certification of VA educational benefits, or notify the office of your eligibility for the CalVet waiver.

Other Services and Programs

UCSD Alumni Association
202 University Center
Mail Code 0083
(858) 534-3900
E-mail: alumni@ucsd.edu
http://www.alumni.ucsd.edu

The UCSD Alumni Association was formed in 1964 by a small group of early graduates, and it has grown today to represent over 100,000 alumni. Our mission is to foster a lifelong, mutually beneficial relationship of alumni and students with UCSD. The association works to provide alumni with continued access to the resources of the university, communicate UCSD news and happenings, and facilitate a network for alumni and student interaction.

The association awards undergraduate scholarships, recognizes outstanding alumni, faculty, and students, assists the university with legislative advocacy, and brings alumni together in social, educational, and networking forums in San Diego and across the nation. The association publishes @UCSD magazine and Campus Loop e-newsletter and hosts an active online community.

Increasingly, the association is providing current students access to alumni as a resource for social, career, and community connections. When students become members of the association they maximize their interaction with this larger community of alumni. Offerings include career mentoring, skills development training, and support for student organizations and activities.

Student and alumni members have access to campus discounts and privileges, networking and volunteering opportunities, educational travel programs, a subscription to all alumni publications, and discount cards for UCSD and community activities.

Art Galleries

UNIVERSITY ART GALLERY
Mandeville Center, Room 101
Mail Code 0327
(858) 534-2107
http://www.universityartgallery.ucsd.edu

The University Art Gallery presents exhibitions that integrate contemporary art into the life of the university; exhibits and interprets art as an educational resource for the academic community; and serves as a laboratory for linking visual art with the issues of postmodern society, as an innovator in originating and shaping the contemporary arts agenda, and as a platform for the advancement and outreach of the university in visual arts creativity.

Gallery hours are from 11:00 a.m. to 4:00 p.m., Tuesday through Saturday. The gallery is closed Sundays, Mondays, and university holidays. There is no admission charge.

MANDEVILLE ANNEX GALLERY
Mandeville Center, Room B-118
Mail Code 0327

The Mandeville Annex Gallery is for Visual Arts undergraduate art exhibitions. A new exhibition is mounted each week of the quarter except during summer. Included in the exhibition schedule are individual, group, and class shows. Gallery hours are from 12:00 noon to 5:00 p.m., Monday through Friday. There is no admission charge.

VISUAL ARTS GRADUATE GALLERY
Visual Arts Facility, Room 309
Mail Code 0084
http://visarts.ucsd.edu

The six-building complex houses the Visual Arts Graduate Gallery. First-year review shows and M.F.A. exhibitions are mounted each week of the quarter except during summer. Gallery hours are from 12:00 noon to 5:00 p.m., Monday through Friday. There is no admission charge.

Child Development Center
Mail Code 0962
(858) 552-2500
http://admissions.ucsd.edu

The UCSD Early Childhood Education Center serves the children of students, staff, faculty, and the community at large. Age requirements are three months old through kindergarten. State subsidy is available for income-eligible staff and full-time students on a limited basis. Only full-time enrollment is offered, 7:30 a.m. to 5:00 p.m., Monday through Friday. Breakfast, lunch, and afternoon snack are included in the cost. For further information or to visit, call the Childcare Center’s office at (858) 552-2500 between 7:30 a.m. and 5:00 p.m.

As an alternative, the Infant Toddler Referral Program aids campus families in locating licensed home-care providers for children from six weeks through preschool ages. For assistance, call (858) 552-2500 during office hours or leave a recorded message for a return call.

Crafts Center
Mail Code 0338
(858) 534-2021
http://www-crafts.ucsd.edu

Located in the center of the campus, the Crafts Center offers studio and art/crafts instructional facilities in ceramics, photography, jewelry, drawing, neon, glassblowing, and other crafts. The center provides personal enrichment and creative educational opportunities to individuals wishing to develop artistic skills in an active studio-classroom situation.

Registration for Crafts Center activities takes place the first week of every quarter at the center. Specific classes, schedules, and course fees information can be obtained by calling (858) 534-2021 or http://www-crafts.ucsd.edu.

UCSD Cross-Cultural Center
Building 201, Mail Code 0053
(858) 534-9689
Fax: (858) 822-0173
E-mail: ccccenter@ucsd.edu
http://ccc.ucsd.edu

Established in May of 1995, the UCSD Cross-Cultural Center (CCC) functions as a campus community center committed to creating space for dialogue while also maintaining an environment conducive to the recruitment and retention of students, staff, and faculty from underrepresented backgrounds.

The CCC offers programs and services specifically designed to reflect UCSD’s commitment to excellence, scholarship, and community through cross-cultural interactions. The center’s focus areas include: faculty, staff, and student exchanges, educational materials and resources, student outreach and retention activities, speakers, film series, community outreach, support and discussion groups, and leadership development.
Undergraduate, graduate, terrific additional incentives, including pool, rail, bicycle, and free transit programs for commuting students. Carpool, vanpool, rail, bicycle, and free transit programs feature terrific additional incentives, including limited free emergency rides home and complimentary parking. For program details, call Rideshare Operations at (858) 534-RIDE.

If you choose to bring a car to campus, be aware that a parking permit is required on UCSD property on weekdays, 7:00 a.m. to 11:00 p.m., unless otherwise posted. Parking permits can be obtained at the Parking Office (858) 534-4223, or by accessing TritonLink.

Student spaces are designated by yellow squares, student “S” parking permits are valid in these yellow spaces at all times. After 4:30 p.m. weekdays, all UCSD permits are upgraded and become valid in spaces marked green “B” or red “A” squares, and metered (no fee required) spaces. Permits are not required on campus Saturday and Sunday, unless otherwise posted. Student permits are never valid in spaces marked “A” Permit Required, 24 Hours a Day, 7 Days a Week, or in any other 7/24 parking space.

T&PS offers a free Motorist Assistance Program which provides battery jumps, lockout assistance, flat tire inflation, or gas for drivers stranded on campus. For assistance, call (858) 534-8108.

If you have questions about T&PS, purchasing a permit, or parking at UCSD, please call (858) 534-4223, visit http://parking.ucsd.edu or stop by the Parking Office, located in the Gilman Parking Structure (entrance on Russell Lane).

For holidays, summer hours, and extended hours at the beginning of each quarter, please see: http://bookstore.ucsd.edu/hours.htm

All numbers area code (858)

General Information 534-READ (7323)
Birch Aquarium Bookshop 534-8753
Clothing & Gifts 534-8530
Computer Center & Repair 534-4291
Course Materials 534-4557
Custom Publishing 534-7963
Electronics Department 534-3786
Medical Instruments 534-7057
Refund/Recharge 534-7326
Sunshine Store/Film 534-2875
Supplies Department 534-3786
Textbooks 534-4557
Toll Free (800) 520-READ (7323)
Trade, Professional, Medical
Book Information 534-3149
Fax Numbers
• General Number 534-0565
• Computer Center 534-1430
• Book Departments 534-5286
• Supplies & Clothing 534-0410
Web site http://bookstore.ucsd.edu

Course Materials/Textbooks

Required and recommended course materials for undergraduate and graduate classes are stocked at the UCSD Bookstore, along with additional supplementary study aids.

Course materials for UCSD Extension courses are stocked in the Extension section of the UCSD Bookstore; they can also be ordered online via the Bookstore’s Web site at http://bookstore.ucsd.edu/books/extension/index.htm. Extension course materials ordered via the Web may be shipped, held for pick-up at the North County or Sorrento Mesa Extension centers.

Online Look-Up: Undergraduate, graduate, and Extension course materials lists, along with prices and availability, may be viewed online the same day they are entered into the Bookstore’s database once the feature is activated for each term. For graduate and undergraduate classes, within the Schedule of Classes on UCSD’s TritonLink, click on the red book icon for the desired section. For Extension course materials lists, use the look-up/purchase feature at http://bookstore.ucsd.edu/books/extension/index.htm.

Faculty: Each quarter, the UCSD Bookstore sends a memo to faculty requesting course

Imprints
http://imprints.ucsd.edu

YOUR UCSD PRINT RESOURCE CENTER

Self-serve copies, full color copies, fax service, posters, lamination, large format, plus a large variety of other printing and binding services are available. Price Center Imprints is open evenings and weekends. In addition to standard services, computer workstations are available on a rental basis with both black and white and color laser printer options. Self-serve photo printing will be available in selected Imprints locations in 2007.

Campus Locations:

• Campus Services Complex, Bldg. A, (858) 534-3020
• Geisel Library, Main Flr (858) 534-2534
• Price Center, Upper level (858) 822-4422
• Student Services Center, (858) 534-7050

Triton Plus Card, Library photocopy card, cash, and check payment accepted. Visa and Mastercard accepted at Price Center, Student Services, and check payment accepted. Visa and Mastercard accepted at Price Center, Student Services Center, and Geisel Library locations.

Transportation and Parking Services

Located in the Gilman Parking Structure
Mail Code 0040
(858) 534-4223
http://parking.ucsd.edu

Transportation and Parking Services, (T&PS) sponsors a variety of programs and services designed to help students living at UCSD without cars. An extensive shuttle network spans the campus and also serves several off-campus locations. A Free Bus Zone sticker can be affixed to a valid UCSD ID card, free of charge, allowing unlimited rides on San Diego Transit buses serving the campus. T&PS offers a free holiday shuttle service to the airport, for students traveling during breaks. For information, route maps, or schedules, please call (858) 534-RIDE, or check our Web site at http://parking.ucsd.edu.

T&PS offers several money-saving rideshare programs for commuting students. Carpool, vanpool, rail, bicycle, and free transit programs feature terrific additional incentives, including

UCSD Bookstore

Located in the Price Center Complex
9500 Gilman Drive
La Jolla, CA 92039-0008
http://bookstore.ucsd.edu

Monday–Thursday 8:00 a.m.–7:00 p.m.
Friday 8:00 a.m.–6:00 p.m.
Saturday 10:00 a.m.–5:00 p.m.
Open most Sundays during the academic year 12:00 noon–5:00 p.m.

For holidays, summer hours, and extended hours at the beginning of each quarter, please see: http://bookstore.ucsd.edu/hours.htm
Campus Services and Facilities

Campus Services and Facilities

Digital Course Content

The university, a wide array of academic disciplines in the arts and humanities, social sciences, languages, mathematics, science, and engineering are represented. Strong general interest sections in categories such as fiction, travel, reference, and children's books complete the selection. Find excellent values in the bargain books section and on discounted bestsellers. All regularly priced general, scientific, and technical books are discounted 10 percent during “Happy Hours” from 4:00 p.m.—close every Wednesday. Check availability of titles in the store online at bookstore.ucsd.edu. The home page provides the opportunity to search and order from among two million additional titles, and explore their partner stores, BookSense for trade and technical books, and the UCSD Medical Web store for discounted medical books.

Medical Books and Instruments

The UCSD Bookstore is proud of its partnership with the medical community at the university and in the San Diego area. It has long been recognized as the primary resource for an up-to-date, comprehensive selection of medical books and instruments. In the store, find medical textbooks for the UCSD School of Medicine and UCSD School of Pharmacy along with more than 5,500 reference titles in nearly one hundred medical categories. A large selection of medical instruments is available along with lab coats, clinical jackets, scrubs, and unique medical gift items. All regularly priced medical books and instruments are discounted 5 percent during “Happy Hours” from 4:00 p.m.—close every Wednesday. Check availability of medical titles in the store online at bookstore.ucsd.edu. For a larger selection of medical titles, search the UCSD Medical Web store accessed from the home page. This Web site features more than 90,000 titles and offers up to a 5 percent discount on medical and nursing books as well as medical supplies and instruments.

Faculty Authored Books

The UCSD Bookstore is pleased to display and sell recent publications authored by UCSD faculty. Inside the bookstore find books shelved in a special Faculty Author section and in the categorical section that applies. Look for a selection of recently published titles on display at the Faculty Club. Faculty members with a new book they would like the UCSD Bookstore to stock should contact the store using one of these methods: (858) 534-3149; (800) 520-7323; http://bookstore.ucsd.edu/friends/faculty/authorrequestform.htm.

Supplies: School, Art, Office, and Residence Halls

The bookstore caters to UCSD's office, school, art, and residence hall supply needs as well as professor required art, engineering, and lab supplies. Students living in the residence halls have a selection of linens, towels, shower caddies, picture hangers, trash cans, white/cork boards, extension cords, T.V. cables, batteries, and much more to get their rooms set up in style. Call (858) 534-3786 for a copy of the Super Catalog featuring over 30,000 office, art, school, and residence...
hall supplies. Special orders are easy to place and usually arrive within one to two days. For some of the most common supplies, shop online: http://bookstore.ucsd.edu/supplies. Custom orders and quantity discounts are available.

Electronics

Brand name calculators, CD players, and voice recorders such as Hewlett Packard, Texas Instruments, Sharp, Sony, and Panasonic are always in stock at the bookstore. This department is full of fun and useful gadgets and accessories.

Computers

The extremely knowledgeable staff of the UCSD Bookstore Computer Center is available to assist you with information regarding the latest in Apple, Dell, Sony, Lenovo, Toshiba, and Gateway computers and accessories, as well as monitors, printers, projectors, digital cameras, peripherals, and supplies. Educational pricing is offered for full-time UCSD students, extension students (certificate courses), faculty, and staff. They provide Macintosh and PC software licensing. Special orders are encouraged for products that are not in stock. Visit their extensive Web site at: http://bookstore.ucsd.edu/computers or call (858) 534-4291.

Computer Repair

The UCSD Bookstore Computer Center works in conjunction with UCSD Academic Computing Services to provide authorized in-warranty repair for Apple, Dell, Lenovo, and Sony computers. The bookstore is a convenient drop-off point offering extended and weekend hours. They also repair most out-of-warranty computers. They do not repair out-of-warranty monitors. The average repair time is ten working days.

Special Orders

Books, gifts, clothing, office and art supplies, medical instruments, computer hardware and software can be special ordered at any time. Call us to request a personal shopper.

BIRCH AQUARIUM AT SCRIPPS BOOKSHOP

2300 Expedition Way
La Jolla, CA 92039-0207
Monday–Sunday 9:30 a.m.–5:00 p.m.
(858) 534-8753
(Closed Thanksgiving Day, Christmas Day, and New Year’s Day)

The Aquarium Book and Gift Shop has been operated by the UCSD Bookstore since August 1994. Its goal is to support the education and community service missions of the Scripps Institution of Oceanography and the Birch Aquarium at Scripps. The bookshop has an exciting selection of educational books concerning the geological, biological, and physical sciences and how they interact with the sea. A dazzling variety of children’s books and educational toys are available to children of all ages who have interest in the ocean and its marine life. Other popular items are guides to scuba diving and snorkeling, tide pool guides, San Diego tourist guides, and maps. The bookshop’s selection of souvenirs and gifts is fun-loving with a wide-ranging selection of T-shirts, sweatshirts, postcards, calendars, DVDs, stuffed animals, jewelry, and lots more. Visit the Web store at http://bookstore.ucsd.edu/aquarium.

THE SUNSHINE STORE

Monday–Thursday 7:00 a.m.–9:00 p.m.
Friday 7:00 a.m.–6:00 p.m.
Saturday 9:00 a.m.–5:00 p.m.
Most Sundays 12:00 noon–5:00 p.m.

Visit the Sunshine Store for all your favorite groceries and needs including: frozen, microwaveable, and packaged meals, snacks, soda, fresh sandwiches and salads, juice, coffee, tea, ice cream, sandwiches, donuts, candy, international foods and snacks, health and personal products, cleaning supplies, and household essentials. Film and film processing are available with specials running throughout the year. Join the Coffee Club (buy ten cups, get the eleventh cup free)! Library-safe mugs are sold here, as well as scanntrons, blue books, batteries, daily newspapers, and munchies when everything else is closed on campus! Established in April 1979 as an auxiliary operation of the UCSD Bookstore, the Sunshine Store is a busy annex located next to the UCSD Bookstore on the ground floor of the Price Center plaza.

RETURN/REFUND POLICY

The UCSD Bookstore strives for complete customer satisfaction. Should any product you select from the UCSD Bookstore fail to meet your expectations, they will respond to your concern and assist you in an exchange, refund, or credit whenever possible within the guidelines that apply to their specific merchandise categories.

- All categories of refundable merchandise require an original receipt to obtain a refund.
- Undergraduate, graduate, and Extension course materials must meet the conditions and timeframes printed on the bookmark that accompanies the receipt.
- Books used for School of Medicine and School of Pharmacy and Pharmaceutical Sciences courses must be returned within fourteen days from the date on the receipt.
- General interest, technical, and medical books may be returned for refund, exchange, or credit within fourteen days if they are in resalable condition and are among the titles currently carried in the UCSD Bookstore.
- Nonrefundable/nonexchangeable merchandise: medical instruments, Medical (MDTEST), other testing (REFEXM) books, magazines, umbrellas, undergarments, and clearance books.
- Computer hardware and software refund policies are available in the computer department.
- For supply department electronics, original packaging and cash register receipt are required for refund or exchange. Calculators may be returned for a full refund or store credit within fourteen days of purchase if they are unopened and in resalable condition. Refunds will not be given for opened calculators. Exception: Defective calculators may be exchanged for same or upgraded model within fourteen days of purchase. Defective merchandise is subject to inspection by Bookstore staff.

University Police Department

Campus Services Complex, Bldg. B
Mail Code 0017
EMERGENCY, DIAL 9-1-1
Business, (858) 534-4357
http://police.ucsd.edu

The UCSD Police Department protects life and property through the enforcement of local, state, and federal laws. The police department strives for a safe campus environment, where the educational and research pursuits of the university can be realized.

The Police Department provides continuous twenty-four-hour-a-day police patrol to protect the campus community, along with the dispatching of emergency fire and ambulance services.
In addition, student residential areas are provided with additional security with on-site residential security officers (RSOs) during the evening and early morning hours.

CLERY CAMPUS CRIME REPORT

For information concerning campus crime statistics, crime reporting, policies and practices pertaining to campus security, and/or crime prevention tips, please visit the UCSD Police Department’s Web site—Crime/Victim Information located at www.police.ucsd.edu.

CRIME PREVENTION PROGRAM

(858) 534-3644

The Police Department’s Crime Prevention Program offers a variety of information to the campus community on crime prevention methods. Pamphlets and informative seminars are available.

COMMUNITY SERVICE OFFICER PROGRAM

(858) 534-9255

CSOs are students employed by the UCSD Police Department. They provide a variety of services related to crime prevention and campus safety. One of the services is the safety ESCORT program, which is available every evening from 5:00 p.m. to 1:00 a.m. They also provide security for campus events and facilities. For more information contact the program coordinator at (858) 822-1130.

LOST AND FOUND

(858) 534-4361

The Police Department serves as a central repository for lost and found articles. Lost and found items should be taken to the police station. The station is open twenty-four hours daily.

U.S. Neighborhood Post Office

2.425 Price Center
Mail Code 0047
(858) 534-1164
http://www-bfs.ucsd.edu/mails/

The Price Center Post Office is a contract station operated under the rules and regulations of the U.S. Postal Service. Stamps, money orders, and other postal items may be purchased and mailed at this location Monday–Friday, 8:30 a.m. to 5:00 p.m. P.O. Box rentals are available in various sizes.

Organized Research Units (ORUs) are academic units the University of California has established to provide a supportive infrastructure for interdisciplinary research complementary to the academic goals of departments of instruction and research. The functions of ORUs are to facilitate research and research collaborations; disseminate research results through research conferences, meetings, and other activities; strengthen graduate and undergraduate education by providing students with training opportunities and access to facilities; seek extramural research funds; and carry out university and public service programs related to ORUs’ research expertise. The senior staff of these units are faculty members in related academic departments. Institutes and centers currently in operation at UCSD are described below.

In addition, the university is formally and informally affiliated with various private research organizations such as the Institute of the Americas, The Salk Institute for Biological Studies, Howard Hughes Medical Institute, Ludwig Institute for Cancer Research, and The Burnham Institute.

Universitywide Institutes/Organized Research Units

Institute of Geophysics and Planetary Physics (IGPPP) was established in 1960 and named the Cecil H. and Ida M. Green IGPP in 1994. It is a multicampus research unit of the University of California, headquartered at UC Riverside, with branches at UCSD, UCI, UCLA, UCSC, as well as Los Alamos and Lawrence Livermore National Laboratories. The present facility includes the Roger and Ellen Revelle Laboratory and the Judith and Walter Munk Laboratory. Present research concentrates on the study of crustal dynamics by measurements of gravity, tilt, displacement, and strain in both continental and oceanic environments; of regional seismicity and linear and nonlinear earthquake and explosion source mechanisms; of the variability of the earth’s geomagnetic field and its generation by the geodynamo; of the spherical and aspherical structure of the earth by measurements of free oscillations, surface waves, and travel times; of seafloor tectonics using marine geophysical methods; of linear and nonlinear theoretical and computational fluid dynamics; of the variable mesoscale structure of the oceans and global ocean warming by acoustic tomography; of the structure of the oceanic crust and lithosphere by seismic and electromagnetic measurements on the ocean bottom and at the ocean’s surface through seismic multichannel methods; of sea-floor and planetary topography and gravity using satellite methods; of nonlinear dynamics applied to geomorphology; and of tides, waves, turbulence, and circulation in the oceans; of surface change caused by tectonic activity, or climate change using satellite Interferometric Synthetic Aperture Radar (InSAR), as well as airborne and spaceborne laser altimetry.

The institute operates a global network of some forty broadband seismometers, the IDA (International Deployment of Accelerometers) Array, with ten of these stations in the former Soviet Union which are telemetered by satellite to the institute; a crustal strain and seismic observatory at the Cecil and Ida Green Pinon Flat Observatory near Palm Springs; a scientific wireless network in California with SDSC, the High Performance Wireless Research and Education Network (HPWREN); a southern California network of Global Positioning System (GPS) satellite geodetic sites operated by the Scripps Orbit and Permanent Array Center (SOPAC) and the California Spatial Reference Center (CSRC); an acoustic network in the Pacific for measuring ocean temperature variability; a modern 3D data visualization facility; a 5m, X-band satellite receiving antenna for satellite remote sensing; a national Ocean Bottom Seismograph Instrument Pool (OBSIP); and telemetered seismic arrays in Kirghizia, and two locations in California. The institute does not grant degrees, but makes its facilities available to graduate students from various departments who have chosen to write their dissertations on geophysical problems. Undergraduate students are involved in independent research projects and as laboratory assistants. Members of the institute staff now hold joint appointments with the Departments of the Scripps Institution of Oceanography, and Applied Mechanics and Engineering Sciences. Support for visiting scholars and grant matching funds is provided through an endowment to the Cecil and Ida Green Foundation for the Earth Sciences.
The University of California Institute on Global Conflict and Cooperation (IGCC) is a multicampus research unit serving all ten UC campuses and the UC-managed Lawrence Berkeley, Lawrence Livermore, and Los Alamos National Laboratories. IGCC is based at the Graduate School of International Relations and Pacific Studies (IR/PS) at UCSD, whose faculty provides IGCC’s leadership.

IGCC’s mission to educate the next generation of international problem-solvers and peacemakers is carried out through teaching activities, research and public service opportunities. Scholars and researchers from inside and outside the UC system, government officials, and students from the United States and abroad have participated in IGCC projects.

IGCC’s initial research focused on averting nuclear proliferation through arms control and confidence-building measures between the superpowers. Since then, its research program has diversified to encompass several broad areas of inquiry: regional relations, international environmental policy, ethnic conflict, terrorism, and international trade and policy. In addition, receipt of a prestigious NSF award in 2002 for a program to train the next generation of nuclear policy experts has lead to a rekindling of interest in research on traditional security issues.

IGCC supports UC research and teaching through its annual fellowship and grant cycle. IGCC’s development office provides an additional resource for UC faculty seeking foundation funding for their projects. IGCC also serves as a liaison between the academic and policy communities through its Washington, D.C. office, located in the UC Washington Center (UCDC). The Washington, D.C. office administers a graduate internship program in international affairs and hosts the IGCC Foreign Policy Fellow. Interns and fellows are placed with governmental and non-governmental organizations involved in international policy. The Washington office also sponsors policy seminars to showcase UC faculty research results and to provide opportunities for interaction between professors and policymakers.

IGCC receives its primary support from the Regents of the University of California and the UC Office of the President (Office of Research). Additional funding has been provided by the U.S. Departments of Energy, State, and Defense, the U.S. Institute of Peace, the National Science Foundation, the Japan-U.S. Friendship Commission, and Japan’s National Institute for Research Advancement (NIRA). IGCC has also received important support from foundations such as the Japan Foundation Center for Global Partnership (CGP), the Carnegie Corporation of New York, The John D. and Catherine T. MacArthur Foundation, the William and Flora Hewlett Foundation, the Markle Foundation, the Smith Richardson Foundation, the Ocean Foundation, and the Rockefeller Foundation.

For more information about IGCC and its research programs, including full-text publications and downloadable POLICYPacks, visit the IGCC Web site at http://www-igcc.ucsd.edu. IGCC publications can also be downloaded from the California Digital Library E-Scholarship Repository at http://repositories.cdlib.org.

The White Mountain Research Station (WMRS) was established as a UC multicampus research unit in 1950 to support high-altitude research. The station includes four laboratory facilities located over a 3,000m (10,000 vertical ft.) altitude transect, ranging from the floor of the Owens Valley to White Mountain at over 14,000 feet above sea level. Located on the western edge of the Great Basin, WMRS also provides access to three main biogeographic regions (Sierra Nevada and White/Inyo montane, Mojave desert, and Great Basin desert), and geologically rich and diverse field sites. WMRS has evolved into a major multidisciplinary research and teaching institution in eastern California, and hosts programs in archaeology and anthropology, atmospheric and space sciences, biological and medical sciences, ecology, conservation and natural resource management, geological, hydrological, and earth sciences.

WMRS facilities include: (1) Owens Valley Laboratories with classrooms, offices, dormitories, and food services for up to seventy people outside the Sierra resort town of Bishop, (2) a newly renovated lodge, cabins, classrooms, and laboratories for fifty people in the Bristlecone pine forest at Crooked Creek (3,094m altitude) (3) the Nello Pace Laboratory and Mount Barcroft facilities (3,801m altitude), which can house thirty-five people, and (4) the 450-square-foot Summit Laboratory on White Mountain peak (4,342m altitude), making it the highest research lab in North America.

All of the laboratories are linked by a high-speed wireless internet connection providing instant access between campus-based laborato-
departments, UCSD programs in HIV/AIDS are internationally recognized for their contributions to science and patient care. UCSD is ranked among the top ten AIDS programs in the country. ARI programs include:

- The Center for AIDS Research (CFAR)
- The Adult AIDS Clinical Trials Group (ACTU)
- The Adult AIDS Clinical Trials Network Leadership Group
- The Pediatric AIDS Clinical Trials Group (PACTG)
- The California NeuroAIDS Tissue Network (CNTN)
- The Special Infectious Disease Clinic of the VA San Diego Healthcare System
- The Acute Infection and Early Disease Research Program (AIEDRP)
- The California Collaborative Treatment Group (CCTG)
- The HIV Neurobehavioral Research Center (HNRC)
- The Southern California Primary Infection Program
- The HIV Costs and Services Utilization Study (HCSUS)
- The VA Quality Enhancement Research Initiative for HIV (QUERI-HIV)
- The San Diego AIDS Education and Training Center (AETC)
- The Owen Clinic, which provides primary health care services
- The Antiviral Research Center (AVRC), which conducts clinical trials
- The UCSD Mother, Child, and Adolescent Program

The institute sponsors seminars and workshops and offers developmental grants to new investigators in the area of human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS) related research. Together with research and development, the ARI is fully committed to serve as a community resource for information and assistance regarding infection, treatment, and education in HIV/AIDS. We are here to serve as the regional resource for all aspects pertaining to HIV/AIDS and, as a leader in research and education, to treat the infected and prevent the spread of further disease.

The California Institute for Telecommunications and Information Technology (Calit2) (http://www.calit2.net), an organized research unit, conducts research on the future of telecommunications and information technology and how these technologies will transform a range of applications important to the economy and citizens’ quality of life. These application areas include: environment and civil infrastructure, intelligent transportation, digitally enabled genomic medicine, new media arts, and disaster response.

Calit2, a partnership between UCSD and UCI, is one of four institutes established in December 2000 through the California Institutes for Science and Innovation (Cal ISI) initiative. It is funded by a state capital grant, federal research grants, industry, and foundations.

Calit2 unites faculty, students, and industrial and community partners into multidisciplinary teams with expertise drawn from two dozen academic departments at both campuses. These teams integrate individual’s deep expertise to enable larger-scale studies than those typically led by single investigators.

Emerging technologies are prototyped in the context of Calit2 “living laboratories,” pushing traditional research one step beyond scholarly publication to building and testing integrated systems under real-world conditions on and beyond the two participating campuses. Research professionals at leading California telecommunications, computer, software, and applications companies are active partners in the more than 50 projects supported by Calit2.

The institute’s goal is to develop technology approaches that will benefit society and spur the state’s economic development, building on the explosive growth in bandwidth and connectivity provided by the wired and unwired Internet.

Two new facilities constructed at UCSD and UCI feature unique capabilities, shared resources, extreme bandwidth, and reconfigurable space.

The 215,000-square-foot facility at UCSD, completed in the summer of 2005, is home to a wide range of projects at the intersection of science, engineering, and the arts. The building is a physical manifestation of this multidisciplinary research agenda: It includes clean rooms for nanofabrication, digital theatres in a range of sizes and capabilities to support new media arts and scientific visualization, test and measurement labs for circuit design, smart spaces for experiments in augmented reality, transmission and networking testbeds for wireless and optical communications experiments, and labs for designing systems on a chip. The building juxtaposes people and programs in uncommon proximity to maximize the potential benefit arising from experts in different disciplines working together.

A 120,000-square-foot building dedicated at UCI in November 2004 is equipped throughout with high-speed wireless Internet access, a Voice-over-IP phone system, and customized ad-hoc in-house networks. In addition, in a collaborative effort with the U.S. Geological Survey, the facility employs more than 40 seismic sensors to measure ground and building motion with the same system. The facility also boasts a 3,700-square-foot clean room, a large-scale visualization laboratory, and labs for network research, optical devices, nanotechnology measurement, and media arts.

Calit2 has developed research and education partnerships with academic and industrial leaders in telecommunications and information technology across the nation and around the world, including Europe, North and South America, the Pacific Rim, and Southeast Asia. Calit2 is helping prepare students for the global workplace of the twenty-first century by supporting summer internships with researchers in Australia, Japan, Taiwan, China, and Thailand, and recently signed an e-learning collaborative agreement with India.

Calit2 has also established a global dedicated optical network with partners in the U.S., Netherlands, Japan, and Korea, which allows real-time collaboration between faculty and students in multiple research laboratories.

Through Calit2, students complement their course work by working on large-scale, multidisciplinary, team-oriented projects that conduct research, establish prototype technologies, and test those technologies in the field. The experience they gain makes them especially valuable to potential employers, including Calit2 industrial and community partners.

The Institute for International, Comparative, and Area Studies (IICAS) was created in 2001 to promote research on international, comparative, and cross-regional topics. Building on the substantial strengths of UCSD in international studies, IICAS coordinates and supports the research of faculty in departments, area studies programs, and the Graduate School of International Relations and Pacific Studies. It is closely associated with undergraduate and grad-
uate education in international studies, including Eleanor Roosevelt College and the international studies major, whose program offices are housed within the institute.

IICAS has three principal roles. First, it serves as a research catalyst, fostering and incubating interdisciplinary and cross-area research groups and projects. Activities have included a faculty research project on states at risk, a multiyear, interdisciplinary research workshop examining the empire-to-nation transition, and an annual lecture series on Law and Society (co-sponsored with California Western School of Law). Second, IICAS coordinates and provides services for international and area studies programs in events planning and coordination. In this role, IICAS has co-sponsored campuswide panels and seminars that address critical international issues. It also encourages new programs in international and area studies, such as the European Studies initiative. Third, the IICAS director and Advisory Committee advise the senior vice chancellor for academic affairs on campus priorities and appointments in international studies. IICAS’ Office for International Academic Exchange and Protocol (IAEP) provides campus-wide services in support of UCSD’s international contacts, including international visitors, requests for affiliation agreements, and collaborative international research projects.

The Institute for Neural Computation (INC) The institute’s research projects are directed at understanding the modes of functioning of nervous systems through direct observation, experimental investigation, and modeling of neural structures; uncovering cognitive principles through psychological experimentation and parallel distributed-processing models; applying neural computation to the solution of major technological and scientific problems; and ultimately building a new generation of massively parallel computers based on the principles of neural computation.

The central premise of the INC is that these diverse research efforts cannot be adequately achieved independently; instead significant progress will come through the joint efforts of researchers in the relevant disciplines, including neuroscience, philosophy, psychology, cognitive science, physics, mathematics, economics, electrical and computer engineering, computer science and engineering, radiology, and linguistics.

Faculty from the UCSD Departments of Biology, Computer Science and Engineering, Cognitive Science, Economics, Philosophy, Neurosciences, and Radiology, and the Salk Institute for Biological Studies are actively involved in the institute’s activities. The institute has a training program in cognitive neuroscience, an active visitors program and an industrial affiliates program with ongoing joint research projects. The institute sponsors a seminar series, the annual Rockwood Memorial Lecture, and several scientific workshops and conferences annually.

The goal of the Swartz Center for Computational Neuroscience, an off-campus lab of the INC, is to observe and model how functional activities in multiple brain areas interact dynamically to support human awareness, interaction, and creativity. Research in the center involves development of computational methods and software, experimental methods and equipment; collection and analysis of human cognitive experiments; and collaborations to analyze data collected by other groups in such experiments.

The Machine Perception Laboratory, another activity of the INC, seeks to gain insights into how the brain works by developing embodied systems that solve problems similar to those encountered by the brain. The lab focuses on systems that perceive and interact with humans in real time using natural communication channels (e.g., visual, auditory, and tactile information). To this effect lab personnel are developing perceptual primitives to detect and track human faces and to recognize facial expressions.

Developing such systems requires a multidisciplinary approach that combines mathematical modeling, machine learning techniques, computational modeling of brain function, and behavioral experiments. Applications include personal robots, automatic tutoring systems, and automatic assessment of affective disorders.

Other projects include research on human movement disorders, automatic speech recognition, autism, social cognition, how sensory information is represented in the cerebral cortex, how memory representations are formed and consolidated during sleep, and how visuomotor transformations are adaptively organized.

The Institute for Nonlinear Science (INLS) promotes interdisciplinary research and graduate education in the development and application of contemporary methods in the study of nonlinear dynamical systems. Using a common mathematical language, faculty and students from disciplines as diverse as physics, mathematics, oceanography, biology and neuroscience, mechanical and electrical engineering, and economics pursue the implications of generic characteristics of nonlinear problems for their subjects. Each year the institute sponsors several long- and short-term senior visitors from the University of California and elsewhere and provides, through funds from external funding agencies, support for approximately ten graduate students to work on Ph.D. dissertations concerned with nonlinear problems. Also associated with INLS are approximately twenty full-time research scientists and postdoctoral researchers.

The core of INLS activities is composed of (1) joint research among faculty and students across disciplinary lines and (2) lecture series and working seminars designed to convey recent research progress and to stimulate new investigations. Through contracts with external agencies the INLS supports experimental, numerical, and theoretical studies of nonlinear dynamics and chaos in neurophysiology, investigations in nonlinear fluid dynamics and pattern formation, studies (jointly with the University of California, Los Angeles and Stanford University) of applications of chaos in communications, as well as in the nonlinear dynamics of granular materials.

INLS has developed joint research programs with universities, research institutes, and commercial companies in areas of common interest. It actively works with colleagues at UCLA, Stanford, Cal Tech, Argonne National Laboratory, ST Microelectronics, Time Domain Inc., and Randle Corporation. These affiliations provide new research horizons and realistic opportunities for technology transfer.

Institute for Pure and Applied Physical Sciences (IPAPS) is an interdisciplinary research unit which brings together faculty and researchers in physics, chemistry, engineering, and Scripps Institution of Oceanography. The Institute is concerned with fluids and materials. Specific subjects of research include superconductivity, ferromagnetism, semiconductor heterostructures, solid surfaces, plasma physics, hydromagnetics, turbulence, fluid mechanics, laser physics, and numerical analysis.

Within the IPAPS is the Center for Interface and Materials Science (CIMS), which emphasizes interdisciplinary collaborative research on the properties of surfaces, thin-layered composites, and novel materials, as well as their technological applications. With centralized space and equipment, CIMS brings together faculty and
The Kavli Institute for Brain and Mind (KIBM) is a virtual environment unhampered by disciplinary boundaries, providing scientists with opportunities for effective interdisciplinary integration of research and knowledge. KIBM will transcend traditional disciplinary barriers to foster new discourse among scientists, accelerating discoveries about the connections between mechanism and behavior.

KIBM's mission is to support research that further our understanding of the origins, evolution, and mechanisms of human cognition, from the brain's physical and biochemical machinery to the experiences and behaviors called the mind. KIBM leverages UCSD’s preeminence in such fields as neuroscience, biology, cognitive science, psychology, and medicine, along with the extensive resources of the broader La Jolla scientific community, to extend its position as the pacesetter in brain-mind research and education, and as a vibrant hub for dissemination of its discoveries to advance science and benefit humankind.

To achieve its mission, KIBM provides funding for innovative research to focus on ideas that bridge different levels of organization of brain and mind, and for distinguished scientists to visit San Diego to broaden our interdisciplinary research on brain-mind issues.

Faculty from UCSD’s Departments of Neurobiology, Cognitive Science, Neuropharmacology, Neuroscience, Philosophy, Psychiatry, Psychology, and Radiology; and scientists from the Salk Institute for Biological Studies, the Neurosciences Institute, and The Scripps Research Institute participate in KIBM research, lectures, and workshops.

The Sam and Rose Stein Institute for Research on Aging (SIRA) is an ORU committed to the development of the latest advances in biomedical and behavioral science knowledge, and their application to issues of successful (healthy) aging and the prevention and reduction of the burden of disability and disease in late life. Established in 1983 as the first ORU on aging within the University of California system, the unit consists of more than 120 faculty members with outstanding track records in research and encompassing a wide range of expertise. These faculty members represent multiple departments within the UCSD School of Medicine, ranging from bioengineering and family and preventive medicine to neurosciences and psychiatry. Over the past two decades, the SIRA has made major contributions to research, research training, and dissemination of information to the San Diego, national, and international community in geriatrics and gerontology. It has funded more than 75 pilot grants for junior faculty during critical stages of their careers, and funded more than 100 undergraduate and medical students interested in aging research. In 2005, the SIRA was awarded a grant from the National Institute on Aging (NIA) to conduct summer research training of medical students from around the country, with a focus on healthy aging. In this program, students are paired with experienced scientists from UCSD and provided an opportunity to conduct hands-on research by pursuing basic science, clinical, or health services projects. In addition, the SIRA has also recently targeted its pilot grant awards to junior faculty pursuing research projects pertaining to successful aging. Along with its Web site (http://sira.ucsd.edu), the SIRA publishes a monthly newsletter, Healthwise, which is distributed to more than 2,000 individuals and organizations. The monthly SIRA Public Lecture Series has resulted in over 250 public lectures provided by SIRA faculty on topics of interest to the general public, with the lectures also broadcast on UCSD-TV. The SIRA Grand Rounds and Geriatric Journal Club further enhance the multiple venues provided to educate professionals and the general public on age-related topics. Under the leadership of Dilip Jeste, M.D., director of the SIRA since 2003, the SIRA has launched comprehensive, longitudinal, bio-psycho-social studies of successful (or healthy) aging. Scientists at the SIRA believe that studying health and well-being and how and why people age without significant mental, physical, or social impairment should be at least as important as studying why people become ill. In the coming years, the SIRA will strive to become a national and international resource on successful aging and impact people’s ability to age well. For more information, contact us at 858-534-6299 or steininstitute@ucsd.edu or visit our Web site at http://sira.ucsd.edu.

Whitaker Institute of Biomedical Engineering (WIBE) (http://wibe.ucsd.edu/)

In November 1991, UCSD established the Institute for Biomedical Engineering (IBME) as an ORU. On July 1, 1999, with approval of the Governing Board of the Whitaker Foundation and the University of California, the name of the institute was changed to the Whitaker Institute of Biomedical Engineering (WIBE).

The goal of the institute is to foster research at the interfaces of engineering, biology, and medicine by promoting and coordinating interdisciplinary interactions among faculty and students. Dr. Shu Chien, University Professor of Bioengineering and Medicine, has served as the director since its inception. Starting with thirty members, the institute now has over one hundred faculty and research scientists from the Schools of Engineering, Medicine, Natural Sciences, and Biological Sciences, and the Scripps Institute of Oceanography (SIO), as well as members of neighboring institutions, including the Burgham Institute, the Salk Institute for Biological Sciences, and The Scripps Research Institute.

The WIBE facilitates academia-industry cooperation and holds regular research seminars, workshops, and symposia to promote information exchange, generate new ideas and projects, and foster interdisciplinary training of graduate students and postdoctoral fellows.

From 1991 to 1997, the WIBE was located in the Engineering Building Unit 1 (EBU1). In 1997, the WIBE and its core facilities moved into the Science and Engineering Research Facility (SERF) upon its completion. In 2003, WIBE moved its core facilities such as the confocal microscope, computer and imaging, and flow cytometry, to the newly completed Powell-Focht Bioengineering Hall, and also established new facilities for atomic force microscopy and fluorescence resonance energy transfer.

The WIBE identified “tissue-engineering science” as the first major research thrust, using the principles and methods of engineering and life sciences for the understanding of structure-function relationships in normal and pathological tissues and the development of biological substitutes to restore, maintain, or improve tissue functions. The major areas of tissue engineering science pursued in WIBE involve the heart, blood vessels, blood, lung, kidney, liver, pancreas, muscle, bone, cartilage, tendon, ligament, skin, nerve, brain, retina, and cochlea.

The WIBE enhances research in molecular and cellular bioengineering, molecular biomechanics, and targeted molecular delivery based on engineering principles. The current overarching theme is integrative bioengineering, spanning...
the spectrum from molecular to organismal levels, and integrating engineering and biomedical sciences.

WIBE research and training activities focus on cancer, diabetes, myocardial infarction, hypertension, atherosclerosis, peripheral vascular diseases, hemolytic anemias, pulmonary diseases, renal diseases, hepatobiliary diseases, inflammation, AIDS, burns, trauma, shock, retinopathies, tympanic membrane perforation, orthopedic disorders, and sports injuries. Coordinated engineering and biomedical research allows generation of quantitative information and novel investigative approaches. The goal is to improve the methods of prevention, diagnosis, and treatment of diseases.

Research activities at the WIBE are coupled with educational programs in the Department of Bioengineering. The Bioengineering Program was established in 1966 as a joint venture between the School of Medicine (SOM) and the Department of Applied Mechanics and Engineering Sciences (AMES). In July 1994, the program evolved into a Department of Bioengineering, the first established by the University of California system among its ten campuses. The Department of Bioengineering is one of five departments in the Jacobs School of Engineering (JSOE) and an affiliated department in the SOM.

Undergraduate student enrollment increased from less than 100 prior to 1987 to approximately 900 today. There are 150 graduate students, about 100 studying for Ph.D. and 50 for M.S. and M.Eng. degrees. Bioengineering graduate students win awards and fellowships at the national level. The Bioengineering Graduate Student Group holds a series of annual graduate bioengineering symposia, for which they are solely responsible, as well as the annual breakfast with industry and other industry-liaison activities. Graduate students benefit in their interdisciplinary training by having joint advisors from different fields.

UCSD has other graduate educational programs related to biomedical engineering in JSOE, SOM, Biological Sciences and Natural Science. M.D./Ph.D. training at UCSD is administered by the Medical Scientist Training Program in SOM, with active participation of bioengineering faculty and graduate students.

The UCSD Bioengineering Program has approximately thirty postgraduate fellows. Many receive joint training between bioengineering and other departments to pursue research related to biomedical engineering. These young scientists make important contributions to the academic environment at UCSD.

The Project on Glucose Monitoring and Control is a unit within the WIBE. Its goal is to develop and evaluate new approaches, both natural and engineered, to achieve ideal blood glucose control and metabolic management in diabetes and related diseases. The project brings together researchers and clinicians from bioengineering, electrical engineering, computer science, and medicine, as well as extramural collaborators. The project serves as a nucleus for information exchange, development of new sensor and medication delivery approaches, and development and evaluation of diabetes control strategies.

The Bioengineering Programs in the ten campuses in the University of California (UC) system have formed a Multi-campus Research Unit (MRU) to foster collaborations in research and education. The WIBE is the unit participating in this MRU on behalf of UCSD. In August 2004, the MRU was officially approved by the UC Office of the President as the Bioengineering Institute of California (BIC), with its headquarters at UCSD and Dr. Shu Chien as the director. BIC has held annual UC system-wide bioengineering symposia and sponsored the collaborative implementation of Web-based teaching materials on various subjects in bioengineering (http://learnbme.ucsd.edu/).

The Project on Glucose Monitoring and Control is a unit within the WIBE. Its goal is to develop and evaluate new approaches, both natural and engineered, to achieve ideal blood glucose control and metabolic management in diabetes and related diseases. The project brings together researchers and clinicians from bioengineering, electrical engineering, computer science, and medicine, as well as extramural collaborators. The project serves as a nucleus for information exchange, development of new sensor and medication delivery approaches, and development and evaluation of diabetes control strategies.

The Bioengineering Programs in the ten campuses in the University of California (UC) system have formed a Multi-campus Research Unit (MRU) to foster collaborations in research and education. The WIBE is the unit participating in this MRU on behalf of UCSD. In August 2004, the MRU was officially approved by the UC Office of the President as the Bioengineering Institute of California (BIC), with its headquarters at UCSD and Dr. Shu Chien as the director. BIC has held an annual UC system-wide Bioengineering Symposium and sponsored the collaborative implementation of Web-based teaching materials on various subjects in bioengineering.

http://wibe.ucsd.edu/

Centers

The Rebecca and John Moores UCSD Cancer Center (CC), active in the fight against cancer since 1979, is a National Cancer Institute-designated Comprehensive Cancer Center. The specific goals of the Cancer Center are to enhance the present level of basic research, increase collaborative research, increase the application of basic science to solve clinical problems through translational research, disseminate new knowledge to oncology professionals and scientists in the San Diego community, enable the biomedical industry to transfer new technology to the clinical setting, develop a strong effort in cancer prevention and control, and educate and train undergraduate and postgraduate physicians, and basic scientists. Under the auspices of a Cancer Center Support Grant from the National Cancer Institute, there are seven active program areas within the Cancer Center. These include Cancer Biology, Cancer Genetics, Cancer Prevention and Control, Cancer Pharmacology, Cancer Symptom Control, Translational Oncology, and Viral Malignancy. Shared resources at the Cancer Center include Biostatistics, Clinical Trials, Data Compilation and Analysis, Digital Imaging, DNA Sequencing, Flow Cytometry, Histology and Immunohistochemistry, Microarray, Molecular Pathology, Nutrition, Radiation Medicine, and Transgenic Mouse.

Research and educational grants support the training of postdoctoral fellows and medical students. The Clinical Trials Office coordinates clinical research trials involving cancer patients at UCSD and is the focal point for a large Oncology Outreach Network which provides state-of-the-art protocol treatment opportunities for patients in a broad geographic area. Patient care activities of the Cancer Center are located in the Combined Oncology Clinic at the Theodore Gildred Facility and in UCSD Medical Center, both located in Hillcrest, and at the Oncology Clinic of the Perlman Ambulatory Care Center and in UCSD Thornton Hospital, both located in La Jolla. Basic research activities of the Cancer Center are carried out at a variety of other locations on or adjacent to the La Jolla campus. Total
membership of the Cancer Center exceeds 260 laboratory investigators and clinical physicians from twenty-two academic departments. The research funding for Cancer Center members exceeds $180 million. Construction is currently underway on the university’s east campus to erect a five-story, 270,000-square-foot building to unite many of the center’s essential programs and services; it is scheduled for completion in early 2005.

The Center for Astrophysics and Space Sciences (CASS) is an interdisciplinary research unit established in 1979. The center brings together academic and research staff from the Departments of Physics, Chemistry, and Electrical and Computer Engineering. Research is conducted in the scientific areas of theoretical cosmology, computational astrophysics, observational cosmology, interstellar medium, star formation; solar observational and theoretical studies; X-ray and gamma-ray astrophysics; experimental and theoretical magnetospheric and space plasma physics; and cosmochemistry, including the chemistry of interstellar matter.

CASS provides a jointly shared facility which has office, laboratory, and computer space to enhance the interchange of expertise. Researchers in CASS have access to many University of California observing facilities, including the 2 Keck 10m telescopes, Lick Observatories, and Keck Telescopes, and have contributed experiments to many major NASA space missions including the Hubble Space Telescope and the Rossi X-Ray Timing Explorer. Associated with CASS are included seventeen faculty, about twenty-five Ph.D.-level research staff, twelve graduate students, and thirty technical and administrative support personnel.

The center’s facilities, faculty, and research staff are available to graduate students in the Departments of Physics, Electrical and Computer Engineering, and Chemistry who have chosen to write their dissertation on subjects of research encompassed by CASS. Graduate and undergraduate courses in astrophysics, astronomy, and space sciences are developed and taught by the academic staff of CASS. The total yearly budget is about $5 million, mostly from federal funding sources.

The Center for Comparative Immigration Studies (CCIS) is an interdisciplinary, multinational research and training program devoted to comparative work on international migration and refugee movements. Its primary missions are to conduct comparative (especially cross-national) and policy-oriented research, train academic researchers, students, and practitioners, and disseminate research conducted under its auspices to academics, policymakers, and NGOs through research seminars, conferences, publications, the Internet, and the mass media. CCIS seeks to illuminate the U.S. immigration experience through systematic comparison with other countries of immigration, particularly in Europe and the Asia-Pacific region.

The Center promotes research in the following areas: (1) the causes, dynamics, and consequences (economic, political, and sociocultural) of international migration, including low-skilled and high-skilled migrant workers and refugees; (2) the determinants and outcomes of laws and policies to regulate immigration and refugee flows; (3) transnational relationships (economic, political, cultural, ethnic) between immigrant sending and receiving countries; (4) the impact of international migration on citizenship, national identity, and ethnic relations; (5) immigrant rights, advocacy, and social services; (6) immigrant political mobilization and participation; (7) the socioeconomic, political, and cultural interactions of immigrants with native-born residents of receiving countries.

CCIS hosts visiting predoctoral and postdoctoral research fellows, and conducts an annual field research project on Mexican migration to the United States. The Center’s Forced Migration Laboratory conducts research in San Diego’s refugee communities originating in sub-Saharan Africa, the Middle East, Central America, and Southeast Asia. The laboratory promotes interaction between academic specialists in refugee studies and practitioners, aimed at identifying and disseminating best practices for refugee resettlement. The center has an active publications program consisting of monographs, anthologies, and working papers. Funding is provided by the University of California, private foundations, and international agencies.

A number of graduate research assistantships are available. Applications for graduate study in any of the disciplines covered by CCIS should be directed to the academic department in which graduate study is to be undertaken.

The Center for Human Development (CHD) is an interdisciplinary, research-centered unit designed to meet the growing needs for interdisciplinary exchange on issues related to human development. The goal of CHD is to provide a forum for interdisciplinary exchange that creates dialogue between members of diverse disciplines. The Center is organized around five structurally distinct components, but with integrated functions. Each function is designed to serve a specific set of needs and to make unique contributions to the larger enterprise. These components are the following: (1) research support and infrastructure, (2) enrichment of human development’s instructional counterparts—the undergraduate Human Development Program and a proposed interdisciplinary graduate program, (3) dissemination activities focused on but not limited to local community needs, (4) public policy analysis, and (5) assessment activities. In addition, the Center serves as a focal point for research, evaluation, and assessment activities associated with the campuswide Center for Research in Educational Equity, Assessment, and Teaching Excellence (CREATE).

The Center for Human Information Processing (CHIP) is a research facility for the study of
the neural and cognitive mechanisms underlying human perception, thought, and emotion.

CHIP has two missions—a practical one and a theoretical one. The practical goal is to help develop new therapeutic approaches for the treatment of neurological and psychiatric patients (e.g., stroke and childhood autism). The theoretical agenda is to understand the neural basis of human behavior—the question of how the activities of millions of tiny wisps of protoplasm in the brain gives rise to all the richness of our conscious experience and the complexity of our cognitive processes.

It is ironic that even though we now have a vast amount of factual information about the brain, even the most basic questions about the human mind remain unanswered. How does the human brain create and respond to art? Why do we enjoy music? How are metaphors represented in the brain? What is “body image” and why does it get distorted in Anorexia nervosa? How did language evolve? Or even more basic questions such as: How do we see color? Can we pay attention to only one thing at a time? How do we recognize faces so effortlessly?

CHIP has become well known for tackling questions such as these experimentally. CHIP has played a major role in the emergence of such new disciplines as "neuro-ethics," "neuroethology," "neuroeconomics," "neuro-aesthetics," and "neuro-epistemology."

CHIP has four divisions, each operating with the common goal of furthering our understanding of human cognitive processes and the neurological bases of these processes. The subdivisions are: brain and perception division, the cognitive processes division, the division of neuropharmacology and alternative medicine, and the language processing division.

CHIP provides facilities for visiting scholars and supports workshops, conferences, and brown-bag discussion groups centering on the theoretical and empirical issues in each of these areas.

The Laboratory of Comparative Human Cognition (LCHC): Each member of LCHC pursues forms of critical empirical research, which aim to understand how human variation can be an asset in understanding human nature in its social and historical contexts. We use a range of methods to throw into relief the contingency of culturally inflected social practices, and the implications of those practices for human development. In keeping with the critical ethos of our orientation, we often use strategies that actively engage us in the settings we investigate. We take an ecological approach, looking at systems that include mediating tools, people, representations, institutions, and activities. We are especially interested in the collective accomplishment of knowledge practices—cognition, learning, play, remembering (and forgetting), teaching, research, and the design of new social practices. Collectively, our research spans all ages. At the same time, because the institutionalization of social practices holds an important place in our studies, specific projects often take the form of educational or workplace research. In both domains, the place of discourses, economics, and technologies in the development of social relations of power, and their implications for change over time, are scrutinized. We find comparisons across these realms a powerful source of insight and theoretical development. The LCHC published fifteen volumes of The Quarterly Newsletter of the Laboratory of Comparative Human Cognition. It now publishes a journal, Mind, Culture, and Activity: An International Journal. The LCHC also coordinates an international electronic discussion (http://communication.ucsd.edu/MCA/Mail/index.html) that currently includes more than 400 researchers from sixteen countries. The LCHC conducts a weekly seminar and workshops focused on special topics, including cutting-edge research reports from members of an interdisciplinary, international group of LCHC alumni who visit periodically. Our seminars and research seminars are open to all members of the academic community and our community partners.

The Center for Iberian and Latin American Studies (CILAS) coordinates and promotes Latin American and Iberian research and service activities for faculty and students in all departments at the university and outreach programs for the San Diego community. It sponsors multi-disciplinary colloquia, conferences, projects and publications, collaborations and exchanges with Latin American institutions, as well as library expansion. The center is currently launching new initiatives in the areas of public health; democracy, civil society, and citizenship; and cultural studies. The center also hosts visiting scholars, and it awards grants and fellowships each year to promising graduate students.

The Center for Magnetic Recording Research (CMRR) (http://cmrr.ucsd.edu) is an organized research unit whose mission is to advance the science and technology that will serve as the foundation for the information-storage devices, systems, and applications of the future. This mission is achieved in partnership with private foundations, industrial and government sponsors, through the combination of an ambitious research agenda that reflects a shared vision of the participating organizations, and a research-driven program of education and professional training for the future leaders in information-storage technology.

CMRR draws upon the wide range of intellectual interests and resources at UCSD, with participating faculty from departments in the Jacobs School of Engineering, the Division of Physical Sciences, and the Graduate School of International Relations and Pacific Studies, as well as researchers in the UCSD Materials Science and Engineering Program, the San Diego Supercomputer Center, and the California Institute for Telecommunications and Information Technology (Calit2).

The center supports five endowed professorial chairs. Research programs address fundamental problems in nanoscale storage technology, including recording physics and micromagnetics, nano-patterned magnetic materials and structures, mechanical interfaces and tribology, servo control systems, signal-processing techniques, and error-control coding. Related projects explore storage mechanisms based upon novel nano-structures, optical holography, and spintronic materials. System-level research topics include object-based storage paradigms, "intelligent" storage devices, and data security.

Graduate and undergraduate student researchers, post-graduate researchers, professional scientists, and visiting scholars representing international academic institutions and industrial laboratories contribute to a research and educational environment that is dynamic and varied.

As part of the center’s mission to educate future leaders in the vital information-storage industry, faculty members teach specialized classes at the undergraduate and graduate levels that train students in the theoretical methods and experimental techniques underlying advanced magnetic recording technology. Real-world research opportunities are also available to students through academic-year and summer internships with selected sponsors. In addition, the center contributes to the continuing education of professionals in the storage industry
through regular seminars, research reviews, and focused workshops.

CMRR also supports a world-class information center for information-storage technology that provides a range of services to sponsors, resident researchers, and students. These services include licensed database searching, patent searching, document retrieval, and expedited access to proprietary technical resources.

The Center for Molecular Agriculture (CMA) promotes research and education in plant genetics and plant molecular biology with an eye to the application of that research to the improvement of crops. Crop improvement cannot any longer rely exclusively on traditional plant breeding methods but requires the application of new technologies that include but are not limited to genetics and genomics, informatics, molecular gene isolation, and plant transformation. The CMA brings together researchers from UCSD and the Salk Institute and is a resource for the entire San Diego community. It provides a focal point for interaction with the local and statewide agricultural biotechnology industry. The Center wishes to play an active role in the debate about the safe cultivation and use of genetically modified crops.

The Center for Molecular Genetics (CMG) promotes molecular genetic research and the training of graduate students and postdoctoral fellows in the biological, biochemical, and biomedical sciences. The center’s research incorporates studies in both model systems and humans. The latest techniques of gene isolation and manipulation, as well as the genetic transformation of both cells and organisms, are applied to major problems in biology and medicine. The center serves as a resource for the entire UCSD campus for molecular genetic techniques, materials, and facilities. The CMG also is host to seminar series, conferences, and workshops that encourage cross-disciplinary interactions among biomedical and bioinformatic investigators.

The Center for Networked Systems (CNS) was formally established as an organized research unit at UCSD in 2005. CNS is pursuing a portfolio of large and small multidisciplinary projects designed to develop key technologies and frameworks for networked systems. Each project attacks a critical technical problem or framework and all contribute to our technical capability to build robust, secure, manageable, and open networked systems. CNS combines its research talents and strengths in partnership with key industrial leaders—achieving the critical mass and relevant focus necessary to accelerate research progress and create key technologies, framework, and systems understanding for robust, secure networked systems and innovative new applications. CNS is focusing its initial efforts in four key research areas:

- **Robustness**: Understanding networked system properties which enable flexible connection (composition) and sharing of networks, grids, and networked system applications while ensuring predictable performance, reliability, quality, and efficiency.
- **System and Application Security**: Technologies and architectures which enable applications and networked systems to be secured or protected against unauthorized use, observation, or denial of service.
- **Manageability**: Technologies and architectures which reduce the effort required to understand, design, operate, use, and administer networked systems.
- **Application/End-User Quality**: Technologies and architectures which provide both capabilities and understanding of application performance and end-user quality of experience, particularly in large-scale and open systems.

The Center for Research in Biological Structure (CRBS) is an organized research unit that exists to provide human resources, high-technology equipment, and administrative services to researchers engaged in fundamental research on cell structure and function relationships, particularly those involved in central nervous system processes, cardiovascular networking, and muscular contraction. CRBS scientists investigate these processes through invention, refinement, deployment of sophisticated technologies, especially:

- High-powered electron microscopes that reveal three-dimensional cell structures
- State-of-the-art X-ray crystallography and magnetic resonance analysis that provide detail on protein structures at high resolution
- Laser-scanning and Confocal light microscopes that reveal molecules tagged with fluorescent markers as they traffic within cells and pass transfer signals within and between cells
- High performance computing and grid-based integration of distributed data

CRBS facilitates an interdisciplinary infrastructure in which people from biology, medicine, chemistry, and physics can work with those from computer science and information technologies in collaborative research. CRBS researchers share interests in the study of complex biological systems at many scales, from the structures of enzymes, proteins, and the body’s chemical communications network at atomic and molecular levels, to an organism’s physiology, strength, and support at cellular and tissue levels.

The CRBS infrastructure integrates resources for high-performance computing, visualization and database technologies, and the grid-integration of large amounts of archival storage data. The California Institute for Telecommunications and Information Technology (Cal-IT2) and the San Diego Supercomputer Center (SDSC) are collaborators in simulating the activity of biological systems, analyzing the results, and organizing the growing storehouse of biological information.

The aims of CRBS researchers are met in interdisciplinary research efforts of major federally funded research efforts that are presently the heart of CRBS:

- **BIRN**, the Biomedical Informatics Research Network http://www.birn.net tests new modes of large-scale biomedical science. BIRN builds infrastructure and technologies to enable large-scale biomedical data mining and refinement.
- **NCMIR**, the National Center for Microscopy Imaging Research http://www.ncmir.ucsd.edu specializes in the development of technologies for improving the understanding of biological structure and function relationships spanning the dimensional range from 5nm to 50μm.
- **NBCR**, the National Biomedical Computation Resource http://nbcr.ucsd.edu conducts, catalyzes, and advances biomedical research by harnessing, developing, and deploying forefront computational, information, and grid technologies.
- **JCSG**, the Joint Center for Structural Genomics http://www.jcsg.org creates new technologies to drive high-throughput structure determination. The Bioinformatics Core at UCSD is responsible for target selection, sample tracking, information management, structure validation and deposition, and poststructural analysis. Through these functions, the group
provides the integrated informatics backbone required for the successful operation of JCSG. CRBS researchers also have significant roles in collaborations with

- PRAGMA, Pacific Rim Applications and Grid Middleware Assembly, http://www.pragma-grid.net establishes sustained collaborations and advances the use of grid technologies in applications throughout the Pacific Region to allow data, computing, and other resource sharing.
- Optiputer, http://www.optiputer.net, involves the design and development of an infrastructure to integrate computational, storage and visualization resources over parallel optical networks using lambda switching communication mechanisms.

CRBS is an entity evolving as research evolves. It was established in 1996 to involve researchers from disciplines across UCSD, the School of Medicine, the Salk Institute for Biological Studies, Calit2, and SDSC, including bioengineering, biology, chemistry, computer science, mathematics, neurosciences, pharmacology, psychiatry, and physics, and forges interactions with biotechnology and biocomputing companies for technology transfer. Interaction, collaboration, and multiscale research produce new perspectives, reveal fruitful research topics, lead to the development of new technologies and drugs, and train a new generation of researchers in biological systems.

The Center for Research in Computing and the Arts (CRCA) is an organized research unit of UCSD whose mission is to facilitate the creation of new forms of art that arise out of the developments of digital technologies. Current focus areas include networked multimedia, virtual reality, computer-spatialized audio, and live performance techniques for computer music and graphics.

As the University of California’s oldest arts research center, CRCA pursues innovative approaches to the arts, crossing disciplinary boundaries with the humanities, engineering, and the sciences. Faculty members devise new modes of artistic practice through their liaisons with international cultural institutions, high-tech industries, and interdisciplinary collaborations.

CRCA provides the support framework for a broad range of approaches to artistic, scholarly, and technological development that is at the basis of our digitally transformed culture. We actively encourage the investigation of what constitutes the potent cultural acts of our time and the viable mechanisms that should be engaged to create them. More information about the center, its researchers, public events, and the process for engagement, can be found at http://crca.ucsd.edu.

The Center for Research in Language (CRL) emphasizes the combination of theoretical and experimental approaches to language study. The research is interdisciplinary and draws upon the fields of cognitive science, communication, communication disorders, computer science, human development, linguistics, neurosciences, psychology, and radiology.

The center’s facilities accommodate laboratory research projects by the faculty and graduate students; facilities include a number of high-performance work stations, a computer laboratory, extensive equipment for audio recording and analysis, and equipment for psycholinguistic experimentation.

Current research projects include studies of language and cognitive development in children; language impairment in children and adults; word and sentence processing in bilinguals; studies of American Sign Language; cross-linguistic studies of language structure; development of neurally inspired parallel processing models of speech perception; first-language acquisition; cross-linguistic comparisons of language acquisition and aphasia; research on the integration of grammatical analyses and theories; a project to collect large-scale text corpora in electronic form; and a study of expectancy generation in sentence processing. The center administers an NIH pre- and postdoctoral training grant, “Language, Com-munication and the Brain.” CRL has also entered into several institutional agreements with research institutions in Europe, Asia, and the Americas, providing for the exchange of personnel and support for projects of mutual interest. An ongoing workshop series presents a broad range of experimental approaches to the study of language. The center publishes a monthly electronic newsletter.

The Project in Cognitive and Neural Development is an activity of CRL. Its purpose is to provide a forum for interdisciplinary research on brain and cognition in human children, including research on the neural bases of language and communication. The studies focus on typically developing children and on children with language impairments, Down syndrome, or autism spectrum disorders. The researchers use a wide range of behavioral and neuroimaging methods to yield new information about the interaction between experience and brain development. The results of these studies have important implications for education and clinical practice. The project brings together faculty and research staff from the UCSD Departments of Cognitive Science, Human Development, Neuro-sciences, Psychology, and Radiology; the San Diego State University Departments of Psychology and the School of Speech and Hearing Sciences; and the Salk Institute for Biological Studies.

The Center for U.S.-Mexican Studies (CUSMS), established in 1979, is the nation’s largest program devoted to the study of Mexico and U.S.-Mexican relations. It supports research in the social sciences and history, graduate student training, publications, and public education activities that address the full range of problems affecting economic and political relations between Mexico and the United States.

Through its visiting researchers program, the center each year sponsors the research of predoctoral and postdoctoral scholars, who spend three to nine months in residence. Typically, people from Mexico receive over half of these awards, which are made through an open, international competition. Other visiting fellows come from Europe, Canada, East Asia, and the rest of Latin America. The center’s permanent academic staff also conducts long-term studies of Mexico’s competitiveness in the global economy, Mexican financial markets, the impact of remittances on development, political change and the administration of justice in Mexico, environmental problems in Mexico and the U.S.-Mexico borderlands, Mexican immigration to the U.S., and new forms of North American economic integration. The center publishes much of the research conducted under its auspices.

Each summer, the center conducts a seminar in studies of the United States for twenty-three to twenty-five Latin American social scientists and nonacademic professionals.

The center’s interdisciplinary Research Seminar on Mexico and U.S.-Mexican Relations, which meets throughout the academic year, features presentations of recent research by scholars from throughout the United States, Mexico, and other countries. In addition, several research workshops on specialized subjects are held each year.
The center has an active public education program, which includes frequent briefings for journalists, public officials, and community groups.

The Glycobiology Research and Training Center (GRTC) seeks to facilitate and enhance glycobiology research and training throughout California. Current faculty membership includes many UCSD faculty from several departments across the School of Medicine, SIO, and the general campus as well as adjunct faculty at nearby institutions. Affiliate members include interested scientists in the La Jolla area as well as faculty from several other UC campuses and some other California institutions of higher learning.

Glycobiology is the study of the structure, biosynthesis, and biology of sugar chains (called oligosaccharides or glycans) that are widely distributed in nature. All cells and many proteins in nature carry a dense and complex array of covalently attached glycans. These are often found on cellular and secreted macromolecules, in an optimal position to modulate or mediate events in cell-cell and cell-matrix interactions that are crucial to the development and function of a complex multicellular organism. They can also mediate interactions between organisms (e.g., between host and parasite). Simple rapidly turning-over protein-bound glycans are also abundant in the nucleus and cytoplasm, where they appear to serve as regulatory switches. The development of a variety of new technologies for exploring the structures of these glycans has recently opened up this new frontier of molecular biology.

The GRTC (http://grtc.ucsd.edu) seeks to foster interactive research in glycobiology by coordinating the availability of state-of-the-art instrumentation and expertise in the structural analysis of glycans through a Glycotechnology Core Resource (http://glycotech.ucsd.edu), increasing intellectual and collaborative interactions by organizing symposia, joint programs and seminars, coordinating joint applications for extramural support, improving access to relevant informatics, and facilitating the transfer of basic glycobiology research to practical applications. The Center also strongly emphasizes graduate, postgraduate, and medical student education in glycobiology, including contributions by the faculty to core curricula, as well as to elective courses and journal clubs.

The San Diego Supercomputer Center (SDSC) has enabled science and engineering discoveries through advances in computational science and high-performance computing for the past two decades. Data is an over-riding theme in SDSC activities. By developing and providing data cyberinfrastructure, the center acts as a strategic resource to science, industry, and academia, offering leadership in the areas of data management, grid computing, bioinformatics, geoinformatics, and high-performance computing. The mission of SDSC is to extend the reach of the scientific community by providing data-oriented technology resources above and beyond the limits of what is available in the local laboratory, department, and university environment. SDSC is an organized research unit of UCSD with a staff of scientists, software developers, and support personnel, primarily funded by the National Science Foundation (NSF). Two key SDSC projects include the Geoscience Network (GEON) and the Science Environment for Ecological Knowledge (SEEK). GEON weaves together separate informational strands into a unified fabric that enables the discovery of data relationships within and across Earth science disciplines.

SEEK uses SDSC's computational science resources to provide the computational and data-management components of UCSD's strong environmental informatics program. Reflecting the dramatic increase in humankind's ability to change the environment, the study of environmental informatics is increasingly critical to California. SDSC and UCSD are building and supporting a program that spans scales from the molecular level to entire populations, accurately modeling the impact of population on the environment.

In addition, SDSC pursues data management activities such as digital library initiatives, data-system standardization, and opportunities to impact large-scale data mining, analysis, and knowledge synthesis with academic, federal, and commercial partners. SDSC's high-end computing unit is leading a national effort to understand and deploy the most capable computational environments and to make those environments easily accessible and usable by scientific communities—locally, nationally, and globally. SDSC maintains leadership in critical strategic capabilities, including chemistry, parallel applications and performance modeling, scientific visualization, and increasing collaborations with the social sciences.

Researchers involved in SDSC's integrative biosciences area are developing projects to understand how cellular behavior emerges from the molecular level, how tissue behavior emerges from the cellular level, and so on up to the level of the organism. SDSC is collaborating in this area with the UCSD School of Medicine, the Center for Research in Biological Structure, The Scripps Research Institute, the Salk Institute for Biological Studies, and local biotech and pharmaceutical companies. SDSC also is focusing on large-scale collaborative bioscience projects worldwide using an infrastructure based on high-performance computation and analysis of massive amounts of data.

Major academic researchers around the country use the powerful computing resources at SDSC to make breakthroughs in diverse areas of science—from astronomy and biology to chemistry and particle physics.

SDSC's state-of-the-art computational resources and support include DataStar, a 15.7 teraflops (trillion floating point operations per second) supercomputer with a total shared memory of seven terabytes. DataStar is among the top supercomputers in the world. DataStar is used by researchers in academia and industry to conduct large-scale, data-intensive scientific research applications that involve extremely large data sets or have stressful input/output requirements.

SDSC collaborates with eight partners—including the National Center for Supercomputing Applications at the University of Illinois, Argonne National Laboratory, the Center for Advanced Computing Research at the California Institute of Technology, and the Pittsburgh Supercomputing Center—in the TeraGrid project. This multiyear effort builds and maintains the world's most powerful and comprehensive distributed computational infrastructure for open scientific research. The TeraGrid integrates more than 110 teraflops of computing power through a cross-country network backbone that operates at 40 gigabits per second. The storage facilities at SDSC alone include more than one petabyte of high-speed disk and six petabytes of archival storage capacity, one of the world's largest academic storage installations.

SDSC hosts huge digital collections, including visualizations of earthquake simulations, disaster-recovery records, astronomical images from the 2-Micron All Sky Survey, images from the Art Museum Image Consortium, Chinese text from the Pacific Rim Digital Library Alliance, and tomographic images of the human brain. The
data technology is also being used to prototype persistent digital archives for the National Archives and Records Administration and other government agencies with huge data archives.

The Cooperative Association for Internet Data Analysis (CAIDA) at SDSC engages Internet providers, vendors, and users in engineering and technical collaborations to promote a more robust, scalable Internet infrastructure. CAIDA works with the community to develop and transfer tools and technologies that provide engineering and other insights relating to the operation and evolution of the Internet infrastructure. CAIDA works with providers and researchers to refine Internet traffic metrics, foster shared research environments, and encourage the development and testing of advanced networking technologies.

SDSC’s Applied Network Research group is currently conducting two Internet research projects. The first involves the National Laboratory for Applied Network Research (NLANR), an NSF-supported collaboration to provide technical, engineering, and traffic analysis support for NSF’s High Performance Connections sites and the nation’s high-performance network infrastructure.

The second activity of the Applied Network Research group is the High Performance Wireless Research and Education Network (HPWREN), a collaboration with SIO that created a noncommercial, prototype, high-performance, wide-area wireless network in San Diego County.

Projects

The goal of the African and African-American Studies Research Project (AAASRP) is to facilitate faculty, postgraduate, and graduate research in the areas of Africa and African diaspora studies in the social sciences and the humanities, and to foster the comparative, cross-national, and interdisciplinary dimensions of research, with a core group of scholars drawn from several fields in the social sciences and humanities. These research efforts are linked directly to larger local and international community concerns.

The project sponsors visiting scholars, focused research groups, a seminar, and symposia. Faculty from seven university departments are involved. The project oversees the African Studies Minor. The project is also part of the UC Systemwide Consortium of African Studies Programs and the national Association of African Studies Programs.

It provides the basis for the establishment of an organized research unit on African and African-American Studies at a later time. For more information, contact the AAASRP office at (858) 822-0265.

The Project for Explaining the Origin of Humans is a broad-based multidisciplinary coalition of investigators in the La Jolla area (from UCSD as well as institutions from the surrounding area and around the world) who are interested in defining and explaining the evolutionary origins of humans and in generating testable hypotheses and new agendas for research regarding this matter. Areas of current interest include primate genetics and evolution, paleoanthropology and hominid origins, mammalian and primate neurosciences, primate biology and medicine, the roles of nature and nurture in language and cognition, human and primate society and culture, comparative primate reproductive biology, geographic, environmental and climatic factors in hominid evolution, as well as general theories for explaining humans. The group includes UCSD faculty from the Departments of Anthropology, Biology, Chemistry and Biochemistry, Cognitive Science, Linguistics, Medicine, Neurosciences, Oceanography, Pathology, and Psychology. A listing of participants can be found at http://origins.ucsd.edu.

The Project In Econometric Analysis (PEA) is concerned with the analysis of economic and financial data and with techniques for modeling relationships between economic variables and testing economic theories. As economic variables have properties not generally found in other fields, standard procedures from mainstream statistics are often not appropriate. The field of econometrics has been developed to deal with these issues. Its importance is indicated by its effect on the methodologies in other social sciences, such as political science and empirical history, and the fact that several Nobel Prize winners in economics have been econometricians. In fact, the 2003 Nobel Prize in economics was awarded to Clive Granger and Robert Engle, two of the founders of the PEA.

The Project in Econometric Analysis (PEA) supports the work of an active group of researchers and provides opportunities for productive interaction among faculty and students. Areas of active research include financial econometrics, non-linear time series modeling, properties of neural network models, the theory of economic forecasting and various actual applications including evaluations of models and forecasts in finance and economics. The PEA allows links with workers from other universities in this and other countries. In 2000–2001 and 2001–2002 the project had visitors from Europe, Asia, North America, and Australia; some were senior and some were pre- and post-doctoral students. Faculty members and graduate students associated with the project presented their research at workshops and conferences worldwide. In addition, PEA facilitates the submission of grant proposals to outside agencies.

The Project in Geometry and Physics (PGP), established in 1987, provides opportunities for increased collaboration between mathematicians and physicists. The project hosts several scientific meetings each year and also sponsors a number of research seminars with distinguished scientists from inside and outside the UCSD community.

The Project on International Affairs (PIA) is one of the international programs within the Institute on International, Comparative, and Area Studies, focusing on economic and political interactions between states. The project serves to promote interdisciplinary research on international politics and international economics; disseminate current research to UCSD faculty and students; provide a multidisciplinary focal point for research and programming; and enhance campus and community understanding of international political and economic affairs.

The Project on Responsible Conduct of Research Education (RCR Education Project) was created in 2003 to promote RCR education both at UCSD and nationally. To achieve this goal, the RCR Education Project facilitated the formation of the Responsible Conduct of Research Education Committee (RCREC), a special interest focus for the Association for Practical and Professional Ethics. The RCREC provides leadership to the research community in promoting education in the responsible conduct of research.

The RCR Education Project and the RCREC are intended to be a broad-based coalition, representing medical, social, and behavioral research, and public and private institutions. Through these collaborations, the RCR Education Project will lay the foundations for the RCREC to advance programs of RCR education, develop RCR education standards, certify or identify programs that meet those standards, facilitate the exchange of RCR education programs among research institutions, and develop outcome measures to evaluate the
success of the endeavor. Specific objectives of the RCREC are to: 1) promote RCR education as a central responsibility for any institution involved in research; 2) develop clear definitions for RCR education, including goals, standards, competencies, and methods for evaluating the effectiveness of programs; 3) assist institutions, RCR programs, and investigators in identifying and developing RCR education curricula and resources; 4) facilitate discussion and collaboration among federal agencies, public and private research institutions and organizations, professional societies, and businesses in developing, coordinating, and sharing new and existing RCR educational programs within the research community; and (5) identify and overcome barriers to fulfilling RCR educational needs and requirements.

The Public Policy Research Project was established to facilitate interdisciplinary research and educational opportunities in public policy and business-government interaction. Through conferences, focused research groups, and lecture series, the project acts as a catalyst for interaction among economists, political scientists, moral philosophers, historians, cognitive scientists, anthropologists, and sociologists. The project supports programs that: (1) help faculty obtain funding that are engaged in policy-related research, (2) conduct research apprenticeships for doctoral students working on research projects dealing with issues and processes of public policy, and (3) provide technical support and arrange faculty-proposed conferences within the scope of the project’s mission statement.

Natural Reserve System (NRS)

The Natural Reserve System (NRS) was founded to establish and maintain significant examples of California’s diverse ecosystems and terrain. These reserves are used for teaching and research in all disciplines, from geology and environmental sciences to anthropology and art. Faculty and students of the University of California and other institutions are encouraged to use any of the thirty-four reserves in the system for serious academic pursuits. The San Diego campus administers the following four reserves:

- **Dawson Los Monos Canyon Reserve:** This 218-acre reserve is located in the cities of Carlsbad and Vista in north coastal San Diego County. Its young, stream-cut valley contains a year-round creek with precipitous north- and south-facing slopes. The major habitat types are Southern Riparian Woodland, Diegan Coastal Sage Scrub, Perennial Coastal Stream, Coast Live Oak Woodland, Mixed Grassland of native bunchgrass and introduced annuals, and South Coastal Mixed Chaparral. This area is also of unique and significant historical and archaeological value. A small field station provides opportunities for small laboratory classes, overnight stays, and on-site research.

- **Elliott Chaparral Reserve:** Located ten miles to the east of campus, this 107-acre reserve, adjacent to the large expanse of Marine Corps Air Station Miramar that is undeveloped, features Chamise Chaparral typical of the Southern California coastal plain and a large stand of mature planted eucalyptus. It is readily available during a normal three-hour lab period or for term paper-length field studies as well as for more lengthy projects.

- **Kendall-Frost Mission Bay Marsh Reserve:** This sixteen-acre reserve, together with the city of San Diego’s contiguous Northern Wildlife Preserve, constitute the last remaining forty acres of tidal salt marsh on Mission Bay and one of the few such wetlands remaining in Southern California. It is recognized for the habitat it provides for several rare and endangered birds including the light-footed clapper rail, Belding’s savannah sparrow, and the California least tern, as well as many resident and migratory shorebirds and waterfowl, and several fish species. An on-site trailer houses limited residential and laboratory facilities, and extensive facilities exist within ten miles on the UCSD main campus and at the Scripps Institution of Oceanography. There are opportunities for studying restoration ecology of upland and tidal habitats.

- **Scripps Coastal Reserve:** This reserve consists of disjunct shoreline and cliff-top (or “knoll”) portions. The shoreline part consists of the 67 acre San Diego Marine Life Refuge extending seaward 1,000 feet from the high tide line, and surrounding the Scripps Institution of Oceanography (SIO) Pier. Habitats include sandy beach and submerged plain, to 60 feet below mean lower low water, seasonally exposed cobble beach, rocky reef, pier pilings, and upper submarine canyon ledges. Habitats of the clifftop knoll and canyons include coastal sage scrub, maritime succulent scrub, southern coastal mixed chaparral, and disturbed grassland. The latter is particularly suitable for ecological restoration experiments.

This reserve is enhanced by the availability of the laboratories and facilities of adjacent SIO and the main San Diego campus.

Campuswide Research Facilities

Academic Computing Services
See page 93.

San Diego Supercomputer Center
See page 96.

The UCSD Libraries
See page 100.
The FlexMBA is designed to meet the educational needs of working professionals who have gained or anticipate gaining managerial or leadership roles in their organizations. The Full-Time M.B.A. is designed for those in early or mid-career seeking career growth or change.

The Rady School also offers non-degree executive education for executives and working professionals as well as a limited number of undergraduate and graduate courses designed for students who are seeking some exposure to business disciplines while majoring in other degree areas. These courses focus on project management, business practices, and bringing innovation to the marketplace. Information on course offerings is available on the school’s Web site.

Faculty

Under the leadership of founding Dean Robert S. Sullivan, the Rady School is attracting faculty members who are world-renowned experts in their respective fields. Information on faculty is available on the school’s Web site.

For further information, refer to the Rady School of Management Web site at http://rady.ucsd.edu/ or contact M.B.A. Admissions at (858) 534-0864 or by e-mail at MBAAdmissions@ucsd.edu.
The School of Medicine

The faculty of the School of Medicine is committed to nurturing and reinforcing the attributes that are important in the making of a doctor—dedication, compassion, and intellectual curiosity.

The goal of the medical school curriculum, clinical experience, and faculty-student interactions is to develop well-trained, objective, and conscientious physicians prepared for the changing conditions of medical practice and continuing self-education. Students acquire understanding of the basic medical sciences and clinical disciplines and are encouraged to choose their own areas of interest for eventual development into careers in the broadly diversified medical community. Required course offerings are designed to provide students with a broad background suitable for general practice, and all students are trained in the delivery of primary care.

The School of Medicine accepted its charter class in 1968. The founding faculty drew upon the strength of UCSD’s existing basic science departments rather than recreating such departments for the new school. Today this unique relationship continues with faculty from campus departments joining faculty from the School of Medicine’s fourteen departments in teaching the core courses in medicine. Both preclinical and clinical courses are taught by UCSD faculty physicians who also have active patient case-loads. Courses are continually evaluated and updated by interdisciplinary course committees.

An honors, pass, fail grading system puts the emphasis on mastering the knowledge students need to practice medicine. The honors grade is not used in the first quarter of year one (only) to allow students to make a smooth transition to medical school. The honors grade is not used to rank the class numerically but to acknowledge students who have demonstrated superior academic performance. Students receive individual evaluations written by the faculty.

Students at the UCSD School of Medicine are encouraged to explore a variety of clinical, laboratory, and community-based experiences.

UCSD facilities are the main sites for clinical education and are licensed for 500 beds. The majority of UCSD inpatients are admitted at UCSD Medical Center-Hillcrest, where a number of Regional Care Centers are located, including San Diego and Imperial Counties’ only Level I Trauma Center. The UCSD Ambulatory Care Center is located across the street from the hospital tower.

In July 1993, a 120-bed general medical-surgical hospital, The John M. and Sally B. Thornton Hospital, opened at UCSD Medical Center-La Jolla which is located on the La Jolla campus. Adjacent to the Thornton Hospital is the Perlman Ambulatory Care Center and the Shiley Eye Center.

The Veterans Affairs Medical Center, located adjacent to the School of Medicine campus in La Jolla, also is an important training site. The UCSD School of Medicine’s partnership with Children’s Hospital and Health Center enables students to treat a significant number of the region’s pediatric patients.

Outpatient experiences include private medical practice, community clinics, and home visitation programs. Students see patients in many of San Diego’s most modern hospitals and outpatient facilities, as well as in some of the disadvantaged neighborhoods of San Diego and Baja California, Mexico.

In all of their clinical experiences, UCSD medical students have an opportunity to see how physicians work as a team with physician assistants, nurses, nurse practitioners, laboratory technicians, social workers, physical and occupational therapists, pharmacists, and other health care professionals to provide health care. In many cases they also can see how the trend toward “managed care” affects both patients and the practice of medicine.

There are many opportunities for students to participate in cutting-edge research in laboratories of UCSD School of Medicine researchers, as well as in the laboratories of scientists from the general UCSD campus, the Veterans Affairs Medical Center, The Salk Institute, Scripps Clinic and Research Foundation, and some of the many private biomedical research companies in the region.

The medical school curriculum provides flexibility so that the individual needs and goals of each student can be met. The curriculum is divided into two major components: the core curriculum and the elective programs.

Elective opportunities constitute a substantial portion of classes during the first two years and close to 50 percent during the last two years. The core curriculum of the first two years is designed to provide each entering student an essential understanding of the fundamental disciplines underlying modern medicine. The core curriculum of the last two years is composed of the major clinical specialties taught in hospital settings, outpatient situations, and relevant extended-care facilities.

A Medical Scientist Training Program provides the opportunity for a limited number of students to earn both the M.D. and Ph.D. degrees over a six- to seven-year period of study.

The School of Medicine cooperates with the San Diego State University Graduate School of Public Health (SDSU-GSPH) in assisting interested students who wish to pursue a Master’s Degree in Public Health (M.P.H.) while enrolled in medical school. Students can also receive an M.P.H. at other schools of public health, although a formal agreement exists only with the SDSU-GSPH.

The UCSD School of Medicine and the Department of Family and Preventive Medicine jointly offer a Master of Advanced Studies (MAS) in the Leadership of Healthcare Organizations. The degree program permits a student to complete the Doctor of Medicine (M.D.) curriculum and studies leading to a Master’s Degree in the Leadership of Healthcare Organizations in a total of five years.

Each student is expected to develop an individualized program of independent study in conjunction with a faculty member and to describe it in writing.

Freshman student enrollment is 122, and a total of 540 medical students were enrolled in 2006-07.

Selection Factors

Selection is based upon the nature and depth of scholarly and extracurricular activities undertaken, academic record, performance on the MCAT, letters of recommendation, and personal interviews.

The Admissions Committee gives serious consideration only to those applicants with above
average GPA values and MCAT scores. The School of Medicine is seeking a student body with a broad diversity of backgrounds and interests reflecting our diverse population.

A complete catalog and information on the foregoing programs are available on the school’s Web page http://meded.ucsd.edu/Catalog/.

For additional information about the UCSD School of Medicine and its programs, write or call:

The Office of Admissions
School of Medicine, 0621
University of California, San Diego
9500 Gilman Drive
La Jolla, California 92093-0621
(858) 534-3880
somadmissions@ucsd.edu
http://meded.ucsd.edu/admissions

Programs for Prospective Medical Students

UCSD offers no special premedical major. An undergraduate student considering medicine as a career may choose any major or concentration area leading to the bachelor’s degree, provided that he or she elects those additional courses which the medical school of his or her choice may require for admission. Admission requirements differ among medical schools, but most desire a solid foundation in the natural sciences—biology, chemistry, physics, mathematics—and a broad background in the humanities, social sciences, and communication skills. A premedical/dental advisory program is available through the campus-wide Career Services Center.

Masters or Advanced Studies (MAS) in Leadership of Healthcare Organizations

The UCSD Department of Family and Preventive Medicine in the School of Medicine offers a Master of Advanced Studies (MAS) in the Leadership of Healthcare Organizations. The degree is designed to meet the needs of health care professionals who have clinical and executive or management responsibilities. All courses will be held in the late afternoon, evenings, and weekends for the convenience of working professionals. Extension’s EdVantage provides administrative support for the program. Further information on the degree program may be obtained by contacting UCSD.

The Skaggs School of Pharmacy and Pharmaceutical Sciences

The newest health sciences professional school on the UCSD campus is the Skaggs School of Pharmacy and Pharmaceutical Sciences. Approved by the Regents in Summer 2000, the charter class of students was enrolled in fall 2002 and graduated in June 2006. The school provides an innovative curriculum dedicated to educating pharmacy practitioners to provide the pharmaceutical care needs of our growing and increasingly diverse society. The goal of the doctor of pharmacy curriculum is to prepare students to be leaders in the profession of pharmacy and to provide them with the tools to practice effectively in a wide variety of currently existing and potential roles in academia, hospitals and clinics, long-term facilities and home care, government, health policy, the pharmaceutical industry, and innovative community pharmacy practice settings. It is expected that the emerging fields of pharmacogenomics and bioinformatics will have a profound influence on the future practice of pharmacy, and that graduates of the UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences will be in an excellent position to bring these advances to the patient care setting.

Future growth in enrollment in the Skaggs School of Pharmacy and Pharmaceutical Sciences is planned for sixty students in the class entering in 2007, with steady-state enrollment of sixty students in each class by 2009. The recently-completed Pharmaceutical Sciences Building and Health Sciences Education Center house the administrative, teaching, and research facilities of the school.

Rather than duplicate existing departments on the UCSD campus and in the School of Medicine, the faculty of the school draw upon the strengths of the basic and biomedical science departments that have provided an outstanding education to undergraduate, graduate, and medical students for more than thirty years. Faculty from campus departments and the School of Medicine join Skaggs School of Pharmacy and Pharmaceutical Sciences faculty in teaching the preclinical courses in the curriculum. Clinical faculty, who are active practitioners in a variety of medical center, community, and industry locations, provide both classroom instruction as well as student guidance during advanced pharmacy practice clinical experiences.

The curriculum is dynamic, under constant review, and using faculty and student input, updated by interdisciplinary faculty committees. Presently, the four-year curriculum leading to the doctor of pharmacy degree is designed as follows:

In the first year, students are enrolled in courses in anatomy and histology, pharmaceutical chemistry, pharmacodynamics, bioinformatics, law and ethics, biostatistics, and an introduction to the practice of pharmacy. Students gain their first exposure to patient care by working alongside medical students in UCSD-sponsored, student-run free medical clinics in San Diego. In the second year, pharmacy and first-year medical students are concurrently enrolled in courses that serve as a foundation for understanding disease and disease management. In this unique environment, pharmacy and medical students study cell biology and biochemistry, organ physiology, pharmacology, endocrinology, reproduction, and metabolism. This is an additional step in the development of the collegial relationship the students will encounter in the patient-care setting. Courses specific to the needs of pharmacy students, such as additional course work in pharmacology, drug study design, laboratory medicine, health policy, and pharmacy practice, are also provided. The third year focuses on the application of the information learned in the previous years, with additional course work in microbiology, pharmacology, drug information, pharmaceutical chemistry, pharmaceutics, and pharmacogenomics. A major course sequence in drug therapeutics begins in the spring of the second year and continues through the third year. This course begins the process of applying the knowledge gained in the basic sciences to the clinical management and care of patients. The fourth year is devoted entirely to advanced pharmacy practice clinical experiences, where students learn to apply the skills and knowledge obtained in the curriculum to a variety of patient care settings. Many of these advanced practice experiences take place at UCSD-affiliated medical centers, such as UCSD Medical Center-Hillcrest, UCSD Medical Center—La Jolla, the Veterans Administration Medical Center in La Jolla, and the San Diego Rady Children’s Hospital and

The Office of Admissions
School of Medicine, 0621
University of California, San Diego
9500 Gilman Drive
La Jolla, California 92093-0621
(858) 534-3880
somadmissions@ucsd.edu
http://meded.ucsd.edu/admissions

Web page http://meded.ucsd.edu/Catalog/.

University of California, San Diego
9500 Gilman Drive
La Jolla, California 92093-0621
(858) 534-3880
somadmissions@ucsd.edu
http://meded.ucsd.edu/admissions

Programs for Prospective Medical Students

UCSD offers no special premedical major. An undergraduate student considering medicine as a career may choose any major or concentration area leading to the bachelor’s degree, provided that he or she elects those additional courses which the medical school of his or her choice may require for admission. Admission requirements differ among medical schools, but most desire a solid foundation in the natural sciences—biology, chemistry, physics, mathematics—and a broad background in the humanities, social sciences, and communication skills. A premedical/dental advisory program is available through the campus-wide Career Services Center.

Masters or Advanced Studies (MAS) in Leadership of Healthcare Organizations

The UCSD Department of Family and Preventive Medicine in the School of Medicine offers a Master of Advanced Studies (MAS) in the Leadership of Healthcare Organizations. The degree is designed to meet the needs of health care professionals who have clinical and executive or management responsibilities. All courses will be held in the late afternoon, evenings, and weekends for the convenience of working professionals. Extension’s EdVantage provides administrative support for the program. Further information on the degree program may be obtained by contacting UCSD.

The Skaggs School of Pharmacy and Pharmaceutical Sciences

The newest health sciences professional school on the UCSD campus is the Skaggs School of Pharmacy and Pharmaceutical Sciences. Approved by the Regents in Summer 2000, the charter class of students was enrolled in fall 2002 and graduated in June 2006. The school provides an innovative curriculum dedicated to educating pharmacy practitioners to provide the pharmaceutical care needs of our growing and increasingly diverse society. The goal of the doctor of pharmacy curriculum is to prepare students to be leaders in the profession of pharmacy and to provide them with the tools to practice effectively in a wide variety of currently existing and potential roles in academia, hospitals and clinics, long-term facilities and home care, government, health policy, the pharmaceutical industry, and innovative community pharmacy practice settings. It is expected that the emerging fields of pharmacogenomics and bioinformatics will have a profound influence on the future practice of pharmacy, and that graduates of the UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences will be in an excellent position to bring these advances to the patient care setting.

Future growth in enrollment in the Skaggs School of Pharmacy and Pharmaceutical Sciences is planned for sixty students in the class entering in 2007, with steady-state enrollment of sixty students in each class by 2009. The recently-completed Pharmaceutical Sciences Building and Health Sciences Education Center house the administrative, teaching, and research facilities of the school.

Rather than duplicate existing departments on the UCSD campus and in the School of Medicine, the faculty of the school draw upon the strengths of the basic and biomedical science departments that have provided an outstanding education to undergraduate, graduate, and medical students for more than thirty years. Faculty from campus departments and the School of Medicine join Skaggs School of Pharmacy and Pharmaceutical Sciences faculty in teaching the preclinical courses in the curriculum. Clinical faculty, who are active practitioners in a variety of medical center, community, and industry locations, provide both classroom instruction as well as student guidance during advanced pharmacy practice clinical experiences.

The curriculum is dynamic, under constant review, and using faculty and student input, updated by interdisciplinary faculty committees. Presently, the four-year curriculum leading to the doctor of pharmacy degree is designed as follows:

In the first year, students are enrolled in courses in anatomy and histology, pharmaceutical chemistry, pharmacodynamics, bioinformatics, law and ethics, biostatistics, and an introduction to the practice of pharmacy. Students gain their first exposure to patient care by working alongside medical students in UCSD-sponsored, student-run free medical clinics in San Diego. In the second year, pharmacy and first-year medical students are concurrently enrolled in courses that serve as a foundation for understanding disease and disease management. In this unique environment, pharmacy and medical students study cell biology and biochemistry, organ physiology, pharmacology, endocrinology, reproduction, and metabolism. This is an additional step in the development of the collegial relationship the students will encounter in the patient-care setting. Courses specific to the needs of pharmacy students, such as additional course work in pharmacology, drug study design, laboratory medicine, health policy, and pharmacy practice, are also provided. The third year focuses on the application of the information learned in the previous years, with additional course work in microbiology, pharmacology, drug information, pharmaceutical chemistry, pharmaceutics, and pharmacogenomics. A major course sequence in drug therapeutics begins in the spring of the second year and continues through the third year. This course begins the process of applying the knowledge gained in the basic sciences to the clinical management and care of patients. The fourth year is devoted entirely to advanced pharmacy practice clinical experiences, where students learn to apply the skills and knowledge obtained in the curriculum to a variety of patient care settings. Many of these advanced practice experiences take place at UCSD-affiliated medical centers, such as UCSD Medical Center-Hillcrest, UCSD Medical Center—La Jolla, the Veterans Administration Medical Center in La Jolla, and the San Diego Rady Children’s Hospital and...
Medical Center. Many other health care facilities throughout the region are also utilized. Not only do students participate in the care of patients in many of the most modern medical facilities in the San Diego area, but they also learn to appreciate the challenges faced in providing care to some of the less advantaged citizens of the region. Both classroom elective courses and advanced practice experience electives provide flexibility for the student to explore the many facets of the profession, and provide opportunity for the curriculum to meet a particular student's educational goals and objectives.

The San Diego region ranks third in the nation in the development of new biotechnology, and the school is developing relationships with this burgeoning biotechnology industry. There are advanced practice and research experiences available to students in these exciting new areas of practice.

The common required and elective course work taken by pharmacy and medical students, and advanced practice clinical experiences, where medical and pharmacy students work closely together, have been created to foster the development of cooperation between the professions as well as to develop an appreciation for the unique roles that each professional provides in the care of patients.

Selection Factors

The Admissions Committee seeks a diverse pool of applicants who have demonstrated strong academic ability in both the required prerequisite course work and in their entire academic career, and who have a wide breadth of extracurricular interests. In addition, the committee selects applicants for matriculation who have demonstrated the personal qualities of intelligence, maturity, integrity, and dedication to the ideal of service to society, and who are best suited for meeting the educational goals of the school. The ability to express oneself clearly in both oral and written English is essential. The School of Pharmacy and Pharmaceutical Sciences is committed to admitting students with diverse cultural, economic, and social backgrounds. Although grade-point average is an important factor, it is not the sole criterion for acceptance. In addition to intellectual and academic competence, the Admissions Committee considers communication skills, leadership ability, community service, and health care-related experience. Preference for admission is afforded to California residents when all other selection factors are equal, and consideration at that juncture is given only to applicants who are either United States citizens or permanent residents.

All students are enrolled in the full-time, four-year professional program leading to the doctor of pharmacy degree (Pharm.D.). No students in advanced standing, transfer students from other schools of pharmacy, or part-time students are accepted. All students enter at the first-year level.

The faculty of the Skaggs School of Pharmacy and Pharmaceutical Sciences is implementing a seven-year B.S./Pharm.D. program for UCSD undergraduates and a Pharm.D./Ph.D. program. Information on each of these programs is available on the School of Pharmacy Web site.

For additional information about the UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, visit the school Web site, write, call or e-mail:

University of California, San Diego
Skaggs School of Pharmacy and Pharmaceutical Sciences
9500 Gilman Drive, MC 0657
La Jolla, California 92093-0657
(858) 822-4900
General E-mail: pharmacy@ucsd.edu
Admissions Office E-mail: sppsadmissions@ucsd.edu
http://pharmacy.ucsd.edu
For more than a century, Scripps Institution of Oceanography has been dedicated to providing exceptional educational opportunities. Scripps’s excellence in scientific research is accompanied by its leadership in education, with undergraduate and graduate courses in a variety of marine and earth science disciplines.

Scripps is one of the oldest, largest, and most important centers for marine and earth science research, education, and public service in the world. Its preeminence in marine and earth sciences is reflective of its excellent programs, distinguished faculty and research scientists, and outstanding facilities.

Scripps was founded in 1903 as an independent biological research laboratory, which became an integral part of the University of California in 1912. At that time, the laboratory was given the Scripps name in recognition of donors Ellen Browning Scripps and E. W. Scripps.

In all, Scripps occupies fifty-five buildings on 170 acres along the Pacific coastline below the mesa on which UCSD is located. Its staff numbers approximately 1,000, including more than 200 graduate students. The institution’s annual expenditures exceed $133 million.

Research at Scripps encompasses physical, chemical, biological, geological, and geophysical studies of the oceans. Among the hundreds of research programs that may be under way at any one time are studies of air-sea interaction, climate prediction, earthquakes, the physiology of marine animals, marine chemistry, beach erosion, the marine food chain, the ecology of marine organisms, the geological history of the ocean basins, and the multidisciplinary aspects of global change and the environment.

Scripps operates four ships and one floating platform for oceanographic and earth science research in support of programs by Scripps researchers as well as oceanographers from other institutions throughout the world. Cruises range from local, limited-objective trips to far-reaching expeditions in the world’s oceans.

Investigations supported by contracts and grants, primarily federal, cover a wide latitude of marine research. Scripps is organized into three research administrative sections: biology, earth sciences, and oceans and atmosphere.

These presently are divided into five research divisions: Climate Research Division, Geosciences Research Division, Integrative Oceanography Division, Marine Biology Research Division, and Physical Oceanography Research Division. The diversity of Scripps’s work is extended by special purpose laboratories and interdisciplinary centers: Marine Physical Laboratory, Center for Marine Biotechnology and Biomedicine, Center for Atmospheric Sciences, Center for Marine Biodiversity and Conservation, Center for Observations, Modeling, and Prediction at Scripps, Center for Earth Observations and Applications, and Scripps Genome Center.

The La Jolla laboratory of the University of California’s Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics, and UC’s California Space Institute, although organizationally separate, are closely affiliated with Scripps.

Other specialized groups are also located on campus. The California Sea Grant College Program, a systemwide program with thirty to fifty projects and approximately forty trainees supported on California campuses and in several specialized research units, is headquartered at Scripps. The Southwest Fisheries Science Center (SWFSC), located near the Scripps campus, is one of thirty major laboratories and centers operated by the National Marine Fisheries Service, a component of the National Oceanic and Atmospheric Administration of the U.S. Department of Commerce. Also, the Inter-American Tropical Tuna Commission is colocated at SWFSC.

A ship operations and marine technical support unit provides essential services and facilities to all research units of the institution.

The Birch Aquarium at Scripps provides a wide variety of educational courses in the marine sciences for students from primary grades to high school level. UCSD students may become involved in work-study programs or serve as volunteers or aquarist trainees. A limited number of students can be accommodated for a four-unit course in independent study by arrangement with a faculty member and the aquarium director. The facility’s resources include natural habitat groupings of marine life from local and Gulf of California waters; many of these marine groups are on display in the aquarium. The museum exhibits present basic oceanography and earth sciences concepts and explain research undertaken at Scripps. The aquarium is open from 9:00 a.m. to 5:00 p.m. daily.

Scripps’s educational program includes undergraduate and graduate education. Approximately ninety professors are complemented by an academic staff of more than 200 research scientists, many of whom have a regularly scheduled role in the instructional program. Scripps offers an undergraduate degree (B.S.) in Earth Sciences, a contiguous B.S./M.S. degree in Earth Sciences, and an interdisciplinary minor in Marine Science. Many Scripps scientists also teach courses in undergraduate programs such as biology, engineering, and environmental systems. Scripps’s graduate program has grown hand in hand with the research programs. Graduate students are typically admitted as candidates for a Ph.D. degree. All educational activities are located in the Scripps Department. Graduate educational programs are divided into eight curricular groups: biological oceanography, physical oceanography, marine biology, geological sciences, marine chemistry and geochemistry, geophysics, climate sciences, and applied ocean sciences.

Graduate students enter oceanography with extremely varied interests and backgrounds—naturalists, explorers, engineers, and theorists from the United States and many foreign countries. One thing they have in common, however, is that they come to Scripps with a very strong understanding of science. Most students select positions as research assistants when they enter the program—a practice that not only gives them an early involvement with research, but also provides salaries. The student-faculty ratio at Scripps is about two to one; consequently, classes are small, and the student has the opportunity to work closely with his or her thesis advisor. Oceanography and earth sciences are interdisciplinary fields that allow for informal exchange and interaction on a variety of levels.

While at Scripps, students have for their use some of the nation’s most sophisticated and complete special laboratories and facilities for oceanographic and earth science studies covering a wide range of disciplines from biology and
Graduate School of International Relations and Pacific Studies

The Graduate School of International Relations and Pacific Studies (IR/PS), at the University of California, San Diego, was created in 1986 as the University of California’s only professional school of international affairs. The school is unique in its geographical focus on the Pacific (the Americas and Asia). IR/PS is the only professional program in the United States to concentrate exclusively on the diverse political and economic systems of this region.

The school’s programs have been developed in response to the increasing importance of the Pacific in global economic and political affairs. When IR/PS was founded, the globe was still locked in the Atlantic-centric world of the Cold War. Today, we see the emergence of nations such as China, Brazil, Korea, Singapore, and Mexico as important players in a globalized world. As a result, professionals who can understand and work in complex international environments are needed in both the public and private sectors. While previously looking to Europe as the site of its primary commercial, financial, and strategic interests, the United States is now shifting its attention westward toward the Pacific—a likely source of both extraordinary prospects and substantial challenges in this century.

The school’s primary objectives are to prepare students with an interest in this region for positions of leadership in business, government, journalism, diplomacy, public service, and other fields; to serve as a center of excellence for research on regional economic, political, social, technological, and security issues; and to promote dialogue on Pacific region issues of common concern.

1. The degree programs provide students with professional training for careers in international affairs and management, including jobs in industry, government, international organizations, foundations, academia, and research institutes. Students receive broad training across professional areas, enabling those seeking careers in government to appreciate the interests of the private sector and those planning business careers to understand decision-making in public organizations. The program combines core course work in applied social sciences with professional subjects with courses, language training classes, and regional studies to provide students with the skills and knowledge to work effectively on Pacific region issues in the private, public, or nonprofit sectors.

2. IR/PS serves as a center for research on issues of common concern to the nations of the Pacific. Since the region has become a focal point of economic and security relations, the demand for information and research centered on this dynamic region has increased. Consequently, IR/PS is home to several renowned research institutes and programs, including the Institute on Global Conflict and Cooperation, the Center for U.S.-Mexican Studies, the new Center on Pacific Economies, and the Information Storage Industry Center. In addition, the school supports collaborative relationships within the UCSD community by partnering with institutions such as Scripps Institution of Oceanography, the new Rady School of Management, and the Institute of the Americas.

3. As part of the University of California system, IR/PS plays an important role in developing public awareness and understanding of the Pacific region. Programs of public outreach, including visiting lecturers, research seminars, and roundtable discussions, add to the information available to citizens and interest groups about international issues that affect their lives.

Degree Programs

The degrees offered by the school include a professional Master of Pacific International Affairs (M.P.I.A.), a Ph.D. in Political Science and International Affairs offered jointly with the Department of Political Science, and a Ph.D. in Economics and International Affairs offered jointly with the Department of Economics. Training emphasizes international relations, economics and management, public policy, country and regional studies, and languages of the region.

The M.P.I.A. program is distinctive in several ways. The program:
1. Exposes students to the perspectives of both private business and public policymaking.
2. Offers specialized training in international politics, economics, management, environmental policy, public policy, and international development.
3. Provides language training necessary for professionals specializing in the countries of the Pacific.
4. Requires students to focus their studies on the politics, culture, economics, and language of one Pacific country or region.
5. Creates a laboratory for comparative analysis of economic management, foreign relations, policymaking, and development in the diverse nations of the Pacific.

The Ph.D. in International Affairs is offered only in conjunction with either the Ph.D. in political science or the Ph.D. in economics. These Ph.D. programs are designed for students who seek a rigorous training in a discipline (either economics or political science) along with a specialization in a specific policy area and regional expertise. Ph.D. students are required to demonstrate knowledge of a language linked to their regional specialization.

The M.P.I.A. and Ph.D. programs are distinct and separate. There is little overlap in the structure or requirements of the two programs because their objectives are very different. The master’s program provides professional training for graduates who will pursue international careers in management, government, and other fields. The doctoral program offers an academic education to a small number of students who will pursue international careers requiring advanced research capabilities at universities, corporations, government agencies, consulting firms, or other research organizations.

However, the master’s and doctoral programs do share a common intellectual framework. Both the M.P.I.A. and Ph.D. curriculums are designed to bring the theories, methods, and insights of various disciplines together to analyze policy issues of the Pacific and to blend the perspectives of public policy makers and private managers. The same faculty members teach and advise students in both programs.

Mid-career and other executive certificate programs are also offered by IR/PS. In particular, the Global Leadership Institute (GLI) is designed for working professionals seeking additional study in international management, international relations, and comparative public policy. Participants in the program spend up to one academic year at IR/PS. Under the auspices of the program, associates have the opportunity to further internationalize their knowledge and experience as well as enhance their professional development in such areas as finance, accounting, quantitative methods, econometrics, and long-range strategic planning. The program of study is tailored to individual interests under the guidance of the program’s director and faculty advisors.

The Faculty

IR/PS has attracted an interdisciplinary faculty from such fields as economics, management sciences, international relations, comparative politics, public policy, and linguistics. The various programs draw upon and contribute to research which focuses on the regions of the Pacific and on major issues that affect the region.

IR/PS places special emphasis on research in and teaching of topics of particular importance to the program. These topics currently include:

1. Studies of the Pacific as a system, including the interaction of the countries and regions within it (e.g., Latin American-Japanese economic relations, U.S. relations with both East Asia and Latin America, and the placement of the Pacific in the global system of international relations, both contemporary and historical).
2. Studies in international economics, management, and finance, including such subject areas as international competition, comparative industrial organizations, international trade and development, industrial relations, technological innovation, international financial structures, policies, institutions, and historical patterns of development.
3. Comparison of the trajectories of socioeconomic development among the countries of Asia and Latin America, including the exploration of differences and similarities in state-society relations, culture, entrepreneurship, linkage to the global economy, and geopolitical position.
4. Comparative analysis of patterns of policymaking in the countries of the Pacific region to understand how different governmental structures, economic systems, and social group interests shape the policy process and influence policy choices in such areas as budget allocation, regulation of industry, and foreign trade.

For further information, contact the Office of Admissions, Graduate School of International Relations and Pacific Studies, UCSD, 9500 Gilman Drive, La Jolla, CA 92093; (858) 534-5914, e-mail: irps-apply@ucsd.edu, Web site: http://www-irps.ucsd.edu.
<table>
<thead>
<tr>
<th>NAME</th>
<th>TITLE</th>
<th>DEPARTMENT</th>
<th>COLLEGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abarbanel, Henry D. I.</td>
<td>Professor</td>
<td>Physics</td>
<td>Revelle</td>
</tr>
<tr>
<td>Abrajano, Marisa A.</td>
<td>Assistant Professor</td>
<td>Political Science</td>
<td>Warren</td>
</tr>
<tr>
<td>Abramson, Ian S.</td>
<td>Professor</td>
<td>Mathematics</td>
<td>Muir</td>
</tr>
<tr>
<td>Acampora, Anthony</td>
<td>Professor</td>
<td>ECE</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Ackerman, Farrell</td>
<td>Associate Professor</td>
<td>Linguistics</td>
<td>Marshall</td>
</tr>
<tr>
<td>Adams, Joseph A.</td>
<td>Assistant Professor</td>
<td>Pharmacology</td>
<td>SchMed</td>
</tr>
<tr>
<td>Adler, Amy</td>
<td>Professor</td>
<td>Visual Arts</td>
<td>Revelle</td>
</tr>
<tr>
<td>Adler, Steve</td>
<td>Professor/Provost</td>
<td>Theatre and Dance/Warren</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Agler, Jim</td>
<td>Professor</td>
<td>Mathematics</td>
<td>Muir</td>
</tr>
<tr>
<td>Agnew, Duncan C.</td>
<td>Professor</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Ahluwalia, Davinder P.</td>
<td>Assistant Professor</td>
<td>Ethnic Studies</td>
<td>Marshall</td>
</tr>
<tr>
<td>Akber, Sofia</td>
<td>Assistant Professor</td>
<td>Communication</td>
<td>Revelle</td>
</tr>
<tr>
<td>Alac, Morana</td>
<td>Assistant Professor</td>
<td>Visual Arts</td>
<td>SIO</td>
</tr>
<tr>
<td>Alexander, Amy J.</td>
<td>Professor Emeritus</td>
<td>Pathology</td>
<td>SchMed</td>
</tr>
<tr>
<td>Alexander, Nicholas M.</td>
<td>Assistant Professor</td>
<td>Anthropology</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Algaze, Guillermo</td>
<td>Professor</td>
<td>SIO/Biological Sciences-Molecular Biology</td>
<td>SIO/Muir</td>
</tr>
<tr>
<td>Allen, Eric</td>
<td>Assistant Professor</td>
<td>Philosophy</td>
<td>Revelle</td>
</tr>
<tr>
<td>Allison, Henry E.</td>
<td>Professor Emeritus</td>
<td>Chemistry and Biochemistry</td>
<td>Muir</td>
</tr>
<tr>
<td>Allison, William S.</td>
<td>Assistant Professor</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Aluwihare, Lihini I.</td>
<td>Professor Emeritus</td>
<td>History</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Alvarez, Luis</td>
<td>Assistant Professor</td>
<td>Ethnic Studies</td>
<td>Sixth</td>
</tr>
<tr>
<td>Alvarez, Robert R.</td>
<td>Professor</td>
<td>History</td>
<td>Sixth</td>
</tr>
<tr>
<td>Amir, On</td>
<td>Assistant Professor</td>
<td>Ethnic Studies</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Anagnostaras, Stephan</td>
<td>Professor</td>
<td>RSOM</td>
<td>RSOM</td>
</tr>
<tr>
<td>Anagnostopoulos, Georgios H.</td>
<td>Professor-in-Residence</td>
<td>Psychology</td>
<td>Warren</td>
</tr>
<tr>
<td>Ancoli-Israel, Sonia</td>
<td>Professor Emeritus</td>
<td>Psychiatry</td>
<td>Warren</td>
</tr>
<tr>
<td>Anderson, Donald W.</td>
<td>Professor Emeritus</td>
<td>CSE/Mathematics</td>
<td>SchMed</td>
</tr>
<tr>
<td>Anderson, Michael</td>
<td>Lecturer (PSOE)</td>
<td>Physics</td>
<td>Sixth</td>
</tr>
<tr>
<td>Anderson, Norman H.</td>
<td>Professor Emeritus</td>
<td>Psychology</td>
<td>Muir</td>
</tr>
<tr>
<td>Anderson, Patrick W.</td>
<td>Assistant Professor</td>
<td>Communication</td>
<td>Sixth</td>
</tr>
<tr>
<td>Anderson, Victor C.</td>
<td>Professor Emeritus</td>
<td>ECE/SIO</td>
<td>SIO/Muir</td>
</tr>
<tr>
<td>Andolfatto, Peter</td>
<td>Assistant Professor</td>
<td>Biological Sciences—Ecology, Behavior, and Evolution</td>
<td>Sixth</td>
</tr>
<tr>
<td>Andreoni, James R.</td>
<td>Professor</td>
<td>Economics</td>
<td>Marshall</td>
</tr>
<tr>
<td>Anstis, Stuart</td>
<td>Professor</td>
<td>Psychology</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Antin, David A.</td>
<td>Professor Emeritus</td>
<td>Visual Arts</td>
<td>Muir</td>
</tr>
<tr>
<td>Antin, Eleanor</td>
<td>Professor Emerita</td>
<td>Visual Arts</td>
<td>Muir</td>
</tr>
<tr>
<td>Antonovics, Kate</td>
<td>Assistant Professor</td>
<td>Economics</td>
<td>Muir</td>
</tr>
<tr>
<td>Appelbaum, Mark</td>
<td>Professor</td>
<td>Psychology</td>
<td>Sixth</td>
</tr>
<tr>
<td>Arias-Castro, Ery</td>
<td>Assistant Professor</td>
<td>Mathematics</td>
<td>Warren</td>
</tr>
<tr>
<td>Armantrout, Rae</td>
<td>Professor</td>
<td>Literature</td>
<td>Warren</td>
</tr>
<tr>
<td>Armi, Laurence</td>
<td>Professor</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Armour, Jon Christopher</td>
<td>Lecturer (PSOE)</td>
<td>Biological Sciences—Neurobiology</td>
<td>Revelle</td>
</tr>
<tr>
<td>Arneson, Richard J.</td>
<td>Professor</td>
<td>Philosophy</td>
<td>Marshall</td>
</tr>
<tr>
<td>Arnold, James R.</td>
<td>Professor Emeritus</td>
<td>Chemistry and Biochemistry</td>
<td>Revelle</td>
</tr>
<tr>
<td>Aroian, Raffi V.</td>
<td>Associate Professor</td>
<td>Biological Sciences—Cell and Developmental Biology</td>
<td>Marshall</td>
</tr>
<tr>
<td>Aron, Adam R.</td>
<td>Assistant Professor</td>
<td>Psychology</td>
<td>Marshall</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Department</td>
<td>College</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------------------------</td>
<td>-------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Arovas, Daniel P.</td>
<td>Professor</td>
<td>Physics</td>
<td>Revelle</td>
</tr>
<tr>
<td>Arrhenius, Gustaf</td>
<td>Professor</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Arvaniti, Amalia</td>
<td>Associate Professor</td>
<td>Linguistics</td>
<td>Warren</td>
</tr>
<tr>
<td>Asaro, Robert J.</td>
<td>Professor</td>
<td>Structural Engineering</td>
<td>Revelle</td>
</tr>
<tr>
<td>Asbeck, Peter M.</td>
<td>Professor</td>
<td>ECE</td>
<td>Marshall</td>
</tr>
<tr>
<td>Atkinson, Richard C.</td>
<td>Professor Emeritus/</td>
<td>Psychology/Cognitive Science</td>
<td>Marshall</td>
</tr>
<tr>
<td>Attiyeh, Richard E.</td>
<td>UC President Emeritus/</td>
<td>Economics</td>
<td>Revelle</td>
</tr>
<tr>
<td>Azam, Farooq</td>
<td>Professor</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Bachtrog, Doris</td>
<td>Assistant Professor</td>
<td>Biological Sciences—Ecology,</td>
<td>Revelle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Behavior, and Evolution</td>
<td></td>
</tr>
<tr>
<td>Backus, George E.</td>
<td>Professor Emeritus</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Bada, Jeffrey L.</td>
<td>Professor</td>
<td>SIO</td>
<td>SIO/Warren</td>
</tr>
<tr>
<td>Baden, Scott B.</td>
<td>Professor</td>
<td>CSE</td>
<td>Warren</td>
</tr>
<tr>
<td>Bafna, Vineet</td>
<td>Assistant Professor</td>
<td>CSE</td>
<td>Warren</td>
</tr>
<tr>
<td>Bailey, Frederick G.</td>
<td>Professor Emeritus</td>
<td>Anthropology</td>
<td>Muir</td>
</tr>
<tr>
<td>Baird, Stephen M.</td>
<td>Professor of Clinical Pathology</td>
<td>Pathology</td>
<td>SchMed</td>
</tr>
<tr>
<td>Baker, Timothy S.</td>
<td>Professor</td>
<td>Biological Sciences—Molecular Biology/</td>
<td>Roosevelt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemistry and Biochemistry</td>
<td></td>
</tr>
<tr>
<td>Bakovic, Eric</td>
<td>Assistant Professor</td>
<td>Linguistics</td>
<td>Muir</td>
</tr>
<tr>
<td>Balzano, Gerald J.</td>
<td>Associate Professor</td>
<td>Music</td>
<td>Muir</td>
</tr>
<tr>
<td>Bandaru, Prabhakar</td>
<td>Assistant Professor</td>
<td>MAE</td>
<td>Sixth</td>
</tr>
<tr>
<td>Bank, Randolph E.</td>
<td>Professor</td>
<td>Mathematics</td>
<td>Warren</td>
</tr>
<tr>
<td>Baouendi, M. Salah</td>
<td>Professor</td>
<td>Mathematics</td>
<td>Warren</td>
</tr>
<tr>
<td>Barbeau, Katherine</td>
<td>Assistant Professor</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Barnes, Eva W.</td>
<td>Lecturer (SOE)</td>
<td>Theatre and Dance</td>
<td>Marshall</td>
</tr>
<tr>
<td>Barrett, Kim</td>
<td>Professor/Dean</td>
<td>Medicine/Graduate Studies</td>
<td>SchMed</td>
</tr>
<tr>
<td>Bartlett, Douglas H.</td>
<td>Professor</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Bassov, Dimitri N.</td>
<td>Professor</td>
<td>Physics</td>
<td>Warren</td>
</tr>
<tr>
<td>Batali, John D.</td>
<td>Associate Professor</td>
<td>Cognitive Science</td>
<td>Warren</td>
</tr>
<tr>
<td>Baum, Jeeyang R.</td>
<td>Assistant Professor</td>
<td>Political Science</td>
<td>Warren</td>
</tr>
<tr>
<td>Bear, Donald V. T.</td>
<td>Professor Emeritus</td>
<td>Economics</td>
<td>Revelle</td>
</tr>
<tr>
<td>Bechtel, William</td>
<td>Professor</td>
<td>Philosophy</td>
<td>Revelle</td>
</tr>
<tr>
<td>Beg, Farhat</td>
<td>Assistant Professor</td>
<td>MAE</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Behar, Jack</td>
<td>Associate Professor Emeritus</td>
<td>Literature</td>
<td>Revelle</td>
</tr>
<tr>
<td>Belew, Richard K.</td>
<td>Professor</td>
<td>Cognitive Science</td>
<td>Marshall</td>
</tr>
<tr>
<td>Bellare, Mihir</td>
<td>Professor</td>
<td>CSE</td>
<td>Muir</td>
</tr>
<tr>
<td>Belongie, Serge J.</td>
<td>Assistant Professor</td>
<td>CSE</td>
<td>Muir</td>
</tr>
<tr>
<td>Bender, Edward A.</td>
<td>Professor</td>
<td>Mathematics</td>
<td>Muir</td>
</tr>
<tr>
<td>Benirschke, Kurt</td>
<td>Professor Emeritus</td>
<td>Reproductive Medicine/Pathology</td>
<td>SchMed</td>
</tr>
<tr>
<td>Benson, Andrew A.</td>
<td>Professor</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Benson, David J.</td>
<td>Professor Emeritus</td>
<td>MAE</td>
<td>Marshall</td>
</tr>
<tr>
<td>Berg, Darwin K.</td>
<td>Professor</td>
<td>Biological Sciences—Neurobiology</td>
<td>Warren</td>
</tr>
<tr>
<td>Berger, Wolfgang H.</td>
<td>Professor Emeritus</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Berkowitz, Ami E.</td>
<td>Associate Professor</td>
<td>Physics</td>
<td>Warren</td>
</tr>
<tr>
<td>Berman, Eli</td>
<td>Professor</td>
<td>Economics</td>
<td>Sixth</td>
</tr>
<tr>
<td>Berman, Francine D.</td>
<td>Professor</td>
<td>CSE</td>
<td>Revelle</td>
</tr>
<tr>
<td>Berman, Ronald S.</td>
<td>Professor</td>
<td>Literature</td>
<td>Muir</td>
</tr>
<tr>
<td>Bertram, H. Neal</td>
<td>Professor Emeritus</td>
<td>ECE</td>
<td>Revelle</td>
</tr>
<tr>
<td>Betts, Julian</td>
<td>Professor</td>
<td>Economics</td>
<td>Marshall</td>
</tr>
<tr>
<td>Bewley, Thomas R.</td>
<td>Associate Professor</td>
<td>MAE</td>
<td>Muir</td>
</tr>
<tr>
<td>Bhatia, Sangeeta N.</td>
<td>Associate Professor</td>
<td>Bioengineering/Medicine</td>
<td>Roosevelt/SchMed</td>
</tr>
</tbody>
</table>
Bier, Ethan
Professor
Biernacki, Richard
Associate Professor
Biess, Frank P.
Associate Professor
Bigby, Timothy D.
Professor of Clinical Medicine
Binder, Amy
Associate Professor
Bitmead, Robert R.
Professor
Blair-Loy, Mary
Associate Professor
Blanco, John D.
Professor Emeritus
Blanco-Aguinaga, Carlos
Professor Emeritus
Blantz, Roland C.
Professor
Bloor, Colin M.
Professor Emeritus
Blumberg, Rae L.
Assistant Professor
Boateng, Akosua Boatema
Professor Emeritus
Bohn, Roger E.
Professor Emeritus
Bond, F. Thomas
Associate Professor Emeritus
Borgo, David
Professor Emeritus
Boss, Gerry R.
Professor
Both, Andrei
Professor Emeritus
Boulanger, Lisa
Professor Emeritus
Bourne, Philip E.
Professor Emeritus
Bowles, Kenneth L.
Professor Emeritus
Brace, Robert A.
Professor Emeritus
Bradbury, Jack W.
Professor Emeritus
Bradner, Hugh
Professor Emeritus
Brann, James G.
Professor
Braswell, Geoffrey E.
Professor
Brenner, Suzanne A.
Professor
Bridges, Amy
Professor
Briggs, Steven P.
Professor
Brink, David O.
Professor
Britton, Karen T.
Professor-in-Residence
Brooke, Linda
Professor
Brody, Stuart
Professor
Brown, Gregory
Professor-in-Residence
Brown, Joan Heller
Professor
Brown, Kevin M.
Professor
Brown, Sandra A.
Professor
Brown, Sheldon G.
Professor
Brown, Willie C.
Associate Professor Emeritus
Broz, J. Lawrence
Associate Professor
Brueckner, Keith A.
Professor Emeritus
Brunton, Laurence L.
Professor
Bryson, Norman
Professor
Buckingham, Michael J.
Associate Professor
Buckley, Steven
Assistant Professor
Buckwalter, James F.
Professor Emeritus
Bullock, Theodore H.
Professor
Bunch, James R.
Professor

Biological Sciences—Cell and Developmental Biology
Biology
Sociology
History
Medicine
Sociology
MAE
Sociology
Literature
Literature
Medicine
Pathology
Sociology
Communication
IRPS
Chemistry and Biochemistry
Music
Medicine
Theatre and Dance
Biological Sciences—Neurobiology
Pharmacology
CSE
Reproductive Medicine
Biological Sciences—Ecology, Behavior, and Evolution
MAE/SIO
Psychiatry
Physics
Anthropology
Anthropology
Political Science
Biological Sciences—Cell and Developmental Biology
Philosophy
Psychiatry
Literature
Biological Sciences—Molecular Biology
Psychiatry
Pharmacology
SIO
Psychology/Psychiatry
Visual Arts
Biological Sciences—Cell and Developmental Biology
Political Science
Physics
Pharmacology/Medicine
Visual Arts
SIO
MAE
ECE
Neurosciences
Mathematics
Roosevelt
Warren
SchMed
Marshall
Warren
Sixth
Muir
Marshall
SchMed
SchMed
Muir
Muir
Muir
Revelle/SIO
SchMed
Marshall
Warren
Muir
SchMed
SIO
Marshall/SchMed
Warren
Revelle
Revelle
SchMed
Muir
SIO
Muir
Roosevelt
SchMed/SIO
Warren
Burbidge, E. Margaret
Burbidge, Geoffrey R.
Burkart, Michael D.
Burkhard, Walter A.
Burton, Ronald S.
Buss, Samuel R.
Butler, Madeline
Butov, Leonid
Bynum, Sarah Shun-lien
Burbidge, Geoffrey R.
Professor Emeritus Physics Revelle
Burkart, Michael D.
Assistant Professor Chemistry and Biochemistry Warren
Burkhard, Walter A.
Professor CSE Warren
Burton, Ronald S.
Professor Warren
Buss, Samuel R.
Professor Mathematics Roosevelt
Butler, Madeline
Lecturer (PSOE) Biological Sciences—Neurobiology Revelle
Butov, Leonid
Professor Physics Warren
Bynum, Sarah Shun-lien
Associate Professor Literature Roosevelt
Caciola, Nancy
Associate Professor History Roosevelt
Calcutt, Nigel A.
Professor CSE Roosevelt
Calder, Bradley G.
Professor Philosophy Muir
Callender, Craig A.
Associate Professor Literature Marshall
Cancel, Robert
Associate Professor Pathology SchMed
Cande, Steven C.
Assistant Professor Philosophy SIO
Caponigro, Ivano
Assistant Professor Linguistics Revelle
Carethers, John M.
Professor Medicine SchMed
Carmody, James
Associate Professor Theatre and Dance Warren
Carson, Dennis A.
Professor Medical Sciences—Ecology, Behavior, and Evolution
Carson, Richard T., Jr.
Professor Medical Sciences—Ecology, Behavior, and Evolution
Carter, J. Lawrence
Professor Emeritus CSE Revelle
Cartwright, Lisa
Professor Emeritus Communication Roosevelt
Cartwright, Nancy D.
Professor Emeritus Philosophy Roosevelt
Carver, Leslie J.
Assistant Professor Psychology Roosevelt
Case, Ted J.
Professor Emeritus Psychology Roosevelt
Caserio, Marjorie C.
Professor Emerita/Vice Chancellor Literature Roosevelt
Cassedy, Steven D.
Professor Literature Roosevelt
Castillo, Paterno R.
Professor SIO SIO
Castro, Robert J.
Assistant Professor Literature SIO
Catalan, Diego
Professor Emeritus MAE Warren
Cattolica, Robert J.
Professor Emeritus Biological Sciences—Neurobiology Marshall
Cauwenberghs, Gert
Professor Emeritus Medicine SchMed
Cavagnoli, Giuseppe
Professor Emeritus History Revelle
Cespedes, Guillerme
Professor Emeritus SIO SIO
Cesi, Paola
Professor IRPS IRPS
Chandler, Marsha A.
Professor Political Science Warren
Chandler, William M.
Professor ECE Warren
Chang, William S. C.
Professor Emeritus Biological Sciences—Ecology, Behavior, and Evolution Warren
Chao, Lin
Professor Sociology Muir
Charles, Christopher D.
Professor MAE Warren
Charles, Maria
Professor ECE Revelle
Chau, Pao C.
Professor MAE Revelle
Chau, Paul M.
Associate Professor MAE Warren
Checkley, David M.
Professor ECE Warren
Chen, Joseph C. Y.
Professor Emeritus Psychology Roosevelt
Chen, Ju
Associate Professor Medicine SchMed
Chen, Matthew Y. C.
Professor Emeritus Linguistics Muir
Cheng, Chung-Kuan
Professor MAE Roosevelt
Cheng, Li-Tien
Assistant Professor Mathematics Roosevelt
Chesler, Giovanna
Chiba, Andrea
Chien, Andrew
Chien, Shu
Chilukuri, Lakshmi
Chisholm, Andrew
Chodorow, Stanley A.
Chojkier, Mario
Chow, Bennett
Chrispeels, Janet
Chrispeels, Maarten J.

Christenfeld, Nicholas
Churchland, Patricia S.
Churchland, Paul M.
Cicourel, Aaron V.
Clancy, Liam P.
Clark, Leigh B.
Cleveland, Don W.
Cohen, Alain J.-J.
Cohen, Harold
Cohen, Jonathan D.
Cohen, Richard S.
Cohen, Seth
Cole, Michael
Coleman, Aaron B.
Coles, William A.
Comisso, Ellen T.
Concha, Jaime
Conlisk, John
Conn, Robert W.
Constable, Catherine G.
Constable, Steven
Conte, Joel P.
ContiNetti, Robert E.
Cooper, Charles R.
Corbeil, Lynette B.
Cornelius, Wayne A.
Corrigan, Mary K.
Cosman, Pamela
Costinot, Arnaud
Cottrell, Garrison W.
Coulson, Seana
Courchesne, Eric
Covell, James W.
Cowhey, Peter F.
Cox, Charles S.
Cox, Gary W.
Cox, Stephen D.
Craig, Ann L.
Crandall, Jordan
Crawford, Nigel

Assistant Professor
Assistant Professor
Professor
Professor
Professor
Professor
Professor Emeritus
Professor-in-Residence
Professor
Professor
Professor Emeritus
Associate Professor
Associate Professor
Assistant Professor
Professor Emeritus
Associate Professor Emerita
Professor
Assistant Professor
Professor
Associate Professor
Professor
Professor Emeritus
Professor/Dean
Professor Emeritus
Professor
Professor
Associate Professor/Provost
Associate Professor
Professor
Communication
Cognitive Science
CSE
Bioengineering/Medicine
Biological Sciences—Molecular Biology
Biological Sciences—Neurobiology
History
Medicine
Mathematics
Education Studies
Biological Sciences—Cell and Developmental Biology
Psychology
Philosophy
Philosophy
Cognitive Science/Sociology
Theatre and Dance
Chemistry and Biochemistry
Medicine/Neurosciences/CMM
Literature
Visual Arts
Philosophy
Literature
Chemistry and Biochemistry
Communication
Biological Sciences—Molecular Biology
ECE
Political Science
Literature
Economics
MAE
SIO
SIO
Structural Engineering
Chemistry and Biochemistry
Literature
Pathology
Political Science
Theatre and Dance
ECE
Economics
CSE
Cognitive Science
Neurosciences
Medicine
IRPS
SIO
Political Science
Literature
Political Science/Roosevelt
Visual Arts
Biological Sciences—Cell and Developmental Biology
Warren
Revelle
Marshall
Muir/SchMed
Muir/Revelle
SOM
Warren
SchMed
Muir
Roosevelt
Muir
Roosevelt
Roosevelt
Roosevelt
Roosevelt
Muir
Revelle
Warren
SIO
SIO
Warren
Warren
SchMed
IRPS
SIO
Muir
Revelle
Roosevelt
Sixth
Warren
Crawford, Vincent P. Professor Economics Warren
Crowell, John E. Professor Chemistry and Biochemistry Revelle
Crowne, David K. Associate Professor Emeritus Literature Revelle
Cruzen, Paul J. Professor SIO SIO
Cruz, Edwin Teddy Associate Professor Visual Arts Muir
Cruz, René L. Professor ECE Marshall
Csordas, Thomas Associate Professor Anthropology Muir
Cullen, Julie B. Professor Emeritus Chemistry and Biochemistry Muir
Curry, Joseph R. Professor Economics Muir
Curtis, Charles R. Professor Emeritus Literature Revelle
Czworkowski, John Lecturer (PSOE) Chemistry and Biochemistry Marshall
Dahl, Gordon Assistant Professor Education Studies Muir
Daly, Alan Assistant Professor CSE Roosevelt
Dasgupta, Sanjoy Assistant Professor Biological Sciences—Molecular Biology Warner
David, Michael Associate Professor Literature Revelle
Davidson, R. Michael Professor Music Marshall
Davis, Anthony C. Professor Emeritus Music Marshall
Davis, Charles E. Professor Anthropology Muir
Davis, Zeinabu Professor Emeritus Communication Roosevelt
Dayton, Paul K. Professor Pathology/Medicine SchMed
de Callafon, Raymond Associate Professor Cognitive Science Warren
de Sa, Virginia Assistant Professor Theatre and Dance Warren
Deak, Frantisek J. Professor Cognitive Science Marshall
Deak, Gedeon O. Associate Professor Medicine SchMed
Deftos, Leonard J. Professor-in-Residence Mathematics Roosevelt
Delisle, Aurore Assistant Professor Psychiatry SchMed
Dennis, Dean C. Professor-in-Residence Chemistry and Biochemistry/Pharmacology Revelle/SchMed
Desai, Arshad Assistant Professor Cellular and Molecular Medicine SchMed
Desposato, Scott Assistant Professor Political Science Revelle
Deutsch, Alin Assistant Professor CSE Warner
Deutsch, Diana Professor Emeritus Psychology Warner
Deutsch, J. Anthony Professor Psychology Muir/SchMed
Dey, Sugit Professor ECE Muir
Di Ventra, Massimiliano Professor Physics Roosevelt
Diamond, Patrick H. Professor Physics Roosevelt
Diaz, Sonia Martinez Professor MAE Roosevelt
Dickson, Andrew Associate Professor-in-Residence Literature Revelle
Dijkstra, Abraham J. Professor Emeritus Medicine SchMed
Dillmann, Wolfgang H. Professor-in-Residence Psychiatry SchMed
Dimsdale, Joel E. Professor Pharmacology/CMM/Chemistry and Biochemistry SchMed/Warren
Dixon, Jack Professor Psychology Revelle
Dobkins, Karen Professor Theatre and Dance Muir
Dolan, Judith A. Professor Visual Arts Warren
Domínguez, Ricardo Assistant Professor Theatre and Dance Warner
Donnelly, Kyle Professor Chemistry and Biochemistry Revelle/SchMed
Donoghue, Daniel J. Professor Emeritus Chemistry and Biochemistry/Biological Sciences—Molecular Biology Revelle/SchMed
Doolittle, Russell F. Professor Philosophy Warren
Doppelt, Gerald D. Professor SIO SIO
Dorman, LeRoy M. Assistant Professor SSPPS/Chemistry and Biochemistry SSPPS/Sixth
Dorrestein, Pieter Professor Emeritus Sociology Muir
Douglas, Jack D.
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dowdy, Steven F.</td>
<td>Professor</td>
<td>Cellular and Molecular Medicine</td>
</tr>
<tr>
<td>Drake, Paul W.</td>
<td>Professor/Dean</td>
<td>Political Science/Social Sciences</td>
</tr>
<tr>
<td>Dresser, Mark</td>
<td>Professor</td>
<td>Music</td>
</tr>
<tr>
<td>Driscoll, C. Fred</td>
<td>Professor</td>
<td>Physics</td>
</tr>
<tr>
<td>Driscoll, Neal W.</td>
<td>Professor</td>
<td>SIO</td>
</tr>
<tr>
<td>Driver, Bruce K.</td>
<td>Professor Emerita</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Dryden, Deborahah M.</td>
<td>Professor</td>
<td>Theatre and Dance</td>
</tr>
<tr>
<td>Dubin, Daniel H.</td>
<td>Professor</td>
<td>Physics</td>
</tr>
<tr>
<td>Dubnov, Shlomo</td>
<td>Associate Professor</td>
<td>Music</td>
</tr>
<tr>
<td>duBois, Page A.</td>
<td>Professor</td>
<td>Literature</td>
</tr>
<tr>
<td>Dunseath, Thomas K.</td>
<td>Associate Professor Emeritus</td>
<td>Literature</td>
</tr>
<tr>
<td>Dutnall, Robert N.</td>
<td>Assistant Professor</td>
<td>Biological Sciences—Molecular Biology</td>
</tr>
<tr>
<td>Dutton, Richard W.</td>
<td>Professor Emeritus</td>
<td>Biological Sciences</td>
</tr>
<tr>
<td>Dynes, Robert C.</td>
<td>Professor/President</td>
<td>Physics/UC</td>
</tr>
<tr>
<td>Ebbesen, Ebbe B.</td>
<td>Professor Emeritus</td>
<td>Psychology</td>
</tr>
<tr>
<td>Ebenevelt, Peter F.</td>
<td>Professor</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Edelman, Robert S.</td>
<td>Professor</td>
<td>History</td>
</tr>
<tr>
<td>Edwards, Anthony</td>
<td>Professor</td>
<td>Literature</td>
</tr>
<tr>
<td>Eggers, John D.</td>
<td>Professor</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Elgammal, Ahmed-W. M.</td>
<td>Professor Emeritus</td>
<td>Structural Engineering</td>
</tr>
<tr>
<td>Elk, Charles P.</td>
<td>Professor</td>
<td>CSE</td>
</tr>
<tr>
<td>Elliott, Graham</td>
<td>Professor</td>
<td>Economics</td>
</tr>
<tr>
<td>Ellis, Arthur B.</td>
<td>Professor/Vice Chancellor</td>
<td>Chemistry and Biochemistry/Research</td>
</tr>
<tr>
<td>Ellisman, Mark H.</td>
<td>Professor</td>
<td>Sociology</td>
</tr>
<tr>
<td>Elman, Jeffrey L.</td>
<td>Professor</td>
<td>RSOM</td>
</tr>
<tr>
<td>El-Tayeb, Fatima</td>
<td>Assistant Professor</td>
<td>Reproductive Medicine</td>
</tr>
<tr>
<td>Emr, Scott D.</td>
<td>Professor</td>
<td>Political Science</td>
</tr>
<tr>
<td>Engeström, Yrjo</td>
<td>Professor Emeritus</td>
<td>ECE</td>
</tr>
<tr>
<td>Engle, Robert F.</td>
<td>Professor Emeritus</td>
<td>History</td>
</tr>
<tr>
<td>Enright, Thomas J.</td>
<td>Professor</td>
<td>Cellular and Molecular Medicine</td>
</tr>
<tr>
<td>Epstein, Steven</td>
<td>Associate Professor</td>
<td>Ethnic Studies</td>
</tr>
<tr>
<td>Erat, Sanjiv</td>
<td>Assistant Professor</td>
<td>Sociology</td>
</tr>
<tr>
<td>Erickson, Gregory F.</td>
<td>Professor</td>
<td>Sociology</td>
</tr>
<tr>
<td>Erie, Steven P.</td>
<td>Professor</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Esener, Sadik C.</td>
<td>Professor</td>
<td>Visual Arts</td>
</tr>
<tr>
<td>Esherick, Joseph</td>
<td>Professor</td>
<td>Chemistry and Biochemistry</td>
</tr>
<tr>
<td>Esko, Jeffrey</td>
<td>Professor</td>
<td>ECE</td>
</tr>
<tr>
<td>Espiritu, Yen Le</td>
<td>Professor</td>
<td>Economics</td>
</tr>
<tr>
<td>Evans, Ivan T.</td>
<td>Associate Professor</td>
<td>Medicine</td>
</tr>
<tr>
<td>Evans, John H.</td>
<td>Associate Professor</td>
<td>Psychology</td>
</tr>
<tr>
<td>Evans, John W.</td>
<td>Professor Emeritus</td>
<td>Visual Arts</td>
</tr>
<tr>
<td>Evans, Ronald J.</td>
<td>Professor</td>
<td>Cellular and Molecular Medicine</td>
</tr>
<tr>
<td>Fagin, Steve</td>
<td>Professor</td>
<td>Music</td>
</tr>
<tr>
<td>Fahey, Robert C.</td>
<td>Professor Emeritus</td>
<td>Cognitive Science</td>
</tr>
<tr>
<td>Fainman, Yeshaiahu</td>
<td>Professor</td>
<td>Muir</td>
</tr>
<tr>
<td>Famulari, Melissa</td>
<td>Lecturer (PSOE)</td>
<td>Muir</td>
</tr>
<tr>
<td>Fanestil, Darrell D.</td>
<td>Professor Emeritus</td>
<td>SchMed</td>
</tr>
<tr>
<td>Fantino, Edmund J.</td>
<td>Professor</td>
<td>Muir</td>
</tr>
<tr>
<td>Farber, Manny</td>
<td>Professor Emeritus</td>
<td>Marshall</td>
</tr>
<tr>
<td>Farquhar, Marilyn G.</td>
<td>Professor</td>
<td>Marshall</td>
</tr>
<tr>
<td>Farrell, Peter</td>
<td>Professor Emeritus</td>
<td>SchMed</td>
</tr>
<tr>
<td>Fauconnier, Gilles R.</td>
<td>Professor</td>
<td>Warren</td>
</tr>
</tbody>
</table>
Feher, George
Feinberg, Richard E.
Felbeck, Horst
Feldman, Daniel E.
Feller, Marla B.
Fenical, William H.
Fenner-Lopez, Claudio E.
Feramisco, James R.
Ferrante, Jeanne
Ferree, Karen
Ferreira, Victor
Fialko, Yuri A.
Fields, Gary
Fierer, Joshua
Fillmore, Jay P.
Firtel, Richard A.
Fisk, Zachary
FitzGerald, Carl H.
Fitzgerald, David
Fitzsimmons, Patrick J.
Flavin, Marjorie
Fogler, Michael
Fonville, John W.
Forbes, Camille
Forbes, Douglass Jane
Ford, Joseph
Forman-Barzilai, Fonna
Fortes, P. A. George
Fowler, James H.
Fox, Marye Anne
Francheschetti, Massimo
Frank, Ross H.
Frankel, Theodore T.
Franks, Peter J. S.
Fredkin, Donald R.
Freedman, David Noel
French, Kathleen A.
Frenk, Margit
Freund, Yoav S.
Friedman, Richard E.
Friedmann, Theodore
Frieman, Edward A.
Fry, Andrew
Fu, Xiang-Dong
Fujitani, Takashi
Fuller, George M.
Fullerton, Eric
Fung, Yuan-Cheng B.
Gaasterland, Terry
Gaffney, Floyd
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galambos, Robert</td>
<td>Professor Emeritus</td>
<td>SchMed</td>
</tr>
<tr>
<td>Galasko, Douglas</td>
<td>Professor-in-Residence</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gallo, Richard</td>
<td>Associate Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Galton, Ian</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gan, See Teck</td>
<td>Associate Professor</td>
<td>Muir</td>
</tr>
<tr>
<td>Ganiats, Theodore G.</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Garsia, Adriano M.</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gee, Jeffrey</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Geiduschek, E. Peter</td>
<td>Professor Emeritus</td>
<td>SchMed/Roosevelt</td>
</tr>
<tr>
<td>Gentner, Timothy Q.</td>
<td>Associate Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>George, Rosemary M.</td>
<td>Associate Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>George-Graves, Nadine</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gerwick, William</td>
<td>Professor Emeritus</td>
<td>SchMed</td>
</tr>
<tr>
<td>Getoor, Ronald K.</td>
<td>Professor-in-Residence</td>
<td>SchMed</td>
</tr>
<tr>
<td>Geyer, Mark A.</td>
<td>Lecturer (PSOE)</td>
<td>SIO</td>
</tr>
<tr>
<td>Ghiara, Jayant</td>
<td>Professor Emeritus</td>
<td>SchMed</td>
</tr>
<tr>
<td>Ghosh, Anirvan</td>
<td>Professor Emeritus</td>
<td>SchMed</td>
</tr>
<tr>
<td>Ghosh, Gourisankar</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Ghosh, Partho</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gibson, Carl H.</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gibson, Clark</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gieskes, Joris M.T.M.</td>
<td>Professor Emeritus</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gilbert, J. Freeman</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gill, Gordon N.</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gill, Philip E.</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gille, Sarah T.</td>
<td>Associate Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gillin, Frances D.</td>
<td>Professor-in-Residence</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gilpin, Michael E.</td>
<td>Professor Emeritus</td>
<td>SchMed</td>
</tr>
<tr>
<td>Glaser, Amelia</td>
<td>Assistant Professor</td>
<td>Sixth</td>
</tr>
<tr>
<td>Glass, Christopher K.</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gleeson, Joseph</td>
<td>Associate Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gneezy, Uri</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Goddard, Joseph D.</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Golan, Tal</td>
<td>Associate Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Goldberg, Edward D.</td>
<td>Professor Emeritus</td>
<td>SchMed</td>
</tr>
<tr>
<td>Goldberger, Marvin</td>
<td>Associate Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Goldfarb, Brian D.</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Goldman, Harvey S.</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Golderath, Ananda</td>
<td>Assistant Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Goldstein, Lawrence S.</td>
<td>Associate Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Goldstein, Paul S.</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Goodall, Grant</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Goodblatt, David</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Goodkind, John M.</td>
<td>Associate Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Goodson, James</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gordon, Nora</td>
<td>Assistant Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gordon, Roger H.</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gorin, Jean-Pierre</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gorman, Michael R.</td>
<td>Professor</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gough, David A.</td>
<td>Professor Emeritus</td>
<td>SchMed</td>
</tr>
<tr>
<td>Gould, Robert J.</td>
<td>Professor Emeritus</td>
<td>SchMed</td>
</tr>
<tr>
<td>Goulian, Mehran</td>
<td>Professor Emeritus</td>
<td>SchMed</td>
</tr>
</tbody>
</table>
Gourevitch, Peter A.
Professor
IRPS/Political Science
Communication
Govil, Nitin P.
Assistant Professor
IRPS/Political Science
Graham, Fan Chung
Professor
Mathematics/CSE
Graham, Ronald L.
Professor
CSE
Granger, Clive W.J.
Professor Emeritus
Economics
Granholm, Eric L.
Professor-in-Residence
Psychiatry
Grant, Igor
Associate Professor
Psychiatry
Green, Allyson
Professor Emeritus
Theatre and Dance
Green, Melvin H.
Professor
Biological Sciences
Greenstein, Jack M.
Associate Professor
Visual Arts
Griest, Kim
Professor
Physics
Groisman, Alexander
Assistant Professor
CSE
Gross, Mark W.
Professor Emeritus
Mathematics
Groves, Philip M.
Professor Emeritus
Psychiatry
Groves, Theodore
Professor
Economics
Grush, Rick
Associate Professor
Philosophy
Guatelli, John
Professor Emeritus
Medicine
Guest, Clark C.
Associate Professor
History
Gupta, Rajesh
Professor
Ethnic Studies
Guy, Nancy
Professor
Music
Guza, Robert T.
Professor
SIO
Haas, Richard H.
Professor
Neurosciences/Pediatrics
Haff, Leonard R.
Professor Emeritus
Mathematics
Haggard, Stephan M.
Assistant Professor
IRPS
Hajnal, Zoltan L.
Professor Emeritus
Political Science
Halkin, Hubert
Professor Emeritus
Mathematics
Halleck, DeeDee
Professor Emerita
Communication
Hallin, Daniel C.
Professor Emeritus
Communication
Hamburger, Robert N.
Professor Emeritus
Pediatrics
Hamilton, Bruce
Associate Professor
Medicine
Hamilton, James D.
Professor
Economics
Hampton, Randolph
Professor
Biological Sciences—Cell and Developmental Biology
Hansen, Lawrence A.
Professor
Pathology/Neurosciences
Hanson, Gordon
Professor
IRPS/Economics
Hanson, Michael
Assistant Professor
Communication
Hardimon, Michael
Associate Professor
Philosophy
Harel, Guershon
Professor
Mathematics
Harkins, Edwin L., Jr.
Professor
Music
Harper, Elvin
Professor Emeritus
Chemistry and Biochemistry
Harris, Christine
Associate Professor
Psychology
Harris, Jeffrey P.
Professor
Surgery
Harrison, Helen M.
Professor Emerita
Visual Arts
Harrison, Newton A.
Professor Emeritus
Visual Arts
Hartouni, Valerie A.
Associate Professor
Communication
Hastings, Philip A.
Professor
SIO
Hasty, Jeffrey
Associate Professor
Bioengineering
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haubrich, Richard A.</td>
<td>Professor Emeritus</td>
<td>SIO</td>
</tr>
<tr>
<td>Hauger, Richard L.</td>
<td>Professor-in-Residence</td>
<td>Psychiatry</td>
</tr>
<tr>
<td>Haviland, John B.</td>
<td>Professor</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Havis, Allan</td>
<td>Professor/Provost</td>
<td>Theatre and Dance/Marshall</td>
</tr>
<tr>
<td>Hawkins, James W.</td>
<td>Professor Emeritus</td>
<td>SIO</td>
</tr>
<tr>
<td>Haxo, Francis T.</td>
<td>Professor Emeritus</td>
<td>SIO</td>
</tr>
<tr>
<td>Hayashi, Masaki</td>
<td>Professor</td>
<td>Biological Sciences—Cell and Developmental Biology</td>
</tr>
<tr>
<td>Haydu, Jeffrey M.</td>
<td>Professor</td>
<td>Sociology</td>
</tr>
<tr>
<td>Haygood, Margo G.</td>
<td>Professor Emerita</td>
<td>SIO</td>
</tr>
<tr>
<td>Haymet, Anthony</td>
<td>Professor/Vice Chancellor/Director</td>
<td>SIO/Revelle/SIO</td>
</tr>
<tr>
<td>Heaton, Robert K.</td>
<td>Professor</td>
<td>Psychiatry</td>
</tr>
<tr>
<td>Hedrick, Stephen M.</td>
<td>Professor</td>
<td>Revelle</td>
</tr>
<tr>
<td>Hegemier, Gilbert A.</td>
<td>Professor Emeritus</td>
<td>Structural Engineering</td>
</tr>
<tr>
<td>Helinski, Donald R.</td>
<td>Professor Emeritus</td>
<td>Biological Sciences—Molecular Biology</td>
</tr>
<tr>
<td>Heller, Michael J.</td>
<td>Professor Emeritus</td>
<td>Bioengineering/ECE</td>
</tr>
<tr>
<td>Helstrom, Carl W.</td>
<td>Professor Emeritus</td>
<td>ECE</td>
</tr>
<tr>
<td>Helton, J. William</td>
<td>Professor Emeritus</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Henaff, Marcel</td>
<td>Professor</td>
<td>Literature</td>
</tr>
<tr>
<td>Hendershott, Myrl C.</td>
<td>Professor</td>
<td>SIO</td>
</tr>
<tr>
<td>Hendrickson, David N.</td>
<td>Professor</td>
<td>Chemistry and Biochemistry</td>
</tr>
<tr>
<td>Hermann, Thomas C.</td>
<td>Assistant Professor</td>
<td>Muir</td>
</tr>
<tr>
<td>Hernandez-Reguant, Ariana</td>
<td>Assistant Professor</td>
<td>Chemistry and Biochemistry</td>
</tr>
<tr>
<td>Hertz, Deborah</td>
<td>Professor</td>
<td>Communication</td>
</tr>
<tr>
<td>Herz, Richard K.</td>
<td>Associate Professor</td>
<td>History</td>
</tr>
<tr>
<td>Hessler, Robert R.</td>
<td>Professor Emeritus</td>
<td>MAE</td>
</tr>
<tr>
<td>Heyman, Gail D.</td>
<td>Associate Professor</td>
<td>SIO</td>
</tr>
<tr>
<td>Hildebrand, John A.</td>
<td>Professor</td>
<td>Psychology</td>
</tr>
<tr>
<td>Hillyard, Steven A.</td>
<td>Professor</td>
<td>SIO</td>
</tr>
<tr>
<td>Hilton, David R.</td>
<td>Professor</td>
<td>Neurosciences</td>
</tr>
<tr>
<td>Hirsch, Jorge E.</td>
<td>Professor</td>
<td>SIO</td>
</tr>
<tr>
<td>Hock, Louis J.</td>
<td>Professor</td>
<td>Physics</td>
</tr>
<tr>
<td>Hodgkiss, William S., Jr.</td>
<td>Lecturer (SOE)</td>
<td>Visual Arts</td>
</tr>
<tr>
<td>Hofstetter, Caroline</td>
<td>Assistant Professor</td>
<td>SIO</td>
</tr>
<tr>
<td>Hoffman, Alexander</td>
<td>Professor Emeritus</td>
<td>Education Studies</td>
</tr>
<tr>
<td>Hofmann, Alan F.</td>
<td>Professor</td>
<td>Chemistry and Biochemistry</td>
</tr>
<tr>
<td>Hoger, Anne</td>
<td>Professor Emeritus</td>
<td>Medicine</td>
</tr>
<tr>
<td>Hollan, James D.</td>
<td>Professor Emeritus</td>
<td>MAE</td>
</tr>
<tr>
<td>Holland, John J.</td>
<td>Professor Emeritus</td>
<td>Cognitive Science</td>
</tr>
<tr>
<td>Holland, Nicholas D.</td>
<td>Professor Emeritus</td>
<td>Biology</td>
</tr>
<tr>
<td>Holst, Michael J.</td>
<td>Professor</td>
<td>SIO</td>
</tr>
<tr>
<td>Holston, James</td>
<td>Associate Professor</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Holway, David A.</td>
<td>Associate Professor</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Horwitz, Robert B.</td>
<td>Professor</td>
<td>Biological Sciences—Ecology, Behavior, and Evolution</td>
</tr>
<tr>
<td>Hoshi, Takeo</td>
<td>Professor</td>
<td>Communication</td>
</tr>
<tr>
<td>Hoston, Germaine A.</td>
<td>Professor</td>
<td>IRPS</td>
</tr>
<tr>
<td>Houston, Alan C.</td>
<td>Professor</td>
<td>Political Science</td>
</tr>
<tr>
<td>Howden, William E.</td>
<td>Professor</td>
<td>Political Science</td>
</tr>
<tr>
<td>Howe, Fanny Q.</td>
<td>Professor Emerita</td>
<td>CSE</td>
</tr>
<tr>
<td>Howell, Stephen B.</td>
<td>Professor</td>
<td>Literature</td>
</tr>
<tr>
<td>Hu, Ping C.</td>
<td>Lecturer (SOE) Emerita</td>
<td>Medicine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>History</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Department</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Hu, Te C.</td>
<td>Professor</td>
<td>CSE</td>
</tr>
<tr>
<td>Huang, Xiaohua</td>
<td>Assistant Professor</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Huber, David E.</td>
<td>Assistant Professor</td>
<td>Psychology</td>
</tr>
<tr>
<td>Huber, Gary</td>
<td>Assistant Professor</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Huerta, Jorge A.</td>
<td>Professor</td>
<td>Theatre and Dance</td>
</tr>
<tr>
<td>Hughes, Judith M.</td>
<td>Professor</td>
<td>History</td>
</tr>
<tr>
<td>Humphries, Tom L.</td>
<td>Associate Professor</td>
<td>Education Studies/Communication</td>
</tr>
<tr>
<td>Hunefeldt, Christine F.</td>
<td>Professor</td>
<td>History</td>
</tr>
<tr>
<td>Hutchins, Edwin L., Jr.</td>
<td>Professor</td>
<td>Cognitive Science</td>
</tr>
<tr>
<td>Hutchinson, Tara C.</td>
<td>Associate Professor</td>
<td>Structural Engineering</td>
</tr>
<tr>
<td>Hwa, Terence T.</td>
<td>Professor</td>
<td>Physics</td>
</tr>
<tr>
<td>Ideker, Trey</td>
<td>Associate Professor</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Ierley, Glenn R.</td>
<td>Professor</td>
<td>SIO</td>
</tr>
<tr>
<td>Imada, Adria L.</td>
<td>Assistant Professor</td>
<td>Ethnic Studies</td>
</tr>
<tr>
<td>Impagliazzo, Russell</td>
<td>Professor</td>
<td>CSE</td>
</tr>
<tr>
<td>Inman, Douglas L.</td>
<td>Professor Emeritus</td>
<td>SIO</td>
</tr>
<tr>
<td>Insel, Paul A.</td>
<td>Professor</td>
<td>Pharmacology/ Medicine</td>
</tr>
<tr>
<td>Intaglietta, Marcos</td>
<td>Professor</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Intriligator, Kenneth</td>
<td>Professor</td>
<td>Physics</td>
</tr>
<tr>
<td>Iragui-Madoz, Vicente J.</td>
<td>Professor Emeritus</td>
<td>Neurosciences</td>
</tr>
<tr>
<td>Irons, Peter H.</td>
<td>Associate Professor</td>
<td>Political Science</td>
</tr>
<tr>
<td>Isaacson, Jeffry S.</td>
<td>Associate Professor</td>
<td>Neurosciences</td>
</tr>
<tr>
<td>Jackson, Gabriel</td>
<td>Professor Emeritus</td>
<td>History</td>
</tr>
<tr>
<td>Jackson, Jeremy</td>
<td>Professor</td>
<td>SIO</td>
</tr>
<tr>
<td>Jacobson, Gary C.</td>
<td>Professor</td>
<td>Political Science</td>
</tr>
<tr>
<td>Jain, Ramesh C.</td>
<td>Professor Emeritus</td>
<td>ECE/CSE</td>
</tr>
<tr>
<td>James, Luther</td>
<td>Associate Professor Emeritus</td>
<td>Theatre and Dance</td>
</tr>
<tr>
<td>Jamora, Colin</td>
<td>Assistant Professor</td>
<td>Biological Sciences—Cell and Developmental Biology</td>
</tr>
<tr>
<td>Januszewski, Silke I.</td>
<td>Assistant Professor</td>
<td>Economics</td>
</tr>
<tr>
<td>Javidi, Tara</td>
<td>Assistant Professor</td>
<td>ECE</td>
</tr>
<tr>
<td>Jed, Stephanie H.</td>
<td>Associate Professor</td>
<td>Literature</td>
</tr>
<tr>
<td>Jenik, Adriene</td>
<td>Associate Professor</td>
<td>Visual Arts</td>
</tr>
<tr>
<td>Jenkins, Elizabeth</td>
<td>Professor</td>
<td>Physics</td>
</tr>
<tr>
<td>Jenkins, Janis H.</td>
<td>Professor</td>
<td>Anthropology</td>
</tr>
<tr>
<td>Jennings, Patricia</td>
<td>Professor</td>
<td>Chemistry and Biochemistry</td>
</tr>
<tr>
<td>Jensen, Henrik</td>
<td>Associate Professor</td>
<td>CSE</td>
</tr>
<tr>
<td>Jeremijenko, Natalie</td>
<td>Assistant Professor</td>
<td>Visual Arts</td>
</tr>
<tr>
<td>Jernigan, Terry L.</td>
<td>Professor-in-Residence</td>
<td>Psychiatry/Radiology</td>
</tr>
<tr>
<td>Jeste, Dilip V.</td>
<td>Professor-in-Residence</td>
<td>Psychiatry</td>
</tr>
<tr>
<td>Jetz, Walter</td>
<td>Assistant Professor</td>
<td>Biological Sciences—Ecology, Behavior, and Evolution</td>
</tr>
<tr>
<td>Jhala, Ranjit</td>
<td>Assistant Professor</td>
<td>CSE</td>
</tr>
<tr>
<td>Jimenez, Tomas R.</td>
<td>Assistant Professor</td>
<td>Sociology</td>
</tr>
<tr>
<td>Jin, Sungho</td>
<td>Professor</td>
<td>MAE</td>
</tr>
<tr>
<td>Jin, Yishi</td>
<td>Associate Professor</td>
<td>Biological Sciences—Neurobiology</td>
</tr>
<tr>
<td>Johnson, Catherine L.</td>
<td>Professor Emeritus</td>
<td>SIO</td>
</tr>
<tr>
<td>Johnson, Chalmers</td>
<td>Assistant Professor</td>
<td>IRPS</td>
</tr>
<tr>
<td>Johnson, Monte</td>
<td>Professor</td>
<td>Philosophy</td>
</tr>
<tr>
<td>Johnson, Randall S.</td>
<td>Assistant Professor</td>
<td>Biological Sciences—Molecular Biology</td>
</tr>
<tr>
<td>Johnson, Tracy</td>
<td>Assistant Professor</td>
<td>Biological Sciences—Molecular Biology</td>
</tr>
</tbody>
</table>
Johnson La-O, Sara E.
Jones, Barbara
Jones, Walton
Jordan, David K.
Joseph, Simpson
Judd, Lewis L.
Jules-Rosette, Bennetta W.

Kadonaga, James T.
Kagnoff, Martin F.
Kahler, Miles E.
Kahng, Andrew B.
Kahr, Madlyn M.
Kalleres, Dayna
Kamps, Mark P.
Kane, Alex
Karbhari, Vistasp M.
Karlin, Michael
Karlin, Sidney
Karls, Alec
Karten, Harvey J.
Kartik, Navin
Kastner, Miriam
Katzman, Robert
Kaushansky, Kenneth
Kayali, Hasan
Kearns, David R.
Keating, Brian
Keeling, Ralph F.
Kehler, Andrew
Kelly, Carolyn J.
Kelner, Michael J.
Kelsoe, John R., Jr.
Kennel, Charles F.
Kernell, Samuel H.
Kester, Grant
Kiger, Amy

Kim, Hyonny
Kim, Judy E.
Kim, Young-Han
Kipps, Thomas J.
Kirkland, Theo N., III
Kirkpatrick, Susan
Kirsh, David J.
Kitchloo, Nitya
Klatz, Rebecca E.
Klein, Rachel
Kleinfeld, David
Kleissl, Jan
Klima, Edward S.
Kluender, Robert E.
Knowlton, Nancy

Assistant Professor
Professor Emerita
Professor Emeritus
Associate Professor
Professor

Assistant Professor
Professor Emeritus
Associate Professor
Professor Emerita
Assistant Professor
Professor

Professor
Professor
Professor
Professor
Professor
Assistant Professor
Professor

Professor
Professor Emeritus
Professor
Professor Emerita
Assistant Professor
Professor

Professor
Professor Emeritus
Professor
Professor Emerita
Assistant Professor
Professor

Professor
Professor Emeritus
Professor-in-Residence
Professor
Professor-in-Residence
Professor Emeritus
Assistant Professor
Professor

Professor
Professor Emeritus
Professor
Professor Emerita
Assistant Professor
Professor

Professor
Professor Emeritus
Professor
Professor Emerita
Assistant Professor
Professor

Literature
Physics
Theatre and Dance
Anthropology
Chemistry and Biochemistry
Psychiatry
Sociology

Biological Sciences—Molecular Biology
Medicine/Pediatrics
IRPS
CSE/ECE
Visual Arts
Literature
Pathology
IRPS
Structural Engineering
Pharmacology
CSE
Music
Neurosciences/Psychiatry
Economics

SIO
Neurosciences
Medicine
History
Chemistry and Biochemistry
Physics
SIO
Linguistics
Medicine
Pathology
Psychiatry
SIO
Political Science
Visual Arts
Biological Sciences—Cell and Developmental Biology

Structural Engineering
Chemistry and Biochemistry
ECE
Medicine
Pathology/Medicine
Literature
Cognitive Science
Mathematics
Sociology
History
Physics
MAE
Linguistics
Linguistics
SIO

Roosevelt
Muir
Muir
Warren
Roosevelt
SchMed
Muir
Revelle
SchMed
Revelle
SchMed
Revelle
Roosevelt
Warren
Roosevelt
Muir
Revelle
SchMed
Muir
Warren
Warren
Marshall
Muir
Warren
SIO
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department/Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knutson, Allen I.</td>
<td>Professor</td>
<td>Mathematics</td>
<td>Sixth</td>
</tr>
<tr>
<td>Kobayashi, Yoshihisa</td>
<td>Assistant Professor</td>
<td>Chemistry and Biochemistry</td>
<td>Revelle</td>
</tr>
<tr>
<td>Kohn, Joshua R.</td>
<td>Associate Professor</td>
<td>Biological Sciences—Ecology, Behavior, and Evolution</td>
<td>Warren</td>
</tr>
<tr>
<td>Kokotovic, Milos</td>
<td>Associate Professor</td>
<td>Literature</td>
<td>Muir</td>
</tr>
<tr>
<td>Kolodner, Richard D.</td>
<td>Professor</td>
<td>Medicine</td>
<td>SchMed</td>
</tr>
<tr>
<td>Komives, Elizabeth A.</td>
<td>Professor</td>
<td>Chemistry and Biochemistry</td>
<td>Reveille</td>
</tr>
<tr>
<td>Komunjer, Ivana</td>
<td>Professor</td>
<td>Economics</td>
<td>Muir</td>
</tr>
<tr>
<td>Konecni, Vladimir J.</td>
<td>Professor</td>
<td>Psychology</td>
<td>SchMed</td>
</tr>
<tr>
<td>Kontje, Todd C.</td>
<td>Professor</td>
<td>Literature</td>
<td>SchMed</td>
</tr>
<tr>
<td>Koo, Edward</td>
<td>Professor</td>
<td>Neurosciences</td>
<td>SchMed</td>
</tr>
<tr>
<td>Kooyman, Gerald L.</td>
<td>Professor-in-Residence Emeritus</td>
<td>SIO</td>
<td>Warren</td>
</tr>
<tr>
<td>Kosmatka, John B.</td>
<td>Professor</td>
<td>Structural Engineering</td>
<td>Muir</td>
</tr>
<tr>
<td>Kousser, Thaddeus B.</td>
<td>Professor</td>
<td>Political Science</td>
<td>Muir</td>
</tr>
<tr>
<td>Krasheninnikov, Sergei</td>
<td>Professor Emeritus</td>
<td>MAE</td>
<td>IRPS</td>
</tr>
<tr>
<td>Krause, Lawrence B.</td>
<td>Professor Emeritus</td>
<td>IRPS</td>
<td>IRPS</td>
</tr>
<tr>
<td>Krauss, Ellis S.</td>
<td>Professor Emeritus</td>
<td>Chemistry and Biochemistry</td>
<td>Reveille</td>
</tr>
<tr>
<td>Kraut, Joseph</td>
<td>Professor Emeritus</td>
<td>ECE</td>
<td>Warren</td>
</tr>
<tr>
<td>Kreutz-Delgado, Kenneth</td>
<td>Professor</td>
<td>CSE</td>
<td>Warren</td>
</tr>
<tr>
<td>Krieger, David</td>
<td>Professor Emeritus</td>
<td>Psychiatry</td>
<td>Muir</td>
</tr>
<tr>
<td>Kripke, Daniel F.</td>
<td>Professor</td>
<td>Biological Sciences—Neurobiology</td>
<td>SchMed</td>
</tr>
<tr>
<td>Krishnan, Viswanathan</td>
<td>Professor Emeritus</td>
<td>Family and Preventive Medicine</td>
<td>SchMed</td>
</tr>
<tr>
<td>Kristan, William B., Jr.</td>
<td>Professor Emeritus</td>
<td>MAE</td>
<td>Muir</td>
</tr>
<tr>
<td>Kronick, Richard G.</td>
<td>Professor Emeritus</td>
<td>CSE</td>
<td>Warren</td>
</tr>
<tr>
<td>Krstic, Miroslav</td>
<td>Professor Emeritus</td>
<td>Structural Engineering</td>
<td>Muir</td>
</tr>
<tr>
<td>Krueger, Ingolf</td>
<td>Professor Emeritus</td>
<td>ECE</td>
<td>Reveille</td>
</tr>
<tr>
<td>Krysl, Petr</td>
<td>Professor Emeritus</td>
<td>CSE</td>
<td>Sixth</td>
</tr>
<tr>
<td>Ku, Walter H.</td>
<td>Professor Emeritus</td>
<td>Chemistry and Biochemistry</td>
<td>Warren</td>
</tr>
<tr>
<td>Kube, Paul R.</td>
<td>Professor Emeritus</td>
<td>Psychiatry</td>
<td>SchMed</td>
</tr>
<tr>
<td>Kubiak, Clifford P.</td>
<td>Professor Emeritus</td>
<td>Structural Engineering</td>
<td>Sixth</td>
</tr>
<tr>
<td>Kuczenski, Ronald T.</td>
<td>Professor Emeritus</td>
<td>Psychology</td>
<td>Warren</td>
</tr>
<tr>
<td>Kuesto, Falko</td>
<td>Associate Professor</td>
<td>Chemistry and Biochemistry</td>
<td>Muir</td>
</tr>
<tr>
<td>Kulik, James A.</td>
<td>Professor</td>
<td>History</td>
<td>Sixth</td>
</tr>
<tr>
<td>Kummel, Andrew C.</td>
<td>Professor Emeritus</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Kuo, Jane</td>
<td>Professor Emeritus</td>
<td>Linguistics</td>
<td>Muir</td>
</tr>
<tr>
<td>Kuperman, William A.</td>
<td>Professor Emeritus</td>
<td>Cognitive Science</td>
<td>Muir</td>
</tr>
<tr>
<td>Kuroda, Sige-Yuki</td>
<td>Professor</td>
<td>Physics</td>
<td>Marshall</td>
</tr>
<tr>
<td>Kutus, Marta</td>
<td>Professor Emeritus</td>
<td>Chemistry and Biochemistry</td>
<td>Warren</td>
</tr>
<tr>
<td>Kuti, Julius G.</td>
<td>Professor Emeritus</td>
<td>Political Science</td>
<td>Marshall</td>
</tr>
<tr>
<td>Kyte, Jack E.</td>
<td>Professor Emeritus</td>
<td>Sociology</td>
<td>Warren</td>
</tr>
<tr>
<td>Lake, David A.</td>
<td>Professor</td>
<td>Political Science</td>
<td>Warren</td>
</tr>
<tr>
<td>Lakoff, Andrew</td>
<td>Assistant Professor</td>
<td>Political Science</td>
<td>Warren</td>
</tr>
<tr>
<td>Lakoff, Sanford A.</td>
<td>Professor Emeritus</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Lal, Devendra</td>
<td>Professor</td>
<td>Literature</td>
<td>Reveille</td>
</tr>
<tr>
<td>Lampert, Lisa</td>
<td>Associate Professor</td>
<td>Sociology</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Lampland, Martha</td>
<td>Associate Professor</td>
<td>ECE</td>
<td>Sixth</td>
</tr>
<tr>
<td>Lanckriet, Gert</td>
<td>Assistant Professor</td>
<td>Biological Sciences—Ecology, Behavior, and Evolution</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Lande, Russell S.</td>
<td>Professor</td>
<td>SIO</td>
<td>SchMed</td>
</tr>
<tr>
<td>Landry, Michael R.</td>
<td>Professor</td>
<td>Pathology</td>
<td>Reveille</td>
</tr>
<tr>
<td>Lane, Thomas A.</td>
<td>Professor</td>
<td>Linguistics</td>
<td>Warren</td>
</tr>
<tr>
<td>Langacker, Ronald W.</td>
<td>Professor Emeritus</td>
<td>Linguistics</td>
<td>Warren</td>
</tr>
<tr>
<td>Langdon, Margaret H.</td>
<td>Professor Emerita</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lanza di Scalea, Francesco
Larson, Lawrence
Larson, Philip C.
Lasheras, Juan C.
Lau, Silvanus S.
Lawder, Standish D.
Lawson, Mark A.
Le, Dzung The
Lee, Edward N.
Lee, Jin-Kyung
Lee, Sing H.
Leffert, Hyam L.
Lehmann, Bruce N.
Leichter, James
Lerner, Sorin
Levin, James A.
Levin, Lisa
Levin, Paula
Levine, Fred
Levine, Herbert
Levy, Roger P.
Lewak, George J.
Lewin, Ralph A.
Li, Bo
Libby, Paul A.
Lieber, Richard L.
Liebermann, Leonard N.
Lijphart, Arend
Lin, Bill
Lin, James P.
Lin, Shao-Chi
Lindblad, Hans
Linden, Paul F.
Lindenberg, Katja
Lindsley, Dan L.
Linton, April
Liu, Jun
Llewellyn Smith, Stefan G.
Lo, Yu-Hwa
Lomakin, Vitaliy
Lonidier, Fred S.
Lonsdale, Peter F.
Loomis, William F., Jr.
Loose, Margaret
Lovberg, Ralph H.
Lowe, Lisa M.
Lu, Weijing
Luco, J. Enrique
Luft, David S.
Lugannani, Robert
Luo, Huey-Lin
Lyden, Patrick D.

Associate Professor
Professor
Professor
Professor
Associate Professor Emeritus
Assistant Professor-in-Residence
Associate Professor of Clinical Pathology
Professor Emeritus
Assistant Professor
Professor
Assistant Professor
Assistant Professor
Professor
Associate Professor Emeritus
Professor
Professor Emeritus
Associate Professor
Professor Emeritus
Professor Emeritus
Associate Professor
Professor Emeritus
Assistant Professor
Professor Emeritus
Assistant Professor
Professor
Professor
Professor
Professor-in-Residence

MAE
ECE
Music
MAE
ECE
Visual Arts
Reproductive Medicine
Pathology
Philosophy
Literature
ECE
Pharmacology
IRPS
SIO
CSE
Education Studies
SIO
Education Studies
Pediatrics
Physics
Linguistics
Anthropology
ECE
SIO
Mathematics
MAE
Orthopaedics
Physics
Political Science
ECE
Mathematics
MAE
Chemistry and Biochemistry
Biological Sciences—Cell and Developmental Biology
Sociology
RSOM
MAE
ECE
ECE
Visual Arts
SIO
Biological Sciences—Cell and Developmental Biology
Literature
Physics
Literature
History
MAE
History
ECE
ECE
Neurosciences

Roosevelt
Roosevelt
Roosevelt
Marshall
Muir
Warren
Roosevelt
SchMed
SchMed
Warren
Muir
Warren
Muir
Warren
SIO
Roosevelt
Muir
Revelle
Muir
Revelle
Muir
Revelle
SchMed
Revelle/SchMed
Warren
RSOM
Warren
Marshall
Revelle
Revelle
Revelle
Revelle
Revelle
Revelle
Revelle
Muir
SchMed
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyon, James K.</td>
<td>Professor Emeritus</td>
<td>Literature Roosevelt</td>
</tr>
<tr>
<td>Lytle, Cecil W.</td>
<td>Professor</td>
<td>Music Marshall</td>
</tr>
<tr>
<td>Macagno, Eduardo R.</td>
<td>Professor</td>
<td>Biological Sciences—Cell and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>MacConnel, Kim R.</td>
<td>Professor</td>
<td>Visual Arts Marshall</td>
</tr>
<tr>
<td>Macdougall, J. Douglas</td>
<td>Professor</td>
<td>SIO Revelle/SIO</td>
</tr>
<tr>
<td>Machina, Mark J.</td>
<td>Professor</td>
<td>Economics Revelle</td>
</tr>
<tr>
<td>Mackie, Gerald L.</td>
<td>Assistant Professor</td>
<td>Political Science Revelle</td>
</tr>
<tr>
<td>MacLeod, Carol L.</td>
<td>Professor-in-Residence</td>
<td>Medicine SchMed</td>
</tr>
<tr>
<td>MacLeod, Donald I.A.</td>
<td>Professor</td>
<td>Psychology Revelle</td>
</tr>
<tr>
<td>Madsen, Richard P.</td>
<td>Professor</td>
<td>Sociology Roosevelt</td>
</tr>
<tr>
<td>Magagna, Victor V.</td>
<td>Associate Professor</td>
<td>Political Science Muir</td>
</tr>
<tr>
<td>Magde, Douglas</td>
<td>Professor</td>
<td>Chemistry and Biochemistry IRPS</td>
</tr>
<tr>
<td>Malesky, Edward</td>
<td>Assistant Professor</td>
<td>Biological Sciences—Cell and</td>
</tr>
<tr>
<td>Malhotra, Vivek</td>
<td>Professor</td>
<td>Developmental Biology Revelle</td>
</tr>
<tr>
<td>Manaster, Alfred B.</td>
<td>Professor Emeritus</td>
<td>Mathematics Reville</td>
</tr>
<tr>
<td>Mandler, George</td>
<td>Professor Emeritus</td>
<td>Psychology Muir</td>
</tr>
<tr>
<td>Mandler, Jean M.</td>
<td>Professor Emerita</td>
<td>Cognitive Science Revelle</td>
</tr>
<tr>
<td>Mangolte, Babette M.</td>
<td>Professor</td>
<td>Visual Arts Marshall</td>
</tr>
<tr>
<td>Manohar, Aneesh V.</td>
<td>Professor</td>
<td>Physics Marshall</td>
</tr>
<tr>
<td>Manoury, Philippe</td>
<td>Professor</td>
<td>Music Revelle</td>
</tr>
<tr>
<td>Manovich, Lev</td>
<td>Professor</td>
<td>Visual Arts Revelle</td>
</tr>
<tr>
<td>Maple, M. Brian</td>
<td>Professor</td>
<td>Physics Revelle</td>
</tr>
<tr>
<td>Marchetti, Karen E.</td>
<td>Assistant Professor</td>
<td>Biological Sciences—Ecology,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Behavior, and Evolution Reille</td>
</tr>
<tr>
<td>Mares, David R.</td>
<td>Professor</td>
<td>Political Science Muir</td>
</tr>
<tr>
<td>Marino, John A.</td>
<td>Associate Professor</td>
<td>History Reille</td>
</tr>
<tr>
<td>Mariscal, George L.</td>
<td>Professor</td>
<td>Literature Warren</td>
</tr>
<tr>
<td>Markenscoff, Xanthippe</td>
<td>Professor</td>
<td>MAE Reille</td>
</tr>
<tr>
<td>Marshall, Margaret C.</td>
<td>Senior Lecturer (SOE)</td>
<td>Theatre and Dance Marshall</td>
</tr>
<tr>
<td>Marth, Jamey D.</td>
<td>Professor</td>
<td>Cellular and Molecular MedicineSchMed</td>
</tr>
<tr>
<td>Marti, Kurt</td>
<td>Professor Emeritus</td>
<td>Chemistry and Biochemistry Reille</td>
</tr>
<tr>
<td>Martin, Isaac</td>
<td>Assistant Professor</td>
<td>Sociology Warren</td>
</tr>
<tr>
<td>Martin-Cabrera, Luis</td>
<td>Assistant Professor</td>
<td>Literature Reille</td>
</tr>
<tr>
<td>Marzullo, Keith</td>
<td>Professor</td>
<td>CSE Marshall</td>
</tr>
<tr>
<td>Masek, George E.</td>
<td>Professor Emeritus</td>
<td>Physics Reille</td>
</tr>
<tr>
<td>Masliah, Eliezer</td>
<td>Professor</td>
<td>Neurosciences/Pathology SchMed</td>
</tr>
<tr>
<td>Masouredis, Serafeim P.</td>
<td>Professor Emeritus</td>
<td>Pathology SchMed</td>
</tr>
<tr>
<td>Masry, Elias</td>
<td>Professor</td>
<td>ECE Muir</td>
</tr>
<tr>
<td>Masters, T. Guy</td>
<td>Professor</td>
<td>SIO SIO</td>
</tr>
<tr>
<td>Mathieu-Costello, Odile</td>
<td>Professor-in-Residence Emerita</td>
<td>Medicine SchMed</td>
</tr>
<tr>
<td>May, Suzanne</td>
<td>Assistant Professor</td>
<td>Family and Preventive Medicine/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biological Sciences—Neurobiology</td>
</tr>
<tr>
<td>Mayberry, Rachel</td>
<td>Associate Professor</td>
<td>Linguistics Sixth</td>
</tr>
<tr>
<td>McCammon, James Andrew</td>
<td>Professor</td>
<td>Chemistry and Biochemistry/PharmacologyRevelle/SchMed</td>
</tr>
<tr>
<td>McCubbins, Mathew D.</td>
<td>Professor</td>
<td>Political Science Marshall</td>
</tr>
<tr>
<td>McCulloch, Andrew D.</td>
<td>Professor</td>
<td>Bioengineering Muir</td>
</tr>
<tr>
<td>McDaniel, Timothy L.</td>
<td>Professor</td>
<td>Sociology Roosevelt</td>
</tr>
<tr>
<td>McDonald, Marianne</td>
<td>Professor</td>
<td>Theatre and Dance Reille</td>
</tr>
<tr>
<td>McEneaney, William M.</td>
<td>Professor</td>
<td>MAE/Mathematics Warren</td>
</tr>
<tr>
<td>McGinnis, William J.</td>
<td>Professor</td>
<td>Biological Sciences—Cell and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Developmental Biology</td>
</tr>
</tbody>
</table>
McGowan, John A. Professor Emeritus SIO
Mcllwain, Carl E. Professor Emeritus SIO
McIntosh, Craig
McKenzie, Craig R.M. Professor Emeritus Revelle
McKittrick, Joanna M.
McMorris, Trevor C.
McNeal, Keith E.
Meade, Everard
Medvetz, Thomas
Meeker, Michael E.
Mehan, Hugh B., Jr.
Mel, Stephanie
Mellon, Pamela L.
Melville, W. Kendall
Mendis, D. Asoka
Metzger, Thomas A.
Meyer, David A.
Meyer, Ursula
Meyers, Marc A.
Micciancio, Daniele
Micou, Melissa
Middleman, Stanley
Miles, John W.
Miller, Arnold L.
Miller, David
Miller, David R.
Miller, Stanley L.
Mills, Stanley E.
Milstein, Laurence B.
Minster, Jean-Bernard H.
Mitchell, Allan
Miyai, Katsumi
Miyoshi, Masao
Mizisin, Andrew P.
Molina, Natalia M.
Molina, Mario
Molinski, Tadeusz
Montal, S. Mauricio
Monteón, Michael P.
Montrose, Louis A.
Mookherjea, Shayan
Moore, Bradley S.
Moore, F. Richard
Moore, James J.
Moore, John C.
Mosshammer, Alden A.
Muendler, Marc-Andreas
Mukerji, Chandra
Munk, Walter H.
Murakami, Hidenori
Murphy, Thomas W., Jr.
Murre, Cornelis
Myles, Eileen
Myers, Robert R.

Professor Emeritus SIO
Professor Emeritus SIO
Assistant Professor IRPS
Professor Revelle
Professor Emeritus Warren
Assistant Professor IRPS
Assistant Professor Warren
Acting Assistant Professor Revelle
Professor Emeritus Revelle
Professor Warren
Lecturer (PSOE) Muir
Professor Warren
Professor Emeritus Warren
Assistant Professor Warren
Professor Emeritus Warren
Professor Em
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Najmabadi, Farrokh</td>
<td>Professor</td>
<td>ECE</td>
</tr>
<tr>
<td>Naoi, Megumi</td>
<td>Assistant Professor</td>
<td>Political Science</td>
</tr>
<tr>
<td>Naughton, Barry J.</td>
<td>Professor</td>
<td>IRPS</td>
</tr>
<tr>
<td>Nee, Thomas B.</td>
<td>Professor Emeritus</td>
<td>Music</td>
</tr>
<tr>
<td>Négyesy, János</td>
<td>Professor</td>
<td>Music</td>
</tr>
<tr>
<td>Nelkin, Dana</td>
<td>Associate Professor</td>
<td>Philosophy</td>
</tr>
<tr>
<td>Nemat-Nasser, Siavouche</td>
<td>Professor</td>
<td>MAE</td>
</tr>
<tr>
<td>Nesbitt, Muriel N.</td>
<td>Lecturer (SOE)</td>
<td>Biological Sciences — Neurobiology</td>
</tr>
<tr>
<td>Nesterenko, Vitali</td>
<td>Professor</td>
<td>IRPS</td>
</tr>
<tr>
<td>Newman, William A.</td>
<td>Professor Emeritus</td>
<td>MAE</td>
</tr>
<tr>
<td>Newmark, Leonard D.</td>
<td>Professor Emeritus</td>
<td>Linguistics</td>
</tr>
<tr>
<td>Newsome, Elizabeth</td>
<td>Associate Professor</td>
<td>Visual Arts</td>
</tr>
<tr>
<td>Newton, Alexandra</td>
<td>Professor</td>
<td>Pharmacology</td>
</tr>
<tr>
<td>Ng, Kwai</td>
<td>Assistant Professor</td>
<td>Sociology</td>
</tr>
<tr>
<td>Nguyen, Truong</td>
<td>Professor Emeritus</td>
<td>ECE</td>
</tr>
<tr>
<td>Nguyen-Huu, Xuong</td>
<td>Associate Professor</td>
<td>Biological Sciences — Molecular Biology</td>
</tr>
<tr>
<td>Ni, Lei</td>
<td>Associate Professor</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Nicolaou, Kyriacos C.</td>
<td>Professor</td>
<td>Chemistry and Biochemistry</td>
</tr>
<tr>
<td>Nieh, James C.</td>
<td>Associate Professor</td>
<td>Biological Sciences — Ecology, Behavior, and Evolution</td>
</tr>
<tr>
<td>Nigam, Sanjay</td>
<td>Professor</td>
<td>Pediatrics</td>
</tr>
<tr>
<td>Niiler, Pearn P.</td>
<td>Professor Emeritus</td>
<td>SIO</td>
</tr>
<tr>
<td>Niwa, Maho</td>
<td>Assistant Professor</td>
<td>Biological Sciences — Molecular Biology</td>
</tr>
<tr>
<td>Nizet, Victor</td>
<td>Associate Professor</td>
<td>Pediatrics</td>
</tr>
<tr>
<td>Nodelman, Sheldon A.</td>
<td>Professor</td>
<td>Visual Arts</td>
</tr>
<tr>
<td>Noel, Michael</td>
<td>Assistant Professor</td>
<td>Economics</td>
</tr>
<tr>
<td>Nomura, Keiko</td>
<td>Associate Professor</td>
<td>MAE</td>
</tr>
<tr>
<td>Norman, Donald A.</td>
<td>Professor Emeritus</td>
<td>Cognitive Science/Psychology</td>
</tr>
<tr>
<td>Norman, Michael L.</td>
<td>Professor</td>
<td>Physics</td>
</tr>
<tr>
<td>Norris, Joel R.</td>
<td>Assistant Professor</td>
<td>SIO</td>
</tr>
<tr>
<td>Norris, Richard D.</td>
<td>Professor</td>
<td>SIO</td>
</tr>
<tr>
<td>Northcutt, R. Glenn</td>
<td>Professor</td>
<td>Neurosciences</td>
</tr>
<tr>
<td>Nuñez, Rafael</td>
<td>Associate Professor</td>
<td>Cognitive Science</td>
</tr>
<tr>
<td>Oates, Charles</td>
<td>Senior Lecturer (SOE)</td>
<td>Theatre and Dance</td>
</tr>
<tr>
<td>O’Brien, William A.</td>
<td>Associate Professor</td>
<td>Literature</td>
</tr>
<tr>
<td>O’Connor, Daniel T.</td>
<td>Professor-in-Residence</td>
<td>Medicine</td>
</tr>
<tr>
<td>O’Connor, Joseph M.</td>
<td>Professor</td>
<td>Chemistry and Biochemistry</td>
</tr>
<tr>
<td>Oegema, Karen</td>
<td>Assistant Professor</td>
<td>Cellular and Molecular Medicine</td>
</tr>
<tr>
<td>Oesterreicher, Hans K.</td>
<td>Professor Emeritus</td>
<td>Chemistry and Biochemistry</td>
</tr>
<tr>
<td>Ogdon, Wilbur L.</td>
<td>Professor</td>
<td>Music</td>
</tr>
<tr>
<td>Ohman, Mark D.</td>
<td>Professor</td>
<td>SIO</td>
</tr>
<tr>
<td>Okamura, Melvin Y.</td>
<td>Professor</td>
<td>Physics</td>
</tr>
<tr>
<td>Okikiolu, Kate</td>
<td>Professor Emeritus</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Olafson, Frederick A.</td>
<td>Professor</td>
<td>Philosophy</td>
</tr>
<tr>
<td>Olefsky, Jerrold M.</td>
<td>Professor</td>
<td>Medicine</td>
</tr>
<tr>
<td>Olfe, Daniel B.</td>
<td>Professor Emeritus</td>
<td>MAE</td>
</tr>
<tr>
<td>O’Neil, Thomas M.</td>
<td>Professor</td>
<td>Physics</td>
</tr>
<tr>
<td>Onuchic, José N.</td>
<td>Professor</td>
<td>Physics</td>
</tr>
<tr>
<td>Opella, Thomas M.</td>
<td>Professor Emeritus</td>
<td>Chemistry and Biochemistry</td>
</tr>
<tr>
<td>O’Quigley, John</td>
<td>Professor</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Orailoglu, Alex</td>
<td>Professor Emeritus</td>
<td>CSE</td>
</tr>
<tr>
<td>Orcutt, John A.</td>
<td>Professor</td>
<td>SIO</td>
</tr>
</tbody>
</table>

Note: Some titles are abbreviated for brevity.
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
<th>Building</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oreskes, Naomi</td>
<td>Professor</td>
<td>History</td>
<td>Warren</td>
</tr>
<tr>
<td>Orlitsky, Alon</td>
<td>Professor</td>
<td>ECE</td>
<td>Marshall</td>
</tr>
<tr>
<td>Orloff, Marshall J.</td>
<td>Professor</td>
<td>Surgery</td>
<td>SchMed/Muir</td>
</tr>
<tr>
<td>Ortiz, Ruben</td>
<td>Professor</td>
<td>Visual Arts</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Oxman, Michael N.</td>
<td>Professor</td>
<td>Medicine/Pathology</td>
<td>SchMed</td>
</tr>
<tr>
<td>Ozyurek, Esra</td>
<td>Assistant Professor</td>
<td>Anthropology</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Paar, Hans P.</td>
<td>Professor</td>
<td>Physics</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Padden, Carol A.</td>
<td>Professor</td>
<td>Communication</td>
<td>Marshall</td>
</tr>
<tr>
<td>Padoan, Paolo</td>
<td>Assistant Professor</td>
<td>Physics</td>
<td>Warren</td>
</tr>
<tr>
<td>Palade, George</td>
<td>Professor-in-Residence Emeritus</td>
<td>CMM</td>
<td>SchMed</td>
</tr>
<tr>
<td>Palenik, Brian</td>
<td>Professor</td>
<td>Bioengineering</td>
<td>Warren</td>
</tr>
<tr>
<td>Palsson, Bernhard O.</td>
<td>Professor</td>
<td>CSE</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Papakonstantinou, Yannis</td>
<td>Professor</td>
<td>Anthropology</td>
<td>Sixth</td>
</tr>
<tr>
<td>Papen, George</td>
<td>Professor</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Park, Lisa</td>
<td>Associate Professor</td>
<td>Ethnic Studies</td>
<td>Muir</td>
</tr>
<tr>
<td>Parra, Max</td>
<td>Associate Professor</td>
<td>Literature</td>
<td>Marshall</td>
</tr>
<tr>
<td>Parrish, Michael E.</td>
<td>Professor</td>
<td>History</td>
<td>Muir</td>
</tr>
<tr>
<td>Pashler, Harold E.</td>
<td>Professor</td>
<td>Psychology</td>
<td>Muir</td>
</tr>
<tr>
<td>Pasler, Jann C.</td>
<td>Professor</td>
<td>Music</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Pasquale, Joseph C.</td>
<td>Professor</td>
<td>CSE</td>
<td>Marshall</td>
</tr>
<tr>
<td>Pasquinelli, Amy</td>
<td>Assistant Professor</td>
<td>Biological Sciences—Molecular Biology</td>
<td>Marshall</td>
</tr>
<tr>
<td>Pastor, Jennifer</td>
<td>Associate Professor</td>
<td>Visual Arts</td>
<td>Sixth</td>
</tr>
<tr>
<td>Patrick, Gentry</td>
<td>Assistant Professor</td>
<td>Biological Sciences—Neurobiology</td>
<td>Marshall</td>
</tr>
<tr>
<td>Patterson, Patricia A.</td>
<td>Professor Emeritus</td>
<td>Visual Arts</td>
<td>Muir</td>
</tr>
<tr>
<td>Patterson, Patrick H.</td>
<td>Professor Emeritus</td>
<td>History</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Paturi, Ramamohan</td>
<td>Professor Emeritus</td>
<td>CSE</td>
<td>Warren</td>
</tr>
<tr>
<td>Pearce, Roy Harvey</td>
<td>Professor Emeritus</td>
<td>Literature</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Pedersen, David E.</td>
<td>Associate Professor</td>
<td>Anthropology</td>
<td>Marshall</td>
</tr>
<tr>
<td>Pellow, David</td>
<td>Professor Emeritus</td>
<td>Ethnic Studies</td>
<td>Muir</td>
</tr>
<tr>
<td>Penn, Nolan E.</td>
<td>Professor Emeritus</td>
<td>Psychiatry</td>
<td>SchMed</td>
</tr>
<tr>
<td>Penner, Stanford S.</td>
<td>Professor Emeritus</td>
<td>MAE</td>
<td>Revelle</td>
</tr>
<tr>
<td>Perlmutter, David M.</td>
<td>Professor Emeritus</td>
<td>Linguistics</td>
<td>Revelle</td>
</tr>
<tr>
<td>Perrin, Charles L.</td>
<td>Professor Emeritus</td>
<td>Chemistry and Biochemistry</td>
<td>Revelle</td>
</tr>
<tr>
<td>Peterson, Laurence E.</td>
<td>Professor Emeritus</td>
<td>Physics</td>
<td>Revelle</td>
</tr>
<tr>
<td>Petrovich, Victoria</td>
<td>Associate Professor</td>
<td>Theatre and Dance</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Pezvner, Pavel A.</td>
<td>Professor</td>
<td>CSE</td>
<td>Marshall</td>
</tr>
<tr>
<td>Phillips, David P.</td>
<td>Professor</td>
<td>Sociology</td>
<td>Revelle</td>
</tr>
<tr>
<td>Pickowicz, Paul G.</td>
<td>Professor</td>
<td>History</td>
<td>Muir</td>
</tr>
<tr>
<td>Pillus, Lorraine</td>
<td>Professor-in-Residence Emeritus</td>
<td>Biological Sciences—Molecular Biology</td>
<td>Revelle</td>
</tr>
<tr>
<td>Pilz, Renate B.</td>
<td>Professor</td>
<td>Medicine</td>
<td>SchMed</td>
</tr>
<tr>
<td>Piñeda, Jaime A.</td>
<td>Associate Professor</td>
<td>Cognitive Science</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Pinkel, Robert</td>
<td>Professor</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Piñon, Ramón, Jr.</td>
<td>Associate Professor Emeritus</td>
<td>Biology</td>
<td>Marshall</td>
</tr>
<tr>
<td>Plant, Rebecca</td>
<td>Assistant Professor</td>
<td>History</td>
<td>Muir</td>
</tr>
<tr>
<td>Plantamura, Carol</td>
<td>Professor</td>
<td>Music</td>
<td>Revelle</td>
</tr>
<tr>
<td>Pogliano, Joseph</td>
<td>Assistant Professor</td>
<td>Biological Sciences—Molecular Biology</td>
<td>Warren</td>
</tr>
<tr>
<td>Pogliano, Kit</td>
<td>Associate Professor</td>
<td>Biological Sciences—Molecular Biology</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Polinsky, Maria</td>
<td>Professor</td>
<td>Linguistics</td>
<td>Revelle</td>
</tr>
<tr>
<td>Politis, Dimitris</td>
<td>Professor</td>
<td>Mathematics</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Pomeroy, Earl</td>
<td>Professor Emeritus</td>
<td>History</td>
<td>Warren</td>
</tr>
<tr>
<td>Poole, Keith T.</td>
<td>Professor</td>
<td>Political Science</td>
<td>Sixth</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Department</td>
<td>Location</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------------</td>
<td>-----------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Popescu, Cristian</td>
<td>Associate Professor</td>
<td>Mathematics</td>
<td>Revelle</td>
</tr>
<tr>
<td>Popkin, Samuel L.</td>
<td>Professor</td>
<td>Political Science</td>
<td>Marshall</td>
</tr>
<tr>
<td>Posakony, James W.</td>
<td>Professor</td>
<td>Biological Sciences—Cell and</td>
<td>Marshall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Developmental Biology</td>
<td></td>
</tr>
<tr>
<td>Postero, Nancy G.</td>
<td>Assistant Professor</td>
<td>Anthropology</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Powell, Frank L., Jr.</td>
<td>Professor</td>
<td>Medicine</td>
<td>SchMed</td>
</tr>
<tr>
<td>Powell, Henry C.</td>
<td>Professor</td>
<td>Pathology</td>
<td>SchMed</td>
</tr>
<tr>
<td>Pozrikidis, Constantine</td>
<td>Professor</td>
<td>MAE</td>
<td>Muir</td>
</tr>
<tr>
<td>Prather, Kimberly A.</td>
<td>Professor</td>
<td>Chemistry and Biochemistry/SIO</td>
<td>Muir/SIO</td>
</tr>
<tr>
<td>Price, Paul A.</td>
<td>Professor</td>
<td>Biological Sciences—Molecular</td>
<td>Muir</td>
</tr>
<tr>
<td>Priestholdt, Jeremy G.</td>
<td>Assistant Professor</td>
<td>History</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Priestley, M. J. Nigel</td>
<td>Professor Emeritus</td>
<td>Structural Engineering</td>
<td>Warren</td>
</tr>
<tr>
<td>Printz, Morton P.</td>
<td>Professor</td>
<td>Pharmacology</td>
<td>SchMed</td>
</tr>
<tr>
<td>Proctor, Nancy G.</td>
<td>Assistant Professor</td>
<td>History</td>
<td>Muir</td>
</tr>
<tr>
<td>Powell, Henry C.</td>
<td>Professor</td>
<td>History</td>
<td>Sixth</td>
</tr>
<tr>
<td>Provence, Michael</td>
<td>Associate Professor</td>
<td>Music</td>
<td>Warren</td>
</tr>
<tr>
<td>Puckette, Miller S.</td>
<td>Professor</td>
<td>Structural Engineering</td>
<td>Sixth</td>
</tr>
<tr>
<td>Qiao, Yu</td>
<td>Associate Professor</td>
<td>ECE</td>
<td>Warren</td>
</tr>
<tr>
<td>Quest, Kevin B.</td>
<td>Professor</td>
<td>Mathematics</td>
<td>Revelle</td>
</tr>
<tr>
<td>Rabin, Jeffrey M.</td>
<td>Professor</td>
<td>History</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Radcliff, Pamela B.</td>
<td>Associate Professor</td>
<td>ECE</td>
<td>Revelle</td>
</tr>
<tr>
<td>Radic, Stojan</td>
<td>Professor</td>
<td>Literature</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Rahimi, Babak</td>
<td>Assistant Professor</td>
<td>Psychology</td>
<td>Marshall</td>
</tr>
<tr>
<td>Ramachandran, Vilayanur S.</td>
<td>Professor Emeritus</td>
<td>Economics</td>
<td>Revelle</td>
</tr>
<tr>
<td>Ramanathan, Ramachandra</td>
<td>Professor</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Ramanathan, Veerabhadran</td>
<td>Professor</td>
<td>Economics</td>
<td>Warren</td>
</tr>
<tr>
<td>Ramey, Garey</td>
<td>Professor</td>
<td>Economics</td>
<td>Marshall</td>
</tr>
<tr>
<td>Ramey, Valerie A.</td>
<td>Professor</td>
<td>Education Studies</td>
<td>Muir</td>
</tr>
<tr>
<td>Ramsey, Claire</td>
<td>Associate Professor</td>
<td>Literature</td>
<td>Revelle</td>
</tr>
<tr>
<td>Randel, Fred V.</td>
<td>Associate Professor Emeritus</td>
<td>ECE</td>
<td>Revelle</td>
</tr>
<tr>
<td>Rao, Bhaskar D.</td>
<td>Professor</td>
<td>ECE</td>
<td>Revelle</td>
</tr>
<tr>
<td>Rao, Ramesh</td>
<td>Professor</td>
<td>Surgery</td>
<td>SchMed</td>
</tr>
<tr>
<td>Rapaport, David H.</td>
<td>Professor Emeritus</td>
<td>Medicine/Pathology</td>
<td>SchMed</td>
</tr>
<tr>
<td>Rapaport, Samuel I.</td>
<td>Professor</td>
<td>Economics</td>
<td>Marshall</td>
</tr>
<tr>
<td>Rauch, James E.</td>
<td>Professor</td>
<td>Pathology</td>
<td>SchMed</td>
</tr>
<tr>
<td>Rearden, C. Anne</td>
<td>Professor</td>
<td>ECE</td>
<td>Sixth</td>
</tr>
<tr>
<td>Rebiz, Gabriel</td>
<td>Professor</td>
<td>Pathology/Medicine</td>
<td>SchMed</td>
</tr>
<tr>
<td>Reed, Sharon L.</td>
<td>Professor</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Reid, Joseph L.</td>
<td>Professor Emeritus</td>
<td>Literature</td>
<td>Muir</td>
</tr>
<tr>
<td>Reid, Roddey</td>
<td>Professor</td>
<td>Biological Sciences—Neurobiology</td>
<td>Warren</td>
</tr>
<tr>
<td>Reinagel, Pamela</td>
<td>Assistant Professor</td>
<td>Mathematics</td>
<td>Muir</td>
</tr>
<tr>
<td>Remmel, Jeffrey D.</td>
<td>Professor</td>
<td>Cellular and Molecular Medicine</td>
<td>SchMed</td>
</tr>
<tr>
<td>Ren, Bing</td>
<td>Assistant Professor</td>
<td>Reproductive Medicine</td>
<td>SchMed</td>
</tr>
<tr>
<td>Resnik, Robert</td>
<td>Professor</td>
<td>Structural Engineering</td>
<td>Revelle</td>
</tr>
<tr>
<td>Restrepo, José</td>
<td>Associate Professor</td>
<td>History</td>
<td>Marshall</td>
</tr>
<tr>
<td>Reynolds, Edward</td>
<td>Professor Emeritus</td>
<td>Music</td>
<td>Muir</td>
</tr>
<tr>
<td>Reynolds, Roger L.</td>
<td>Professor</td>
<td>Chemistry and Biochemistry</td>
<td>Marshall</td>
</tr>
<tr>
<td>Rheingold, Arnold L.</td>
<td>Professor-in-Residence</td>
<td>Pathology/Medicine</td>
<td>SchMed</td>
</tr>
<tr>
<td>Richman, Douglas D.</td>
<td>Professor-in-Residence</td>
<td>Psychology</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Rickard, Timothy</td>
<td>Associate Professor</td>
<td>ECE</td>
<td>Muir</td>
</tr>
<tr>
<td>Rickett, Barnaby J.</td>
<td>Professor Emeritus</td>
<td>Philosophy</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Rickless, Samuel C.</td>
<td>Associate Professor</td>
<td>Physics</td>
<td>Marshall</td>
</tr>
<tr>
<td>Ride, Sally K.</td>
<td>Professor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rincón, Patricia A.
Ringgold, Faith
Ringrose, David R.
Rinott, Yosef
Robbins, Joel
Robbins, Paul E.
Roberts, Justin D.
Rodin, Burton
Roeder, Philip G.
Roemer, Thomas A.
Rogalski, Daniel S.
Rohrl, Helmut
Rona-Tas, Akos
Rose, Sharon
Rosenblatt, Murray
Rosenblatt, Richard H.
Rosenfeld, Michael Geoff
Rosing, Tajana S.
Ross, Lola R.
Rotenberg, Manuel
Rothenberg, Jerome D.
Rothschild, Linda P.
Rouse, Gregory
Rouse, John
Roxworthy, Emily E.
Roy, Kaustuv
Rudee, M. Lea
Rudnick, Daniel L.
Rudwick, Martin J.S.
Ruiz, Ramón E.
Rumsey, Victor H.
Russell, Lynn
Russell, Percy J.
Rutherford, Donald P.
Ryan, Allen F.
Sah, Robert L.Y.
Saiegh, Sebastian
Saier, Milton H., Jr.
Sailor, Michael J.
Sala, Enric
Salmon, David P.
Salmon, Richard L.
Samphantharak, Krislert
Sánchez, Lisa
Sánchez, Marta E.
Sánchez, Rosaura
Sandwell, David T.
Sarkar, Sutanu
Saul, Lawrence K.
Savage, Stefan

Senior Lecturer (SOE)
Professor Emerita
Professor Emeritus
Professor Emeritus
Associate Professor
Assistant Professor
Associate Professor
Professor
Assistant Professor
Professor
Professor Emeritus
Professor Emeritus
Professor
Professor
Associate Professor
Professor Emeritus
Professor Emeritus
Professor Emeritus
Professor
Associate Professor
Professor Emeritus
Professor Emeritus
Professor
Professor Emeritus
Professor Emeritus
Professor
Associate Professor Emeritus
Professor
Professor Emeritus
Professor
Assistant Professor
Professor
Assistant Professor
Assistant Professor
Professor
Associate Professor
Professor
Assistant Professor

Theatre and Dance
Visual Arts
History
Mathematics
Anthropology
SIO
Mathematics
Mathematics
Political Science
RSOM
SIO
Mathematics
Mathematics
Sociology
Linguistics
Mathematics
SIO
Medicine
CSE
Family and Preventive Medicine
ECE
Literature/Visual Arts
Mathematics
SIO
Theatre and Dance
Theatre and Dance
Biological Sciences—Ecology, Behavior, and Evolution
ECE
SIO
History
History
ECE
SIO
Biology
Philosophy
Surgery/Neurosciences
Bioengineering
Political Science
Biological Sciences—Molecular Biology
Chemistry and Biochemistry
CSE
Neuroosciences
SIO
IRPS
Ethnic Studies
Literature
Literature
SIO
MAE
CSE
CSE

Roosevelt
Muir
Revelle
Marshall
SIO
Warren
Muir
Marshall
Marshall
Sixth
Revelle
Roosevelt
Muir
SIO
SchMed
Roosevelt
SchMed/Muir
Muir
Roosevelt
Roosevelt
Warren
Roosevelt
Roosevelt
SchMed
Revelle
SchMed
Saville, Jonathan
Savitch, Walter J.
Savoia, Maria
Sawrey, Barbara
Scanziani, Massimo
Schaede, Ulrike
Schafer, William
Schane, Sanford A.
Scheffler, Immo E.
Schick, Steven E.
Schkade, David
Schmid-Schoenbein, Geert W.
Schmidt, Robert J.
Schneewind, Sarah
Schneider, Alan M.
Schneider, Jerry A.
Schoeninger, Margaret J.
Schork, Nicholas J.
Schrauwer, Gerhard N.
Schreiber, Darren
Schreiber, Laura E.
Schroeder, Julian I.
Schuckit, Marc A.
Schudson, Michael S.
Schuller, Ivan K.
Schurgers, Curt
Schultz, Sheldon
Schwartz, Theodore
Schweinsburg, Jason R.
Sclater, John G.
Scull, Andrew T.
Sebald, Anthony V.
Seible, Frieder
Sejnowski, Terrence J.
Selverston, Allen I.
Semendeferi, Katerina
Send, Uwe
Sereno, Martin I.
Serlin, David H.
Seshadri, Kalyanasundaram
Severinghaus, Jeffrey
Shadwick, Robert E.
Sharif, Gershon
Shah, Nayan B.
Sham, Lu Jeu
Shank, Adele E.
Shank, Theodore J.
Shapiro, Vitali
Sharma, Vivek A.
Sharpe, Michael J.
Shearer, Peter M.

Saville, Jonathan
Associate Professor Emeritus
Theatre and Dance
Revelle

Savitch, Walter J.
Professor Emeritus
CSE
Muir

Savoia, Maria
Professor of Clinical Medicine
Medicine
SchMed

Sawrey, Barbara
Senior Lecturer (SOE)
Chemistry and Biochemistry
Revelle

Scanziani, Massimo
Associate Professor
Biological Sciences—Neurobiology
Sixth

Schaede, Ulrike
Associate Professor
IRPS
IRPS

Schafer, William
Professor Emeritus
Biological Sciences—Neurobiology
Roosevelt

Schane, Sanford A.
Professor Emeritus
Linguistics
Roosevelt

Scheffler, Immo E.
Professor
Biological Sciences—Molecular Biology
Revelle

Schick, Steven E.
Professor
Music
Muir

Schkade, David
Professor
RSOM
RSOM

Schmid-Schoenbein, Geert W.
Professor
Bioengineering
SchMed

Schmidt, Robert J.
Professor
Biological Sciences—Cell and Developmental Biology
Warren

Schneewind, Sarah
Assistant Professor
History
Sixth

Schneider, Alan M.
Professor Emeritus
MAE
Warren

Schneider, Jerry A.
Professor Emeritus
Pediatics
SchMed

Schoeninger, Margaret J.
Professor
Anthropology
Marshall

Schork, Nicholas J.
Professor
Psychiatry
SchMed

Schrauwer, Gerhard N.
Professor Emeritus
Chemistry and Biochemistry
Revelle

Schreiber, Darren
Assistant Professor
Political Science
Warren

Schreiber, Laura E.
Professor
Psychology
Warren

Schroeder, Julian I.
Professor
Biological Sciences—Cell and Developmental Biology
Warren

Schuckit, Marc A.
Professor
Psychiatry
SchMed

Schudson, Michael S.
Professor
Communication
Marshall

Schuller, Ivan K.
Professor
Physics
Revelle

Schurgers, Curt
Assistant Professor
ECE
Sixth

Schultz, Sheldon
Professor Emeritus
Physics
Marshall

Schwartz, Theodore
Professor Emeritus
Anthropology
Muir

Schweinsburg, Jason R.
Assistant Professor
Mathematics
Roosevelt

Sclater, John G.
Professor
SIO
SIO

Scull, Andrew T.
Professor
SIO
Roosevelt

Sebald, Anthony V.
Associate Professor Emeritus
ECE
Marshall

Seible, Frieder
Professor/Dean
Structural Engineering/Engineering
Marshall

Sejnowski, Terrence J.
Professor Emeritus
Biological Sciences—Neurobiology
Muir

Selverston, Allen I.
Professor Emeritus
Anthropology
Marshall

Semendeferi, Katerina
Associate Professor
SIO
Warren

Send, Uwe
Professor
SIO
Roosevelt

Sereno, Martin I.
Professor
SIO
Warren

Serlin, David H.
Associate Professor
SIO
Warren

Seshadri, Kalyanasundaram
Professor
MAE
Marshall

Severinghaus, Jeffrey
Professor Emeritus
SIO
Warren

Shadwick, Robert E.
Professor
SIO
Roosevelt

Sharif, Gershon
Associate Professor
Sociology
Roosevelt

Shah, Nayan B.
Professor
History
Warren

Sham, Lu Jeu
Professor Emerita
Physics
Warren

Shank, Adele E.
Professor Emeritus
Theatre and Dance
Marshall

Shank, Theodore J.
Professor Emeritus
Theatre and Dance
Revelle

Shapiro, Vitali
Professor
EC/Physics
Roosevelt

Sharma, Vivek A.
Professor
Physics
Muir

Sharpe, Michael J.
Professor Emeritus
Mathematics
Muir

Shearer, Peter M.
Professor
SIO
SIO
Shen, Kuiyi
Shenk, Norman Al
Sher, Gila
Shevelow, Kathryn
Shing, Benson
Shirk, Susan L.
Shor, George G., Jr.
Shragge, Abraham
Shu, Frank Hsia-San
Shugart, Matthew F.
Shuler, Kurt E.
Siegel, Paul
Silva, Denise Ferreira da
Silva, Ernest R.
Silva, Gabriel
Silverman, Gregg J.
Simon, Elizabeth
Simunic-Rosing, Tajana
Singer, S. Jonathan

Sinha, Amitabha
Sinha, Sunil
Skelton, Robert E.
Skrentny, John D.
Slantchev, Branislav L.
Small, Lance W.
Smallwood, Dennis E.
Smarr, Janet
Smarr, Larry
Smith, Donald R.
Smith, Douglas E.
Smith, Douglas W.
Smith, Harding E.
Smith, Laurie G.

Smith, Peter H.
Smith, Susan L.
Snaith, Yolande
Snoeren, Alex
Sobel, Joel
Solis, Faustina
Sollberger, Harvey
Somero, George N.
Somerville, Richard C. J.
Song, Bang-Sup
Sorensen, Harold W.
Sorkin, Linda S.
Souviney, Randall J.
Spector, Deborah H.
Spector, Stephen A.
Spiro, Melford E.
Spitzer, Nicholas C.
Springer, Anna Joy
Squire, Larry R.
Stalbaum, Brett

Associate Professor
Associate Professor
Professor
Professor Emeritus
Professor Emeritus
Lecturer (PSOE)
Professor
Professor
Professor Emeritus
Professor
Lecturer (PSOE)
Professor Emeritus
Professor
Assistant Professor
Assistant Professor-in-Residence
Assistant Professor
Professor Emeritus
Assistant Professor Emeritus
Associate Professor
Professor Emeritus
Professor Emeritus
Professor
Professor Emeritus
Professor Emeritus
Professor Emeritus
Senior Lecturer (SOE)
Professor
Professor Emeritus
Professor
Professor Emeritus
Professor
Assistant Professor
Professor
Lecturer (PSOE)

Visual Arts
Mathematics
Philosophy
Literature
Structural Engineering
IRPS
SIO
Marshall
Physics
IRPS
Chemistry and Biochemistry
ECE
Ethnic Studies
Visual Arts
Bioengineering
Medicine
CSE
CSE
Biological Sciences—Cell and Developmental Biology
Chemistry and Biochemistry
Physics
MAE
Sociology
Political Science
Mathematics
Economics
Theatre and Dance
CSE
Mathematics
Physics
Biological Sciences—Molecular Biology
Politics
Music
Music
SIO
SIO
ECE
SIO
MAE
Anesthesiology
Education Studies
Biological Sciences—Molecular Biology
Pediatrics
Anthropology
Biological Sciences—Neurobiology
Literature
Psychiatry/Neurosciences/Psychology
Visual Arts

Roosevelt
Revelle
Warren
Muir
Marshall
IRPS
SIO
Marshall
Roosevelt
IRPS
Revelle
Roosevelt
Warren
Sixth
SchMed
Sixth
Roosevelt
Revelle/SchMed
Warren
Roosevelt
Roosevelt
Roosevelt
Muir
Roosevelt
Roosevelt
Marshall
Muir
Revelle
Revelle
SchMed/Roosevelt
SchMed
Muir
Sixth
SchMed/Warren
Sixth
Stammer, Detlef B.
Stark, Harold M.
Starr, Ross M.
Steiger, Rand
Steinbach, Hyam
Steinberg, Daniel
Steinmetz, Phel
Sterbenz, Jacob
Stern, Lesley
Stevens, Jane
Stevens, Laura
Stewart, John L.
Stiles, Joan
Storms, Lowell H.
Stramski, Dariusz
Streeby, Shelley
Stroll, Avrum
Strom, Kaare
Strong, Tracy B.
Strum, Shirley C.
Subramani, Suresh
Subramaniam, Shankar
Sugihara, George
Suhl, Harry
Sullivan, Robert S.
Sun, Yixiao
Sung, Lanping Amy
Surko, Clifford M.
Swanson, Robert A.
Swanson, Steven
Swartz, Marc J.
Swerdlow, Neal R.
Sworder, David D.
Talbot, Jan B.
Talke, Frank E.
Talley, Lynne D.
Tanaka, Stefan
Tarin, David
Tartakovsky, Daniel M.
Tauber, Michael
Taur, Yuan
Tauxe, Lisa
Tay, William Shu-Sam
Taylor, Michael B.
Taylor, Palmer W.
Taylor, Susan S.
Tebo, Bradley M.
Tejada, Roberto
Telyukova, Irina
Terras, Audrey A.
Terry, Robert D.
Tesler, Glenn P.
Tezcan, F. Akif
<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Department/Program</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theodorakis, Emmanouil</td>
<td>Professor</td>
<td>Chemistry and Biochemistry</td>
<td>Muir</td>
</tr>
<tr>
<td>Thiemens, Mark H.</td>
<td>Professor/Dean</td>
<td>Chemistry and Biochemistry/Physical Sciences</td>
<td>Marshall</td>
</tr>
<tr>
<td>Thiess, Frank B.</td>
<td>Senior Lecturer (SOE) Emeritus</td>
<td>Mathematics</td>
<td>Marshall</td>
</tr>
<tr>
<td>Thomas, Ronald G.</td>
<td>Professor</td>
<td>Family and Preventive Medicine/Neurosciences</td>
<td>SchMed</td>
</tr>
<tr>
<td>Ticho, Harold K.</td>
<td>Professor Emeritus/Vice Chancellor Emeritus</td>
<td>Physics/Academic Affairs/IRPS</td>
<td>Marshall</td>
</tr>
<tr>
<td>Timmer, C. Peter</td>
<td>Professor</td>
<td>Economics/Economics/Structural Engineering</td>
<td>Muir</td>
</tr>
<tr>
<td>Timmerman, Allan</td>
<td>Associate Professor</td>
<td>Cognitive Science/IRPS</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Todd, Michael</td>
<td>Assistant Professor</td>
<td>IRPS/Roosevelt/Revelle</td>
<td></td>
</tr>
<tr>
<td>Todorov, Emanuel</td>
<td>Professor</td>
<td>Biological Sciences—Cell and Developmental Biology</td>
<td>Revelle</td>
</tr>
<tr>
<td>Tosaka, Yasu-Hiko</td>
<td>Professor</td>
<td>Theatre and Dance/Chemistry and Biochemistry</td>
<td></td>
</tr>
<tr>
<td>Tokuyasu, Kiyoteru</td>
<td>Professor-in-Residence Emeritus</td>
<td>Literature/Roanow</td>
<td></td>
</tr>
<tr>
<td>Tompa, Gabor</td>
<td>Professor</td>
<td>Chemistry and Biochemistry</td>
<td></td>
</tr>
<tr>
<td>Tonkovich, Nicole</td>
<td>Associate Professor</td>
<td>Neuroscience/Pediatrics</td>
<td>SchMed</td>
</tr>
<tr>
<td>Tor, Yitzhak</td>
<td>Professor</td>
<td>Biological Sciences—Cell and Developmental Biology</td>
<td>Revvelle</td>
</tr>
<tr>
<td>Trauner, Doris A.</td>
<td>Professor</td>
<td>Theatre and Dance/Chemistry and Biochemistry</td>
<td></td>
</tr>
<tr>
<td>Traver, David</td>
<td>Assistant Professor</td>
<td>Cognitive Science/Revelle</td>
<td></td>
</tr>
<tr>
<td>Tresnjak, Darko</td>
<td>Professor</td>
<td>ECE/Roosevelt</td>
<td></td>
</tr>
<tr>
<td>Triesch, Jochen</td>
<td>Assistant Professor</td>
<td>Pharmacology/Chemistry and Biochemistry/MAE</td>
<td>Warren</td>
</tr>
<tr>
<td>Trivedi, Mohan</td>
<td>Professor</td>
<td>ECE/Rosevelt/Marshall</td>
<td></td>
</tr>
<tr>
<td>Troeger, William C.</td>
<td>Professor</td>
<td>Pharmacology/Chemistry and Biochemistry</td>
<td>SchMed/Revelle</td>
</tr>
<tr>
<td>Troupe, Quincy</td>
<td>Associate Professor</td>
<td>Psychiatry/Marshall</td>
<td></td>
</tr>
<tr>
<td>Truant, Cynthia M.</td>
<td>Professor Emeritus</td>
<td>CSE/Marshall</td>
<td></td>
</tr>
<tr>
<td>Tsien, Roger K.</td>
<td>Associate Professor</td>
<td>Music/Muir</td>
<td></td>
</tr>
<tr>
<td>Tsung, Ming T.</td>
<td>University Professor</td>
<td>Sociology/Roosevelt</td>
<td></td>
</tr>
<tr>
<td>Tu, Charles W.</td>
<td>Professor</td>
<td>Psychiatry/Marshall/Revelle</td>
<td></td>
</tr>
<tr>
<td>Tukey, Robert H.</td>
<td>Professor</td>
<td>ECE/Rosevelt/ECE</td>
<td></td>
</tr>
<tr>
<td>Tullsen, Dean</td>
<td>Professor</td>
<td>Pharmacology/Chemistry and Biochemistry</td>
<td>SchMed/Marshall</td>
</tr>
<tr>
<td>Turetzky, Bertram J.</td>
<td>Professor Emeritus</td>
<td>CSE/Marshall</td>
<td></td>
</tr>
<tr>
<td>Turner, Christena L.</td>
<td>Associate Professor</td>
<td>Music/Muir</td>
<td></td>
</tr>
<tr>
<td>Turner, Eric E.</td>
<td>Professor-in-Residence</td>
<td>Sociology/Roosevelt/Revelle</td>
<td></td>
</tr>
<tr>
<td>Tuszyński, Mark H.</td>
<td>Professor</td>
<td>Psychiatry/Marshall/Revelle</td>
<td></td>
</tr>
<tr>
<td>Tynan, George</td>
<td>Professor</td>
<td>Pharmacology/Chemistry and Biochemistry</td>
<td>SchMed</td>
</tr>
<tr>
<td>Tytler, David R.</td>
<td>Professor</td>
<td>MAE/Muir</td>
<td></td>
</tr>
<tr>
<td>U, Hoi-Sang</td>
<td>Professor</td>
<td>Surgery/ECE</td>
<td>SchMed</td>
</tr>
<tr>
<td>Uang, Chia-Ming</td>
<td>Professor</td>
<td>Structural Engineering</td>
<td>Warren</td>
</tr>
<tr>
<td>Ung, Chinary</td>
<td>Professor</td>
<td>Music/ECE</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Vacquier, Victor</td>
<td>Professor Emeritus</td>
<td>SIO/Revelle</td>
<td></td>
</tr>
<tr>
<td>Vacquier, Victor D.</td>
<td>Professor</td>
<td>SIO/Roosevelt</td>
<td></td>
</tr>
<tr>
<td>Vahdat, Amin</td>
<td>Associate Professor</td>
<td>CSE/Revelle</td>
<td></td>
</tr>
<tr>
<td>Valkanov, Rossen</td>
<td>Associate Professor</td>
<td>RSOM/Revelle</td>
<td></td>
</tr>
<tr>
<td>Van Nieuwenhze, Michael</td>
<td>Assistant Professor</td>
<td>Chemistry and Biochemistry/History</td>
<td>Revelle</td>
</tr>
<tr>
<td>Van Young, Eric</td>
<td>Professor</td>
<td>History/ECE</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Vardy, Alexander</td>
<td>Professor</td>
<td>ECE/CSE/ECE/Roanow/Revelle</td>
<td></td>
</tr>
<tr>
<td>Varghese, George</td>
<td>Professor</td>
<td>CSE/Roanow/Revelle/Revelle</td>
<td></td>
</tr>
<tr>
<td>Varki, Ajit P.</td>
<td>Professor</td>
<td>Medicine/Cellular and Molecular Medicine/Psychiatry/ECE</td>
<td>Revelle</td>
</tr>
<tr>
<td>Varni, James W.</td>
<td>Professor-in-Residence Emeritus</td>
<td>Psychiatry/Marshall/ECE</td>
<td>SchMed</td>
</tr>
<tr>
<td>Vasconcellos, Nuno</td>
<td>Assistant Professor</td>
<td>ECE/Marshall</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Department</td>
<td>School</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------------</td>
<td>-----------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Vasquez, Olga A.</td>
<td>Associate Professor</td>
<td>Communication</td>
<td>Marshall</td>
</tr>
<tr>
<td>Vecchio, Kenneth S.</td>
<td>Professor</td>
<td>MAE</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Vehrencamp, Sandra L.</td>
<td>Professor Emerita</td>
<td>Biological Sciences—Ecology, Behavior, and Evolution</td>
<td>Muir</td>
</tr>
<tr>
<td>Verdicchio, Pasquale</td>
<td>Associate Professor</td>
<td>Literature</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Vernon, Wayne</td>
<td>Professor Emeritus</td>
<td>Physics</td>
<td>Revelle</td>
</tr>
<tr>
<td>Vianu, Victor D.</td>
<td>Professor</td>
<td>CSE</td>
<td>Marshall</td>
</tr>
<tr>
<td>Vidal, Mary</td>
<td>Associate Professor</td>
<td>Visual Arts</td>
<td>Revelle</td>
</tr>
<tr>
<td>Vinerzi, Joseph M.</td>
<td>Associate Professor</td>
<td>Medicine</td>
<td>SchMed</td>
</tr>
<tr>
<td>Viterbi, Andrew J.</td>
<td>Professor Emeritus</td>
<td>ECE</td>
<td>Warren</td>
</tr>
<tr>
<td>Voelker, Geoffrey</td>
<td>Associate Professor</td>
<td>CSE</td>
<td>Muir</td>
</tr>
<tr>
<td>Wadsworth, Adrian R.</td>
<td>Professor</td>
<td>Mathematics</td>
<td>Warren</td>
</tr>
<tr>
<td>Wagner, Arthur</td>
<td>Professor Emeritus</td>
<td>Theatre and Dance</td>
<td>Muir</td>
</tr>
<tr>
<td>Wagner, Peter D.</td>
<td>Professor</td>
<td>Medicine</td>
<td>SchMed</td>
</tr>
<tr>
<td>Wahlen, Martin</td>
<td>Professor</td>
<td>Sociology</td>
<td>Marshall</td>
</tr>
<tr>
<td>Waismann, Carlos H.</td>
<td>Professor</td>
<td>Literature</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Walk, Cynthia</td>
<td>Associate Professor Emerita</td>
<td>Literature</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Wallach, Nolan R.</td>
<td>Professor</td>
<td>Mathematics</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Wallack, Jessica</td>
<td>Assistant Professor</td>
<td>IRPS</td>
<td>IRPS</td>
</tr>
<tr>
<td>Walter, Barbara F.</td>
<td>Associate Professor</td>
<td>Pathology</td>
<td>SchMed</td>
</tr>
<tr>
<td>Walter, Gernot F.</td>
<td>Professor</td>
<td>ECE</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Wang, Deli</td>
<td>Assistant Professor</td>
<td>Biological Sciences—Molecular Biology</td>
<td>SchMed/Roosevelt</td>
</tr>
<tr>
<td>Wang, Jean Yin Jen</td>
<td>Professor</td>
<td>Biological Sciences—Neurobiology</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Wang, Jing</td>
<td>Assistant Professor</td>
<td>Chemistry and Biochemistry</td>
<td>Sixth</td>
</tr>
<tr>
<td>Wang, Wei</td>
<td>Assistant Professor</td>
<td>Radiology</td>
<td>SchMed</td>
</tr>
<tr>
<td>Ward, John F.</td>
<td>Professor Emeritus</td>
<td>Communication</td>
<td>Sixth</td>
</tr>
<tr>
<td>Wardrip-Fruin, Noah</td>
<td>Assistant Professor</td>
<td>Medicine</td>
<td>SchMed</td>
</tr>
<tr>
<td>Wasserman, Stephen I.</td>
<td>Professor</td>
<td>Biological Sciences—Cell and Molecular Biology</td>
<td>Warren</td>
</tr>
<tr>
<td>Wasserman, Steven A.</td>
<td>Professor</td>
<td>Lecturer (PSOE)</td>
<td>Muir</td>
</tr>
<tr>
<td>Wastal, Carrie</td>
<td>Lecturer (PSOE)</td>
<td>Theatre and Dance</td>
<td>Revelle</td>
</tr>
<tr>
<td>Waters, Les</td>
<td>Professor</td>
<td>Philosophy</td>
<td>Revelle</td>
</tr>
<tr>
<td>Watkins, Eric</td>
<td>Professor</td>
<td>Economics</td>
<td>Muir</td>
</tr>
<tr>
<td>Watson, Joel</td>
<td>Professor</td>
<td>Bioengineering</td>
<td>Warren</td>
</tr>
<tr>
<td>Watson, John T.</td>
<td>Professor-in-Residence</td>
<td>Chemistry and Biochemistry</td>
<td>Marshall</td>
</tr>
<tr>
<td>Watson, Joseph W.</td>
<td>Professor Emeritus</td>
<td>SIO</td>
<td>Muir</td>
</tr>
<tr>
<td>Watson, Kenneth M.</td>
<td>Associate Professor Emeritus</td>
<td>Literature</td>
<td>Muir</td>
</tr>
<tr>
<td>Wavrik, John J.</td>
<td>Associate Professor</td>
<td>Mathematics</td>
<td>Muir</td>
</tr>
<tr>
<td>Wayne, Don E.</td>
<td>Professor</td>
<td>Literature</td>
<td>Revelle</td>
</tr>
<tr>
<td>Weare, John H.</td>
<td>Professor</td>
<td>Chemistry and Biochemistry</td>
<td>SchMed</td>
</tr>
<tr>
<td>Webster, Nicholas J. G.</td>
<td>Professor</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Weiss, Ray F.</td>
<td>Lecturer (PSOE)</td>
<td>Chemistry and Biochemistry</td>
<td>Marshall</td>
</tr>
<tr>
<td>Weizman, Haim</td>
<td>Professor</td>
<td>Visual Arts</td>
<td>Muir</td>
</tr>
<tr>
<td>Welchman, John C.</td>
<td>Professor Emeritus</td>
<td>Chemistry and Biochemistry</td>
<td>Revelle</td>
</tr>
<tr>
<td>Wenkert, Ernest</td>
<td>Professor Emeritus</td>
<td>Mathematics</td>
<td>Marshall</td>
</tr>
<tr>
<td>Wenzel, Hans G.</td>
<td>Professor</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Werner, Bradley T.</td>
<td>Professor Emeritus</td>
<td>Literature</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Welslng, Donald T.</td>
<td>Professor Emeritus</td>
<td>Literature</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Welslng, Megan E.</td>
<td>Assistant Professor</td>
<td>Literature</td>
<td>SchMed</td>
</tr>
<tr>
<td>West, John B.</td>
<td>Professor</td>
<td>Medicine</td>
<td>Muir</td>
</tr>
<tr>
<td>Westman, Robert S.</td>
<td>Professor Emeritus</td>
<td>History</td>
<td>Revelle</td>
</tr>
<tr>
<td>Wheeler, John C.</td>
<td>Associate Professor</td>
<td>Chemistry and Biochemistry</td>
<td>SchMed/RIO</td>
</tr>
<tr>
<td>White, Fred N.</td>
<td>Professor Emeritus</td>
<td>Medicine</td>
<td>SchMed</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Department</td>
<td>School</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>-------------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>White, Halbert L.</td>
<td>Professor</td>
<td>Economics</td>
<td>Revelle</td>
</tr>
<tr>
<td>White, Michelle J.</td>
<td>Professor</td>
<td>Economics</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Whitehead, Mark C.</td>
<td>Professor</td>
<td>Surgery</td>
<td>SchMed</td>
</tr>
<tr>
<td>Whitesell, James K.</td>
<td>Professor</td>
<td>Chemistry and Biochemistry</td>
<td>Warren</td>
</tr>
<tr>
<td>Wickramasekera, Neshan</td>
<td>Assistant Professor</td>
<td>Mathematics</td>
<td>Sixth</td>
</tr>
<tr>
<td>Widener, Daniel</td>
<td>Assistant Professor</td>
<td>History</td>
<td>Sixth</td>
</tr>
<tr>
<td>Wieder, Harry H.</td>
<td>Professor-in-Residence Emeritus</td>
<td>Biological Sciences—Cell and Developmental Biology/Sixth</td>
<td>Sixth</td>
</tr>
<tr>
<td>Wienhausen, Gabriele</td>
<td>Senior Lecturer (SOE)/Provost</td>
<td>Biological Sciences—Cell and Developmental Biology</td>
<td>Sixth</td>
</tr>
<tr>
<td>Wilhelm, James</td>
<td>Assistant Professor</td>
<td>Psychology</td>
<td>Muir</td>
</tr>
<tr>
<td>Williams, Ben A.</td>
<td>Professor</td>
<td>MAE</td>
<td>Marshall</td>
</tr>
<tr>
<td>Williams, Forman A.</td>
<td>Professor</td>
<td>Mathematics</td>
<td>Warren</td>
</tr>
<tr>
<td>Williams, Ruth J.</td>
<td>Professor</td>
<td>CSE</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Williamson, S. Gill</td>
<td>Professor Emeritus</td>
<td>Biological Sciences—Ecology, Behavior, and Evolution</td>
<td>Warren/SchMed</td>
</tr>
<tr>
<td>Wills, Christopher</td>
<td>Professor</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Winant, Clinton D.</td>
<td>Professor</td>
<td>Theatre and Dance</td>
<td>Revelle</td>
</tr>
<tr>
<td>Winker, James R.</td>
<td>Professor</td>
<td>Psychology</td>
<td>Revelle</td>
</tr>
<tr>
<td>Winkielman, Piotr</td>
<td>Associate Professor</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Winterer, Edward L.</td>
<td>Professor Emeritus</td>
<td>Sociology</td>
<td>Warren</td>
</tr>
<tr>
<td>Wiseman, Jacqueline P.</td>
<td>Professor Emerita</td>
<td>Education Studies</td>
<td>Warren</td>
</tr>
<tr>
<td>Wishard, Alison G.</td>
<td>Assistant Professor</td>
<td>Medicine</td>
<td>SchMed</td>
</tr>
<tr>
<td>Witztum, Joseph L.</td>
<td>Professor</td>
<td>Psychology</td>
<td>Revelle</td>
</tr>
<tr>
<td>Wixted, John T.</td>
<td>Professor</td>
<td>ECE</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Wolf, Jack K.</td>
<td>Professor</td>
<td>Physics</td>
<td>Warren</td>
</tr>
<tr>
<td>Wolfe, Arthur M.</td>
<td>Professor</td>
<td>Chemistry and Biochemistry/Physics</td>
<td>Warren</td>
</tr>
<tr>
<td>Wolynes, Peter G.</td>
<td>Professor</td>
<td>Physics</td>
<td>Warren</td>
</tr>
<tr>
<td>Wong, David Y.</td>
<td>Professor Emeritus</td>
<td>Biological Sciences—Molecular Biology/Medicine</td>
<td>Revelle/SchMed</td>
</tr>
<tr>
<td>Wong-Staal, Flossie</td>
<td>Professor Emerita</td>
<td>Literature</td>
<td>Warren</td>
</tr>
<tr>
<td>Woodhull, Winifred</td>
<td>Associate Professor</td>
<td>IRPS</td>
<td>IRPS</td>
</tr>
<tr>
<td>Woodruff, Christopher M.</td>
<td>Associate Professor</td>
<td>Biological Sciences—Ecology, Behavior, and Evolution</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Woodruff, David S.</td>
<td>Professor</td>
<td>Medicine</td>
<td>SchMed</td>
</tr>
<tr>
<td>Woods, Virgil L.</td>
<td>Professor</td>
<td>Anthropology</td>
<td>Muir</td>
</tr>
<tr>
<td>Woolard, Kathryn A.</td>
<td>Professor</td>
<td>Literature</td>
<td>Revelle</td>
</tr>
<tr>
<td>Wright, Andrew</td>
<td>Professor Emeritus</td>
<td>Physics</td>
<td>Warren</td>
</tr>
<tr>
<td>Wuerthwein, Frank</td>
<td>Associate Professor</td>
<td>Mathematics/Revelle</td>
<td>Marshall</td>
</tr>
<tr>
<td>Wulbert, Daniel E.</td>
<td>Professor/Provost</td>
<td>Philosophy</td>
<td>Revelle</td>
</tr>
<tr>
<td>Wuthrich, Christian</td>
<td>Assistant Professor</td>
<td>Pediatrics/Medicine</td>
<td>SchMed</td>
</tr>
<tr>
<td>Wynshaw-Boris, Anthony J.</td>
<td>Professor</td>
<td>Biological Sciences—Molecular Biology</td>
<td>Marshall</td>
</tr>
<tr>
<td>Xu, Yang</td>
<td>Associate Professor</td>
<td>Theatre and Dance</td>
<td>Sixth</td>
</tr>
<tr>
<td>Yadegari, Shahrokh</td>
<td>Assistant Professor</td>
<td>Biological Sciences—Cell and Developmental Biology</td>
<td>Sixth</td>
</tr>
<tr>
<td>Yaffie, Michael P.</td>
<td>Professor</td>
<td>Physics</td>
<td>Sixth</td>
</tr>
<tr>
<td>Yagil, Avraham</td>
<td>Professor</td>
<td>Anesthesiology/Pharmacology</td>
<td>SchMed</td>
</tr>
<tr>
<td>Yaksh, Tony L.</td>
<td>Professor</td>
<td>Chemistry and Biochemistry</td>
<td>Warren</td>
</tr>
<tr>
<td>Yang, Jerry C.</td>
<td>Assistant Professor</td>
<td>Ethnic Studies</td>
<td>Marshall</td>
</tr>
<tr>
<td>Yang, K. Wayne</td>
<td>Assistant Professor</td>
<td>Music</td>
<td>Warren</td>
</tr>
<tr>
<td>Yang, Mina</td>
<td>Assistant Professor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Position</td>
<td>Department</td>
<td>Location</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------------</td>
<td>-------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Yanofsky, Martin F.</td>
<td>Professor</td>
<td>Biological Sciences—Cell and Developmental Biology</td>
<td>Warren</td>
</tr>
<tr>
<td>Yayanos, A. Aristides</td>
<td>Professor-in-Residence Emeritus</td>
<td>SIO</td>
<td>SIO</td>
</tr>
<tr>
<td>Yguerabide, Juan</td>
<td>Professor Emeritus</td>
<td>Biology</td>
<td>Marshall</td>
</tr>
<tr>
<td>Yip, Wai-Lim</td>
<td>Professor</td>
<td>Literature</td>
<td>Muir</td>
</tr>
<tr>
<td>Yoneyama, Lisa</td>
<td>Associate Professor</td>
<td>Literature</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>York, Herbert F.</td>
<td>Professor Emeritus</td>
<td>Physics</td>
<td>Warren</td>
</tr>
<tr>
<td>You, Jong-Sung</td>
<td>Assistant Professor</td>
<td>SIO</td>
<td>IRPS</td>
</tr>
<tr>
<td>Young, William R.</td>
<td>Professor</td>
<td>ECE</td>
<td>SIO</td>
</tr>
<tr>
<td>Yu, Edward T.</td>
<td>Professor</td>
<td>ECE</td>
<td>Marshall</td>
</tr>
<tr>
<td>Yu, Paul K. L.</td>
<td>Professor</td>
<td>Medicine</td>
<td>Revelle</td>
</tr>
<tr>
<td>Yuan, Jason X.-J.</td>
<td>Professor Emeritus</td>
<td>Sociology</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Yuasa, Joji</td>
<td>Professor Emeritus</td>
<td>Literature</td>
<td>Warren</td>
</tr>
<tr>
<td>Yun, Kenneth Y.</td>
<td>Associate Professor</td>
<td>ECE</td>
<td>Revelle</td>
</tr>
<tr>
<td>Zamosc, Leon</td>
<td>Associate Professor</td>
<td>Sociology</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Zanetti, Maurizio</td>
<td>Professor-in-Residence</td>
<td>Medicine</td>
<td>SchMed</td>
</tr>
<tr>
<td>Zeger, Kenneth A.</td>
<td>Professor</td>
<td>ECE</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Zelmanov, Efim</td>
<td>Professor</td>
<td>Mathematics</td>
<td>Sixth</td>
</tr>
<tr>
<td>Zeng, Langche</td>
<td>Professor</td>
<td>Political Science</td>
<td>Sixth</td>
</tr>
<tr>
<td>Zentella, Ana Celia</td>
<td>Professor</td>
<td>Ethnic Studies</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Zhang, Yingjin</td>
<td>Professor</td>
<td>Literature</td>
<td>Warren</td>
</tr>
<tr>
<td>Zhao, Yunde</td>
<td>Assistant Professor</td>
<td>Biological Sciences—Cell and Developmental Biology</td>
<td>Revelle</td>
</tr>
<tr>
<td>Zhiri, Oumelbanine</td>
<td>Professor</td>
<td>Literature</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Zhou, Huilin</td>
<td>Assistant Professor</td>
<td>Chemistry and Biochemistry</td>
<td>Marshall</td>
</tr>
<tr>
<td>Zhu, Kevin</td>
<td>Associate Professor</td>
<td>RSOM</td>
<td>RSOM</td>
</tr>
<tr>
<td>Zhu, Qiang</td>
<td>Assistant Professor</td>
<td>Structural Engineering</td>
<td>Sixth</td>
</tr>
<tr>
<td>Zilberg, Elana</td>
<td>Assistant Professor</td>
<td>Communication</td>
<td>Muir</td>
</tr>
<tr>
<td>Zipser, David</td>
<td>Professor Emeritus</td>
<td>Cognitive Science</td>
<td>Roosevelt</td>
</tr>
<tr>
<td>Zisook, Sidney</td>
<td>Professor</td>
<td>Psychiatry</td>
<td>SchMed</td>
</tr>
<tr>
<td>Zivin, Justin A.</td>
<td>Professor</td>
<td>Neurosciences</td>
<td>SchMed</td>
</tr>
<tr>
<td>Zou, Yimin</td>
<td>Associate Professor</td>
<td>Biological Sciences—Neurobiology</td>
<td>Sixth</td>
</tr>
<tr>
<td>Zuker, Charles</td>
<td>Professor</td>
<td>Biological Sciences—Neurobiology/Neurosciences</td>
<td>Revelle/SchMed</td>
</tr>
<tr>
<td>Zwicker, Matthias</td>
<td>Assistant Professor</td>
<td>CSE</td>
<td>Revelle</td>
</tr>
</tbody>
</table>
Key to Course Listings

Courses numbered 1 through 99 are lower-division courses and are normally open to freshmen and sophomores. Courses numbered 87 are Freshman Seminars.

Courses numbered 100 through 199 are upper-division courses and are ordinarily open only to students who have completed at least one lower-division course in the given subject, or six quarters of college work.

Courses numbered 200 through 299 are graduate courses and are ordinarily open only to students who have completed at least eighteen upper-division units basic to the subject matter of the course.

Courses numbered 300 through 399 are professional courses for teachers, which are specifically designed for teachers or prospective teachers.

Courses numbered 400 through 499 are other professional courses.

Sample Course Listing:

100 (see above) Title of Course (4) (number of quarter hours or units of credit)
Course Description. Prerequisites: [listed]. (F) (Quarter the course is taught).

Academic Internship Program

OFFICE: Literature Building, Second Floor, Warren College
http://aip.ucsd.edu

THE PROGRAM

The Academic Internship Program (AIP) offers qualified juniors and seniors the opportunity to acquire valuable work experience related to academic and career interests. Although most internships are in the San Diego area, the Academic Internship Program is national in scope, including the popular Washington, D.C., New York City, and Sacramento programs, and international, including the London, Sydney, and PRIME programs. Housing arrangements and orientations are included in all programs. An extensive library lists more than 4,000 available internships in varied settings including, but not limited to, TV and radio stations, law offices, medical research labs and clinics, government agencies, high-tech and biotech companies, engineering, advertising and public relations firms, and financial institutions. Students also can work with the internship office to set up their own positions.

The program operates all four quarters; students intern a minimum of ten hours per week and may receive upper-division credit. Students may enroll in a maximum of four internships and/or earn sixteen units of internship credit during the course of their junior and senior years. The number of units earned corresponds to the number of hours worked, actual job description and the length of a research paper/project. The research paper/project and relevant readings comprise the academic component of the program, which is directed by a faculty advisor selected by the student. All internships require assigned faculty advisors and program evaluations. All students earn grades of P/NP and receive transcript notations.

The AIP serves students from all six colleges and handles all undergraduate majors. Students planning to participate in the Academic Internship Program should apply at least one quarter before they want to be enrolled in the program. Students planning an out-of-town internship are encouraged to apply two quarters in advance. In cooperation with AIP and UCSD’s Programs Abroad Office, students also may participate in, and earn academic credit for, other established internships abroad.

To be eligible for the program, students must have completed at least ninety units of credit with some related upper-division course work and have a minimum 2.5 GPA at the date of application.

197. Academic Internship Program (1-12)
Individual placements for field learning which are integrated with academic programs will be developed and coordinated by the program. A written contract involving all parties will include learning objectives, a project outline, and means of supervision and progress evaluation, and must be received prior to the beginning of the internship. Prerequisites: consent of instructor and submission of a written contract.

African American Studies Minor

OFFICE: Office of the Provost
Thurgood Marshall College
Administration Building, Room 120

Affiliated Faculty
Boatema Boateng, Assistant Professor, Communication
Robert Cancel, Associate Professor, Literature
Anthony Davis, Professor, Music
Zeinabu Davis, Professor, Communication
Farima El-Tayeb, Assistant Professor, Literature
Ivan Evans, Associate Professor, Sociology
Camille Forbes, Assistant Professor, Literature
Nadine George, Associate Professor, Theatre and Dance
Michael Hanson, Assistant Professor, Communication
Sara Johnson, Assistant Professor, Literature
Benetta Jules-Rosette, Professor, Sociology
Cecil Lytle, Professor, Music
David Pellow, Associate Professor, Ethnic Studies
Denise Ferreira da Silva, Associate Professor, Ethnic Studies
Megan Wesling, Assistant Professor, Literature
Daniel Widener, Assistant Professor, History
Winifred Woodhull, Associate Professor, Literature

The Minor

The African American Studies Minor is an interdisciplinary minor which is designed to lead to an understanding of the unique attitudes, evolution, circumstances, and experiences of African Americans. The Core Requirement sets the stage for the formation and codification of an African American intellectual and political tradition into the twentieth century. The History and Context selection of courses focuses on the formation of identity through the lens of history and media. Politics and Society involves students in an investigation of the contest between that forming identity and the social systems of urbanization, politics, and class stratification. Representation and Voice courses provide for a selection of performing and fine arts experiences as representations of African American culture.

The revision of the curriculum is under review by the Academic Senate. Please check the Web
Communication
Linguistics is an interdisciplinary minor (choose TWO COURSES from the list below)

HIUS 139/ETHN 149. African American History in the Twentieth Century (4)

HISTORY and CONTEXT (choose TWO COURSES from the list below)

ETHN 105/USP 104. Ethnic Diversity and the City (4)
ETHN 140. Language and American Ethnicity (4)
ETHN 151. Ethnic Politics in America (4)
ETHN 152. Law and Civil Rights (4)
ETHN 161. Black Politics and Protest Since 1941 (4)
ETHN 163. Leisure in Urban America (4)
ETHN 164/MUS 153. African Americans and Mass Media (4)
ETHN 165. Sex and Gender in African American Communities (4)
ETHN 166. The Black Press and Social Change (4)
ETHN 184. Black Intellectuals in the Twentieth Century (4)
ETHN 187. Black Nationalism (4)
HILD 7A. Race and Ethnicity in the United States (4)
HIUS 135B/ETHN 170B. Slavery and the Atlantic World (4)
HIUS 164/264/ETHN 181. Topics in Comparative History of Modern Slavery (4)
HIUS 165/ETHN 182. Segregation, Freedom Movements, and the Crisis of the Twentieth Century (4)
HIUS 166. Topics in Southern History (4)
HIUS 175. Crime, Law, and Society in the United States, 1600–1900 (4)
HIUS 176. Race and Sexual Politics (4)
HIUS 183/ETHN 159. Topics in African American History (4)

POLITICS and SOCIETY (choose TWO COURSES from the list below)

ANLD 23. Debating Multiculturalism: Race, Ethnicity, and Class in American Society

COCU 182. Black Popular Music (4)
COCU 123. Black Women Filmmakers (4)
POLI 100H. Race and Ethnicity in American Politics (4)
POLI 100J. Race in American Political Development (4)
POLI 108. Politics of Multiculturalism (4)

Soc/D 187S. The Sixties (4)
USP 103/HIUS 148. U.S. Cities in the Twentieth Century (4)
USP 104/ETHN 105. Ethnic Diversity and the City (4)
USP 132/ETHN 107. African Americans, Religion, and the City (4)

REPRESENTATIONS and VOICE (choose EIGHT UNITS from the list below)

LTEN 148. Genres in English and American Literature (4)
LTEN 183/ETHN 172. African American Prose (4)
LTEN 184/ETHN 173. African American Poetry (4)
LTEN 185/ETHN 174. Themes in African American Literature (4)
LTEN 188. Contemporary Caribbean Literature (4)
LTWR 100. Short Fiction (4)
LTWR 102. Poetry (4)
LTWR 120. Personal Narrative (4)
MUS 95G. Gospel Choir (2)
MUS 95JC. Jazz Chamber Ensembles (2)
MUS 95JL. Large Jazz Ensemble (2)
MUS 127A/ETHN 179A. Jazz Roots and Early Development (4)
MUS 127B/ETHN 179B. Jazz since 1946: Freedom and Form (4)
MUS 131. Jazz Improvisation Performance (4)
TDMV 136. Dances of the World (formerly TDHA 132) (4)
TDAC 120. Ensemble (formerly THAC 120) (4)
VIS 1. Introduction to Art Making: Two-Dimensional Practices (4)
VA 126DN. African and Afro-American Art (4)

Students interested in either taking African American Studies courses or completing the minor are encouraged to discuss their interests and develop a course of study with an affiliated faculty member of the program at their earliest convenience. See the Marshall College Academic Advising Office for further information.

OFFICE: 135 Social Science Building, Thurgood Marshall Campus
(858) 822-0265

PARTICIPATING FACULTY

Professors
Zeinabu Davis, M.F.A., Communication
Clark Gibson, Ph.D., Political Science
Robert Horwitz, Ph.D., Communication
Bennetta Jules-Rosette, Ph.D., Sociology, Director
Thomas E. Levy, Ph.D., Anthropology
Maria Polinsky, Ph.D., Linguistics
Edward Reynolds, Ph.D., History, Emeritus
Marc J. Swartz, Ph.D., Anthropology, Emeritus

Associate Professors
Robert Cancel, Ph.D., Literature
Ivan Evans, Ph.D., Sociology
Sharon Rose, Ph.D., Linguistics

Assistant Professors
Boatema Boateng, Ph.D., Communication
Karen Ferree, Ph.D., Political Science
Jeremy Prestholdt, Ph.D., History

African studies is an interdisciplinary minor that covers African topics and issues through a coordinated set of courses offered in the Departments of Anthropology, Communication, Ethnic Studies, History, Literature, Music, Political Science, Sociology, Theatre and Dance, and Visual Arts. In addition to the offerings at UCSD, opportunities for further study in Africa and Europe are available through the University of California Education Abroad Program, with programs in Ghana and South Africa as well as at the National University of Côte d’Ivoire, the Université de Paris V, the Université de Bordeaux II, and study abroad programs offered through other U.S. universities. A number of African languages are available through the UCSD Department of Linguistics.

African Studies Minor

OFFICE: 135 Social Science Building, Thurgood Marshall Campus
(858) 822-0265

PARTICIPATING FACULTY

Professors
Zeinabu Davis, M.F.A., Communication
Clark Gibson, Ph.D., Political Science
Robert Horwitz, Ph.D., Communication
Bennetta Jules-Rosette, Ph.D., Sociology, Director
Thomas E. Levy, Ph.D., Anthropology
Maria Polinsky, Ph.D., Linguistics
Edward Reynolds, Ph.D., History, Emeritus
Marc J. Swartz, Ph.D., Anthropology, Emeritus

Associate Professors
Robert Cancel, Ph.D., Literature
Ivan Evans, Ph.D., Sociology
Sharon Rose, Ph.D., Linguistics

Assistant Professors
Boatema Boateng, Ph.D., Communication
Karen Ferree, Ph.D., Political Science
Jeremy Prestholdt, Ph.D., History

African studies is an interdisciplinary minor that covers African topics and issues through a coordinated set of courses offered in the Departments of Anthropology, Communication, Ethnic Studies, History, Literature, Music, Political Science, Sociology, Theatre and Dance, and Visual Arts. In addition to the offerings at UCSD, opportunities for further study in Africa and Europe are available through the University of California Education Abroad Program, with programs in Ghana and South Africa as well as at the National University of Côte d’Ivoire, the Université de Paris V, the Université de Bordeaux II, and study abroad programs offered through other U.S. universities. A number of African languages are available through the UCSD Department of Linguistics.
Students may take independent study units and tutorials with faculty in the program to learn the languages of their respective areas of interest. In addition, students are encouraged to participate in special seminars and presentations offered annually by the African and African-American Studies Research Project. Students may take the seminars for credit by signing up for a 198/199 with a qualified African studies professor. A minor in African studies consists of seven total courses. Students may take no more than four courses in any one department. Also, a minimum of one course each from of the following three groups is required: Group A–Traditional Cultures and Premodern Africa, Group B–African Society and Politics, and Group C–African Expressive Culture.

The African studies minor provides students with a broad background in African history, societies, culture, and politics. Please contact Professor Bennetta Jules-Rosette in the Department of Sociology (Social Science Building, Rm. 471), (858) 534-4790 or the African Studies Office at (858) 822-0265 for more information. Quarterly course offerings are subject to change. Interested students should consult the program faculty for an up-to-date list.
Because there is increasing awareness of the importance of anthropological factors in domestic and international relations, as well as in a number of health related fields, a bachelor's degree in anthropology has become accepted as a valuable preparation for careers in law, medicine, business, government, education, and various areas of public service. Anthropology majors can qualify for a California teaching credential from UCSD through the Teacher Education Program. The department offers a full range of courses in archaeology, as well as biological, social, cultural, psychological, political, and linguistic anthropology. Courses include offerings that focus on specific societies or regions of the world—especially Latin America, Asia, and Oceania—as well as more theoretically oriented topics. The department offers undergraduate major and minor programs, a senior thesis program, an undergraduate internship program, and a graduate program leading to the doctoral degree. Students also may enroll in archaeological field school and study abroad programs in the Middle East and Latin America.

The Undergraduate Program

Lower-Division

Lower-division offerings in anthropology are concentrated in the core series, ANTH 1, 2, 3. These courses are designed to provide a comprehensive orientation to the ideas and methods of anthropological investigation and a familiarity with case materials from a number of different societies (ANTH 1), prehistoric eras (ANTH 2 and ANTH 3), and historical periods (ANTH 3).

Students who intend to major or minor in anthropological archaeology are advised to take ANTH 3.

Students who intend to major or minor in biological anthropology must take ANTH 2 (or the equivalent), which is prerequisite for most upper-division biological anthropology courses.

ANTH 23, which may not be offered every year, satisfies the campuswide requirement for a course in American Cultures.

Students who have already completed ANTH 103 (or the older sequence ANPR 105, 106, and 107) may not receive academic credit for ANTH 1.

Other lower-division courses are offered from time to time and will vary from year to year.

Upper-Division

The Department of Anthropology offers many general interest and specialized courses at the upper-division level. In addition to satisfying the requirements of the anthropology major, many of these may satisfy the requirements of other majors.

The Minor

Students may choose a minor in anthropological archaeology, biological anthropology, or sociocultural anthropology. Each consists of seven anthropology courses. At least five of these courses must be upper-division, and at least four should be taken at UCSD. The list of courses offered for each minor is available from the undergraduate coordinator in the Department of Anthropology. Transfer credits from other anthropology departments are usually accepted. Education Abroad Program credits are acceptable at the discretion of the undergraduate advisor.

The Major

To receive a B.A. degree with a major in anthropology, the student must meet the requirements of Revelle, John Muir, Thurgood Marshall, Earl Warren, Eleanor Roosevelt College, or Sixth College. Additionally the student must meet the following requirements of the Department of Anthropology:

1. A minimum of twelve four-unit upper-division courses in the Department of Anthropology must be completed.

2. The undergraduate core ANTH 101, 102, and 103 (or the now defunct sequence ANPR 105, 106, and 107) must be completed (included as three of the twelve courses required under No. 1, above). All or some of the courses in this sequence are prerequisites for some other upper-division courses. This sequence consists of:
 - 101 Anthropological Anthropology
 - 102 Biological Anthropology
 - 103 Sociocultural Anthropology

3. No courses taken in fulfillment of the above requirements may be taken on a Pass/Not Pass (P/DP) basis. (An exception is made for some courses accepted from other schools and for one independent study course (199), or one directed group study course (198), and a combination of one internship seminar (ANBI 187A, C or ANTH 187B) with the corresponding academic internship project (AIP 197). However, this exception does not extend to ANTH 101, 102, or 103, or to transfer credits accepted in lieu of them. These must be taken for a letter grade.)

4. For the B.A. degree, a minimum average of 2.0 is required, both as an overall average in all anthropology courses and in the ANTH 101, 102, and 103 sequence (or the defunct ANPR 105, 106, and 107 sequence) considered separately.

5. At least seven of the upper-division courses submitted for the major must be taken at the University of California, San Diego. The seven normally must include ANTH 101, 102, and 103 (or the older sequence ANPR 105, 106, and 107). A transfer course may be accepted in lieu of one of these core courses, if, in the opinion of the director of Undergraduate Studies, the content is substantially the same. In no case will transfer credit be accepted in lieu of more than one of these courses.

6. All undergraduate majors in anthropology must satisfy the requirements of at least one of the three concentrations—anthropological archaeology, biological anthropology, and sociocultural anthropology—described below.

The Major in Anthropology with Concentration in Archaeology

The department offers a B.A. degree in anthropology with concentration in archaeology. A minimum of at least twelve upper-division courses in archaeology are required. Specifically, this degree requires:

1. The Anthropology Core Sequence: ANTH 101, 102 and 103. (or the now defunct ANPR 105, 106, and 107 sequence).

2. The Archaeology Concentration Requirement: ANAR 111 (previously ANGN 181)

3. Three additional four-unit upper-division courses with the prefix ANAR

4. Five additional four-unit, upper-division elective courses within the Department of Anthropology

Some students may elect to take field-school courses such as ANAR 194 or study-abroad courses in archaeology that are more than four.
units. In these cases, the total number of units for such courses will be applied to the satisfaction of archaeology requirements 3 and 4. For example, a twelve-unit field school course with the ANAR prefix may be used to satisfy requirement 3 or to partially satisfy requirement 4.

Students majoring in anthropological archaeology are encouraged to take the field school ANAR 194 and to fulfill a second concentration within the department, if they choose.

The Major in Anthropology with Concentration in Biological Anthropology

The department offers a B.A. degree in anthropology with concentration in biological anthropology. A minimum of at least twelve upper-division courses within and beyond anthropology are required. Specifically, this degree requires:

1. The Anthropology Core Sequence:
 ANTH 101, 102, 103 (or the now defunct ANPR 105, 106, and 107 sequence).
2. The Biological Anthropology Concentration Requirement:
 ANBI 111
3. Three additional four-unit upper-division courses with the prefix ANBI
4. Five additional four-unit, upper-division elective courses. At least one of these five electives must be taken from an approved list of biology courses. This list is available from the undergraduate coordinator in the Department of Anthropology. Each of the remaining four electives is to be drawn from that list or must be an upper-division anthropology course.

Students majoring in biological anthropology are encouraged to fulfill a second concentration within the department, if they choose.

The Major in Anthropology with Concentration in Sociocultural Anthropology

The department offers a B.A. degree in anthropology with concentration in sociocultural anthropology. A minimum of at least twelve upper-division courses in anthropology are required. Specifically, this degree requires:

1. The Anthropology Core Sequence:
 ANTH 101, 102, 103 (or the now defunct ANPR 105, 106, and 107 sequence).
2. The Sociocultural Concentration Requirement:
 Any three of the following six courses:
 - ANSC 120 Anthropology of Religion (previously ANGN 120)
 - ANSC 121 Psychological Anthropology (previously ANPR 107)
 - ANSC 122 Language in Society (previously ANGN 149)
 - ANSC 123 Political Anthropology (previously ANGN 151)
 - ANSC 124 Cultural Anthropology (previously ANPR 106)
 - ANSC 125 Gender, Sexuality, and Society (previously ANGN 125)
3. One additional ANSC course focusing on a particular region, country, or religion (e.g., Indigenous Peoples of Latin America; Modernity in Brazil; Global Islam).
4. Five additional four-unit upper-division elective courses within the Department of Anthropology.

 Students majoring in sociocultural anthropology are encouraged to fulfill a second concentration within the department, if they choose.

Senior Thesis Program

The senior thesis is prepared during two successive quarters of ANTH 196, senior thesis research, and is counted as two of the twelve upper-division courses required for a major. Students are admitted to the program by invitation of the faculty. Under normal circumstances, eligibility for the program requires the student (1) to have completed eight upper-division courses, including the core sequence, and (2) to have achieved grade point averages of at least 3.6 both overall and in the anthropology major by the end of the junior year. Some of these requirements may be waived by vote of the faculty. During the first quarter of the program (fall quarter), students select their research topic and write a preliminary paper. Those who receive a B+ or better will be invited to continue in the program and complete a thesis on the chosen topic by the end of the winter quarter. The thesis will be evaluated by a committee consisting of the thesis advisor and one other faculty member appointed by the department chair in consultation with the thesis coordinator. The thesis advisor has the sole responsibility for the grade the student receives in the winter quarter. The reading committee advises the faculty on the merit of the thesis for departmental honors. A senior thesis is required in order to be considered for department honors at commencement.

Students who wish to be considered for the Senior Thesis Program should notify the department’s undergraduate advisor by the second week of the spring quarter prior to the senior year.

Internship Program

The department sponsors an internship program that allows students to gain academic credit for supervised work in the Museum of Man, the San Diego Zoo, or the Wild Animal Park. The three tracks of the program allow internship experience in (1) biological anthropology, (2) ethnology and archaeology at the museum, or (3) primate behavior and conservation at the Zoo or Wild Animal Park. A combination of on-campus and on-site supervision makes these courses intellectually provocative but practical and applied. They are an especially valuable complement to a major or minor in anthropology. One four-unit internship (AIP 197) taken with the corresponding two-unit internship seminar (ANBI 187A, C and ANTH 187B) can be counted as one of the twelve upper-division courses for the anthropology major or minor. Applications to these programs are accepted during the first seven weeks of the quarter before the one in which the internship is to be done.

Academic Enrichment Programs

Faculty Mentor Program

The program offers research experience to any junior or senior with a GPA of 2.7 or higher who wants to prepare for graduate or professional school. Participants work as research assistants to UCSD faculty members during the winter and spring quarters. Students present their research papers at the Faculty Mentor Research Symposium at the conclusion of the program in the spring.
Summer Research Program

The program offers full-time research experience to underrepresented (i.e., minorities, women, and low-income, first-generation college) students who are interested in preparing for careers in research or university teaching. Juniors and seniors who have a 3.0 GPA or above and plan to attend graduate or professional school are eligible to participate.

Education Abroad Program

One of the best ways to understand the concept of “culture” is to live in a different culture for a time. Anthropology majors are encouraged to participate in the UC Education Program (EAP) or UCSD’s Opportunities Abroad Program (OAP). Students considering this option should discuss their plans with the faculty undergraduate advisor before going abroad, and courses taken abroad must be approved for credit to the major by the advisor upon return. More information on EAP and OAP is provided under the Education Abroad Program in the UCSD General Catalog. Interested students should contact the EAP staff in the International Center.

The Graduate Program

The Department of Anthropology offers graduate training in sociocultural (including psychological and linguistic) anthropology, anthropological archaeology, and biological anthropology. The graduate program is designed to provide the theoretical background and the methodological skills necessary for a career in research and teaching anthropology at the university level, and for the application of anthropological knowledge to contemporary problems. It is assumed that all students enter with the goal of proceeding to the doctoral degree.

Admission to the graduate program occurs in the fall quarter only.

Any decision to waive a requirement for either the master’s degree or the Ph.D. must be made by a majority of the faculty.

Graduate Advising

One member of the departmental faculty functions as the graduate advisor and is referred to as the director of graduate studies. The role of the graduate advisor is to inform students about the graduate program, approve individual registration forms, and give assistance with respect to administrative matters.

First-Year Mentors

Each first-year student is assigned a faculty mentor in the student’s subdiscipline. Students are encouraged to meet regularly with their mentors for course planning and guidance in meeting specific requirements and recommendations for their subdiscipline.

After completion of the requirements for the master’s degree, the chair of the student’s doctoral committee serves as the student’s major advisor.

Evaluation

In the spring of each year, the faculty evaluate each student’s overall performance in course work, apprentice teaching, and research progress. A written assessment is given to the student after the evaluation. If a student’s work is found to be inadequate, the faculty may determine that the student should not continue in the graduate program.

The Master of Arts Degree

Students entering the doctoral program must complete a master’s degree before continuing toward the doctorate. Entering students who already have a master’s degree in anthropology are not permitted by university regulations to receive a second social science or related-field master’s degree, but are required by the department to complete the requirements for the master’s degree. Rare exceptions may be made on a case-by-case basis by the consent of the majority of the faculty and approval of the Office of Graduate Studies.

Requirements for Master’s Degree

Required Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>Departmental Colloquium (4 quarters, 1 unit each)</td>
</tr>
<tr>
<td>281A-B</td>
<td>Introductory Seminars (1 unit each)</td>
</tr>
<tr>
<td>295</td>
<td>Master’s Thesis Preparation (1–12 units)</td>
</tr>
</tbody>
</table>

Four core courses, as specified in the following sections.

Core Course Offerings

Six core courses are offered in the graduate program in anthropology:

- ANTH 280A. Core Seminar in Social Anthropology (4 units)
- ANTH 280B. Core Seminar in Cultural Anthropology (4 units)
- ANTH 280C. Core Seminar in Psychological Anthropology (4 units)
- ANTH 280D. Core Seminar in Anthropological Archaeology (4 units)
- ANTH 280E. Core Seminar in Biological Anthropology (4 units)
- ANTH 263. The Anthropology of Language and Discourse (4 units)

(Note: Although not in the 280 series, ANTH 263 is a core seminar. It is also open to graduate students from other departments, with instructor’s permission. It may be offered in alternate years.)

ANTH 280A, 280B, 280C, and 263 are all core courses within the Sociocultural track. ANTH 280D and 280E are core courses in, respectively, the anthropological archaeology and biological anthropology tracks.

All students must take at least four of these six core courses by the end of their second year in the program (and preferably during the first year) as a requirement for receiving the master’s degree or for equivalent advancement in the program. The subfields specify particular choices among these core offerings for the students admitted to their respective tracks, as detailed below. The department strongly encourages all students in all subfields to take additional core courses as elective seminars to complete their program.

Anthropological Archaeology core requirements:

- 280D (Anthropological Archaeology); and
- 280E (Biological Anthropology); and

Two of the remaining four core courses in anthropology, selected in consultation with the student’s assigned mentor.

Biological Anthropology core requirements:

- 280E (Biological Anthropology); and
- 280D (Anthropological Archaeology); and
Two of the remaining four core courses in anthropology, selected in consultation with the student's assigned mentor.

Sociocultural Anthropology, Psychological Anthropology, and Linguistic Anthropology

All students in sociocultural anthropology and its allied fields of psychological and linguistic anthropology will take at least four core courses, selected as follows and with the consent of the individual student’s faculty mentor. Students identifying two or more areas of concentration must satisfy the requirements of each of these areas.

Core requirements for students in the General Sociocultural track:

280A (Social Anthropology); and
280B (Cultural Anthropology); and
280C (Psychological Anthropology) or 263 (The Anthropology of Language and Discourse); and
280D (Anthropological Archaeology) or 280E (Biological Anthropology).

Core requirements for students in the Psychological Anthropology track:

280C (Psychological Anthropology); and
280D (Anthropological Archaeology) or 280E (Biological Anthropology); and
Two of the following:
280A (Social Anthropology),
280B (Cultural Anthropology),
263 (Anthropology of Language and Discourse).

Core requirements for students in the Linguistic Anthropology track:

263 (Anthropology of Language and Discourse); and
280D (Anthropological Archaeology) or 280E (Biological Anthropology); and
Two of the following:
280A (Social Anthropology),
280B (Cultural Anthropology),
280C (Psychological Anthropology).

Master’s Thesis

Students must complete a master’s thesis or master’s thesis equivalency project of a length, format, and scope to be approved by the student’s M.A. committee and the director of graduate studies. The M.A. thesis must be at least 8,000 words in length and generally should not exceed 10,000 words. Students must have completed three quarters of coursework in order to begin writing a master’s thesis. By the end of the spring quarter of the student’s first year, he or she will form a master’s committee in consultation with the director of graduate studies and first year faculty mentor.

Students will submit a draft of the master’s thesis or master’s thesis equivalency project by the first day of winter quarter of their second year. Students may revise the master's thesis or master's thesis equivalency project in the winter quarter. Students will register for four credit hours of ANTH 295 (Master’s thesis preparation) in the fall quarter of their second year. Upon consultation with the M.A. committee and director of graduate studies, an additional four credits of ANTH 295 may be taken in winter for revisions. Successful completion of the master's thesis or master's thesis equivalency will determine whether an M.A. degree is awarded, where applicable, and weigh significantly in second-year student evaluations.

Elective Courses

Four elective, letter-grade courses are required. These courses can be undergraduate or graduate seminars. At least two of these elective courses must be within the anthropology department. Other electives may be taken outside of the department with the approval of the department chair or the graduate advisor.

The Doctoral Degree

Continuation in the doctoral program is granted to students who have satisfactorily completed the master’s program and who have completed courses and the master’s thesis at a level of excellence that indicates promise of professional achievement in anthropology.

Requirements for Doctoral Degree

1. **Required Courses**

 In order to achieve candidacy, students must complete two additional letter-grade electives beyond the four required for the master’s.

2. **Research Methods**

 Students are required to develop a plan for their training in research methods and present it to the anthropology department faculty on their proposed dissertation committee in the spring quarter of their second year.

3. **Apprentice Teaching**

 In order to acquire teaching experience, each student is required to serve as a teaching assistant for at least one quarter anytime during the first four years of residency. This experience may take place either in our department or in any teaching program on campus. The relevant course in the anthropology department is ANTH 500: Apprentice Teaching, taken for four units and S/U grade. Upon petition, this requirement may be waived by the anthropology faculty.

4. **Foreign Language**

 Unless a student is planning on fieldwork in English-speaking areas, knowledge of one or more foreign languages may be essential for the successful completion of a Ph.D. in anthropology at UCSD. Students will determine specific language requirements for their degree in consultation with the faculty and their doctoral committee.

5. **Formation of the Doctoral Committee**

 All students must choose the chair of their doctoral committee by the end of their second year. They must choose two more internal members of the doctoral committee by the end of the fall quarter of their third year. In consultation with the chair of the doctoral committee, two faculty members from outside the department (one of whom must be tenured) should be added to the committee by the end of the winter quarter of the third year.

 Anthropologists in other departments who are identified by the faculty may serve as either inside members or outside members of the committee. However, there must be at least two inside members from within the department, and only one outside member may be an anthropologist. The final composition of the committee is approved by the Office of Graduate Studies.

 The chair of the doctoral committee serves as the student’s advisor for the remainder of the student’s program.

6. **The Fieldwork Proposal**

 Advancement to candidacy will be based on the submission of two to three position papers and a research proposal. The position papers are intended as a way for students to demonstrate
compétence in particular areas of theory, methods, and/or regional studies that are significant to the dissertation research project. The number of the position papers and the specific topics they address are to be formulated in consultation with the student's committee chair and, as appropriate, with other members of the student's dissertation committee. It is expected that the position papers will amount to some fifty to sixty pages and that the research proposal will be in the twenty- to thirty-page range. Students should enroll in directed reading courses (ANTH 298) during the quarters in which they are writing the position papers. Additionally, students should also enroll in ANTH 296 during the quarters in which they are writing their dissertation research proposal. A maximum of three quarters is allowed for the preparation of both the position papers and proposal. The position papers, research proposal, and oral examination for advancement to candidacy must be completed no later than the end of the spring quarter of the student's fourth year.

7. Advancement to Candidacy

Advancement to doctoral candidacy must take place no later than the end of the spring quarter of the fourth year. This requires the successful completion of all course work requirements, the position papers, the dissertation research proposal, and an oral qualifying examination administered by the student's committee. The proposal and position papers must be turned into the student's committee at least three weeks prior to the examination.

Upon petition, students may advance to candidacy as early as the spring quarter of the third year, if all candidacy requirements noted earlier have been satisfied by that time. This requires the agreement of the graduate advisor, the student's dissertation advisor, and other members of his or her committee.

Successful completion of this examination marks the student's advancement to doctoral candidacy. These exams will be open to the extent that university regulations allow.

8. Dissertation and Dissertation Defense

Upon completion of the dissertation research project, the student writes a dissertation that must be successfully defended in an oral examination conducted by the doctoral committee and open to the public. This examination may not be conducted earlier than three quarters after the date of advancement to doctoral candidacy. A full copy of the student's dissertation must be in the hands of each of the student's doctoral committee members four weeks before the dissertation hearing. An abstract of the student's dissertation must be in the hands of all faculty members ten days before the dissertation defense. It is understood that the edition of the dissertation given to committee members will not be the final form, and that the committee members may suggest changes in the text at the defense. Revisions may be indicated, requiring this examination to be taken more than once. Acceptance of the dissertation by the university librarian represents the final step in completion of all requirements for the Ph.D.

9. Time Limits

Precandidacy status is limited to four years. Candidates for the doctorate remain eligible for university support for eight years. Instructional support (teaching assistantships, readerships, and tutors) is limited to six years (eighteen quarters). The doctoral dissertation must be submitted and defended within nine years. This is in accordance with university policy. **Normative time, which is the expected time to complete all requirements for the Ph.D., is six years for anthropology students.**

10. Additional Requirements for the Ph.D. in Anthropological Archaeology

Prior to receiving the Ph.D., anthropological archaeology students must complete a minimum total of fifty-six units (the equivalent of fourteen four-unit courses) of formal classroom/seminar courses. Students must choose all courses in consultation with their faculty advisor, who will be assigned during the first quarter. Archaeology students must take at least two sociocultural areal or topical courses (upper-division or graduate) relevant to their regional or theoretical focus of study. Each archaeology student must take at least one 200-level course focusing on cultures of the Old World and one 200-level course focusing on cultures of the New World. Students of anthropological archaeology are required to take at least one course in a modern or ancient language, or at least one course in linguistics. If offered, students must take ANTH 286 (Topics in Anthropological Archaeology). Anthropological archaeology students are required to take at least one course in quantitative methods (statistics or GIS). Because archaeology is closely allied to various earth and biological sciences, students are required to take at least one course in either of these fields that is relevant to their interests. Finally, graduate students in anthropological archaeology are expected to seek and obtain archaeology field and laboratory training. This requirement may be fulfilled by working with the anthropological archaeology track faculty in the Department of Anthropology or with archaeologists at other institutions.
providing the fundamentals for graduate study in this area. Required for students specializing in linguistic anthropology, and open to other students. Prerequisite: graduate standing in anthropology or consent of instructor.

NOTE: Not all anthropology courses are offered every year. Please check the quarterly UCSD Schedule of Classes issued each fall, winter, and spring, for specific courses.

The Melanesian Studies Resource Center and Archive

These facilities embody the substantial interests in the Pacific Basin that are represented on the UCSD campus and the special prominence of the UCSD Department of Anthropology in the study of cultures and societies of Oceania and especially of Melanesia. In cooperation with the UCSD libraries, the Melanesian Studies Resource Center and Archive has two major projects. First, there is an ongoing effort to sustain a library collection of monographs, dissertations, government documents, and journals on Melanesia that make UCSD the premier center for such materials in the United States. Second, there is an endeavor to collect the extremely valuable unpublished literature on Melanesia, to catalog such materials systematically, to produce topical bibliographies on these holdings, and to provide microfiche copies of archival papers to interested scholars and to the academic institutions of Melanesia. This innovative archival project is intended to be a model for establishing special collections on the traditional life of tribal peoples as dramatic social change takes place. In the near future, anthropological research on tribal peoples will take place largely in archives of this kind. These complementary collections will support a variety of research and teaching activities and are already attracting students of Melanesia to this campus.

The Melanesian Studies Resource Center and Archive are directed by members of the Department of Anthropology faculty, in collaboration with Geisel Library.

The Archaeological Research Laboratory

Archaeology laboratories were established at UCSD in 1995. The present facilities are geared to the study of lithics, ceramics, biological remains, and other small finds retrieved on faculty expeditions in the old and new worlds, including Belize, Israel, Jordan, and Peru. Multimedia research, AutoCAD, and other computer-based studies are carried out in the lab. Undergraduate and graduate students are encouraged to participate in lab studies.

The Biological Anthropology Laboratory

The biological anthropology laboratories have twin missions in teaching research. They house collections of modern skeletal material and fossil hominid casts used for teaching both at the lab and in local outreach presentations. The primary research focus involves a large collection of historical sections and computerized images of living and post-mortem human and non-human primate brains that were obtained through magnetic resonance scans. These are reconstructed in 3D using state-of-the-art equipment for comparative analysis and study of the evolution of the human brain. Undergraduate and graduate student involvement in the lab is welcomed.

The Anthropology of Modern Society Faculty Research Group

The Anthropology of Modern Society is a project of graduate training and research dedicated to the critical study of modernity and its counterpoints. The group is concerned with the changing nature of membership in modern society. It participates focus on issues of citizenship and democracy, social formations in tension with the nation-state, modern subjectivities, social and religious movements, governmental rationalities, and public works, transnational markets and migrations, relations of local to global processes within the current realignments of regional, national, and transnational sovereignties, and the social life of cities as making manifest these kinds of concerns. Participants are committed to reorienting anthropological theory and ethnographic practice towards such contemporary social and political problems. Guiding this project is the group’s interest in combining critical theory with a comparative and empirically grounded study of cases to constitute an anthropology of modernity.

Director: James Holston, Department of Anthropology, (858) 534-0111.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

Note: Not all courses are offered every year. Please check the quarterly Schedule of Classes for specific courses issued fall 2007, winter 2008, and spring 2008.

ANTHROPOLOGY: LOWER-DIVISION

ANTH 1. Introduction to Culture (4)
An introduction to the anthropological approach to understanding human behavior, with an examination of data from a selection of societies and cultures. [Formerly known as ANLD 1. Credit not allowed for both ANLD 1 and ANTH 1.]

ANTH 2. Human Origins (4)
An introduction to human evolution from the perspective of physical anthropology, including evolutionary theory and the evolution of the primates, hominids, and modern humans. Emphasis is placed on evidence from fossil remains and behavioral studies of living primates. Prerequisite for upper-division biological anthropology courses. [Formerly known as ANLD 2.] Credit not allowed for both ANLD 2 and ANTH 2.]

ANTH 3. World Prehistory (4)
This course examines theories and methods used by archaeologists to investigate the origins of human culture. A variety of case studies from around the world are examined. (Recommended for many upper-division archaeology courses.) [Formerly known as ANLD 3.] Credit not allowed for both ANLD 3 and ANTH 3.

ANTH 23. Debating Multiculturalism: Race, Ethnicity, and Class in American Societies (4)
This course focuses on the debate about multiculturalism in American society. It examines the interaction of race, ethnicity, and class, historically and comparatively, and considers the problem of citizenship in relation to the growing polarization of multiple social identities. [Formerly known as ANLD 23.] Credit not allowed for both ANLD 23 and ANTH 23.

ANTH 42. The Study of Primates in Nature (4)
Major primate field studies will be studied to illustrate common features of primate behavior and behavioral diversity. Topics will include communication, female hierarchies, protocultural behavior, social learning and tool use, play, cognition and self-awareness. [Prerequisite for several upper-division biological anthropology courses.] [Formerly known as ANLD 42.] Credit not allowed for both ANLD 42 and ANTH 42.

ANTH 87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges. Topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference
Prerequisites: none.

ANTH 101. Foundations of Social Complexity (4)
Course examines archaeological evidence for three key “tipping points” in the human career: (1) the origins of modern human social behaviors; (2) the beginnings of agriculture and village life; and (3) the emergence of cities and states. Prerequisite: upper-division standing. (Required for all majors in anthropology.)

ANTH 102. Human Evolution (4)
Interpretation of fossil material—its morphology, variation, phylegetic relationships, reconstruction of ecological settings and cultural patterns of early human life—demands the integration of many disciplines. Lectures cover major stages of human evolution; time ranges, distribution, archaeology, and distinctive morphology. Prerequisite: ANTH 2 or consent of instructor. (Formerly known as ANBI 161.) Credit not allowed for both ANBI 161 and ANTH 102.

ANTH 103. Sociocultural Anthropology (4)
A systematic analysis of social anthropology and of the concepts and constructs required for cross-cultural and comparative study of human societies. Prerequisite: upper-division standing. (Required for all majors in anthropology.) (Formerly known as ANPR 105.) Credit not allowed for both ANPR 105 and ANTH 103.

ANTH 187B. Intern Seminar in Ethnography and Archaeology (2)
Seminar complements students’ research in the Academic Internship Program in ethnography and archaeology at the Museum of Man. Readings and discussions focus on problems in the analysis of material culture and classifications of artifacts and site excavations. Research paper required. Prerequisites: ANSC 124 and simultaneous enrollment in Warren 197: Ethnography-Archaeology-Museum of Man. (P/NP grades only.) Department approval required.

ANTH 192. Senior Seminar in Anthropology (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in Anthropology (at the upper division level). Senior Seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior Seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to Seniors.

ANTH 195. Instructional Apprenticeship in Anthropology (4)
Course gives students experience in teaching of Anthropology at the lower-division level. Students, under direction of instructor, lead discussion sections, attend lectures, review course readings, and meet regularly to prepare course materials and evaluate examinations and papers. Course not counted toward minor or major. Prerequisites: Upper-division standing and consent of instructor and department stamp. Received grade of “A” in course to be taught or equivalent. (Formerly known as ANPR 195.) Credit not allowed for both ANPR 195 and ANTH 195.

ANTH 196A. Thesis Research (4)
Independent preparation of a senior thesis under the supervision of a faculty member. Completion of this course with a grade of at least B+ is a prerequisite to ANTH 196B. Prerequisites: students will be admitted by invitation of the department. Department approval required. (Formerly known as ANPR 196A.) Credit not allowed for both ANPR 196A and ANTH 196A.

ANTH 196B. Thesis Research (4)
Independent preparation of a senior thesis under the supervision of a faculty member. Students begin two-quarter sequence in fall quarter. Prerequisite: completion of ANTH 196A with grade of B+ or better. (Formerly known as ANPR 196B.) Credit not allowed for both ANPR 196B and ANTH 196B.

ANTH 197. Field Studies (4)
Individually arranged field studies giving practical experience outside the university. Prerequisites: consent of instructor and department approval required. (P/NP grades only.)

ANTH 198. Directed Group Study (2-4)
Directed group study on a topic or in a field not included in the regular departmental curriculum by special arrangement with a faculty member. Prerequisites: consent of instructor and upper-division standing. (P/NP grades only.) Department approval required.

ANTH 199. Independent Study (2-4)
Independent study and research under the direction of a member of the faculty. Prerequisites: consent of instructor. (P/NP grades only.) Department approval required.

ANTHROPOLOGY: ARCHAEOLOGY

ANAR 100. Special Topics in Anthropological Archaeology (4)
Course usually taught by visiting faculty in anthropological archaeology. Course will vary in title and content. When offered, the current description and title is found in the current Schedule of Classes and the anthropology department Web site. (Can be taken a total of four times as topics vary.) Prerequisites: upper-division standing or consent of instructor.

ANAR 111. Foundations of Archaeology (4)
(Formerly Anthropological Archaeology.) As part of the broad discipline of anthropology, archaeology provides the long chronological record needed for investigating human and social evolution. The theories and methods used in this field are examined. (Archaeology core sequence course.) Prerequisites: ANTH 3 is recommended. (Formerly known as ANGN 181.) Prerequisites: upper-division standing. Credit not allowed for both ANGR 181 and ANAR 111.

ANAR 118. Archaeology of the UCSD Campus (4)
Our campus houses some of the earliest human settlements in North America. This course reviews the archaeology, climate, and environment of the sites and outlines research aimed at understanding the lives of these early peoples. (Formerly known as ANGN 108.) Prerequisites: upper-division standing. Consent of instructors. Credit not allowed for both ANGR 108 and ANAR 118.

ANAR 119S. Archaeological Field and Lab Class (8)
The archaeological field and laboratory class will take place at Moquegua, Peru. It is an introduction to the research design of interdisciplinary projects, the technique of data collections, the methods of excavation and post-extraction lab work. Course materials fee is required. (Formerly known as ANGN 119.) Prerequisites: upper-division standing. Consent of instructor. Credit not allowed for both ANGR 119 and ANAR 119S.

ANAR 121. Digital Archaeology: GIS Foundations (4)
Concerns modern archaeological data with Geographic Information Systems and performing spatial analysis. Lectures and lab exercises—learn spatio-temporal analysis techniques with interactive online computer mapping. Hands-on skills with ArcView, GIS, and several ArcView extensions. (Formerly known as ANGR 121.) Prerequisites: upper-division standing. Credit not allowed for both ANGR 121 and ANAR 121.

ANAR 122. Advanced Digital Archaeology Lab (4)
Expands GIS knowledge in group project meetings and discussions interspersed with lectures on more advanced topics integrating GIS and digital archaeology. Student GIS projects will be converted into interactive online presentations integrating maps, text documents, and archaeological imagery. Prerequisites: consent of instructor.

ANAR 140. The Foundation for Social Complexity in the Near East (4)
This course critically examines the theoretical models and archaeological evidence of nascent social complexity and inequality in the Near East. The time period under consideration encompasses the shift from generalized hunting and gathering through complex hunter-gatherers to large-scale agricultural communities. (Formerly known as ANRG 115.) Credit not allowed for both ANRG 115 and ANAR 140. Prerequisites: upper-division standing.

ANAR 141. Prehistory of the Holy Land (4)
(Formerly The Archaeology of Society in Syro-Palestine) Israel is a land-bridge between Africa and Asia. Course highlights the prehistory of the Levant and its interconnections from the Paleolithic to the rise of the earliest cities in anthropological perspective. (Formerly known as ANGR 116.) Credit not allowed for both ANRG 116 and ANAR 141. Prerequisites: upper-division standing.

ANAR 142. The Rise and Fall of Ancient Israel (4)
(Previously titled: The Archaeology of Israel in the Iron Age.) The emergence and consolidation of the state in ancient Israel is explored using archaeological data, Biblical texts, and anthropological theories. The social and economic processes responsible for the rise and collapse of ancient Israel are investigated. ANTH 3 is recommended. (Formerly known as ANRG 150.) Credit not allowed for both ANRG 150 and ANAR 142. Prerequisites: upper-division standing.

ANAR 143. Archaeology, Anthropology, and the Bible (4)
The relationship between archaeological data, historical research, the Hebrew Bible, and anthropological theory are explored along with new methods and current debates in Levantine archaeology. (Formerly known as ANGR 184.) Credit not allowed for both ANGR 184 and ANAR 143. Prerequisites: upper-division standing.

ANAR 144. Pharoahs, Mummies, and Pyramids: Introduction to Egyptology (4)
An introductory survey of the archaeology, history, art, and architecture of ancient Egypt that focuses on the men and women who shaped western civilization.
ANTHROPOLOGY: BIOLOGICAL ANTHROPOLOGY

These courses can be counted for the biological anthropology minor or concentration.

ANBI 100. Special Topics in Biological Anthropology (4) Course usually taught by visiting faculty in biological anthropology. Course will vary in title and content. When offered, the current description and title is found in the current Schedule of Classes and the anthropology department Web site. (Can be taken a total of four times as topics vary.)

ANBI 110. Perspectives on Human Evolution (4) Special seminar for students who wish to explore advanced topics in biological anthropology. Course focus will change year to year. May be repeated one time for credit. Prerequisites: upper-division standing. ANTH 2, one other course in biological anthropology, or consent of instructor. Department approval required.

ANBI 116. The Evolution of Primate Reproduction (4) This course examines reproductive biology and its evolution among the Order Primates. Lectures cover the hormonal control of sexual and parental behavior, the evolution of mating systems, mating tactics, and sexual selection. Human reproduction is considered in the comparative perspective. Prerequisites: upper-division standing, ANTH 2: Human Origins or comparable, or consent of instructor.

ANBI 132. Conservation and the Human Predicament (4) (Same as BIEB 176) Interdisciplinary discussion of the human predicament, biodiversity crisis, and importance of biological conservation. Examines issues from biological, cultural, historical, economic, social, political, and ethical perspectives emphasizing new approaches and new techniques for safeguarding the future of humans and other biosphere inhabitants. Prerequisites: upper-division standing, ANTH 2 or consent of instructor.

ANBI 139. Introduction to the Primate Brain (4) Examination of the basic organization of the human and non-human primate brain with an emphasis on structures involved in cognitive behaviors, emotions, and responses to social stimuli. Introduction to the field of comparative neuroanatomy as applied on selected anthropoid species. Prerequisites: upper-division standing.

Prerequisites: upper-division standing, ANTH 42: The Study of Primates in Nature

This course will compare long bones, head, and torso shape in tree-living and ground-living primates. The emphasis is on correlating locomotion with bone shapes. Prerequisites: ANTH 42: The Study of Primates in Nature

The last divide between humans and other animals is considered. Course focuses on anatomy, pathology, and classification and x-ray analysis of skeletal remains. Research paper required. Prerequisites: ANTH 2 and one upper-division course in animal behavior, either in anthropology or biology. To qualify, must be last quarter junior or senior with a 3.3 GPA. Simultaneous enrollment in Warren 197: Physical Anthropology-Museum of Man. (P/NP grades only.) Department approval required.

ANBI 147. Intern Seminar in Ethology (1)

Seminar complements students' research in the Academic Internship Program at the San Diego Wild Animal Park and/or Zoo. Focus on problems of analysis in observational study of animal behavior and conservation in relation to ethological studies. Research paper required. Prerequisites: ANTH 2 and one upper-division course in animal behavior, either in anthropology or biology. To qualify, must be last quarter junior or senior with a 3.3 GPA. Simultaneous enrollment in Warren 197: Ethology Zoo. (P/NP grades only.) Department approval required.

ANBI 148. Primates Behavioral Ecology (4)
The course examines various behaviors (e.g., group formation, dispersal, parenting, coalition formation) from a comparative and evolutionary perspective. Observational methodology and analytical methods will also be discussed. Lab sections are required. Strongly recommended: BIEB 100, Biometry or comparable statistics course, and BIEB 164, Sociobiology. Prerequisites: upper-division standing, ANTH 42.

ANBI 149. Biological and Cultural Perspectives on Intelligence (4)
Attitudes toward other individuals (and species) are often shaped by their apparent “intelligence.” This course discusses the significance of brain size/complexity, IQ, tests, communication in marine mammals and apes, complex behavioral tactics, and the evolution of intelligence. Prerequisites: upper-division standing, one of the following: ANTH 2, or ANTH 42, or BILD 3 or consent of instructor.

ANBI 173. Cognition in Animals and Humans (4)
The last divide between humans and other animals is in the area of cognition. A comparative perspective to explore recent radical reinterpretations of the cognitive abilities of different primate species, including humans and their implications for the construction of evolutionary scenarios. Prerequisites: upper-division standing, ANTH 2 or equivalent introductory course in evolution/animal behavior or consent of instructor.

ANBI 175. Modeling the Behavior of our Early Ancestors (4)
Models of human evolution combine science and myth. This course examines methods used in reconstructions of human evolution. Models such as “man the hunter” and “woman the gatherer” are examined in light of underlying assumptions, and cultural ideals. Prerequisites: upper-division standing, ANTH 2 or equivalent.

ANBI 187A. Intern Seminar in Physical Anthropology (2)
Seminar complements students' research in the Academic Internship Program in physical anthropology at the Museum of Man. Readings and discussions focus on anatomy, pathology, and classification and x-ray analysis of skeletal remains. Research paper required. Prerequisites: ANTH 2 and simultaneous enrollment in Warren 197: Physical Anthropology-Museum of Man. (P/NP grades only.) Department approval required.

ANSC 100. Special Topics in Socio-Cultural Anthropology (4)
Course usually taught by visiting faculty in socio-cultural anthropology. Course will vary in title and content. When offered, the current description and title is found in the current Schedule of Classes and the anthropology department Web site. (Can be taken a total of four times as topics vary.) [Formerly known as ANGN 104.] Credit not allowed for both ANPR 107 and ANSC 121. Prerequisites: upper-division standing.

ANSC 122. Language in Society (4)
After a brief introduction to linguistic concepts, the course covers the relations between culture and language, how languages reflect culture, how languages change, language and social life, language and political policy. [Formerly known as ANG 149.] Credit not allowed for both ANG 149 and ANSC 122. Prerequisites: upper-division standing.

ANSC 123. Political Anthropology (4)
Humans are goal seekers, some with public goals. Course considers ways goals are pursued, which are desirable, and how this pursuit is carried out at the local level with attention to the parts played by legitimacy and coercion. [Formerly known as ANG 151.] Credit not allowed for both ANG 151 and ANSC 123. Prerequisites: upper-division standing.

ANSC 124. Cultural Anthropology (4)
A web of problematic meanings lies behind social relationships and institutional frameworks. This perspective plays an important role in the discussion of human affairs. Course considers the concept of culture in anthropology as a particularly forceful statement of such a perspective. [Formerly known as ANPR 106.] Credit not allowed for both ANPR 106 and ANSC 124. Prerequisites: upper-division standing.

ANSC 125. Gender, Sexuality, and Society (4)
How are gender and sexuality shaped by cultural ideologies, social institutions, and social change? We explore their connections to such dimensions of society as kinship and family, the state, religion, and popular culture. We also examine alternative genders/sexualities cross-culturally. [Formerly known as ANGN 149.] Credit not allowed for both ANGN 125 and ANSC 125. Prerequisites: upper-division standing.

ANSC 130. Hinduism (4)
An anthropological introduction to Hinduism, focusing on basic religious concepts and practices. Topics include myth, ritual, and symbolism; forms of worship; gods and goddesses; the roles of priest and renouncer; pilgrimages and festivals; the life cycle; popular Hinduism, Tantrism. [Formerly known as ANGR 108.] Credit not allowed for both ANGR 108 and ANSC 130. Prerequisites: upper-division standing.

ANSC 131. Urban Cultures in Latin America (4)
This course examines four interrelated and historically structured themes of urban culture in Latin America: the role of cities in organizing national space and society; immigration and race; modernism; and popular culture as new religion, music, and film. [Formerly known as ANRG 114.] Credit not allowed for both ANRG 114 and ANSC 131. Prerequisites: upper-division standing.

ANSC 131 XL. Urban Cultures in Latin America (FLD) (1)
Foreign Language Discussion. Students will exercise advanced foreign language skills to discuss materials and the correspondingly numbered anthropology language foreign area course. This section is taught by the course instructor, has no final exam, and does not affect the grade in the course. ANSC 131. Urban Cultures in Latin America. [Formerly known as ANRG 114 XL.] Credit not allowed for both ANRG 114 XL and ANSC 131 XL. Prerequisites: ANSC 131 (corequisite). Upper-division standing or consent of instructor.
ANS 132. Modernity in Brazil (4)
Construction of Brazilian modernity through four perspectives: Liberalism among slave-owning elites compared with democratic citizenship among contemporary poor; millennialist religions; construction of the urban periphery by residents; and a modernist theory (antropofagia) about authentic versus imported culture. [Formerly known as ANRG 132.] Credit not allowed for both ANRG 132 and ANSC 132. Prerequisites: upper-division standing.

ANS 133. Peoples and Cultures of the Middle East (4)
This course explores the living structures, family and gender relations, economy, and religion in the Middle East. We will especially focus on how people come to terms with recent transformations such as nationalism, literacy, globalization, and Islamism. [Formerly known as ANRG 122.] Credit not allowed for both ANRG 122 and ANSC 133. Prerequisites: upper-division standing.

ANS 134. Global Islam (4)
Course aims to understand the diverse ways in which Muslims give meaning to their religion and use it as a framework to understand the world. [Formerly known as ANRG 118.] Credit not allowed for both ANRG 118 and ANSC 134. Prerequisites: upper-division standing.

ANS 135. Indigenous Peoples of Latin America (4)
Indigenous peoples in the Americas have long been dominated and exploited. They have also resisted and reworked the powerful forces affecting them. This course will trace this centuries-long contestation, focusing on ways anthropological representations have affected those struggles. [Formerly known as ANRG 143.] Credit not allowed for both ANRG 143 and ANSC 135. Prerequisites: upper-division standing.

ANS 136. Traditional Chinese Society (4)
Course examines major institutions and culture patterns of traditional China, especially as studied through ethnographic sources. Topics include familialism, religion, agriculture, social mobility, and personality. [Formerly known as ANRG 170.] Credit not allowed for both ANRG 170 and ANSC 136. Prerequisites: upper-division standing.

ANS 137. Chinese Popular Religion (4)
The religious world of ordinary precommunist times, with some reference to major Chinese religious traditions. Background in pre-modern Chinese history is recommended. [Formerly known as ANRG 173.] Credit not allowed for both ANRG 173 and ANSC 137. Prerequisites: upper-division standing.

ANS 138. Ethnography of Island Southeast Asia (4)
This is an introduction to the diverse cultures of island and peninsular Southeast Asia, including those of Indonesia, the Philippines, and Malaysia. We look at ritual, politics, gender, popular culture, and social change in agrarian and urban societies. [Formerly known as ANGR 219.] Credit not allowed for both ANGR 219 and ANSC 138. Prerequisites: lower-division anthropology or consent of instructor.

ANS 160. Nature, Culture, and Environmentalism (4)
Course examines theories concerning the relation of nature and culture. Particular attention is paid to explanations of differing ways cultures conceptualize nature. Along with examples from non-western societies, the course examines the western environmental ideas embedded in contemporary environmentalism. [Formerly known as ANG 160.] Credit not allowed for both ANG 160 and ANSC 160. Prerequisites: upper-division standing.

ANS 161. Psychoanalysis and Religion (4)
With special attention to the relationship between theory and data, this course deals with the psychoanalytic approaches to the study of religion through a close examination of key ethnographic and historical studies of religious systems and experience. [Formerly known as ANG 111.] Credit not allowed for both ANG 111 and ANSC 161. Prerequisites: upper-division standing.

ANS 162. Language, Identity, and Community (4)
This course examines the use of language difference in negotiating identity in bilingual and bidialectal communities, and in structuring interethnic relations. It addresses social tensions around language variation and the social significance of language choices in several societies. [Formerly known as ANG 112.] Credit not allowed for both ANG 112 and ANSC 162. Prerequisites: upper-division standing.

ANS 163. Culture and Communication in Education (4)
[Previously titled Anthropology of Education.] The ways in which language and culture influence educational goals and processes. Cultural and sociolinguistic explanations of school successes and failures are examined. [Formerly known as ANG 117.] Credit not allowed for both ANG 117 and ANSC 163. Prerequisites: upper-division standing.

ANS 164. The Anthropology of Medicine (4)
We examine the medical profession, the sick and the healers, and culture as communication in the medical event through aspects of medical practice and medical research of medicine as well as primitive and peasant systems. Prerequisites: upper-division standing.

ANS 165. Rituals and Celebrations (4)
Explores the nature and significance of ritual. The course will examine religious rituals, civic festivals, and popular celebrations. Topics include ritual symbolism, social and psychological aspects of ritual, life cycle rites, urban festivals, ritual theory. [Formerly known as ANG 167.] Credit not allowed for both ANG 167 and ANSC 165. Prerequisites: upper-division standing.

ANS 166. The Anthropology of the End of the World: Millenarian Movements Across Cultures (4)
Course focuses on historical and contemporary millenarian movements in the western and non-western world. Topics addressed include origins, role of prophets, conceptions of time, relation to politics and influence on social change. Examples include Christian and non-Christian movements. [Formerly known as ANGR 231.] Prerequisite: graduate standing.

ANTH 201. Special Topics in Anthropological Archaeology (4)
Course usually taught by visiting faculty in anthropological archaeology. Course will vary in title and content. When offered, the current description and title is found in the current Schedule of Classes on TritonLink, and the anthropology department Web site. (Can be taken a total of four times as topics vary.) [Formerly known as ANRG 201.]

ANTH 202. Olmec and Maya Archaeology (4)
Course examines the birth of Olmec and Maya civilizations in the Formative period, the rise of city states during the Early Classic, the decline of the Classic Maya, and the resurgence of the Postclassic period. [Formerly known as ANRG 202.] Prerequisite: graduate standing in anthropology.

ANTH 211. Psychoanalysis and Religion (4)
With special attention to the relationship between theory and data, this course deals with psychoanalytic approaches to the study of religion through a close examination of key ethnographic and historical studies of religious systems and experience. [Formerly known as ANG 211.] Prerequisite: graduate standing.

ANTH 219. Seminar in Political Anthropology (4)
The focus here is “politics,” broadly construed, in various societies. Analysis is from the perspective of the resources deployed by all involved, including but not limited to power, with emphasis on the role of culture and social structure. [Formerly known as ANGR 219.] Prerequisite: graduate standing.

ANTH 222. Anthropological Interviewing (4)
The course teaches techniques of long-term, intensive interviewing in fieldwork settings with an emphasis on psychodynamic inference and its usefulness in different cultural settings. [Formerly known as ANGR 223.] Prerequisite: graduate standing in anthropology.

ANTH 224. Advanced Topics in the Anthropology of Gender (4)
A critical analysis of ethnographic and theoretical texts focusing on the sociocultural study of gender. We will also draw on studies of gender and feminist theory from other disciplines (e.g., history, philosophy) to illuminate issues relevant to anthropology. [Formerly known as ANGR 224.] Prerequisite: graduate standing in anthropology or consent of instructor.

ANTH 226. Ethnography of Christianity (4)
Directed to graduate students planning ethnographic work in Christian societies, this course explores variations in the interpretation and expression of Christianity using historical and ethnographic sources. [Formerly known as ANGR 226.] Prerequisite: graduate standing or consent of instructor.

ANTH 230. Department Colloquium (1)
A forum to present work by faculty, students, and guests. Course will be offered quarterly. [Formerly known as ANGR 230.] Prerequisite: graduate standing in anthropology. (S/U grades only.)

ANTH 231. The Social and Cultural Works of Sigmund Freud (4)
In this seminar we shall examine Freud's works on culture, gender, morality, religion, sex, society, and the arts, and assess their contemporary anthropological relevance. [Formerly known as ANGR 231.] Prerequisite: graduate standing.
ANTH 234. Dynamics of Culture (4)
Examination of the actual operation of culture with attention to the importance of cultural products and social structures. Course goal is to develop skill in understanding the influence, direct and indirect, of culture and behavior. [Formerly known as ANGR 234.] Prerequisite: graduate standing.

ANTH 237. Enduring Issues in Anthropological Theory (4)
The seminar focuses on a number of fundamental issues that have long been at the core of inquiry and explanation in the discipline including the place of the individual in society, the role of values, the effects of group structure, and the ways in which cultures change. [Formerly known as ANGR 237.] Prerequisites: none.

ANTH 238. Citizenship and the Nation State (4)
This course examines various conceptions of citizenship, nation, and state and considers their historical development as fundamental to the organization of most contemporary societies. It covers a range of theoretical readings, recent debates, and case studies. [Formerly known as ANGR 238.] Prerequisite: graduate standing.

ANTH 251. Ethnographies of Modern Society (4)
This seminar explores the experience and representation of modernity through ethnography. Readings will highlight such issues as: the social dynamics of the city; postcoloniality; globalization and transnationalism; the politics of culture; contemporary religious movements; and gender and modernity. [Formerly known as ANGR 251.] Prerequisite: graduate student in anthropology or consent of the instructor.

ANTH 256. Seminar on Brain Evolution (4)
We will review the neural basis of cognition in humans and other primates. Neurobiological findings will be related to contributions from various subfields of anthropology. Brain/mind associations will be explored in the context of hominin evolution. [Formerly known as ANGR 256.] Prerequisite: graduate student in anthropology or consent of instructor.

ANTH 257. Mind, Self, and Identity (4)
This seminar critically examines social, cultural, and psychological theories of the person, and their relationship to conceptions of the person found in moral political and religious discourses. It explores the role of concepts of the person in ethnographic research. [Formerly known as ANGR 257.] Prerequisite: graduate standing in anthropology or consent of instructor.

ANTH 258. Analytical Methods in Archaeology (4)
Specialized scientific techniques are increasingly important to archaeology. This seminar examines chronometric date techniques, site-formation processes, and geoarchaeology and pedology, chemical analyses of soils, zooarchaeology, palaeoecobotany, and how land-use strategies can be inferred from archaeological remains. [Formerly known as ANGR 258.] Prerequisite: graduate standing in anthropology.

ANTH 260. Psychodynamic Anthropology (1)
The focus of the seminar will be on the relation between psychodynamic models and culture and society. Readings and discussion. [Formerly known as ANGR 260.] Prerequisite: graduate standing. (S/U grades only.)

ANTH 263. Anthropology of Language and Discourse (4)
Examines the theoretical and methodological foundations and principal research questions of Linguistic Anthropology, providing the fundaments for graduate study in this area. Required for students specializing in Linguistic Anthropology and open to other students. [Formerly known as ANGR 263.] Prerequisite: graduate standing in anthropology or consent of instructor.

ANTH 264. Culture, Power, and the State (4)
This seminar examines distinct theoretical approaches to the contested concepts of culture, power, and the state. We will read fundamental theoretical texts and current ethnographies to examine how cultural beliefs, nationalist ideologies, and ethnic relations shape subjectivities and identities. [Formerly known as ANGR 264.] Prerequisite: graduate standing.

ANTH 265. Cultures of Late Capitalism (4)
Radical transformations shifted the boundaries between what is considered political and apolitical, public and private, and legitimate at the turn of the twenty-first century. This class studies how these developments shape and are shaped by local political structures. [Formerly known as ANGR 265.] Prerequisite: graduate standing.

ANTH 266. Classics in “Culture and Personality” (4)
This seminar will examine the classic studies of “Culture and Personality,” such as Cora DuBois’ study of Alor and Gregory Bateson’s and Margaret Mead’s study of Bali, which laid the foundation for the psychodynamic approach to psychological anthropology. [Formerly known as ANGR 266.] Prerequisite: graduate standing.

ANTH 267. The Anthropology of Ethics (4)
This course examines ethical and moral ideas and their relation to other aspects of culture. It also considers how attention to the ethical dogma can provide a foundation for rethinking social scientific theories of culture and practice. [Formerly known as ANGR 267.] Prerequisite: graduate standing.

ANTH 268. Anthropology of Cities (4)
Although cities are fundamental sites of emergent social relations and cultural forms, the anthropological study of modern urban society remains problematic. This seminar aims to develop an anthropological understanding of cities, focusing on recent ethnographies, methodological problems, and theoretical debates. [Formerly known as ANGR 268.] Prerequisite: graduate standing.

ANTH 269. Current Readings on Latin America (4)
This is a graduate reading seminar focusing on new anthropological works about Latin America. We will cover a wide range of critical current issues, including poverty, the state, gender, race/ethnicity, indigenous politics, memory, and violence. [Formerly known as ANGR 269.] Prerequisite: graduate standing.

ANTH 273. General Theory (4)
This seminar will be concerned with theories that attempt to construct an integrated account of personality, culture, and society, and how such general theories can be applied to the modern world. Classic and current theorists of modernization will be examined. [Formerly known as ANGR 273.]

ANTH 274. Debates in Anthropology (4)
This seminar will review a series of current or recent significant debates in anthropology. The debates will be examined in the light of their substantive, theoretical, and epistemological implications, with some attention to the rhetorical elements of the arguments themselves. [Formerly known as ANGR 274.] Prerequisite: graduate student in anthropology.

ANTH 278. Evolutionary Perspective on Cognition (4)
This seminar examines key issues in human and nonhuman primate cognition using perspectives from primate behavior, cognitive ethology, primate and human evolution, and human cognitive science. Topics include tool use, imitation, language, culture, tertiary relations, theory of mind, and models of mind. [Formerly known as ANGR 278.] Prerequisites: Open to graduate students in anthropology and other departments and to advanced undergraduates with instructor’s approval.

ANTH 279. Special Topics in Language and Society (4)
Selected topics in the anthropology of language, such as linguistic ideology, language and identity, multilingualism, discourse analysis. Topics will vary from year to year, and the course may be repeated with instructor’s permission. [Formerly known as ANGR 279.] Prerequisite: graduate standing.

ANTH 280A. Core Seminar in Social Anthropology (4)
Core seminar focuses on individual action and social institutions. [Formerly known as ANGR 280A.] Prerequisite: graduate standing in anthropology or consent of instructor.

ANTH 280B. Core Seminar in Cultural Anthropology (4)
Core seminar focuses on personal consciousness and cultural experience. [Formerly known as ANGR 280B.] Prerequisite: graduate standing in anthropology or consent of instructor.

ANTH 280C. Core Seminar in Psychological Anthropology (4)
Core seminar focuses on motives, values, cognition, and qualities of personal experience. [Formerly known as ANGR 280C.] Prerequisite: graduate standing in anthropology or consent of instructor.

ANTH 280D. Core Seminar in Anthropological Archaeology (4)
Seminar focuses on the development of archaeologi­cal theory. Required of archaeological and biological anthropology graduate students, sociocultural students may take this course to fulfill core distribution requirement. [Formerly known as ANGR 280D.] Prerequisite: graduate standing in anthropology or consent of instructor.

ANTH 280E. Core Seminar in Biological Anthropology (4)
This seminar will examine the central problems and concepts of biological anthropology, laying the foundation for first-year graduate students in Biological Anthropology as well as providing an overview of the field for graduate students in other areas of anthropology. [Formerly known as ANGR 280E.] Prerequisite: graduate standing in anthropology or consent of instructor.

ANTH 281A. Introductory Seminar (1)
These seminars are held in the first two quarters of the first year of graduate study. Faculty members will present an account of their current research and interests. When appropriate a short preliminary reading list will be given for the particular lecture. [Formerly known as ANGR 235A.]
ANTH 281B. Introductory Seminar (1)
Continuation of seminars held in the first two quarters of the first year of graduate study. Faculty members will present an account of their current research and interests. When appropriate a short preliminary reading list will be given for the particular lecture. [Formerly known as ANGR 281B. Prerequisite: first-year graduate standing in anthropology.]

ANTH 282. Topics in Anthropological Archaeology (4)
Seminar examines the central problems and concepts of archaeological anthropology, laying the foundation for first-year graduate students. Also provides an overview of the field in other areas of archaeology. Entire archaeological anthropology faculty and graduate students participate. [Formerly known as ANGR 282. Prerequisite: graduate standing in anthropology.]

ANTH 283A. Fieldwork Seminar (4)
A seminar given to acquaint students with the techniques and problems of fieldwork. Students carry out ethnographic field research in a local community group under faculty supervision. [Formerly known as ANGR 283A. Prerequisite: anthropology graduate students or consent of instructor.]

ANTH 288. Archaeology Practicum (12)
Field and laboratory training for graduate students in archaeology. Students will design and implement archaeological fieldwork or analyze data collected in the field. [Formerly known as ANGR 288. Prerequisite: consent of the instructor.]

ANTH 290. Primate Social Behavior/Neural Correlates (4)
Explores the interplay between the primate brain and primate social behavior from the perspectives of neuropsychology, cognitive ethology, and primate field studies. Issues in social cognition will include attention and gaze, working memory, emotions, awareness, and theory of mind. [Formerly known as ANGR 290. Prerequisite: graduate standing or consent of instructor.]

ANTH 291. Archaeology of Highland Mexico (4)
Survey of Mesoamerican archaeology focusing on highland Mexico. Topics covered: settling of Mesoamerica, agricultural origins, development of social complexity, rise of cities, emergence of large-scale states. [Formerly known as ANGR 291. Prerequisite: graduate standing.]

ANTH 292. Social Evolution/Iron Age Levant (4)
The Iron Age (ca. 1200-586 BCE) represents the rise of small secondary states throughout the southern Levant. Seminar explores the rise of these states through ideology, technology, subsistence, trade & social organization based on archaeological data, historical texts, and anthropological models. [Formerly known as ANGR 292. Prerequisite: graduate standing.]

ANTH 293. Primate Socioecology (4)
Course examines theories for the causes of sociality in primates. Implications for our understanding of human evolution are considered. [Formerly known as ANGR 293. Prerequisite: graduate standing or consent of instructor.]

ANTH 295. Master's Thesis Preparation (1-12)
The student will work on the master's thesis under the direction of the departmental committee chair. The course will be taken in the student's second year. [Formerly known as ANGR 295. Prerequisites: graduate student in anthropology and consent of master's thesis chair. (S/U grades only.)]

ANTH 296. Dissertation Fieldwork Proposal Preparation (4)
The student will work in cooperation with his or her departmental committee to develop a research proposal for the doctoral research project. [Formerly known as ANGR 296A/296B. Prerequisites: graduate standing in anthropology and consent of departmental committee chair. (S/U grades only.)]

ANTH 297. Research Practicum (1-4)
Supervised advanced research studies with individual topics to be selected according to the student's special interests. [Formerly known as ANGR 297. Prerequisites: for anthropology graduate students who have returned from their field research. (S/U grades permitted.)]

ANTH 298. Independent Study (1-4)
Supervised study of individually selected anthropological topics under the direction of a member of the faculty. [Formerly known as ANGR 298. Prerequisite: graduate standing. (S/U grades only.)]

ANTH 299. Dissertation Research (1-12)
Supervised study of individually selected anthropological topics under the direction of a member of the faculty. [Formerly known as ANGR 299. Prerequisite: Ph.D. candidacy in anthropology. (S/U grades only.)]

ANTH 500. Apprentice Teaching (4)
Anthropology graduate students participate in the undergraduate teaching program during one quarter anytime in the first four years of residence. Teaching may be in the anthropology department or other departments or programs on campus. Equivalent to duties expected of a 50 percent T.A. Enrollment in four units documents the Ph.D. requirement. (S/U grades only.) [Formerly known as ANGR 500. Prerequisite: graduate student in anthropology.]

ANTH 501. T.A.ing in Sixth College/C.A.T. (4 or 6)
Consideration and development of pedagogical methods appropriate to undergraduate teaching in the interdisciplinary Sixth College Core Sequence, Culture, Art, and Technology under supervision of Core Program faculty, associate director for the Writing Program and the associate director of the Thematic program. (S/U grades only.) [Formerly known as ANGR 501. Prerequisites: Anthropology graduate student teaching for the C.A.T./Sixth College Writing Program.]

Applied Mechanics and Engineering Sciences (AMES)
See Engineering, School of. Program name changed to Mechanical and Aerospace Engineering (MAE).
interface between ocean exploration and technology. It is administered by an interdepartmental group composed of members of the faculties of cooperating departments: the Graduate Department of the Scripps Institution of Oceanography (SIO), the Department of Mechanical and Aerospace Engineering (MAE), the Department of Structural Engineering (SE), and the Department of Electrical and Computer Engineering (ECE).

This interdepartmental curriculum combines the resources of these departments to produce oceanographers who are knowledgeable about modern engineering and instrumentation, as well as marine oriented engineering scientists who are familiar with the oceans. Since physical, chemical, geological, and biological aspects of the oceans and all forms of engineering may be involved, the curriculum provides maximum flexibility in meeting the needs of each individual student.

Candidates for admission should apply directly to one of the departments participating in the Applied Ocean Science program, listing Applied Ocean Science as an area of specialization. The choice of department should be based on the individual student’s planned area of major emphasis. Applicants will be expected to meet the admission requirements of the department to which they have applied.

The program is primarily directed toward the Ph.D. degree. However, both the candidate of philosophy and master of science degree (either Plan I, thesis, or Plan II, comprehensive examination) also will be offered under special circumstances. Students applying for a terminal master’s program should be aware of any special requirements for the department to which they apply.

The degrees completed under this program in the Department of SIO will carry the title “Oceanography.” Those degrees completed in the other cooperating departments will have the parenthetical title “(Applied Ocean Science)” appended to the appropriate authorized title.

COURSES

All students enrolled in the program are required to take or demonstrate proficiency in the following core courses or their equivalent:

- SIO 202A-B (Fundamentals of Wave Physics)
- SIO 203A-B-C (Methods of Applied Analysis)
- SIO 210 (Physical Oceanography)
- Math. 210A-B-C (Mathematical Methods in Physics and Engineering)
- SIO 214A (Introduction to Fluid Mechanics)
- SIO 240 (Marine Geology)
- SIO 260 (Marine Chemistry)
- SIO 280 (Biological Oceanography)
- MAE 294A-B-C (Methods in Applied Mechanics)

The students are expected to enroll in the Applied Ocean Science Seminar (SIO 208) throughout their period of residency. This seminar will make use of outside speakers, faculty members, and students in presenting various topics on applied ocean science and related fields. It provides a central forum in which all AOS students can participate. In addition to these basic requirements, the student will be subject to whatever additional requirements are prescribed by his or her department.

Course work occupies much of the first one and one-half to two years of graduate study. During this period there are numerous opportunities for students to investigate the research programs of the various research groups on the campus, and cultivate associations with professors and research groups which can provide support and guidance for thesis research in their selected field of specialization. In consultation with an advisor, students will plan a curricular path of courses which will adequately prepare them in their field of specialization. The courses may be selected from the entire catalog of courses available on the UCSD campus or where appropriate from other UC campuses and other universities.

Audiology

Joint Doctoral Program between San Diego State University and the University of California, San Diego

DIRECTORS:
Steven J. Kramer, Ph.D., San Diego State University
Erika M. Zettner, Ph.D., UCSD

Faculty
San Diego State University
Arthur Boothroyd, Ph.D.
Laura Dreisbach, Ph.D.
Jacque Geergusen, Au.D.
Steven J. Kramer, Ph.D.
Carol Mackersie, Ph.D.
Peter Torre III, Ph.D.
Derin Wester, Ph.D.

University of California, San Diego
Luís D. Benitez, M.D.
Jeffrey P. Harris, M.D., Ph.D.
Elizabeth M. Keithley, Ph.D.
Lina M. Mullen, Ph.D.
Allen F. Ryan, Ph.D.
Erik Viirre, M.D., Ph.D.
Erika M. Zettner, Ph.D.

Professional Doctorate in Audiology (Au.D.)

A professional doctorate in audiology (Au.D.) is offered jointly by San Diego State University (SDSU) and the University of California, San Diego (UCSD). The Au.D. program is a four-year graduate degree program designed for individuals who intend to specialize in clinical practice and to meet professional standards requiring a clinical doctorate as the entry-level degree for a certified audiologist. Graduates of this program will have the knowledge base, research exposure, and advanced clinical skills to enter the workforce in any setting, and will be prepared to function as independent audiology professionals in the expanding health care arena. The program encompasses academic, clinic, and research experiences in audiology and otology, through the combined resources from the Department of Speech, Language, and Hearing Sciences at SDSU and the Department of Surgery (Otolaryngology) in the School of Medicine at UCSD. More information about the program and admission can be found on the Web site, http://chhs.sdsu.edu/slhs/audmain.php.

Faculty members of the cooperating institutions teach courses, provide clinic instruction and research experiences, and are available as members of joint doctoral committees and advisors for student doctoral projects.

Admissions

Students will apply to the Au.D. Joint Doctoral Program through SDSU. It is expected that students will come into this program from a variety of different science backgrounds, including
communicative disorders, biological and physical sciences, engineering, psychology, nursing, or a pre-med curriculum. Applicants for admission to the Au.D. program must meet the general requirements for admission to both universities with classified graduate standing as outlined in the respective catalogs. Applicants must also meet the special requirements of this program. These include (a) overall grade-point average of 3.20 or better in undergraduate courses and in any graduate courses completed; (b) submission of scores on the GRE with satisfactory performance on both quantitative and verbal portions of the examination; (c) prerequisite completion of at least one course in statistics, three courses in biological/physical sciences, two courses in behavioral/social sciences, and one course in American Sign Language. Deficiencies in these areas may be completed after admission to the program if approved by the admissions committee.

Applicants must submit transcripts of all post-secondary coursework, three letters of recommendation from former or current professors, supervisors, or other appropriate persons able to judge their academic potential, and an applicant essay (statement of purpose) indicating their interests and strengths relative to their career objectives. Details of these requirements will be made available with the application form. Assuming that students meet the requirements for admission outlined above, each student admitted to the program will have a program advisor evaluate their preparation in view of their needs and career goals, as well as professional certification requirements.

Applicant files are reviewed as a group by an admissions committee composed of Au.D. program faculty from each campus. Other Au.D. program faculty may review files and make recommendations to the admissions committee. Given the limited number of spaces available (ten new admissions each year are anticipated, subject to available facilities), the admissions committee will select the best-qualified applicants to fill the available spaces. No minimum set of qualifications will guarantee an applicant admission to the program. The admissions committee will make recommendations for admission to the graduate dean from each campus.

Students seeking admission to the Au.D. program should consult the program’s Web site or contact the Au.D. program directors for more information, online applications, and application instructions. A complete application requires the following:

- appropriate application form
- applicant essay (detail provided in application packet)
- transcripts of academic work complete
- results of Graduate Record Examination
- three letters of recommendation

Students will be admitted to the Au.D. program only in the fall semester (first year is at SDSU). Complete applications must be received by January 20 to be considered for the program beginning in the following fall semester.

Post Master’s Degree Admissions: Students admitted to the Au.D. program with a master’s degree in audiology will be expected to complete the four-year Au.D. curriculum. However, some students may have had a master’s preparation in audiology in which some of the coursework was similar to some of the foundation courses in the Au.D. program. Upon entering the program, each individual will be assessed to determine competencies/knowledge in material that would put them on par with expectations for the Au.D. program. For some of the foundation core courses offered the first year at SDSU, e.g., Audiology 705, 710, 725, students may be given credit for the courses or be required to substitute a Doctoral Special Study (Audiology 798) course for one or more of these courses to ensure competencies or remediate deficiencies if approved by the program faculty. Credit for some of the first year clinic units may also be approved based on work experience; however, a full-complement of expected clinical skills must be demonstrated.

REQUIREMENTS FOR THE AU.D. DEGREE

Upon admission to the program, each student will be assigned a faculty advisor. The faculty advisor will help the student select a program of study to meet all program requirements. The Au.D. program is a four-year program, including summer semesters (summer semester between year two and year three may be optional if the requirements are satisfied in other ways). An exact unit minimum is not specified due to the mixing of semester units (SDSU) and quarter units (UCSD) and differences in clinical hours at different settings; however, the program is approximately 134 semester-equivalent course units. All students in the Au.D. program will fulfill the following requirements. Any alternative method of fulfilling these requirements requires advanced written permission from the program directors.

Residency

After formal admission to the Au.D. program, the student must complete a minimum of course hours equivalent to one year’s full-time enrollment at each campus. The definition of residence must be in accord with the regulations of San Diego State University and the University of California, San Diego. The program is designed to be shared between the two campuses. The first year is entirely at SDSU, the second year is entirely at UCSD, and the third year will have options from both campuses. The fourth year of the program will be a full-time clinical externship at a program-approved clinic agency or site. Both campuses will share equally in the academic, clinic, and research components of the program.

Courses

The program for each student will consist of prescribed set of courses, with the first year of courses entirely at SDSU and the second year of courses entirely at UCSD. The student’s faculty advisor will approve any changes to the standard curriculum.

Clinic

Each student will progress through a variety of clinical experiences involving patient assessment and management throughout their program of study. Clinic experiences will require concurrent enrollment in clinic courses appropriate for the campus in which they are doing the clinical work. These supervised clinical experiences are completed in the SDSU Audiology Clinic, UCSD Otology Clinics, and in community field sites. Clinic courses may be repeated as needed and require advisor approval prior to enrollment. Prior to the fourth year externship, each student will obtain approximately 500 hours of clinic experience. A minimum of 2,000 clinical hours is required by the end of the program.

- Clerkship in Otology. All students will have at least one quarter of a clinical rotation with otology staff associated with UCSD. Students will accompany otology faculty during their clinics, surgeries, and receive training in one or more of the following areas—clinical otology, pre-and post-operative assessment of patients, pharmacology related to otology,
design and implementation of clinical trials with balance disorders, and pediatric otology.

• Clinical Staffings. In addition, all students will be required to regularly participate in formal clinical case study/staffing experiences. At SDSU, these clinical staffings include student and faculty presentations and discussions of interesting cases seen in their clinics. At UCSD, these staffings include, the Chairman's Conference, where Au.D. students/residents and medical staff discuss otological problem cases and disorders and the Neurotology Conference, where UCSD and community physicians, and students/residents discuss cases dealing with neurological diseases and vestibular disorders.

• Fourth-Year Externship. The fourth-year externship is a full-time clinical experience in an approved agency/site. These externships may require a competitive interview process by the agency. Externship sites may be in other parts of the country. All students in their fourth-year externship must also enroll in the online clinical seminar at SDSU each semester.

Research Practicum

Each student will spend at least two semesters or quarters participating in research being done by program faculty. Students are encouraged to spend time in two different laboratories (one on each campus) with different methodologies. Students will not be conducting independent research, but will actively participate in data collection and analysis at the discretion of the lab director. Students must enroll in the research practicum course for the appropriate campus.

Examinations

All students in the program will be evaluated at the following levels:

• First Year. Students must have achieved a 3.0 grade-point average on all core and elective courses during the first year, and have appropriate clinical skills as determined by the student's clinic supervisors. The student's ability to integrate the academic material and clinical procedures appropriate for the end of the first year will be assessed through a first year qualifying exam. This examination will be a written examination to be taken at the end of the spring semester. The first year qualifying exam may be repeated once following additional directed study by the student's advisor.

Students must pass the first year evaluation in order to enroll in second year courses.

• Second Year. Students must have achieved a cumulative grade-point average of 3.0 on all core and elective courses, and have appropriate clinical skills as determined by the student's clinic supervisors. The student's ability to integrate the academic and clinic procedures appropriate for the end of the second year will be assessed through a second year qualifying examination. This examination will be a written examination to be taken at the end of the spring quarter. The second year qualifying examination may be repeated once following additional directed study by the student's advisor. Students must pass the second year evaluation in order to enroll in third year courses.

• Comprehensive Examination. At the end of the third year, and after advancement to candidacy (see below), the student will take a comprehensive examination, which has an integrative written component and a practical component involving clinical procedures. The comprehensive examination must be passed before a student can be registered for the externship.

Advancement to Candidacy

Candidates will be recommended for advancement to candidacy after successfully completing all course, laboratory rotation, and clinic requirements for Year 1 and Year 2 (with a minimum grade-point average of 3.0), satisfactory performance on the first and second year evaluations, and approval of the doctoral project proposal. Students cannot enroll in the doctoral project course, take the comprehensive examination, or register for their externship until advanced to candidacy. The program's executive committee recommends students eligible for advancement to candidacy to the graduate deans of both institutions.

Doctoral Project

Each student will complete an innovative doctoral project. The doctoral project can take the form of a number of different options, e.g., a research-based investigation, evidence-based position paper, critical literature review with applications to clinical problem solving, grant proposal, development of a clinical protocol based on published research findings, or other projects proposed by the student that are accepted by the committee. The project should be designed to allow an opportunity to demonstrate critical thinking on clinical issues. Each student will select a doctoral project committee comprised of two Au.D. program faculty (one from each campus) and a faculty member external to the program. The chair of the committee can be from either campus. The executive committee will approve each student's doctoral project committee. All doctoral projects will be written in a format approved by the student's doctoral project committee. The student's final written document will be approved by the student's doctoral project committee. Each student will enroll in the appropriate doctoral project course depending on the campus in which their committee chair resides.

The Doctor of Audiology (Au.D.) degree will be awarded jointly by the Regents of the University of California and the Trustees of The California State University in the names of both cooperating institutions.

Funding for graduate students cannot be guaranteed, although every effort will be made to provide some financial support for as many students as possible, through graduate teaching assistantships, research grants, clinical traineeships, and/or scholarships. Financial support will be awarded consistent with the policies of the two universities. Tuition and fees will be charged in accordance with the extent policies at the campus in which the student is matriculated in a given year.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

AUD 236. Preceptorship in Neuro-Otology (2)
Observations in UCSD Otology clinic. Learn about procedures for taking histories and performing clinical examinations, patient treatment, and patient education from otologists. Prerequisites: second-year Au.D. student or consent of instructor.

AUD 255. Anatomy and Physiology of the Auditory and Vestibular Systems (4)
Detailed anatomy of the auditory and vestibular systems, including the ultra-structure, histology, and neuronal connections of the systems. In addition, physiological responses that underlie the actions of each system are described, from the cellular to the systems levels. Prerequisites: second-year Au.D. student or consent of instructor.
AUD 256. Pathophysiology of the Auditory and Vestibular Systems (4)
Physiological and anatomical substrates of auditory and vestibular disorders including influences of neurological disorders. Topics include peripheral and central disorders, congenital disorders due to infections, as well as acquired ototoxic, noise-induced, infective, autoimmune, age-associated disorders, and traumatic disorders. **Prerequisites:** second- or third-year Au.D. student or consent of instructor.

AUD 257. Ear Diseases and Treatment (3)
Differential diagnosis and treatment of auditory and vestibular disorders, audiological components of neuro-otology, as well as interactions between the audiologist and neuro-otologist in a clinical setting. **Prerequisites:** second-year Au.D. student or consent of instructor.

AUD 263. Physiological and Behavioral Tests of Vestibular Function (4)
Clinical evaluation of vestibular function, using techniques such as caloric and rotational electroneystagmography and posturography. The interpretation of clinical findings and implications for rehabilitative strategies will be covered. The course will include observation of testing in otology clinic settings. **Prerequisites:** second-year Au.D. student or consent of instructor.

AUD 264. Auditory and Vestibular Development and Genetics (3)
Embryology and functional development of the auditory and vestibular systems, from their initial appearance to adult function. Inherited disorders of these two sensory systems are also addressed, including phenotypic description and genetic basis. Genetic counseling and the potential for gene therapy are also discussed. **Prerequisites:** second- or third-year Au.D. student or consent of instructor.

AUD 270. Newborn Hearing Screening and Management (3)
This course describes procedures and requirements for newborn hearing screening and the detection and clinical management of congenital auditory disorders. Observations of newborn screening in a neonatal ICU environment. **Prerequisites:** second- or third-year Au.D. student or consent of instructor.

AUD 271. Temporal Bone Anatomy (4)
Detailed anatomy of the temporal bone, including surgical approaches. Participation in dissecting a human cadaver temporal bone specimen, and observation of medical residents/staff learning to perform surgical drilling of temporal bone under the supervision of experienced otologic surgeons. Radiographic and magnetic resonance imaging of the temporal bone will be described and discussed. **Prerequisites:** second- or third-year Au.D. student or consent of instructor.

AUD 275. Intraoperative Monitoring (3)
Methods and procedures required for monitoring of evoked auditory responses in the operating room. The indications for the use of intraoperative monitoring and difficulties unique to this setting. The course will include the opportunity to observe auditory potential monitoring in the operating room. **Prerequisites:** second- or third-year Au.D. student or consent of instructor.

AUD 276. Cochlear Implants and Other Implantable Sensory Aids (3)
Theory and practice of cochlear implantation with focus on audiological management of patients after implantation. Current concepts regarding the activation of primary auditory neurons by electrical stimulation and indications for cochlear implantation and surgical procedures are described. **Prerequisites:** second- or third-year Au.D. student or consent of instructor.

AUD 284. Clinical Practice in Audiology II (1-4)
Applications of clinical procedures to patient assessment. Includes clinical observation, interaction with otologists, and supervised patient care involving diagnostics and hearing aid evaluations in the UCSD audiology clinics. This course may be taken more than once. **Prerequisites:** open to second- or third-year doctoral students or consent of instructor. One quarter unit represents 3 to 4 hours per week. Must also be concurrently enrolled in AUD 291.

AUD 291. Clinical Case Studies/Staffing (1)
Presentations and discussion of clinical cases and issues related to clinical practice. Students’ clinical experiences are discussed relative to medical and audiological assessment and management. This course may be taken more than once. **Prerequisites:** second- or third-year Au.D. student or consent of instructor. Must be taken more than once.

AUD 296. Research Practicum (3)
Participation in specific faculty research activities. Become familiar with research methods and objectives of a faculty’s research project. Participate in data collection and analysis at the discretion of the faculty investigator. **Prerequisite:** second- or third-year Au.D. student or consent of instructor.

AUD 298. Independent Research (3)
Independent research on topics relevant to audiology, consisting of literature review, data collection. Faculty supervision and mentoring on practical elements of research design and methodology. The course will consist of laboratory experience, focused on practical elements of research and design and methodology. **Prerequisite:** consent of Au.D. program advisor and consent of faculty mentor.

AUD 299. Doctoral Project (3)
Individual investigation and preparation of the doctoral project for the Au.D. degree will be performed under the supervision of an experienced research mentor. **Prerequisite:** advancement to candidacy in the Au.D. program.

Biochemistry

Students wishing to major in biochemistry should refer to programs offered by the Division of Biological Sciences, which has an undergraduate major in biochemistry and cell biology, or the Department of Chemistry and Biochemistry, which has an undergraduate major in biochemistry.

Both the Division of Biological Sciences and the Department of Chemistry and Biochemistry offer graduate programs with specialization in biochemistry. Those programs are described in the biological sciences and chemistry and biochemistry sections of this catalog.

Bioengineering

See Engineering, School of.

Bioinformatics Graduate Program

PROGRAM DIRECTOR:
Shankar Subramaniam
Professor of Bioengineering and Chemistry and Biochemistry
Senior Fellow, San Diego Supercomputer Center

STUDENT AFFAIRS: (858) 822-4948
bioinfo@ucsd.edu
http://www.bioinformatics.ucsd.edu

Participating Faculty

Department of Bioengineering
Shu Chien, Professor
Jeffrey Hasty, Assistant Professor
Xiaohua Huang, Assistant Professor
Trey Ideker, Assistant Professor
Andrew McCulloch, Professor
Bernhard Palsson, Professor
Shankar Subramaniam, Professor

Division of Biological Sciences
Russell Doolittle, Professor Emeritus, Molecular Biology
John Huelsenbeck, Professor, Ecology, Behavior and Evolution
Amy Kiger, Assistant Professor, Cell and Developmental Biology
William Loomis, Professor, Cell and Developmental Biology
Eduardo Macagno, Atkinson Chair, Professor, Cell and Developmental Biology, Dean
William McGinnis, Professor, Cell and Developmental Biology
James Posakony, Professor, Cell and Developmental Biology
Milton Saier, Professor, Molecular Biology
William Schafer, Associate Professor, Neurobiology
Bioinformatics Graduate Program

The Interdisciplinary Bioinformatics Graduate Program draws upon the expertise of affiliated faculty from the Division of Biological Sciences; Departments of Bioengineering, Chemistry and Biochemistry, Computer Science and Engineering, Mathematics, Physics, and Psychiatry; the Biomedical Sciences Graduate Program.

The University of California, San Diego is a premier research institution that has fostered interdisciplinary research since its inception. Specifically, bioengineering (at the interface of biology, medicine, and engineering), neuroscience (at the interface of biology and medicine), biophysics (at the interface of chemistry, biology, and physics), and cognitive science (at the interface of medicine and computer science) are all nationally ranked interdisciplinary graduate research programs. This has led to growth and innovation in many new areas of science and engineering research and the training of exceptionally high caliber of graduate and postdoctoral students.

In recent years, bioinformatics has been identified by the UCSD administration as one of the most important growth areas for the campus. Several recent new faculty hires have been targeted in bioinformatics-related fields. UCSD has also seen a significant increase in the research activity associated with bioinformatics across the traditional disciplines.

Development of the Field and Departmental Strength in the Field

We are witnessing the birth of a new era in biology. The ability to decipher the genetic code of living organisms is dramatically changing our understanding of the natural world and promises to improve substantially the quality of human life. Recent advances in technology have led to the creation of a new interdisciplinary science—genomics. In simple terms, genomics is the reading and understanding of the blueprints for life. Understanding how genomes work requires sophisticated computer-based information handling tools (bioinformatics), and new high throughput technologies for understanding the function of genes on a genome-wide scale (functional genomics).

Bioinformatics characterizes the flow of information in living systems and can be schematically represented by the following:

- Genomes
- Gene Products
- Function
- Pathways/Physiology

The most pressing problem in the post-genome sequencing era will be to understand the integrated functions of thousands of genes. Dealing with this problem will require an interdisciplinary research structure dedicated to developing intellectual and human capital in bioinformatics and genome science. Due to the complexity of this new paradigm in biology, i.e., understanding the organization, evolution, and function of whole genomes rather than single genes, entirely new sets of tools and human resources will be necessary. Thus, future developments in genomics, and the applications that derive from genomics, will be dependent upon the scientific progress at the interface of three major disciplines—biology, engineering, and computer science. In addition to the scientific advances required to understand the functions of genomes, the accelerated growth of modern biology warrants revolutionary changes in academic curricula.

Each department represented in this program participates in various interdisciplinary graduate programs in addition to providing very strong intradisciplinary graduate training. One example is the La Jolla Interfaces in Science program (LJIS), a campus- and mesa-wide fellowship opportunity sponsored by the Burroughs Wellcome Fund. LJIS supports exploration of interfaces between the biological and biomedical sciences and the physical, computer, and mathematical sciences at UCSD, The Scripps Research Institute (TSRI), the Salk Institute, and the San Diego Supercomputer Center.
Bioengineering, consistently ranked among the top three programs nationally by U.S. News and World Report, has several new faculty hires in the area of bioinformatics and computational biology and has identified bioinformatics as a major area of focus.

Biological Sciences, a premier division at UCSD, will spearhead the interdisciplinary, undergraduate specialization in bioinformatics and is planning to hire new faculty in bioinformatics fields.

Biomedical Sciences, an interdisciplinary Ph.D. program, based in the School of Medicine, with tracks in pharmacology, physiology, and cellular and molecular medicine. It will be closely linked to the planned new School of Pharmacy and Pharmaceutical Sciences. In addition to a strong computational biology presence amongst its faculty, there are plans to hire more faculty whose main interests are in computational pharmacogenomics and bioinformatics.

Chemistry and Biochemistry, the home of the Molecular Biophysics Training Grant, is highly recognized for its strong computational biology program with plans to further expand in chemo and bioinformatics areas.

Computer Science and Engineering is unique in having a critical mass of faculty whose research interests focus on biology. These faculty have very strong collaborative research interactions with biology, chemistry, and engineering researchers. CSE is currently recruiting for a senior faculty member with computational biology expertise.

Mathematics has expressed strong interest in building in the area of bioinformatics with emphasis on statistics and probability. This focus is one of fundamental importance for the future of bioinformatics, and the department is committed to both hiring new faculty and launching new courses in statistics pertinent to bioinformatics.

Physics is the home of leaders in the field of computational statistical mechanics applied to biology and provides the foundation for sophisticated modeling of complex biological systems. Physics also plans to recruit new faculty members whose research focus will be on development of information/theory-based models of biological systems.

Admissions Requirements

Admission is in accordance with the general requirements of the graduate division. Candidates will have an interdisciplinary persuasion to work across computers, biology, medicine, and engineering; with an undergraduate degree majoring in any of the disciplines in biological science, physical science, computer science, mathematics, or engineering with a strong background in quantitative sciences and biology.

Admission review will be on a competitive basis based on the applicants' undergraduate track record, Graduate Record Examination General Test (GRE) scores, and other scholastic achievements. Attention will also be given to the motivation and career plans of the applicant candidates. Special attention will be given to the quantitative and analytical section scores of the GRE. The applications will be screened and evaluated by the Admissions Committee with input from all program faculty. In addition, applicants must submit a completed UCSD Application for Graduate Admission (use major code BF75), official transcripts (English translation must accompany official transcript written in other languages), TOEFL scores (required ONLY for all international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English), and three letters of recommendation from individuals who can attest to the academic competence and to the depth of the candidates' interest in pursuing graduate study.

Acceptance letters to incoming students will indicate academic areas in which the Admissions Committee believe the individual is deficient and suggestions for remedial materials to be examined prior to the fall quarter may be provided.

For further admission information and/or acceptance letters to incoming students, students should contact the bioinformatics graduate coordinator via e-mail at bioinfo@ucsd.edu or at (858) 822-4948. You may also visit our Web site at http://www.bioinformatics.ucsd.edu.

Foreign Language Requirement

Competence in one or more foreign languages is encouraged but not required.

Curriculum

Specific fields of emphasis:

- biological data and analysis tools
- sequence analysis
- genomic analysis
- statistical methods for bioinformatics

The Interdisciplinary Bioinformatics Graduate Program is organized around a formal course requirement consisting of three quarters of course work, with enrollment in four four-unit courses each quarter. One four-unit course in each quarter will be a research rotation in the laboratory of a program faculty mentor. The remaining nine courses will include four compulsory core courses and five courses to be chosen from a list of electives approved by the Course Committee.

The electives are intended to maximize the flexibility of the program, but at least one course must be chosen from the biology field and one from the computer science and engineering field. The faculty advisor(s) will pay particular attention to deficits in the background of each student and will assist in making appropriate course choices from the elective fields. Students electing to take any of the undergraduate courses listed in these fields will receive an additional course component in order to make it equivalent to a graduate level course. Students have the option to test out of a field by passing an exam designed by the faculty committee. This exam will fulfill one of the breadth requirements of the program.

It is the general policy of the program to be as adaptable as possible to the needs of the individual student. The faculty advisory committee will work closely with students to identify what might be lacking in a particular curriculum program.

Core Training Courses

- Bioinformatics I: Biological Data and Analysis Tools (Pharm 201)
- Bioinformatics II: Sequence and Structure Analysis—Methods and Applications (BENG 202/CSE 257A)
- Bioinformatics III: Genomic Analysis (BENG 203)
- Bioinformatics IV: Statistical Methods in Bioinformatics (Math 283)

PROGRAM ELECTIVES

(Each student will select from five of the eight elective fields below. One must be from the biology field and one from the computer science field. For each elective, multiple course options currently available are listed).
Elective 1: Biochemistry
BENG 230: Biochemistry
BIBC 100: Structural Biochemistry
CHEM 114A: Biochemical Structure and Function
CHEM 213: Chemistry of Macromolecules
CHEM 218: Macromolecular Biochemistry

Elective 2: Data Structures
CSE 100: Data Structures
CSE 200: Computability and Complexity
Math 176A: Computer Implementation of Data Structures

Elective 3: Algorithms
CSE 101: (also Math 188) Design and Analysis of Algorithms
Math 173: Mathematical Software Scientific Programming

Elective 4: Information Retrieval, Databases and Data Mining
CSE 132A: Database System Principles
CSE 133: Information Retrieval
CSE 254: Machine Learning

Elective 5: Molecular Genetics
BICD 100: Genetics
BIMM 100: Molecular Biology
BIBC 116: Evolution of Genes and Proteins
BGGN 220: Advanced Molecular Biology
BGGN 223: Advanced Genetics

Elective 6: Cell Biology
BICD 110: Cell Biology
BICD 130: Embryos, Genes, and Development
BIOMED 210: Cellular Biology
BIOMED 212: Cellular and Molecular Pharmacology
BGGN 222: Advanced Cell Biology

Elective 7: Physics and Engineering
BENG 253: Biomedical Transport Phenomena
BENG 275: Computational Biomechanics
PHYS 210A: Equilibrium Statistical Mechanics or higher

Elective 8: Mathematics and Statistics
Math 174: Numerical Methods in Science and Engineering
Math 181E: Mathematical Statistics
Math 280A: Probability Theory

EXAMPLE 1–SAMPLE PROGRAM (YEAR 1)
A student with an undergraduate background in biology might make the following course selections:

YEAR 1
FALL WINTER SPRING
Bioinformatics I Bioinformatics II Bioinformatics III
CSE 100 CSE 101
Test out– Chem. 114A Test out– BICD 110
Elective Elective Elective
Research Rotation Research Rotation Research Rotation

EXAMPLE 2–SAMPLE PROGRAM (YEAR 1)
A sample program for a student with an undergraduate degree in computer science and engineering might be structured as follows:

YEAR 1
FALL WINTER SPRING
Bioinformatics I Bioinformatics II Bioinformatics III
CSE 100 CSE 101
Test out– CSE 101 Test out– Math 280A Test out–
Elective Elective Elective
Research Rotation Research Rotation Research Rotation

YEAR 2
All students, regardless of their background and elective track, will be expected to begin working in the laboratory of their choice by the second year. Additionally in Year 2, students will begin preparing for their qualifying examination and will participate in advanced seminar courses and journal clubs identified by program faculty.

End of Year 2 through 5
Spring of Year 2: Qualifying Examination
Spring of Year 3: Advance to Candidacy
End of Year 5: Ph.D.

In summary, in addition to three quarters of research rotations, students must complete the four compulsory bioinformatics core courses; and, either test out of, or select at least five courses from the eight elective areas.

Research Rotations
Each student in the graduate program will participate in three research rotations, at least two of which will be in the laboratory of mentors other than the thesis directors. The purpose of the research rotation will be to train the students in research methodology in specific bioinformatics areas. At the end of the research rotation period, the student will submit a written report that will be evaluated by the faculty mentor in whose laboratory the project was carried out. The report will also be sent to the Qualifying Examination Committee who will take this into consideration in the assessment of the student for admission to candidacy.

Seminars, Informal Courses, Group Meetings, and Symposia
As well as formally structured courses and research rotations, graduate students will have access to seminars, group meetings, and informal sessions during which they will have frequent opportunities to interact closely with faculty mentors and to present their research plans, problems, and findings. In addition to weekly bioinformatics seminars, the graduate program will launch monthly student/faculty meetings at which students can present their research findings and discuss their progress. Graduate students will also be expected to organize an annual symposium where they will invite leading researchers to UCSD for one-day talks and discussions.

Besides the activities noted above, UCSD as a premier research institution has many excellent seminar programs sponsored by each research department and organized research group. Several interdisciplinary programs facilitate research meetings. Notable ones include the La Jolla Interfaces in Sciences (LJIS) Program, the Neurosciences Program, the Molecular Biophysics Program, the Whitaker Institute for Biomedical Engineering, the San Diego Supercomputer Center, and the Structural Genomics Program. LJIS, for example, is an extremely successful interdisciplinary program sponsoring stimulating and state-of-the-art seminars. LJIS recently sponsored a well-received symposium on Post-Genomic Bioinformatics. Many program faculty are involved in several of the areas mentioned above, and the bioinformatics graduate program benefits from all of these additional programs and symposia.
Research Training

Students, upon completion of the appropriate course work, will be given research orientation lectures by the bioinformatics program faculty. Each graduate student will participate in a research experience in the laboratory he or she selects to carry out the research rotation. During this period students will become acquainted with scientific methodology for designing experiments, analyzing the results, organizing the data, conducting research in a responsible manner, preparing oral and poster presentations of research results, and writing scientific papers.

Upon successful completion of the Qualifying Examination (described in the following section), graduate students will choose their research project from the many possibilities offered in the program and begin to work on a research problem with their faculty advisors. In consultation with their mentors, students will formulate the research activity that will lead to their dissertation. Graduate students will have the opportunity to do internships in the local bioinformatics/biotechnology industry if the thesis project is of mutual interest to a corporate sponsor and the thesis advisors. The research program is designed with two key objectives in mind: (1) to provide a truly interdisciplinary research training at the interface area between biology and computer science and engineering; and (2) to address fundamentally strong research problems that will lead to the advancement of the field of bioinformatics. We anticipate that every graduating student will emerge as a highly trained bioinformatician who can either pursue an academic career by choosing optimal postdoctoral research positions or enter the next generation biotechnology/biopharmaceutical industry.

It is our belief that active research under proper tutelage is the best means of training and that the foundations of a good graduate training program rest on an outstanding faculty group, an excellent student body, and a strong and well-coordinated research program. Each of the faculty members in this program has expertise and interests that will contribute importantly to the Interdisciplinary Bioinformatics Graduate Program. Participating faculty have pooled their resources in terms of laboratories, and the knowledge and experience to ensure the success of the program. Through daily contact with faculty and other research colleagues, students will learn to develop critical and creative thinking skills, scientific methodology, and a sound knowledge of research problems.

Second-Year Qualifying Examination

The Bioinformatics Second-Year Qualifying Examination (BQE) is designed in an innovative manner to test the ability of students to think analytically and in an interdisciplinary manner. This method was suggested by students of the program during the first two years after inception. Students are expected to come up with a research problem different from the one he or she may have been working on with a faculty advisor and write a proposal that can be defended at the oral examination to a faculty committee appointed by the chair of BQE. The written document is expected to be in the form of a proposal to NSF or NIH, where the student provides the specific aims of the project, the background for and significance of the problem chosen, some preliminary results and/or observations and specific details on the design of the research. The student is tested on his or her ability to formulate and design the problem as well as on the interdisciplinary nature of the approach. Once the student passes the oral portion of the exam, the student is deemed to be qualified for advancing into Ph.D. thesis research in bioinformatics. The student can schedule this examination at any time of the year, but with two provisions. First, the student should have completed all the required and most of the elective courses assigned, and second, the examination should be taken before the student completes his or her second year in the program. At the time of BQE, the student should have decided on his or her two mentors/research advisors, and should have discussed with them about joining their laboratories and obtaining guaranteed funding for the duration of research as long as he or she is in good academic standing. The BQE Oral Examination Committee will discuss these specifics and other program requirements with the students at the oral examination.

Advancement to Ph.D. Candidacy

Upon completion of formal course requirements, each student will be required to take a written and oral qualifying examination that will admit the student to the candidacy of the Ph.D. program. In advance of the qualifying examination, each student, in consultation with his or her faculty advisor(s), will establish a dissertation committee of five faculty members. The committee will consist of three faculty, at least two of whom are affiliated with the bioinformatics program, and two other faculty from departments affiliated with the program, or who are themselves members of the program faculty. At least two of the five committee members must be from a department other than the committee chair’s department and at least one of these two must be tenured. The thesis advisors will have the major responsibility for the student’s research and dissertation.

It is anticipated that each student will complete the qualifying examination before the end of the second year of his or her tenure, but no later than the end of the third year. The student is expected to join a research laboratory for completing a thesis dissertation no later than the beginning of the second year of tenure.

Thesis and/or Dissertation

Each graduate student in the program will work on a bioinformatics thesis project under dual mentorship of the program faculty. At UCSD, the University Qualifying “Candidacy/Senate” Examination is a requirement for a graduate student to complete satisfactorily, once a thesis project has been decided upon and the student has established a thesis committee in consultation with his or her faculty research advisors. It is deemed after this examination that the student is formally advanced to Ph.D. candidacy and eligible to graduate provided he or she completes his or her dissertation. It is strongly recommended except in special circumstances that the student complete this examination prior to the end of the first three years in the program. The format for this examination is consistent with the highest standards held by peer universities. The student should write a detailed candidacy report in the format of NIH proposals where it is expected that each specific aim will approximately form a chapter in the dissertation. The student should ensure that there is initial progress and the research design and methods are spelled out unambiguously. While the size of this document may vary, it is expected to be at least twenty-five to thirty pages. Any publications-supplementary material may be attached. The student should form the examination committee in consultation with his or her faculty research advisors, and the committee should be in a position to advise the student on his or her dissertation topic. The committee constitution shall be in accordance with the rules of the program and UCSD. The student is advised
to choose a committee whose members will be in the best position to advise and will serve arguably as the toughest, albeit constructive, critics of the research so as to maximize the quality of the dissertation. The report should be interdisciplinary and should have input from both thesis advisors. The format for the report should conform to the Bioinformatics Program requirements and not those of the parent department(s) of the mentor(s)/faculty research advisor(s). It is expected that the student will meet at least annually with the committee to update the members on his or her progress. As a partial fulfillment for the Ph.D. degree, the student will submit a complete dissertation to be evaluated by a doctoral committee chosen by his or her mentors in consultation with the bioinformatics steering committee. The doctoral dissertation will be submitted to each member of the doctoral committee at least four weeks before the final examination. The student will defend his or her final thesis after the committee’s evaluation and will pass or fail depending on the committee’s decision. The entire graduate program is expected to be completed within the proposed timeline of the program.

Final Examination
Bioinformatics graduate students will defend their thesis in a final oral examination. The exam will consist of (1) a presentation of the thesis by the graduate student, (2) questioning by the general audience, and (3) closed door questioning by the thesis committee. The student will be informed of the exam result at the completion of all three parts of the oral examination. The final report of the doctoral committee will be signed by all members of the committee and the final version of the dissertation will conform to the procedures outlined in the publication, Instructions for the Preparation and Submission of Doctoral and Master’s Theses.

Teaching Requirement
Each graduate student admitted to the Ph.D. program in bioinformatics is mandated to serve as a teaching assistant (TA) for at least two quarters. This will aid in preparing the students for a teaching career. In addition, each student will make periodic research presentations to the graduate program students/faculty. Students will also discuss their progress at the annual program meeting to be held each year. It is anticipated that these formal presentations will serve as valuable training in preparing the student for a teaching career.

Bioinformatics graduate students will also participate in additional TA training provided by the Office of Graduate Studies and Research through the Center for Teaching Development (CTD).

Financial Support
It is expected that all students admitted into the Ph.D. program in bioinformatics will receive financial assistance subject to their continuance and performance in the program. The assistance will be provided from (1) departmental financial commitments, (2) university financial commitments, (3) teaching assistantships, (4) research assistantships, and (5) NIH-funded graduate training grant.

Employment Prospects
There is enormous demand from industry for trained professionals in bioinformatics. The pharmaceutical industry, agribusiness, and biotechnology companies often look to academia for people with the appropriate interdisciplinary skills. There is also a great need for academic faculty who have broad, interdisciplinary training, because much of the success of the next generation of undergraduate and graduate students will depend on their ability to master materials in several disciplines. Competition for people skilled in bioinformatics is so intense that salary offers are being driven sky-high and there is concern that the universities—few of which are training students in the field—are rapidly being depleted of the best researchers.

A report from the Working Group of Bio-medical Computing of the NIH recognized the shortage of biologists with appropriate computing expertise and called for strong NIH support of cross-disciplinary education and training.

Ph.D. Degrees with a Specialization in Bioinformatics
Currently, UCSD offers Ph.D. degrees with a specialization in bioinformatics from the participating departments listed in this section. Students are admitted into one of the departmental graduate programs and satisfy the requirements of both the departmental and the interdisciplinary bioinformatics graduate program. If you are interested in the Ph.D. degree with a specialization in bioinformatics, please consult with the Student Affairs Office of the department you are interested in to obtain further information on admission and individual program requirements.

Further Information
For further information please visit our Web site at http://www.bioinformatics.ucsd.edu, or contact the bioinformatics student affairs office at (858) 822-4948, bioinfo@ucsd.edu.

Bioinformatics Undergraduate Program
The explosion in biological knowledge spawned by various genome projects has created entirely new fields and industries, and a need for a new cadre of trained computational biologists who are familiar with biology, mathematics, chemistry, and computer sciences. A new interdisciplinary undergraduate major has been created beginning in fall 2001 leading to B.S. degrees with a major or specialization in bioinformatics. The major involves the Division of Biology and the Departments of Bioengineering, Chemistry and Biochemistry, and Computer Science and Engineering as well as researchers at the San Diego Supercomputer Center. This major is designed to provide career opportunities for B.S. graduates, as well as opportunities for future advanced training at the graduate level. Bioinformatics will have a tremendous impact upon our understanding of cellular functions, protein structure and design, evolutionary biology, regulatory networks, and the molecular basis of disease.

Admissions
Students wishing to pursue a study in bioinformatics may select from majors offered by the Division of Biology, or the Departments of Bioengineering, Chemistry and Biochemistry, and Computer Science and Engineering. A major in bioinformatics is available within each of the listed departments and divisions. All the participating departments have a substantially common curriculum, but each has its own emphasis through its electives, and there are some differences in the core requirements. There is a limited number of seats available campuswide and admission into the bioinformatics premajor and major will be based on academic excellence and preparation as measured by GPA and a written
statement. Currently, the combined number of premajors is limited to 75 and the number of majors is limited to 50. These limits may change from time to time. The major, its specific requirements, and the screening criteria are listed in the corresponding catalog sections of the Division of Biology, Department of Bioengineering, Department of Chemistry and Biochemistry, and Department of Computer Science and Engineering.

Biological Sciences, Division of

STUDENT AFFAIRS OFFICE
1128 Pacific Hall
(858) 534-0557
For undergraduate questions, e-mail: question@biology.ucsd.edu

FINANCIAL AND ADMINISTRATIVE OFFICES
1610 Urey Hall, Revelle College
http://www-biology.ucsd.edu/

Professors
Tim Baker, Ph.D.
Darwin K. Berg, Ph.D.
Ethan Bier, Ph.D.
Jack W. Bradbury, Ph.D., Emeritus
Steve Briggs, Ph.D.
Stuart Brody, Ph.D.
Ted J. Case, Ph.D., Emeritus
Gert Cauwenberghs, Ph.D.
Lin Chao, Ph.D., Chair, Ecology, Behavior, and Evolution Section
Andrew Chisholm, Ph.D.
Maarten J. Chrispeels, Ph.D.
Nigel M. Crawford, Ph.D.
Russell F. Doolittle, Ph.D., Research Professor
Richard W. Dutton, Ph.D., Emeritus
Richard A. Firtel, Ph.D.
Douglas J. Forbes, Ph.D.
E. Peter Geiduschek, Ph.D., Research Professor
Anirvan Ghosh, Ph.D.
Michael E. Gilpin, Ph.D., Emeritus
Melvin H. Green, Ph.D., Emeritus
Randolph Y. Hampton, Ph.D., Academic Senate Distinguished Teaching Award, Chancellor’s Associates Award for Excellence in Teaching
Stephen M. Hedrick, Ph.D.
Donald R. Helinski, Ph.D., Emeritus
John J. Holland, Ph.D., Emeritus
Yishi Jin, Ph.D.
Randall S. Johnson, Ph.D.
James T. Kadonaga, Ph.D., Chair, Molecular Biology Section
William B. Kristan, Jr., Ph.D., Chair, Neurobiology Section
Dan L. Lindsley, Ph.D., Emeritus
William F. Loomis, Jr., Ph.D.
Eduardo R. Macagno, Ph.D., Richard C. Atkinson Endowed Chair
Vivek Malhotra, Ph.D.
William J. McGinnis, Ph.D.
Stanley E. Mills, Ph.D., Emeritus
S. Mauricio Montal, M.D., Ph.D.
Cornelis Murre, Ph.D.
Xuong Nguyen-Huu, Ph.D., Emeritus
Lorraine Pilius, Ph.D.
James W. Posakony, Ph.D.
Paul A. Price, Ph.D., Academic Senate Distinguished Teaching Award
Kaustuv Roy, Ph.D.
Milton H. Saier, Ph.D.
Immo E. Scheffler, Ph.D., Academic Senate Distinguished Teaching Award, Chancellor’s Associates Award for Excellence in Teaching, Paul D. Saltman Professor of Science Endowed Chair
Robert J. Schmidt, Ph.D.
Julian I. Schroeder, Ph.D., Novartis Endowed Chair in Plant Sciences
Terrence J. Sejnowski, Ph.D.
Allen I. Selverston, Ph.D., Emeritus
S. Jonathan Singer, Ph.D., Emeritus/University Professor Emeritus
Douglas W. Smith, Ph.D., Emeritus
Nicholas C. Spitzker, Ph.D.
Suresh Subramani, Ph.D.
Kiyoteru Tokuyasu, Ph.D., Emeritus
Sandra L. Vehrencamp, Ph.D., Emeritus
Steven A. Wasserman, Ph.D.
Christopher J. Willis, Ph.D.
Flossie Wong-Staal, Ph.D., Emeritus
David S. Woodruff, Ph.D.
Michael P. Yaffe, Ph.D.
Martin F. Yanofsky, Ph.D., Chair, Cell and Developmental Biology Section
Charles S. Zuker, Ph.D.

Associate Professors
Raffi V. Aroian, Ph.D.
Willie C. Brown, Ph.D., Emeritus, Academic Senate Career Distinguished Teaching Award
Michael David, Ph.D.
Daniel E. Feldman, Ph.D.
Marla B. Feller, Ph.D.
P.A.G. Fortes, M.D., Ph.D.
Partho Ghosh, Ph.D.
Joshua R. Kohn, Ph.D.
James C. Nieh, Ph.D.
Ramón Piñón, Ph.D., Emeritus
Kit J. Pogliano, Ph.D.
Percy J. Russell, Ph.D., Emeritus
Massimo Scanziani, Ph.D.
Laurie G. Smith, Ph.D.
Yang Xu, Ph.D.
Yimin Zou, Ph.D.

Assistant Professors
Eric Allen, Ph.D.
Peter Andolfatto, Ph.D.
Doris Bachtrog, Ph.D.
Lisa Boulanger, Ph.D.
Andana Goldrath, Ph.D.
David Holway, Ph.D.
Colin Jamora, Ph.D.
Walter Jetz, Ph.D.
Tracy Johnson, Ph.D.
Amy Kiger, Ph.D.
Karen E. Marchetti, Ph.D.
Maho Niwa, Ph.D.
Amy Pasquinelli, Ph.D.
Gentry Patrick, Ph.D.
Joseph A. Pogliano, Ph.D.
Pamela Reinagel, Ph.D.
Yunde Zhao, Ph.D.

Senior Lecturer with Security of Employment
Gabriele K. Wienhausen, Ph.D., Provost, Sixth College; Academic Senate Distinguished Teaching Award; Chancellor’s Associates Faculty Award for Excellence in Teaching

Lecturers with Security of Employment
Kathleen French, Ph.D.

Lecturers with Potential for Security of Employment
Jon Christopher Armour, M.D., Ph.D.
Madeline Butler, Ph.D.
Lakshmi Chilukuri, Ph.D.
Aaron Coleman, Ph.D.
Jayant Ghiara, Ph.D.
Stephanie Mel, Ph.D.
Adjunct Faculty
Seunghyon Choe, Ph.D.
Joanne Chory, Ph.D.
Joseph Ecker, Ph.D.
Scott Emr, Ph.D.
Ronald M. Evans, Ph.D.
Fred Gage, Ph.D.
Martin Haas, Ph.D.
Anthony R. Hunter, Ph.D.
Christopher Kintner, Ph.D.
Mitchell Kronenberg, Ph.D.
Nathanial Landau, Ph.D.
Kuo-Fen Lee, Ph.D.
Marc R. Montminy, Ph.D.
Joseph Noel, Ph.D.
Dennis D.M. O’Leary, Ph.D.
Samuel Pfaff, Ph.D.
Michael Geoffrey Rosenfeld, M.D.
Oliver A. Ryder, Ph.D.
Moselio Schaechter, Ph.D.
William Schaffer, Ph.D.
Bartholomew M. Sefton, Ph.D.
Deborah Spector, Ph.D.
John B. Thomas, Ph.D.
James Umen, Ph.D.
Wylie W. Vale, Ph.D.
Inder Verma, Ph.D.
Jeffrey Wang, Ph.D.
Dennis O’Leary, Ph.D.
Carl Ware, Ph.D.
Bartholomew M. Sefton, Ph.D.
William Schaffer, Ph.D.

Division of Biological Sciences
Required Review of Student Progress

Freshmen
Entering students who have indicated the desire to major in biology will be admitted directly to the biology major of their choice. To remain in good standing the student must complete a minimum of eight of the following courses or equivalent during their first five quarters at UCSD:

- BILD 1, BILD 2, BILD 3
- Chemistry 6A-B-C
- Math 10A-20A, 10B-20B, 10C-11-20C
- Physics 1A-2A, 1B-2B, 1C-2C
- Chemistry 140A-141A, 140B-141B
- BICD 100
- BIBC 103

A student’s best six grades from the eight courses listed will be used to calculate a GPA which must be at least a 2.5. If a student fails to complete the required courses, or to obtain the required minimum GPA, they will be dismissed from the biology major.

(Note: These are the minimal requirements to remain in the major, and do not satisfy all of the lower-division requirements of any biology major. Please consult the section regarding your particular major to ensure that you satisfy all lower-division and upper-division requirements.)

Continuing Students
Continuing UCSD students who wish to transfer into the major will be evaluated under the rules that were in effect the year in which they entered the university.

Transfer Students
Entering students who have indicated the desire to major in biology (with the exception of bioinformatics) will be admitted directly to the biology major of their choice. To remain in good standing the student must have completed eight of the following courses, or course equivalency, prior to transfer to UCSD:

- BILD 1, BILD 2, BILD 3
- Chemistry 6A-B-C
- Math 10A-20A, 10B-20B, 10C-11-20C
- Physics 1A-2A, 1B-2B, 1C-2C
- Chemistry 140A-141A, 140B-141B
- BICD 100
- BIBC 103

A student’s best six grades from the eight courses listed will be used to calculate a GPA which must be at least a 2.5. If a student fails to complete the required courses, or to obtain the required minimum GPA, they will be dismissed from the biology major. Transfer students who do not meet these requirements prior to transfer will be allowed a maximum of three quarters to satisfy any unmet requirements. Transfer students who do not meet this requirement at their community college may petition the Division of Biological Sciences to extend this requirement.

Exceptions
The Division of Biological Sciences requires students to remain in the major with less than the required GPA or course work, and the success of such petitions will be evaluated based upon the academic promise that is not reflected in the GPA. Exceptions might also be made to accommodate students who showed exceptional promise in laboratory experimentation, or students who had overcome extraordinary hardship while taking the required courses.

Division of Biological Sciences Laboratory Requirement

Exceptions
The Division of Biological Sciences requires students in all biology majors, with the exception of bioinformatics, to take one biology lab before the end of the sophomore year.

Continuing Students
Continuing UCSD students who wish to transfer into the major will be evaluated under the rules that were in effect the year in which they entered the university.

Transfer Students
The Division of Biological Sciences requires students in all biology majors, with the exception of bioinformatics, to take one biology lab before the end of the sophomore year. Transfer students may petition to have community college course work cover the lab requirement. Transfer students whose community college laboratory course is determined to be equivalent in content to an existing biology lab will have completed the requirement upon transfer. Transfer students are therefore strongly encouraged to complete this requirement at their community college.

Residency Requirement
To receive a bachelor of science degree in biology from UCSD, all biology majors, including transfer students, must complete at least forty-eight or more units of upper-division course work within the major.
To receive a bachelor of science degree in biology from UCSD, all students must complete at least nine upper-division biology courses (each course must be at least four units) in the Division of Biological Sciences while officially enrolled at UCSD. Students participating in the Education Abroad Program (EAP), and courses at other UC campuses, may petition up to three of these courses to count toward their residency minima. Biology courses completed through the UC Extension program (concurrent enrollment) will not be counted toward this residency requirement.

Satisfactory Progress

All students admitted into a biology major must maintain satisfactory progress in order to remain in a biology program. If the GPA in biology courses for such a student falls below 2.0, he or she will be placed on probation during the quarter after the average fell below the line. If the GPA is not brought above the 2.0 level during the quarter on probation, the student will be dropped from the major.

Prerequisites

All students are expected to have completed all prerequisites prior to enrolling in any biology course. Please visit the biology student affairs office or consult our web page for the most current information. Prerequisites are enforced in all courses and must be taken for a letter grade. Students who have satisfied the prerequisites of a class at another college may need to be pre-authorized to enroll. Please come to the biology student affairs office (1128 Pacific Hall) BEFORE your priority enrollment to be pre-authorized.

Concurrent Enrollment in Biology Courses

For more information on concurrent enrollment, please call (858) 534-3400 or e-mail concurrent@ucsd.edu.

Enrollment process for biology courses:
- Select the biology course(s) you wish to enroll in. Be sure that you’ve completed the prerequisites.
- Attend class starting the first day of the quarter and continue attending. During the beginning of the third week, obtain the instructor’s signature on the concurrent enrollment add card (available at the UCSD Extension Student Services office). Please note that instructors are not required to admit you to the course, and that enrollment is on a space-available basis.
- If you have a signed add card, take it to Biology Student Affairs for a department stamp. Space in the course will be verified at this time. Please note that even if the instructor has signed the add card, if space is not available, the card will not be stamped.
- Return your completed UCSD concurrent enrollment card to the Extension Student Services office with your enrollment fee. Submit one card per class. Concurrent enrollment is closed after the third week of the quarter.
- Note: Students enrolling in a biology course will not incur a $50 late fee if enrolling during the third week.

Readmission to a Biology Major

Students who were absent for six quarters or more, and who have been readmitted to UCSD, must adhere to the major requirements in effect at the time of readmission or those subsequently established.

Readmitted students may petition to follow the major requirements in effect at the time they left UCSD. These petitions will be reviewed on a case-by-case basis.

Grade Requirements for the Majors

The minimum GPA requirement (for both the major and overall UC) for graduation is 2.0. D grades in courses required for the major are acceptable, providing that the student’s major GPA and overall UC GPA is at least 2.0. Students who received D and/or F grades should contact one of the Division of Biological Sciences undergraduate advisors to determine the effect of such grades on their GPAs. The biology major GPA calculation is based on upper-division courses required for the major. (Upper-division courses from other UCS, other UCSD departments, and EAP which have been approved via petition to count toward the major are counted into the major GPA. Other transfer courses do not count toward the UC or major GPA.) All courses, required for any of the eight majors, must be taken for a letter grade with the exception of BISP 195, 196, 197, and 199.

Students with Transfer Credit

All courses (including prerequisites) taken at other institutions must be reviewed by the Division of Biological Sciences before they can be applied toward any major requirement. Students must obtain approval from the Biology Student Affairs office prior to taking courses outside of UCSD (for example, students wishing to take a Chem. 6BL equivalent at another institution must consult with Biology Student Affairs before enrolling in the substitute course). In addition, any student wishing to satisfy a major requirement with upper-division transfer work (with the exception of organic chemistry) must first submit an Undergraduate Student Petition. Contact Biology Student Affairs (1128 Pacific Hall) for specific information regarding transfer documentation and petition procedures.

The Division of Biological Sciences requires that students take the full content equivalencies to UCSD series in math, chemistry, and physics. The Division of Biological Sciences will follow the respective department’s recommendations for equivalency. In some cases, attaining full content equivalency will require a student to complete more than two semesters in a subject. If the courses a student took do not provide full content equivalency, s/he will be required to complete the lacking material at UCSD or at a community college where the material is equivalent.

Programs Abroad

The Division of Biological Sciences strongly encourages students to participate in the Education Abroad Program (EAP) or the UCSD Opportunities Abroad Program (OAP). It is very important that students who plan to participate in the UC Education Abroad Program (including the Costa Rica Tropical Ecology program) or the UCSD Opportunities Abroad Program obtain the name of a faculty advisor from the Biology Student Affairs Office in order to discuss the proposed program of study. For most EAP programs, it is strongly recommended that biology majors complete biochemistry (BIBC 100 or 102) and genetics (BICD 100) and their prerequisites before going abroad. For more information, please visit http://programsabroad.ucsd.edu.

Special Studies Courses

For information on requirements and application procedures for special studies courses,
students should go to the Biology Student Affairs Office (1128 Pacific Hall) or visit the Web site at http://biology.ucsd.edu/undergrad/BISP_info.html

How to apply special studies courses toward your biology major:

• Two quarters of BISP 194 (topics must vary) may count as one upper-division elective for any biology major.
• One quarter of BISP 195 may count as an upper-division elective for any biology major.
• One quarter of BISP 196, 197, or 199 may count as an upper division elective for any biology major.
• Biochemistry/Cell Biology, General Biology, Human Biology, and Physiology/Neuroscience
The second consecutive quarter of BISP 196 or 199, taken in the same research laboratory, may be petitioned to substitute for one of the upper-division elective lab requirements. The second quarter of BISP 196 or 199 must be complete prior to petitioning. Students are required to submit an undergraduate petition and summary of research to Biology Student Affairs.

• Microbiology, Molecular Biology, Ecology/Behavior, and Evolution
The second consecutive quarter of BISP 196 or 199, taken in the same research laboratory, may be petitioned to substitute for one of the upper-division required laboratory courses. The content of the BISP 196 or 199 must be equivalent to the content covered in the required lab in order to be approved. The second quarter of BISP 196 or 199 must be complete prior to petitioning. Students are required to submit an undergraduate petition and summary of research to Biology Student Affairs.

• Subsequent quarters of BISP 195, 196, 197, or 199 may be applied toward college and university requirements.

Note: Students who are approved to use a BISP 196 or 199 to satisfy a lab requirement cannot also use BISP 196, 197, or 199 to satisfy an upper-division elective requirement.

BISP 194—Advanced Topics in Modern Biology

Advanced Topics in Modern Biology is a two-unit topics course taught at a high level and open to upper-division students only. The course content will vary. Students should consult the quarterly Schedule of Classes for topics and descriptions.

BISP 195—Introduction to Teaching in Biology

Being a teaching assistant is an important task and can provide students with experience and faculty contact which can be valuable when applying for graduate school. Students who are interested in being an undergraduate tutor should have received a strong grade in the course which they want to teach, have an overall GPA of at least 3.0, and have taken at least ninety total units. Students should apply very early in the quarter prior to the quarter they wish to teach. Applications will be accepted beginning the second week of the quarter prior to the quarter in which the student wishes to teach. All undergraduate tutor applications are online and may be accessed through the biology Web site, http://www.biology.ucsd.edu/undergrad/index.html.

BISP 196—Honors Thesis in Biological Sciences

Students in any one of the eight biology major programs who have a 3.7 grade-point average or above in upper-division science courses, the biology major, and overall UC at the end of their junior year are eligible to undertake the honors thesis. This program covers the senior year of undergraduate study and involves a maximum of twelve units of senior thesis research (BISP 196) taken in addition to the major requirements for graduation. (Four units of senior thesis research BISP 196 are to be taken during three consecutive quarters.) Research is conducted under the supervision of a faculty member of the Division of Biological Sciences only and cannot be performed in the research labs of other departments such as the School of Medicine, SIO, etc. If there are any questions as to which faculty members are eligible, students should consult with Biology Student Affairs. The research will culminate in a senior thesis and an oral report (see below). Students who complete the program satisfactorily will have “Distinction in Biology” recorded on their transcript. Students who fail to make satisfactory progress will be advised to withdraw from the program. Students may also withdraw voluntarily from the program. Grades for BISP 196 are P or NP only.

APPLICATION TO THE HONORS THESIS PROGRAM

1. Students interested in the program who are eligible as of the end of the spring quarter of their junior year (the fourth quarter prior to graduation) need to find a Division of Biological Sciences faculty member willing to act in the capacity of thesis advisor and inform the Biology Student Affairs Office of their intent.

2. After an advisor is selected, the student and the advisor should complete the Special Studies application form and research plan (available on the biology Web site).

3. The application form and research plan should then be submitted to the Biology Student Affairs Office. The deadline for submitting this form is the end of the eighth week of the quarter prior to the quarter the research will begin.

4. The application will be submitted to the honors thesis coordinator after eligibility has been determined.

5. If the student is approved for admission to the program, he or she will then be authorized to register for BISP 196.

Entry into the second and third quarter of the program will require submission to the honors thesis advisor of a written report in which the student summarizes the data obtained in the previous quarters. A brief oral interview with the student on this report can also be expected. If the progress made appears reasonable for an honors student, then the 196 petition will be signed. If not, the student may be dropped from the program. Completion of the program will require a final written report by the student at the end of the third quarter in addition to an oral presentation in the middle of the quarter to a suitable group of faculty and students, including the honors thesis advisor.

BISP 197—Biotechnology Internship Program

The Division of Biological Sciences, in collaboration with local biotech industries, created Biotechnology Internship Opportunities (BIO). The mission of BIO is to provide biology majors with an opportunity to participate in research in an industrial setting. We believe that working as an intern in the private sector will enrich a student’s educational experience. Students will gain valuable insight into the relationship between theory and practice, and hence, a better understanding of the relevance of course work in their major. Most importantly, students will learn the importance of outstanding oral and written communication skills. This course may be
counted as one of the upper-division electives for a biology major, providing that no other special studies courses have already been counted toward the major. Information on BIO may be accessed through the undergraduate biology Web site, http://biointern.ucsd.edu.

To enroll in BISP 197, students must have accrued at least ninety-quarter units with an overall UC GPA of at least 3.0.

There will be one weekly scheduled meeting lasting up to 1.5 hours. Attendance and participation at these meetings are mandatory and will affect the grade a student receives. There will be three formal oral and three written presentations, interspersed with informal discussions of progress achieved. All written reports must be done with the input of the industry and must have that mentor’s signature. Grading will be based on the formal and informal written and oral presentations, as well as input from the industry mentor.

BISP 199—Individual Research for Undergraduates

Individual Research BISP 199 is intended to provide interested and qualified biology students with an opportunity to work closely with faculty and professionals in their chosen field and can be a valuable contribution to the student’s preparation for graduate school or career goals. To enroll in BISP 199, students must have accrued at least ninety-quarter units with an overall UC GPA of at least 3.0. Students may select for their instructor any professor at UCSD, but the BISP 199 application must be submitted for approval to the Division of Biological Sciences. The deadline to apply for BISP 199 is the eighth week of the quarter prior to the quarter in which the research will begin.

AIP 197—Academic Internship Program

Because the undergraduate research conducted through the Academic Internship Program is generally done at a site not affiliated with the UCSD Division of Biological Sciences, students who wish to request that an AIP 197 course be counted toward their major must submit an Undergraduate Petition for their request. Biology faculty will review the student’s research and ascertain the project’s compatibility with the student’s academic goals and major requirements. Please be advised that an AIP 197 may not be approved toward major requirements. If an AIP 197 course is approved for the student’s major, no other special studies course (BISP 196, 197, or 199) can be used toward the major. For further information, please see http://aip.ucsd.edu.

Major Programs in Biological Sciences

For more information, please see biology’s Web page, http://www-biology.ucsd.edu/.

The UCSD Division of Biological Sciences is structured around the different levels of biological organization—biochemical, cellular, physiological, and ecological. The research and teaching of the division emphasize the fundamentally important processes that occur at each of these levels. With a solid foundation in these processes future training and study in any area of biology is possible, from plant breeding to genetic counseling, from medical microbiology to ecological epidemiology, from veterinary science to cancer research. The UCSD campus is situated among some of the finest research institutions in the world. The Division of Biological Sciences is fortunate in having close ties with the Scripps Institution of Oceanography, the Salk Institute of Biological Studies, and the Scripps Clinic and Research Foundation, all of which open interesting avenues for motivated students.

The division offers eight different major programs, each of which provides an excellent background for future graduate or professional study. They are (1) biochemistry and cell biology, (2) biology with a specialization in bioinformatics, (3) ecology, behavior, and evolution, (4) general biology, (5) human biology, (6) microbiology, (7) molecular biology, and (8) physiology and neuroscience. The requirements of each of the majors are designed to meet the needs of a different group of students. These requirements are quite concordant, reflecting the division’s philosophy that familiarity with certain basic aspects of the subject is fundamental to all specialized understanding. Bachelor of science degrees granted in each of these majors will be so designated.

The Student Affairs Office (1128 Pacific Hall) administers the undergraduate biology program for all six colleges. For complete details regarding policies and procedures pertaining to the biology programs, please contact Biology Student Affairs.

Biochemistry and Cell Biology Major

Please refer to the “Division of Biological Sciences Required Review of Student Progress” notice detailed earlier in the Division of Biological Sciences section of this catalog.

This major is designed to provide students with the fundamental courses required for entry into a school of medicine or into postgraduate training in a wide variety of areas of biological and biomedical sciences: biochemistry, biophysics, genetics, molecular biology, cell biology, developmental biology, microbiology, virology, human biology (physiology, metabolism, genetic disorders, cancer biology, pharmacology, and others). The emphasis is on basic principles which help us understand those processes unique to living organisms at the molecular level.

The program includes two required upper-division biology laboratory courses to provide practical experience with modern techniques and useful technology for those seeking positions as lab technicians in clinical and basic research laboratories. The opportunity to select four elective courses allows students either to seek a still broader background in a variety of biology courses or to begin specialization in a chosen field of study.

Lower-Division Requirements

BILD 1 and 3 (Note: BILD 2 is not required, but is a prerequisite for many upper-division courses.)
Chemistry 6A-B-C and 6BL
Mathematics 10A-B, and 11 or 10C or 20A-B-C
Physics 1A/1AL, 1B/1BL, 1C/1CL or 2A-B-C, and one lab

Upper-Division Requirements

1. Organic Chemistry (Chemistry 140A and 140B or 141A and 141B)
2. Organic Chemistry (Chemistry 143A) or Physical Chemistry (Chemistry 105A)
3. Structural Biochemistry (BIBC 100) or Physical Biochemistry (BIBC 110) or Physical Chemistry (Chemistry 126)
4. Metabolic Biochemistry (BIBC 102)
5. Biochemical Techniques (BIBC 103)
6. Genetics (BICD 100)
7. Cell Biology (BICD 110)
8. Molecular Biology (BIMM 100)
9. Capstone Course: (one of the following seven courses) BIBC 104 (Biochemistry and Biotechnology of Plants), BIBC 110 (Physical Biochemistry), BIBC 120 (Nutrition), BIBC 130 (Marine Biochemistry), BICD 118 (Pathways of Intracellular Protein Trafficking and Compartmentation), BIMM 118 (Pharmacology), BIMM 130 (Microbial Biochemistry)
10. One upper-division biology lab to be chosen from the following: BIBC 105, BICD 101, 111, 123, 131, 133, 145, BIMM 101, 103, 121, 127, 141, BIPN 105, 145, or Chemistry 143C.
11. Four additional upper-division biology courses (each course must be at least four units) taken through the UCSD Division of Biological Sciences are required.

Note: For more information on how the BISP 194, 195, 196, 197, or 199 can count toward major requirements, please see the previous section “Special Studies Courses.”

The following courses offered by the Department of Chemistry and Biochemistry are recommended as electives for the biochemistry and cell biology major: Chemistry 115, 116, 122, 124, 126, 127. Please note that these courses will not count towards the Division of Biological Sciences residency requirement and must be petitioned to apply towards major requirements.

Bioinformatics Specialization in the Division of Biological Sciences

This major offers a rigorous, interdisciplinary training in the new and rapidly-evolving field of bioinformatics within the Division of Biological Sciences. Bioinformatics refers to advanced computational and experimental methods that model the flow of information (genetic, metabolic, and regulatory) in living systems to provide an integrated understanding of the systems properties of model organisms. For a detailed understanding of the large amount of qualitative and quantitative data that is currently accruing, the bioinformatician of the future must have a substantial mastery in biology, chemistry, mathematics, physics, and computer sciences. This interdisciplinary specialization will be offered by three other departments (computer science and engineering, chemistry, and bioengineering), each with their own set of requirements and electives. The program offered by the Division of Biological Sciences is aimed at a student interested in applying, and to some extent developing, tools of bioinformatics for the study of biological systems. Students will receive a B.S. degree in Biology with a Specialization in Bioinformatics. This degree will prepare students for graduate studies in biological and biomedical sciences, or provide excellent opportunities in the biomedical, pharmaceutical, biotechnology, and bioinformatics industries.

Admission

Because the number of pre-majors and majors will be limited as described in the section on bioinformatics, student demand may exceed capacity. Therefore, admission to the specialization is not guaranteed and will be based on academic excellence, as described below. Since bioinformatics is an interdisciplinary major, a steering committee involving faculty from the participating departments will select among the best candidates applying and recommended through each department, while insuring active participation of the departments and divisions offering the major.

Freshmen

Entering freshmen will go through a two-stage process to be admitted to a bioinformatics program. Students should enter the division as a declared major in some subdiscipline offered by the division (e.g., molecular biology, general biology, etc.) Freshmen can choose to apply for a bioinformatics pre-major after completing the following courses by the end of their first year. Admission will be based primarily on the GPA in the following courses, but also on a written statement, completion of the other listed requirements and overall academic excellence:

- BILD 1
 - Chemistry 6A
 - Math 20B
 - Math 20C

Pre-bioinformatics majors can then choose to apply for admission to the bioinformatics major after completing CSE 11 and CSE 12 by the end of their sophomore year. Admission to the bioinformatics major within each department or division will be based on the GPA in all six screening courses. The final decision on admission to the pre-major and major will be made by the bioinformatics Steering Committee, in consultation with the departments.

If a student applies for admission to the bioinformatics specialization but is not selected after completion of the screening courses, that student will be eligible to remain in the specialization or major to which they were admitted initially. Students with undeclared majors may also apply to the bioinformatics specialization, but in the event they are not selected for this competitive major, they may choose any other major in biology as long as they satisfy the requirements of that major.

Continuing Students

Students who have not declared the bioinformatics pre-major, but who have completed the screening courses, may apply for entry to a bioinformatics program after six quarters (the end of the sophomore year). They will be admitted on a space-available basis, after pre-majors have been screened for admission to the major.

Transfer Students

Applicants seeking admission to a bioinformatics major must have completed the following courses with a strong GPA that is competitive with that of UCSD students applying for entry into this specialization:

- a year of calculus (equivalent to Math 20A-B-C)
- a year of general chemistry, with lab (equivalent to Chem 6A-B-C and 6BL)
- the highest level programming course offered at the community college (equivalent to CSE 11 and 12)
- at least one semester of biology (equivalent to BILD 1 and BILD 2)

Those who have not completed the equivalent courses may be admitted as pre-majors, using the same criteria that apply for UCSD students, and will be allowed a maximum of three quarters to complete pre-major requirements. Transfer students are therefore encouraged to complete these requirements at the community college.

If a student applies for admission to a bioinformatics specialization but is not selected after completion of the screening courses, that student will remain eligible for specialization or major to which they were originally admitted.
Lower-Division Requirements

Mathematics 20A-B-C, 20F and Mathematics 15B or CSE 21
Chemistry 6A-B-C and lab
Physics 2A-B-C
BILD 1 and 2
BILD 94
CSE 11, CSE 12 (Students may take the slower paced version, CSE 8A + CSE 8B, instead of CSE 11.)

Upper-Division Requirements

1. Organic Chemistry (Chemistry 140A-B)
2. Advanced Data Structure (CSE 100 or Mathematics 176)
3. Design and Analysis of Algorithms (CSE 101 or Mathematics 188)
4. Metabolic Biochemistry (BIBC 102) or Biochemical Energetics and Metabolism (Chemistry 114B)
5. Biochemical Techniques (BIBC 103)
6. Physical Biochemistry (BIBC 110) or Physical Chemistry (Chemistry 127)
7. Genetics (BICD 100)
8. Cell Biology (BICD 110)
9. Molecular Biology (BIMM 100) or Molecular and Cellular Biochemistry (Chemistry 114D)
10. Recombinant DNA Lab (BIMM 101)
11. Molecular Sequence Analysis (BIMM 181)
12. Biological Databases (BIMM 182)
13. Applied Genomic Technologies (BENG 183)
14. Computational Molecular Biology (BIMM 184)
15. Bioinformatics Lab (BIMM 185)
16. Probability and Statistics (Math 186)
17. Three additional upper-division biology courses (each course must be at least four units) taken through the UCSD Division of Biological Sciences are required.

Ecology, Behavior and Evolution Major

Please refer to the “Division of Biological Sciences Required Review of Student Progress” notice detailed earlier in the Division of Biological Sciences section of this catalog.

This major includes the fields of population biology, ecology, conservation biology, animal behavior, population genetics, biogeography, and evolution. These fields have in common a focus on evolutionary processes and whole organisms in relation to each other and to their environments. Research careers in ecology, behavior, and evolution can be found in universities, government agencies, and the biotechnology industry. More applied careers for ecologists are equally varied: recent graduates now work in forestry and wildlife management, as ecological consultants for U.S. and foreign governments and private industry, as teachers, or in new fields such as ecological medicine and epidemiology, environmental design and planning, and conservation biology. Because organismal biology spans such a wide variety of topics, this major has been designed to provide the basic fundamentals while allowing maximum flexibility within the general topic areas.

Lower-Division Requirements

BILD 1, 2, and 3
Chemistry 6A-B-C. Laboratories in chemistry are not required.
Mathematics 10A-B, 11 or 10C or 20A-B-C
Physics 1A/1AL, 1B/1BL, 1C/1CL or 2A-B-C

Upper-Division Requirements

1. Genetics (BICD 100)
2. Biometry (BIEB 100)
 This course is a prerequisite for several core courses and should be taken in the first or second year.
3. Introductory Ecology (BIEB 102)
4. Evolution (BIEB 150)
5. Seven core courses to be chosen from BIEB 121-180 are required. At least two of these courses must be laboratory or field courses (BIEB 121, 131, 165, 167, and/or 179). Laboratory courses may be taken concurrently with the prerequisite lecture course if Biometry (BIEB 100) has been taken. Note that some of the courses may not be offered every year. For that reason, it is recommended that students take as many required courses as possible when the courses are offered. Students who take the intensive EAP field courses in tropical biology offered in Costa Rica or marine biology in Australia will receive credit toward their degree. All EAP courses must be petitioned upon return. Consult the Education Abroad Program Office at the UCSD International Center for details.
6. Three additional upper-division courses (each course must be at least four units) in biology or other departments are required. EBE-related courses are offered in mathematics, chemistry, environmental systems, earth sciences, economics, biological anthropology, urban studies (GIS), some other social science departments, and in the graduate programs at SIO (marine biology and oceanography) and IR/PS. Students are required to meet the Division of Biological Sciences residency requirement. Courses to be completed outside of the Division of Biological Sciences must be petitioned (prior to enrollment) to satisfy this requirement. EBE students whose graduate education or careers require biochemistry should take Organic Chemistry 140A, 140B, and Metabolic Biochemistry (BIBC 102) to satisfy this three-course requirement.

Note: For more information on how the BISP 194, 195, 196, 197, or 199 can count toward major requirements, please see the previous section “Special Studies Courses.”

General Biology Major

Please refer to the “Division of Biological Sciences Required Review of Student Progress” notice detailed earlier in the Division of Biological Sciences section of this catalog.

This program allows the most diversified exposure to biology of any of the majors offered by the Division of Biological Sciences. It is designed for students with broad interests who do not wish to be constrained by the specialized requirements of the other majors and who desire maximum freedom to pursue their particular educational goals.

Lower-Division Requirements

BILD 1, 2, and 3
Chemistry 6A-B-C and BL
Mathematics 10A-B, and 11 or 10C or 20A-B-C
Physics 1A/1AL, 1B/1BL, 1C/1CL or 2A-B-C and one lab
Upper-Division Requirements

1. Organic Chemistry (Chemistry 140A and 140B or 141A and 141B)
2. Metabolic Biochemistry (BIBC 102)
3. Genetics (BICD 100)
4. Two upper-division biology labs to be chosen from the following: BIBC 103, 105, BICD 101, 111, 123, 131, 133, 145, BIEB 121, 165, 167, 179, BIMM 101, 103, 121, 127, BIPN 105, or 145.
5. Seven additional upper-division biology courses (each course must be at least four units) taken through the UCSD Division of Biological Sciences are required.

Note: For more information on how the BISP 194, 195, 196, 197, or 199 can count toward major requirements, please see the previous section "Special Studies Courses."

Although students are free to design upper-division curricula which meet their individual educational goals, Molecular Biology (BIMM 100) and Cell Biology (BICD 110) are strongly recommended for those contemplating applying to graduate or professional schools.

Human Biology Major

Please refer to the “Division of Biological Sciences Required Review of Student Progress” notice detailed earlier in the Division of Biological Sciences section of this catalog.

This major is designed to provide students with the fundamental courses required for entry into: schools of medicine, veterinary medicine, dentistry, and pharmacy; Ph.D. programs in the biomedical sciences; and biotech research, teaching, medical technology, patent law, physical therapy, nutrition, and nursing. The core classes required of all human biology majors provide the student with the basic principles that help us understand normal human physiology and the molecular basis of human disease. The course options in Human Physiology, Human Disease, and Biomedical-related laboratories provide the students with educational breadth while still allowing them considerable flexibility in tailoring their course of study to suit their educational goals.

Lower-Division Requirements

BILD 1 and 3 (Note: BILD 2 is not required, but is a prerequisite for many upper-division courses.)
Chemistry 6A-B-C and 6BL
Physics 1A/1AL, 1B/1BL, 1C/1CL or Physics 2A-B-C and one lab
Mathematics 10A-B, and 11 or 10C or 20A-B-C

Upper-Division Requirements

1. Organic Chemistry (Chemistry 140A and 140B or 141A and 141B)
2. Organic Chemistry Lab (Chemistry 143A)
3. Metabolic Biochemistry (BIBC 102)
4. Genetics (BICD 100)
5. Molecular Biology (BIMM 100)
6. Molecular Basis of Human Disease (BIMM 110)
7. Mammalian Physiology I (BIPN 100)
8. Three courses from the following two groups, Human Physiology and Human Disease. At least one course must be taken from each group.

Human Physiology
Nutrition (BIBC 120)
Embryos, Genes, and Development (BICD 130)
Human Reproduction and Development (BICD 134)
Immunology (BICD 140)
Endocrinology (BICD 150)
Circadian Rhythms—Biological Clocks (BIMM 116)
Mammalian Physiology II (BIPN 102)
Cellular Basis of Learning and Memory (BIPN 148)

Human Disease
AIDS Science and Society (BICD 136)
Virology (BIMM 114)
Pharmacology (BIMM 118)
Bacteriology (BIMM 120)
Medical Microbiology (BIMM 124)
Biography of Cancer (BIMM 134)
Environmental and Molecular Toxicology (BIMM 166)

9. Two of the following lab courses:
Biochemical Techniques (BIBC 103)
Signal Transduction Lab (BIBC 105)
Cell Biology Lab (BICD 111)
Embryology Lab (BICD 131)
Developmental Biology Lab (BICD 133)
Laboratory in Molecular Medicine (BICD 145)
Recombinant DNA Techniques (BIMM 101)
Microbiology Lab (BIMM 121)
Animal Physiology Lab (BIPN 105)

At least two other upper-division courses (each course must be at least four units) offered by the UCSD Division of Biological Sciences. Recommended courses include additional courses from the Human Physiology and Human Disease lists in section 8 above and BICD 110 (Cell Biology), BIEB 154 (Molecular Evolution), and BICD 118 (Pathways of Intracellular Protein Trafficking and Compartmentation).

Note: For more information on how the BISP 194, 195, 196, 197, or 199 can count toward major requirements, please see the previous section "Special Studies Courses."

Microbiology Major

Please refer to the “Division of Biological Sciences Required Review of Student Progress” notice detailed earlier in the Division of Biological Sciences section of this catalog.

The microbiology major is designed to prepare students for graduate studies and for professional careers in a variety of health-related programs. The specialization in microbiology can provide the basic background for work in medical technology, or for further training in public health or other health-related specialties. The program is also designed to provide a foundation for graduate studies in microbiology, virology, and a variety of allied fields as well as for medical and dental school.

Lower-Division Requirements

BILD 1 and 3 (Note: BILD 2 is not required, but is a prerequisite for many upper-division courses.)
Chemistry 6A-B-C and BL
Mathematics 10A-B, and 11 or 10C or 20A-B-C
Physics 1A/1AL, 1B/1BL, 1C/1CL or 2A-B-C and one lab

Upper-Division Requirements

1. Organic Chemistry (Chemistry 140A-B or 141A-B)
2. Organic Chemistry Laboratory (Chemistry 143A)
3. Metabolic Biochemistry (BIBC 102)
4. Biochemical Techniques (BIBC 103)
5. Genetics (BICD 100)
6. Immunology (BICD 140)
7. Molecular Biology (BIMM 100)
8. Virology (BIMM 114)
9. Bacteriology (BIMM 120)
10. Laboratory in Microbiology (BIMM 121)
11. Medical Microbiology (BIMM 124)
12. Three additional upper-division biology courses (each course must be at least four units) taken through the UCSD Division of Biological Sciences are required. Other courses of special interest to microbiology majors are listed below:
 - Cell Biology (BICD 110)
 - Regulation of Gene Activity in Eucaryotic Cells (BIMM 112)
 - Microbial Genetics (BIMM 122)
 - Recombinant DNA Techniques (BIMM 101)

Note: For more information on how the BISP 194, 195, 196, 197, or 199 can count toward major requirements, please see the previous section “Special Studies Courses.”

Molecular Biology Major

Please refer to the “Division of Biological Sciences Required Review of Student Progress” notice detailed earlier in the Division of Biological Sciences section of this catalog.

This major is designed to provide students with the fundamental courses required for entry into medical school, graduate school in biological or neural sciences, or entry into other health-related professions such as nursing, dentistry, veterinary medicine, pharmacy, physical therapy, physical education, agriculture, and wildlife management.

Lower-Division Requirements

BILD 1 and 3 (Note: BILD 2 is not required, but is a prerequisite for many upper-division courses.)
- Chemistry 6A-B-C and BL
- Mathematics 20A-B-C
- Physics 1A/1AL, 1B/1BL, 1C/1CL or 2A-B-C, and one lab

Upper-Division Requirements

1. Organic Chemistry (Chemistry 140A-B or 141A-B)
2. Organic Chemistry Laboratory (Chemistry 143A) or Physical Chemistry Laboratory (Chemistry 105A)
3. Structural Biochemistry (BIBC 100)
4. Metabolic Biochemistry (BIBC 102)
5. Biochemical Techniques (BIBC 103)
6. Genetics (BICD 100)
7. Cell Biology (BICD 111)
8. Molecular Biology (BIMM 100)
9. Recombinant DNA Techniques (BIMM 101)
10. Regulation of Gene Activity in Eucaryotic Cells (BIMM 112)
11. Microbial Genetics (BIMM 122)
12. Four additional upper-division biology courses (each course must be at least four units) taken through the UCSD Division of Biological Sciences are required. Attention is drawn to BICD 120, BICD 122, BICD 140, BIMM 110, and BIMM 114.

Note: For more information on how the BISP 194, 195, 196, 197, or 199 can count toward major requirements, please see the previous section “Special Studies Courses.”

Physiology and Neuroscience Major

Please refer to the “Division of Biological Sciences Required Review of Student Progress” notice detailed earlier in the Division of Biological Sciences section of this catalog.

This major provides a program for studying the bodily and neural functions of complex organisms. A student may concentrate upon a more specialized area of study, such as neurobiology, animal physiology, or endocrinology.

Lower-Division Requirements

BILD 1 and 3 (Note: BILD 2 is not required, but is a prerequisite for many upper-division courses.)
- Chemistry 6A-B-C and BL
- Mathematics 10A-B-C and BL
- Physics 1A/1AL, 1B/1BL, 1C/1CL or 2A-B-C, and one lab

Upper-Division Requirements

1. Organic Chemistry (Chemistry 140A, 140B, or 141A, 141B)
2. Organic Chemistry Laboratory (Chemistry 143A)
3. Metabolic Biochemistry (BIBC 102)
4. Genetics (BICD 100)
5. Molecular Biology (BIMM 100)
6. Recombinant DNA Techniques (BIMM 101)
7. Regulation of Gene Activity in Eucaryotic Cells (BIMM 112)
8. Microbial Genetics (BIMM 122)
9. Four from the following eight courses:
 - Mammalian Physiology I (BIPN 100)
 - Mammalian Physiology II (BIPN 102)
 - Comparative Physiology (BIPN 106)
 - Cellular Neurobiology (BIPN 140)
 - Systems Neurobiology (BIPN 142)
 - Developmental Neurobiology (BIPN 144)
 - Computational Neurobiology (BIPN 146)
 - Cellular Basis of Learning and Memory (BIPN 148)
10. One of four laboratories (BICD 131, BICD 133, BIPN 105, BIPN 145)
11. One upper-division biology lab to be chosen from the following: BIBC 103, 105, BICD 101, 111, 123, 131, 133, 145, BIEB 121, 131, 165, 167, 179, BIMM 101, 103, 121, 127, BIPN 105, 145.

This requirement may include a lab from number 7 that has not already been taken by the student.

9. Three additional upper-division biology courses (each course must be at least four units) taken through the UCSD Division of Biological Sciences are required and may
include the above (numbers 6–8) if not already taken.

Note: For more information on how the BISP 194, 195, 196, 197, or 199 can count toward major requirements, please see the previous section “Special Studies Courses.”

Minor in Biological Sciences

To receive a minor from the Division of Biological Sciences, a student must complete at least seven four-unit biology courses (for a total of at least twenty-eight units of course work).

Lower-Division Requirements

- BILD 1 and 3
- or BILD 10 and 3

Upper-Division Requirements

- Any five upper-division biology courses offered by the Division of Biological Sciences at UCSD
- Students may apply transferable biology courses from another institution toward the lower-division requirements, after obtaining approval from the UCSD Division of Biological Sciences.
- No courses taken outside of the Division of Biological Sciences may be applied toward the biology minor.
- All courses must be taken for a letter grade.
- The minimum GPA requirement for the biology minor is 2.0 in the upper-division courses.
- Advanced placement (AP) biology scores may be applied toward the minor.
- BISP 195 may not be used toward the biology minor. One quarter of BISP 196, 197, or 199 may be counted toward the minor.
- Students may not minor and major in the Division of Biological Sciences.

Secondary School Biology Teaching

UCSD’s biological sciences division is committed to the education of future biology teachers and offers an excellent preparation for teaching biology in secondary schools. If you are interested in earning a California teaching credential from UCSD, contact the Teacher Education Program for information about the prerequisite and professional preparation requirements. It is recommended that you contact TEP and the Biology Student Affairs Office early in your academic career to help you plan a suitable biology curriculum. If you plan to get your credential at another institution, keep in mind that a broad education in biology is the best preparation to become a teacher.

We suggest that students take courses in plant and animal biology, microbiology, ecology, population biology, evolution, marine biology, genetics, and biochemistry. Courses in cellular and molecular biology are also advisable. After completion of BILD 1, 2, and 3, a suggested program of upper-division courses would be: BIBC 100 or 102, BICD 100, 120, 130, BIEB 102, 150, BIPN 106, SIO 275B. This would give you as a prospective teacher the required breadth of education.

Integrated Bachelor’s/Master’s Degree Program

An integrated program leading to a bachelor of science degree and a master of science degree in biology is offered to those undergraduate students who are enrolled in any of the major programs offered by the Division of Biological Sciences at UCSD. Qualified students are able to obtain the M.S. degree within one year following receipt of the B.S. degree. Students interested in applying to this program should meet with the BS/M5 advisor in the Biology Student Affairs Office before the end of their junior year.

The program is open only to UCSD undergraduates. The Division of Biological Sciences does not have financial aid available for students enrolled in this program although other sources of financial aid may be available to qualified students through the UCSD Financial Aid Office.

Eligibility and Enrollment

To be eligible, students must have completed the first two quarters of their junior year in residence at UCSD and must have an overall UC GPA of at least 3.0. Students’ major GPA should be at least 3.3. Students must demonstrate excellent performance in upper-division biology core courses during their undergraduate program to be eligible to enroll in biology graduate core courses.

It is the responsibility of the prospective B.S./M.S. student to select a faculty member (from the Division of Biological Sciences) who would be willing to serve as the student’s advisor and in whose laboratory the student would complete at least twenty-four units of research over a two-year period. The units of research which must be completed during the student’s senior undergraduate year, must be taken IN ADDITION to the requirements for the bachelor’s degree. These units will count toward the requirements for the master’s degree only. Students must complete six consecutive quarters of research to fulfill the research component of the program. Any deviation from this plan, such as a break in enrollment for one or more quarters, will be cause for the student to be dropped from the program.

Students who have been approved (by both the Division of Biological Sciences and the UCSD Office of Graduate Admissions) for the program must enroll in a Special Studies Course, BISP 199 (senior year) or BGGN 271 (graduate year only), for each, and every, quarter of participation in the B.S./M.S. program. Students can obtain the appropriate course code and division stamp at the Biology Student Affairs Office.

Research work (BGGN 271) will be credited toward the B.S./M.S. program requirements only if it is completed during the time a student is officially enrolled at UCSD and has paid tuition for that quarter.

Requirements for the Master of Science Degree

1. Completion of six consecutive quarters of research during the senior undergraduate year and the graduate year.
2. Completion of at least thirty-six units of graduate course work (BGGN 200-level or higher, or approved [via petition] graduate courses offered by related departments at a similar level) during the graduate year. The course of study must be approved by the faculty advisor.
3. Twelve of the thirty-six units must be in courses other than BGGN 271 (BGGN 297 and BGGN 299 may not be used to satisfy this requirement).
4. Serve as a graduate teaching assistant.
5. Maintenance of a grade-point average (both overall and in the major) of at least 3.0 for all course work, both cumulatively and for each quarter of enrollment in the B.S./M.S.
program. If the student’s GPA falls below 3.0 (for either overall or in the major), he or she will be automatically dropped from the program.

6. Completion of a thesis, with an oral presentation to, and approval of, a three-member Thesis Committee. Only ladder rank faculty in the Biological Sciences or an adjunct faculty in the Biological Sciences may serve as advisor and chair of the Thesis Committee. The Thesis Committee must contain at least two regular faculty from the Division of Biological Sciences and no more than one adjunct faculty can serve on the committee. If an adjunct faculty serves as chair of the Thesis Committee, one of the biology members must serve as co-chair.

7. At least three complete, separate, and consecutive quarters of residency as a graduate student which will commence the quarter immediately following the quarter in which the B.S. degree is awarded. (Note: The summer session is not considered an official quarter during the graduate year.)

8. Students who have been approved for the B.S./M.S. program must provide the Office of Graduate Admissions with a copy of their official UCSD transcripts with the B.S. degree posted, PRIOR TO THE COMMENCEMENT OF THE GRADUATE YEAR IN THE PROGRAM.

Non-Degree Program

The Division of Biological Sciences will accept applicants into the non-degree program for a maximum of one year only. Qualified applicants must have at least a 3.0 GPA in their upper-division work to be accepted. Justification will not be made for those who fall below the GPA minimum.

Students who wish to apply to the UCSD biological sciences Ph.D. program at a later date should not apply for this program. However, students who have applied to graduate or medical schools elsewhere, but have not yet been accepted, are welcome to apply.

Once accepted into this program, the student has graduate status for the academic year. Courses may be taken on the undergraduate or graduate level with consent of the instructor. Students will not be assigned faculty advisors and must make their own academic plans.

The Doctoral Program

Graduate studies for a Ph.D. degree in the Division of Biological Sciences in affiliation with the Salk Institute are oriented mainly toward the development of the capacity for independent research and for teaching in the biological sciences.

The requirements for entrance to graduate study in the Division of Biological Sciences are flexible, but a strong background in mathematics, chemistry, and physics is recommended.

Formal course work and opportunities for dissertation research include most basic areas of experimental biology, with emphasis in the general areas of biochemistry, biophysics, cell biology, developmental biology, genetics, immunology, molecular biology, neurobiology, plant molecular biology, ecology, behavior and evolution, virology, and cancer biology.

During the first year of graduate study, each student undertakes a research project in the laboratory of each of four to six different faculty members, and is expected to spend a major portion of his or her academic time on this project. The laboratories are selected by the student in consultation with the first year advisor to provide a broad view of the research interests of the division. The student is also expected to enroll in the first-year graduate biology sequence which includes advanced material in genetics, developmental biology, plant biology, neurobiology, molecular biology, cell biology, virology, and immunology. Students are also required to complete a minimum of twelve units of BGGN 500 (Apprentice Teaching in Biology.) A program of further study, including seminars and courses appropriate to a student’s background and interests, is arranged through consultation between the student and the faculty. Much reliance is placed on informal instruction through early and close association of the student with the faculty and research staff, and through regular seminars. After becoming familiar with the research activities of the faculty through the laboratory rotation program, the student begins work on a thesis research problem of his or her choice no later than the end of the first year. The student is free to choose for the thesis advisor a regular member of the UCSD faculty or an adjunct member of the Division of Biological Sciences faculty. The student is required to have completed a two-part examination in order to be admitted to candidacy for the Ph.D. degree. The purpose of the examinations is for the student to demonstrate competence in the field of major interest and in related fields of biology. The major remaining requirement for the Ph.D. degree is the satisfactory completion of a dissertation consisting of original research carried out under the guidance of a faculty member.

Close collaboration with members of the Department of Chemistry and Biochemistry is a vital and stimulating aspect of the biology program. Additional strength and breadth in biology are gained by collaborating with the Department of Marine Biology of the Scripps Institution of Oceanography, with The Scripps Research Institute, and with the Salk Institute for Biological Studies.

Divisional Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed seven years.

Specialization in Computational Neurobiology

Students interested in computational neurobiology may apply to the Division of Biological Sciences. These young scientists are trained in the broad range of scientific and technical skills essential to understand the computational resources of neural systems. Students in this program have the opportunity to join labs of faculty from several participating departments, including the Departments of Neurosciences, Cognitive Science, and ECE.

Joint Doctoral Program with San Diego State University

The Division of Biological Sciences at UCSD participates in a joint graduate program with the Department of Biology at SDSU, primarily in the areas of cell and molecular biology, and leading to the Ph.D. degree in biology. Graduate student participants in the joint doctoral program are required to spend one year enrolled at UCSD; thesis research is carried out under the supervision of the SDSU faculty.

Information regarding admission is found in the current edition of the San Diego State University Graduate Bulletin.
COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

NOTE: The division will endeavor to offer the courses as outlined below; however, unforeseen circumstances sometimes mandate a change of scheduled offerings, especially the quarter offered. The following schedule is tentative for the academic year 2007–2008 only. It should not be assumed that the same schedule will continue after this academic year. Students are strongly advised to check the Schedule of Classes or with the division’s Student Affairs Office (1128 Pacific Hall) before relying on the following schedule. Courses required for the major may be scheduled on the same day and/or same time. This is of particular importance in planning schedules for graduation requirements.

Students who have satisfied the prerequisites for courses at another college or by AP credit may need to be pre-authorized to register for the course. Please come to the Biology Student Affairs Office before your registration time to be authorized. If the class is full please place your name on the waitlist and attend the first class meeting.

Students who do not attend the first thirty minutes of the first scheduled meeting (be it lab or lecture) will be considered not enrolled in the course and may be administratively dropped. Prior written notification to the instructor regarding an anticipated absence will ensure a space. However, responsibility for officially dropping the lab from the registrar’s records belongs to the student.

IF A STUDENT DROPS A LAB COURSE AFTER THE END OF THE SECOND SESSION, THE DIVISION WILL REPORT A “W” FOR THE COURSE.

LOWER-DIVISION

BILD 1. The Cell (4)
An introduction to cellular structure and function, to biological molecules, bioenergetics, to the genetics of both procaryotic and eucaryotic organisms, and to the elements of molecular biology. Three hours of lecture and one hour of recitation. Prerequisite: Chem. 6A; Chem. 6B may be taken concurrently.

BILD 2. Multicellular Life (4)
An introduction to the development and the physiological processes of plants and animals. Included are treatments of reproduction, nutrition, respiration, transport systems, regulation of the internal environment, the nervous system, and behavior. Three hours of lecture and one hour of recitation. Prerequisite: BILD 1.

BILD 3. Organismic and Evolutionary Biology (4)
The first principles of evolutionary theory, classification, ecology, and behavior; a phylogenetic synopsis of the major groups of organisms from viruses to pri-mates. Three hours of lecture and one hour of lab. Prerequisite: none. (Note: E.B.E. majors should complete this course during their first year at UCSD.)

BILD 7. The Beginning of Life (4)
An introduction to the basic principles of plant and animal development, emphasizing the similar strategies by which diverse organisms develop. Practical applications of developmental principles as well as ethical considerations arising from these technologies will be discussed. Prerequisite: none.

BILD 10. Fundamental Concepts of Modern Biology (4)
An introduction to the biochemistry and genetics of cells and organisms; illustrations are drawn from microbiology and human biology. Three hours of lecture and one hour of discussion. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major. Note: Students may not receive credit for BILD 10 after receiving credit for BILD 1.

BILD 12. Neurobiology and Behavior (4)
An introduction to the organization and functions of the nervous system; topics include molecular, cellular, developmental, systems, and behavioral neurobiology. Three hours of lecture and one hour of discussion. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major.

BILD 16. History of Life (4)
Life has a very long history on earth and this course will chronicle patterns of biological diversity from its origin over 3 billion years ago to the present day. Topics covered will include methods for reconstructing the history of life on this planet, the origin and evolution of major groups of plants and animals, dinosaur paleobiology, past environmental changes and their effects on species and communities, and extinctions. We will also explore how insights from the past can be used to understand how present and future environmental changes will impact biological diversity. This course is designed for non-biology majors.

Course will focus on issues such as global warming, species extinction, and human impact on the oceans and forests. History and scientific projections will be examined in relation to these events. Possible solutions to these worldwide processes and a critical assessment of their causes and consequences will be covered. Prerequisite: none.

BILD 20. Human Genetics in Modern Society (4)
Fundamentals of human genetics and an introduction to modern genetic technology such as gene cloning and DNA fingerprinting. Applications of these techniques, such as forensic genetics, genetic screening, and genetic engineering. Social impacts and ethical implications of these applications. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major. Note: Students may not receive credit for BILD 20 after receiving credit for BICD 100.

BILD 22. Human Nutrition (4)
A survey of our understanding of the basic chemistry and biology of human nutrition; discussions of all aspects of food: nutritional value, diet, nutritional diseases, public health, and public policy. Three hours of lecture and one hour of discussion. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major. Note: Students may not receive credit for BILD 22 after receiving credit for BIBC 120.

BILD 24. Biology of Human Reproduction (4)
The topics covered are: sexual development in embryo and fetus, the nature and regulation of changes at puberty, the functioning of the mature sexual system. Three hours of lecture. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major. Note: Students may not receive credit for BILD 24 after receiving credit for BICD 134.

BILD 26. Human Physiology (4)
Introduction to the elements of human physiology and the functioning of the various organ systems. The course presents a broad, yet detailed, analysis of human physiology, with particular emphasis towards understanding disease processes. Three hours of lecture and one hour of discussion. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major.

BILD 30. The Biology of Plagues: Past and Present (4)
An introduction to the diseases caused by viruses, bacteria, and parasites, and the impact of these diseases on human society. Topics include the biology of infectious disease, epidemiology, and promising new methods to fight disease. Three hours of lecture and one hour discussion. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major. (Note: Students may not receive credit for BILD 30 after receiving credit for BIMM 120.)

BILD 32. Biomedicine/Cancer (4)
An introduction to molecular, cellular, and immunological aspects of cancer and a consideration of the sociological and psychological impact of cancer on the individual and general society. Three hours of lecture. This course is designed for non-biology students and does not satisfy a lower-division requirement for any biology major. (Note: Students may not receive credit for BILD 32 after receiving credit for BIMM 134.)

BILD 36. AIDS Science and Society (4)
An introduction to all aspects of the AIDS epidemic. Topics include the epidemiology, biology, and clinical aspects of HIV infection; HIV testing; education and approaches to therapy; and the social, political, and legal impacts of AIDS on the individual and society. In order to count for their major, biology majors must take the upper-division course, BICD 136.

BILD 87. Freshman Seminar (1)
The freshman seminar program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshmen seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.
BIL 90. Undergraduate Seminar (1)
This seminar is restricted to lower-division undergraduate students (freshmen and sophomores). The course introduces current biological topics. The topics vary with instructors and for each quarter. Examples of topics which may be discussed are: wildlife conservation, signalling within and between cells, mapping the human genome, etc. This course does not satisfy any requirement for the biology major, biology minor, or college general/education.

BIL 92. Professional Topics (1)
This seminar will introduce students to the various subdisciplines and their research methodology in the biological sciences. Emphasis will be on bioinformatics, neurophysiology, and biotechnology. Current research topics in the specialized areas in academia and industry will be discussed. The role and professional identity of biologists in research, consulting, government, management, and teaching will be reviewed. In addition, issues surrounding professional ethics will be discussed.

BIL 94. Professional Issues in Bioinformatics (1)
This seminar will introduce undergraduate students, especially freshmen and sophomores, to a variety of issues and topics in the field of bioinformatics.

BIL 95. Undergraduate Workshops (1)
The workshops will be restricted to lower-division undergraduates. The course will introduce students to the methods of scientific research and to a variety of research topics in the biological/biomedical sciences. Examples of topics are: Introduction to Scientific Research, AIDS, Medical and Social Aspects, Is the Mind the Same as the Brain, Wildlife Conservation.

BIL 99. Independent Research (2 or 4)
Independent research by special arrangement with a faculty member. (P/NP grades only). Students must have an overall UCSD GPA of at least 3.0 and a minimum of thirty units complete. Students must complete a "Special Studies" form and a Division of Biological Sciences "Research Plan." Credit may not be received for a course numbered 99 subsequent to receiving credit for a course numbered 199.

UPPER-DIVISION

Biochemistry

BIBC 100. Structural Biochemistry (4)
The structure and function of biomolecules. Includes protein conformation, dynamics, and function; enzymatic catalysis, enzyme kinetics, and allosteric regulation; lipids and membranes; sugars and polysaccharides; and nucleic acids. Three hours of lecture and one hour of recitation. Prerequisite: Chem. 140A. Chem. 140B may be taken concurrently. (Note: Students may not receive credit for both BIBC 100 and Chem. 114A.)

BIBC 102. Metabolic Biochemistry (4)
Energy-producing pathways—glycolysis, the TCA cycle, oxidative phosphorylation, photosynthesis, and fatty acid oxidation; and biosynthetic pathways—glucogenic, glycogen synthesis, and fatty acid biosynthesis. Nitrogen metabolism, urea cycle, amino acid metabolism, nucleotide metabolism, and metabolism of macromolecules. Three hours lecture and one hour recitation. Prerequisite: Chem. 140A; Chem. 140B may be taken concurrently. (Note: Students may not receive credit for both BIBC 102 and Chem. 114B.)

BIBC 103. Biochemical Techniques (4)
Introductory laboratory course in current principles and techniques applicable to research problems in biochemistry and molecular biology. Techniques include protein and nucleic acid purification; identification methods such as centrifugation, chromatography, and electrophoresis; immunological, spectrophotometric, and enzymatic methods. Prerequisite: BILD 1. Students may not receive credit for BIBC 103 after taking Chem. 112A.

BIBC 104. Biochemistry and Biotechnology of Plants (4)
The biochemical and molecular basis of plant genetic engineering to understand modern approaches to crop improvement. Prerequisites: BILD 1; Chem 140A. BIBC 102 and Chem 140B may be taken concurrently.

BIBC 105. Signal Transduction Laboratory (6)
A laboratory course involving the application of molecular, cellular, and biochemical techniques to explore signal transduction mechanisms in mammalian cells. The use of lipid-binding to cell surface receptor and activation of gene transcription in the nucleus will be studied. Prerequisites: BIBC 100, BIBC 103 and BIMM 100.

BIBC 110. Physical Biochemistry (4)
The theory and applications of physical chemistry to biological molecules, processes and systems and techniques used in biochemistry and physiology. Topics include reversible and irreversible thermodynamics, bioenergetics, energy coupling and transduction, solutions of macromolecules, sedimentation, chromatography, electrophoresis, passive and active membrane transport, spectroscopy, and chemical kinetics. Three hours of lecture and one hour of recitation. Prerequisites: calculus and organic chemistry.

BIBC 115. Computer Programming in Biology (4)
Use of computer programming in the analysis and presentation of biological data (computation of best value and standard deviation, histogram, least squares fitting procedure, simulation of genetic experiments, etc.) Students learn the C++ computer language and run their programs at the Computer Center. There are some visits to laboratories and hospitals to see applications of computers in biology and medicine. Three hours of lecture and about ten hours of homework per week. Prerequisite: upper-division standing or consent of instructor. (Note: Students may not receive credit for both BIBC 115 and Chem. 134.)

BIBC 116. Evolution of Genes and Proteins (4)
The history of an organism can be found in its genome. analysis of the primary sequences will be used to recognize families of genes that arose by duplication and divergence. Topics include comparisons of amino acid sequences and three dimensional structures and range from the oldest and most widely distributed proteins to modern proteins. Where possible specific motifs and fold motifs will be traced to their ancestral beginnings. Prerequisites: BIBC 100, BIMM 100.

BIBC 120. Nutrition (4)
Elaborates the relationship between diet and human metabolism, physiology, health, and disease. Covers the functions of carbohydrates, lipids, proteins, vitamins, minerals, and discusses dietary influences on cardiovascular disease, diabetes, obesity, and cancer. Prerequisite: BIBC 102.

BIBC 130. Marine Biochemistry (4)
Biochemical mechanisms of adaptation in organisms to the marine environment. Special emphasis will be on the effects of pressure, temperature, salinity, oxygen, and light on the physiology and biochemistry. Prerequisite: BIBC 102 or consent of instructor.

Genetics, Cellular and Developmental Biology

BICD 100. Genetics (4)
An introduction to the principles of heredity in diploid organisms, fungi, bacteria, and viruses. Mendelian inheritance; population genetics; quantitative genetics; linkage; sex determination; meiotic behavior of chromosomes; gene structure, regulation, and replication; genetic code. Three hours of lecture and one hour of recitation. Prerequisite: BILD 1 or the equivalent.

BICD 101. Eucaryotic Genetics Laboratory (4)
This course emphasizes the principles of Mendelian inheritance and requires the student to apply both cytological and genetic analysis to the solution of problems in the professional. One hour of lecture/lab is required. Non-attendance will result in the student's being dropped from the course roster. It is the student's responsibility to officially drop the course.

BICD 110. Cell Biology (4)
The structure and function of cells and cell organelles, cell growth and division, motility, cell differentiation and specialization. Three hours of lecture and one hour of recitation. Prerequisites: BIBC 100 or BIBC 102, and BICD 100.

BICD 111. Cell Biology Laboratory (6)
A laboratory course in the application of cellular techniques to biological problems. The establishment, growth, transformation, immortalization, and senescence of mammalian cells will be studied at the molecular and the cellular level. Ten hours of laboratory. In addition to the formal lab hours listed above, there will be an average of two hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Prerequisite: BICD 110 (may be taken concurrently); BIBC 103 is strongly recommended. Attendance at the first lecture/lab is required. Non-attendance will result in the student's being dropped from the course roster. It is the student's responsibility to officially drop the course.

BICD 118. Pathways of Intracellular Protein Trafficking and Compartmentation (4)
This course will focus on various subcellular organelles, their function, protein traffic, disulfide bond formation, protein folding, assembly of macromolecular complexes, protein quality control, and cellular responses to misfolded proteins. The emphasis will be on experiential approaches and model systems for the analysis of these problems, and on the connection of these topics to human disease. Three hours of lecture and one hour of mandatory discussion of primary publications per week. Open to upper-division students only. Prerequisites: BICD 110 and BIMM 100.

BICD 120. Fundamentals of Plant Biology (4)
An introduction to the biology of plants. Basic principles of plant anatomy, physiology, development, and diversity are covered as well as specialized topics, including plant genetic engineering, plant disease and stress, medicinal plants, plants and the environment, and sustainable agriculture. Prerequisites: BILD 1 and 2.
BICD 122. Plant Cellular and Molecular Biology (4)
The cellular and molecular basis of plant development, including plant hormones, signal transduction mechanisms, light and plant growth, plant microorganism interaction, plant transformation, genetic engineering of plants. Prerequisite: BIBC 102 required.

BICD 123. Plant Molecular Genetics and Biotechnology Laboratory (6)
Techniques in plant cell and tissue culture, plant transformation, genetic selection and screening of mutants, host-pathogen interactions, gene regulation, organelle isolation, membrane transport. Two hours of lecture and eight hours of laboratory each week. In addition to the formal lab hours, there will be at least eight hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Prerequisite: upper-division standing. BICD 120 strongly recommended. Attendance at the first lecture/lab is required. Non-attendance will result in the student's being dropped from the course roster. It is the student's responsibility to officially drop the course.

BICD 130. Embryos, Genes, and Development (4)
Developmental biology of animals at the tissue, cellular, and molecular levels. Basic processes of embryogenesis in a variety of invertebrate and vertebrate organisms. Cellular and molecular mechanisms that underlie cell fate determination and cell differentiation. More advanced topics such as pattern formation and sex determination are discussed. Open to upper-division students only. Three hours of lecture and one hour of recitation. Prerequisites: BICD 100, upper-division standing, BIBC 100 or BIBC 102; BICD 110 strongly recommended, BIMM 100 strongly recommended.

BICD 131. Embryology Laboratory (6)
Descriptive and experimental embryology of marine invertebrates and of vertebrates. One and one-half hours of lecture and ten hours of laboratory each week. In addition to the formal lab hours, there will be at least six and a half hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Prerequisites: BILD 1; BILD 2 or BIPN 100. Attendance at the first lecture/lab is required. Nonattendance will result in the student's being dropped from the course roster. It is the student's responsibility to officially drop the course.

BICD 132. Developmental Biology Lab (6)
Explore fundamentals of embryonic development using advanced techniques in light and fluorescent microscopy and by analyzing developmental mutants. Course includes selecting and knocking out genes of interest followed by phenotypic analysis. Invertebrate and vertebrate organisms covered. Prerequisites: BICD 100. BICD 100, upper-division standing, BIBC 100 or BIBC 102; BICD 110 strongly recommended, BIMM 100 strongly recommended.

BICD 133. Human Reproduction and Development (4)
This course is addressed to the development of the human sexual system, including gametogenesis, fertilization, and embryo implantation. Emphasis is placed on the physiology of reproductive functions. Three hours of lecture and one hour of discussion. Prerequisites: BIBC 102 and BICD 100.

BICD 136. AIDS Science and Society (4)
An introduction to all aspects of the AIDS epidemic. Topics will include the epidemiology, biology, and clinical aspects of HIV infection, HIV testing, education and approaches to therapy, and the social, political, and legal impacts of AIDS on the individual and society. In order to count for their major, biology majors must take the upper-division course, BICD 136. Prerequisites: BILD 1, BILD 2 recommended.

BICD 140. Immunology (4)
Formation and function of the mammalian immune system, molecular and cellular basis of the immune response, infectious diseases and autoimmunity. Prerequisites: BICD 100, BIMM 100, BIBC 100 recommended.

BICD 142. Topics in Immunology (4)
This course covers selected topics in molecular and cellular immunology at a more advanced level, and is a sequel to Immunology (BICD 140). Prerequisites: BICD 140 and upper-division standing.

BICD 145 Laboratory in Molecular Medicine (4)
This course focuses upon a molecular and immunological approach to study problems in modern medical research. The emphasis will be on novel approaches in medicine, including lymphocyte biology, cancer biology, and gene transfer. Prerequisites: BIBC 103, BIMM 100. Attendance at the first lecture/lab is required. Nonattendance will result in the student's being dropped from the course roster. It is the student's responsibility to officially drop the course.

BICD 150. Endocrinology (4)
Normal function and diseases of the major hormone systems of the body including the hypothalamus/pituitary axis, the thyroid gland, reproduction and sexual development, metabolism and the pancreas, bone and calcium metabolism, and the adrenal glands. Prerequisite: BISP 100 (may be taken concurrently).

BICD 162. Critical Reading and Writing in the Biological Sciences (4)
Primary literature readings in the field of cell transport on how to approach a scientific paper, how to interpret results, and how to write a paper that summarizes scientific research. Prerequisites: Chem. 140A, 140B; either BIBC 100 or BIBC 102; BIMM 100; BICD 110 is recommended; one laboratory course (BICD 103 or BIMM 101 or BIBC 121 or BISP 105) or other example of research experience (BISP 199 or research experience in industry).

BICD 170. Topics in Human Genetics (4)
An advanced course covering aspects of human genetics in detail and using papers from the scientific literature as the major source of information. A review of basic genetics as applied to the human species is followed by the consideration of recent genetic insights into a number of human conditions which illustrate the principles covered in the first part of the course. Prerequisite: BICD 100 (may not be taken concurrently), BIMM 100 is strongly recommended.

BICD 180. Genetics of Model Organisms (4)
Survey of various organisms used in current biological/biomedical research. Biology faculty experts discuss organisms used in their research, outline history as genetic models, tools used for laboratory study, and contributions to the wider understanding of biological systems. Prerequisite: BICD 100.

Ecology, Behavior, and Evolution
BIEB 100. Biometry (4)
Application of statistics in biological problems. Topics: parametric statistics, (t-test, correlation, regression, ANOVA), non-parametric statistics resampling methods, experimental design. Mandatory homework to apply theory using statistical Macintosh-based programs. Instructor conducts mandatory two-hour discussion session in computer lab. Three hours of lecture and two hours of laboratory section. Prerequisite: BILD 3 recommended.

BIEB 102. Introductory Ecology-Organisms and Habitat (4)
This course emphasizes principles shaping organisms, habitats, and ecosystems. Topics covered include population regulation, physiological ecology, competition, predation, and human exploitation. This will be an empirical look at general principles in ecology and conservation with emphasis on the unique organisms and habitats of California. Prerequisite: BILD 3 or equivalent.

BIEB 110. Vertebrate Biology (4)
Course will introduce students to the natural history of turtles, lizards, snakes, birds, and terrestrial and marine mammals from both an ecological and evolutionary perspective. Students will conduct an independent field project. One field trip required. Prerequisite: BILD 3. BILD 1 or 2 recommended.

BIEB 112. Ecology Laboratory (6)
A laboratory course to familiarize students with ecological problem solving and methods. Sections will use the Macintosh computer and also perform outdoor field work. Two hours of lecture and eight hours of laboratory each week. In addition to the formal lab hours, there will be at least nine hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Prerequisite: BIEB 100.

BIEB 123. Molecular Methods in Ecology and Evolution Lab (4)
Theory and practice of molecular biology techniques used in ecological and evolutionary research. Includes isolation of DNA and RNA, PCR and its applications, DNA sequencing, gene expression analysis, bioinformatics, and ecological and evolutionary analysis of molecular data. Students may not enroll in or receive credit for both BIMM 101 and BIEB 123. Prerequisite: BILD 3.

BIEB 124. Plant Ecology (4)
This course begins with an introduction to plant population biology including whole-plant growth and physiology. We then focus on three classes of ecological interactions: plant-plant competition, plant-herbivore coevolution, and plant reproductive ecology including animal pollination and seed dispersal. Prerequisite: BILD 3.

BIEB 128. Insect Ecology (4)
This course begins with a survey of insect diversity and phylogenetic relationships. We then address ecological issues including thermal ecology, population dynamics (including outbreaks), movement and migration, competition, predation, herbivory, parasitism, insect defense, mimicry complexes, and sociality. Prerequisite: BILD 3 or equivalent.

BIEB 131. Marine Invertebrate Ecology Laboratory (6)
A laboratory course introducing students to marine ecology. Students will participate in outdoor fieldwork and work in the laboratory gathering and analyzing ecological data. We will focus on ecological communities in estuaries, sandy beach, and rocky intertidal habitats. Two hours of lecture and eight hours of laboratory each week. In addition to the formal lab hours, there will be at least nine hours in which students will be
required to work in the class laboratory to complete experiments and prepare for presentations. Prerequisites: BILD 3; BIEB 100.

BIEB 132. Introduction to Marine Biology (4)
Overview of marine organisms and their adaptations to sea life. Selected examples of physiological, behavioral, and evolutionary adaptations in response to the unique challenges of a maritime environment. Prerequisite: BILD 3.

BIEB 134. Introduction to Biological Oceanography (4)
Basis for understanding the ecology of marine communities. The approach is process-oriented, focusing on major functional groups of organisms; their food web interactions and community responses to environmental forcing, and contemporary issues in human and climate influences. Prerequisite: upper-division standing; BILD 3 is recommended.

BIEB 136. Ichthyology (4)
Course will study aspects of the biology of fishes from all over the world, from the crushing pressure of the deep sea to the chilling temperatures of Antarctic waters. Students will learn about form/function that allow fishes to thrive in diverse marine environments. Students will conduct an independent field project. Field trips may be required. Prerequisite: BILD 3 recommended.

BIEB 140. Biodiversity (4)
An introduction to the patterns of geographic distribution and natural history of plants and animals living in terrestrial and marine ecosystems. We will explore: ecological and evolutionary processes responsible for generating and maintaining biological diversity; and the nature of extinction both in past and present ecosystems. Prerequisite: BILD 3.

BIEB 144. Quantitative Ecology and Conservation (4)
Introduction to mathematical and statistical tools for prediction of deterministic and stochastic ecological systems, including age-structured population growth; population regulation; interspecific interaction; species diversity. Conservation biology topics include sustainable harvesting; metapopulation dynamics; extinction; case studies of endangered species. Prerequisite: BILD 3; BIEB 100 and BIEB 102 recommended.

BIEB 145. Spatial Analyses in Ecology and Conservation (4)
Course familiarizes students with the concept and application of geographic analyses in biology and, specifically, the use of GIS as analytical tool. Example studies will be performed that range from global ecology to conservation in San Diego county. Prerequisite: BILD 3, BIEB 100, BIEB 102.

BIEB 150. Evolution (4)
Evolutionary processes are discussed in their genetic, historical, and ecological contexts. Microevolution, speciation, macroevolution, and the evolution of adaptations. Three hours of lecture and one hour of recitation. Prerequisite: BILD 3; BIEB 100 and BIEB 102 recommended.

BIEB 154. Molecular Evolution (4)
This course deals with the evolution of genes and the molecules they encode. The role of mutation, selection, and drift at the molecular level are discussed. Molecular phylogenies, jumping genes, viral evolution, and searches for molecular homologies are a few of the topics covered. Three hours of lecture and one hour of discussion. Prerequisites: BIBC 102, BICD 100, and BIMM 100 recommended.

BIEB 156. Population Genetics (4)
The first two-thirds of the course will cover the basic theory of population genetics, including selection, genetic drift, mutation, and migration. Animal signal transduction, protein synthesis, regulation of gene activity. Procaryotes and eucaryotes Prerequisites: BIBC 102 or BIBC 103. (Note: Students may not receive credit for both BIMM 100 and Chem. 114C.)

BIEB 164. Behavioral Ecology (4)
A survey of the patterns of social behavior in animals and a discussion of the ecological principles underlying the evolution of animal societies. Three hours of lecture and one hour of discussion. Prerequisite: BILD 3 recommended.

BIEB 165. Behavioral Ecology Laboratory (6)
This course will deal with quantitative methods for the study of animal social behaviors. Topics include spatial patterning, mating systems, and cooperation. The course includes both lab exercises and field trips. Two hours of lecture and eight hours of laboratory each week. In addition to the formal lab hours, there will be at least nine hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Prerequisites: BIEB 100 and BIEB 164. (BIEB 164 may be taken concurrently.)

BIEB 166. Animal Behavior and Communication (4)
An integrated approach to animal behavior focusing on mechanisms of acoustic, visual, and olfactory communication. Course covers ethology and the genetics and neurobiology of behavior; orientation and navigation; and signal origins, properties, design, and evolution. Prerequisites: BILD 3 recommended, but not required; Physics 1A or 2A, or equivalent recommended, but not required.

BIEB 167. Animal Communication Laboratory (6)
Laboratory exercises will introduce students to quantitative methods of visual, auditory, and olfactory signal analysis and to lab and field studies of animal signaling. Two hours of lecture and eight hours of laboratory each week. In addition to the formal lab hours, there will be at least nine hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Prerequisites: BIEB 100 and BIEB 166. (BIEB 166 may be taken concurrently.)

BIEB 176. Conservation and the Human Predicament (4)
(Cross-listed with ANTH/BIO 132; however, biology majors must take the course as Biology 176.) An interdisciplinary discussion of the human predicament, the biodiversity crisis, and the importance of biological and environmental conservation in sustaining future societies. We explore the consequences of habitat destruction and species extinctions on the biosphere and human welfare. Three hours of lecture and one hour of discussion. Prerequisites: upper-division standing and BILD 3 or consent of instructor.

Molecular Biology, Microbiology

BIMM 100. Molecular Biology (4)
Molecular basis of biological processes, emphasizing gene action in context of entire genome. Chromosomes and DNA metabolism; chromatin, DNA replication, repair, mutation, recombination, transposition, transcription, protein synthesis, regulation of gene activity. Procaryotes and eucaryotes Prerequisites: BIBC 102 or BIBC 103. (Note: Students may not receive credit for both BIMM 100 and Chem. 114C.)

BIMM 101. Recombinant DNA Techniques (4)
Theory and practice of DNA cloning. This course aims at providing practical knowledge in the field of genetic engineering. Techniques covered include construction of plasmid and phage DNA libraries, screening libraries for desired DNA clones by hybridization methods, plasmid and phage DNA preparation, and DNA sequencing. Two hours of lecture, one hour of discussion, and eight hours of laboratory. Prerequisite: BICD 100. Attendance at the first lecture/lab is required. Non-attendance will result in the student’s being dropped from the course roster. It is the student’s responsibility to officially drop the course. (Note: Students may not receive credit for both BIMM 101 and Chem. 112B.)

BIMM 103. Modern Techniques in Molecular Biology (4)
This course focuses upon a combined biochemical and molecular genetic approach to study current biological problems. Techniques include amplification of rare nucleic acids with the polymerase chain reaction, purification and characterization of a eukaryotic protein expressed in bacteria, in vitro mutagenesis of DNA. One hour of lecture and eleven hours of laboratory. Prerequisites: BIBC 103, BIMM 100. Attendance at the first lecture/lab is required. Non-attendance will result in the student’s being dropped from the course roster. It is the student’s responsibility to officially drop the course.

BIMM 108. Chromatin Structure and Dynamics (4)
Chromatin is the natural state of DNA in the eukaryotic nucleus. Chromatin structure, nucleosome assembly, chromatin remodeling by ATP-dependent motor proteins, histone modifications and the histone code, heterochromatin, and the influence of chromatin upon DNA-directed processes in the cell will be discussed. Prerequisite: BIMM 100.

BIMM 110. Molecular Basis of Human Disease (4)
An examination of the molecular basis of human diseases. Course emphasizes inherited human disorders, and some important diseases caused by viruses. New molecular techniques for the application of genetic, biochemical, and molecular biological principles to an understanding of the diseases. Three hours of lecture. Course restricted to upper-division biology majors. Prerequisites: BICD 100; BIBC 102; BIMM 100.

BIMM 112. Regulation of Gene Activity in Eucaryotic Cells (4)
This course explores problems in the regulation of gene activity in eucaryotic cells approached at the molecular level. The course includes the organization, structure, transcription, and regulation of eucaryotic genes; mechanism of hormonal regulation in controlling gene activity; induction of gene expression in eucaryotic cells; role of signal transduction in controlling gene expression; and regulation of gene activity during differentiation in developing systems. Examples are taken from eucaryotic microorganisms, invertebrates, as well as mammalian and other vertebrate systems. Three hours of lecture and one hour of discussion. Prerequisite: BIMM 100.

BIMM 114. Virology (4)
An introduction to eucaryotic virology, with emphasis on animal virus systems. Topics discussed include the molecular structure of viruses; the multiplication
strategies of the major virus families; and viral latency, persistence, and oncology. Three hours of lecture and one hour of discussion. Prerequisite: BIMM 100.

BIMM 116. Circadian Rhythms—Biological Clocks (4)
Examples and fundamental properties of the daily biological clock in humans, animals, and microbes. Experimental approaches employed to understand how organisms keep time and how this applies to human health. Prerequisite: BILD 1 or Psych 106 or consent of instructor.

BIMM 118. Pharmacology (4)
Basics of pharmacology such as drug absorption, distribution, metabolism, and elimination. Concepts in toxicology and pharmacognosy are used to survey the major drug categories. Prerequisites: BIBC 100 or BIBC 102; BIPN 100.

BIMM 120. Bacteriology (4)
A discussion of the structure, growth, molecular genetics, and physiology of prokaryotic microorganisms, with emphasis on the diverse activities of bacteria and on the interaction of various bacterial species with their environment. Three hours of lecture and one hour recitation. Prerequisites: Chem. 140A; Chem. 140B; BIBC 100 or BIBC 102 (may be taken concurrently).

BIMM 121. Laboratory in Microbiology (4)
This course emphasizes fundamental principles of microbiology. Studies with bacteria include comparative morphology and physiology; pure culture techniques; bacterial growth; spore germination; and bacteriophage infection, replication, and release. Additional studies on antibiotics and the use of bioassays are included. One hour of demonstration and seven hours of laboratory. Prerequisite: BIMM 120. Attendance at the first lecture/lab is required. Nonattendance will result in the student's being dropped from the course roster. It is the student's responsibility to officially drop the course at the Registrar's Office.

BIMM 122. Microbial Genetics (4)
Organization and function of prokaryotic genetic systems including sex factors, transduction, transformation, phage genetics, transposons, genetic engineering. Three hours of lecture. Prerequisites: BIMM 100, BICC 100, or consent of instructor.

BIMM 124. Medical Microbiology (4)
This course covers basic principles and detailed aspects of microbial infectious diseases. Biochemical properties underlying microbial spread, host antimicrobial and inflammatory response, immunity, and recovery are emphasized. Emphasis is placed upon viral and bacterial diseases, including molecular principles of pathogenesis, of host immune responses, of drug resistance, and of viral and plasmid replication. Three hours of lecture and one hour of discussion. Prerequisites: BIMM 100 and 120, BICC 140 is recommended.

BIMM 126. Marine Microbiology (4)
The role of microorganisms in the oceans: metabolic diversity, methods in marine microbiology, interactions of microbes with other microbes, plants and animals, biogeochemical cycling, pollution and water quality, microbe-mineral interactions, extremophiles. Prerequisite: BIBC 102 and BIMM 120 recommended.

BIMM 127. Marine Microbiology Laboratory (4)
Techniques and theory in environmental microbiology. Students perform experiments concerning a) enrichment, enumeration, and identification and b) metabolic and physicochemical adaptations, along with an independent project. Graduate students submit an additional report and take a modified final exam. Prerequisite: upper-division standing.

BIMM 130. Microbial Physiology (4)
Prokaryotic microbial physiology will be discussed primarily from a biochemical standpoint with emphasis on mechanism. Topics will vary from year to year but will include the following themes: Central metabolism, bioenergetics, biosynthesis, regulation, differentiation, prokaryotic structure-function relationships. Prerequisite: BIBC 100 or BIBC 102 or equivalent.

BIMM 132. Molecular Biology of Human Retroviruses (4)
Replication cycle and gene regulation of HIV. Molecular approaches to therapy and vaccines. Three hours of lecture. Prerequisite: BIMM 100.

BIMM 134. Biology of Cancer (4)
This course covers basic processes of transformation and tumor formation in a two-part format. The first section is focused on molecular and cellular mechanisms of carcinogenesis. The second section discusses tumor pathology and metastasis. Open to upper-division students only. Prerequisites: BICC 110 and BIMM 100.

BIMM 140. Introduction to Bioinformatics (4)
Introduction to basic methods used in bioinformatics and computational biology. Survey of methods used in computational analysis of DNA such as sequence assembly, sequence comparison, gene modeling, and sequence databases. Survey methods used in the computational analysis of protein sequences such as alignments, motif and pattern recognition, family classification, and protein structure prediction. Survey of organismic databases methods. Emphasis is on a broad survey of current approaches with an introduction to statistical and computational techniques for analyzing, comparing, and validating methods. Prerequisites: BIBC 100 or 102, BIMM 100, and BICC 100. (BIMM 100 may be taken concurrently.)

BIMM 141. Bioinformatics Laboratory (4)
Laboratory course giving hands-on exposure to topics covered in BIMM 140. Survey of methods used in computational analysis of DNA such as sequence assembly, sequence comparison, gene modeling, and sequence databases. Survey of methods used in the computational analysis of protein sequences such as alignments, motif and pattern recognition, family classification, and protein structure prediction. Prerequisites: BIBC 100 or 102, BIMM 100, BICC 100, and BIMM 140.

BIMM 150. Post-Genomics Biology (2)
This course will focus on large-scale analysis of post-genomics biological systems. Students will be introduced to methods for analyzing changes in gene expression, identifying protein-protein interactions, screening for pathway inhibitors, characterizing multiprotein complexes, and probing protein localization and function. Prerequisite: consent of instructor.

BIMM 152. 3D Electron Microscopy of Macromolecules (4)
Biological macromolecules and supramolecular complexes as well as organelles, and small cells are being examined in three-dimensions by modern electron microscopy and image reconstruction techniques. The basic principles of transmission electron microscopy and 3D image reconstruction are discussed. Prerequisites: Physics 1A and 1B and 1C or Physics 2A and 2B and 2D.

BIMM 181. Molecular Sequence Analysis (4)
This course covers the analysis of nucleic acid and protein sequences, with an emphasis on the application of algorithms to biological problems. Topics include sequence alignments, database searching, comparative genomics, and phylogenetic and clustering analysis. Pairwise alignment, multiple alignment, DNA sequencing, scoring functions, fast database search, comparative genomics, clustering, phylogenetic trees, gene finding/DNA statistics. This course open to bioinformatics majors only. Prerequisites: CSE 100 or Math 176, CSE 101 or Math 188, BIMM 100 or Chem 114C.

BIMM 182. Biological Databases (4)
This course provides an introduction to the features of biological data, how that data are organized efficiently in databases, and how existing data resources can be utilized to solve a variety of biological problems. Relational databases, object oriented databases, ontologies, data modeling and description, survey of current biological database with respect to above, implementation of database focused on a biological topic. This course open to bioinformatics majors only. Prerequisite: CSE 100 or Math 176.

BIMM 184. Computational Molecular Biology (4)
This advanced course covers the application of machine learning and modeling techniques to biological systems. Topics include gene structure, recognition of DNA and protein sequence patterns, classification, and protein structure prediction. Pattern discovery, hidden Markov models/support vector machines/neural network/profiles, protein structure prediction, functional characterization or proteins, functional genomics/proteomics, metabolic pathways/gene networks. This course open to bioinformatics majors only. Prerequisite: BIMM 181 or BENG 181 or CSE 181, BIMM 182 or BENG 182 or CSE 182 or Chem 182. Bioinformatics majors only.

BIMM 185. Bioinformatics Laboratory (Advanced) (4)
This course emphasizes the hands-on application of bioinformatics methods to biological problems. Students will gain experience in the application of existing software, as well as in combining approaches to answer specific biological questions. Sequence alignment, fast database search, profiles and motifs, comparative genomics, clustering, phylogenetic trees, protein structure, functional characterization of proteins, expression analysis, computational proteomics. This course open to bioinformatics majors only. Prerequisite: two courses out of: BIMM 181 or BENG 181 or CSE 181, BIMM 182 or BENG 182 or CSE 182, BENG 183, BIMM 184 or BENG 184 or CSE 184.

Animal Physiology and Neuroscience

BIPN 100. Mammalian Physiology I (4)
This course introduces the concepts of physiological regulation, controlled and integrated by the nervous and endocrine systems. It then examines the muscular, cardiovascular, and renal systems in detail and considers their control through the interaction of nervous activity and hormones. Three hours of lecture and one hour of discussion. Prerequisites: BILD 1; BILD 2.

BIPN 102. Mammalian Physiology II (4)
This course completes a survey of organ systems begun in BIPN 100 by considering the respiratory and gastrointestinal systems. Consideration is given to interactions of these systems in weight and
temperature regulation, exercise physiology, stress, and pregnancy and reproduction. Three hours of lecture and one hour of section per week. Prerequisite: BIPN 100; BIBC 102 may be taken concurrently.

BIPN 105. Animal Physiology Lab (6)
Experiments are performed on membrane physiology; nerve muscle function; cardiovascular physiology; respiratory, gastrointestinal and renal physiology. Subjects include experimental animals and humans. Prerequisite: BIPN 100 (may be taken concurrently). Three hours of lecture and ten hours of laboratory each week. In addition to the formal lab hours, there will be at least eight hours in which students will be required to work in the class laboratory to complete experiments and prepare for presentations. Attendance at the first lecture/lab is required. Non-attendance will result in the student's being dropped from the course roster. It is the student's responsibility to officially drop the course.

BIPN 106. Comparative Physiology (4)
This course examines the physiological adaptation of animals, invertebrates and vertebrates, to their particular environmental and behavioral niches. Structural, functional, and molecular adaptations of the basic organ systems are discussed. Prerequisites: BILD 2, Chem. 6A-B-C. BILD 3 is recommended.

BIPN 108. Integrative Biology of Exercise (4)
Course will integrate the organ system biology learned in Mammalian Physiology I and II through the study of the human body's response to exercise. Specifically, the multi-organ system reaction to both acute and chronic exercise will be studied from the functional to the basic mechanistic level. Thus, the role of exercise in both health and disease will be addressed. Prerequisites: BIPN 100; BIPN 102.

BIPN 140. Cellular Neurobiology (4)
This course covers the biophysics of the resting and active membranes of nerve cells. It also covers the mechanisms of sensory transduction and neuromodulation, as well as the molecular basis of nerve cell function. Prerequisites: BILD 1, 2; BIBC 100 or 102 recommended.

BIPN 142. Systems Neurobiology (4)
This course covers integrated networks of nerve cells, including simple circuits like those involved in spinal reflexes. We will study how information and motor output is integrated and processed in the brain. We will also discuss higher-level neural processing. Prerequisites: BILD 1, 2, and BIBC 100 or 102.

BIPN 144. Developmental Neurobiology (4)
Cellular and molecular basis of cell determination, neurite outgrowth, specificity, synaptogenesis, and cell death in the brain. Prerequisite: upper-division standing.

BIPN 145. Neurobiology Laboratory (6)
Basic principles of nerve and muscle physiology will be taught through weekly exercises and individual projects. One hour of lecture and nine hours of laboratory each week. Prerequisite: BIPN 140 or BIPN 142 or BIPN 146 (may be taken concurrently).

BIPN 146. Computational Neurobiology (4)
An exploration of computational brain models, including biophysical models of single neurons, small neural circuits, and larger scale network models. Prerequisite: BILD 12 or BIPN 140 or Psych. 106 or Cog. Sci. 107 recommended.

BIPN 148. Cellular Basis of Learning and Memory (4)
Cellular and molecular mechanisms that underlie learning and memory. Synapse formation and synaptic plasticity, neurotransmitter systems and their receptors, mechanisms of synaptic modification and effect of experience on neuronal connectivity, and gene expression. Prerequisites: BILD 1, BILD 2; BIBC 100 or BIBC 102 (may be taken concurrently).

Special Courses

BISP 190. Advanced Biology Seminars for Seniors (2)
Experts in diverse areas of biology from major universities in the U.S. and abroad will describe current research activities being conducted in their laboratories. Relevant readings will be assigned. P/NP grades only. Prerequisites: seniors only; concurrent enrollment in BISP 199 or consent of instructor.

BISP 194. Advanced Topics in Modern Biology (2)
Course will vary in title and content. When offered, the current description and title are found in the Schedule of Classes and the Biological Sciences Web site. Can be taken a total of four times as topics vary. Students may not receive credit for the same topic. Prerequisites: BIBC 102; BICD 100; upper-division standing.

BISP 195. Introduction to Teaching in Biology (4)
Introduction to the teaching of the basic course in biology. A student under the direction of the instructor of the course is assigned one class section and will meet one time per week with the section. A student is required to attend the course lecture and meet with the instructor of the course at least one time per week. Limited to upper-division students who have a B average or higher. Three hours' lecture. (P/NP grades only.) Prerequisites: consent of instructor and approval of department chair. (Note: Applications for a BISP 195 are to be submitted to the Division of Biological Sciences by the end of the sixth week of the quarter preceding the quarter in which the BISP 195 will be completed.) This course may be counted as one of the upper-division electives for a biology major.

BISP 196. Honors Thesis in Biology (4)
Senior thesis research program. Research is conducted under the supervision of a biology faculty member. This one-year program is taken in addition to the major requirements for graduation. Upon satisfactory completion of the program, students will receive "Distinction in Biology" on their transcripts. Prerequisites: senior standing, 3.7 GPA or above; prior selection for the program by a faculty member and approval by program coordinator. A department stamp will be used to monitor during registration.

BISP 197. Biology Internship Program (4)
Under the joint supervision of a biology faculty advisor and a selected industry mentor, the student will conduct independent research on a problem in an industrial biotech laboratory. The student will gain insight into industry research and practical biotech experience. Prerequisites: BIBC 103 or BIMM 101, BIBC 102, BICD 100, BIMM 100, overall GPA 3.0, and consent of the biology faculty coordinator.

BISP 199. Individual Research for Undergraduates (2 or 4)
Individual research on a problem by special arrangement with a faculty member. Projects are expected to involve primary, experimental approaches that augment training in basic biology and that echo the curricular focus of the Division of Biological Sciences. (P/NP grades only) Prerequisites: Students must have an overall UCSD GPA of at least 3.0, a minimum of ninety units complete, and approval by division chair. Students must complete a "Special Studies" form and a Division of Biological Sciences "Research Plan." (Note: Applications for a BISP 199 must be submitted to the Division of Biological Sciences prior to the eighth week of the quarter preceding the quarter in which the BISP 199 will be completed.) This course may be counted as one of the upper-division electives for a biology major, providing that no other special studies courses have already been counted toward the major.

GRADUATE

BGGN 204. Topics in Community and Population Ecology (3)
This course teaches a different topic each quarter on the theoretical or conceptual side of community and population ecology. Students will read materials in depth, attend weekly discussions, and explore theories and models with statistical, analytical, and algorithmic tools of the trade. Prerequisite: graduate standing or consent of instructor. (S/U grades only) (Quarter offered varies and course is not offered every year.)

BGGN 205. Communicating Science to the Public (2)
Learn effective ways of communicating science to non-scientists. Develop an understanding of how people's views of science and background knowledge can influence their learning, and develop methods to tailor communication for different audiences. (Quarter offered varies, and course is not offered every year.)

BGGN 206. Topics in Biophysics and Physical Biochemistry (4)
Selection of topics of current interest. Examples: primary processes of photosynthesis; membrane biophysics; applications of physical methods to problems in biology and chemistry, e.g., magnetic resonance, X-ray diffraction, fluctuation spectroscopy, optical techniques (fluorescence, optical rotary dispersion, circular dichroism). Topics may vary from year to year. Prerequisite: consent of instructor. (S/U grades permitted.) This course is cross-listed with Physics 206 and Chemistry 206. (Quarter offered varies, and course is not offered every year.)

BGGN 210. Neurobiology Boot Camp (4)
For incoming doctoral students in Neurobiology, Computational Neurobiology, and Neurosciences. During first two weeks in September, students commit to ten to fifteen hours per day in lectures and laboratories in electrophysiology, cellular anatomy, molecular biology, optical imaging, and computational neuroscience. Students also attend weekly seminars during fall quarter. Prerequisite: graduate standing; major codes B177, B179, NE75, (F).

BGGN 212. Special Topics in Microbiology (3)
Recent developments in prokaryotic and eukaryotic microbial research. Topics vary from year to year but may include the following subjects: the molecular basis of (a) sex determination, expression, and interconversion; (b) differentiation, morphogenesis, and programmed death; (c) transcriptional and metabolic regulation; and (d) chemical macromolecular and energy-mediated reception, transmission, and response processes. The main thesis of the course is that examples of complex regulatory phenomena in higher organisms can be found in single celled organisms. This course is open to enrollment by undergraduates. Prerequisites: BIBC 102 and BICD 100. (S/U grades permitted) (Quarter offered varies, and course is not offered every year.)
BGGN 213. Topics in Conservation Biology (3)
Provides in depth coverage of topics in population genetics and ecology, community ecology, biogeography, human ecology, and ecosystem management relevant to conservation biology. Topics vary from year to year and have included pedigree analysis, inbreeding depression, minimum viable population size, problems of overabundance, fragmented populations, key-stone species, in-situ and ex-situ conservation techniques. One two-hour meeting weekly. Prerequisite: graduate standing or consent of instructor. (S/U grades only.) (S)

BGGN 215. Phylogenetics (3)
This course provides the theoretical and practical basis of phylogenetic analysis (the estimation of phylogenetic trees). Students will understand the assumptions made in phylogenetic analysis, be able to identify the strengths and weaknesses of various methods, and perform a phylogenetic analysis on DNA sequence data. Prerequisite: one semester of calculus is recommended. (S)

BGGN 218. Post-Genomics Biology (2)
This course will focus on large-scale analysis of post-genomics biological systems. Students will be introduced to methods for analyzing changes in gene expression, identifying protein-protein interactions, screening for pathway inhibitors, characterizing multi-protein complexes, and probing protein localization and function. (F)

BGGN 219. Classic Papers in Genetics (3)
The course explores, through classic papers, how genetic approaches in the distant and near past have opened up novel areas of biology. The goal of the course is to teach students the type of approach that allowed these researchers to break out of old paradigms and form new ones of their own based on genetic pathfinding. (W)

BGGN 220. Graduate Molecular Biology (6)
Provides a broad, advanced-level coverage of modern molecular biology for first-year graduate students. Topics include prokaryotic and eukaryotic gene structure and regulation, chromatin structure, DNA replication, translation, mechanisms of transcription, and an introduction to viruses. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only.) (F)

BGGN 221. Graduate Protein Biochemistry (4)
Topics include general aspects of protein structure and biochemical approaches to the isolation and study of proteins. This course also covers the relationship between the structure and function of selected proteins. Detailed discussion of modern biophysical methods to study protein-protein interactions will be included. BGGN 220 is a co-requisite. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only.) (F)

BGGN 222. Graduate Cell Biology (6)
A coverage of modern cell biology for first-year graduate students. There is an up-to-date discussion of topics such as: structure and function of membranes; ion pumps, ion channels, transmembrane signalling; receptor-mediated endocytosis; protein targeting; the role of RER and Golgi apparatus; the biosynthesis of intracellular organelles in animal and plant cells; the cytoskeleton, motility, molecular motors, cell-cell interactions, mitosis; and the control of cell division. Also included are extensive coverage of cell signalling mechanisms and discussions on molecular approaches to cell biology. Prerequisites: BGGN 220 and 221. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only.) (W)

BGGN 223. Graduate Genetics (6)
Provides a broad and extensive advanced-level coverage of molecular and formal aspects of genetics for first-year graduate students. Topics covered include: bacterial genetics, recombination in prokaryotes and eukaryotes, mammalian somatic-cell genetics, developmental genetics, sex determination, dosage compensation, and immunogenetics. Extensive coverage of the use of model systems like Drosophila and C. elegans is included. General and specific aspects of cellular signaling mechanisms will be covered. Prerequisites: BGGN 220, 221 and 222. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only.) (S)

BGGN 224. Graduate Neurobiology (4)
Course covers modern molecular, cellular, developmental, and physiological aspects of neurobiology. Extensive discussion of original research articles will be included. Prerequisites: BGGN 220 and 221. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only.) (F)

BGGN 225. Graduate Immunology (4)
The course is devoted to immunology and is organized as a combined lecture-tutorial course stressing classical as well as current literature. Each week will compose an independent section. Topics will include cellular interactions involved in the immune response and the molecular biology unique to lymphoid factor and receptors. Prerequisites: BGGN 220 and 221. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only.) (S)

BGGN 226. Graduate Animal Virology (4)
This course consists of a review of fundamental concepts together with an in-depth analysis of the structure, genetics, multiplication and oncogenicity of animal viruses. Particular emphasis will be given to the DNA and RNA tumor viruses. The format of this section includes lectures and discussion of selected papers. Prerequisites: BGGN 220 and 221. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only.) (W)

BGGN 227. Graduate Topics in Plant Biology (4)
This course covers advanced topics in plant biology in the areas of molecular genetic developmental, and physiological biology. We will discuss plant-microbe interactions, transposable elements, protein trafficking, ion transport, and organ development. The format of this section includes lectures and discussion of selected papers. Prerequisites: BGGN 220, 221, and 222. OPEN ONLY TO STUDENTS ENROLLED IN A GRADUATE DEGREE PROGRAM. (Letter grades only.) (W)

BGGN 228. Graduate Developmental Biology (4)
This course covers graduate level lectures on developmental biology, emphasizing the use of genetically tractable model systems. Discussion of recent research articles is an integral aspect of this course. Students are introduced to classical experiments and given detailed coverage of recent fundamental findings in developmental biology. Prerequisites: BGGN 220 and 221. (Letter grades only.) (S)

BGGN 229. Graduate Oncogenes (4)
This course provides detailed coverage of the cellular and molecular basis of cellular transformation and oncogenesis. There will be extensive discussion on the role of oncogenes and their cellular counterparts. The course also provides in-depth analysis of intracellular signal transduction mechanisms. Prerequisites: BGGN 220, 221, and 222. (Letter grades only.) (S)

BGGN 230. Graduate Signal Transduction (4)
The course will introduce students to a variety of signal transduction pathways and their function in the regulation of cellular processes. Special emphasis will be given to signaling cascades regulating immunological responses and alterations of signaling pathways during oncogenesis. (W)

Research papers from all aspects of stem cell biology will be read, presented, and discussed. Papers will range from landmark to current studies, spanning many developmental organisms and cell types. Students will present one paper, provide relevant background, and lead discussions. Prerequisite: graduate standing or consent of instructor. (F)

BGGN 232. Cellular Immunology (3)
This course covers the molecular and cellular events in the humoral and cellular response to antigen, transplantation biology, the structure and function of the major histocompatibility gene complex, the T-cell receptor, lymphokines, and the induction of immunological tolerance. It serves as the second course in a two-part sequence. May be taken by undergraduates who have taken Part 1 (BICD 140) and by graduate students (S/U grades only.) (Quarter offered varies and course is not offered every year.)

BGGN 235. Biology and Biochemistry of Cancer Cells (2)
This course covers recent advances in cell biology, biochemistry, immunology, and virology as they relate to cancer cells and their interaction with the host. Cancer research specialists from outside will be brought in to discuss the most recent evidence and interpretations in key areas of cancer research. This course meets two hours per week for lecture and discussion. It will be at an advanced graduate level but open to a limited number of seniors (with permission of instructor) on a P/NP basis. (S/U grades only) (Quarter offered varies, and course is not offered every year.)

BGGN 236. Essentials of Glycobiology (2)
Molecular glycobiology encompasses studies of the structure, biosynthesis, and biological roles of oligosaccharide units on glycoconjugates. This course provides an overview of this rapidly evolving field with an emphasis on the glycoconjugates of eukaryotic organisms in the animal kingdom. (S/U grades only.) (S) This course is cross-listed with Medicine 222.

BGGN 238A. Integrative Microbiology I (4)
To introduce students with structural and functional properties of microorganisms and with the role of microbes in the world. Course will emphasize the integrative aspects of microbiology. First course in series. Prerequisite: graduate standing.

BGGN 238B. Integrative Microbiology II (4)
To introduce students with structural and functional properties of microorganisms and with the role of microbes in the world. Course will emphasize the integrative aspects of microbiology. Second course in series. Prerequisite: graduate standing.

BGGN 240. Cellular Neurobiology (2)
Students read classic and modern papers that form the basis of the undergraduate lectures (BIPN 240), which they are encouraged to attend. These papers are presented by the students at weekly discussion sessions. Prerequisite: consent of instructor. (S/U grades only.) (F)
BGGN 242. Systems Neurobiology (2)
Students read classic and modern papers that form the basis of the undergraduate lectures (BIPN 142), which they are encouraged to attend. These papers are presented by the students at weekly discussion sessions. Prerequisite: consent of instructor. (S/U grades only) (W)

BGGN 243. Systems Neurophysiology (3)
Ways in which neurons are assembled into circuits to achieve perception and patterned movement. Prerequisite: graduate standing or consent of instructor. (S/U grades only)

BGGN 246 A-B. Computational Neurobiology (2-2)
Students read classic and modern papers that form the basis of the undergraduate lectures (BIPN 146), which they are encouraged to attend. Students present these papers at weekly discussion sessions. The focus of 246A is cellular neuronal properties and the focus of 246B is properties of neuronal systems. Prerequisite: graduate standing or consent of instructor. (S/U grades only)

BGGN 247. Development of Neural Systems (4)
Course emphasizes current molecular and physiological approaches used to study the development of neural circuits including the processes of neuronal migration, axon pathfinding, and synapse and circuit formation in different systems. Topics include development of the visual system, olfactory system, spinal cord and cerebellum. Prerequisite: graduate standing or consent of instructor. (S/U grades only)

BGGN 248. Molecular Mechanisms of Neural Development (4)
The cellular and molecular basis of neural development, focusing on primary papers. Topics include: neuronal induction and neurogenesis, cell patterning, neuronal and glial differentiation, neuronal migration, axon pathfinding, synaptogenesis, neuronal cell death, regeneration, activity-dependent events, topographic maps, invertebrate and vertebrate model systems. Prerequisite: graduate standing or consent of instructor.

BGGN 249B-C. Basic Neuroscience (4-4)
These courses are designed for graduate students in the neurosciences and other departments that are part of the interdisciplinary program (i.e., Biology, Cog. Sci.). These courses have been designed to cover as much basic neuroscience as possible in three quarters of study. They will combine two three-hour meetings each week with a 1.5 hour lecture and a 1.5 hour discussion of papers. These are required courses for all first-year neuroscience graduate students. Prerequisite: graduate standing or consent of instructor. (F,W,S)

BGGN 251. Molecular Biology (3)
The first section of this course consists of a review of fundamental concepts in molecular biology together with an in-depth analysis of molecular biological topics of medical importance. The second section covers the structure, genetics, and multiplication of animal viruses, with particular emphasis on the DNA and RNA virus tumors. Other subjects discussed include viral persistence, latency, and approaches to viral chemotheraphy. Three hours of lecture. Prerequisite: biochemistry. (Not open to undergraduates). (S/U grades only) (F)

BGGN 252. Genetics (3)
Human genetics, with emphasis on basic principles. Topics covered include chromosome abnormalities, the mechanisms of dominant and recessive diseases, pedigree analysis, ascertainment of linkage, the interaction of genotype with diseases. Mechanisms of maintaining genetic diversity in human populations will be discussed along with recent approaches to genetic counseling and intervention. Prerequisite: consent of instructor. (Not open to undergraduates). (S/U grades only) (F)

BGGN 253. Immunology (3)
Graduate students will explore topics in specialized areas of immunoregulation and cellular immunology, antigenic and molecular structure of immunoglobin molecules, antigenantibody interactions; cellular events in the humoral and cellular immune responses; translation immunology. Prerequisite: consent of instructor. The course is similar in content to BICD 140 but is accelerated in pace. (S/U grades permitted.) This course is cross-listed with Chemistry 217/F.

BGGN 254. Cell and Membrane Physiology (3)
This course is a survey covering current subjects in membrane biology relevant to medicine. Subjects include: 1) membrane isolation, composition, and structure; 2) consequences of membrane fluidity (mode of action of anesthetics, intercellular communication, eso- and endo-cytosis biogenesis); 3) sensory perception and response (chemo- and energy reception, cellular neurophysiology, muscle, physiology); 4) regulation of membrane function (hormone reception, intercellular adhesion, neoplastic transformation). Prerequisites: biochemistry and genetics. (S/U grades only)

BGGN 260. Neurodynamics (4)
Introduction to the nonlinear dynamics of neurons and simple neural systems through nonlinear dynamics, bifurcation theory, and chaotic motions. The dynamic of single cells is considered at different levels of abstraction, e.g., biophysical and “reduced” models for analysis of regularly spiking and bursting cells, their dynamical properties, and their representation in phase space. Laboratory exercises will accompany the lectures. Prerequisite: graduate standing or consent of instructor.

BGGN 266. Advanced Laboratory in Biophysical Techniques (6)
Experiments that emphasize biophysical principles through hands-on experience, with an emphasis on the blending of physical measurements with a clearly identified biological problem. Exercises include the use of optical tweezers to measure viscous forces at the level of cellular organelles, the characterization of sensorimotor control in the fly during visually guided flight, and the use of microscopic imaging techniques to characterize cell motility and organelle transport. Includes instruction in LabView. Students are encouraged to attend the Phys. 173 undergraduate lectures. Prerequisite: graduate standing or consent of instructor. Phys. 120A, BILD 1, and Chem. 6CL for undergraduates.

BGGN 269. Mathematics for Neurobiologists (6)
An intensive course to introduce the mathematical concepts and techniques used in modern neurobiology. Intended for beginning graduate students in the neurosciences, but is also available to advanced undergraduates, with the consent of the instructor. Prerequisite: graduate standing or consent of instructor.

BGGN 271. Advanced Experimental Methods in Biology (4-12)
Advanced laboratory and/or field experience in contemporary biological methodology. Open only to students enrolled in the integrated Bachelor's/Master's Degree Program. Prerequisites: consent of instructor and approval of division chair. (F,W,S) (Graduate students: letter grades only)

BGGN 297. Research Conference (1-3)
Group and individual discussion of research activities and of current literature. Prerequisite: graduate standing. (S/U grades only) (F,W,S)

BGGN 298. Laboratory Projects in Biology (3-12)
An introduction to contemporary laboratory techniques and research interests through independent, original projects under the direction of individual faculty members. Prerequisite: consent of instructor. (Letter grades only) (F,W,S)

BGGN 299. Thesis Research in Biology (1-12)
(F,W,S)

BGGN 300. Apprentice Teaching (4)
This course involves participation in upper-division undergraduate teaching at the level of assuming responsibility for recitation sections or laboratories under the supervision of the responsible faculty member. Some experience in lecturing to upper-division classes will occasionally be provided. (S/U grades only) (F,W,S)

BGJC 201. Journal Club in Cell Biology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only) (F,W,S)

BGJC 202. Journal Club in Developmental Biology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only) (Quarter offered is varies, and course is not offered every year.)

BGJC 203. Journal Club in HIV Molecular Biology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only) (F,W,S)

BGJC 204. Journal Club in Molecular and Cellular Immunology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only) (F,W,S)

BGJC 206. Journal Club in Microbial Physiology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only) (F,W,S)

BGJC 208. Journal Club in Plant Molecular Biology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only) (F,W,S)

BGJC 210. Journal Club in Cell Cycle Regulation (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only) (F,W,S)
BGC 213. Journal Club in Computational Neurobiology (1)
Weekly presentations and discussions pertaining to research results reported in recently published literature. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 203. Research Discussion in Development of Dicystostelium (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 204. Molecular Biology of the Cell (1)
Research reports and discussions based on recent experimental results in cell biology, oncogenesis, genetics, molecular biology and development. Students are expected to present and discuss their own new data and the recent data of others. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 205. Research Discussion in Plant Membrane Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 206. Research Discussion in Metals in Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 207. Research Discussion in Neuronal Pattern Generation (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 208. Research Discussion in Mammalian Molecular Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 210. Research Discussion in Virology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 211. Research Discussion in Developmental Cellular Neurobiology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 212. Research Discussion in Behavior and Development of Simple Nervous Systems (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 214. Research Discussion in Development and Function of the Immune System (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 215. Research Discussion in Lymphocyte Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 216. Research Discussion in Molecular and Cell Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 218. Research Discussion in Plant Molecular Genetics (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 219. Research Discussion in Molecular Biophysics (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 220. Research Discussion in Advanced Evolutionary Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 221. Research Discussion in Behavioral Ecology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 222. Research Discussion in Evolutionary Molecular Ecology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 223. Research Discussion in Ecology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 224. Research Discussion in Plant Population Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 225. Research Discussion in Genetic Variation (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 226. Research Discussion in Conservation Genetics (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 227. Research Discussion in Intracellular Signalling (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 228. Research Discussion in Drosophila Developmental Biology (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 230. Research Discussion in Cell Signalling Pathways (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 231. Research Discussion in Nuclear Transport and Function (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings
Biomedical Sciences

OFFICE: 5008 Basic Science Building,
School of Medicine
http://biomedsci.ucsd.edu

Professors
Kim E. Barrett, Ph.D., Medicine
Timothy D. Bigby, M.D., Clinical Medicine
Roland C. Blantz, M.D., Medicine
Gerry R. Boss, M.D., Medicine
Philip Bourne, Ph.D., Pharmacology
Joan Heller Brown, Ph.D., Pharmacology (Chair)
Laurence L. Brunton, Ph.D., Pharmacology/Medicine
John M. Carethers, M.D., Medicine
Dennis A. Carson, M.D., Medicine
Webster K. Cavenee, Ph.D., Medicine
Shu Chien, M.D., Ph.D., Bioengineering/Medicine
Mario Chojkier, M.D., Medicine (In-Residence)
Jerold J. M. Chun, Ph.D., Pharmacology (Adjunct)
Don W. Cleveland, Ph.D., Medicine
James W. Covell, M.D., Pediatrics
Jerrold M. Olefsky, M.D., Medicine
Richard Kolodner, Ph.D., Medicine
Marc M. Montminy, M.D., Medicine
Elizabeth A. Komives, Ph.D., Chemistry and Biochemistry

Christopher K. Glass, M.D., Ph.D., Cellular and Molecular Medicine/Medicine
Lawrence S. B. Goldstein, Ph.D., Cellular and Molecular Medicine
Tracy Handel, Ph.D., Pharmacy
Stephen Hedrick, Ph.D., Cellular and Molecular Medicine
Michael C. Hogan, Ph.D., Medicine (Adjunct)
Vivian Hook, Ph.D., Pharmacology
Stephen B. Howell, M.D., Medicine
Paul A. Insel, M.D., Pharmacology/Medicine
Wolfgang Junger, Ph.D., Surgery (Adjunct)
Martin F. Kagnoff, M.D., Medicine
Michael Karin, Ph.D., Pharmacology
Kenneth Kaushansky, M.D., Medicine (Chair)
John Kelsoe, M.D., Psychiatry
Thomas J. Kipps, M.D., Ph.D., Medicine
Theo Kirkland, M.D., Pathology/Medicine (In-Residence)

Dennis A. Carson, M.D., Medicine
Marilyn G. Farquhar, Ph.D., Cell Biology
Ronald M. Evans, Ph.D., Genetics
Marilyn G. Farquhar, Ph.D., Molecular Medicine
Pharmacology

BGRD 232. Research Discussion in Chromatin and Transcription Regulation (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 233. Research Discussion in Cell Cycle Motility (1)
Presentations of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGRD 234. Research Discussion in Cell Signalling in Drosophila (3)
Presentation of new research results and discussions of closely related published reports. All students are expected to report on their own research findings each quarter. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.)

BGSE 200. Seminar in Biology (1)
Invited speakers from the U.S. and abroad, who are leaders in various aspects of biological research, describe their current research. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGSE 201. Seminar in Molecular Biology (1)
Invited speakers from the U.S. and abroad, who are leaders in various aspects of biological research, describe their current research. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGSE 202. Seminar in Immunology (1)
Invited speakers from the U.S. and abroad, who are leaders in various aspects of biological research, describe their current research. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGSE 203. Seminar in Population Biology (1)
Invited speakers from the U.S. and abroad, who are leaders in various aspects of biological research, describe their current research. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGSE 204. Seminar in Developmental Genetics (1)
Invited speakers from the U.S. and abroad, who are leaders in various aspects of biological research, describe their current research. Prerequisite: none for graduate students. Undergraduates must be seniors or enrolled in BISP 199. (S/U grades only.) (F,W,S)

BGSE 205. Graduate Research Seminar (1)
Discussions of recent research in various aspects of biological research conducted by third- and fourth-year doctoral students in the Division of Biological Sciences. (S/U grades only.) (F,W,S)
The Graduate Program

The graduate program offered by the Group in Biomedical Sciences is designed to lead to the Ph.D. degree through a combination of didactic study, laboratory rotations, and thesis research in basic biomedical sciences. Research experiences are wide and varied, permitting students the options of selecting molecular, cellular, or organ and integrated systems approaches in their research programs. Students are encouraged to design and execute investigation in a self-critical and independent manner. Undergraduate preparation must include courses in mathematics (through calculus), chemistry (including organic, physical, and biochemistry), and if possible, participation in undergraduate research. Students whose undergraduate backgrounds are significantly different will be considered provided there is sufficient evidence of interest in cell and molecular biology, physiology, pharmacology, or eukaryotic regulatory biology, and a desire to enter a field of active research and academic excellence.

Doctoral Degree Program

During the first year, the students take basic courses in cell biology, molecular biology, pharmacology, physiology, genetics, and microbiology/immunology. In a required laboratory rotation program, students develop laboratory skills and the ability to formulate scientific hypotheses and become familiar with the research activities of the faculty. Students may differentiate into one of five advanced training tracks: genetics, microbiology/immunology, molecular cell biology, molecular pharmacology, or physiology. Required advanced courses and electives in subsequent years are chosen to develop the students’ interest and specialized knowledge in the thesis research area and chosen training tracks. The thesis laboratory is usually selected by the end of the first year of graduate study.

The graduate program is interdepartmental and interdisciplinary; it involves faculty of the Departments of Medicine, Pharmacology, Neurosciences, Reproductive Medicine, Chemistry, Pathology, Bioengineering, Cellular and Molecular Medicine, Psychiatry, Orthopedics, Anesthesiology, and the Cancer Center. Pharmacologic studies of drug action at the molecular and biochemical levels include studies of receptor structure and function, genetic and recombinant DNA methods to analyze ligand-receptor interactions, regulation of gene expression and signal transduction, and biophysical approaches to defining neurotransmitter and hormone action. Molecular and cell biological approaches are being applied to the study of major issues in cell biology, including the regulation of protein targeting and intracellular membrane traffic, hormone and growth factor receptors, endothelial cell biology, molecular motors, RNA splicing, and mitosis, among others. Physiological studies include molecular to whole animal approaches to cardiovascular, microcirculatory, respiratory, renal, gastrointestinal and fetal physiology and their neural and hormonal control. Genetic and genomic studies include experimental and statistical approaches to existing variations in both human and model organism populations as well as mutagenesis, gene targeting, gene silencing, gene profiling, and gene therapy approaches to manipulating genomes. Studies in microbiology and immunology are focused on the fundamental basis of innate and adaptive immunity, elucidation of inflammatory response pathways, and understanding those virulence mechanisms of pathogenic bacteria, viruses, and parasites that can subvert host and contribute to infectious disease pathogenesis. Faculty within the program are the directors of four specialized centers of research at the university focusing on cancer, myocardial ischemia, hypertension, and atherosclerosis. Other faculty directors of training grants for programs in pulmonary physiology, oncogenes, cardiovascular physiology, cellular and molecular pharmacology, hypertension, metabolic diseases, cell and molecular biology, genetics, digestive diseases, and cancer cell biology.

The graduate program in biomedical sciences is also designed to educate physician-scientists through the School of Medicine’s Medical Scientist Training Program. Students already admitted to the School of Medicine are eligible for admission to our program for Ph.D. training. Such students generally apply in the first or second year of their medical studies and enter graduate studies.
For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.
eases. Prerequisites: graduate-level course in cell biology and molecular biology.

246. Current Literature in Glycobiology (1)
Informal presentations on topics of current interest in glycobiology as represented in the current scientific literature. Prerequisite: consent of instructor.

250. Molecular and Modern Methodologies in Physiological Sciences (2)
This course emphasizes modern approaches and methodologies for investigating physiological processes in normal and pathological conditions. This includes the application of transgenic, knockout, adenovirus gene therapy, antisense, and cellular imaging technologies in animal models.

260. Immune Regulation (3)
This course will cover most of today's key aspects in the organization and dynamics of the immune system and its regulation. It will provide students with a basis for understanding the physiology and functioning of the immune system in normal and pathological states. Prerequisites: core courses in Biomedical Sciences Ph.D. Program, or permission of instructor.

262. Neurophysiology (4)
An overview of neurophysiological systems, emphasizing mammalian neurophysiology and related model vertebrate systems and concepts. (W)

264. Molecular and Cellular Basis of Disease (2)
Lectures on the molecular and cellular mechanisms of pathogenesis. Topics will include Alzheimer's disease, cell surface and unclear receptors in disease, signal transduction by oncogenes in cancer cells, AIDS, human diseases affecting glycosylation pathways, rheumatoid arthritis, and arteriosclerosis. Prerequisite: graduate students. (W)

282. Microbial Pathogenesis (3)
Topics covered in this course include molecular and cellular mechanisms of viral, bacterial, and protozoan pathogens. Host response and microbial mechanisms of evasion of host defense will also be discussed. Sessions will consist of faculty and student presentations of current literature. Prerequisite: graduate standing or consent of instructor. (S)

285. Statistical Inference in the Medical Sciences (2)
An introduction to basic techniques used in biomedical literature: t tests, ANOVA, chi-square, linear and nonlinear regression. Emphasis will be on understanding the appropriate use and interpretation of the tests, rather than on the calculations.

294. Pharmacology and Molecular Biology Journal Club (0-1)
Current literature in molecular pharmacology and molecular biology is reviewed. Two papers are chosen per week for oral presentation by students. Faculty critique the student presentations. Prerequisite: enrollment in Ph.D. program at year two and above. (F,W,S)

295. Pharmacology Research Discussions (0-1)
Student, faculty, and fellow discussion groups on research projects. Students are expected to present research findings to fellows, other Ph.D. students, and faculty. Written critiques are provided by the faculty. Prerequisites: completion of minor proposition examination and two years of graduate work. (F,W,S)

296. Directed Reading (1-4)
Reading of special topics under the direction of a faculty member. Exact subject matter to be arranged in individual cases. Prerequisite: consent of instructor.

297. Progress in Signal Transduction (1)
Papers describing recent progress in signal transduction from the cell-surface to the nucleus will be chosen from recent research literature. Two papers will be discussed and criticized in detail each week for one hour. Prerequisites: graduate-level Biochemistry, Cell Biology, and Molecular Biology; registered as second-year and above graduate student in Biomedical Sciences, Biology, or Chemistry. (F,W,S)

298. Directed Study (1-12)
Reading and laboratory study of special topics under the direction of a faculty member. Exact subject matter to be arranged in individual cases. (F,W,S)

299. Independent Study or Research (1-12)
Independent study or research. Prerequisite: consent of instructor. (F,W,S)

Biophysics

See "Physics" for more information.

California Cultures in Comparative Perspective Minor

OFFICE: 229 Social Science Building
(858) 822-5118
http://calcultures.ucsd.edu
http://calcultures.ucsd.edu/minor/minor.htm

Program Director
David N. Pellow, Ph.D.

Affiliated Faculty
Georgios Anagnostopoulos, Philosophy
Robert Alvarez, Ethnic Studies
Amy Binder, Sociology
Jodie Blanco, Literature
Robert Cancel, Literature
Wayne Cornelius, Political Science
Zeinabu Davis, Communication
Paul Drake, Political Science

Steve Erie, Political Science
Yen Espiritu, Ethnic Studies
Rosemary George, Literature
Nora Gordon, Economics
David Gutierrez, History
Gordon Hanson, International Relations/Pacific Studies
Mark Hardimon, Philosophy
James Holston, Anthropology
Jorge Huerta, Theatre and Dance
Rachel Klein, History
Fred Lonidier, Visual Arts
Lisa Lowe, Literature
Cecil Lytle, Music
Richard Marciano, San Diego Supercomputer Center
Jorge Mariscal, Literature
Natalia Molina, Ethnic Studies
John Moore, Linguistics
Becky Nicolaides, History
Lisa Sun-Hee Park, Ethnic Studies
David N. Pellow, Ethnic Studies and Director,
California Cultures
Keith Pezzoli, Urban Studies and Planning
Maria Polinsky, Linguistics
Emily Roxworthy, Theatre and Dance
Lisa Sanchez, Ethnic Studies
Rosaura Sanchez, Literature
Michael Schudson, Communication
Nayan Shah, History
Stephanie Smallwood, History
Roberto Tejada, Visual Arts
Olga Vasquez, Communication
Daniel Widener, History
Chris Woodruff, International Relations/Pacific Studies
Mina Yang, Music
Elana Zilberg, Communication

The Minor

The California cultures in comparative perspective minor allows students to better understand California's place in the global community and in history. Students can learn about the impact of language, immigration, market forces, the arts, politics and culture, music, and globalization in the past present and future of California.

The California cultures minor will be a core component in a broader, cutting-edge interdisciplinary program that encourages research, teaching, and collaboration among faculty, students, and the public to explore the broad
Implications of the history and current growth of the state of California's immigrant and ethnic populations. This minor is a universitywide interdisciplinary initiative integrating faculty across a range of departments who all share a common focus on the people, economies, and cultures of California.

The minor in California cultures in comparative perspective is administered by the program director. The minor helps students prepare for careers in the legal, governmental, corporate, and non-profit sectors that service socially, culturally, and economically diverse populations. The minor concentration in California cultures would also allow undergraduate students to enroll in courses focusing on racial/ethnic populations in the United States and the border region, from departments across the social sciences and humanities.

Minor Requirements

California cultures minor requirements include lower- and upper-division courses from departments in the social sciences and the arts and humanities. Alternatively, minor requirements may be fulfilled with coursework in conjunction with internships at local and community-based organizations. Requirements are as follows:

1) Students will be required to take one lower-division course from the following list. These courses will provide them with background on California cultures and race/ethnicity in the U.S.

- Anthropology 23: Debating Multiculturalism: Race, Ethnicity, and Class in American Societies (4)
- Ethnic Studies 1A: Introduction to Ethnic Studies: Population Histories of the United States (4)
- Ethnic Studies 1B: Introduction to Ethnic Studies: Immigration and Assimilation in American Life (4)
- Ethnic Studies 1C: Introduction to Ethnic Studies: Race and Ethnic Relations in the United States (4)
- History LD 7A: Race and Ethnicity in the United States (4)
- History LD 7B: Race and Ethnicity in the United States (4)
- History LD 7C: Race and Ethnicity in the United States (4)
- Urban Studies and Planning 3. The City and Social Theory (4)

2) Students will be required to take one upper-division course (HIUS 114, California History or ETHN 118. Contemporary Immigration Issues). These courses will provide students with broad coverage of the various social, economic, cultural, and political aspects of California's changing population dynamics and how these relate to transnational trends as well.

3) Students will be allowed to complete the minor (twenty more required units) by pursuing one of two separate tracks:

TRACK 1: ADDITIONAL COURSEWORK

Students can choose to take five additional courses from the following list, four of which must be upper-division. These courses generally provide students with in-depth coverage of specialized topics in California cultures and/or race, immigration, urban studies. They may not take more than three courses from any one department.

- Communication 114: Bilingual Communication (4)
- Communication 115: Education and Global Citizenship (4)
- Critical Gender Studies 2A: Introduction to Critical Gender Studies: Social Movements (4)
- Economics 135/USP 102: Urban Economics (4)
- Ethnic Studies 1A: Introduction to Ethnic Studies: Population Histories of the United States (4) (if not taken as a required course above)
- Ethnic Studies 1B: Introduction to Ethnic Studies: Immigration and Assimilation in American Life (4) (if not taken as a required course above)
- Ethnic Studies 1C: Introduction to Ethnic Studies: Race and Ethnic Relations in the United States (4) (if not taken as a required course above)
- Ethnic Studies 109: Race and Social Movements (4)
- Ethnic Studies 111: Native American Literature (4)
- Ethnic Studies 116: The United States-Mexico Border in Comparative Perspective (4)
- Ethnic Studies 118: Contemporary Immigration Issues (4)
- Ethnic Studies 121: Contemporary Asian-American History (4)
- Ethnic Studies 123: Asian-American Politics (4)
- Ethnic Studies 129: Asian and Latina Immigrant Workers in the Global Economy (4)
- Ethnic Studies 130: Social and Economic History of the Southwest I (4)
- Ethnic Studies 132: Chicano Dramatic Literature (4)
- Ethnic Studies 136: Topics in Chicano/a-Latino/a Cultures (4)
- Ethnic Studies 148: Latino/a and Chicano/a Literature (4)
- Ethnic Studies 144: Bilingual Communities in the USA (4)
- Ethnic Studies 149: African American History in the 20th Century (4)
- Ethnic Studies 161: Black Politics and Protest since 1941 (4)
- Ethnic Studies 164: African Americans and the Mass Media (4)
- Ethnic Studies 168: Comparative Ethnic Literature (4)
- History 108/ETH 112A: History of Native Americans in the United States
- History 114: California History (4)
- History 117: History of Los Angeles
- History 124: Asian-American History
- History 158: Social and Economic History of the Southwest I
- History 159: Social and Economic History of the Southwest II
- History 180: Immigration and Ethnicity in Modern American Society
- Literature 28: Introduction to Asian American Literature: Race and Modernity (4)
- Music 13AM: World Music/Multicultural America (4)
- Political Sci 100H: Race and Ethnicity in American Politics (4)
- Poli Sci 100J: Race in American Political Development (4)
- Poli Sci 150A: Politics of Immigration (4)
- Sociology B 114: Culture and Ethnicity
- Sociology D 151: Comparative Race and Ethnic Relations (4)
- Theater/History 110: Chicano Dramatic Literature (4)
- Urban Studies and Planning 105/SOC 153: Urban Sociology (4)
- Urban Studies and Planning 107/POLI 102E: Urban Politics (4)
- Urban Studies and Planning 109/POLI 103A: California Government and Politics (4)
- Urban Studies and Planning 136/SOC 148M: Labor Market Inequality in Los Angeles and the Border Region (4)
- Urban Studies and Planning 165: History of the American Suburb (4)
- Urban Studies and Planning 166: History of San Diego (4)
- Urban Studies and Planning 171: Sustainable Development (4)
- Visual Arts 126CN: Art of the North American Indians (4)
- Visual Arts 126DN: African and Afro-American Art (4)
TRACK 2: INTERNSHIP OPPORTUNITIES

Students who choose Track 2 will be able to gain a greater depth of knowledge and appreciation for the California cultures curriculum by applying themselves in an academic or community-based setting. The California cultures in comparative perspective staff has established relationships with several institutions and organizations on and off-campus in the San Diego area and other parts of the state, to provide undergraduates first-hand experience at applying themselves and engaging in collaborative efforts and service with a network of practitioners. Internships are to be arranged by the Academic Internship Program for up to eight units. The remaining units needed to complete the internship track will consist of upper-division courses from the list under Track 1.

Chemistry and Biochemistry

Chair’s Office: 2040 Urey Hall Addition
(858) 534-3575
http://www-chem.ucsd.edu
Undergraduate Student Affairs
4010 York Hall, Revelle College
(858) 534-0220
Graduate Student Affairs
4010 York Hall, Revelle College
(858) 534-6871
Revelle College

Professors
William S. Allison, Ph.D., Emeritus
James R. Arnold, Ph.D., Emeritus
Timothy S. Baker, Ph.D.
F. Thomas Bond, Ph.D., Emeritus
Marjorie C. Caserio, Ph.D., Emeritus
Leigh B. Clark, Ph.D., Emeritus
Robert E. Continetti, Ph.D.
John E. Crowell, Ph.D.
Edward A. Dennis, Ph.D.
Jack E. Dixon, Ph.D., Pharmacology
Daniel J. Donoghue, Ph.D.
Russell F. Doolittle, Ph.D., Research Professor
Arthur B. Ellis, Ph.D., Vice Chancellor for Research
Robert C. Fahey, Ph.D., Research Professor
Marye Anne Fox, Ph.D., Chancellor
Gourisankar Ghosh, Ph.D.
Elvin Harper, Ph.D., Emeritus
David N. Hendrickson, Ph.D.
Patricia A. Jennings, Ph.D.
David R. Kearns, Ph.D., Emeritus
Elizabeth A. Komives, Ph.D.
Joseph Kraut, Ph.D., Emeritus
Clifford P. Kubiak, Ph.D., Chair
Andrew C. Kummel, Ph.D.
Jack E. Kyte, Ph.D., Emeritus
Katja Lindenberg, Ph.D., Academic Senate
Distinguished Teaching Award
Douglas Magde, Ph.D.
Kurt Marti, Ph.D., Emeritus
J. Andrew McCammon, Ph.D.
Trevor C. McMorris, Ph.D., Research Professor
Stanley L. Miller, Ph.D., Emeritus
Mario J. Molina, Ph.D.
Tadeusz F. Molinski, Ph.D.
Xuong Nguyen-Huu, Ph.D., Research Professor
K.C. Nicolaou, Ph.D.
Joseph M. O’Connor, Ph.D.
Hans K. Oesterreicher, Ph.D., Emeritus
Stanley J. Opella, Ph.D.
Charles L. Perrin, Ph.D., Academic Senate
Distinguished Teaching Award
Kimberly A. Prather, Ph.D.
Michael J. Sailor, Ph.D.
Gerhard N. Schrauzer, Ph.D., Emeritus
Kurt E. Shuler, Ph.D., Emeritus
Amitabha Sinha, Ph.D.
Susan S. Taylor, Ph.D.
Partho Ghosh, Ph.D.
Kimberly A. Prather, Ph.D.
Kimberly A. Prather, Ph.D.

Assistant Professors
Michael D. Burkart, Ph.D.
Seth M. Cohen, Ph.D.
Pieter Dorrestein, Ph.D.
Thomas C. Hermann, Ph.D.
Alexander Hoffmann, Ph.D.
Judy E. Kim, Ph.D.
Yoshisaburo Kobayashi, Ph.D.
Ulrich Muller, Ph.D.
Terunaga Nakagawa, M.D., Ph.D.
Michael Tauber, Ph.D.
F. Akif Tezcan, Ph.D.
Michael S. Van Nieuwenhze, Ph.D.
Wei Wang, Ph.D.
Jerry C. Yang, Ph.D.

Lecturers (PSOE)
John Czworkowski, Ph.D.
Haim Weizman, Ph.D.

Adjunct Professors
Kim K. Baldridge, Ph.D.
John E. Johnson, Ph.D.
Joseph P. Noel, Ph.D.
Leslie E. Orgel, Ph.D.
Shankar Subramaniam, Ph.D.

John Wooley, Ph.D., Associate Vice Chancellor for Research

Introduction

The UCSD Department of Chemistry and Biochemistry was founded in the 1950s by the late Professor Harold Urey and a group of colleagues who strove to create a department that would stress the fundamentals of chemistry and, at the same time, embrace diverse applications of those principles at the frontiers of knowledge. Degrees offered include:

Biochemistry
B.S. Biochemistry/Chemistry
M.S. Chemistry
Ph.D. Chemistry
Ph.D. Chemistry with specialization in bioinformatics

Chemistry
B.A. Environmental Chemistry
B.S. Biochemistry/Chemistry
B.S. Bioinformatics from the Department of Chemistry and Biochemistry
B.S. Chemical Education
B.S. Chemical Physics
B.S. Chemistry
B.S. Chemistry/Earth Sciences
B.S. Environmental Chemistry
B.S. Molecular Synthesis
B.S. Pharmacological Chemistry
M.S. Chemistry
Ph.D. Chemistry
Ph.D. Chemistry with specialization in bioinformatics
Ph.D. Chemistry with specialization in computational science

Chemistry–Premedical Majors

Either a biochemistry/chemistry major or a chemistry major with appropriate choice of electives provides a strong background for students intending to pursue careers in the medical sciences.

Premedical students are encouraged to complete the three-quarter general chemistry series (Chem. 6A-B-C or 6AH-6BH-6CH) in their first year. Most medical schools require both a full year of general chemistry, and may not accept Advanced Placement exam scores to satisfy admissions requirements. Students with Advanced Placement exam scores of 4 or 5 who plan to attend medical school should discuss their academic plan with an academic or career advisor early in their academic career. Students should complete the organic chemistry series (Chem. 140A-B-C) in their sophomore year.

The lower-division biology (BILD 1-2-3) series or equivalent is also required for most medical schools, along with certain upper-division biology courses, some of which may be counted toward the major requirements in chemistry. Students should meet with the department’s undergraduate advisor early in order to plan their courses and discuss their options.

General Chemistry

The General Chemistry Chem. 6 sequence (6A-B-C) is intended for science and engineering majors as well as others who need a quantitative course. It satisfies all preprofessional programs. Chem. 4 is a one-quarter preparation for 6A, which should be taken only by those whose college advisor so recommends. The Honors General Chemistry sequence (6AH-6BH-6CH) is designed for science and engineering majors with strong preparation in science and mathematics. A student intending to major in chemistry can thus begin with 4, 6A, or 6AH depending on the level of preparation. A student intending to major in a discipline other than chemistry should consult his or her advisor in the appropriate department to determine which chemistry course is recommended.

Chem. 11, 12, 13 is a terminal sequence for non-science/non-engineering majors. Chem. 15 is a one-quarter survey course suitable for non-science majors. Students should check with their college advisor to determine applicability toward general-education requirements.

General Information on Undergraduate Major Programs

The minimum passing grade is a D, though students may not graduate with more than one D grade in upper-division required course work and must maintain a minimum of a 2.0 GPA in the major. All courses for the major, except for independent research (Chem. 196 and 199) and chemistry instruction (Chem. 195), must be taken for a letter grade. Chem. 195, 196, and 199 must be taken on a P/NP basis. All chemistry majors, including transfer students, must complete forty-eight units of upper-division chemistry course work at UCSD and fulfill the campus senior residency requirement.

In addition to the requirements, Math. 20F (required for chemical physics majors) and a course in computer programming are also recommended.

Any departure from the requirements outlined below must be approved by petition. This applies to lower- and upper-division requirements.

The suggested programs following each of the major descriptions are only examples.

All undergraduate degree programs, unless otherwise noted, are certified by the American Chemical Society.

Biochemistry/Chemistry Major

The Biochemistry/Chemistry major deals with the chemical processes in living organisms, including structure and function of nucleic acids and proteins. It is suitable for those planning to go to graduate school as well as medical, dental, veterinary, and other professional schools. It is also suitable at the bachelor’s level for jobs in the biotechnology or pharmaceutical field.

The following courses must be taken for a letter grade:

Lower-Division Requirements

1. General chemistry including laboratory (Chem. 6A-C or 6AH-CH, and 6BL, or equivalent).
2. Calculus (Math. 20A-D, or equivalent).
3. Calculus-based physics including laboratory (Phys. 2A-B and 2D or equivalent, and either 2BL, 2CL or 2DL. Phys. 2CL is recommended and is accessible without Phys. 2C).

Upper-Division Requirements

1. Three quarters of organic chemistry (Chem. 140A-C).
2. Two quarters of physical chemistry (Chem. 126-127 recommended; 131–133 acceptable).
3. One quarter of inorganic chemistry (Chem. 120A).
4. Three quarters of biochemistry (Chem. 114A-C).
5. Six laboratory courses (Chem. 100A, 143AH or 143A, 143B, 105A, either 112A or 112B and one additional chemistry lab from the following: Chem. 100B-Bl, 105B, 112A or 112B, 123, 143C, or 143D).
7. One additional elective course chosen from among all of the upper-division and graduate courses offered by the Department of Chemistry and Biochemistry (except non-letter-graded courses) or from the following list of courses offered by the Department of Biology (some biology courses will require additional coursework to fulfill prerequisites): BICD 100, BICD 110, BICD 140, BIMM 114, BIMM 120, BIPN 100, BIPN 102, BIPN 140. Other electives may be arranged by petition.

Suggested Program for Biochemistry/Chemistry B.S. Major

Many courses have enforced prerequisites or are offered once per year.
Chemistry and Biochemistry

Bioinformatics Major from the Department of Chemistry and Biochemistry

Also see the program information listed under Bioinformatics in the catalog.

The Bioinformatics major offers a rigorous, interdisciplinary training in the new and rapidly evolving field of bioinformatics with a strong focus on chemistry and biochemistry. Bioinformatics is the field of advanced computational and experimental methods that model the flow of information (genetic, metabolic, and regulatory) in living systems to provide an integrated understanding of the systems properties of model organisms. This is a new and rapidly evolving field in which large volumes of both qualitative and quantitative data will accrue at an increasing pace, and the bioinformatician must have a substantial mastery of both the sciences and engineering. This interdisciplinary specialization will be offered jointly with computer science and engineering, bioengineering, and biological sciences, each with its own set of requirements and electives. The program offered by the Department of Chemistry and Biochemistry is aimed at a student interested in applying and developing tools of bioinformatics for the study of chemical processes in biological systems.

Admission to the Bioinformatics Major

There is a fifty-student limit in all combined bioinformatics majors on campus. As a result, admission to the bioinformatics degree is not guaranteed, but is based on a screening process which evaluates potential majors based on academic excellence. Since bioinformatics is an interdisciplinary major, a steering committee involving faculty from the participating departments will select among the best candidates applying and recommended through each department, while insuring active participation of the departments and divisions offering the major. The final decision on admission to the pre-major and major will be made by the bioinformatics steering committee, in consultation with the departments.

Chemistry and Biochemistry candidates for the major should enroll as either chemistry (major code Chem. 25) or biochemistry (major code Chem. 31) majors until they have completed their screening courses in the first two years and have been admitted to the bioinformatics major.

Freshmen

Freshmen may apply to the bioinformatics pre-major after completing the initial screening courses:

- Math. 20B
- Math. 20C
- BILD 1
- Chem. 6A

Once admitted to the pre-major, students may take CSE 11 and 12. On completion of those courses, students may apply for admission to the major. Admission is based on the number of seats available and the applicant’s GPA in the six screening courses (Math. 20B-C, BILD 1, Chem. 6A, CSE 11, CSE 12).

Continuing Students

Students who have not declared the bioinformatics pre-major, but who have completed the screening courses, may apply for entry to a bioinformatics program after six quarters (the end of the sophomore year). They will be admitted on a space-available basis, after pre-majors have been screened for admission to the major.

Transfer Students

Effective fall 2003, applicants seeking admission to a bioinformatics major must have completed the following courses with a strong GPA that is competitive with that of UCSD students applying for entry into this specialization:

- a year of calculus (equivalent to Math. 20A-B-C)
- a year of general chemistry, with lab (equivalent to Chem. 6A-B-C, and 6BL)
- the highest level programming course offered at the community college (equivalent to CSE 11 and 12)
- one semester of biology (equivalent to BILD 1 and BILD 2)

Those who have not completed the equivalent courses may be admitted as pre-majors, using the same criteria that apply for UCSD students, and will be allowed a maximum of three quarters to complete pre-major requirements. Transfer students are therefore encouraged to complete these requirements at the community college.

The following courses must be taken for a letter grade:

Lower-Division Requirements

1. Calculus and linear algebra (Math. 20A-C, 20F)
2. General chemistry including laboratory (Chem. 6A-C or 6AH-CH, and 6BL).
3. Physics (Phys. 2A-B)
4. Biology (BILD 1-2)
5. Computer programming (CSE 11-12)
6. Mathematics for algorithm and systems (CSE 21/Math. 15B)
7. Bioinformatics seminar (BILD 94)

The department recommends that students complete an introductory C programming course before taking CSE 11 and CSE 12, either in their first year or during the summer between their first and second years.

Upper-Division Requirements

1. Two quarters of organic chemistry (Chem. 140A-B)
2. Organic chemistry (Chem. 140C) or structural biochemistry (Chem. 114A)
3. Metabolic biochemistry (Chem. 114B)
4. Physical chemistry (Chem. 127 accepted, Chem. 131 and 132 recommended)
5. Molecular and cellular biochemistry (Chem. 114D)
6. Two quarters of biochemistry laboratory (Chem. 112A-112B)
7. Genetics (BICD 100)
8. Cell biology (BICD 110)
9. Two computer science courses (CSE 100 or Math. 176; and CSE 101 or Math. 188)
10. Two additional upper-division electives offered by the Department of Chemistry and Biochemistry (each course must be at least four units) with only one quarter of credit allowed for any given course. Recommended courses are: Chem. 100A, 115, 118, and 143A.

The bioinformatics series comprising the following courses:
11. Molecular sequence analysis (BIMM 181 or CSE 181 or BENG 181)
12. Biological databases (Chem. 182 or BIMM 182 or CSE 182 or BENG 182)
13. Applied genomic technologies (BENG 183)
14. Computational molecular biology (BIMM 184 or CSE 184 or BENG 184 or Chem. 184)
15. Bioinformatics lab (BIMM 185)
16. Probability and statistics (Math. 186)

Suggested Program for the Bioinformatics B.S. from the Department of Chemistry and Biochemistry

Many courses have enforced prerequisites or are offered once per year.

FALL	**WINTER**	**SPRING**
FRESHMAN YEAR
Chem. 6A | Chem. 6B | Chem. 6C
Math. 20A | BILD 1 | Chem. 6BL
Math. 20B | Math. 20C | BILD 94

SOPHOMORE YEAR
CSE 11 | Chem. 140A | Chem. 112A*
BILD 2 | CSE 12 | Chem. 140B
Phys. 2A | Phys. 2B | CSE 21/
| | | Math. 15B

JUNIOR YEAR
Chem. 114A/140C | Chem. 114B* | Elective
BICD 100 | Chem. 114D* | Elective
CSE 100/Math 176* | Math. 186 | BIMM 181/
| | CSE 101/ | CSE 181
Math. 20F | Math. 188 | BICD 110

SENIOR YEAR
Chem. 182/ | Chem. 112A* | BIMM 185
BIMM 182/ | Chem. 127* | Elective
BENG 182/CSE 182 | BIMM 184/ | BICD 183
BEN 183 | BENG 184/CSE 184

* Certain prerequisite courses are waived for the bioinformatics majors. See the department advisor for details.

Chemical Education Major

The Chemical Education major offers an excellent preparation for teaching physical science in secondary schools, including chemistry, physics, earth science, biology, and mathematics. The chemical education program is sufficiently intensive that students with this degree should be admissible as graduate students in chemistry, biochemistry, and teacher education programs at most universities. This program is also excellent preparation for students interested in a career in science writing.

The program is basically a chemistry major with earth science and biochemistry as electives, combined with three courses from Education Studies.

If you are interested in earning a California teaching credential through UCSD, contact Education Studies for information about the prerequisite and professional preparation requirements. It is recommended that you contact Education Studies as early as possible in your academic career.

The following courses must be taken for a letter grade:

Lower-Division Requirements
1. General chemistry including laboratory (Chem. 6A-C or 6AH-CH, and 6BL, or equivalent).
2. Calculus (Math. 20A-D, or equivalent).
3. Calculus-based physics including laboratory (Phys. 2A-B and 2D or equivalent, and either 2BL, 2CL or 2DL. Phys. 2CL is recommended and is accessible without Phys. 2C).
4. Biology (BILD 1).
5. Earth Science (SIO 50).

Upper-Division Requirements
1. Three quarters of organic chemistry (Chem. 140A-C).
2. Two quarters of physical chemistry (Chem. 126-127 recommended; 131-133 acceptable).
3. One quarter of inorganic chemistry (Chem. 120A).
4. One quarter of biochemistry (Chem. 114A).

Chemical Physics Major

The Chemical Physics major applies the concepts and quantitative methods of physics to the descriptions of atoms and molecules, analyzes matter as a statistical assembly of molecular building blocks, and develops and exploits physical (largely spectroscopic), experimental tools with which to test and refine such theories.

The chemical physics major is designed as a preparation for graduate work in chemistry, physics, or other interdisciplinary areas.

The following courses must be taken for a letter grade:

Suggested Program for Chemical Education B.S. Major

Many courses have enforced prerequisites or are offered once per year.

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem. 6A</td>
<td>Chem. 6B</td>
<td>Chem. 6C</td>
</tr>
<tr>
<td>Math. 20A</td>
<td>BILD 1</td>
<td>Chem. 6BL</td>
</tr>
<tr>
<td>Math. 20B</td>
<td>Math. 20C</td>
<td>BILD 94</td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 11</td>
<td>Chem. 140A</td>
<td>Chem. 112A*</td>
</tr>
<tr>
<td>BILD 2</td>
<td>CSE 12</td>
<td>Chem. 140B</td>
</tr>
<tr>
<td>Phys. 2A</td>
<td>Phys. 2B</td>
<td>CSE 21/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Math. 15B</td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem. 126</td>
<td>Chem. 127</td>
<td>Phys. 2CL</td>
</tr>
<tr>
<td>SIO 50</td>
<td>Elective Lab</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>SIO 102/103</td>
<td></td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem. 114A</td>
<td>Chem. 105A</td>
<td>Elective Lab</td>
</tr>
<tr>
<td>Chem. 120A</td>
<td>Chem. 195/196/199</td>
<td>Eds 129A</td>
</tr>
<tr>
<td>EDS 129A</td>
<td>EDS 129B</td>
<td>EDS 129C</td>
</tr>
</tbody>
</table>

Notes:
- * Certain prerequisite courses are waived for the bioinformatics majors. See the department advisor for details.
Lower-Division Requirements

1. General chemistry including laboratory (Chem. 6A-C or 6AH-CH, and 6BL, or equivalent).
2. Calculus and linear algebra (Math. 20A-F, or equivalent).
3. Calculus-based physics including laboratory (Phys. 2A-D or equivalent, and either 2BL, 2CL or 2DL. Phys. 2CL is recommended).

It is recommended that the above requirements be completed by the end of the sophomore year.

Upper-Division Requirements

1. Two quarters of organic chemistry (Chem. 140A-B).
2. Three quarters of physical chemistry (Chem. 131–133).
3. Two quarters of inorganic chemistry (Chem. 120A-B). Chem. 114A can substitute for Chem. 120B.
4. Six upper-division labs: Chem. 100A, 100B-BL, 143AH or 143A, 143B, 105A and one of the following: 100B-BL, 105B, 112A, 112B, 123, 143C, or 143D.
5. Molecular spectroscopy (Chem. 135).
7. Two quarters of physics (Phys. 110A-B, or Phys. 100A-B).
8. One additional course in physical chemistry or related areas as approved by the department. Chem. 199 may be petitioned.

Suggested Program for Chemical Physics B.S. Major

Many courses have enforced prerequisites or are offered once per year.

FALL WINTER SPRING

FRESHMAN YEAR
Chem. 6A Chem. 6B Chem. 6C
Math. 20A Math. 20B Math. 20C
Math. 20C

SOPHOMORE YEAR
Chem. 140A Chem. 140B Chem. 100A
Math. 20D Phys. 143AH Math. 20F
Math. 20E Phys. 2C Phys. 2D

JUNIOR YEAR
Chem. 131 Chem. 132 Chem. 100B-BL
Chem. 143C Phys. 2CL Chem. 133
Math. 110A/100A Phys. 110B/100B Math. 110

SENIOR YEAR
Chem. 105A Elective Lab Chem. 135
Chem. 120A Chem. 120B Elective
*Chem. 114A (fall or winter quarter) may be substituted.

Chemistry Major

The Chemistry major provides a broad introduction for the biochemistry, organic, physical, or inorganic student as well as those who prefer not to specialize. This major will enable a student to pursue further studies in chemistry or in related fields of science, medicine, or engineering.

The following courses must be taken for a letter grade:

Lower-Division Requirements

1. General chemistry including laboratory (Chem. 6A-C or 6AH-CH, and 6BL, or equivalent).
2. Calculus (Math. 20A-D, or equivalent).
3. Calculus-based physics including laboratory (Phys. 2A-B and 2D or equivalent, and either 2BL, 2CL or 2DL. Phys. 2CL is recommended and is accessible without Phys. 2C).
4. SIO 50.

Upper-Division Requirements

1. Three quarters of organic chemistry (Chem. 140A-C).
2. Three quarters of physical chemistry (Chem. 131–133).
3. Two quarters of inorganic chemistry (120A-B).
4. One quarter of biochemistry (Chem. 114A).
5. Six laboratory courses (Chem. 100A, 143AH or 143A, 143B, 105A and two of the following: 100B-BL, 105B, 112A, 112B, 123, 143C, or 143D).
6. Three additional four-unit upper-division or graduate courses in chemistry and biochemistry or related areas. One of Chem. 195 or 199 may be petitioned.

Suggested Program for Chemistry B.S. Major

Many courses have enforced prerequisites or are offered once per year.

FALL WINTER SPRING

FRESHMAN YEAR
Chem. 6A Chem. 6B Chem. 6C
Math. 20A Math. 20B Math. 20C

SOPHOMORE YEAR
Chem. 140A Chem. 140B Chem. 143AH
Math. 20D Math. 20F Math. 2A

JUNIOR YEAR
Chem. 131 Chem. 132 Chem. 100B-BL
Chem. 143C Phys. 2CL Chem. 133
Math. 110A/100A Phys. 110B/100B Math. 110

SENIOR YEAR
Chem. 114A Elective Lab Elective
Elective Elective

Chemistry/Earth Sciences Major

The Chemistry/Earth Sciences major is available in cooperation with UCSD's Scripps Institution of Oceanography. It requires course work for a major in chemistry, plus additional courses in earth sciences. It will appeal to students who plan to go on to graduate school in related fields, or to those students who plan to go into professional earth sciences careers with their undergraduate degree.

The following courses must be taken for a letter grade:

Lower-Division Requirements

1. General chemistry including laboratory (Chem. 6A-C or 6AH-CH, and 6BL, or equivalent).
2. Calculus (Math. 20A-D, or equivalent).
3. Calculus-based physics including laboratory (Phys. 2A-B and 2D or equivalent, and either 2BL, 2CL or 2DL. Phys. 2CL is recommended and is accessible without Phys. 2C).
4. SIO 50.

Upper-Division Requirements

1. Two quarters of organic chemistry (Chem. 140A-B).
2. Three quarters of physical chemistry (Chem. 131–133).
3. Two quarters of inorganic chemistry (Chem. 120A-B). Chem. 114A can substitute for Chem. 120B.
4. Six upper-division labs: Chem. 100A, 100B-BL, 143AH or 143A, 105A, SIO 162, and one of the
The program is designed to prepare students to enter the industrial, governmental, or legal workforce, or to continue studies in the environmental sciences. Students fulfilling their elective requirements with chemistry and biochemistry courses would be prepared to attend most graduate schools in chemical sciences.

The following courses must be taken for a letter grade:

Lower-Division Requirements

1. General chemistry including laboratory (Chem. 6A-C or 6AH-CH, and 6BL, or equivalent).
2. Calculus (Math. 20A-D, or equivalent).
3. Calculus-based physics (Phys. 2A-B and 2D or equivalent). Phys. 2CL (or Phys. 2BL or 2DL) is required for a B.S. degree.

Upper-Division Requirements

1. Two quarters of organic chemistry (Chem. 140A-B).
2. Two quarters of physical chemistry (Chem. 126-127 recommended; 131-133 acceptable).
3. One quarter of inorganic chemistry (Chem. 120A) or a third quarter of organic chemistry (Chem. 140C or 141C).
4. One quarter of biochemistry (Chem. 114A).
5. Three laboratory courses (Chem. 100A, 100B-BL, and 143AH or 143A).
6. Two quarters of environmental chemistry (Chem. 149A-B).
7. Atmospheric chemistry (Chem. 173).

Elective Requirements

1. Four non-science elective courses chosen from the following list (at least one course must be upper-division): Econ. 1, Econ. 2, Econ. 3, Econ. 131, Econ. 132, Econ. 133, Econ 145, HIUS 154, Phil. 148, Phil. 164, Poli. SCI 160AA, Poli. SCI 160AB, Poli. SCI 162, Soc. 185, USP 2, USP 124, USP 144, USP 171. Environmental-tal chemistry students must complete their elective requirements through coursework and cannot substitute examination scores such as Advanced Placement examinations for these courses.
3. Students desiring an ACS certified B.S. Degree must take three laboratory courses: Chem. 105A, 143B or 143C, and one from the following list: Chem. 105B, 112A, 123, 143B, 143C or 143D. These courses may be used to satisfy number 2 above.

Suggested Program for Environmental Chemistry B.A. or B.S. Major (B.S. and ACS certification require additional courses)

Many courses have enforced prerequisites or are offered once per year.

FALL WINTER SPRING

FRESHMAN YEAR
Chem. 6A Chem. 6B Chem. 6C
Math. 20A Math. 20B Math. 20C
SIO 50
SOPHOMORE YEAR
Chem. 100A Chem. 140B Chem. 100B-BL
Chem. 140A Chem. 143AH Phys. 2B
Math. 20D Phys. 2A Phys. 2CL
JUNIOR YEAR
Chem. 131 Chem. 132 Chem. 105A
Phys. 2D SIO 102 Chem. 133
SIO 103 SIO 120
SENIOR YEAR
Chem. 114A* SIO 162 Elective
Chem. 120A Elective Lab
SIO 100
* Chem. 120B (winter quarter) may be substituted.

Environmental Chemistry Major

Students have the option of earning the B.A. or the B.S. in the Environmental Chemistry major. The B.S. is ACS certified and is recommended for those who intend to apply to graduate school.

The Environmental Chemistry major requires a strong chemistry background, but also includes breadth courses from other disciplines related to environmental concerns. The elective courses allow specialization in a secondary area of interest, such as economics, political science, biology, earth sciences, or additional chemistry.

Molecular Synthesis Major

The Molecular Synthesis major offers a thorough training in all aspects of the molecular synthesis of organic, inorganic, and biological substances, and with a fundamental understanding of their structure and reactivity. This major provides an excellent preparation for employment in biotechnology, diagnostic, electronic, and pharmaceutical enterprises as well as for graduate programs in organic, bioorganic, and inorganic chemistry.
The following courses must be taken for a letter grade:

Lower-Division Requirements
1. General chemistry including laboratory (Chem. 6A-C or 6AH-CH, and 6BL, or equivalent).
2. Calculus (Math. 20A-D, or equivalent).
3. Calculus-based physics including laboratory (Phys. 2A-B and 2D or equivalent, and either 2BL, 2CL, or 2DL. Phys. 2CL is recommended and is accessible without Phys. 2C).

Upper-Division Requirements
1. Three quarters of organic chemistry (Chem. 140A-C)
2. Three quarters of physical chemistry (Chem. 131-133)
3. Two quarters of inorganic chemistry (Chem. 120A-120B)
4. One quarter of biochemistry (Chem. 114A)
5. Six laboratory courses (Chem. 100A, 143A or 143AH, 143B-143C, 105A, and 123)
6. Synthetic methods (Chem. 152)
7. Structural or mechanistic organic chemistry (Chem. 154 or 156)
8. Polymer, bioorganic, or bioinorganic chemistry (Chem. 107 or 124 or 157)
9. One additional course from the following: Chem. 114B, 114C, 155, 185, or 199

Suggested Program for Molecular Synthesis B.S. Major
Many courses have enforced prerequisites or are offered once per year.

FRESHMAN YEAR
Chem. 6A
Math. 20A

WINTER
Chem. 6B
Math. 20B

SPRING
Chem. 6C
Math. 20C

SOPHOMORE YEAR
Chem. 100A
Chem. 140A
Math. 20D
Phys. 2A

WINTER
Chem. 140B
Chem. 143AH
Phys. 2B
Phys. 2CL

SPRING
Chem. 140C
Chem. 143B

JUNIOR YEAR
Chem. 120A
Chem. 131
Chem. 143C

WINTER
Chem. 120B
Chem. 123
Chem. 132

SPRING
Chem. 105A
Chem. 133
Chem. 132

SENIOR YEAR
Chem. 114A
Chem. 152

WINTER
Chem. 154/156
Elective

SPRING
Chem. 107/
124/157

Chemical and Biochemistry Major

Pharmacological Chemistry Major

The Pharmacological Chemistry major provides a strong background in chemistry and includes most courses required by California pharmacy schools. The major is intended primarily to prepare students for pharmacy school (Pharm.D.). Students fulfilling their elective requirements with appropriate courses would be prepared for graduate school to obtain a Ph.D. in pharmacology, biochemistry, or other areas of science. Degree recipients would also be prepared for most jobs in the biotechnology and chemical industries.

Pharmacological chemistry students are strongly encouraged to complete a full year of general chemistry and a full year of lower-division biology. As with some medical programs, some pharmacy programs may require a full year of these courses and may not accept tests such as the Advanced Placement exam to satisfy these requirements.

The following courses must be taken for a letter grade:

Lower-Division Requirements
1. Biology (BILD 1, 2 and 3, and either BICD 101, 111, 131, or BIPN 105 or BIMM 121). Alternatively, a year of biology with laboratory at a community college may be petitioned.
2. General chemistry including laboratory (Chem. 6A-C or 6AH-CH, and Chem. 6BL, or equivalent).
3. Three quarters of biochemistry (Chem. 114A-B-C).
4. Calculus (Math. 20A-D, or equivalent).
5. Economics (Econ. 1 or 3 or equivalent).
6. Pharmacology seminar (Chem. 92).

Most California pharmacy schools require a course in public speaking for admission to the school. Students planning to apply to these programs should take Introduction to Speech, Theatre THGE 25, or an appropriate course at a community college.

Upper-Division Requirements
1. Two quarters of physical chemistry (Chem. 126-127 recommended; 131–133 acceptable).
2. Three quarters of organic chemistry (Chem. 140A-C).
3. Three quarters of biochemistry (Chem. 114A-B-C).
4. Four laboratory courses (Chem. 100A, 143AH or 143A, 143B and either 112A, 112B or 143C).
5. One quarter of pharmacology and toxicology (Chem. 118).
6. One chemistry elective course chosen from among all the upper-division and graduate courses offered by the Department of Chemistry and Biochemistry (except non-letter graded courses).

If ACS certification is desired, Chem. 120A, plus two additional laboratory courses (Chem. 105A and a lab chosen from Chem. 100B-105B, 123, or 143C/112A-112B, if not already taken), are required. Any of these courses would satisfy #6 above.

Suggested Program for Pharmacological Chemistry B.S. Major (ACS certification requires additional courses)

Many courses have enforced prerequisites or are offered once per year.

FALL WINTER SPRING
FRESHMAN YEAR
Chem. 6A
Chem. 6B
Chem. 6C
Math. 20A
Math. 20B
Math. 20C

SOPHOMORE YEAR
Chem. 100A
Chem. 140A
Chem. 100A
Chem. 140B
Chem. 140C
Chem. 143AH
Chem. 143B
Chem. 143B
Math. 20D
Phys. 2A
BILD 1
BILD 2

JUNIOR YEAR
Chem. 114A
Chem. 114B
Chem. 114A
Chem. 114B
Chem. 114C
Chem. 143C
Phys. 2D
BILD 3
BILD 2

SENIOR YEAR
Chem. 126
Chem. 127
Elective
Chem. 118
Bio. lab**

* Chem. 112A or 112B may be substituted.
** BICD 101, 111, 131, or BIPN 105 or BIMM 121 (some have prerequisites that must be taken in an earlier quarter).
Honors Program

The Department of Chemistry and Biochemistry offers an Honors Program to those students who have demonstrated excellence in any of the nine majors. Students are eligible for Departmental Honors at graduation when they have:

1. Achieved a GPA of 3.2 overall and 3.4 in chemistry courses.
2. Completed a minimum of eight units of Chem. 199, distributed over at least two quarters. A student who registers for 199 and subsequently fails to complete the Honors Program may apply up to four units to any major that normally allows 199 as elective credit. A student who has successfully petitioned to use a Chem 199 course to fulfill elective credit may not use that course to fulfill honors requirements as well.
3. Submitted a final honors research report to three UCSD faculty members, including their research advisor, for approval.
4. Presented an oral report about their research before a group of at least three faculty. This can be at an undergraduate research conference or at a seminar involving honors students and faculty.
5. Students who are interested in the Honors Program should contact the Undergraduate Coordinator in 4010 York Hall, and are invited to do so at any time.

Minor Program in Chemistry and Biochemistry

A typical minor in chemistry consists of three lower-division lecture courses and at least one laboratory course, followed by a minimum of five upper-division courses, including at least one laboratory course, focused in physical, inorganic, organic, environmental chemistry, or biochemistry. Lower-division course requirements may not be satisfied by advanced placement credit, though transfer units may be used to satisfy lower-division minor requirements. Upper-division courses required by a student’s major may not be applied toward a minor.

Upper-division courses for the minor must be taken at UCSD in the Department of Chemistry and Biochemistry, and must be taken for a letter grade. The minimum overall GPA requirement for the minor is a 2.0.

The Graduate Programs

Graduate students are accepted to the Department of Chemistry and Biochemistry for study toward Plan I (Thesis) and the Plan II (Comprehensive Examination) M.S. in chemistry, the Ph.D. in chemistry and the Ph.D. in chemistry with specialization in bioinformatics. Students interested in the bioinformatics specialization should contact the Student Affairs Office for more information.

Master’s of Science

A Plan I (Thesis) M.S. in chemistry and a Plan II (Comprehensive Examination) M.S. in chemistry are offered.

Admissions: UCSD students are admitted for fall, winter, and spring quarter entrance; non-UCSD students are admitted for fall entrance only. Eligibility requirements for admission include a solid training in the chemical sciences based on the undergraduate record, a 3.0 GPA in chemistry courses completed, and a 3.0 overall GPA.

The GRE general test is required of all applicants. Foreign applicants must submit a TOEFL score; TWE scores are strongly recommended. Those who wish to apply to the Thesis Plan must have a letter of support from the proposed thesis advisor.

Residency and Time to Degree: Master’s students must register at UCSD for a minimum of three quarters, and complete at least twenty units per academic year. Full-time Comprehensive Examination Plan students can complete the degree in three quarters. Thesis Plan students typically take eighteen to twenty-four months to graduate.

Relationship to Doctoral Program: Master’s students who wish to continue their studies as doctoral students in chemistry and biochemistry must request to transfer to that program. Application materials are due mid-January and include current letters of recommendation, current UCSD transcript, and statement of purpose. Transfer is for fall quarter only.

PLAN I (THESIS)

Purpose: To prepare students for research careers or for doctoral or professional studies; the emphasis is on research.

Advancement to Candidacy: A minimum of thirty-six units with an overall GPA of 3.0 must be completed. The majority of units taken are for thesis research (Chem. 299). At least eight units of graduate level chemistry courses must be completed for a letter grade. Four units of teaching apprenticeship are required (Chem. 500; see Doctoral Program, Teaching and Language Requirement sections). Contact the Student Affairs Office for full information.

Thesis: Students must give an oral presentation and defense of their thesis project to a Thesis Committee. A student graduates after the thesis has been defended and the written dissertation approved by his or her committee, department, and OGSR, and filed with the University Archivist. The Thesis Committee consists of at least three faculty: (1) the thesis advisor, (2) a faculty member from the Department of Chemistry and Biochemistry familiar with the student’s research area, and (3) a faculty member from either this or another department whose research is in an area different from that of the thesis.

PLAN II (COMPREHENSIVE EXAM)

Purpose: To prepare students for doctoral or professional studies; the emphasis is on course work.

Advancement to Candidacy: A minimum of thirty-six units with an overall GPA of 3.0 must be completed. The majority of units taken are in letter-graded graduate chemistry courses. Four units of teaching apprenticeship are required (Chem. 500; see Doctoral Program, Teaching and Language Requirement sections). Four units of nonthesis research (Chem. 297) are allowed. Contact the Student Affairs Office for full information.

Education Abroad

Majors are encouraged to explore the programs that allow students to study abroad or at other U.S. universities for a term or longer. See an advisor for details.

Chemistry and Biochemistry majors are encouraged to participate in the UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP). Subject to approval by our faculty, courses taken through EAP/OAP will be accepted for credit toward the major. Students interested in studying abroad should see a departmental program advisor to discuss appropriate courses and programs for their plan of study.

Admission to the Master’s of Science degree program is based on: a) current letters of recommendation, current UCSD transcript, and a statement of purpose. Transfer is for fall quarter only.
The department's Industrial Relations Program equipment supports all the research programs. Excellent state-of-the-art facilities and interfaces with national and local chemical, physical, biological, and engineering sciences. Opportunities for scientific discovery are abundant through the department's extensive collaborations with investigators in the physical, biological, and engineering sciences. This includes on-campus collaborations with faculty in the Materials Science Program, School of Medicine, School of Pharmacy and Pharmaceutical Sciences, and Scripps Institution of Oceanography. There are also off-campus interactions with scientists at nearby research facilities such as the Salk Institute and The Scripps Research Institute. Excellent state-of-the-art facilities and equipment support all the research programs. The department's Industrial Relations Program interfaces with national and local chemical, biotechnology, and pharmaceutical industries to encourage technology transfer and to assist postgraduates interested in industrial careers.

Doctoral Program

The goal of the Ph.D. in chemistry is to prepare students for careers in science by expanding their knowledge of chemistry while developing their ability for critical analysis, creativity, and independent study. The program is designed to encourage initiative and to stimulate enjoyment and development of the student's area of research expertise as well as the broader aspects of scientific inquiry and enlightenment.

Research

Students choose their research concentration from programs in biochemistry, biophysics, bioinformatics, inorganic, organic, physical, analytical, and theoretical chemistry, surface and materials chemistry, and atmospheric and environmental chemistry. Opportunities for scientific discovery are also abundant through the department's extensive collaborations with investigators in the physical, biological, and engineering sciences. This includes on-campus collaborations with faculty in the Materials Science Program, School of Medicine, School of Pharmacy and Pharmaceutical Sciences, and Scripps Institution of Oceanography. There are also off-campus interactions with scientists at nearby research facilities such as the Salk Institute and The Scripps Research Institute. Excellent state-of-the-art facilities and equipment support all the research programs. The department's Industrial Relations Program interfaces with national and local chemical, biotechnology, and pharmaceutical industries to encourage technology transfer and to assist postgraduates interested in industrial careers.

Research Advisor

A first-year faculty advisor guides students until a research advisor is chosen. Most of a student's efforts in graduate school are directed toward research for the doctoral dissertation, and selection of a research advisor is of utmost importance. To assist students with this critical decision, all chemistry and biochemistry faculty present research seminars in the fall quarter. Students then rotate in laboratories or consult with faculty to discuss research opportunities. Although students have until the end of the first year to join a laboratory, most start their research studies by mid-year.

Placement Examinations and Course Work

Entering students take written placement examinations in analytical, biochemistry, inorganic, organic, and physical chemistry. The purposes of these exams are to assist with advising and to assure that students have the breadth and level of competence needed for graduate studies. Deficiencies must be remedied in the first year. Three of five exams must be passed, including the one in the student's research area.

First-year students normally take at least six of the graduate courses listed below based on the results of their placement examinations, their research programs, and their specialized interests. Chem. 250 and Chem. 500 are required. Undergraduate courses and courses offered through other departments may also be taken, depending on the student's research area. By the second year, the emphasis is on thesis research, and a lighter load of courses is taken, although participation in seminars and informal study groups continues.

Departmental Examination

In the winter quarter of the second year, a student's progress in research and graduate studies is evaluated through the departmental examination, which includes presentation and critical discussion of a recent research article. Students are also evaluated on their general knowledge of their particular field of study. Students may also be asked about progress on their dissertation.

Qualifying Examination

By the end of the third year, students defend the topic, preliminary findings, and future research plans of their dissertation. Passing this defense qualifies the student to advance to candidacy for the dissertation. A dissertation committee composed of five faculty, one of whom is the research advisor, provides consultation and evaluation for the dissertation project.

Dissertation

The dissertation is normally completed in the fourth or fifth year. This body of research is expected to make an innovative contribution to the field of chemistry. Ph.D. candidates present a seminar summarizing their research accomplishments and defend their thesis in an oral examination before their dissertation committee.

Teaching

Experience in teaching is a vital and integral part of every graduate student's training, and all students participate in the instructional activities of the undergraduate curriculum. Course credit for the teaching apprenticeship is earned by enrolling in Chem. 500. Excellence in teaching is stressed, and the department provides a thorough training program covering the fundamentals of teaching as well as other useful information and techniques for effective instruction. Further training is provided by the campus's Center for Teaching Development. Faculty and the students taught evaluate the performance of teaching assistants every quarter and awards are bestowed annually for outstanding performance as a teaching assistant.

Language Requirement

Students whose native language is not English must demonstrate a mastery of English adequate to complete the teaching requirement. Deficiencies must be remedied by the end of the first year of academic residency. For native English speakers, there is no foreign-language requirement.

Time Limits

In accordance with UCSD policy, students must advance to candidacy by the end of four years. Total university support cannot exceed six and one-third years. Total registered time at UCSD cannot exceed seven and one-third years.

Seminars

Seminars by researchers from other universities, national laboratories, and industry are
another basic and important aspect of the graduate curriculum. Seminars are presented weekly in biochemistry, inorganic, organic, and physical chemistry. Department colloquia are given on topics of general interest to the department. Seminars are also sponsored by many other departments and institutes.

Financial Support

The department supports all first-year students in good academic standing from a variety of sources, including teaching and research assistantships, training grants, fellowships, and awards. A stipend is paid in addition to fees and, if applicable, tuition. Continuing students who do not have fellowships or awards are normally supported on training grants or on research assistantships by their thesis advisors.

Admissions

The department seeks bright, motivated doctoral students and welcomes all such applications. To make admissions decisions, the department considers an applicant’s statement of purpose and research interests, GRE scores on the general test plus either the advanced chemistry or advanced biochemistry test, undergraduate record, quality of the undergraduate university, letters of recommendation, and research experience and publications. Applicants whose native language is not English must also submit TOEFL scores; TWE scores are strongly recommended. Admissions to the doctoral program is for fall quarter. Applications received by mid-January receive priority consideration.

Students who have a master’s degree with strong course records and with research experience are encouraged to apply. They normally pass the qualifying examination and graduate at an accelerated pace.

Ph.D. in Chemistry with Specialization in Computational Science

As of fall 2007, the UCSD campus is offering a new comprehensive Ph.D. specialization in Computational Science that will be available to doctoral candidates in participating science, mathematics, and engineering departments at UCSD.

This Ph.D. specialization is designed to allow students to obtain standard basic training in their chosen field of science, mathematics, or engineering with a specialization in computational science integrated into their graduate studies. Prospective students must apply and be admitted into the Ph.D. program in Chemistry/Biochemistry described previously. (See the Department of Chemistry/Biochemistry for more information.)

Joint Doctoral Program with San Diego State University

The Department of Chemistry and Biochemistry at UCSD and the Department of Chemistry at San Diego State University offer a joint program of graduate study leading to the Ph.D. degree in chemistry. More information is available in the current edition of the Bulletin of the Graduate Division of San Diego State University.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

LOWER-DIVISION

4. Basic Chemistry (4)
Chemistry 4 is a one-quarter course for science majors with insufficient preparation to start the Chem. 6 sequence. Emphasis is on learning how to solve quantitative problems. Topics include nomenclature, stoichiometry, and the periodic table. Includes a combined laboratory and discussion-recitation each week. Prerequisite: Math. 4C. Cannot be taken for credit after any other chemistry course. Intended for science majors. (F)

6A. General Chemistry I (4)
First quarter of a three-quarter sequence intended for science and engineering majors. Topics include: stoichiometry, gas laws, bonding, atomic theory, quantum theory, and thermochemistry. Three hours lecture, one hour recitation. Prerequisites: proficiency in high school chemistry or physics, Math. 10A or 20A or a higher course in the Math. 10 or 20 sequence (may be taken concurrently). (F,W,S)

6AH. Honors General Chemistry I (4)
First quarter of a three-quarter honors sequence intended for well-prepared science and engineering majors. Topics include: stoichiometry, gas laws, bonding, atomic theory, quantum theory, and thermochemistry. Three hours lecture and one hour recitation. Students may not receive credit for both Chem. 6AH and Chem. 6A. Prerequisites: proficiency in high school chemistry, physics and mathematics. Math. 10A or 20A or a higher course in the Math. 10 or 20 sequence. Concurrent enrollment in Math. 20A or higher level calculus required. (F)

6B. General Chemistry II (4)
Second quarter of a three-quarter sequence intended for science and engineering majors. Topics include: molecular geometry, condensed phases and solutions, chemical equilibrium, acids and bases and thermodynamics. Three hours lecture and one hour recitation. Prerequisites: Chem. 6A, Math. 10A or 20A or a higher course in the Math. 10 or 20 sequence. (F,W,S)

6BH. Honors General Chemistry II (4)
Second quarter of a three-quarter honors sequence intended for well-prepared science and engineering majors. Topics include: molecular geometry, condensed phases and solutions, chemical equilibrium, acids and bases and thermodynamics. Students may not receive credit for both Chem. 6BH and Chem. 6B. Three hours lecture and one hour recitation. Prerequisites: Chem. 6AH, Math. 10A or 20A or a higher course in the Math. 10 or 20 sequence. (W)

6BL. Introductory Inorganic Chemistry Laboratory (3)
Introduction to experimental procedures used in synthetic, inorganic, analytical, and physical chemistry. Prerequisites: Chem. 6A, 6B. Preferably taken concurrently with Chem. 6C. A materials fee is required. A mandatory safety exam must be passed within the first two weeks. (F,W,S)

6C. General Chemistry III (4)
Third quarter of a three-quarter sequence intended for science and engineering majors. Topics include: electrochemistry, kinetics, coordination chemistry, nuclear chemistry, and an introduction to organic and biochemistry. Three hours lecture and one hour recitation. Prerequisite: Chem. 6B, Chem. 6BL may be taken concurrently. (F,W,S)

6CH. Honors General Chemistry III (4)
Third quarter of a three-quarter honors sequence intended for well-prepared science and engineering majors. Topics include: electrochemistry, kinetics, coordination chemistry, nuclear chemistry, and an introduction to organic and biochemistry. Three hours lecture and one hour recitation. Students may not receive credit for both Chem. 6CH or Chem. 6C. Prerequisites: Chem. 6BH, Math. 20B; Chem. 6BL may be taken concurrently. (S)

11. The Periodic Table (4)
Introduction to the material world of atoms and small inorganic molecules. Intended for nonscience majors. Can be skipped by students with a good knowledge of high school chemistry. Cannot be taken for credit after any other general chemistry course. (F)

12. Molecules and Reactions (4)
Introduction to molecular bonding and structure and chemical reactions, including organic molecules and synthetic polymers. Intended for nonscience majors. Prerequisite: Chem. 11 or good knowledge of high school chemistry. Cannot be taken for credit after any organic chemistry course. (W)

13. Chemistry of Life (4)
Introduction to biochemistry for nonscience majors. Prerequisite: Chem. 12. Cannot be taken for credit after any biochemistry course. (S)

15. Chemistry of the Universe (4)
This is a one-quarter, nonmathematical chemistry course for nonscience majors covering the origin of the universe, the elements, and the formation of the
solar system. The evolution of the Earth’s atmosphere, hydrosphere, geosphere, and biosphere will be covered, as well as contemporary problems in environmental chemistry. Cannot be taken for credit after any other chemistry course.

87. Freshman Seminar in Chemistry and Biochemistry (1)
This seminar will present topics in chemistry at a level appropriate for first-year students.

90. Undergraduate Seminar (1)
The seminar will focus on a variety of issues and special areas in the field of chemistry.

91. Undergraduate Honors Seminar (1)
A seminar intended for exposing undergraduate students, especially freshmen and sophomores, to exciting research programs conducted by the faculty. Enrollment is limited.

92. Undergraduate Pharmacology Seminar (1)
Selected topics in pharmacology and toxicology.

96. Introduction to Teaching Science (2)
Revisit students’ learning difficulties in science in more depth to prepare students to make meaningful observations of how K-12 teachers deal with these difficulties. Explore how instruction can use students’ knowledge to pose problems that stimulate students’ intellectual curiosity. Prerequisite: Teaching Math and Science: The Challenge.

99. Independent Study (2-4)
Independent literature or laboratory research by arrangement with and under the direction of a member of the Department of Chemistry and Biochemistry faculty. Students must register on a P/NP basis. Prerequisites: lower-division standing, 3.0 minimum UCSD GPA, consent of instructor and department, completion of 30 units of undergraduate study at UCSD, completed and approved Special Studies form.

UPPER-DIVISION

100A. Analytical Chemistry Laboratory (4)
Laboratory course emphasizing classical quantitative chemical analysis techniques, including separation and gravimetric methods, as well as an introduction to instrumental analysis. Prerequisites: Chem. 6C or 6CH or equivalent, and Chem. 6BL or equivalent; Phys. 2CL or 2BL recommended. A materials fee is required for this course. A mandatory safety exam must be passed within the first two weeks. (F, W, S)

100B. Fundamentals of Instrumental Analysis (2)
Fundamental theoretical principles, capabilities, applications, and limitations of modern analytical instrumentation used for qualitative and quantitative analysis. Students will learn how to define the nature of an analytical problem and how to select and appropriate analytical method. Prerequisites: Chem. 100A or graduate standing, and Phys. 2A-B-D or equivalent; Phys. 2CL or 2BL recommended. (Note: Students may not receive credit for both Chem. 100B and Chem. 106.) (W, S)

100BL. Instrumental Analysis Laboratory (3)
Hands-on laboratory course focuses on the development of correct laboratory work habits and methodologies for the operation of modern analytical instrumentation. Gas chromatography, gas-chromatography-mass spectrometry, high performance liquid chromatography, ion chromatography, atomic absorption spectroscopy. Chem. 100BL is for undergraduates only. Prerequisites: Chem. 100A; Phys. 2A-B or equivalent; concurrent enrollment with Chem. 100B. Phys. 2BL or 2CL recommended. (Note: Students may not receive credit for both Chem. 100B and Chem. 106.) (W, S)

104. Introduction to X-ray Crystallography (4)
Analysis of macromolecular structures by X-ray diffraction. Topics include symmetry, geometry of diffraction, detection of diffraction, intensity of diffracted waves, phase problem and its solution, heavy atom method, isomorphous replacement, anomalous dispersion phasing methods (MAD), direct methods, molecular replacement. Prerequisites: Phys. 2A-B.

105A. Physical Chemistry Laboratory (5)
Laboratory course in experimental physical chemistry. Prerequisites: Chem. 100A (formerly 6CL) and Phys. 2CL or equivalent, Chem. 126 or 127 or 131 or 133. A materials fee is required for this course. (F, W, S)

105B. Physical Chemistry Laboratory (4)
Laboratory course in experimental physical chemistry. Prerequisite: Chem. 105A. A materials fee is required for this course. (F, W, S)

107. Synthetic Macromolecules (4)
The chemistry of high polymers with emphasis on synthesis, structure, characterization, and properties. Polymers as materials are important as films, fibers, and elastomers. They play an ever-increasing role in science, technology, and medicine. Prerequisite: Chem. 140A-B or 141A-B. (May not be offered every year.)

112A. Molecular Biochemistry Laboratory (6)
The application of techniques to study protein structure and function, including electrophoresis, protein purification, column chromatography, enzyme kinetics, and immunochemistry. Prerequisites: Chem. 140A-B-C, 143A, 114A. (Some of these courses may be taken concurrently.) (Note: Students may not receive credit for both Chem. 112A and BIBC 103.) A materials fee is required for this course. (W)

112B. Molecular Biochemistry Laboratory (6)
This laboratory will introduce the students to the tools of molecular biology and will involve experiments with recombinant DNA techniques. Prerequisites: Chem. 114A-B; Chem. 114C (may be taken concurrently); Chem. 143A and 143B. (Note: Students may not receive credit for both Chem. 112B and BIBC 101.) A materials fee is required for this course. (W)

113. Chemistry of Biological Macromolecules (4)
A discussion of the structural principles governing biological macromolecules, the techniques used in their study, and how their functional properties depend on three-dimensional structure. Prerequisites: elementary organic and physical chemistry. (May not be offered every year.)

114A. Biochemical Structure and Function (4)
Introduction to biochemistry from a structural and functional viewpoint. Prerequisite: elementary organic chemistry. (Chem. 140A or equivalent). (Note: Students may not receive credit for both Chem. 114A and BIBC 100.) (F)

114B. Biochemical Energetics and Metabolism (4)
This course is an introduction to the metabolic reactions in the cell which produce and utilize energy. The course material will include energy-producing pathways: glycolysis, Krebs cycle, oxidative phosphorylation, fatty-acid oxidation. Biosynthesis of amino acids, lipids, carbohydrates, purines, pyrimidines, proteins, nucleic acids. Prerequisite: Chem. 114A or BIBC 100. (Note: Students may not receive credit for both Chem. 114B and BIBC 102.) (W)

114C. Biosynthesis of Macromolecules (4)
This course is a continuation of the introduction to biochemistry courses (114A and 114B). This quarter reviews the mechanisms of biosynthesis of macromolecules—particularly proteins and nucleic acids. Emphasis will be placed on how these processes are controlled and integrated with the metabolism of the cell. Prerequisite: Chem. 114B or BIBC 102. (Note: Students may not receive credit for both Chem. 114C and BIBC 100.) (S)

114D. Molecular and Cellular Biochemistry (4)
This course represents a continuation of 114C, or an introductory course for first- and second-year graduate students, and covers topics in molecular and cellular biochemistry. Emphasis will be placed on contemporary approaches to the isolation and characterization of mammalian genes and proteins, and molecular genetic approaches to understanding eukaryotic development and human disease. Prerequisites: Chem. 114A-C or consent of instructor. (May not be offered every year.)

115. Modeling Biological Macromolecules (4)
Use of computer graphics and modeling methods in the study of biological macromolecules. The course will cover basic methods and techniques. The objective is to provide a good working knowledge of the critical features of the methods and to provide a foundation for further study for those who wish to pursue these methods as research topics. Prerequisite: Chem. 114A or equivalent. (May not be offered every year.)

116. Chemistry of Enzyme Catalyzed Reactions (4)
A discussion of the chemistry of representative enzyme catalyzed reactions is presented. Enzyme reaction mechanisms and their relation to enzyme structure are emphasized. Prerequisites: Chem. 140A-C, 114A, and 126 or 131. (May not be offered every year.)

118. Pharmacology and Toxicology (4)
A survey of the biochemical action of drugs and toxins as well as their absorption and excretion. Prerequisites: Chem. 140C or 141C, and Chem. 114C, or consent of instructor. Priorities will be given to PharmChem majors.

120A. Inorganic Chemistry I (4)
The chemistry of the main group elements in terms of atomic structure, ionic and covalent bonding, structural theory involving s, p, and unfilled d orbitals. Thermodynamic and spectroscopic criteria for structure and stability of compounds and chemical reactions of main group elements in terms of molecular structure and reactivity. Prerequisite: a general chemistry course. Chem. 140A or 141A or equivalent course is recommended. (F)

120B. Inorganic Chemistry II (4)
A continuation of the discussion of structure, bonding, and reactivity with emphasis on transition metals and other elements using filled d orbitals to form bonds. Coordination chemistry in terms of valence bond, crystal field, and molecular orbital theory. The properties and reactivities of transition metal complexes including organometallic compounds. Prerequisite: Chem. 120A. (W)

123. Advanced Inorganic Chemistry Laboratory (4)
Synthesis, analysis, and physical characterization of inorganic chemical compounds. A materials fee is
Chemistry and Biochemistry

required for this course. Prerequisites: Chem. 120A, 143AM or 143A, and 143B. Chem. 120B and 143B may be taken concurrently. (WS)

124. Bioinorganic Chemistry (4)
The role of metal ions in biological systems, with emphasis on transition metal ions in enzymes that transfer electrons, bind oxygen, and fix nitrogen. Also included are metal complexes in medicine, toxicity, and metal ion storage and transport. Prerequisite: Chem. 6C or 6CH. Recommended: Chem. 114A and 120A. (May not be offered every year.)

126. Physical Chemistry (4)
An introduction to physical chemistry with emphasis on biochemical and environmental applications. Quantum mechanics and molecular structure, spectroscopy. Prerequisites: Phys. 2D and Math. 20D or 21D; or consent of instructor. (F)

127. Physical Chemistry (4)
An introduction to physical chemistry with emphasis on biochemical and environmental applications. Thermodynamics, first and second laws, thermochmistry, chemical equilibrium, solutions, kinetic theory, reaction kinetics. Prerequisite: Chem. 126 or consent of instructor. (W)

131. Physical Chemistry (4)
Thermodynamics, chemical equilibrium, phase equilibrium, chemistry of solutions. Prerequisites: Math. 20C or 21C, and Phys. 2B. Recommended: Math. 20D or 21D, and Phys. 2D. (F)

132. Physical Chemistry (4)
Chemical statistics, kinetic theory, reaction kinetics. Prerequisites: Math. 20D or 21D, and Phys. 2B. Recommended: Phys. 2D. (W)

133. Physical Chemistry (4)
Quantum mechanics, atomic and molecular spectroscopy, molecular structure. Prerequisites: Chem. 132 and Phys. 2D; or Chem. 6C, Math. 20D or 21D, Math. 20F, and Phys. 2AB; or consent of instructor. (S)

134. Computer Programming in Chemistry (4)
Use of computer programming in the analysis and presentation of chemical data (statistical analysis, least squares fitting procedures, titration curve interpretation, analysis of radioactive decay series, chemical kinetics, organic synthesis, etc.) Prerequisites: Math. 20A and 20B or equivalent. (Note: Students may not receive credit for both Chem. 134 and IBBC 115.) (May not be offered every year.)

135. Molecular Spectroscopy (4)
Time-dependent behavior of systems; interaction of matter with light; selection rule. Radiative and nonradiative processes, coherent phenomena, and the density matrices. Instrumentation, measurement, and interpretation. Prerequisites: Chem. 133 or equivalent, Math. 20D or 21D, or Chem. 190/290. (May not be offered every year.)

140A. Organic Chemistry I (4)
Introduction to organic chemistry, with applications to biochemistry. Bonding theory, isomerism, stereochemistry, chemical and physical properties. Introduction to substitution, addition, and elimination reactions. Students may not receive credit for both Chem. 140A and Chem. 141A. Prerequisite: Chem. 6C or equivalent course in general chemistry. (F,WS)

140B. Organic Chemistry II (4)
Continuation of Organic Chemistry I, 140A. Methods of analysis, chemistry of hydrocarbons, chemistry of the carbonyl group. Introduction to the reactions of biologically important molecules. Students may not receive credit for both Chem. 141B and Chem. 140B. Prerequisite: Chem. 140A (a grade of C or higher in Chem. 140A is strongly recommended). (F,WS)

140C. Organic Chemistry III (4)
Continuation of Organic Chemistry I (140A) and Organic Chemistry II (140B). Organic chemistry of biologically important molecules: carboxylic acids, carbohydrates, proteins, fatty acids, biopolymers, natural products. Students may not receive credit for both Chem. 140C and Chem. 141C. Prerequisite: Chem. 140B (a grade of C or higher in Chem. 140B is strongly recommended). (F,WS)

141A. Organic Chemistry (4)
Chem. 141A introduces theoretical and experimental studies of structure and properties of covalent molecules. Both resonance and simple molecular orbital descriptions of organic compounds are introduced and spectroscopic methods for determining electronic and molecular structure are discussed. Organic reactions are introduced with synthetic and mechanistic examples. Prerequisite: Chem. 6C (6C may be taken concurrently by good students). Prior or concurrent physics recommended. (Note: Students may not receive credit for both Chem. 141A and Chem. 140A.) (F)

141B. Organic Chemistry (4)
A continuation of Chem. 141A, this course applies the structure-reactivity, spectroscopy, and electronic theories introduced in Chem. 141A to organic reactions. Prerequisite: Chem. 141A or consent of instructor. (Note: Students may not receive credit for both Chem. 141B and Chem. 140B.) (W)

141C. Organic Chemistry (4)
A continuation of Chem. 141B-A, this course treats selected topics such as carbon-metal bonds, organometallic chemistry, electrophilic reactions, free radical reactions, alkene chemistry, polymerization, molecular orbital theory and electrocyclic reactions, photochemistry, unstable intermediates such as carbenes, benzene, etc., and metal oxidation reactions, and an introduction to carbohydrate and protein chemistry. Prerequisite: Chem. 141B or consent of instructor. (Note: Students may not receive credit for both Chem. 141C and Chem. 140C.) (S)

143A. Organic Chemistry Laboratory (4)
Introduction to organic laboratory techniques. Separation, and purification, spectroscopy, product analysis, and effects of reaction conditions. Prerequisites: Chem. 6BL and Chem. 140A or Chem. 141A. A materials fee is required. A mandatory safety exam must be passed within the first two weeks. (Note: Students may not receive credit for both Chem. 143A and Chem. 143AH.) (F,WS)

143AH.Honors Organic Chemistry Laboratory (4)
Organic chemistry laboratory for chemistry majors and other honors-level students with strong background in Chem. 140A. Similar to Chem. 143A, but emphasizes instrumental methods of product identification, separation, and analysis. Prerequisites: Chem. 6BL and "B" or better grade in Chem. 140A. A materials fee is required. A mandatory safety exam must be passed within the first two weeks. (Note: Students may not receive credit for both Chem. 143A and Chem. 143AH.) (W)

143B. Organic Chemistry Laboratory (4)
Continuation of Chem. 143AH or 143A, emphasizing synthetic methods of organic chemistry. Prerequisites: Chem. 143AH or 143A, Chem. 140B (may be taken concurrently). Enrollment is limited to majors in the Department of Chemistry and Biochemistry, unless space is available. A materials fee is required for this course. (WS)

143C. Organic Chemistry Laboratory (5)
Identification of unknown organic compounds by a combination of chemical and physical techniques. This course is intended for chemistry majors only. Prerequisites: Chem. 6CL or 100A and 143AH or 143A or equivalent (may be taken concurrently). 143B recommended. A materials fee is required for this course. (F)

143D. Molecular Design and Synthesis (4)
Advanced organic synthesis. Relationships between molecular structure and reactivity using modern synthetic methods and advanced instrumentation. Stresses importance of molecular design, optimized reaction conditions for development of practically useful synthesis, and problem-solving skills. Prerequisites: Chem. 140C and Chem. 143B. A materials fee is required for this course. (S)

149A. Environmental Chemistry (4)
The chemical basis of air and water pollution, chloro-fluorocarbons and the ozone hole, the environmental impact of radioactive waste disposal, mineral resource usage, and nuclear energy. Prerequisite: Chem. 6C or 6CH or equivalent. (F)

149B. Environmental Chemistry (4)
Agricultural productivity, biological impact on the environment, deforestation, environmental disasters (fires, nuclear winter, and volcanoes), and organic waste handling. Prerequisite: Chem. 149A. (W)

152. Synthetic Methods in Organic Chemistry (4)
(Formerly Chem. 148) A survey of reactions of particular utility in the organic laboratory. Emphasis is on methods of preparation of carbon-carbon bonds and oxidation reduction sequences. Prerequisite: Chem. 140C or Chem. 141C or consent of instructor.

(Formerly Chem. 147) A qualitative approach to the mechanisms of various organic reactions; substitutions, additions, eliminations, condensations, rearrangements, oxidations, reductions, free-radical reactions, and photochemistry. Includes considerations of molecular structure and reactivity, synthetic methods, spectroscopic tools, and stereochemistry. The topics emphasized will vary from year to year. This is the first quarter of the advanced organic chemistry sequence. Prerequisite: Chem. 140C or 141C.

155. Synthesis of Complex Molecules (4)
(Formerly Chem. 144) This course discusses planning economic routes for the synthesis of complex organic molecules. The uses of specific reagents and protecting groups will be outlined as well as the control of stereochemistry during a synthesis. Examples will be selected from the recent literature. (May not be offered every year.) Prerequisite: Chem. 152 or 252 or consent of instructor.

156. Structure and Properties of Organic Molecules (4)
(Formerly Chem. 145) Introduction to the measurement and theoretical correlation of the physical properties of organic molecules. Topics covered include molecular geometry, molecular-orbital theory, orbital hybridization, aromaticity, chemical reactivity, stereochemistry, infrared and electronic spectra, photochemistry, and nuclear magnetic resonance. Prerequisites: Chem. 140A-B-C or 141A-B-C or the equivalent.
157. Biorganic and Natural Products Chemistry (4)
(Formerly Chem. 142) A comprehensive survey of modern biorganic and natural products chemistry. Topics will include biosynthesis of natural products, molecular recognition, and small molecule-biomolecule interactions. Prerequisite: Chem. 140C or 141C or 254 or consent of the instructor.

161. Supramolecular Coordination Chemistry (4)
An introduction and survey of modern coordination chemistry. Topics will include structure and bonding of alkali, transition, lanthanide and actinide metals, with emphasis on the first row transition metals; stereochemistry, coordination clusters, molecular solids and nanoparticles. Prerequisites: Chem. 120A and 120B or equivalent.

165. 3D Electron Microscopy of Macromolecules (4)
Biological macromolecules and supramolecular complexes as well as organelles, and small cells are being examined in three-dimensions by modern electron cryomicroscopy and image reconstruction techniques. The basic principles of transmission electron microscopy and 3D image reconstruction are discussed. Prerequisites: Chem. 114A or BIBC 100 or BIBC 110, and Phys. 1A-B-C or Phys. 2A-B-D.

166. Environmental and Molecular Toxicology
Molecular and cellular mechanisms underlie the actions of environmental toxicants. This course will investigate approaches to study the impact of environmental toxicaat on human health. Other modern approaches that are being implemented to detect and remediate environmental toxicants will also be examined. Prerequisites: Chem. 114A-B.

168. Bioenergetics (4)
Chemiosmotic processes in mitochondria and photosynthetic organelles, structure-function relationships of membrane protein apotosis, a refined view of mitochondrial structure deduced from electron tomography, and the role of proteins encoded by mitochondrial DNA in oxidative phosphorylation. Prerequisites: Chem. 114 A and Chem. 114 B (or equivalents.)

170. Cosmochemistry (4)

171. Nuclear and Radiochemistry (4)
Radioactive decay, stability systematics, neutron activation, nuclear reactions, Sizard-Chalmers reactions, hot-atom chemistry, radiation chemistry, effects of ionizing radiation. Prerequisite: general chemistry sequence.

173. Atmospheric Chemistry (4)
Chemical principles applied to the study of atmospheres. Atmospheric photochemistry, radical reactions, chemical lifetime determinations, acid rain, greenhouse effects, ozone cycle, and evolution are discussed. Prerequisites: Chem. 6A-6C or 6AH, 6BH, and 6CH, or equivalent. (S)

Introduction to the chemistry and distribution of the elements in seawater, emphasizing basic chemical principles such as electron structure, chemical bonding, and group and periodic properties and showing how these affect basic aqueous chemistry in marine systems. Prerequisite: Chem. 6C with a grade of C- or better, or equivalent. (May not be offered every year.)

182. Biological Databases (4)
This course provides an introduction to the features of biological data, how those data are organized efficiently in databases, and how existing data resources can be utilized to solve a variety of biological problems. Object oriented databases, data modeling, and description. Survey of current biological databases with respect to above, implementation of database on a biological topic. Prerequisite: CSE 100 or Math. 176. Bioinformatics majors only.

184. Computational Molecular Biology (4)
This advanced course covers the application of machine learning and modeling techniques to biological systems. Topics include gene structure, recognition of DNA and protein sequence patterns, classification, and protein structure prediction. Pattern discovery, Hidden Markov models/support vector machines/ neural network/profiles, protein structure prediction, functional characterization or proteins, functional genomics/proteomics, metabolic pathways/gene networks. Prerequisites: BIMM 181 or BENG 181 or CSE 181; BIMM 182 or BENG 182 or CSE 182 or CHEM 182. Bioinformatics majors only.

185. Introduction to Computational Chemistry (4)
Course in computational methods building on a background in mathematics and physical chemistry. Brief introduction and background in computational theory, molecular mechanics, semi-empirical methods, and ab initio-based methods of increasing elaboration. Emphasis on applications and reliability. Prerequisites: Chem. 126 or 133 and Math. 20C or 21C. (May not be offered every year.)

187. Foundations of Teaching and Learning Science (4)
Examine theories of learning and how they are important in the science classroom. Conceptual development in the individual student, as well as the development of knowledge in the history of science. Key conceptual obstacles in science will be explored. Prerequisites: Chem. 6C and Chem. 96.

188. Capstone Seminar in Science Education (4)
Examine theories of learning and how they are important in the science classroom. Conceptual development in the individual student, as well as the development of knowledge in the history of science. Key conceptual obstacles in science will be explored. Prerequisites: Chem. 6C and Chem. 187.

192. Senior Seminar in Chemistry and Biochemistry (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in chemistry or biochemistry. May be taken for credit up to four times, with a change in topic, and permission of the department. Prerequisites: department stamp and/or consent of the instructor.

195. Methods of Teaching Chemistry (4)
An introduction to teaching chemistry. Students are required to attend a weekly class on methods of teaching chemistry, and will teach a discussion section of one of the lower-division chemistry courses. Attendance at lecture of the lower-division course in which the student is participating is required. (P/NP grades only.) Prerequisite: consent of instructor. (F,W,S)

196. Reading and Research in Chemical Education (2 or 4)
Independent literature or classroom research by arrangement with, and under the direction of, a member of the Department of Chemistry and Biochemistry faculty. Students must register on a P/NP basis. Prerequisites: upper-division standing, 2.5 minimum GPA, consent of instructor and department. (F,W,S)

199. Reading and Research (2 or 4)
Independent literature or laboratory research by arrangement with, and under the direction of, a member of the Department of Chemistry and Biochemistry faculty. Students must register on a P/NP basis. Prerequisites: upper-division standing, 2.5 minimum GPA, consent of instructor and department. (F,W,S)

GRADUATE

207. Modern NMR Methods (4)
Treats varied pulse sequences, one- and two-dimenstional methods, interpretation of relaxation rates, spin-decoupling, multiple quantum filtering, and solvent suppression with application to liquid crystals, membranes, small molecules, proteins, and nucleic acids. Prerequisite: does not require extensive mathematics, but Chem. 130 recommended. (May not be offered every year.)

209. Macromolecular Recognition (4)
Structures and functions of nucleic acids, folding and catalysis of nucleic acids, motifs and domains of proteins, principles of protein-protein interactions, chemistry of protein/DNA and protein/RNA interfaces, conformational changes in macromolecular recognition. Prerequisites: biochemistry background and graduate standing, or approval of instructor.

211. Metabolic Biochemistry (4)
A comprehensive course in biochemistry emphasizing metabolic and human biochemistry. Prerequisites: physical and organic chemistry, graduate standing. (F)

213. Chemistry of Biological Macromolecules (4)
A discussion of the structural principles governing biological macromolecules, the techniques used in their study, and how their functional properties depend on three-dimensional structure. Chem. 213 students will be required to complete additional coursework beyond that expected of students in Chem. 113. Prerequisites: elementary physical and organic chemistry. (May not be offered every year.)

214. Molecular and Cellular Biochemistry (4)
This course represents a continuation of 114C, or an introductory course for first- and second-year graduate students, and covers topics in molecular and cellular biochemistry. Emphasis will be placed on contemporary approaches to the isolation and characterization of mammalian genes and proteins, and molecular genetic approaches to understanding eukaryotic development and human disease. Chem. 214 students will be required to complete additional coursework beyond that expected of students in Chem. 114D. Prerequisite: Chem. 114A-C or consent of instructor. (May not be offered every year.)

215. Modeling Biological Macromolecules (4)
Use of computer graphics and modeling methods in the study of biological macromolecules. The course will cover basic methods and techniques. The objective is to provide a good working knowledge of the critical features of the methods and to provide a foundation for further study for those who wish to pursue these methods as research topics. Chem. 215 students will be required to complete additional coursework beyond that expected of students in Chem. 115. Prerequisite: Chem. 114A or equivalent. (May not be offered every year.)
216. Chemistry of Enzyme Catalyzed Reactions (4)
A discussion of the chemistry of representative enzyme catalyzed reactions is presented. Enzyme reaction mechanisms and their relation to enzyme structure are emphasized. Chem. 216 students will be required to complete additional coursework beyond that expected of students in Chem. 116. Prerequisites: Chem. 140A-B-C, 114A and 126 or 131. (May not be offered every year.)

218. Macromolecular Biochemistry (4)
A comprehensive course in biochemistry emphasizing structural biochemistry. Prerequisites: physical and organic chemistry; graduate-student standing. (F)

219. Special Topics in Biochemistry (4)
This special topics course is designed for first-year graduate students in biochemistry. Topics presented in recent years have included protein processing, the chemical modification of proteins, the biosynthesis and function of glycoproteins, lipid biochemistry and membrane structure, and bioenergetics. Prerequisites: undergraduate courses in biochemistry. Chem. 114A or equivalent. (May not be offered every year.)

221. Signal Transduction (4)
The aim of this course is to develop an appreciation for a variety of topics in signal transduction. We will discuss several historical developments while the focus will be on current issues. Both experimental approaches and results will be included in our discussions. Topics may vary from year to year. Prerequisites: biochemistry and molecular biology. (May not be offered every year.)

222. Structure and Analysis of Solids (4)
Key concepts in the atomic structure and bonding of solids such as metals, ceramics, and semiconductors. Symmetry operations, point groups, lattice types, space groups, simple and complex inorganic compounds, structure/property comparisons, structure determination with X-ray diffraction. Ionic, covalent, metallic bonding compared with physical properties. Atomic and molecular orbitals, bands versus bonds, free electron theory.

224. Spectroscopic Techniques (4)
Application of physical techniques to the elucidation of the structure of inorganic complex ions and organometallic compounds. Topics covered include group theory, and its application to vibrational, magnetic resonance and Raman spectroscopy. (May not be offered every year.)

225. Bioinorganic Chemistry (4)
The role of metal ions in biological systems, with emphasis on transition metal ions in enzymes that transfer electrons, bind oxygen, and fix nitrogen. Also included are metal complexes in medicine, toxicity, and metal ion storage and transport. Chem. 225 students will be required to complete an additional paper and/or exam beyond that expected of students in Chem. 124. Prerequisite: Chem. 6C or 6CH. Chem. 114A and 120A recommended. (May not be offered every year.)

227. Seminar in Inorganic Chemistry (2)
Seminars presented by faculty and students on topics of current interest in inorganic chemistry, including areas such as bioinorganic, organometallic and physical-inorganic chemistry. The course is designed to promote a critical evaluation of the available data in specialized areas of inorganic chemistry. Each quarter three or four different topics will be discussed.

Prerequisite: graduate standing or consent of instructor. (S/U grades only.)

228. Solid State Chemistry (4)
Survey of the chemistry of semiconductors, superconductors, molecular magnetic materials, zeolites, fast ion conductors, electronically conducting polymers and ceramics. Synthetic techniques such as molecular precursor design, the sol-gel process, electrosynthesis, and high-temperature thermolysis will be covered. (May not be offered every year.)

229. Special Topics in Inorganic Chemistry (2-4)
Selection of topics of current interest. May be repeated for credit when topics vary. (May not be offered every year.)

230. Quantum Mechanics (4)
Concepts and mathematical formalism that are useful for problems of chemical interest: states, representations, operators, eigenvalues and eigenfunctions, time evolution, observables, and measurements. Time-independent perturbation theory. Prerequisites: Chem. 133 or equivalent; Math. 20D or equivalent; Chem. 190 may be taken concurrently. (May not be offered every year.)

231. Chemical Kinetics and Molecular Reaction Dynamics (4)
Classical kinetics, transition state theory, unimolecular decomposition, potential energy surfaces, scattering processes and photodissociation processes. Prerequisite: Chem. 230. (May not be offered every year.)

232. Statistical Mechanics of Chemical Systems (4)
Equilibrium statistical mechanics, distribution functions, and partition functions. Boltzmann, Bose, and Fermi statistics. The different ensembles; ensemble averages and QM expectation values; derivation of thermodynamic properties of simple systems. Prerequisites: Chem. 131, 132 and 133, or equivalent. (May not be offered every year.)

233. Molecular Spectroscopy (4)
Time-dependent behavior of systems; interaction of matter with light; selection rule. Radiative and nonradiative processes, coherent phenomena and the density matrices. Instrumentation, measurement, and interpretation. Chem. 235 students will be required to complete additional coursework beyond that expected of students in Chem. 135. Prerequisites: Chem. 133 or equivalent; Math. 20D or 21D; or Chem. 190/290. (May not be offered every year.)

237. Essentials of Glycobiology (4)
Advanced elective for graduate/medical students who have had core courses in cell biology or biochemistry. Expert faculty will present a coordinated overview of the field of glycobiology, which explores the structure, synthesis, and functions of sugar chains in biological systems. (May not be offered every year.)

239. Special Topics in Chemical Physics (2-4)
Topics of special interest will be presented. Examples include NMR, solid-state chemistry, phase transitions, stochastic processes, scattering theory, nonequilibrium processes, tensor transformations, and advanced topics in statistical mechanics, thermodynamics, and chemical kinetics. (May not be offered every year.)

240. Electrochemistry (4)
Application of electrochemical techniques to chemistry research. Basic electrochemical theory and instrumentation: the diffusion equations, controlled potential, and current methods. Electro-chemical kinetics, Butler-Volmer, Marcus-Hush theories, prepotentiostatic electrochemistry, analytical electrochemistry, solid and polymer electrolytes, semiconductor photoelectrochemistry. (May not be offered every year.)

246. Kinetics and Mechanism (4)
Methodology of mechanistic organic chemistry: integration of rate expressions, determination of rate constants, transition state theory; catalysis, kinetic orders, isotope effects, substituent effects, solvent effects, linear free energy relationship; product studies, stereochemistry; reactive intermediates; rapid reactions. (May not be offered every year.)

250. Seminar in Chemistry (2)
Regularly scheduled seminars by first-year graduate students provide opportunities for practice in seminar delivery and for the exploration of topics of general interest. (S/U grades only.) (S)

251. Research Conference (2)
Group discussion of research activities and progress of the group members. Prerequisite: consent of instructor. (S/U grades only.) (F,W,S)

252. Synthetic Methods in Organic Chemistry (4)
(Formerly Chem. 248) A survey of reactions of particular utility in the organic laboratory. Emphasis is on methods of preparation of carbon-carbon bonds and oxidation reduction sequences. Chem. 252 students will be required to complete additional coursework beyond that expected of students in Chem. 152. Prerequisite: Chem. 140C or 141C or consent of instructor.

(Formerly Chem. 247) A qualitative approach to the mechanisms of various organic reactions; substitutions, additions, eliminations, condensations, rearrangements, oxidations, reductions, free-radical reactions, and photochemistry. Includes considerations of molecular structure and reactivity, synthetic methods, spectroscopic tools, and stereochemistry. The topics emphasized will vary from year to year. This is the first quarter of the advanced organic chemistry sequence. Chem. 254 students will be required to complete an additional paper and/or exam beyond that expected of students in Chem. 154. Prerequisite: Chem. 140C or 141C or graduate standing.

255. Synthesis of Complex Molecules (4)
(Formerly Chem. 244) This course discusses planning economic routes for the synthesis of complex organic molecules. The uses of specific reagents and protecting groups will be outlined as well as the control of stereochemistry during a synthesis. Examples will be selected from the recent literature. Chem. 255 students will be required to complete an additional paper and/or exam beyond that expected of students in Chem. 155. (May not be offered every year. Prerequisite: Chem. 252 or consent of instructor.)

256. Structure and Properties of Organic Molecules (4)
(Formerly Chem. 245) Introduction to the measurement and theoretical correlation of the physical properties of organic molecules. Topics covered include molecular geometry, molecular-orbital theory, orbital hybridization, aromaticity, chemical reactivity, stereochemistry, infrared and electronic spectra, photochemistry, and nuclear magnetic resonance. Chem. 256 students will be required to complete an additional paper and/or exam beyond that expected of students in Chem. 156. Prerequisites: Chem. 140A-B-C or 141A-B-C or the equivalent.

230
257. Biorganic and Natural Products Chemistry (4)
(Formerly Chem. 242) A comprehensive survey of modern biorganic and natural products chemistry. Topics include biosynthesis of natural products, molecular recognition, and small molecule–biomolecule interactions. Chem. 257 students will be required to complete additional coursework beyond that expected of students in Chem. 157. Prerequisites: Chem. 140C or 141C, 254 or consent of instructor.

258. Applied Spectroscopy (4)
Intensive coverage of modern spectroscopic techniques used to determine the structure of organic molecules. Problem solving and interpretation of spectra will be strongly emphasized. Prerequisite: Chem. 254 or consent of instructor.

259. Special Topics in Organic Chemistry (2-4)
(Formerly Chem. 249) Various advanced topics in organic chemistry. Includes but is not limited to: advanced kinetics, advanced spectroscopy, computational chemistry, heterocyclic chemistry, medicinal chemistry, organotransition metal chemistry, polymers, solid-phase synthesis/combinatorial chemistry, stereochemistry, and total synthesis classics.

261. Supramolecular Coordination Chemistry (4)
An introduction and survey of modern coordination chemistry. Topics will include structure and bonding of alkali, transition, lanthanide, and actinide metals, with emphasis on the first row transition metals; stereochemistry, coordination clusters, molecular solids and nanoparticles. Chem. 261 students will be required to complete additional coursework beyond that expected of students in Chem. 161. Prerequisite: Chem. 120A, 120B or equivalent; or graduate standing.

262. Inorganic Chemistry and NMR (4)
A survey of inorganic chemistry to prepare for graduate research in the field, including a detailed introduction to nuclear magnetic resonance (NMR), followed by applications of NMR to structural and mechanistic problems in inorganic chemistry.

266. Environmental and Molecular Toxicology (4)
Molecular and cellular mechanisms underlie the actions of environmental toxicants. This course will investigate approaches to study the impact of environmental toxicants on human health. Other modern approaches that are being implemented to detect and remediate environmental toxicants will also be examined. Chem. 266 students will be required to complete an additional paper and/or exam beyond that expected of students in Chem. 166. (W)

268. Bioenergetics (4)
Chemiosmotic processes in mitochondria and photosynthetic organelles, structure-function relationships of membrane protein apoptosis, a refined view of mitochondrial structure derived from electron tomography and the role of proteins encoded by mitochondrial DNA in oxidative phosphorylation. Chem. 268 students will be required to complete additional coursework beyond that expected of students in Chem. 168. Prerequisites: Chem. 114A and Chem. 114B (or equivalents).

270A-B-C. Current Topics in Environmental Chemistry (2-2-2)
Seminar series on the current topics in the field of environmental chemistry. Emphasis is on current research topics in atmospheric, oceanic, and geological environments. Prerequisite: consent of instructor. (S/U grades only.) (May not be offered every year.)

271. Special Topics in Analytical Chemistry (4)
Topics of special interest in analytical chemistry. May include, but is not limited to, chemical separation, sample introductions, mass analyzers, ionization schemes, and current state-of-the-art applications in environmental and biological chemistry.

273. Atmospheric Chemistry (4)
Chemical principles applied to the study of atmospheres. Atmospheric photochemistry, radical reactions, chemical lifetime determinations, acid rain, greenhouse effects, ozone cycle, and evolution are discussed. Chem. 273 students will be required to complete additional coursework beyond that expected of students in Chem. 173. Prerequisites: Chem. 6A-B-C, or Chem. 6AH, 6BH and 6CH, or equivalent, or graduate standing. (S)

285. Introduction to Computational Chemistry (4)
Course in computational methods. Building on a background in mathematics and physical chemistry. Brief introduction and background in computational theory, molecular mechanics, semi-empirical methods, and ab initio-based methods of increasing elaboration. Emphasis on applications and reliability. Chem. 285 students will be required to complete an additional paper and/or exam beyond that expected of students in Chem. 185. Prerequisites: Chem. 120 or 133 and Math. 20C or 21C. (May not be offered every year.)

293. Cosmochemistry Seminar (2)
Formal seminars or informal sessions on topics of current interest in cosmochemistry as presented by visiting lecturers, local researchers, or students. Prerequisite: advanced graduate-student standing. (S/U grades only.)

294. Organic Chemistry Seminar (2)
Formal seminars or informal puzzle sessions on topics of current interest in organic chemistry, as presented by visiting lecturers, local researchers, or students. Prerequisite: advanced graduate-student standing. (S/U grades only.) (F,WS)

295. Biochemistry Seminar (2)
Formal seminars or informal puzzle sessions on topics of current interest in biochemistry, as presented by visiting lecturers, local researchers, or students. Prerequisite: graduate-student standing. (S/U grades only.)

296. Chemical Physics Seminar (2)
Formal seminars or informal sessions on topics of current interest in chemical physics as presented by visiting lecturers, local researchers, or students. Prerequisite: advanced graduate-student standing. (S/U grades only.) (F,WS)

297. Experimental Methods in Chemistry (4)
Experimental methods and techniques involved in chemical research are introduced. Hands-on experience provides training for careers in industrial research and for future thesis research. Prerequisite: graduate-student standing. (S/U grades only.)

298. Special Study in Chemistry (1-4)
Reading and laboratory study of special topics for first-year graduate students under the direction of a faculty member. Exact subject matter to be arranged in individual cases. (S/U grades only.) Prerequisite: first-year graduate-student standing. (F,WS)

299. Research in Chemistry (1-12)
Prerequisites: graduate standing and consent of instructor. (S/U grades only.) (F,WS)

500. Teaching in Chemistry (4)
A doctoral student in chemistry is required to assist in teaching undergraduate chemistry courses. One meeting per week with instructor, one or more meetings per week with assigned class sections or laboratories, and attendance at the lecture of the undergraduate course in which he or she is participating. Prerequisite: graduate standing and consent of instructor. (S/U grades only.) (F,W,S)

Chicano/a–Latino/a Arts and Humanities Minor (CLAH)

OFFICE: 270 Pepper Canyon Hall
(858) 822-4059 or (858) 822-2787
http://minors.ucsd.edu/clah/

Affiliated Faculty

- Roberto Alvarez, Ph.D., Ethnic Studies
- Jaime Concha, Ph.D., Literature
- Ross Frank, Ph.D., Ethnic Studies
- David Gutiérrez, Ph.D., History
- Jorge Huerta, Ph.D., Theatre and Dance
- Tomás Jiménez, Ph.D., Sociology
- David Mares, Ph.D., Political Science
- Jorge Mariscal, Ph.D., Literature
- Natalia Molina, Ph.D., Ethnic Studies
- Michael Monteon, Ph.D., History
- Max Parra, Ph.D., Literature
- Beatrice Pita, Ph.D., Literature
- Rosaura Sánchez, Ph.D., Literature
- Roberto Tejada, Ph.D., Visual Arts
- Olga Vásquez, Ph.D., Communication
- Patrick Velasquez, Ph.D., Director of OASIS
- Ana Celia Zentella, Ph.D., Ethnic Studies
- Elana Zilberg, Ph.D., Communication

THE MINOR

The Chicano/a–Latino/a Arts and Humanities minor is an interdisciplinary minor that provides a broad introduction to the histories and cultural artifacts produced by Spanish-speaking communities in the United States. Through a coordinated course of study drawing upon course offerings in the Departments of Theatre and Dance, Ethnic Studies, Communication, History, Literature, and other departments, students will...
gain an understanding of this important segment of the U.S. population.

REQUIREMENTS

Students will have a minimum of two years or the equivalent of Spanish language instruction (Satisfactory completion of Lit/Spanish 2A, B, C or Lit/Span 2D will satisfy this requirement). Students may count one lower-division language course (four units) towards the total unit requirement.

Students will complete twenty-eight total units of which at least twenty (five courses) must be upper-division. Students may take no more than three upper-division courses in any one department. The required distribution of the five upper-division courses may be selected from among the following courses. Students may petition to receive credit for courses not listed below.

COURSES (PARTIAL LIST)

ETHNIC STUDIES

(Not: Many ETHN courses are cross-listed courses from other departments)

- ETHN 101. Ethnic Images in Film
- ETHN 105. Ethnic Diversity and the City
- ETHN 140. Language and American Ethnicity
- ETHN 141. Language, Culture, and Inequality
- ETHN 189. Special Topics in Ethnic Studies

HISTORY

- HILD 7C. History of Race and Ethnicity in the U.S.
- HIUS 167. Topics in Mexican American History
- HIUS 180. Colloquium on the Recent History of Immigration, Ethnicity, and Citizenship in the Twentieth-Century U.S.
- HILA 158. Social and Economic History of the Southwest I
- HILA 159. Social and Economic History of the Southwest II
- HILA 131. History of Mexico
- HILA 132. Contemporary Mexico
- HILA 122. Cuba

LITERATURE

The following courses are taught in Spanish–Literature Spanish (LTSP):

- LTSP 130A. Early Latino/a and Chicano/a Cultural Production 1848-1960
- LTSP 130B. Contemporary Latino/a and Chicano/a Cultural Production 1960 to present
- LTSP 151. Topics in Chicano/a and Latino/a Cultures
- LTSP 153. Chicano/a and Latino/a Poetry
- LTSP 154. Chicano/a and Latino/a Literatures
- LTSP 162. Spanish Language in the U.S.

The following courses are taught in English–Literature English (LTEN) and Literature of the Americas (LTAM):

- LTEN 180. Chicano Literature in English
- LTAM 100. Latino/a Cultures in the United States
- LTAM 101. Early Latino/a and Chicano/a Cultures: 1848-1960
- LTAM 102. Contemporary Latino/a and Chicano/a Cultural Production 1960 to present
- LTAM 105. Gender and Sexuality in Chicano/a and Latino/a Cultural Production
- LTAM 106. Modern Chicana and Mexican Women Writers
- LTAM 107. Comparative Latino/a and U.S. Ethnic Cultures
- LTAM 108. Chicano/a and Latino/a Cultures: Intellectual and Political Traditions
- LTAM 109. Cultural Production of the Latino/a Diasporas
- LTAM 110. Latin American Literature in Translation
- LTAM 120. Mexican Literature in Translation

MUSIC

- MUS 13AM. World Music/Multicultural America

THEATRE AND DANCE

- TDHT 108. Luis Valdez
- TDHT 110. Chicano Dramatic Literature
- TDHT 111. Hispanic-American Dramatic Literature
- TDHT 112. Gay and Lesbian Themes in U.S. Latino Theater

VISUAL ARTS

- VIS 126AN. Pre-Columbian Art of Ancient Mexico and Central America
- VIS 126BN. The Art and Civilization of the Ancient Maya
- VIS 126G. Problems in Mesoamerican Art History
- VIS 126H. Problems in Ancient Maya Iconography and Inscriptions

Chinese Studies

Office: 3084 Humanities and Social Sciences Building, Muir College
http://chinesestudies.ucsd.edu

Professors

- Joseph C.Y. Chen, Ph.D., Physics
- Joseph W. Esherick, Ph.D., History
- Germaine A. Hoston, Ph.D., Political Science
- David K. Jordan, Ph.D., Anthropology, Emeritus
- Richard P. Madsen, Ph.D., Sociology
- Barry J. Naughton, Ph.D., Graduate School of International Relations and Pacific Studies
- Paul G. Pickowicz, Ph.D., History
- Susan L. Shirk, Ph.D., Graduate School of International Relations and Pacific Studies
- Wai-Lim Yip, Ph.D., Literature
- Yingjin Zhang, Ph.D., Literature

Associate Professors

- Nancy Guy, Ph.D., Music
- Sarah Schneewind, Ph.D., History
- Kuiyi Shen, Ph.D., Visual Arts

Adjunct Professor

- Suzanne Cahill, Ph.D., History

Assistant Professors

- Weijing Lu, Ph.D., History

Lecturer With Security of Employment

- Jane Kuo, Ph.D., History

Lecturers

- Qin-Hong Anderson, M.A., History
- Samuel Cha, M.A., History
- Pei-Chia Chen, M.A., History
- Qian He, History
- Xiao Wang, M.A., History

Chinese studies is an interdisciplinary program that allows the student interested in China to utilize the university’s offerings in various departments to build a major leading to a B.A. degree. In addition to coordinating courses in the various departments, the program in Chinese studies offers courses directly under its own auspices to round out the available offerings.

The Chinese Studies Program combines historical understanding with an emphasis on modern and contemporary China.
The Major Program

The student choosing a major in Chinese studies must meet the following requirements:

1. Two years of Mandarin Chinese (Chinese Studies 11-12-13 and 21-22-23 or equivalent).
2. History 10-11-12 (East Asian History)
3. Twelve upper-division courses in Chinese studies, including courses taken in at least three departments. At least one of these courses should be a seminar or colloquium in which students would be expected to write a substantial term paper. No more than six upper-division language courses count toward the major requirement.
4. As a rule, only courses taken for a letter grade can satisfy program requirements (major, minor). Exceptions are granted for Chinese Studies 198 and 199.

In principle, the courses included in the program in Chinese studies are those campus offerings dealing with China or the Chinese language. Most of the courses listed below are planned by participating departments for the current academic year.

Honors Program

Requirements for admission to the program are:

1. Junior standing
2. A GPA of 3.5 or better in the major
3. Overall GPA of 3.2 or better
4. Recommendation of a faculty sponsor familiar with the student's work
5. Completion of at least four upper-division courses approved by the Chinese Studies Program
6. Completion of at least one year of Chinese language study

Students who qualify for honors take a two-quarter sequence of directed study during which they define a research project, carry out the research, and complete a senior thesis. The completed thesis will be evaluated by a committee consisting of the student's thesis advisor and one other faculty member appointed by the Chinese studies program chair.

The Minor Program

A minor in Chinese studies consists of at least three lower-division courses (a minimum of twelve units) and four upper-division courses (a minimum of sixteen units) taken for a letter grade. These courses should be chosen from three programs or departments. No more than three language courses may apply toward the minor requirement. For students wishing to apply courses taken abroad to the minor, please see the program coordinator. A list of approved three programs or departments. No more than three language courses may apply toward the minor requirement. For students wishing to apply courses taken abroad to the minor, please see the program coordinator. A list of approved courses is available quarterly from the Chinese Studies Program.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

COMMITTEE-SPONSORED COURSES

11-12-13. First-Year Chinese (5-5-5)
21-22-23. Second-Year Chinese (4-4-4)
111-112-113. Third-Year Chinese (4-4-4)
121-122-123. Fourth-Year Chinese (4-4-4)

Each of these year-long sequences begins in the fall term. Students wishing to take more than one Chinese language class in the same quarter must obtain approval from the head of the language program prior to enrolling in the second course.

All Chinese language courses have A, B, and C tracks for students with no Chinese language background; B track for students with some Mandarin Chinese language background; C track for students with Chinese language background other than Mandarin.

160/260. Late Imperial and Twentieth-Century Chinese Historical Texts (4)
This course introduces the primary sources used by historians of Late Imperial and Twentieth-Century Chinese history. Reading material includes diaries, newspaper articles, Qing documents, gazetteers, essays, speeches, popular fiction, journal articles, scholarly prose, and field surveys. May be repeated for credit. (P/NP grades only.) Prerequisite: advanced knowledge of Chinese language and consent of instructor.

165A-B-C. Business Chinese (4-4-4)
Basic training in oral and written communication skills for business, including introduction to modern business terminology and social conventions. The emphasis will be on comprehension and reading ability. Prerequisite: Chinese Studies 23 or equivalent.

181A. Introduction to Classical Chinese (4)
Continuation of Chinese Studies 181A. Prerequisite: Chinese Studies 181A or equivalent.

181B. Introduction to Classical Chinese (4)
Introduction to the classical language through Confucius, Mencius, and the other Great Books. The emphasis will be on comprehension and reading ability. Prerequisite: Chinese Studies 23 or equivalent.

181C. Introduction to Classical Chinese (4)
This course is a continuation of 181A and B. Short passages from major historical, literary, and philosophical works are introduced. Prerequisite: Chinese Studies 181B or equivalent.

182A. Intermediate Classical Chinese (4)
This course is a continuation of Introduction to Classical Chinese (181A-B-C). Selections from major works written in classical Chinese, such as Laozi, Shiijing, etc., will be read. The course emphasizes the structures, function words, the analysis of each sentence, and the comprehension of texts. Prerequisite: Chinese Studies 181A-B-C or equivalent.

182B. Intermediate Classical Chinese (4)
This course is a continuation of 182A. Selections from Zhuangzi, Shiji, etc., will be taught. The course emphasizes the structures, function words, the analysis of each sentence, and the comprehension of texts. Prerequisite: Chinese Studies 182A or equivalent.

182C. Intermediate Classical Chinese (4)
This course is a continuation of 182B. Selections from Ching, Hanshu, etc., will be introduced. The course emphasizes the structures, function words, the analysis of each sentence, and the comprehension of texts. Prerequisite: Chinese Studies 182B or equivalent.

185A-B-C. Business Chinese (4-4-4)
This course will enlarge a student's vocabulary and improve reading skills through study of original writings and other media on Chinese culture and society.
Chinese Studies

past and present. Prerequisite: Chinese Studies 113 or consent of instructor.

186A-B. C. Readings in Chinese Economics, Politics, and Trade (4-4-4)
Introduction to the specialized vocabulary relating to Chinese politics, trade, and development. Designed for students in the social sciences or with career interests in international trade, the course will stress reading and translating documents, and the special forms of business correspondence and oral negotiation. Prerequisite: one year of Chinese.

196. Directed Thesis Research (4)
B.A. honors thesis under the direction of a faculty member in Chinese studies. This course requires two quarters to complete. An IP grade will be awarded at the end of the first quarter. Prerequisite: consent of instructor. (F,W,S)

198. Directed Group Study in Chinese Studies (2 or 4)
Study of specific aspects in Chinese civilization not covered in regular course work, under the direction of faculty members in Chinese studies. (P/NP grades only.) Prerequisite: consent of instructor. (F,W,S)

199. Independent Study in Chinese Studies (2 or 4)
The student will undertake a program of research or advanced reading in selected areas in Chinese studies under the supervision of a faculty member of the Program in Chinese Studies. (P/NP grades only.) Prerequisite: consent of instructor. (F,W,S)

269. Conversational Mandarin for Medical Students—Beginning (2)
This introductory course is designed to develop a working knowledge of medical Mandarin that will enable the student to communicate with Mandarin-speaking patients. There will be instruction in basic medical vocabulary and grammar, with a focus on taking a medical history. No previous knowledge of Mandarin is required since this is only a conversation course. For graduate and School of Medicine students. (S/U only.)

269. Conversational Mandarin for Medical Students—Intermediate (2)
This intermediate course is designed to develop a working knowledge of medical Mandarin that will enable the student to communicate with Mandarin-speaking patients. There will be instruction in basic medical vocabulary and grammar, with a focus on taking a medical history. No previous knowledge of Mandarin is required since this is only a conversation course. For graduate and School of Medicine students. (S/U only.)

269. Conversational Mandarin for Medical Students—Advanced (2)
This advanced course is designed to develop a working knowledge of medical Mandarin that will enable the student to communicate with Mandarin-speaking patients. There will be instruction in basic medical vocabulary and grammar, with a focus on taking a medical history. No previous knowledge of Mandarin is required since this is only a conversation course. For graduate and School of Medicine students. (S/U only.)

269. Conversational Mandarin for Medical Students—Expert (2)
This expert course is designed to develop a working knowledge of medical Mandarin that will enable the student to communicate with Mandarin-speaking patients. There will be instruction in basic medical vocabulary and grammar, with a focus on taking a medical history. No previous knowledge of Mandarin is required since this is only a conversation course. For graduate and School of Medicine students. (S/U only.)

296. Directed Thesis Research (2-12)
Graduate thesis research under the guidance of a faculty member affiliated with the Program in Chinese Studies.

299. Independent Study in Chinese Studies (2-12)
Independent graduate research under the guidance of a faculty member affiliated with the Program in Chinese Studies.

500. Apprentice Teaching (1-4)
A course in which teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty; handling of discussions, preparation and grading of exams and other written exercises, and student relations. (S/U only.)

DEPARTMENT-SPONSORED COURSES

For description of courses listed below, see appropriate departmental listing. All graduate-level courses require consent of the instructor for undergraduate students. Some departmental offerings have content that varies from year to year. In those cases, Chinese Studies approval is given only when content relates primarily to China.

LOWER-DIVISION

History HILD 10: East Asia: The Great Tradition (staff)
History HILD 11: East Asia and the West (staff)
History HILD 12: Twentieth-Century East Asia (staff)
Literature/LTWL 4C: Fiction and Film in Twentieth-Century Societies: Asian Societies (Zhang)
Music MUS 13AS: World Music: Asia and Oceania (Guy)

UPPER-DIVISION

I. CHINESE CULTURE AND SOCIETY

Anthropology ANRG 170: Traditional Chinese Society (Jordan)
Anthropology ANRG 173: Chinese Popular Religion (Jordan)
History HIEA 119: Religion and Popular Culture in East Asia (Cahill)
History HIEA 128: History of Material Culture in China (Cahill)
History HIEA 134: History of Thought and Religion in China: Confucianism (Cahill)
History HIEA 135: History of Thought and Religion in China: Buddhism (Cahill)
History HIEA 136: History of Thought and Religion in China: Daoism (Cahill)
History HIEA 137: Women and Family in Chinese History
History HIRE 115: Women in Chinese Religious Traditions (Cahill)
History HITO 102: Religious Traditions: East Asian Religious Traditions (Cahill)
Music MUS 111: Topics/World Music Traditions (Guy)
Sociology SOC/B 162R: Religion and Popular Culture in East Asia (Staff)
Sociology SOC/D 158J: Religion and Ethics in China and Japan (Staff)
Sociology SOC/D 189: Special Topics in Comparative-Historical Sociology (Madsen)
Visual Arts VIS 105D: The Aesthetics of Chinese Calligraphy

II. CONTEMPORARY CHINA

Communication COSF 145: Communication and Development in China (Staff)
History HIEA 132: History of the People's Republic of China (Pickowicz)
IR/PS IRGN 400: International Relations of the Pacific
IR/PS IRGN 404: Chinese Politics
IR/PS IRGN 461: Doing Business in China (Naughton)
IR/PS IRGN 486: Economic and Social Development of China (Naughton)
Political Science POLI 113B: Chinese and Japanese Political Thought (I)
Political Science POLI 113C: Chinese and Japanese Political Thought (II)
Political Science POLI 113B: Politics in the People's Republic of China (Shirk)
Political Science POLI 131C: The Chinese Revolution (Hoston)

Political Science POLI 232: The Chinese Political System (Shirk)
Sociology SOC/D 188B: Chinese Society (Madsen)

III. LANGUAGE AND LITERATURE

Linguistics 141: Language Structures (Staff)
Literature/LTWL 101: Readings in Contemporary Chinese Literature (Zhang)
Literature/LTEA 100A: Classical Chinese Poetry (Yip)
Literature/LTEA 100B: Modern Chinese Poetry (Yip)
Literature/LTEA 100C: Contemporary Chinese Poetry (Yip)
Literature/LTEA 110A: Classical Chinese Fiction (Staff)
Literature/LTEA 110B: Modern Chinese Fiction (Staff)
Literature/LTEA 110C: Contemporary Chinese Fiction (Staff)
Literature/LTEA 120A: Chinese Films (Staff)
Literature/LTEA 120B: Taiwan Films (Staff)
Literature/LTEA 120C: Hong Kong Films (Staff)
Literature/LTEA 120D: Filming Chinese Literature (Staff)
Literature/LTEN 159B: Chinese Poetry and American Imagination (Yip)
Literature/LTCO 274: Genre Studies—Intercultural Poetics (Yip)
Literature/LTWL 176: Literature and Ideas: Taoism (Yip)
Literature/LTWR 113: Intercultural Writing: Chinese (Yip)

IV. CHINESE HISTORY

Chinese Studies CHIN 170: History of Science in China (Chen)
History HIEA 120: The History of Chinese Culture and Society: The Ancient Imperial Period
History HIEA 121: The History of Chinese Culture and Society: The Middle Imperial Period
History HIEA 122: The History of Chinese Culture and Society: The Late Imperial Period
History HIEA 124/HISC 110: Science in China and the West from Ancient Times to the Seventeenth Century
History HIEA 126: The Silk Road in Chinese and Japanese History (Cahill)
History HIEA 130: History of the Modern Chinese Revolution: 1800–1911 (Esherick)
History HIEA 131 (IP/GEN 408): History of the Modern Chinese Revolution: 1911–1949 (Pickowicz)
History HIEA 132: History of the People's Republic of China (Pickowicz)
History HIEA 133: Cultural History of Twentieth-Century China (Pickowicz)
History HIEA 137: Women and Family in Chinese History
History HIEA 162: History of Women in China
History HIEA 164: Seminar in Late Imperial Chinese History
History HIEA 167: Special Topics on Modern Chinese History (Esherick)
Classical Studies

OFFICE: 3024 Humanities and Social Sciences Building, Muir College (CAESAR office)
http://historyweb.ucsd.edu/ClassicalStud.html

Professors
Georgios H. Anagnostopoulos, Ph.D., Philosophy
Page Ann duBois, Ph.D., Classical and Comparative Literature
Anthony T. Edwards, Ph.D., Classical Literature and Languages
Edward N. Lee, Ph.D., Philosophy, Emeritus
Marianne McDonald, Ph.D., Theatre
Alden A. Mosshammer, Ph.D., History, Emeritus
Sheldon A. Nodelman, Ph.D., Visual Arts

Assistant Professors
Monte Johnson, Ph.D., Philosophy
Dayna Kalleres, Ph.D., Literature

Lecturers
Charles Chamberlain, Ph.D., Classical and Comparative Literature
Leslie Collins Edwards, Ph.D., Classical Literature and Languages
Eliot Wirshbo, Ph.D., Classical Literature and Languages

Classical studies is concerned with the cultures of ancient Greece and Rome—roughly from the time of Homer to the time of St. Augustine—in all of their aspects. This program thus offers undergraduates an opportunity to study the cultures of Greece and Rome through the combined resources of the Departments of History, Literature, Visual Arts, Theatre and Dance, and Philosophy. The study of the ancient Greek and Latin languages themselves serves as the starting point for the broader consideration of specific texts in their literary, intellectual, and historical context. In cooperation with the Judaic Studies Program, moreover, students are provided the opportunity to link the study of ancient Greece and Rome to that of the ancient Near East.

The Major Programs

The Classical Studies Program offers four different degree paths, three within classical studies and one in cooperation with Judaic studies. The majors are Greek, Latin, classics, and Greek and Hebrew. Each consists of a choice of twelve upper-division courses approved for the program and listed below. All courses used to meet requirements for a major in classical studies must be taken for a letter grade and be passed with a grade of C– or better.

GREEK

LTWL 19A-B-C are prerequisites to the Greek major. Six of the twelve upper-division courses must be LTGK courses numbered 100 and above, but exclusive of LTGK 101. The remaining six courses may be in classical civilization (in English translation), selected from the list of approved courses from history, Lit/World, philosophy, political science, and visual arts, though additional LTGK courses numbered 100 and above (including LTGK 101) are acceptable here. There must be from at least two departments and selected with the advisor; courses dealing with Greek civilization are strongly preferred.

LATIN

LTWL 19A-B-C are prerequisites to the Latin major. Six of the twelve upper-division courses must be LTLA courses numbered 100 and above, but exclusive of LTLA 101 and 102. The remaining six courses may be in classical civilization (in English translation), selected from the list of approved courses from history, Lit/World, philosophy, political science, and visual arts, though additional LTLA courses numbered 100 and above (including LTLA 101 and 102) are acceptable here. There must be from at least two departments and selected with the advisor; courses dealing with Roman civilization are strongly preferred.

The Minor Programs

CLASSICAL STUDIES:

A minor in classical studies consists of seven courses from those listed below, of which at least four must be upper-division. A knowledge of the ancient languages is not required. The minor will normally include LTWL 19A-B-C: the Greco-Roman World, and four other courses from the participating departments.

Greek:

See Literature: “The Minor in Literature”
Latin:

See Literature: “The Minor in Literature”

Warren College

A Warren College program of concentration in classical studies normally consists of LTWL 19A-B-C and three of the upper-division courses listed below.

Graduate courses may be taken by undergraduates with consent of the instructor. The faculty of the program welcomes qualified undergraduates in graduate courses.

Additional courses counting toward a major in classical studies are offered on a year-to-year basis, both at the undergraduate and graduate levels. As these often cannot be listed in advance, interested students should consult the program faculty for an up-to-date list.

Honors in Greek, Latin, and Classics

Honors is intended for the most talented and motivated students majoring in Greek, Latin, classics, or Greek and Hebrew. Requirements for admission to the honors program are:

1. Junior standing
2. An overall GPA of 3.5
3. A GPA in the major of 3.7

Qualified students majoring in Greek, Latin, or classics may apply at the end of their junior year to the program faculty on the basis of 1) a thesis proposal (three to four pages) worked out in advance with a classical studies faculty member and 2) a recommendation from that faculty member. It is strongly advised that the proposal be based upon a class paper or project from a course taken towards completion of the major.

The core of the honors program is an honors thesis. The research and writing of the thesis will be conducted over the winter or fall and winter terms of the senior year. Up to four hours of 196 credit may be counted towards the major. A thesis completed by the end of the winter quarter of the senior year will be read and evaluated by the thesis advisor and another member of the program faculty. If the thesis is accepted and the student maintains a 3.7 GPA, departmental honors will be awarded. The level of honors—distinction, high distinction, or highest distinction—will be determined by the program faculty.

Students choosing a major in Greek and Hebrew may complete an honors major as follows: those with an emphasis on Greek must meet the requirements for honors in the Classical Studies Program and work with a thesis advisor from classical studies, but select a second advisor for the thesis from Judaic studies. Those with an emphasis on Hebrew must meet the requirements for honors in the Judaic Studies Program and work with a thesis advisor from Judaic studies, but select a second advisor for the thesis from classical studies.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

UNDERGRADUATE

Classical Studies 51. Bio-Scientific Vocabulary (Greek-Latin Roots) (4)
Intensive exposure (100 words per week) to Greek and Latin roots, prefixes, and suffixes which form the basis of bio-scientific terminology. Extensive practice in word building and analysis. No knowledge of Greek or Latin required.

Classical Studies 107. Myth, Religion, and Philosophy in Late Antiquity (4)

Classical Studies 111. Topics in Ancient Greek Drama (4)
Close reading and discussion of selected works of ancient Greek drama in translation. (Course may be repeated for credit when topic varies.) Prerequisite: Sophomore standing.

Classical Studies 196A-B. Honors Thesis (2-4)

Cultural Traditions. Judaic 1A-B (4-4)

Humanities 1. The Foundations of Western Civilization: Israel and Greece (6)
Prerequisite: Satisfaction of the Entry-Level Writing requirement. (W)

Humanities 2. Rome, Christianity, and the Medieval World (6)
Prerequisite: Satisfaction of the Entry-Level Writing requirement. (S)

Humanities 3. Renaissance, Reformation, and Early Modern Europe (4)
Prerequisite: Satisfaction of the Entry-Level Writing requirement. (F)

HIEU 101. Greece in the Classical Age (4)

HIEU 102. The Roman Republic (4)

HIEU 103. The Roman Empire (4)

HIEU 160. Topics in the History of Greece (4)

HIEU 161. Topics in Roman History (4)

HIEU 199. Independent Study in Greek and Roman History (4)

HISC 101A. Science in the Greek and Roman World (4)

LTGK 1-2-3. Beginning and Intermediate Greek (4-4-4)

Latin:

See Literature: “The Minor in Literature”

Warren College

A Warren College program of concentration in classical studies normally consists of LTWL 19A-B-C and three of the upper-division courses listed below.

Graduate courses may be taken by undergraduates with consent of the instructor. The faculty of the program welcomes qualified undergraduates in graduate courses.

Additional courses counting toward a major in classical studies are offered on a year-to-year basis, both at the undergraduate and graduate levels. As these often cannot be listed in advance, interested students should consult the program faculty for an up-to-date list.

Honors in Greek, Latin, and Classics

Honors is intended for the most talented and motivated students majoring in Greek, Latin, classics, or Greek and Hebrew. Requirements for admission to the honors program are:

1. Junior standing
2. An overall GPA of 3.5
3. A GPA in the major of 3.7

Qualified students majoring in Greek, Latin, or classics may apply at the end of their junior year to the program faculty on the basis of 1) a thesis proposal (three to four pages) worked out in advance with a classical studies faculty member and 2) a recommendation from that faculty member. It is strongly advised that the proposal be based upon a class paper or project from a course taken towards completion of the major.

The core of the honors program is an honors thesis. The research and writing of the thesis will be conducted over the winter or fall and winter terms of the senior year. Up to four hours of 196 credit may be counted towards the major. A thesis completed by the end of the winter quarter of the senior year will be read and evaluated by the thesis advisor and another member of the program faculty. If the thesis is accepted and the student maintains a 3.7 GPA, departmental honors will be awarded. The level of honors—distinction, high distinction, or highest distinction—will be determined by the program faculty.

Students choosing a major in Greek and Hebrew may complete an honors major as follows: those with an emphasis on Greek must meet the requirements for honors in the Classical Studies Program and work with a thesis advisor from classical studies, but select a second advisor for the thesis from Judaic studies. Those with an emphasis on Hebrew must meet the requirements for honors in the Judaic Studies Program and work with a thesis advisor from Judaic studies, but select a second advisor for the thesis from classical studies.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

UNDERGRADUATE

Classical Studies 51. Bio-Scientific Vocabulary (Greek-Latin Roots) (4)
Intensive exposure (100 words per week) to Greek and Latin roots, prefixes, and suffixes which form the basis of bio-scientific terminology. Extensive practice in word building and analysis. No knowledge of Greek or Latin required.

Classical Studies 107. Myth, Religion, and Philosophy in Late Antiquity (4)

Classical Studies 111. Topics in Ancient Greek Drama (4)
Close reading and discussion of selected works of ancient Greek drama in translation. (Course may be repeated for credit when topic varies.) Prerequisite: Sophomore standing.

Classical Studies 196A-B. Honors Thesis (2-4)

Cultural Traditions. Judaic 1A-B (4-4)

Humanities 1. The Foundations of Western Civilization: Israel and Greece (6)
Prerequisite: Satisfaction of the Entry-Level Writing requirement. (W)

Humanities 2. Rome, Christianity, and the Medieval World (6)
Prerequisite: Satisfaction of the Entry-Level Writing requirement. (S)

Humanities 3. Renaissance, Reformation, and Early Modern Europe (4)
Prerequisite: Satisfaction of the Entry-Level Writing requirement. (F)

HIEU 101. Greece in the Classical Age (4)

HIEU 102. The Roman Republic (4)

HIEU 103. The Roman Empire (4)

HIEU 160. Topics in the History of Greece (4)

HIEU 161. Topics in Roman History (4)

HIEU 199. Independent Study in Greek and Roman History (4)

HISC 101A. Science in the Greek and Roman World (4)

LTGK 1-2-3. Beginning and Intermediate Greek (4-4-4)

LTGK 110. Archaic Period (4)

LTGK 112. Homer (4)

LTGK 113. Classical Period (4)

LTGK 120. New Testament Greek (4)

LTGK 130. Tragedy (4)

LTGK 131. Comedy (4)

LTGK 132. History (4)

LTGK 133. Prose (4)

LTGK 134. Epic Poetry (4)

LTGK 135. Lyric Poetry (4)

LTGK 198. Directed Group Study (4)

LTGK 199. Special Studies (2 or 4)

LTLA 1-2-3. Beginning and Intermediate Latin (4-4-4)

LTLA 100. Introduction to Latin Literature (4)

LTLA 111. Pre-Augustan (4)

LTLA 113. Augustan (4)

LTLA 114. Vergil (4)

LTLA 116. Silver Latin (4)

LTLA 131. Prose (4)

LTLA 132. Lyric and Elegiac Poetry (4)

LTLA 134. History (4)

LTLA 135. Drama (4)

LTLA 198. Directed Group Study (4)

LTLA 199. Special Studies (2 or 4)

LTLA 199. Directed Studies (2 or 4)

LTLA 297. Directed Studies (1-12)

GRADUATE

HIGR 298. Directed Readings in Greek and Roman History (1-12)

LTCO 210. Classical Studies (4)

LTGK 297. Directed Studies (1-12)

LTGK 298. Special Projects (4)

LTLA 297. Directed Studies (1-12)
Utilize to the fullest the potential of new computing technologies as tools for research and teaching.

These five interdisciplinary principles are embodied in the four Core Courses (Classics 200A, 200B, 200C, and 201). Graduate seminars (Classics 220) and reading courses in Greek and Latin authors (Classics 205) round out the program of studies. This curriculum has been in effect at Irvine since 1995, taught by faculty members from all three campuses.

Where do I apply? The Tri-Campus Program uniquely does not belong to a particular campus but to the University of California. Students who are accepted into the program may enroll at any of the three campuses. Because instruction and administrative functions take place on the Irvine campus, students will normally enroll at Irvine. Applications to the Tri-Campus Graduate Program will be reviewed by an admissions committee composed of members from all three campuses.

Where is the Tri-Campus Program located? UC Irvine is located five miles inland from the Pacific Ocean, fifty miles south of metropolitan Los Angeles, forty-five miles southwest of UC Riverside and seventy-four miles north of UCSD. In addition to its beaches, mountains, and deserts, Southern California offers excellent cultural amenities such as museums, theater, dance, opera, and music.

What are the requirements for admission? Applicants to the program should have a B.A. or equivalent in classics or classical civilization, which normally means that you have had at least three years of one classical language and two of the other. Majors in other disciplines (e.g., comparative literature, history, philosophy, or interdisciplinary fields such as women's studies) are welcome, provided they have sufficient background in Greek and Latin. All applicants must submit Graduate Record Exam (GRE) scores and must have a minimum GPA of 3.0 or the equivalent. If you have completed an M.A. in classics at another institution, you may be admitted with advanced standing and may have the course requirements reduced from the normal three years to two or one. The level of course reduction will be determined by progress evaluation exams administered in the spring quarter of each year.

What is the UC Tri-Campus Program? This graduate program joins together into a single faculty more than twenty experts in classics and related disciplines from the three southernmost University of California campuses (Irvine, Riverside, and San Diego). It features an innovative curriculum and program of study that address the practical and theoretical questions confronting the humanities and classics in particular as both enter the twenty-first century.

What are the Program's Goals? The aim of the Tri-Campus Program is to provide an educational environment for pursuing a graduate career in classics that is closely integrated into the main currents of humanistic and social scientific scholarship. The program's faculty recognizes that today and in the future teachers of the classics must possess and develop expertise beyond the standard specialties of the traditional classics Ph.D. degree. Classics programs, in both large research universities and small liberal arts colleges, increasingly feel the pressure to break down the boundaries between disciplines.

To achieve these goals, the program and curriculum are designed around five principles:

- Study the ancient texts and objects in their wider social, cultural, and historical contexts.
- Bring the culture of the ancient Greeks and Romans into the purview of contemporary literary and sociological theory.
- Examine the reception of ancient literature and culture by later cultures and the appropriation of the ancient world by the modern world.
- Pay particular attention to the intersections of Greek and Roman society and culture with each other and with the other cultures of the ancient world.
- Utilize to the fullest the potential of new computing technologies as tools for research and teaching.

The University of California Tri-Campus Graduate Program in Classics

UC IRVINE, UC RIVERSIDE, AND UCSD

The Tri-Campus Program is administered by a joint executive committee (JEC), which consists of six representatives, two from each campus, serving staggered, two-year terms. The JEC's responsibilities include: reviewing graduate applications and admitting students to the program; overseeing the formation of examination committees; reviewing and deciding on student petitions; making policy decisions concerning the program, including changes in the program's requirements and procedures; and interpreting the program's requirements and procedures. The JEC elects from its members a chair to serve a three-year term. It is the chair's responsibility to manage budgetary issues, schedule and set the agenda for quarterly JEC meetings, identify faculty to teach graduate courses, and generally look after the smooth operation of the program.

THE ROLE OF THE GRADUATE ADVISOR

The graduate advisor is a faculty member responsible for supervising graduate study in the department and monitoring the academic progress of graduate students. The graduate advisor coordinates the various elements of the academic program and advises students and other faculty members about program requirements and university policies. The graduate advisor keeps records for each student and for the whole program, ensures that each student meets all requirements and makes satisfactory progress toward attainment of the degree, and is instrumental in the nomination of students for fellowship support and assistantship appointments. The graduate advisor also provides general help to students as they attempt to negotiate the academic and administrative hurdles on their way to completion of their degrees. The graduate advisor is an ex-officio member of the Tri-Campus JEC for the duration of his or her tenure, normally two years.

ELECTION OF STUDENT REPRESENTATIVE

Graduate students elect a representative who attends JEC meetings as a regular voting member. Graduate students are also invited to attend meetings as observers and to participate where appropriate. The voting rights and attendance of the graduate student representative are circumscribed by the requirements of confidentiality.

The Ph.D. and the M.A. Programs

A student's career may be thought of as covering three stages: course work, preparation for qualifying exams, and candidacy (dissertation). For Ph.D. students the normative limits for completion of the program are four years to advancement to candidacy, two years to final
approval of the dissertation, and a maximum of seven years in total. Students are only admitted into the Ph.D. program. Entering students who do not already hold a master’s degree in classics from another institution will be required to complete M.A. requirements while pursuing the Ph.D.

Course Work for the M.A.

The M.A. degree in classics may be awarded either upon completing the Ph.D. course requirements and passing the written Ph.D. examinations or upon completing the M.A. course requirements and master’s paper and passing the M.A. translation examinations and general exam. The latter path to the M.A. is intended for Ph.D. students who decide to leave the program before completing the requirements for a Ph.D.

M.A. students must successfully complete a minimum of twelve approved, seminar-level courses. The twelve courses must be distributed as follows:

- Nine quarters of Classics 220.
- At least three quarters of Classics 200A-B-C and 201; a fourth quarter may be substituted for a Classics 220.
- Up to one quarter of Classics 290 for research and writing of the master’s paper may be substituted for a Classics 220.
- If remedial work is required in Greek or Latin, with the graduate advisor’s approval, one enhanced upper-division Greek or Latin course enrolled as a Classics 280 may be substituted for a Classics 220.
- With the graduate advisor’s approval, M.A. students may substitute one external graduate seminar in a relevant area outside of classics (at any of the three participating campuses) for a Classics 220.

A Sample M.A. Program

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200A (200C)</td>
<td>Classics 220</td>
<td>200B (201)</td>
</tr>
<tr>
<td>Classics 220</td>
<td>Classics 220</td>
<td>Classics 220</td>
</tr>
<tr>
<td>Classics 399</td>
<td>Classics 399</td>
<td>Classics 399</td>
</tr>
<tr>
<td>YEAR 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200C (200A)</td>
<td>Classics 220</td>
<td>201 (2008)</td>
</tr>
<tr>
<td>Classics 220</td>
<td>Classics 220</td>
<td>Classics 290</td>
</tr>
<tr>
<td>Classics 399</td>
<td>Classics 399</td>
<td>Classics 399</td>
</tr>
</tbody>
</table>

Course Work for the Ph.D.

Ph.D. students must successfully complete a minimum of eighteen approved, seminar-level courses. The eighteen courses must be distributed as follows:

- Four quarters of Classics 200A-B-C, and 201.
- Twelve quarters of Classics 220.
- Two external graduate seminars, from departments or programs outside of classics. These may be taken from the offerings of any of the three campuses.
- Students may take up to two quarters of enhanced upper-division Greek or Latin courses (enrolled as 280s) in place of Classics 220s, with permission of the graduate advisor if remedial work is required in Greek or Latin.
- Where appropriate, in the third year of course work, a second Classics 200A, B, or C, may be substituted for a 220
- Classics 280, Independent Study (supervised research) may be substituted for Classics 220s only with the permission of the graduate advisor.
- Up to twelve equivalent graduate-level courses completed elsewhere may be substituted for Tri-Campus Program courses with approval of the JEC.
- Classics 280 may be used, normally in the fourth year, to provide time to work on the Greek and Latin reading lists and to prepare for qualifying exams, but these courses do not count towards the required eighteen courses. Ph.D. students must meet with the graduate advisor early every fall quarter to discuss their progress through the curriculum and their plans for the upcoming academic year. A student who accumulates more than one outstanding grade of incomplete is considered to be at risk.
- Faculty teaching graduate courses will submit to the graduate advisor for student files a brief written evaluation for each student, commenting on the student’s performance and noting whether the student wrote a seminar paper for the course. The graduate advisor will lead the JEC in an annual review of all active graduate students in the program at the JEC’s spring meeting.

A Sample Ph.D. Program

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200A (200C)</td>
<td>Classics 220</td>
<td>200B (201)</td>
</tr>
<tr>
<td>Classics 220</td>
<td>Classics 220</td>
<td>Classics 220</td>
</tr>
<tr>
<td>Classics 399</td>
<td>Classics 399</td>
<td>Classics 399</td>
</tr>
<tr>
<td>YEAR 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200C (200A)</td>
<td>Classics 220</td>
<td>201 (2008)</td>
</tr>
<tr>
<td>Classics 220</td>
<td>Classics 220</td>
<td>Classics 290</td>
</tr>
<tr>
<td>Classics 399</td>
<td>Classics 399</td>
<td>Classics 399</td>
</tr>
<tr>
<td>YEAR 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classics 220</td>
<td>Classics 220</td>
<td>Classics 220</td>
</tr>
<tr>
<td>Classics 399</td>
<td>Classics 399</td>
<td>Classics 399</td>
</tr>
<tr>
<td>Seminar (External)</td>
<td>Seminar (External)</td>
<td>Classics 399</td>
</tr>
<tr>
<td>YEAR 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classics 280</td>
<td>Classics 280</td>
<td>Classics 280</td>
</tr>
<tr>
<td>Qualifying Exams</td>
<td>Qualifying Exams</td>
<td>Qualifying Exams</td>
</tr>
<tr>
<td>YEAR 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classics 299</td>
<td>Classics 299</td>
<td>Classics 299</td>
</tr>
<tr>
<td>Dissertation Writing</td>
<td>Dissertation Writing</td>
<td>Dissertation Writing</td>
</tr>
<tr>
<td>YEAR 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classics 299</td>
<td>Classics 299</td>
<td>Classics 299</td>
</tr>
<tr>
<td>Dissertation Writing</td>
<td>Dissertation Writing</td>
<td>Dissertation Writing</td>
</tr>
</tbody>
</table>

Examinations

Diagnostic Exams: Immediately upon entering the program, the student takes diagnostic translation examinations in both Greek and Latin to establish his or her level of competency and to determine where effort should be directed. In the second year of course work, students will take as diagnostic exams the Latin and Greek translation exams administered as part of the qualifying exam battery.

EXAMS FOR THE M.A.

1. **Foreign Language Requirement:** Students must demonstrate reading knowledge of German, French, Italian, or an equivalent research language either through appropriate course work or by examination.
2. **Translation Exams:** Each student must pass a set of translation examinations in Greek and in Latin administered by the master’s committee (two hours each).

The JEC in consultation with the graduate advisor and the student recommends to the graduate dean a three-member master’s committee composed of program faculty from at least two campuses to set and evaluate the translation exams and to evaluate the master’s
paper. Normally this committee is established in the quarter preceding completion of the master’s paper.

EXAMS FOR THE PH.D.

1. **Foreign Language Requirements:** Ph.D. students must demonstrate reading proficiency in one modern research language (normally German and French or Italian) by the end of their second year either through appropriate course work or by examination. Proficiency in a second modern research language is expected by the end of the third year.

2. **Ph.D. Qualifying Exams:** In order to advance to candidacy for the Ph.D. and enter the dissertation stage, a student must pass a set of seven qualifying exams. The translation exams, history exams, and history of the literatures exam are administered and evaluated on a regular schedule over the academic year by examination boards composed of one faculty member from each campus and appointed for that purpose by the JEC at the graduate advisor’s recommendation. The JEC, in consultation with the graduate advisor and the student, recommends to the graduate dean a five-member candidacy committee composed of four program faculty (from at least two campuses) and one outside member holding tenure on one of the participating campuses (i.e., not a member of the program faculty) to organize and administer the special-area exam and the oral exam taken by the candidate after successful completion of the other exams. All committee members for both candidacy and doctoral committees should normally be voting members of the Academic Senate of the Irvine, Riverside, or San Diego divisions. Any exceptions must hold a Ph.D., be qualified for a UC faculty appointment, and be supported by a memo of justification and a CV submitted by the graduate advisor to the graduate dean for approval at least two weeks prior to an exam. The qualifying examinations include written examinations and a final oral examination:
 a. Greek and Latin translation (three hours each)
 b. Greek and Roman history (two hours each)
 c. History of Greek and Roman literature (three hours)
 d. A “special area” that can be fulfilled by either an extensive research paper or a three-hour written exam
 e. Oral examination to be administered by the candidacy committee and taken only after the other exams have been passed (two hours: one hour general knowledge and one hour special-area exam paper or research paper)

These exams are based on the Tri-Campus Reading Lists and should be completed by the end of the fourth year. The exams on Greek and Roman history are based on up to six books each, three prescribed on the reading list for this exam and up to three agreed to by the student and graduate advisor. The exam on the history of Greek and Roman literature is based on the Greek and Latin Reading Lists and the books prescribed on the reading list for this exam. Students are expected to read, in the original, all works on the Greek and Latin Reading Lists, whether or not they have appeared in courses. (Students may negotiate with the graduate advisor substitutions on the Greek and Latin Reading Lists comprising up to twenty percent of their total length in order to accommodate the particular interests of the individual student.) Upon successful completion of the written examinations the oral exam will be scheduled. Students failing segments of the qualifying exams may normally retake those sections only once after the interval of one quarter or the summer break, as the case may be. Students may retake segments of the qualifying exams more than once only at the discretion of the JEC. A grade of “pass” in all examinations is required for admission to candidacy.

Thesis and Defense for the M.A.

The master’s paper comprises a substantial piece of original research. It should exceed the breadth and depth expected for a seminar paper, which can provide a good foundation for the master’s paper. The master’s paper must be submitted to members of the master’s committee three weeks in advance of the general exam. If the master’s paper is found to be of passing quality by the committee, the student may take the general exam, a one-hour oral exam covering the broader implications of the master’s paper and the classical world generally.

Thesis and Defense for the Ph.D.

When the student has advanced to candidacy, the JEC—in consultation with the candidate, the graduate advisor, and the proposed chair of the doctoral committee—will recommend to the Dean of the Graduate Division a doctoral committee composed of at least three program faculty (from at least two of the three campuses) and one outside member who holds tenure at one of the participating campuses. The doctoral committee will serve as the examination committee for the thesis defense. Within the first quarter after completion of the qualifying exams and all other prerequisites, the candidate will submit a dissertation proposal for discussion and evaluation to the doctoral committee.

A public oral defense of the dissertation will be scheduled upon its submission to the doctoral committee. Members of the committee must be supplied with a copy of the dissertation at least three weeks before the exam date.

The Emphasis in Comparative Literature

COURSE WORK

For the emphasis in comparative literature, students must take at least five graduate courses in the Department of English and Comparative Literature. One course should be Criticism 222A or C, or Comparative Literature 200. At least three of the courses should have a Comparative Literature designation. One of the courses could be Humanities 270 (Critical Theory). Classics students can devote the required outside seminars to this emphasis and may, with the graduate advisor’s approval, make appropriate substitutions of courses.

QUALIFYING EXAMS

One topic on the Ph.D. qualifying examination must be on a comparative literature topic and should be prepared with a professor from the Comparative Literature Program who would serve as a member of the student’s exam committee. The student should be able to demonstrate some expertise in comparative critical methodologies as well as knowledge of a literature and tradition other than classics. Normally classics students will fulfill this requirement by
selecting the research-paper option for the oral-exam stage of the qualifying examinations.

DISSECTATION

One member of the student’s doctoral committee must be from the Program in Comparative Literature.

Students must submit an application for the emphasis to the graduate advisor in classics, and the department will track the students’ progress and fulfillment of the emphasis requirements. Upon graduation, students will receive a letter from the graduate advisor certifying completion of the emphasis.

Attendance at Colloquia and other Departmental Activities

Seminars, colloquia, and other activities of interest to classics graduate students are organized regularly by the Tri-Campus Graduate Program. Since these activities are considered part of the student’s professional training, all students are required to attend them. Students are also urged to acquaint themselves with colloquia offered in other fields.

Support for Graduate Students

A variety of fellowships and teaching assistantships is available to classics graduate students on a competitive basis. They include Chancellor’s Fellowships, Regents’ Fellowships, and Dissertation Fellowships, as well as the Thesaurus Linguae Graecae Fellowship. Several teaching and research assistantships are also available, and provide a stipend in addition to tuition and fees. Some fourth- and fifth-year teaching assistantships are held at UC Riverside and UCSD. Continuation of support is contingent upon satisfactory academic progress. Support from various sources is normally extended to students in good standing for up to six years.

Resources of the Tri-Campus Program

The Department of Classics at UC Irvine, which is the administrative center of the Tri-Campus Program, is housed in pleasant quarters in Humanities Office Building 2. Tri-Campus graduate students avail themselves of

- Superior library holdings in classics and related fields in the combined collections of all nine University of California research libraries, accessed to the holdings of the California Digital Library, and expeditious Interlibrary Loan Services with other U.S. and international libraries.
- The facilities of the Thesaurus Linguae Graecae Project (TLG) at UC Irvine, including the complete TLG data bank, the Classics/TLG Computing Lab, and the large collection of primary texts, commentaries, and reference materials housed in the TLGs Marianne Eirene McDonald Library. Formal (Classics 201) and informal instruction in computer-related methodologies for research and teaching are conducted at the Classics/TLG Computing Lab.
- The Consortium for Latin Lexicography (CLL) at UC Irvine, a collaborative research group whose primary goal is to create a computerized Latin dictionary based on the Thesaurus Linguae Latinae (TLL) in Munich.
- The faculty and program in comparative ancient civilizations at UC Riverside, which are dedicated to a cross-cultural and cross-disciplinary approach to the study of ancient cultures.
- Combined UCI-UCSD Ph.D. program in theatre, which has a strong classics component, and the nationally renowned regional theatre at La Jolla.
- Seminars, colloquia, and lectures regularly offered by the Critical Theory Institute at UC Irvine and by the University of California Humanities Research Institute that is housed on the UC Irvine campus. Tri-Campus doctoral students may add an emphasis in critical theory under the supervision of the Committee on Critical Theory. The Tri-Campus Program also has its own colloquia series of lectures by visiting scholars on the three campuses.
- The Southern California Graduate Resource-Sharing Consortium, a cooperative association of the Tri-Campus Program and the graduate classics programs of UCLA and the University of Southern California. Every year a faculty member from each of these units offers a graduate seminar in his or her area of expertise at one of the other units. In the spring of every year faculty and graduate students conjoin at an annual consortium luncheon and lecture by a distinguished visiting scholar.

For further information and an online application to the program, please see the Tri-Campus Program’s Web site at http://www.hnet.uci.edu/classics/tricampus/.

Andrew Zissos
Program Graduate Advisor
Department of Classics
University of California, Irvine
Irvine, CA 92697-2000
(949) 824-6735
E-mail: tricampus-classics@uci.edu
Fax: (949) 824-1966

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

UC TRI-CAMPUS GRADUATE PROGRAM IN CLASSICS

Classics 200A. Contemporary Literary Theory and the Classics (4)
An introduction to contemporary literary theory, focusing on important critical approaches to the literary texts. May be repeated for credit as topics vary. Some recent offerings include “Bahktin and Aristophanes” (A. Edwards, fall 1995) and “Classics and Literary Theory” (P. duBois, spring 1995)

Classics 200B. Historical Perspectives on Classical Antiquity (4)
Examines ways in which classical texts and ideas have been received and appropriated for the diverse purposes of ancient and subsequent cultures. May be repeated for credit as topics vary. Some recent offerings include “Platonism” (D. Glidden, winter 1996) and “Virgil & Milton” (D. Sutton, winter 1998)

Classics 200C. Greece and Rome in their Contemporary Cultural Contexts (4)
An introduction to the methods and perspectives of social scientific theory which can be used to study the material and social dimensions of the cultures of ancient Greece and Rome. May be repeated for credit as topics vary. Some recent offerings include “Literature & Society in the 4th Century” (M. Salzman, winter 1997) and “Homer’s Iliad and the Greek Dark Age” (W. Donlan, spring 1999)

Classics 201. Computing in Classical Studies (4)
An introduction to the latest methods of computing for research and teaching. May be repeated for credit as topics vary.

Classics 205. Concurrent Readings (2)
Concurrent enrollment with advanced undergraduate courses (either Greek 105 or Latin 105) with enhanced readings and separate examinations. May be repeated for credit as topics vary.

Classics 220. Classics Graduate Seminar (4)
Subject matter variable; mainly but not exclusively major literary topics. May be repeated for credit as topics vary. Same as Art History 295 when topic is appropriate. Some recent offerings include “Senecan Tragedy” (W. Fitzgerald, winter 1997), “Production
Criticism” (D. Sutton, spring 1997), and “Cleopatra and Egyptomania in Rome” (M. Miles, winter 1999).

Classics 280. Independent Study (4)
Supervised independent research. Subject varies.

Classics 290. Research in Classics (4–4–4)
F, W, S.

Classics 299. Dissertation Research (4–12)
F, W, S. May be repeated for credit. Satisfactory/ Unsatisfactory Only.

Classics 399. University Teaching (4–4–4)
F, W, S. Required of and limited to Teaching Assistants.

UC TRI-CAMPUS CLASSICS PROGRAM FACULTY

Thomas F. Scanlon, Ph.D., Ohio State University, Professor of Classics and Program Director, UCR (Greek and Roman historiography, ancient athletics)

Georgios Anagnostopoulos, Ph.D., Brandeis University, Professor of Philosophy, UCSD (ancient Greek philosophy, ethics, metaphysics)

Luci Berkowitz, Ph.D., Ohio State University, Professor Emerita of Classics, UCI (Greek literary history, computer application to literature)

Theodore F. Brunner, Ph.D., Stanford University, Professor Emeritus of Classics, UCI (computer application to classical literature)

Charles Chamberlain, Ph.D., University of California, Berkeley, Lecturer in Classics and Comparative Literature, UCSD (Greek and Latin literature, Aristotle, poetry)

Cynthia L. Claxton, Ph.D., University of Washington, Lecturer in Classics and Graduate Teaching Supervisor, UCI (Greek prose, historiography)

Page duBois, Ph.D., University of California, Berkeley, Professor of Classics and Comparative Literature, UCSD (Greek literature, rhetoric, critical theory, cultural studies)

Anthony Edwards, Ph.D., Cornell University, Professor of Classics and Comparative Literature, UCSD (epic, Greek comedy, critical theory)

Leslie Collins Edwards, Ph.D., Cornell University, Lecturer in Classics and Comparative Literature, UCSD (Homer, Greek drama, education in ancient Greece)

Richard L. Frank, Ph.D., University of California, Berkeley, Associate Professor Emeritus of History and Classics, UCI (Roman history, Latin elegy and satire, classical tradition)

Zina Giannopoulu, Ph.D., University of Illinois, Assistant Professor of Classics, UCI (literary theory and Platonic hermeneutics, classical and Hellenistic philosophy, Greek tragedy and epic)

David Glidden, Ph.D., Princeton University, Professor of Philosophy, UCR (Greek and Roman philosophy)

Anna Gonosova, Ph.D., Harvard University, Associate Professor of Art History, UCI (Byzantine and Medieval art)

Monte Johnson, Ph.D., University of Toronto, Assistant Professor of Philosophy, UCSD (early Greek philosophy, classical Greek philosophy, and the influence of ancient philosophy on the history of science)

Dayna Kalleres, Ph.D., Brown University, Assistant Professor of Literature and Study of Religion, UCSD (early to late antique Christian literature and culture)

Andromache Karanika, Ph.D., Princeton University, Assistant Professor of Classics, UCI (Greek epic poetry, Greek lyric, folklore)

Edward N. Lee, Ph.D., Princeton University, Professor Emeritus of Philosophy, UCSD (Greek philosophy, Plato)

Marianne McDonald, Ph.D., University of California, Irvine, Professor of Theatre and Classics, UCSD (Greek and Roman theatre, ancient drama in modern plays, film, and opera)

Margaret M. Miles, Ph.D., Princeton University, Associate Professor of Art History, UCI (Greek and Roman art and archaeology, ancient Sicily, Greek religion)

Alden A. Moshammer, Ph.D., Brown University, Professor Emeritus of History, UCSD (early Christian thought, Greek chronography, early Greek history)

Sheldon Nodelman, Ph.D., Yale University, Associate Professor of Visual Arts, UCSD (classical art and architecture, Roman portraiture, critical theory)

Maria C. Pantelia, Ph.D., Ohio State University, Associate Professor of Classics and Director Thesaurus Linguae Graecae, UCI (Greek epic poetry, Hellenistic poetry, computer applications to classics)

Wendy Raschke, Ph.D., State University of New York, Buffalo, Lecturer in Classics, UCR (Roman satire, Greek art and archaeology)

B. P. Reardon, D.U. Université de Nantes, Professor Emeritus of Classics, UCI (late Greek literature, ancient novel)

Michele Salzman, Ph.D., Bryn Mawr College, Associate Professor of History, UCR (late antiquity; Roman history and literature, religion, women’s studies)

Gerasimos Santas, Ph.D., Cornell University, Professor of Philosophy, UCI (ancient philosophy, history of philosophy, ethics)

Patrick Sinclair, Ph.D., Northwestern University, Associate Professor Emeritus of Classics, UCI (Roman historiography, Latin lexicography, rhetoric)

Christiana Sogno, Ph.D., Yale University, Assistant Professor of Classics, UCI (Roman history, Roman law, Latin epigraphy, and papyrology)

Dana F. Sutton, Ph.D., University of Wisconsin, Professor Emeritus of Classics, UCI (Greek and Latin drama, Greek poetry, Anglo-Latin literature)

Nicholas P. White, Ph.D., Harvard University, Professor of Philosophy, UCI (Greek Philosophy, Ethics, Epistemology)

Eliot Wirshbo, Ph.D., University of Pennsylvania, Lecturer in Classics and Comparative Literature, UCSD (Greek epic, folklore)

Andrew Zissos, Ph.D., Princeton University, Assistant Professor of Classics, UCI (Latin epic, medieval Latin, Roman culture)

Clinical Psychology

OFFICE: 2056 Basic Science Building
(858) 534-4044

Professors

Sonia Ancoli-Israel, Ph.D., In-Residence/Psychiatry
Mark I. Appelbaum, Ph.D., Psychology
J. Hampton Atkinson, Jr., M.D., In-Residence/Psychiatry
Ursula Bellugi, Ed.D., Adjunct/Psychology
Gary R. Birchler, Ph.D., Clinical Psychiatry
David L. Braff, M.D., Psychiatry
Karen Britton, M.D., Ph.D., In-Residence/Psychiatry
Gregory G. Brown, Ph.D., In-Residence/Psychiatry
Sandra Brown, Ph.D., Psychology/Psychiatry
Michael P. Caligiuri, Ph.D., In-Residence/Psychiatry
Eric Coughesne, Ph.D., Neurosciences
Dean C. Delis, Ph.D., In-Residence/Psychiatry
Joel E. Dimsdale, M.D., In-Residence/Psychiatry
Ann F. Garland, Ph.D., In-Residence/Psychiatry
Mark A. Geyer, Ph.D., In-Residence/Psychiatry

Clinical Psychology
Clinical Psychology

Eric L. Granholm, Ph.D., In-Residence/Psychiatry
Igor Grant, M.D., Psychiatry
Deborah Harrington, Ph.D., Adjunct/Radiology
Robert K. Heaton, Ph.D., Psychiatry, Program Director
Terry L. Jernigan, Ph.D., In-Residence/Psychiatry
Dilip V. Jeste, M.D., In-Residence/Psychiatry
Lewis L. Judd, M.D., Psychiatry, Chair
Patricia A. Judd, Ph.D., Clinical Psychiatry
John R. Kelsoe, Jr., M.D., Psychiatry
William S. Kremen, Ph.D., Adjunct/Psychiatry
James A. Kulik, Ph.D., Psychology
Saul Levine, M.D., Psychiatry
James B. Lohr, M.D., In-Residence/Psychiatry
Jeffrey E. Max, MBBch, Psychiatry
Paul J. Mills, Ph.D., In-Residence/Psychiatry
Mark G. Myers, Ph.D., In-Residence/Psychiatry
Lawrence A. Palinkas, Ph.D., Family and Preventive Medicine
Barbara L. Parry, M.D., Ph.D., In-Residence/Psychiatry
Thomas L. Patterson, Ph.D., In-Residence/Psychiatry
Martin P. Paulus, M.D., In-Residence/Psychiatry
William Perry, Ph.D., In-Residence/Psychiatry
David P. Salmon, Ph.D., In-Residence/Neurosciences
Laura Schreibman, Ph.D., Psychology
Marc A. Schuckit, M.D., Psychiatry
Larry R. Squire, Ph.D., Psychiatry
Murray B. Stein, M.D., In-Residence, Psychiatry
Joan Stiles, Ph.D., Cognitive Science
Steffanie Strathdee, Ph.D., Family and Preventive Medicine
Neil R. Swedlow, M.D., Ph.D., Psychiatry
Doris A. Trauner, M.D., Neurosciences/Pediatrics
Tamara L. Wall, Ph.D., In-Residence/Psychiatry
Shu-Hong Zhu, Ph.D., In-Residence/Family and Preventive Medicine
Sidney Zisook, M.D., Psychiatry

Assistant Professors
Niloofar Afari, Ph.D., Adjunct/Psychiatry
Natasha Akshoomoff, Ph.D., Adjunct/Psychiatry
Leslie J. Carver, Ph.D., Psychology
Mariana Cherry, Ph.D., Adjunct/Psychiatry
Sean Drummond, Ph.D., In-Residence/Psychiatry
Tamar Gollan, Ph.D., Adjunct/Psychiatry
Frank Haist, Ph.D., Adjunct/Psychiatry
Ariel J. Lang, Ph.D., In-Residence/Psychiatry
Kristen McCabe, Ph.D., Adjunct/Psychiatry
Gregory J. Norman, Ph.D., Assistant Adjunct, Family and Preventive Medicine
Sonya B. Norman, Ph.D., Adjunct/Psychiatry
Thomas Rutledge, Ph.D., In-Residence/Psychiatry
Brian C. Schweinsburg, Ph.D., Assistant Adjunct/Psychiatry
Michael J. Taylor, Ph.D., In-Residence/Psychiatry
Elizabeth W. Twamley, Ph.D., Adjunct/Psychiatry
Julie Wetherell, Ph.D., In-Residence/Psychiatry

Professional Researcher
Jeanne Townsend, Ph.D., Associate Research Scientist/Neurosciences

The Joint Doctoral Program

The interdisciplinary partnership of the Department of Psychiatry at the UCSD School of Medicine and the Department of Psychology at San Diego State University greatly extends the range of perspectives and furnishes unusual opportunities for graduate study leading to the Ph.D. degree in clinical psychology. The Joint Doctoral Group in Clinical Psychology currently consists of faculty from the UCSD Department of Psychiatry, School of Medicine, and the Departments of Neurosciences, Cognitive Science, Family and Preventive Medicine, and Psychology, and the SDSU Department of Psychology and School of Public Health.

For information regarding admission is found in the current edition of the Bulletin of the Graduate Division of San Diego State University and at our Web site: http://www.psychology.sdsu.edu/doctoral.

The program goal is to train clinical psychologists who are accomplished both as clinicians and as research scientists. The curricula and training provide a strong foundation in clinical psychological concepts, methods, theories, and data, together with intensive concentrations in specialized areas of clinical psychology. Currently our program has three areas of specialization: behavioral medicine, neuropsychology, and experimental psychopathology.

The scientist-practitioner model on which this program is based requires that students receive ongoing supervised research experience, including planning, design, implementation, analysis, and communication of findings. Equally important is extensive supervised experience aimed at developing sound general and specialized clinical skills. Students are expected to be actively involved in all these activities throughout their tenure in the program.

The program is designed as a five-year curriculum, including a one-year clinical internship. The curriculum is based on a twelve-month academic year. The program is accredited by the American Psychological Association.

Specific courses currently required as part of the core at UCSD include: Clinical Psychology 294A,B,C; (required for neuropsychology track majors only); Clinical Psychology 296 (independent study, lab practicum); Clinical Psychology 299 (independent study project); School of Medicine 202E (Psychopathology).

Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of five years. Total University support cannot exceed six years. Total registered time at UCSD cannot exceed seven years.

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

Clinical Psychology 205. Neuroanatomy (6)
Fundamental anatomy/physiology of human nervous system, emphasizing higher cortical functions. Methods of clinical problem solving in neurology; background in basic neuropsychological skills.

Clinical Psychology 209. Child Development and Neuropsychology (8)
Basic aspects of behavioral and neuropsychological development, including guest lectures from program faculty on developmental disorders and clinical assessment issues specific to children. Some emphasis on practical techniques relevant to assessments of minor patients. Prerequisites: completion of two-year core curriculum in the Joint Doctoral Program in Clinical Psychology.

Clinical Psychology 294A. Pro-Seminar in Neuropsychology (3)
Year-long course (294A,B,C), each for three credits, offered sequentially fall, winter, spring. Provides a fundamental knowledge of brain-behavior relationships.
Clinical Research

OFFICE: La Jolla Village Professional Center, 8950 Villa La Jolla Drive, Suite A124 (858) 964-1320 E-mail: clre@ucsd.edu http://www.clre.ucsd.edu

Program Director
Ravindra L. Mehta, M.D., Professor of Clinical Medicine

Associate Program Directors
Gerry R. Boss, M.D., Professor of Medicine
J. Allen McCutchan, M.D., Professor of Medicine in Residence

Associated Faculty
Theodore Ganiats, M.D., Professor, Family and Preventive Medicine
Leslie A. Lenert, M.D., Professor of Medicine in Residence
W. Christopher Mathews, M.D., Professor of Clinical Medicine
Deborah L. Wingard, M.D., Professor, Family and Preventive Medicine
Michael G. Ziegler, M.D., Professor of Medicine

Program Description

The Master of Advanced Studies (MAS) in Clinical Research offers a broad-based curriculum in clinical research methodology and integrates classroom instruction with practical training to provide students with the knowledge and skills necessary to produce valid, credible research. Linking the academic and professional scientific communities, the program is appropriate for physicians, pharmacists, nurses with advanced training, psychologists, and biomedical scientists employed in biomedical firms, hospitals, and pharmacies. The program aims to accommodate the varying needs of the students through its modular approach to instruction, a part-time year-round schedule, and a choice of general electives organized by tracks.

The MAS in Clinical Research is a part-time, self-supporting degree program with a flexible course schedule designed for working professionals and academics. The UCSD graduate division confers the MAS degree and the Department of Medicine in the UCSD School of Medicine is responsible for the academic management of the curriculum. UCSD Extension administers the program and provides student advising and career counseling services.

Admission

New students are admitted in the winter and summer quarter of each academic year. Prospective candidates should submit and complete the official UCSD online graduate application for admission, the application fee, one set of official transcripts from each institution attended after high school, three letters of professional letters of recommendation, and a current resume or c.v. The GRE/GMAT is not required; however, it is strongly recommended that candidates possess, or currently be pursuing, a graduate degree in a scientific or health-care related field and also have some level of experience in scientific or clinical research. In some instances candidates without an advanced degree may be admitted to the program if they have demonstrated substantial professional experience in the field at increasing levels of responsibility. The application deadlines are October 18 (winter) and April 18 (summer).

Program of Study

The part-time master’s degree program is designed to be completed in two to three years, depending upon a participant’s time to devote to the program. Classes are typically scheduled in the late afternoons and evenings. The thirty-six-unit degree is comprised of sixteen units of core clinical modules, four units of seminar courses, six units of general electives, four units of advanced statistics electives, and six units of an independent study project.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

CLRE 250. Patient-Oriented Research I (2)
This course will develop and apply the theory of clinical trials design and analysis, discuss the practical issues of financing and implementing clinical trials, and describe issues of monitoring trials and working in cooperative groups. The scholar will design and present to a group of peers a concept sheet for a phase I/II and phase II/III clinical trial.

CLRE 251. Epidemiology I (2)
Scholars will recognize and understand different types of study designs, the relative strengths and limitations of each, and the proper choice of study design in conducting their own research. They will also be able to identify and calculate the correct measure of risk for each study design. Participants will recognize major sources of bias, confounding and misclassification, and understand design and analysis methods of dealing with each. They will also be familiar with criteria to differentiate association from causation.

CLRE 252. Health Services Research (2)
Scholars will evaluate relevant outcomes in patient-oriented research from the patient (quality of life) and societal (economic) perspectives and locate potential resources for assessing the relevant outcomes in a wide variety of study designs. They will also be able to describe the relative strengths of different health services research approaches to a clinical problem. Finally, they will understand the components of clinical practice guidelines, including patient preferences, and how these guidelines both depend upon as well as inform patient-oriented research.

CLRE 253. Biostatistics I (2)
Scholars will understand principles of measurement of clinical data, recognize data types, and correctly identify statistical methods appropriate for analysis of a given clinical data set. They will gain experience in assembling a clinical dataset in formats suitable for analysis by STATA or other comparable statistical packages. They will learn skills to conduct graphical and numerical exploratory data analysis, comparative tests of categorical, ordinal, and continuous data, linear and logistic regression analysis, and survival analysis by life table and Kaplan-Meier techniques.

CLRE 254. Biostatistics II (2)
Scholars will understand and conduct advanced biostatistical analyses including multiple linear and logistic regression, survival analysis, and Cox and extended Cox regression. The scholar will also be familiar with person-time rate analysis with Poisson regression and longitudinal data analysis in the presence of missing values.
values and varying measurement times. Prerequisites: Biostatistics I, CLRE 253.

CLRE 255. Data Management and Informatics (2) This course provides an orientation to database design and management and covers key issues regarding data handling for clinical research and clinical trials. Scholars will also become familiar with technology assessment and decision-making methods and analysis.

CLRE 256. Patient-Oriented Research II This course will review the ethics and basic regulatory issues for research involving human subjects; the principles of data management for clinical research, including architecture, access and confidentiality, and integrity of databases; and skills in graphic and verbal presentation of research data. Scholars will prepare a mock submission to an IRB for peer review and practice presenting graphic and tabular data. Prerequisites: Patient-Oriented Research I, CLRE 250.

CLRE 257. Epidemiology II (2) Scholars will select the appropriate sampling method and determine the sample size necessary for specific projects and adjust for confounding. Participants will be familiar with several specialized analytic techniques, including matched, cluster, and meta-analyses. They will also be familiar with methodological issues, unique to ecological, behavioral, and genetic studies. Prerequisites: Epidemiology I, CLRE 251.

CLRE 258. Professional Development in Clinical Research (2) Students participate in a series of seminars on professional development topics that will focus on skills and knowledge to enhance the ability of clinical researchers to be successful. Seminar topics may include research management, team building and collaboration, leadership skills, career development in the clinical research field, negotiation skills, research project management, and research budgeting/financial management. Prerequisite: MAS Program or permission of department.

CLRE 259. Scientific Communication Skills (2) This course covers the key elements of scientific communication skills that are designed to enhance the clinical researcher’s ability to be successful. Topics include secrets of making good oral presentations and engaging the audience, how to write and prepare abstracts, basics of grant writing and submission, and how grants are reviewed. Course includes mock grant study section. Prerequisite: MAS Program or permission of department.

CLRE 260. Directed Studies in Clinical Research (2) Faculty member will direct a student’s study in selected professional development topics in clinical research. Specific content will be tailored to the student’s particular needs and interests. Students must make arrangements with the program and individual faculty member prior to enrolling in the course. Prerequisite: MAS Program or permission of department.

CLRE 261. Applied Quantitative Analysis (4) Students will understand and conduct advanced statistical analyses for clinical research. The course will develop the students’ technical and conceptual skills in cost effectiveness analysis and decision analysis, including the creation and evaluation of decision trees, use of sensitivity analysis and the incorporation of patient preferences through utility analysis. Prerequisites: CLRE 253, CLRE 254.

CLRE 296. Independent Study Project (6) The Independent Study Project (ISP) is the cornerstone of the MAS program. Students will be involved in a high-level clinical research project that integrates what they have learned in their formal course work. The ISP will be an independent and creative scholarly activity in an area related to one or more of the topics covered in the formal curriculum. Students’ work will be evaluated by a committee of faculty, and, in some cases, industry advisors.

Cognitive Science

Introduction

Cognitive science is a young and diverse field which is unified and motivated by a single basic inquiry: What is cognition? How do people, animals, or computers ‘think,’ act, and learn? In order to understand the mind/brain, cognitive science brings together methods and discoveries from neuroscience, psychology, linguistics, philosophy, and computer science. UCSD has been at the forefront of this exciting new field and our Department of Cognitive Science was the first of its kind in the world. It is part of an exceptional scientific community and remains a dominant influence in the field it helped create.

In addition to preparing undergraduates for careers in a variety of sciences, the major also provides an excellent background for many professional fields, including medicine, clinical psychology, and information technology.

The concerns of cognitive science fall into three broad categories: the brain—the neurological anatomy and processes underlying cognitive phenomena; behavior—the cognitive activity of individuals and their interaction with each other and their sociocultural environment, including the use of language, information, and media; and computation—the capacity of mathematical and computer systems to model cognitive and neural phenomena and represent information, and the role of computers as cognitive tools.

The department collaborates closely with other academic departments and research communities, including the Center for Research in Language, the Center for Human Development, the Salk Institute for Biological Studies, the UCSD Medical Center, the San Diego Supercomputer Center, the Center for Functional Magnetic Resonance Imaging, and the new Kavli Institute for Brain and Mind, providing many outstanding resources and opportunities.

Students are encouraged to participate actively in the department by sharing their ideas about curriculum, research, and other topics with faculty and staff. Undergraduate students may join the students in Cognitive and Neurosciences (SCANS) organization, which provides opportunities for undergraduates to meet students and faculty from UCSD and other institutions, visit research laboratories, and make job contacts. Graduate students take an especially active role in shaping the department, both academically and administratively, while they gain...
experience in research, teaching, and managing both labs and department affairs.

The Undergraduate Programs

The department offers both a B.A. and a B.S. degree. The B.S. requires completion of more rigorous lower-division course work and three additional courses at the upper-division level. The B.S. degree may be taken optionally with a specified area of specialization. There is also an honors program for exceptional students in both degree programs. Major Code: CG25.

Please note: Students who officially declared the major before fall 2001 may choose to follow the old major requirements or the new major requirements, but not a combination of both. See department advisor for more information.

Grade Requirements for the Major

A minimum grade-point average of 2.0 is required for admittance to and graduation from the B.A. or B.S. degree program. Students must receive a grade of C– or better in any course to be counted toward fulfillment of the major requirements. All courses must be taken for a letter grade, with the exception of Cognitive Science 195, 198, and 199, which are taken Pass/No Pass.

Four-Year Plan of Study

The four-year plan of study below assures that all prerequisites and requirements for the cognitive science major are completed. The department does enforce course prerequisites and several courses are offered only once a year, so careful planning is important. It is recommended that lower-division courses be taken in the first two years, core courses in the third year, and electives in the final year. Check with a departmental advisor about which quarter cognitive science courses will be offered each academic year. Check with a college advisor about course planning to meet college requirements.

FRESHMAN YEAR:

Twelve units of math (B.A.) or sixteen units of math (B.S.). Students intending to take Cognitive Science 118A and/or 118B should take Mathematics 20A-B-C.

College requirements

SOPHOMORE

JUNIOR YEAR:

Nine core courses, chosen from a list of twelve (see Core Sequences)

SENIOR YEAR:

Electives for the major

Lower-Division Requirements

All majors must complete lower-division courses in introductory cognitive science, mathematics, statistics, and computer programming:

MATHEMATICS REQUIREMENT

The cognitive science major requires twelve units of mathematics courses (for the B.A. degree), or sixteen units of mathematics courses (for the B.S. degree), chosen from the following list:

- Mathematics 10A-B-C
- Mathematics 20A-B-C-D-E-F
- Mathematics 15A or CSE 20
- Mathematics 15B or CSE 21

(Students should check with the Department of Mathematics for rules governing duplication of credit between the 10 and 20 series.)

LOWER-DIVISION REQUIREMENTS FOR THE B.A. DEGREE

Twelve units of mathematics courses chosen from the list above, in addition to the lower-division cognitive science course requirements.

LOWER-DIVISION REQUIREMENTS FOR THE B.S. DEGREE

Sixteen units of mathematics courses chosen from the list above, in addition to the lower-division cognitive science course requirements.

LOWER-DIVISION COGNITIVE SCIENCE COURSE REQUIREMENTS

The following lower-division courses in Cognitive Science are required for all majors:

- Cognitive Science 1
- Cognitive Science 14
- Cognitive Science 18
- Students intending to take Cognitive Science 118A and/or 118B are advised to take Mathematics 20A-B-C-E-F and Mathematics 180A before their junior year.

Upper-Division Requirements

The cognitive science major requires the completion of nine core sequence courses, plus three elective courses (for the B.A. degree), or six elective courses (for the B.S. degree). Students are advised to complete these core courses in their junior year, especially if they intend to apply to the honors program. The remainder of the upper-division requirement is fulfilled by completing electives.

Core Sequences

The core sequences courses in the Department of Cognitive Science are:

- Cognitive Science 101A-B-C (Cognitive Theory and Phenomena)
- Cognitive Science 102A-B-C (Distributed Cognition, Everyday Cognition, Cognitive Engineering)
- Cognitive Science 107A-B-C (Cognitive Neuroscience)
- Cognitive Science 109, 118A-B (Computational Models of Cognition)

The cognitive science major requires the completion of nine courses from the core sequences, which must include two courses in the Cognitive Science 101 series, two in the Cognitive Science 102 series, two in the Cognitive Science 107 series, Cognitive Science 109, and two additional courses from any of the core sequences.

Electives

At least half of the electives for the major must be taken in the department. Courses in the Cognitive Science 19X series (190A, 190B, 190C, 198, 199) may NOT be used as an elective to satisfy the major requirements for the B.A. degree. One course in the Cognitive Science 19X series may be used as an elective to satisfy the requirements for the B.S. degree, but only with the approval of both the instructor who supervised the course and the undergraduate advisor. A course taken outside the department must meet the following criteria:

1. The course must deal with topics and issues that are clearly part of cognitive science.
Areas of Specialization

A major may elect to receive a B.S. in cognitive science with a specified area of specialization. The areas of specialization are intended to provide majors with guidance in choosing elective courses and to make the specific interests and training of a major clear to prospective employers and graduate schools. Specifying an area of specialization is optional; however, students should take into consideration when planning for their specialization that approved courses are not necessarily offered every year.

To major in cognitive science with an area of specialization, the student must fulfill the requirements for the B.S. degree and must choose four of the required six elective courses from a list of approved electives for that area of specialization. (The lists of approved electives for each area of specialization are available in the department office.)

The following areas of specialization are currently offered by the department:

Specialization in Clinical Aspects of Cognition

This area of specialization is intended for majors interested in cognitive neuropsychology, psychiatry, cognitive disorders, and the effects of drugs and brain-damage on cognitive functions. Allowed electives include courses in those topics, as well as organic chemistry, biochemistry, and physiology. Major code: CG31

Specialization in Computation

This area of specialization is intended for majors interested in software engineering or research in computational modeling of cognition. Allowed electives include advanced courses in neural networks, artificial intelligence, and computer science. Students interested in this specialization will most likely select courses from the computer science and engineering course offerings, as courses offered within the cognitive science department are limited. Major code: CG27

Specialization in Human Cognition

This area of specialization is intended for majors whose primary interests include human psychology and applications of cognitive science in design and engineering. Allowed electives include courses in cognitive development, language, laboratory research of cognition, anthropology, and sociology. Major code: CG28

Specialization in Human Computer Interaction

This area of specialization is intended for majors interested in human computer interaction; Web; visualization; and applications of cognitive science in design and engineering. Additional electives may be petitioned from communication, computer science, computer engineering, and visual arts. Major code: CG30

Specialization in Neuroscience

This area of specialization is intended for majors interested in neuroscience research or medicine. Allowed electives include courses in cognitive neuroscience, organic chemistry, biochemistry, and physiology. Major code: CG29

Cognitive Science Honors Program

The Department of Cognitive Science offers an honors program for a limited number of majors who have demonstrated excellence, talent, and high motivation.

Eligibility Requirements

Students are eligible for admission to the program when they:
1. Complete all core courses
2. Have at least junior level standing
3. Have at least a 3.5 GPA in upper-division major courses and at least a 3.0 overall GPA

Eligible students will enroll in four units of COGS 190A (Pre-Honors Project in Cognitive Science) under a faculty member who has agreed to advise them on a potential honors project. Students may apply the COGS 190A course as an elective toward major requirements whether or not they enter the Honors Program. At the end of the 190A course, students will submit to their faculty mentor a written project proposal. The proposal will define the question to be investigated, survey existing literature, describe the approach and methods that will be used, explain how data will be collected if it is an empirical study, detail how human subjects requirements will be met if necessary, discuss expected results, and provide a timeline for project completion.

Acceptance in Honors Program

To formally enter the Honors Program, students must meet the eligibility requirements above, receive a grade of A– or better in COGS 190A, establish an honors committee of at least two faculty and one graduate student to review the proposal and advise them during the process of completing the honors project, and have their project proposal approved by their honors committee.

The honors committee must be kept informed of any deviations from the original approved project proposal and timeline. Students who fail to make satisfactory progress may be asked to withdraw from the program at any point the advisor or the department chair deems necessary.

Successful completion of the Honors Program requires:
1. Maintenance of a 3.5 GPA in upper-division major courses, and a 3.0 overall GPA
2. Completion of one cognitive science (or related) graduate level course (may be taken P/NP). Students may use the required graduate course as one of their electives for the major whether or not they complete the honors project
3. Completion of COGS 190B and 190C with letter grades of A– or better
4. Completion of COGS 190D (Preparation for Thesis Presentation), a 1-unit seminar given each spring (P/NP)
5. Completion of a written honors thesis describing the project
6. Approval of the thesis by the honors committee and the department chair
7. Satisfactory presentation of the honors thesis to the cognitive science community at the Honors Thesis Presentation Conference, spring quarter.

Students who successfully complete all of the requirements for the Honors Program will graduate with Distinction in Cognitive Science on their transcripts.

Minors and Programs of Concentration

Each college has specific requirements, and students should consult with an academic advisor in their provost’s office as well as a cognitive science advisor to be sure they fulfill requirements of the college and of the department.
To receive a minor from the Department of Cognitive Science, a student must complete a total of seven (four unit) courses; five of which must be upper-division. Lower-division requirements are normally fulfilled by completing (one of) Cognitive Science 1, 3, 10 or 11 and (one of) Cognitive Science 14, 17 or 18. Upper-division requirements are normally fulfilled by completing two cognitive science electives and one of the following sequences:
- Cognitive Science 101A-B-C
- Cognitive Science 102A-B-C
- Cognitive Science 107A-B-C
- Cognitive Science 108D-E-F
- Cognitive Science 109, 118A-B

All courses must be taken for a letter grade. No grade below C– is acceptable.

Transfer Credit

Students who wish to transfer from another institution to UCSD as cognitive science majors should work closely with university advisors to ensure that all lower-division requirements have been completed and are equivalent to those offered at UCSD. It is extremely important for students to have completed lower-division requirements by the end of their sophomore year so they are prepared for core courses in their junior year. Advanced UCSD students who wish to transfer to the department should consult with the departmental advisors about credit for courses already completed.

Education Abroad

Students majoring in cognitive science are encouraged to participate in the Education Abroad Programs (EAP), and to investigate other options of foreign study through the Opportunities Abroad Program (OAP). By petition, credits earned through EAP/OAP can fulfill UCSD degree and major requirements. Please visit the Web site at http://programsabroad.ucsd.edu for further details. Financial aid is applicable and special study abroad scholarships are readily available.

The Graduate Programs

There are two Ph.D. programs, each with different admissions and graduation requirements. The Department of Cognitive Science offers a Ph.D. in cognitive science. Students are admitted to UCSD directly into the department and fulfill degree requirements of the department. The Interdisciplinary Program in Cognitive Science offers a joint Ph.D. in cognitive science and a home department (anthropology, communication, computer science and engineering, linguistics, neurosciences, philosophy, psychology, or sociology). Students are admitted to UCSD through the home department and fulfill the requirements of both the interdisciplinary program and the home department.

Ph.D. in Cognitive Science

This program provides broad training in neurological processes and phenomena; the experimental methods, results, and theories from the study of psychology, language, and social and cultural issues; and the studies of computational mechanisms. The first year is devoted to familiarizing the student with the findings and current problems in cognitive science through courses in foundations and issues.

By the second year, basic courses and laboratory rotations are completed, with the major emphasis on the completion of a year-long research project. Future years are spent completing the advancement to candidacy requirements and doing the thesis research. Throughout the program, there are frequent faculty-student interactions, including special lectures by the faculty or invited speakers and the weekly informal research discussions and cognitive science seminar.

Admissions

The admissions committee reviews each applicant’s statement of purpose, letters of recommendation, GRE scores, previous education and work experience, and grade-point averages, then recommends candidates for admission to the entire faculty, who make the final decision.

Advising

An interim advisor is appointed to serve as general advisor and counselor for each entering student. The advisor helps chart a set of courses that fulfill the content area requirements, taking into account the student’s prior training and interests. Students may change the interim advisor at any time (as long as the new interim advisor is willing). At the time of advancement to candidacy, students choose a permanent advisor who also functions as the chair of the dissertation committee.

All entering students are assumed to have basic prerequisite knowledge, and a list of basic readings will be provided to incoming students. Students who do not have this background can acquire it through self-study in the summer preceding arrival at UCSD or by taking self-paced study courses or relevant undergraduate courses at UCSD.

Summary of Requirements

1. Foundations courses
2. Approved study plan, which includes issues courses, methods courses, and laboratory rotations
3. Second-year project
4. Language requirement
5. Advancement to candidacy
6. Teaching
7. Cognitive Science 200 seminar
8. Participation in departmental events and committees

Description of Requirements

The expectation is that graduate students in the program will maintain a 3.4 GPA, and falling below this expectation may lead to the student being put on departmental probation. No course in which the student is assigned a grade below B– will be allowed to fulfill department requirements.

1. **Foundations Courses (Cognitive Science 201, 202, 203).** Students complete foundations courses in the areas of brain, behavior, and computation by the end of the second year. The department may waive some or all courses for students who already have the required knowledge.

2. **Study Plan.** Students complete a study plan recommended by their advisor. The normal plan includes:
 a. **Issues Courses.** A minimum of six issues courses are required, at least one in each of the areas of brain, behavior, and computation. At least four of the issues courses should be taken within the department. Department recommends completion by the end of the second year. Issues courses taken outside the department require the approval of the advisor.
in conjunction with the Graduate Committee. Five of the six issues courses must be taken for a letter grade.

b. **Methods Courses.** Three methods courses are required, one of which must be an approved statistics course. Students should obtain approval for all three courses from their advisor. An approved list of courses is on file with the department to assist students in selecting courses. Students may petition courses not on the approval list. Such petitions must be approved by the student’s advisor and graduate committee. All three courses must be taken for a letter grade.

c. **Laboratory Rotations (Cognitive Science 290).** A total of three quarters of laboratory rotations in at least two different faculty laboratories are required. Each rotation is for one to two full quarters as required by the faculty laboratory. All rotations should be completed by the end of fall quarter of the second year. Students can meet this requirement in the following ways:
 - Three one-quarter rotations in three different laboratories, or
 - One one-quarter rotation and one two-quarter rotation in two different laboratories, or
 - Two two-quarter rotations in two different laboratories for a total of four quarters enrolled in COGS 290.

Department recommends that student and advisor negotiate a topic and activity, then put the agreement in writing, sign, and give to the graduate coordinator.

3. **Second-Year Research Project (Cognitive Science 210A-B-C and 211A-B-C).** In the summer between the first and second year, students work with their advisor and a faculty committee to develop a prospectus for a research project. The year-long project culminates with written and oral presentations to the faculty at the end of spring quarter. During the second year, concurrent enrollment in Cognitive Science 210A-B-C and Cognitive Science 211A-B-C is required as part of the Second Year Project.

4. **Language Requirement.** The main goal of the language requirement is to give all students firsthand experience with some of the differences in structure and usage of languages and the several issues involved in the learning of second languages. This requirement can be satisfied by demonstrating satisfactory proficiency, by prior study in a language (e.g., two years of high school study), or by satisfactory completion of one quarter of study in a language course approved by the department.

5. **Advancement to Candidacy/Qualifying Paper and Oral Exam.** There are three components to advancement to candidacy:
 - Competency. This requirement is met by satisfactorily completing items 1-4 above.
 - Depth. This requirement is met by satisfactorily completing a talk to the entire department on their thesis topic by the end of the third year. A first draft of the thesis proposal must be submitted to the student’s advisor by the end of the third year. Students enroll in COGS 205 during winter and spring quarter of the third year.
 - Dissertation Topic/Advancement Exam. The student prepares a proposal of the dissertation topic that must be approved by the student’s doctoral committee. A final written proposal is submitted to the committee at least two weeks prior to an oral defense of the proposal. The doctoral committee consists of at least five faculty members: three from the department and two from outside the department; one of the outside members must be tenured.

6. **Teaching (Cognitive Science 500).** All graduate students must serve as a teaching assistant at least one quarter of each academic year in residence. The undergraduate program offers a special challenge to instructor and student alike, and experience with the teaching of that program can provide a valuable part of the education of a cognitive scientist. Teaching assistantships performed in other departments must be approved by formal petition to the graduate committee to count toward the requirement. The department works closely with the Center for Teaching Development to design effective training and development programs for its teaching assistants. At the end of each quarter, instructors prepare written evaluations of all teaching assistants.

7. **Cognitive Science 200 Seminar.** Students must enroll in this seminar for at least three quarters while in residence; frequent participation is encouraged.

8. **Participation in Departmental Events and Committees.** Students participate in departmental special events and committees and serve as student representatives for faculty meetings and the campus-wide Graduate Student Association. Students present their research in the undergraduate SCANS series.

9. **Completion of the Ph.D. Dissertation and Defense.** Candidates prepare a written dissertation demonstrating a substantive contribution to our understanding of cognition. An oral defense follows.

Master’s Degree

The Department of Cognitive Science does not offer admissions to a master’s program. However, candidates for the Ph.D. who do not hold a master’s degree from another institution may be granted the M.S. degree after fulfilling the first three requirements listed above. This is usually at the end of the second year. Duplication of advanced academic degrees, e.g., one at the same level, is not permitted at UCSD. Likewise, a professional degree at the master’s or doctoral level, e.g., M.Ed., M.P.I.A., M.D., or Pharm.D., is not regarded as a duplicate of an academic degree.

Evaluation of Performance and Progress

A formal evaluation of performance and progress for all students takes place at the end of spring quarter every year, with special attention given to the first and second years of study and at the time of qualification. The first-year evaluation is based in large part on the performance in foundations and issues courses. The second-year evaluation is based on the student’s total performance, with heavy weight given to the student’s second-year research project. The third-year evaluation focuses on the competency and depth requirements, and the following years on the progress made toward completion of the dissertation.

Special Events

The department intends to enhance student-faculty interaction and current awareness of active research issues by special “events”:

Cognitive Science
• Lectures by invited speakers or faculty members.
• A full day of faculty/student overview and information at the start of each year, with emphasis on ongoing research activity.
• Presentations of second-year research projects and third-year thesis topics to the entire faculty at the end of each year.
• Final defense of the dissertation accompanied by a public lecture and celebration.

Time Limits to Ph.D.

Students must be advanced to candidacy by the end of spring quarter of their fourth year. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

Financial Aid

Financial support is available to qualified students in the form of fellowships, loans, and assistantships. Students are encouraged to seek fellowships and research awards from outside the university. Please refer to the Graduate Studies section for more information.

The Interdisciplinary Ph.D. Program

FACULTY

Professors
Farrell Ackerman, Ph.D., Linguistics
Richard C. Atkinson, Ph.D., UC President, Emeritus, Cognitive Science and Psychology
William Bechtel, Ph.D., Philosophy
Richard K. Belew, Ph.D., Cognitive Science
Ursula Bellugi, Ph.D., Adjunct/Neurosciences
Gregory Brown, Ph.D., In-Residence, Psychiatry
Patricia S. Churchland, B.Phil., Philosophy
Paul M. Churchland, Ph.D., Philosophy
Aaron V. Cicourel, Ph.D., Emeritus, Cognitive Science and Sociology
Michael Cole, Ph.D., University Professor, Communication
Garrison W. Cottrell, Ph.D., Program Director, Computer Science and Engineering
Eric Courchesne, Ph.D., Neurosciences
Karen R. Dobbins, Ph.D., Psychology
Charles P. Elkan, Ph.D., Computer Science and Engineering
Jeffrey L. Elman, Ph.D., Cognitive Science
Yrjö Engeström, Ph.D., Communication
Gilles R. Fauconnier, Ph.D., Cognitive Science
Philip M. Groves, Ph.D., Emeritus, Psychiatry and Neurosciences
Steven A. Hillyard, Ph.D., Neurosciences
James D. Holland, Ph.D., Cognitive Science
Edwin Hutchins, Ph.D., Cognitive Science
David J. Kirsh, D.Phil, Cognitive Science
Edward S. Klima, Ph.D., Emeritus, Linguistics
Marta Kutas, Ph.D., Cognitive Science
Ronald W. Langacker, Ph.D., Emeritus, Linguistics
George Mandler, Ph.D., Emeritus, Psychology
Jean M. Mandler, Ph.D., Emeritus, Cognitive Science
Hugh B. Mehan, Ph.D., Sociology
John C. Moore, Ph.D., Linguistics
Donald A. Norman, Ph.D., Emeritus, Cognitive Science
Dennis D. M. O’Leary, Ph.D., Adjunct/Neurosciences and Biological Sciences
Carol Padden, Ph.D., Communication
Harold E. Pashler, Ph.D., Psychology
David M. Perlmuter, Ph.D., Emeritus, Linguistics
Maria Polinsky, Ph.D., Linguistics
Vilayanur S. Ramachandran, Ph.D., Psychology
David P. Salmon, Ph.D., In-Residence, Neurosciences
Walter J. Savitch, Ph.D., Emeritus, Computer Science and Engineering
Terrence J. Sejnowski, Ph.D., Biological Sciences—Neurobiology
Martin I. Sereno, Ph.D., Cognitive Science
Larry R. Squire, Ph.D., Psychiatry, Psychology, and Neurosciences
Joan Stiles, Ph.D., Cognitive Science
Shirley Strum, Ph.D., Anthropology
Doris Trauner, M.D., Neurosciences and Pediatrics
David Zipser, Ph.D., Emeritus, Cognitive Science

Associate Professors
Gerald J. Balzano, Ph.D., Music
John D. Batali, Ph.D., Cognitive Science
Andrea A. Chiba, Ph.D., Cognitive Science
Jonathan Cohen, Ph.D., Philosophy
Seana Coulson, Ph.D., Cognitive Science
Gideon O. Deák, Ph.D., Cognitive Science
Rick Grush, Ph.D., Philosophy
Andrew Kehler, Ph.D., Linguistics
Robert E. Kluender, Ph.D., Linguistics
Lev Z. Manovich, Ph.D., Visual Arts
James J. Moore, Ph.D., Anthropology
Rafael Nuñez, Ph.D., Cognitive Science
Steven Parish, Ph.D., Anthropology
Jaime A. Pineda, Ph.D., Cognitive Science

Akos Rona-Tas, Ph.D., Sociology
Katerina Semendeferi, Ph.D., Anthropology

Assistant Professors
Eric Bakovic, Ph.D., Linguistics
Serge Belongie, Ph.D., Computer Science and Engineering
Virginia de Sa, Ph.D., Cognitive Science
Emanuel Todorov, Ph.D., Cognitive Science
Jochen Triesch, Ph.D., Cognitive Science

Lecturer
Christine M. Johnson, Ph.D., Cognitive Science

The interdisciplinary Ph.D. program is distinct from the departmental Ph.D. program (see previous section) both in admissions and graduation requirements. There are four aspects to graduate study in the interdisciplinary program: (a) a primary specialization in one of the established disciplines of cognitive science; (b) a secondary specialization in a second field of study; (c) familiarity with general issues in the field and the various approaches taken to these issues by scholars in different disciplines; and (d) an original dissertation project of an interdisciplinary character. The degree itself reflects the interdisciplinary nature of the program, being awarded jointly to the student for studies in cognitive science and the home department. Thus, students in linguistics or psychology will have degrees that read “Ph.D. in Linguistics and Cognitive Science” or “Ph.D. in Psychology and Cognitive Science.”

Admission to the Program

Students enter UCSD through admission to one of the affiliated departments, which then serves as their home department, and which specifies their primary specialization. The affiliated departments are anthropology, communication, computer science and engineering, linguistics, neurosciences, philosophy, psychology, and sociology. Students may apply for admission to the interdisciplinary program anytime after entering UCSD, typically in the second or third year. Students must have an advisor from their home department who is a member of the interdisciplinary program faculty. If a student does not have such an advisor, a member of the Instructional Advisory Committee will be appointed as interim advisor. The Instructional Advisory Committee is made up of one interdisciplinary program faculty person from each of the home departments. The committee member that will serve as interim
advisor for a student will come from the same home department as the student.

Note: Admission to the interdisciplinary Ph.D. program is contingent upon applying to and being accepted in a home department.

Primary Specialization

Primary specialization is accomplished through the home department. Students are expected to maintain good standing within their home departments and to complete all requirements of their home departments through qualification for candidacy for the Ph.D. degree.

Secondary Specialization

The power of an interdisciplinary graduate training program lies in large measure in its ability to provide the student the tools of inquiry of more than one discipline. Students in the cognitive science interdisciplinary program are expected to gain significant expertise in areas of study outside of those covered by their home departments. Such expertise can be defined in several ways. The second area might coincide with that of an established discipline, and study within that discipline would be appropriate. Alternatively, the area could be based upon a substantive issue of cognitive science that spans several of the existing disciplines, and study within several departments would be involved. In either case, students work with their advisor and the Instructional Advisory Committee to develop an individual study plan designed to give them this secondary specialization. A list of courses in cognitive studies at UCSD is available. This requirement takes the equivalent of a full year of study, possibly spread out over several years. Often it is valuable to perform an individual research project sponsored by a faculty member in a department other than the student’s home department.

The following list demonstrates some ways to fulfill the secondary specialization requirement. It should be emphasized that these programs are only examples. Students will devise individual plans by working with their advisors and the advisory committee. Ideally, students who elect to do research in their areas of secondary interest will be able to accomplish a substantive piece of work, either one of publishable quality or one that will be of significant assistance in their dissertation projects.

Cognitive Psychology. Get a basic introduction to cognitive psychology through the Cognitive Psychology Seminar (Psychology 218A-B) and acquire or demonstrate knowledge of statistical tools and experimental design (this can be done either by taking the graduate sequence in statistics, Psychology 210A-B, or through the standard “testing out” option offered to all psychology graduate students). Finally, and, perhaps of most importance, the student should do a year-long project of empirical research in psychology with the guidance of a member of the Department of Psychology.

Cognitive Social Sciences. A course sequence from sociology and anthropology, including one or two courses in field methods and a research project under the direction of a cognitive social sciences faculty member. The course sequence and project should be worked out with the advisory committee to reflect the interests and background of the student. Examples of courses include Distributed Cognition (Cognitive Science 234), Text and Discourse Analysis (Sociology 204), and the Anthropology of Language and Discourse (Anthropology 263). In addition, courses on field methods are offered by both anthropology and sociology.

Computer Science and Artificial Language. This specialization requires a thorough background in computer science. For those who enter the program without much formal training in this area, the secondary specialization in computer science includes some upper-division undergraduate courses (CSE 100, 102, 105) and a minimum of two graduate courses (CSE 250AB). (Note that these courses require basic knowledge of programming and discrete mathematics areas that may require some additional upper-division courses for those who lack these skills.) Students with stronger backgrounds in computer science may go straight to graduate courses. For all students interested in this specialization, the course sequences and any projects should be worked out on an individual basis with the student’s advisor.

Discourse Structure and Processing. This specialization is highly interdisciplinary, spanning linguistics, computer science, psychology, sociology, philosophy, and anthropology. Research within this specialization depends upon which discipline is given emphasis. Therefore, the specialization will have to be developed according to the interests of the student. All students will have to demonstrate awareness of relevant studies and the approaches of the various disciplines.

Linguistics. Students who elect a secondary specialization in linguistics should specialize either in the general area of syntax/semantics or in the general area of phonetics/phonology. Those who specialize in syntax/semantics should plan to take three courses in this area and one course in phonetics/phonology. Conversely, those who specialize in phonetics/phonology should plan to take three courses in this area and one course in syntax/semantics. The specific courses recommended will depend on the individual student’s interests and should be arranged in conjunction with the Department of Linguistics faculty liaison to the Cognitive Science Interdisciplinary Program.

In addition, students will prepare a research paper (preferably originating in one of the above courses) that demonstrates control of the methodology and knowledge of important issues in their area of specialization.

Neurosciences. A student specializing in neurosciences would take a program of courses emphasizing brain-behavior relationships, including Behavioral Neuroscience (Neurosciences 264) and the Physiological Basis of Human Information (Neurosciences 243). In addition, depending upon the student’s individual interests, one or more of the neurosciences core courses would be taken in the areas of Mammalian Neuroanatomy (Neurosciences 256), Neuropsychopharmacology (Neurosciences 277), and/or Neurochemistry (Neurosciences 234). In most cases, the student would also take a research rotation in the laboratory of a member of the neurosciences faculty.

Philosophy. Students who elect a secondary specialization in philosophy will focus on philosophy of science, philosophy of mind, philosophy of psychology, philosophy of neuroscience, or philosophy of language, depending on their area of primary specialization. Courses suitable for this program include Philosophy of Language (Philosophy 234), Philosophy of Mind (Philosophy 236), Philosophy of the Cognitive Sciences (Philosophy 250A), and Seminar on Special Topics (Philosophy 285), which will frequently focus on issues relevant to cognitive science. The course sequence should be worked out with the student’s advisor.
Acquisition of Perspective on the Field

The cognitive science faculty offers a special seminar, Cognitive Science 200, that emphasizes the interdisciplinary approach to the field and that covers a variety of different problems, each from the perspective of several disciplines. All students are required to enroll in this seminar a total of six quarters while in residence; most students regularly attend the seminar even after fulfilling the requirement. Students may substitute a Cognitive Science Foundations course for a Cognitive Science 200. A maximum of two quarters may be substituted.

Prequalifying Examinations

Students must complete any prequalifying and field requirements of their home department.

Qualifying Examinations

The Dissertation Advisory Committee. As soon as possible, students form a dissertation committee consisting of:

At least three members from the student’s home department, including the student’s advisor; and at least three members of the Cognitive Science Program, at least two of whom are not members of the student’s home department.

University regulations require that at least one of the faculty members of the committee from outside the home department must be tenured. The committee must be approved by the interdisciplinary program, the home department, and by the dean of Graduate Studies. The dissertation committee is expected to play an active role in supervising the student and to meet with the student at regular intervals to review progress and plans.

In the qualifying examination, the student must demonstrate familiarity with the approaches and findings from several disciplines relevant to the proposed dissertation research and must satisfy the committee of the quality, soundness, originality, and interdisciplinary character of the proposed research.

Interdisciplinary Dissertation

It is expected that the dissertation will draw on both the primary and secondary areas of expertise, combining methodologies and viewpoints from two or more perspectives, and that the dissertation will make a substantive contribution to the field of cognitive science.

Overview

The program can be summarized in this way: In the first years, basic training within the student’s primary specialization, provided by the home departments;

In the middle years, acquisition of secondary specialization and participation in the Cognitive Science Seminar;

In the final years, dissertation research on a topic in cognitive science, supervised by faculty from the program.

Time Limits. Time limits for precandacy, financial support, and registration are those established for the home department. Normative time is six years.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

LOWER-DIVISION

1. Introduction to Cognitive Science (4)
A team-taught course highlighting development of the field and the broad range of topics covered in the major. Example topics include addiction, analogy, animal cognition, artificial life, brain damage, cognitive development, distributed cognition, human-computer interaction, language, neuroimaging, neural networks, reasoning, robots, and real-world applications.

2. An Introduction to Computing (4)
A practical introduction to computers and how you can use their power. Designed for undergraduates in the social sciences. Topics include: basic operations of personal computers (MAC, PC), UNIX, word processing, e-mail, spreadsheets, and creating web pages using the World Wide Web. No previous background in computing required.

3. Hands-on Computing (4)
An introductory-level course that will give students insight into the fundamental concepts of algorithmic thinking and design. The course will provide the students with first-hand, hands-on experience programming a Web crawler and simple physical robots.

4. Cognitive Consequences of Technology (4)
The role of cognition and computation in the development of state-of-the-art technologies such as human computational interaction in aviation, air traffic control, medical diagnosis, robotics and telerobotics, and the design and engineering of cognitive artifacts.

5. Introduction to Cognitive Science: Minds and Brains (4)
How damaged and normal brains influence the way humans solve problems, remember or forget, pay attention to things; how they affect our emotions; and the way we use language in daily life.

6. Design and Analysis of Experiments (4)
Design, statistical analysis, and interpretation of experiments in the main areas of cognitive science: brain, behavior, and computation. Introduction to mathematical foundations of probability and statistical decision theory. Decision theory is applied to the problem of designing and analyzing experiments. Students will participate in a group project in which they must design scientific experiments, collect data and analyze results. Prerequisite: Mathematics 10A or equivalent.

7. Neurobiology of Cognition (4)
Introduction to the organization and functions of the nervous system. Topics include molecular, cellular, developmental, systems, and behavioral neurobiology. Specifically, structure and function of neurons, peripheral and central nervous systems, sensory, motor, and control systems, learning and memory mechanisms. (Students may not receive credit for both Biology 12 and Cognitive Science 17. This course fulfills general-education requirements for Marshall and Roosevelt Colleges as well as Warren by petition.)

8. Introduction to Programming for Cognitive Science (4)
Fundamentals of computer programming are introduced. Topics include: fundamentals of computer architecture, variables, functions, and control structures; writing, testing, and debugging programs; programming style and basic software design. Examples and exercises focus on cognitive science applications. Prerequisite: Mathematics 10A or 20A.

9. Introduction to Programming for Cognitive Science (4)
Introduction to Web programming and their real-world applications. Concepts and languages covered include document structure (XHTML). A basic background in computing is required, but no prior programming experience.

10. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

11. SCANS Presents (1)
The department faculty and the Students for Cognitive and Neurosciences (SCANS) offer this seminar exploring issues in cognitive science. It includes informal faculty research presentations, investigations of topics not covered in the curriculum, and discussions on graduate school and careers. (May be repeated when topics vary.)

12. Independent Study (2 or 4)
Independent literature or laboratory research by arrangement with and under direction of a Department of Cognitive Science faculty member. Prerequisites: lower-division standing, completion of thirty units of UCSD undergraduate study, a minimum UCSD GPA of 3.0, and a completed and approved “Special Studies” form.

UPPER-DIVISION

13. Sensation and Perception (4)
An introduction to the experimental study of cognition with a focus on sensation and perception. Prerequisite: Cognitive Science 1.
101B. Learning, Memory, and Attention (4)
A survey of the experimental study of learning, memory, and attention. Topics include conditioning, automatality, divided attention, memory systems, and the nature of mental representation. Prerequisites: Cognitive Science 1. Recommended: Cognitive Science 101A.

101C. Language (4)
An introduction to structure of natural language, and to the cognitive processes that underlie its acquisition, comprehension, and production. This course covers findings from linguistics, computer science, psychology, and cognitive neuroscience to provide an integrated perspective on human language abilities. Recommended: Cognitive Science 101A.

102A. Distributed Cognition (4)
Distributed cognition extends beyond the boundaries of the person to include the environment, artifacts, social interactions, and culture. Major themes are the study of socially distributed cognition and the role of artifacts in human cognition. Prerequisite: upper-division standing. Recommended: Cognitive Science 1 or Cognitive Science 10.

102B. Cognitive Ethnography (4)
This course examines memory, reasoning, language understanding, learning, and planning directly in everyday, real-world settings. The coursework will include discussions of both the findings and the methodology of naturalistic studies of cognition. Prerequisite: Cognitive Science 102A.

102C. Cognitive Engineering (4)
Applications of cognitive science for the design of human-centered systems are explored. An extensive project analyzing an existing system or product or designing a new prototype application is required. Recommended: Cognitive Science 18, 102A and 102B.

107A. Neuroanatomy and Physiology (4)
This first course in the sequence focuses on principles of brain organization, from neurons to circuits to functional networks. It explores developmental plasticity, neuronal connectivity, cellular communication, complex signaling, and how these various dimensions form functional brain systems. Prerequisite: Cognitive Science 1.

107B. Systems Neuroscience (4)
This course is a rigorous introduction to the neurophysiological and neuroanatomical basis of human and animal cognition, covering cellular neurophysiology and circuit modeling, development, visual, somatosensory, auditory, motor, and limbic systems; neuroimaging and language. Prerequisite: Cognitive Science 107A.

107C. Cognitive Neuroscience (4)
This course studies brain systems implicated in attention, language, object recognition, and memory. Neurobiological evidence for functional subsystems within these processes and the way specialized systems develop are considered using findings from animal studies, human development, and behavioral and brain imaging. Prerequisites: Cognitive Science 107B and its prerequisites.

(Course previously offered as COGS 108A fall 2001) The design, implementation, and analysis of algorithms and data structures. Applications include: symbolic artificial intelligence, neural networks, genetic algorithms, computer graphics, and human computer interaction. Prerequisites: Cognitive Science 1 and Cognitive Science 18 or CSE 9A or CSE 10, or permission of instructor. Course not offered in 2007–08.

108E. Neural Network Models of Cognition I (4)
(Course previously offered as COGS 108B winter 2002) This course is an elementary introduction to neural networks and their use in cognitive science. Students will learn how to construct and train neural networks to solve problems at both the psychological and neurological levels of cognition. Prerequisite: Cognitive Science 108D. Course not offered in 2007–08.

(Course previously offered as COGS 108C spring 2002) This course focuses on providing students with additional programming experience in the design of cognitive science applications and modeling. Each time it is offered a specific application or modeling area will be covered. Prerequisites: Cognitive Science 108E and Math 20F. Course not offered in 2007–08.

109. Modeling and Data Analysis (4)
Exposure to the basic computational methods useful throughout cognitive science. Computing basic statistics, modeling learning individuals, evolving populations, communicating agents, and corpus-based linguistics will be considered. Prerequisites: Cognitive Science 18 or equivalent programming course or consent of instructor.

113. Cognitive Development (4)
This course examines the foundations and growth of mind, discussing the development of perception, imagery, concept formation, memory, and thinking. Emphasis is placed on the representation of knowledge in infancy and early childhood. (Credit may not be received for both Psychology 136 and Cognitive Science 113.) Prerequisite: Cognitive Science 101B or Psychology 105 or Psychology 101.

115. Neurological Development and Cognitive Change (4)
This course provides an overview of neurological development and explores the relations between physiological change and the experience of the child from the prenatal period through adolescence. Prerequisite: Cognitive Science 17 or equivalent.

118A. Natural Computation I (4)
This course is an introduction to computational modeling of biological intelligence, focusing on neural networks and related approaches to supervised learning. Topics include estimation, filtering, optimization, multilayer perceptrons, support vector machines, boosting, Bayes nets. Prerequisites: Cognitive Science 109, Mathematics 20E, Mathematics 20F, and Mathematics 180A or consent of instructor.

118B. Natural Computation II (4)
This course is an introduction to computational modeling of biological intelligence, focusing on neural networks and related approaches to unsupervised learning. Topics include density estimation, clustering, self-organizing maps, principal component analysis, information theoretic models, and evolutionary approaches. Prerequisites: Cognitive Science 109, Cognitive Science 118A, Mathematics 20E, Mathematics 20F, and Mathematics 180A or consent of instructor.

120. Human Computer Interaction (4)
This course is an introduction to the field of human computer interaction (HCI). It provides an overview of HCI from the perspective of cognitive science. Recommended: Cognitive Science 10 and an introductory programming course.

121. Human Computer Interaction Programming (4)
This course is an introduction to human computer interaction (HCI) programming. It focuses on architectures, implementation techniques, and cognitive issues involved in designing interactive interfaces. Prerequisite: Cognitive Science 120 or consent of instructor.

143. Animal Cognition (4)

151. Analogy and Conceptual Systems (4)
Human thought and meaning are deeply tied to the capacity for mapping conceptual domains onto each other, inducing common schemas and performing mental simulation. This course examines major aspects of this cognitive activity including metaphor, conceptual blending and embodied cognition. Prerequisite: upper-division standing.

152. Cognitive Foundations of Mathematics (4)
How the human mind/brain creates mathematics: embodiment, innovation, and creativity. The emergence and power of abstract concepts, such as infinity, infinitesimals, imaginary numbers, or zero. Cognitive approaches that connect mathematics to human thought in general. Prerequisite: upper-division standing.

154. Communication Disorders in Children and Adults (4)
Neural bases of language use in normal adults, and neural bases of language and communication development in normal children. Evidence on the language and communication deficits in adults (especially aphasia and dementia) and children (specific language impairment, focal brain injury, retardation, and autism). Prerequisites: upper-division standing.

156. Language Development (4)
A comprehensive survey of theory, method and research findings on language development in children ranging from the earliest stages of speech perception and communication at birth to refinements in narrative discourse and conversational fluency through middle childhood and adolescence. Prerequisites: upper-division standing and background in developmental psychology and/or linguistics is recommended. Course not offered in 2007–08.

160. Upper-Division Seminar on Special Topics (1-4)
Special topics in cognitive science are discussed. (May be repeated when topics vary.) Prerequisite: department approval.

170. Natural and Artificial Symbolic Representational Systems (4)
This course develops a detailed analogy between the evolution and architecture of language comprehension in human primates and symbol processing at the level of individual cells, contrasting this with the analogy between cognition and computation. Prerequisites: Cognitive Science 17 or Biology 12; Recommended: Cognitive Science 18 or Computer Science and Engineering 62AB.
172. Brain Disorders and Cognition (4)
A review of the patterns of impaired and intact cognitive abilities present in brain-damaged patients in terms of damage to one or more components of a model of normal cognitive functioning. (Cognitive science majors may not receive elective credit for both Psychology 139 and Cognitive Science 172.) Prerequisite: Cognitive Science 107A.

174. Drugs: Brain, Mind and Culture (4)
This course explores how drugs interact with the brain/mind and culture. It covers evolutionary and historical perspectives, brain chemistry, pharmacology, expectancies and placebo effects, and models of addiction. It also provides a biopsychosocial survey of commonly used and abused substances. Prerequisite: upper-division standing.

175. The Neuropsychological Basis of Alternate States of Consciousness (4)
This course will review the literature that correlates brain rhythms in the human EEG with aspects of cognition, behavioral states, neuropsychopharmacology, and psychopathology in order to understand the psychological and neuropsychological underpinnings of these experiences. Prerequisites: Cognitive Science 101A or Cognitive Science 107A.

179. Electrophysiology of Cognition (4)
This course surveys the theory and practice of using recordings of electrical and magnetic activity of the brain to study cognition and behavior. It explores what brain waves reveal about normal and abnormal perception, processing, decision making, memory, preparation, and comprehension. Prerequisites: Cognitive Science 107A or Psychology 106; Cognitive Science 101A or Psychology 105.

183. Artificial Life (4)
This class will explore models of life as it could be, in artificial as well as biological contexts. An attempt will be made to understand the characteristics which distinguish living from nonliving systems. Coursework includes computer simulations of artificial lifeforms. Prerequisites: Cognitive Science 18, CSE 5A and 5B, or CSE 11, or equivalent. Course not offered in 2007–08.

184. Modeling the Evolution of Cognition (4)
Mathematical and computational modeling of the evolution and mechanisms of simple cognitive functions. Theoretical background, including topics in population genetics, behavioral ecology, evolutionary game theory, dynamical systems theory, genetic algorithms, and neural networks will be applied to questions concerning the evolution of behavioral strategies, the relation between evolution and learning, and the evolution of cooperation, communication and other aspects of social behavior. Prerequisites: programming ability, calculus, and consent of instructor.

187A. Cognitive Aspects of Multimedia Design (4)
This course will examine the cognitive basis of successful multimedia design. We will be interested in what makes an interactive system effective: what makes images easy to understand, animations clear and helpful, and why some sequences of images, text, and sounds make more sense than others. Students will learn Web design, how to evaluate CD ROMs and assess their usability, and gain firsthand experience with the problems of visualization. No programming skills are presupposed but we do assume a strong familiarity with computer software. Prerequisite: Cognitive Science 3 or Cognitive Science 25; open to cognitive science majors with upper-division standing only.

187B. Cognitive Aspects of Multimedia Design II (4)
This course follows up on the basics of multimedia design taught in Cognitive Science 187A. Students will probe more deeply into selective topics, such as animation, navigation, graphical display of information, and narrative coherence. A large fraction of time will be spent on group projects. Prerequisites: CoCGS 187A; open to cognitive science majors with upper-division standing only.

188. Representation, Search, and the Web (4)
Computational methods for finding and exploiting structure across vast data corpora, from personal e-mail collections to the entire WWW. Implementation and evaluation of algorithms used as part of modern search engines, and how these are connected to models of shared cognition. Prerequisites: Cognitive Science 109 or Computer Science and Engineering 12. Recommended: Cognitive Science 102A or Cognitive Science 118B.

190A. Pre-Honors Project in Cognitive Science (4)
This independent study course is for advanced students who wish to prepare for and apply to the Cognitive Science Honors Program. After completing this course, students may be admitted to the Honors Program contingent upon significant progress made during the course. (See "Cognitive Science Honors Program" section for more information.) Students should contact faculty whose research interests them to discuss possible projects. Prerequisite: upper-division standing; instructor and department approval.

190B. Honors Studies in Cognitive Science (4)
This course will allow cognitive science honors students to explore advanced issues in the field of cognitive science. It will also provide honors students the opportunity to develop an honors thesis on the topic of their choice and begin preliminary work under faculty supervision. Students will receive an “IP” grade in 1908 and the grade assigned for 190C, when completed, will replace the “IP” in 1908. Prerequisites: Cognitive Science 190A with grade of A- or better and formal admittance to the Cognitive Science Honors Program. (See “Cognitive Science Honors Program” section for more information.)

190C. Honors Thesis in Cognitive Science (4)
This course will provide honors candidates an opportunity to complete the research on and preparation of an honors thesis under close faculty supervision. Oral presentation of student’s thesis is required to receive honors; additionally, student must receive grade of A- or better in 190B and 190C to receive honors. Prerequisite: Cognitive Science 190B with grade of A- or better and formal admittance to the Cognitive Science Honors Program. (See “Cognitive Science Honors Program” section for more information.)

190D. Preparation for Thesis Presentation (1)
This course is affiliated with the honors program (190A-B-C) and is required of honors students during spring quarter. Its aim is to prepare students to present research results to an audience. Emphasis will be on the oral presentation (organization, wording, graphics), but there will also be some discussion about written research reports. Seminar style format with occasional short lectures wherein students will practice oral presentations and provide constructive criticism to each other. Prerequisite: must be concurrently enrolled in 190B or 190C.

191. Laboratory Research (1-4)
Students engage in discussions of reading of recent research in an area designated and directed by the instructor and also participate in design and execution of original research. Assignments include both oral and written presentations and demonstrating the ability to pursue research objectives. Prerequisites: consent of the instructor and department approval. (May be repeated for credit, but not to exceed 8 units.)

195. Instructional Apprenticeship in Cognitive Science (4)
Students, under the direction of the instructor, lead laboratory or discussion sections, attend lectures, and meet regularly with the instructor to help prepare course materials. Applications must be submitted to and approved by the department. Prerequisites: upper-division standing; 3.0 GPA; instructor and department approval. P/NP only.

197. Cognitive Science Internship (2 or 4)
The student will undertake a program of practical research in a supervised work environment. Topics to be researched may vary, but in each case the course will provide skills for carrying out these studies. Prerequisite: consent of instructor.

198. Directed Group Study (4)
This independent study course is for small groups of advanced students who wish to complete a one-quarter reading or research project under the mentorship of a faculty member. Students should contact faculty whose research interests them to discuss possible projects. Prerequisites: upper-division standing; 2.5 GPA; consent of instructor and department approval.

199. Special Project (2 or 4)
This independent study course is for individual, advanced students who wish to complete a one-quarter reading or research project under the mentorship of a faculty member whose research interests them to discuss possible projects. Prerequisites: upper-division standing; 2.5 GPA; consent of instructor and department approval.

GRADUATE

This seminar emphasizes the conceptual basis of cognitive science, including representation, processing mechanisms, language, and the role of interaction among individuals, culture, and the environment. Current developments in each field are considered as they relate to issues in cognitive science. (May be repeated for credit.)

201. Systems Neuroscience (4)
This course is a rigorous introduction to the neurophysiological and neuroanatomical basis of human and animal cognition, covering cellular neurophysiology and circuit modeling; development; visual, somatosensory, auditory, motor, and limbic systems; neuroimaging and language.

This course surveys the development of symbolic and connectionist models of cognition. Selected readings from the late 1940s to the present are covered. Topics include Turing machines, information theory, computational complexity, search, learning, symbolic artificial intelligence, and neural networks.

Surveys a variety of theoretical and methodological approaches to the study of human cognition. Topics
include language structure, language processing, concepts and categories, knowledge representation, analogy and metaphor, reasoning, planning and action, problem solving, learning and expertise, and emotion.

205. Introduction to Thesis Research (4)
This course is taken to focus the students' development of a thesis topic and research proposal. Students prepare an outline of thesis proposal and make an oral public presentation of the proposed topic prior to the end of the third year. S/U only.

210A-B-C. Introduction to Research (4-4-4)
This sequence is an intensive research project. Students under faculty mentorship perform a thorough analysis of the problem and the literature, carry out original studies, and prepare oral and written presentations. Students should aim for a report of publishable quality. Letter grade required.

211A-B-C. Research Methods in Cognitive Science (2-2-2)
Issues in design, implementation, and evaluation of research in cognitive science are discussed. Students will present and comment on their own research projects in progress. Discussions also include presentations of research to various audiences, abstracts, reviews, grant process, and scientific ethics. Letter grade required.

213. Issues in Cognitive Development (4)
This course examines current issues in human development of interest to cognitive scientists. An emphasis is placed on the foundations of mind and how information is represented at various stages of learning and development. (May be repeated once, when topics vary.)

215. Neurological and Cognitive Development (4)
This course is divided into two sections. The first part of the course focuses on early neurological development. The second part addresses questions concerned with the relations between cognitive brain development, and linguistic and affective development.

220. Information Visualization (4)
This seminar surveys current research in information visualization with the goal of preparing students to do original research. The focus is on the cognitive aspects of information design, dynamic representations, and computational techniques. Topics vary each time course is offered.

234. Distributed Cognition (4)
This course focuses on aspects of individual and socially distributed cognition. Empirical examples are drawn from natural and experimental settings which presuppose, tacitly or explicitly, socially distributed knowledge among participants. The class examines the way locally managed, pragmatic conditions influence how decisions are framed.

238. Topics in Cognitive Linguistics (1-4)
(Same as Linguistics 238) Basic concepts, empirical findings, and recent developments in cognitive and functional linguistics. Language viewed dynamically in relation to conceptualization, discourse, meaning construction, and cognitive processing. (As topics vary, may be repeated for credit.) Course not offered in 2006–07.

241. Ethics and Survival Skills in Academia (3)
(Same as Neurosciences 241) This course will cover ethical issues which arise in academia, including: dishonesty, plagiarism, attribution, sexual misconduct, etc. We will also discuss ‘survival’ issues, including job hunting, grant preparation, journal reviews, writing letters of recommendation, mentoring, etc. S/U only.

243. Statistical Inference and Data Analysis (2 or 4)
This course provides a rigorous treatment of hypothesis testing, statistical inference, model fitting, and exploratory data analysis techniques used in the cognitive and neural sciences. Students will acquire an understanding of mathematical foundations and hands-on experience in applying these methods using Matlab.

250. Connectionist Models of Language (4)
This course covers topics in computational psycholinguistics. The primary focus will be on connectionist models, but will also include work in statistical natural language processing as well as experimental psycholinguistics. Course not offered in 2006–07.

251. Aphasia (4)
Research and theory on language breakdown in brain-damaged adults is surveyed. Topics include an historical overview from linguistics, psycholinguistics, and neuroscience (especially brain imaging techniques). Credit may not be received for both Psychology 245 and Cognitive Science 251. Course not offered in 2006–07.

253. Semantics and Cognition (4)
This course explores current issues in the study of meaning and its interaction with other areas of cognitive science. The focus is on cognitive semantics, pragmatics, and meaning construction in general.

254. Pragmatics and Common Sense Reasoning (4)
A study of the pragmatic principles involved in language comprehension and the logic of everyday life. Cognitive, linguistic, cultural, and sociological aspects will be covered.

256. Language Acquisition (4)
Discussion of the acquisition of language by young children, including such topics as its stages, mechanisms, and relation to nonlinguistic development. Course not offered in 2006–07.

260. Seminar on Special Topics (1-4)
Specific topics in cognitive science are discussed. (May be repeated when topics vary.)

271. Cognitive Neuropharmacology (4)
This course provides a review of the neurochemistry of cognition. Topics include functional anatomy of neurotransmitter circuitry, computational properties of neuromodulation, interaction of psychoactive substances with brain and behavior, neuropsychological accounts of cognitive disorders (e.g., addiction, depression, schizophrenia). Course not offered in 2006–07.

272. Topics in Theoretical Neurobiology (4)
The main focus of this course is the relationship between nervous system function and cognition. It covers broad theoretical issues and specific topics. Material comes from lectures, papers, and the text. (As topics vary, may be repeated for credit.)

273. Biological Basis of Attention (4)
A survey of the research and theories of attention with special emphasis on the current anatomical, physiological, and biochemical basis of attention.

275. Visual Modeling (4)
Visual system neurophysiology and neuroanatomy, and neurally realistic and artificial intelligence modeling approaches are covered. Topics are: dendrites, orientation and edges, motion, stereo, shading and color, eye movements, and pattern recognition. Students prepare computer modeling projects or research papers. Course not offered in 2006–07.

276. Foundations of Neuroimaging (4)
This course surveys the theory and practice of using whole-brain imaging methods to study brain activity. It is designed to provide students with the tools and knowledge to approach a variety of neurobehavioral research problems. (1) MRI/fMRI: RF excitation, relaxation, echoes, image formation, BOLD and flow, DTI, EPI, time and series analysis, (2) cortical surface reconstruction, morphing, mapping, and data display, (3) physiological basis of MEG and EEG, forward and inverse solutions.

279. Electrophysiology of Cognition (4)
This course surveys the theory and practice of using recordings of electrical and magnetic activity of the brain to study cognition and behavior. It explores what brain waves reveal about normal and abnormal perception, processing, decision making, memory, preemption, and comprehension. Graduate students will be required to do additional readings for the materials covered. A paper will be due at the end of the second week for each student. A final exam will be given in the last week of the term. Consent of instructor required. S/U only.

290. Cognitive Science Laboratory Rotation (2)
Laboratory rotations provide students with experience in the various experimental methods used in cognitive science. Prerequisite: Consent of Instructor. S/U only.

291. Laboratory Research (1-4)
Students engage in discussions of recent research in an area designated and directed by the instructor and also participate in the design and execution of original research. Students are expected to demonstrate oral and written competence in presenting original research. Prerequisite: Consent of the instructor and departmental approval. (May be repeated for credit.)

298. Directed Independent Study (1-12)
Students study and research selected topics under the direction of a member of the faculty.

299. Thesis Research (1-12)
Students are provided directed research on their dissertation topic by faculty advisors.

500. Teaching Apprenticeship (1-4)
This practicum for graduate students provides experience in teaching undergraduate cognitive science courses. S/U only.

Communication

OFFICE: 127 Media Center Communication Building, Marshall College
(858) 534-4410
http://communication.ucsd.edu

Professors
Lisa Cartwright, Ph.D.
Michael Cole, Ph.D., University Professor and
Sanford I. Berman Professor of Language and
Human Communication Endowed Chair

Michael Cole, Ph.D., University Professor and
Sanford I. Berman Professor of Language and
Human Communication Endowed Chair
Communication

The Communication Major

Degree offered: Bachelor of Arts

The major consists of two lower-division courses and fourteen upper-division courses. None of the major courses may be taken on a Pass/No Pass basis.

Lower-Division

*COGN 20: Introduction to Communication
*COGN 21: Methods of Media Production

Upper-Division

*COSF 100: Introduction to Communication as a Social Force
*COCU 100: Introduction to Communication and Culture
*COHI 100: Introduction to Communication and Human Information Processing
*COGN 150: Senior Seminar in Communication

One media methods course

Three courses beyond the introductory courses: (one must be chosen from each of the categories: COSF, COCU, and COHI)

Six upper-division communication electives

* These courses must be taken at UCSD.

Note: If students choose to do a 198, 199, or 197 they must be taken at UCSD. See your college advisor for further residency requirements.

Residency Requirement

Students are required to complete at least ten classes of their overall work in the major at UCSD. Following are the communication classes required to be taken at UCSD. See your college advisor for further residency requirements.

COGN 20: Introduction to Communication
COGN 21: Methods of Media Production
COSF 100: Introduction to Communication as a Social Force
COCU 100: Introduction to Communication and Culture
COHI 100: Introduction to Communication
COGN 150: Senior Seminar
One COCU elective
One COHI elective
One COSF elective
One COMT elective

Requirements for the Communication Minor
(Effective fall 1998)

The communication minor at UCSD is a social science minor. None of the courses may be taken on a Pass/Not Pass basis. Students are required to take seven courses in communication as follows:

*COGN 20 (Introduction to Communication)
Two courses of your choice from the following 100’s:
*COSF 100 (Introduction to Communication as a Social Force)
*COCU 100 (Introduction to Communication and Culture)
*COHI 100 (Introduction to Communication and Human Information Processing)
*Four upper-division communication electives within the areas of the chosen 100 classes.
*These courses must be taken at UCSD within the communication department.

Note: COGN 150, 197, 198, and 199 Media Methods, and courses outside of the department may not be used as electives within the minor.

The Honors Program

The Department of Communication offers an honors program to those students who have demonstrated excellence in the communication major. Successful completion of the honors program enables the student to graduate “With Highest Distinction,” “With High Distinction,” or “With Distinction,” depending on performance in the program. The honors program requires an application. Students wishing to be considered need to include the following in their application: one faculty advisor who supports their admission to the program, a verified overall GPA of 3.0 and a major GPA of 3.5, and a brief but detailed description of the proposed research or creative project.

Applications will be reviewed by a faculty committee, accepting students who meet these criteria. Students who do not meet these criteria but who have promising projects may be admitted by special dispensation with strong faculty endorsement and a letter of recommendation. Once accepted into the Honors Program, students are required to complete a two-quarter course sequence, COGN 191A/191B in the fall and winter quarters of their senior year. At the end of the fall quarter, students will receive an IP grade report. This grade will change to the final letter grade at the completion of the course sequence in the winter quarter. This grade is based on attendance in the seminars and successful completion of the research paper or creative production.

The Graduate Program

The Department of Communication offers a program of study leading to the Doctor of Philosophy degree. Communication at UCSD seeks to combine modes of analysis from the humanities and social sciences to explore the history, structure, and process of communication. The graduate program is conceived as a blending of the tradition of critical communication research with the empirical tradition of American scholarship. The program does not closely resemble any other communication department in this country. It is related by sympathy and interest to mass communication programs, but not by kinship. Historically, this department grew out of an interdisciplinary program jointly sponsored by the Departments of Drama (currently, Theatre and Dance), Political Science, Psychology, and Sociology. The department retains strong ties to the departments and disciplines from which it developed.

The study of communication at UCSD places major emphasis on historical, comparative, and ethnographic approaches to symbolically mediated human communication. Study is organized around the following three analytic perspectives: communication as a social force, communication and culture, and communication and human information processing. In addition, the department believes that investigation into communication requires a blending of theory and, hence, our attention to the media practices.

Communication as a Social Force examines the relation of communication institutions to structures of power in society. In this part of the curriculum, we examine institutional arrangements and structural characteristics regarding:

- Communication and political systems: state, law, regulation, social movements and political parties, democracy
- Communication and economic systems: markets, ownership, access; “demographics” and class/gender/racial and national stratification
- The production of content within media industries

Faculty research includes the following topics:

- The study of news as public information and political ideology
- Telecommunications and the information economy
- Intellectual property and the flow of culture between global North and South
- The relationships among law, communication technologies, ownership, democracy, and the public sphere.
- Comparative analysis of media systems
- Communication, globalization, and economic development

Communication and Culture examines the cultural artifacts and discourses through which we experience our everyday lives, including popular music, films and television shows, advertisements, museum displays, landscape and urban design, and health and identity documentation systems. How can we understand the histories and changing practices associated with these forms of representation? What is the role of media (print, visual, electronic, material) in forming ideas about social identity and in shaping subjectivity? This part of the curriculum draws on the humanities, anthropology, history, political theory, cultural studies, and the sociology of culture to offer students a range of methods and theoretical frameworks for interpreting the production and circulation of artifacts, discourses, and meanings in a range of local, national, transnational, and diasporic cultural contexts. Faculty research includes the following topics:

- Collective memory and the struggles over the meaning of the past
- The study of power and politics in the interaction of nature and culture in contemporary theme parks and in historical court gardens
- The politics of representation of women, children, abortion, and childbearing
- Film and feminist theory
• The representation of race, gender, and nationalism in colonial settings

Communication and Human Information Processing examines the ways in which our experience as human beings is created by the communicative practices of the societies in which we live and the cultural practices of our families and communities with which we interact from the earliest days of life. With a sociocultural lens, we study the role of communication through language and other organized symbolic media. Because both individuals and their environments are constantly changing, the study of culture and the person pays special attention to the cultural and historical contexts of personal experience and the practices that constitute the proximal environments of individual development. This part of the curriculum draws particularly on the fields of anthropology, sociology, psychology, linguistics, cognitive science, and education to examine such processes as learning and cognition, language structure and language use, the construction and negotiation of meaning, and the organization of mental worlds.

Faculty research includes the following topics:

• The evolution of language and communication in human beings
• The role of literacy in individual and social development
• The role of new communicative practices on human development
• The study of human cognition as distributed among people and coordinated in communicative practices
• The development of reading and writing in young children
• The changing nature of play in contemporary society and its role in human development
• Bilingual and bi-cultural development in a globalized world

Communication and Media Practices faculty work in video, film, and interactive media production as well as in research scholarship. Graduate students as well as undergraduates are offered the opportunity to integrate creative practice in media production into their program of study.

Some communication faculty production interests include:

• Hybrid documentary and narrative forms
• Alternative representation of gender, race, and ethnicity in film and electronic media
• Distributed and networked media production
• Digital media based on game-like forms
• Development and use of media technology in and for educational contexts
• Global media networks
• Experimental approaches to cinematography and sound design
• Media as a tool for social and political activism

Ph.D. Requirements

2. 294, The History of Communication Research.
3. At least three methods courses from the 201 methodology sequence (see course listings).
4. Four courses in communication history and theory (see course listings).
5. 280, Advanced Workshop in Communication Media.
6. 296, Communication Research as an Interdisciplinary Activity.
7. First-Year Exam and Evaluation: At the end of the spring quarter of the student’s first year, the student must pass a comprehensive written examination based on course work completed during the first year.
8. Language Requirement: All students are required to demonstrate proficiency in one language other than their native language.
9. Qualifying Examinations: Before the end of the fourth year the student must take and pass an oral qualifying examination. The exam will be based on two papers concerning two of the subfields covered in the program. The student will also present a separate dissertation proposal at the examination. At this time, the faculty will examine the proposal for appropriateness and feasibility.
10. Teaching Requirement: In order to acquire teaching experience, all students are required to participate in the teaching activities of the department for three academic quarters.
11. Dissertation: Acceptance of the dissertation by the university librarian represents the final step in completing all requirements for a Ph.D. The dissertation committee must be approved by the department chair and the dean of Graduate Studies.

Departmental Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

Student Advising

Faculty Graduate Advisor:
Chandra Mukerji, Ph.D.
Faculty Undergraduate Advisor:
Zeinabu Davis, M.F.A.
Undergraduate Student Affairs Advisors:
Bea Velasco
Jamie Lloyd
Graduate Program Coordinator:
Gayle Aruta

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

LOWER-DIVISION

General Communication

COGN 20. Introduction to Communication (4)
An historical introduction to the development of the means of human communication, from language and early symbols through the introduction of writing, printing, and electronic media, to today’s digital and multimedia revolution. Examines the effect of communications media on human activity, and the historical forces that shape their development and use. Offered fall and spring quarters.

COGN 21. Methods of Media Production (4)
This course explores fundamental technical and social constraints shaping media production. We read film and television as texts by considering history, theory, genre and practical technique. COGN 22 and COGN 21 taken concurrently strongly recommended. COGN 22 is required for students interested in advanced communication production in media courses. Majors must enroll for a letter grade.

COGN 22. Methods of Media Production Lab (2)
In groups in lab students work hands-on with video and new media equipment, exploring fundamental technical constraints shaping media production. COGN 21 and COGN 22 strongly recommended concurrently. COGN 22 is required for students interested...
in advanced communication production courses. Majors must enroll for a letter grade. Prerequisite: COGN 21 (may be taken concurrently).

UPPER-DIVISION

Communication as a Social Force

COSF 100. Introduction to Communication as a Social Force (4)
A critical overview of areas of macro communication and analysis, with special emphasis on the development of communication institutions, including broadcasting, common carriers, and information industries. Questions regarding power, ideology, and the public interest are addressed. Prerequisite: COGN 20. Offered fall quarter.

COSF 123. Communication, Dissent, and Social Movements (4)
Emergence of dissent in different societies, and the relationship of dissent to movements of protest and social change. Movements studied include media concentration, antivar, antiglobalization, death penalty, national liberation, and labor. Survey of dissenting voices from Tolstoy and Naomi Klein seeking to explain the relationship of ideas to collective action and its outcomes. Prerequisite: COSF 100 or consent of instructor.

COSF 124. Black Women, Feminism, and the Media (4)
In Africa and the U.S., black feminists point out that their feminisms are different. Some black women who challenge norms of female behavior insist they are not feminist. We examine formal and informal black feminisms, and the mass media as an arena of black feminist struggle. Prerequisite: COSF 100 or consent of instructor.

COSF 125A-B. Civic Participation (4)
What are the sources of political apathy and political engagement? What are the variety of ways Americans express civic involvement and political concern? Primary focus will be on the contemporary United States, but with substantial attention to comparative and historical perspectives. COSF 125A is a continuation of COSF 125A. This will be run as a research seminar. Students will write library-based or fieldwork-based empirical research papers of 25-40 pages. Prerequisites: COSF 100 or consent of instructor for COSF 125A. COSF 125A and instructor consent for COSF 125B.

COSF 126. The Information Age: In Fact and Fiction (4)
Analysis of the forces propelling the “Information Age.” An examination of the differential benefits and costs, and a discussion of the presentation in the general media of the “Information Age.” Prerequisite: COSF 100 or consent of instructor.

COSF 127. The Internet Industry (4)
The political economy of the emergent Internet industry, charted through analysis of its hardware, software, and services components. The course specifies leading trends and changing institutional outcomes by relating the Internet industry to the adjoining media, telecommunications, and computer industries. Prerequisite: COSF 100 or consent of instructor.

COSF 128. Cultural Industries (4)
We examine how people interact with products of popular culture, production of cultural goods by looking at conditions in cultural industries. We examine film, music, publishing, focusing on how production is organized, what kind of working conditions arise, how products are distributed. Prerequisites: COSF 100 or consent of instructor.

COSF 132. History of U.S. Political Communication (4)
Survey of the history of political communication in the United States from the colonial period to the present. Students will work on term papers in which they will undertake original historical research. Prerequisites: COSF 100, communication major.

COSF 134. Communication, Politics, and Citizenship in America (4)
(Formerly COCU 134.) Selected topics, both historical and contemporary, on the public sphere, political participation, and the meaning of citizenship. Topics may include: voting practices, the role of political parties, social and cultural dimensions of citizenship, and shifts in public understanding of what counts as “political.” The course may require five to ten hours of internship work, arranged through the AIP office. See instructor for further information. Prerequisite: COSF 100 or consent of instructor.

COSF 139A-B. Law, Communication, and Freedom of Expression (4-4)
An examination of the legal framework of the freedom of expression in the United States. 139A covers the fundamentals of First Amendment law through the consideration of key cases in historical context. Prior restraint, incitement, obscenity, libel, fighting words, public forum, commercial speech, and hate speech are some of the topics covered. 139B focuses on the law of mass communication, examining the different legal treatments accorded print, broadcasting, cable, and common carriers. The decline of broadcast regulation, the breakup of AT&T, the rise of new forms of mass communication, and the question of the public interest are of central concern. Prerequisites: 139A: COSF 100 or consent of instructor. 139B-COF 100 or PS 40 or consent of instructor. 139B-COF 100 or PS 40, COSF 139A preferred.

COSF 140A. Comparative Media Systems: Asia (4)
The development of media systems in Asia; focusing on India and China. Debates over nationalism, regionalism, globalization, new technologies, identity politics, censorship, privatization and media piracy. Alignments and differences with North American and European media systems will also be considered. Prerequisite: COSF 100 or consent of instructor.

COSF 140B. Comparative Media Systems: Europe (4)
The development of media systems and policies in Europe. Differences between European and American journalism. Debates over the commercialization of television. The role of media in post-communist societies in Eastern Europe. Prerequisite: COSF 100 or consent of instructor.

COSF 140C. Comparative Media Systems: Latin America and the Caribbean (4)
The development of media systems and policies in Latin America and the Caribbean. Debates over dependency and cultural imperialism. The news media and the process of democratization. Development of the regional television industry. Prerequisite: COSF 100 or consent of instructor.

COSF 141CXL. Foreign Language Discussion (1)
Students will exercise advanced foreign language skills to discuss materials and the correspondingly numbered communication language foreign area course. This section is taught by the course instructor, has no final exam, and does not affect the grade in the core course, COSF 140C. Prerequisite: concurrent enrollment in COSF 140C.

COSF 141. History of U.S. Telecommunications (4)
This course provides a sustained historical focus on the developing social form and industry structure of U.S. telecommunications, beginning with the Post Office. Policy issues are regularly incorporated into readings and discussions. Emphasis is placed on the emergence, around the turn of the century, of the regulated, national telephone network system dominated by AT&T and its extension. Prerequisite: COSF 100 or consent of instructor.

COSF 159. Work and Industry in the New Information Economy (4)
This course, a research seminar, examines the evolution of the so-called new information economy and analyzes the transformation of patterns of work and industrial organization. Students will be expected to write a research paper, typically on some aspect of the new economy in the San Diego-Tijuana region. Prerequisite: upper-division standing or consent of instructor.

COSF 160. Political Economy/Global Consumer Culture (4)
This course critically examines social and economic forces that shape the making of this new global consumer culture by following the flows of consumption and production between the ‘developed’ and ‘developing’ worlds in the 1990s. We will consider how consumers, workers, and citizens participate in a new globalized consumer culture that challenges older distinctions between the ‘First’ and the ‘Third World.’ In this course, we will focus on the flows between the U.S., Asia, Latin America. Prerequisite: COSF 100 or consent of instructor.

COSF 161. Global Economy and National Identity (4)
Examine the interplay of globalization as a discourse and set of practices focusing on free movement of commodities and ideas, nationalist fragmentation marked by ethnic rivalry and identity conflict, seeks to examine those places where dualism is most pronounced. Prerequisite: COSF 100 or consent of instructor.

COSF 171A. American News Media (4)
(Same as Soc 165A.) History, politics, social organization, and ideology of the American news media. SF 171A surveys the development of the news media as an institution, from earliest new newspapers to modern mass news media. SF 171B deals with special topics, including the nature of television news, and with methods of news media research, and requires a research paper. Prerequisite: COSF 100 for COSF 171A; COSF 171A is required for COSF 171B.

COSF 172. The Cultural Politics of Sport (4)
Examine sport as play, performance, competition, an arena where there are politics, culture, power, identity struggles. Establishing the social meanings of sport, we address: ethics, race, class, nation, gender, body, science, technology, entertainment industries, commerce, spectatorship, consumption, amateurism, professionalism. Prerequisite: COSF 100 or consent of instructor.

COSF 173. Transparent Society (4)
How have politics, media, and society made visible features of life that were once hidden? From the women’s health movement to gay liberation to laws requiring public disclosure, frankness challenges civility, privacy, and taste. How can this be understood? Prerequisite: COSF 100 or consent of instructor.
COSC 175. Advanced Topics in Communication: Social Force
Specialized study in communication as a social force with topics to be determined by the instructor for any given quarter. Past topics include information as a commodity and book publishing. May be repeated for credit three times. Prerequisite: COCU 100 or consent of instructor.

COSC 180. Political Economy of Mass Communications
The social, legal, and economic forces affecting the evolution of mass communications institutions and structure in the industrialized world. The character and the dynamics of mass communications in the United States today. Prerequisite: COSF 100 or consent of instructor.

COSC 181. Political Economy of International Communications
The character and forms of international communications. Emerging structures of international communications. The United States as the foremost international communicator. Differential impacts of the free flow of information and the unequal roles and needs of developed and developing economies in international communications. Prerequisite: COSF 100 or consent of instructor.

COSC 183. The Politics of World Music
What is “world music?” How, where, and why did it come into being? Is it a naturally occurring category of music? What makes it distinct from other music? We critically examine history of world music, analyzing how it is produced, circulated, and consumed. Prerequisite: COSF 100 or consent of instructor.

COSC 184. The Mass Media and Politics in Africa
This course will critically examine the role of the mass media in Sub-Saharan Africa in the areas of colonial rule, nationalist struggles, authoritarianism, and popular movements. It will examine general trends regionally and internationally, as well as individual national cases, from the early twentieth century to the Internet news services of the information age.

COSC 185. Gender, Labor, and Culture in the Global Economy
Course examines the ways in which women participate in the global economy as the producers of consumer products and of cultural goods like entertainment and information. It also examines power as it relates to women’s labor in producing such material and cultural goods. Prerequisite: COSF 100 or consent of instructor.

COSC 186. Film Industry
A study of the social organization of the film industry throughout its history, addressing such questions as who makes films, by what criteria, and for what audience. The changing relationships between studios, producers, directors, writers, actors, editors, censors, distributors, audience, and subject matter of the films will be explored. Prerequisite: COSF 100 or consent of instructor.

Communication and Culture

COCU 100. Introduction to Communication and Culture
Processes of communication shape and are shaped by the cultures within which they occur. This course emphasizes the ways in which cultural understandings are constructed and transmitted via the variety of communication media available to members. A wide range of cultural contexts are sampled, and the different ways that available communication technologies (language, writing, electronic media) influence the cultural organization of people’s lives are analyzed. Prerequisite: COGN 20, or HDP 1, or consent of instructor. Offered winter quarter.

COCU 108. Visual Culture
How visual images contribute to our understanding of the world and ourselves. Theoretical approaches from media studies, art history, gender studies, and social theory will be used to analyze cultures of science, art, mass media, and everyday life. Prerequisite: COCU 100 or consent of instructor.

COCU 110. Cinema in Latin America
Analysis of the changing content and sociopolitical role in Latin America of contemporary media, including the “new cinema” movement, recent developments in film, and popular television programming, including the telenovela. Examples drawn from Mexico, Brazil, Cuba, and other countries. Prerequisite: COCU 100 or consent of instructor.

COCU 120. The Problem of Voice
This course will explore the problem of self-expression for members of various ethnic and cultural groups. Of special interest is how writers find ways of describing themselves in the face of others’ sometimes overwhelming predilection to describe them. Prerequisite: COCU 100 or consent of instructor.

COCU 123. Black Women Filmmakers
Students examine film and video media produced by black women filmmakers worldwide. This course will use readings from the writings of the filmmakers themselves as well as from film studies, women’s studies, literature, sociology, and history. Prerequisite: COCU 100 or consent of instructor.

COCU 124. Documentary History and Theory
Lecture and discussion course in the history of nonfiction film and video. Through film and written texts we survey the nonfiction film genre, considering technological innovations, ethical issues, and formal movements related to these representations of the “real.” Students write a research paper in lieu of a final. Prerequisite: COCU 100 or consent of instructor.

COCU 125. How to Read a Film
The purpose of this course is to increase our awareness of the ways we commonly interpret or make understandings from movies and to enrich and increase the means by which one can enjoy and comprehend movies. We will talk about movies and we will explore a range of methods and approaches to film interpretation. Readings will emphasize major and diverse theorists, including: Bazin, Eisenstein, Cavell, and Trudel. Prerequisite: COCU 100 or consent of instructor.

COCU 126. African Cinema
Initiate a higher level of film literacy, sharpening, generating thoughtful criticism as it relates to world cinema, to foster a collaborative sense of a film/media community at UCSD where barriers between the filmmaker and audience are broken down and dialogue occurs. Prerequisite: COCU 100 or consent of instructor.

COCU 127. Folklore and Communication
Folklore is an important variety of noncommercial communication in societies dominated by commercial media. A source of alternative understandings, folklore is characterized by particular styles, forms, and settings. This course introduces a wide range of folklore genres from different cultures and historical periods, including oral narrative, material folk arts, dramas, and rituals. We will pay special attention to the relation between expressive form and social context. Sources include folklore texts, ethnographies, performances on film and videotape, novels, autobiographies, and student observations and experiences. Prerequisite: COCU 100 or consent of the instructor.

COCU 128. Folklore and Mass Media
Local personal, vernacular, and oral traditions coexist with and influence the mass-produced, mass-mediated culture of the late twentieth century. This course examines the history of this influence, using materials such as oral histories, life stories, urban legends, and soap operas to explore the conjunctures of folklore and commercially produced entertainments in everyday social life. Prerequisite: COCU 100 or consent of the instructor.

COCU 129. Public History and Museum Studies
This course will explore the role that “public history”—history as created for general audiences—plays in communicating cultural and national identities by examining museum exhibitions, their controversies, and how material objects mediate interpretations of the past. Prerequisite: COCU 100 or consent of instructor.

COCU 130. Tourism: Global Industry and Cultural Form
The largest industry in the world has far-reaching cultural ramifications. We will explore tourism’s history and its contemporary cultural effects, taking the perspective of the “tourist” as well as that of the tourist. Prerequisite: COCU 100 or consent of the instructor.

COCU 131. Cinema of the Cuban Revolution
Overview of the Cuban Revolution (1959–2000) and cultural policies through the study of its film production as a cultural industry and representational style. Cuban film in context of domestic and international events, particularly treatment of race and gender dynamics. Prerequisite: COCU 100 or consent of instructor.

COCU 132. Gender and Media
This course examines the work of women artists and the history of the representation of women in the media, from the beginnings of cinema to the present, and offers a basic introduction to feminist media theory. It focuses on the representation of gender, and narrative and experimental strategies used by women media makers, and the role of the female spectator. Prerequisite: COCU 100 or consent of instructor.

COCU 136. Concepts of Freedom
This course examines some of the changing cultural, social, technological, and political meanings, practices, and aspirations that together constitute what is, and has been, called Freedom. Prerequisite: COCU 100 or consent of the instructor.

COCU 137. The Politics of Bodies
This course will explore the construction of gendered bodies and gendered sexuality in postindustrial culture(s) through political, historical, and media analysis. Topics may include abortion, eating disorders, body modification, work and consumption, AIDS, and genetic engineering. Prerequisite: COCU 100 or consent of instructor.

COCU 138. Feminist Theory
This class is designed to initiate students into the pleasures, pains, and perplexities of critical thinking about gender. We will survey a wide variety of thinkers and issues, consider some of the historical as well as contemporary debates within western feminist thought, and develop tools of analysis for future work. Prerequisite: upper-division standing.
COCU 139. Reproductive Discourse and Gender (4)
In this course we will examine as a problem of discourse and culture the controversies surrounding the development and use of the new technologies of human genetics and reproduction. Of particular interest will be the way in which these new technological practices and processes text, erode, or undermine traditional understandings of “human nature” and relationships while enforcing traditional understandings of gender. Prerequisite: COCU 100 or consent of instructor.

COCU 140. Television, Culture, and the Public (4)
How and what does television communicate? Emphasis will be on contemporary U.S. television programming placed in comparative and historical context. Special topics may include: TV genres; TV and politics; TV and other media. Frequent in-class screenings. Prerequisite: COGN 20 or consent of the instructor.

COCU 141A. Media and Technology: Global Nature, Global Culture (4)
Considers globalization's impact on concepts of nature in and through media texts, information systems, circulation of consumer goods and services, the emergence of global brands, science, health initiatives, environmental media activism, technology transfer in the twentieth and early twenty-first centuries. Prerequisite: COSF 100 or COCU 100 or COHI 100 or consent of instructor.

COCU 141B. Media and Technology: Gender and Biomedicine (4)
From historical and cultural aspects of media, information imaging technology use in biomedical research, clinical care, health communication to constructions of gender, and identity. We approach the subject through audiovisual texts and writings from fields including science and technology studies and cultural studies. Prerequisite: COSF 100 or COCU 100 or COHI 100 or consent of instructor.

COCU 141C. Media and Technology: Disability (4)
Cultural and historical ways of defining and understanding disability relative to communication and assistive technologies, including the impact of digital technologies and the Americans with Disabilities Act. Use of audiovisual texts and writings from fields including science and technology studies, and cultural studies. Prerequisite: COSF 100 or COCU 100 or COHI 100 or consent of instructor.

COCU 142. Holocaust Discourse (4)
Legal, visual, historical, cultural discourses and debates that contribute to represent the Holocaust as a coherent and cohesive event, and as a touchstone of moral and political discourse in the U.S., entailing powerful stories about pluralism, tolerance, democracy, human rights, and justice. Prerequisite: COCU 100 or consent of instructor.

COCU 143. Culture and Media: Theories and Methods (4)
Considers in greater depth the theories and methods introduced in COCU 100. Advanced approaches to the analysis of media texts in everyday life and the study of concepts such as representation, culture, reality, and the virtual. Prerequisite: COCU 100.

COCU 144. The Globalization of Culture and Communication (4)
We live in a world of transnational flows of media, money, goods, and people. What representational and methodological challenges does globalization pose for the study of culture and communication? We will explore such questions from a cross-cultural and global perspective. Prerequisite: COCU 100 or consent of instructor.

COCU 145. Cultures of Consumption (4)
This course examines the cultural politics of consumption across time and cultures through several concepts: commodity fetishism; conspicuous consumption; taste, class, and identity formation; consumption's psychological, phenomenological, and poetic dimensions; and contemporary manifestations of globalization and consumer activism. Prerequisite: COCU 100 or consent of instructor.

COCU 146. Representing Race, Nation, and Violence in Multicultural California (4)
How does media representation of race, nation, and violence work? Taking multicultural California as our site, we will explore how social power is embedded in a variety of visual texts, and how media not only represents but also reproduces conflict. Prerequisite: COCU 100 or consent of instructor.

COCU 147. History, Memory, and Popular Culture (4)
What role does popular culture play in shaping and creating our shared memory of the past? The course examines diverse sources such as school text books, monuments, holidays and commemorations, museums, films, music, and tourist attractions. Prerequisite: COCU 100 or consent of the instructor.

COCU 164. Popular Culture in Contemporary Life (4)
An overview of the historical development of popular culture from the early modern period to the present. Also a review of major theories explaining how popular culture reflects and/or affects patterns of social behavior. Prerequisite: COGN 20 and COCU 100 or consent of instructor.

COCU 165. Popular Culture in Contemporary Life (4)
Treats products of modern culture industries, and theories of social political importance. Study cultural forms: including music, television, fashion, food, landscapes. How popular culture is consumed, what it means to audiences, gender and racial/ethnic differences among producers and consumers. Prerequisite: upper-division standing or consent of instructor.

COCU 166. Popular Culture, Social Practices, and Cultural Politics (4)
Focuses on popular music as a social, aesthetic, historical, and political formation. Relationship between musical and extramusical forces (institutions, communities, industries, identities) will be examined. Music making, hearing, performance will be engaged as sites of expressive practice, cultural politics, social identity. Prerequisite: COCU 100 or consent of instructor.
Communication and Human Information Processing

COHI 100. Introduction to Communication and the Individual (4)
An introduction to theories of human mental processes which emphasizes the central role of mediation. The course covers methods of research that permit the study of mind in relation to different media and contexts of use. The traditional notion of media effects is critically examined in a number of important domains, including television, film, writing, and oral language. Prerequisite: COGN 20 or HDP 1, or consent of instructor. Offered spring quarter.

COHI 114. Bilingual Communication (4)
This course is designed to introduce students to the multiple settings in which bilingualism is the mode of communication. Students will examine how such settings are socially constructed and culturally-based. Readings on language policy, bilingual education, and linguistic minorities, as well as field activities will constitute the bulk of the course. Prerequisite: COHI 100 or consent of instructor.

COHI 115. Education and Global Citizenship (4)
The course introduces students to concepts, possibilities, and dilemmas inherent in the notion of global citizenship. Students will formulate goals and instructional strategies for global education and the expected competence of an individual within a global society—able to focus simultaneously upon many diverse elements, issues, and contexts. It will examine the role that communication and curriculum can play in the formation of identity, language use, and civic responsibility of a global citizen. Prerequisite: COHI 100 or consent of instructor.

COHI 117. Language, Thought, and the Media (4)
This course examines the ways in which various communicative channels mediate human action and thought. A basic premise of the course is that human thought is shaped in important ways by the communicative devices used to communicate. There is a particular emphasis on how thought develops, both historically and in the individual. Prerequisite: COHI 100 or consent of instructor.

COHI 119. Learning to Read (4)
This course explores learning to read as a process involving individual, cultural, and social resources. Reading difficulty is understood as induced by lack of resources, such as access to books or access to strategies for decoding, comprehension, and analysis of written text. Activities of reading are taken as a basic context for understanding patterns of chronic and pervasive reading difficulty in their populations. Prerequisite: COHI 100 or consent of instructor.

COHI 120. Reading the Web (4)
This course explores how networking computing has helped change many aspects of modern life, from how we manage illness to how we see ourselves culturally. The focus of the class is the online venue—how has the Web become part of daily life? What is different about goods, services, and events that transpire online? What theories of communication and social interaction are useful in understanding online behavior? Prerequisite: COHI 100 or consent of instructor.

COHI 121. Literacy, Social Organization, and the Individual (4)
This course will examine the historical growth of literacy from its earliest precursors in the Near East. The interrelationship between literate technology and social organization and the impact of literacy on the individual will be twin foci of the course. Arriving at the modern era, the course will examine such questions as the impediments to teaching reading and writing skills to all normal children in technological societies and the relation between literacy and national development in the Third World. Prerequisite: COHI 100 or COCU 100 or HDP 1 or consent of instructor.

COHI 122. Communication and the Community (4)
This course examines forms of communication that affect people's everyday lives. Focusing on ways that ethnic communities transmit and acquire information and interact with mainstream institutions, we examine a variety of alternative local media, including murals, graffiti, newsletters, and community radio. Prerequisite: COHI 100 or consent of instructor.

COHI 123. Children and Media (4)
A course which analyzes the influence of media on children's lives. The course adopts an historical as well as social perspective on childhood within which media play a role. Among media studied are books, films for children, video games, computer games, and television. Prerequisite: COGN 20 or HDP 1 or consent of instructor.

COHI 124. Voice: Deaf People in America (4)
The relationship between small groups and dominant culture is studied by exploring the world of deaf people who have for the past twenty years begun to speak as a cultural group. Issues of language, communication, self-representation, and social structure are examined. Prerequisite: COHI 100 or consent of instructor.

COHI 125. Communication in Organizations (4)
Organizations are analyzed as historically-evolving systems of activity mediated by talk, text, and artifacts. The class covers sense making, coordinating, symbolizing, talking, negotiating, reading and writing, story-telling, joking, and visualizing in organizations. Exemplary case studies, employing several complementary theoretical frameworks, are used to analyze these communicative processes. Prerequisite: COHI 100 or consent of instructor.

COHI 126. Toys and the Material Life of Children (4)
This course reviews a history of toys and those used by children. Toys will be studied from the view of their communicative and identity aspects of "marginal" figures, blocks, trains, cars, computer games, and "educational toys." Students will analyze the toy industry and its impact on childhood, leisure, and family life. Prerequisite: COHI 100 or consent of instructor.

COHI 127. Biography and Life Stories (4)
Course examines several different ways of telling stories as a form of communication: our own life and about the lives of others. There are also the occasions that the life stories of ordinary people are told at and celebrated: for example, funerals, festschrifts, retirement dinners, fiftieth-anniversary parties, and retrospective art shows. Prerequisite: COHI 100 or consent of instructor.

COHI 129. Borderlands (4)
Communicative and identity aspects of "marginality"—belonging to more than one race, community, or nationality, and on the literature about insiders and outsiders. Considers contemporary race-critical and feminist theory, including cyborg anthropology, the historical concept of race in America, and the problems of multiple memberships of various sorts. Prerequisite: COHI 100 or consent of instructor.

COHI 134. Language and Human Communication (4)
This course looks at the interaction of technology, culture, and language, with a focus on narrative styles. Theories on the role of technology in shaping and transforming talk are examined. Cultural properties such as physical space and work traditions are studied as they bear on styles of talking and talking about the world. Storytelling, humor, and talk of children are used as examples of styles of talking. Prerequisite: COHI 100 or consent of instructor.

COHI 135. Language and Globalization (4)
The interaction of language and culture in human communication. New and old languages, standard and dialect, dominant and endangered, are the special focus. Selected languages as examples of how languages exist in contemporary contexts. Prerequisite: COHI 100 or consent of instructor.

COHI 136. Gender and Science (4)
This course will focus on arguments about cognitive differences between men and women in science. We will review current arguments about essential differences, historical beliefs about gender attributes and cognitive ability, and gender socialization into patterns of learning in school. Prerequisite: COHI 100 or consent of instructor.

COHI 143. The Psychology of the Filmic Text (4)
The course will examine a variety of films using different perspectives and methods of psychology to analyze the types of problems raised by the nature of cinematic communication. Topics will include an introduction to basic elements of cinematography, theoretical and technical bases of film's "grammar," perception of moving pictures, the function and status of sound, the influence of film on behavior and culture (and vice versa), the representation of psychological and social interaction, the communication of narrative and spatial information formation, the generation and translation of film's conventions, and the parameters which the medium and the culture impose upon the attempt to express various forms of abstraction in the concrete visual language of film. Prerequisite: COHI 100 or consent of instructor.

COHI 175. Advanced Topics in Communication: Human Information Processing (4)
Specialized study in communication human information processing with topics to be determined by the instructor for any given quarter. May be repeated for credit three times. Prerequisite: COHI 100 or consent of instructor.

Communication Media Methods

COMT 100. Nonlinear/Digital Editing (4)
Prepare students to edit on nonlinear editing facilities and introduce aesthetic theories of editing: time code editing, time line editing on the Media 100, digital storage and digitization of audio and video, compression, resolution, and draft mode editing. Prerequisites: communication majors, COGN 21.

COMT 101. Television Analysis and Production (6)
An introduction to the techniques and conventions common to the production of news, discussion, and variety-format television programs. Particular emphasis will be placed on the choice of camera "point of view" and its influence on program content. Laboratory sessions provide students the opportunity to experiment with production elements influencing the interpretation of program content. Concentration on lighting,
Prerequisite: communication majors only.

COMT 102. Introduction to Media Use in Communication (4)
Students will engage in projects, using media, to address theories of communication. Students can use film, video, computers, pen and paper, photography, posters, or performances for their projects. Prerequisites: COGN 20 and COGN 21.

COMT 103. Television Documentary (6)
An advanced television course which examines the history, form, and function of the television documentary in American society. Experimentation with documentary techniques and styles requires prior knowledge of television or film production. Laboratory sessions apply theory and methods in the documentary genre via technological process. Integrates research, studio and field experience of various media components. Prerequisite: COMT 101 or COGN 21 or consent of instructor.

COMT 104. Studio/TV (4)
This course offers students the opportunity to produce and engage in critical discussions around various television production formats. We will study and produce a variety of projects including public service announcements, panel programs, scripted drama, and performance productions. Prerequisite: COGN 21 or consent of instructor.

COMT 105. Media Stereotypes (4)
An examination of how the media present society’s members and activities in stereotypical formats. Reasons for and consequences of this presentation are examined. Student responsibilities will be: (a) participation in measurement and analysis of stereotype presentations; (b) investigating techniques for assessing both cognitive and behavioral effects of such scripted presentations on the users of media. Course can be taken to meet COCU major requirement. Prerequisite: COCU 100 or consent of instructor.

COMT 107. Internet Journalism (4)
This course focuses on writing for Internet publications and using the Internet for research and hyper-text bibliography. Students will be required to learn and use a web-programming language. News writing for the Internet will be compared to news writing in other media, including print journalism. Prerequisites: communication major, COGN 20 or consent of instructor.

COMT 109. Digital Media Pedagogy (4)
This course teaches techniques for teaching digital media: such as Word, Photoshop, PageMaker, digital cameras, digital video, non-linear editing. What are the special challenges digital media present to teachers and students? How do digital media compare to older technologies such as typewriters, film cameras, and analog video? How do gender, class, and age affect the way students and teachers respond to digital media? At least six hours of fieldwork at a computer lab of their choice or at S. Peeter’s project at Adams Elementary will be required. Experience with computers and/or digital imaging recommended. Prerequisite: communication majors only.

COMT 110. News Media Workshop (4)
Designed for students working in student news organizations or off-campus internships or jobs in news, public relations, or public information. A workshop in news writing and news analysis. Prerequisites: COCU 100 and COSF 171 (may be taken concurrently) or consent of instructor.

COMT 111A-B. Communicating and Computers (4-4)
This course introduces students to computers as media of communication. Each quarter students participate in a variety of networking activities designed to show the interactive potential of the medium. Field work designed to teach basic methods is combined with readings designed to build a deeper theoretical understanding of computer-based communication. Courses can be taken to meet COHI major requirement. Prerequisites: COHI 100 and communication major or consent of instructor.

COMT 112. Ethnographic Methods for Media Research (4)
This is a practical course on ethnographic fieldwork—obtaining informed consent interviewing, negotiating, formulating a research topic, finding relevant literature, writing a research paper, and assisting others with their research. Course can be taken to meet COHI major requirement. Prerequisite: COHI 100 or consent of instructor.

COMT 115. Media and Design of Social Learning Contexts (6)
Same as HDP 115. A combined lecture/lab course cross listed in Communication and Human Development. Students attend lecture, write fieldnotes, and spend 3 hours per week in specially designed after-school settings working with children and designing new educational media and producing special projects. Prerequisite: COHI 100 or HDP 1.

COMT 116. Practicum in Child Development (6)
Same as HDP 135. A combined lecture and laboratory course for juniors and seniors in psychology and communication. Students should have a solid foundation in general psychology and communication as human information processing. Students will be expected to spend four hours a week in a supervised practical after-school setting at one of the community field sites involving children. Additional time will be devoted to readings and class prep, as well as, six hours a week transcribing field notes and writing a paper on some aspect of the field work experience as it relates to class lectures and readings. Please note that the enrollment size for each site/section is limited. See department course listing for site/section descriptions. Prerequisites: COHI 100 or HDP 1 or Psych 101.

COMT 120. Documentary Sketchbook (4)
Digital video is the medium used in this class both as a production technology and as a device to explore the theory and practice of documentary production. Technical demonstrations, lectures, production exercises, and readings will emphasize the interrelation between production values and ethics, problems of representation, and documentary history. Prerequisite: COGN 21 or consent of instructor.

COMT 121. Sound Production and Manipulation (4)
Advanced seminar in sound production, design, editing. Students create projects by recording original sounds, editing on a Pro-Tools system. We consider the potential of sound in film, radio, TV, and the Web by reviewing work and reading sound theory. Prerequisites: communication majors only and COGN 21.

COMT 122. Social Issues of Media Production (4)
Analyze forms of social issue media production, photography, audio/radio, arts, crafts, Web, print zines, political documentary. Students work with several forms of media making: video, audio, Web design, and a project in their chosen format. Prerequisite: COGN 21 or consent of instructor.

COMT 175. Advanced Topics in Communication, Media Methods (4)
Specialized “practice” in communication: media methods with topics to be determined by the instructor in any given quarter. May be repeated for credit three times. Prerequisite: communication majors only.

General Communication

COGN 150. Senior Seminar in Communication (4)
This course examines in detail some topic in the field of communication, bringing to bear several of the approaches and perspectives introduced in the basic communication curriculum. Seminars will be limited to 25 students and class participation is stressed. A research paper is required. Prerequisite: senior standing or consent of instructor.

COGN 175. Advanced Topics in Communication: General (2)
Specialized study in general communication with topics to be determined by the instructor, for any given quarter. May be repeated for credit. Prerequisite: must be taken with AIP 197.

COGN 191-A. Honors Seminar in Communication (4)
Preparation of an honors thesis, which can be either a research paper or a media production project. Open to students who have been admitted to the honors program. Grades will be awarded upon completion of the two-quarter sequence. Prerequisite: admission to the honors program.

Same as PS 194, USP 194, Hist 193, SocE 194, Erth 194.) Course attached to six-unit internship taken by students participating in the UCDC program. Involves weekly seminar meetings with faculty and teaching assistants and a substantial research paper. Prerequisite: participation in UCDC program.

COGN 198. Directed Group Study in Communication (4)
Directed group study on a topic or in a field not included in the regular curriculum by special arrangement with a faculty member. (P/NP grades only.) May be taken three times for credit. Prerequisite: consent of instructor.

COGN 199. Independent Study (4)
Independent study and research under the direction of a member of the staff. (P/NP grades only) Prerequisite: consent of instructor.

GRADUATE

COGR 200A. Introduction to the Study of Communication as Social Force (4)
This course focuses on the political economy of communication and the social organization of key media institutions. There will be both descriptive and analytical concerns. The descriptive concern will emphasize the complex structure of communication industries and organizations, both historically and cross-nationally. The analytic focus will examine causal relationships between the economic and political structure of societies, the character of their media institutions, public opinion, and public attitudes and behaviors expressed in patterns of voting, consuming, and public participation. The nature of evidence and theoretical basis for such relationships will be critically explored.
COGR 200B. Introduction to Study of Communication: Communication and Culture (4)
This course focuses on questions of interpretation and meaning. This course will examine how people use texts to interpret the world and coordinate their activities in social groups. Students will study both theories of interpretation in the conventional sense and theories about the act of interpreting.

COGR 200C. Introduction to the Study of Communication: Communication and the Individual (4)
This course will draw on theorists who examine human nature as constituted by social, material, and historical circumstances. This course considers the media in relation to the ontogenetic and historical development of the human being and an examination of the individual as socially constituted in a language-using medium. The role of new communication technologies as part of research methodologies is explored in lecture-seminar.

COGR 201B. Ethnographic Methods for Communication Research (4)
A supervised and coordinated group project will allow students to develop competence in a variety of ethnographic approaches to communication. Subjects covered include choosing a field-work site, setting or process for participation; entry and development of relationships; techniques of observation, interviewing, notetaking, and transcription. Course may also include photography and video as research tools. All participant observation and interviewing strategies fall under the review of the Committee on Human Subjects.

COGR 201C. Discourse Analysis (4)
Review and critique of studies employing discourse analysis, focusing on the ways that “discourse” is identified, recorded, and reported. A working notion of “discourse” will develop from works representing diverse disciplinary approaches. Students will record, transcribe, and report on segments of talk in an everyday setting. All participant observation and interviewing strategies fall under the review of the Committee on Human Subjects.

COGR 201D. Historical Methods for Communication Research (4)
Different approaches to conducting historical research in communication. Such approaches may include the social history of communication technology; structuralist and poststructuralist accounts of language, media, and collective memory; and new historicist treatments of cultural history. Sources, documentation, and the nature of argument from historical evidence are emphasized.

COGR 201H. Qualitative Methods in Audience Research (4)
This course explores the social and economic definitions of media audiences and the various qualitative methodologies for studying media use. Includes audiences for television, video, and motion pictures, as well as users of telephones, computers, and electronic mail.

COGR 201I. Ethnography of Information Systems (4)
This course will survey the rapidly growing body of ethnographic analyses of information systems, to extend the basic principles of ethnographic research and to lead students in the development of projects modifying these principles for the emerging electronic environment. Students may approach the course in one (or both) of two ways—either preparing for and carrying out a pilot ethnographic study or studying the theoretical literature in depth.

COGR 201J. Comparative Analysis (4)
The logic of comparative analysis and its role in communication research. Scientific inference in qualitative research. Selection of cases. Problems of translation across cultures.

COGR 201L. Qualitative Analysis of Information Systems (4)
Historical and ethnographic studies of information systems—the design and use of information and communication technologies in their social, ethical, political, and organizational dimensions. Objects of study range from the invention of file folders to e-mail use and distributed databases as communication systems. Prerequisite: graduate standing or consent of instructor.

COGR 201M. Content Analysis (4)
History uses methodology of quantitative analysis of media content. Includes conceptual issues concerning the quantification of meaning and practical procedures for coding and data analysis. Students read examples of studies using content analysis and carry out their own pilot analyses. Prerequisite: graduate standing or consent of instructor.

COGR 210. Information and Society (4)
The social, legal, and economic forces affecting the evolution of mass communication institutions and structures in the industrialized world. Differential impacts of the free flow of information and unequal roles and needs of developed and developing economies.

COGR 215. Regulation of Telecommunications (4)
The course will look at the history of, and rationales for, the regulation of mass communications in the United States. The course will cover both broadcasting and common carrier regulation. We will analyze telecommunications regulatory structures as they were constituted historically with the 1934 Communications Act and examine their breakdown in the late 1970s. In a larger vein, the course will examine the rise and functions of regulatory agencies in modern American history.

COGR 220. The News Media (4)
History, politics, social organization, and ideology of the American news media. Special attention will be paid to historical origins of journalism as a profession and “objective reporting” as ideology; empirical studies of print and TV journalism as social institutions; news coverage of Vietnam and its implications for theories of the news media.

COGR 222. Childhood and Culture (4)
This course explores the social construction of childhood as organized by the institutions of school and family. Of particular interest are media consumption and leisure as they interact with the emergence of taste, preference, and identity in children. Modern adolescence is also explored as it bears on the social nature of childhood.

COGR 225A. Introduction to Science Studies (4)
Study and discussion of classics work in history of science, sociology of science, philosophy of science, and communication of science, and of work that attempts to develop a unified science studies approach. Required for all students in the Science Studies Program. Prerequisite: enrollment in the Science Studies Program or approval of instructor.

COGR 225B. Seminar in Science Studies (4)
Study and discussion of selected topics in the science studies field. Required for all students in the Science Studies Program. Prerequisite: enrollment in the Science Studies Program or approval of instructor.

COGR 225C. Colloquium in Science Studies (4)
A forum for the presentation and discussion of research in progress in science studies, by graduate students, faculty, and visitors. Required for all students in the Science Studies Program. Prerequisite: enrollment in the Science Studies Program or approval of instructor.

COGR 225D. Advanced Approaches to Science Studies (4)
Contemporary themes and problems in science studies. Focus on recent literature in the history, philosophy, and sociology of science, technology, and medicine. Required of all students in the Science Studies Program. Prerequisites: Completion of COGR 225A, HIGR 238, PHIL 209A, or SOCG 255A; enrollment in Science Studies Program or consent of instructor.

COGR 226. Popular Culture (4)
This class will be an opportunity for students to review major contributions to the field from the disciplines of anthropology, history, literature, sociology and American studies, and to experiment with some of the recently developed methods for studying popular forms. They will then be able to consider more precisely the potential and actual contribution of studies of popular culture to the discipline of communication.

COGR 238. The Frankfurt School on Mass Culture Social Theory (4)
This reading seminar will consider works by Frankfurt School theorists (Horkheimer, Adorno, Pollock, Lowenthal, Marcuse, Benjamin, Habermas) on mass media, mass culture, ideology, art, authority and the individual, and their relevance in the analysis of contemporary capitalism. Prerequisite: graduate standing or consent of instructor.

COGR 240. The Culture of Consumption (4)
(Cross-listed with HIGR 273.) This course will explore the development and cultural manifestations of consumerism in the nineteenth and twentieth centuries. Topics will include the rise of museums, the development of mass market journalism and literature, advertising, and the growth of commercial amusements. Readings will focus primarily, but not exclusively, on the United States. Students will be encouraged to think comparatively.

COGR 250. Third World Cinema (4)
Course examines the history, theory, and aesthetics of “Third Cinema”—schools of cinema developed by selected filmmakers from Africa, Latin America, and Asia. Through film screenings and a wide range of readings students will discuss such topics as cinema and national identity, cinema and social change, and Hollywood dominance. Prerequisite: graduate standing or consent of instructor.

COGR 261. Mediation Approaches to Culture/Mind (4)
This course will examine theories of mind in which cultural mediation is given a leading role. The work of anthropologists, psychologists, and communication scholars will be studied in depth. Emphasis will be placed on the methodological implication of cultural theories of mind for empirical research.
COGR 275. Topics in Communication (4)
Specialized study in communication, with topics to be determined by the instructor for any given quarter.

COGR 278. Talking Culture, Culture Talking: Voices of Diversity (4)
(Cross listed with EDS 278). This course explores the discourse of culture in American society and the problem of “silenced” or unheard voices. The interaction of individual and collective voice, language, and identity are discussed as they bear on the ways that culture moves through important social institutions such as schools. Of particular interest are issues of teaching, learning, displacement, inclusion, marginality, and the “speaking center.” Prerequisite: Graduate standing or consent of instructor.

COGR 280. Advanced Workshop in Communication Media (4)
This course is a project course in which students prepare a production or experiment using one of the forms of media. The course is designed to allow students to experiment in a communication form other than the usual oral presentation in class or a term paper. Students can do a video production, a coordinated photographic essay or exhibit, a computer instruction game, a published newspaper or magazine article directed at a special audience, a theatrical presentation, or some form other than those listed. Prerequisite: graduate standing or consent of instructor.

COGR 294. The History of Communication Research (4)
Intellectual history of the field of communication studies from Robert Park to the present. Explication and assessment of major research approaches and classic studies representing both empirical and critical traditions.

COGR 296. Communication Research as an Interdisciplinary Activity (4)
A course that introduces students to the interdisciplinary nature of the field of communication research as represented by the work of faculty in the Department of Communication. Through faculty research, students are presented with concrete examples of communication research theory and practice that can provide them with insights for conducting their own research projects. Prerequisite: graduate standing or consent of instructor.

COGR 298. Directed Group Study (1-12)
The study and analysis of specific topics to be developed by a small group of graduate students under the guidance of an interested faculty member. COGR 500. Practice Teaching in Communication (4)

COGR 299. Graduate Research (1-12)
Advanced independent study in communication under the guidance of Department of Communication faculty.

COGR 500. Practice Teaching in Communication (4)
A doctoral student in communication is required to assist in teaching undergraduate Department of Communication courses for a total of six quarters. One meeting per week with the instructor, one meeting per week with the assigned sections, and attendance at the lecture of the undergraduate course in which he or she is participating are part of this requirement.

Comparative Studies in Language, Society, and Culture

Department of Music
OFFICE: 111 Mandeville Center for the Arts
(858) 534-6722/(858) 534-3279
http://music.ucsd.edu

Program Faculty

Nancy Caciola, Ph.D., Department of History
Jann C. Pasler, Ph.D., Department of Music, Chair
Don E. Wayne, Ph.D., Department of Literature, Co-Chair
Kathryn A. Woolard, Ph.D., Department of Anthropology

Graduate students in the humanities, social sciences, and arts in this program are provided the opportunity to design curricula, conduct research, and write dissertations under the guidance of interdepartmental and/or intercampus Ph.D. committees. The student who participates in the program must be admitted, satisfy all requirements for advancement to candidacy, and pass the qualifying examination in one department. The student must also undertake advanced study in an integrally related area of research specialization. The student advances to candidacy in the program upon successfully defending a written dissertation proposal before the interdepartment or intercampus Ph.D. committee. In the instance of some departments and programs, the defense will be identical with completion of the departmental qualifying examination.

Application to the program in Comparative Studies may be made at the earliest during the student’s third quarter of residency in his or her primary department. From the point of acceptance into the program, the student’s preparation for dissertation research will be under the supervision of the interdepartment or intercampus Ph.D. committee. The degree granted may indicate in its title the precise nature of the student’s studies and research when appropriate and desirable—e.g., Ph.D. in comparative literature and ethnopoetics, in linguistics and literary studies, in economics and Chinese studies, in philosophy and the history of ideas. When an additional degree title is contemplated, the student’s Ph.D. committee must forward a program of study and research, as well as the dissertation proposal, to the supervising committee for initial approval and to the Graduate Council for final approval.

Students applying for admission to UCSD and interested in applying for admission to the program should direct their inquiries to a primary department. Students already admitted to a primary department should, after the required quarters of residence and with the advice of a department advisor, direct inquiries to the chairperson of the program.

Faculty Research Groups

Beginning with the academic year 1997–1998, the program sponsors a series of faculty research groups. These groups consist of faculty who have announced their intention to supervise graduate students wishing to work on topics involving the comparative study of language, society, and culture. Each faculty research group is expected to be composed of faculty in the humanities, social sciences, and arts from different departments and/or campuses. For a list of current faculty research groups and the topics which they support, contact the chairperson of the program.

The Anthropology of Modern Society

The Anthropology of Modern Society is a project of graduate training and research dedicated to the study of modernity and its counterparts in the late twentieth century. The group sees the social life of cities as making manifest this problem in issues of citizenship and democracy, the social formations in tension with the nation-state, modern subjectivities, social and religious movements, transnational markets and migrations, and relations of local to global processes. Participants are committed to reorienting anthropological theory and ethnographic practice towards such contemporary social and political problems.

Director: James Holston,
Department of Anthropology, (858) 534-0111
Co-Director: Martha Lampland,
Department of Sociology, (858) 534-5640

Ph.D. Time Limit Policies

A student admitted to this interdisciplinary program is subject to the same time limit policies as those of the student’s primary department.
Prerequisite: Literature
Communication
History
Literature
Sociology
Anthropology
History
please con
Sociology
Not offered in 2007-08.
Ethnic Studies
See Engineering, School of.

Computer Science and Engineering
See Engineering, School of.

Computing and the Arts
See Music and Visual Arts, Departments of.

Contemporary Issues
OFFICE: 2073 Humanities and Social Sciences Building, Muir College, (858) 534-3589
Director
Susan Smith, Ph.D.

COURSES
For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

LOWER-DIVISION
22. Human Sexuality (4)
A survey of the nature and problems of human sexuality in the development of the individual, in cultural traditions and values, and in social roles and organizations, particularly with regard to contemporary America. Not offered in 2007-08.

40. Contemporary Issues: The AIDS Epidemic (4)
Using current information, this course will deal with the worldwide spread of AIDS, particularly into communities, colleges, and universities. Discussion topics: origin, infection, biology, clinical expression, risks, vaccines, epidemiology, and the social, ethical, economic, and legal aspects of this epidemic. Not offered in 2007-08.

50. Information and Academic Libraries (2)
An introduction to research strategies directed at satisfying the information needs of the student using the academic library, with emphasis on the UCSD library system. Library techniques will be acquired through lectures and discussion, problem sets, and a term project. Students will learn to extend these techniques to independent research. Not offered in 2007-08.

UPPER-DIVISION
136. The Anthropology of Medicine (4)
(Same as ANGN 128.) Theoretical approaches to and cross-cultural analyses of the role of the medical profession, the sick and the healers, and culture as communication in the medical event. The theoretical anthropological aspects of medical practice and medical research will include a consideration of the “Great Traditions” of medicine as well as primitive and peasant systems. Western medicine will be considered in the foregoing framework, with issues of contemporary concern by way of introduction. Prerequisite: upper-division standing. Not offered in 2007-08.

195. Discussion Leading in Contemporary Issues (4)
Students will lead groups of ten to twenty students in discussions of contemporary concern. Students will meet with the professor to plan and prepare for their discussions to be held weekly. Students will also consult with another faculty member specializing in their topics for further check on reading materials and course of discussion. (P/NP grades only.) Prerequisites: Contemporary Issues 196 and consent of the director of Interdisciplinary Sequences. Not offered in 2007-08.

196. Contemporary Issues Workshop (2)
A workshop for potential discussion leaders in the Contemporary Issues Program. Students will investigate topics for discussion and methods of presentation and inquiry. Participating in the workshop does not guarantee selection as discussion leader. (P/NP grades only.) Not offered in 2007-08.

198. Group Studies in Contemporary Issues (4)
Group studies, readings, projects, and discussions in areas of contemporary concern. Course is set up so that students may work together as a group with a professor in an area of contemporary concern whereby the group emphasis would be more beneficial and constructive than individual special studies. Prerequisite: consent of instructor. (P/NP grades only.)

500. Apprentice Teaching in Contemporary Issues (4)
A course in which teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty; handling of discussions, preparation and grading of examinations and other written exercises, and student relations. Prerequisite: graduate standing.

Critical Gender Studies
OFFICE: 2073 Humanities & Social Sciences Building, Muir College, (858) 534-3589
http://muir.ucsd.edu/cgs/
Director
Martha Lampland, Ph.D., Sociology

Affiliated Faculty
Professors
Maria Charles, Ph.D., Sociology
R. Michael Davidson, Ph.D., Literature
Zeinabu Davis, M.F.A., Communication
Page du Bois, Ph.D., Literature
Yen Espiritu, Ph.D., Ethnic Studies
Deborah Hertz, Ph.D., History
Jorge Huerta, Ph.D., Theatre and Dance
Judith Hughes, Ph.D, History
Christine F. Hunefeldt, Ph.D., History
Bennetta Jules-Rosette, Ph.D., Sociology
Rebecca Klatch, Ph.D., Sociology
Todd Kontje, Ph.D., Literature
Lisa Lowe, Ph.D., Literature
Babette Magoite, Ph.D., Visual Arts
Louis Montrose, Ph.D., Literature
Eileen Myles, B.A., Literature
Carol Padden, Ph.D., Communication
Jann Pasler, Ph.D., Music
Carol Plantamura, M.F.A., Music
Roddey Reid, Ph.D., Literature
Rosauro Sánchez, Ph.D., Literature
Shirley Strum, Ph.D., Anthropology
Ana Celia Zentella, Ph.D., Ethnic Studies
Omelbane Zhiri, Ph.D., Literature

Associate Professors
Patrick Anderson, Ph.D., Communication
Suzanne Brenner, Ph.D., Anthropology
Nancy Caciola, Ph.D., History
Lisa Cartwright, Ph.D., Communication
Ann Craig, Ph.D., Political Science
Steven Epstein, Ph.D., Sociology
Nadine George-Groves, Ph.D., Theatre and Dance
Rosemary George, Ph.D., Literature
Christine R. Harris, Ph.D., Psychology
Valerie Hartouni, Ph.D., Communication
Stephanie Jed, Ph.D., Literature
Nicole King, Ph.D., Literature
Rachel Klein, Ph.D., History
Martha Lampland, Ph.D., Sociology
Mary Blair-Loy, Ph.D., Sociology
Michael Meranze, Ph.D., History
Naomi Oreskes, Ph.D., History
David Pellow, Ph.D., Ethnic Studies
Pamela Radcliff, Ph.D., History
Jane Rhodes, Ph.D., Ethnic Studies
David Serlin, Ph.D., Communication
Nayan Shah, Ph.D., History
Kathryn Shevelow, Ph.D., Literature
Susan Smith, Ph.D., Visual Arts
Shelley Streeby, Ph.D., Literature

Critical Gender Studies________________
Critical Gender Studies

The UCSD Critical Gender Studies Program is an interdisciplinary academic program offering students the opportunity to study gender, race, class, sexuality, and nationalism as intersecting categories of analysis and experience. Some basic questions that anchor the program's core curriculum include asking how these categories become institutionalized and yet change over time? How do they work together to shape individual identity?; contribute to the organization of social life?; become essential to the production of many different kinds of knowledge about that life?

The program's core curriculum builds upon feminist scholarship of the last decade, incorporating the new interdisciplinary agendas, intellectual debates, changing methodological practices, and major scholarly shifts that have reshaped the field of women's studies. Informed by the insights of critical race feminism, feminist critiques of conventional domains of knowledge, and gay and lesbian inquiries challenging traditional understandings and assumptions about sexuality, this new core curriculum is designed to move students beyond simple binary descriptions and contemporary, popularized accounts of gender. Instead, gender is analyzed in the full complexity of its construction over time and in a variety of cultural, scholarly, and global arenas.

Students can expect to encounter a rich spectrum of approaches in studying these complex constructions—the majority of a student's advanced work in the program consists of upper division courses from history, communication, literature, ethnic studies, sociology, anthropology, philosophy, and political science. However, despite their important differences, what these approaches share is a critical stance with respect to the subject of gender. This stance, reflected in the program's name "Critical Gender Studies," refuses easy answers when exploring the social relations of gender and reaches, instead, for detailed accounts of the intricacies and paradoxes of power through which these relations are and have been made and maintained.

Critical gender studies prepares undergraduates for a variety of careers through the study of social, political, economic, historical, and cultural contexts. For example, the interdisciplinary and multi-disciplinary course work that students complete as part of a major in critical gender studies provides an excellent foundation for those students with career aspirations in law, medicine and health sciences, public administration, and social services. Students wishing to pursue doctoral work will also find that interdisciplinary training in critical gender studies equips them with theoretical and methodological strengths in most disciplines and applied research fields. Specialists in gender studies are increasingly being used as consultants in industry, higher education, insurance companies, and personnel firms. State and federal government agencies require people who have special training in analyzing gender relations. Finally, educational institutions need specialists to develop and administer women's centers and gay and lesbian centers as well as other institutional structures and programs.

The Critical Gender Studies Program offers two options of study: an undergraduate major and an undergraduate minor (or program of concentration). To declare a major, a department stamp is required. Because critical gender studies is an interdisciplinary major, it is important to work closely with a faculty advisor in the planning of your program.

Preparation for the Major and Minor

All critical gender studies majors and minors are required to take the Introduction to Critical Gender Studies sequence: Critical Gender Studies 2A-B, 100, and 101.

Major Program

Students are required to concentrate in one of five cluster areas: culture and representation; sexualities; work, migration, and globalization; science, technology, and medicine; history, society, and inequalities. Concentrating in a cluster area entails taking five upper-division courses (twenty units) in that area. To complete the major, students are required to complete five additional upper-division courses (twenty units) in cluster areas outside their chosen area of concentration. At least one of the five upper-division courses a student takes outside their chosen area of concentration must be selected from the program's upper-division course list.

Quarterly Course List

When the UCSD Schedule of Classes for an upcoming quarter goes online, the Critical Gender Studies (CGS) Program makes available a list of that quarter's proposed CGS courses. The list also includes gender- and sexuality-based upper-division courses offered by departments and programs throughout the campus. The quarterly list may be found at the CGS Web site, and paper copies are provided at the CGS office. The list identifies the cluster(s) for which departmental courses will work in a given quarter; it also indicates whether a departmental course is considered applicable or petitionable to the major or minor.

CONCENTRATION IN CULTURE AND REPRESENTATION

Group A. Five upper-division courses (twenty units) in the culture and representation cluster area from the critical gender studies approved course list.

Group B. Five upper-division courses (twenty units) in cluster areas other than cul-
ture and representation to be selected from the critical gender studies approved and petitionable course list. At least one of these courses must be chosen from Critical Gender Studies 102-103-104. All five courses may be chosen from Critical Gender Studies 102-103-104 (i.e., each course may be repeated once, provided the course content is different). A maximum of three courses (twelve units) may be selected in any one cluster area.

CONCENTRATION IN SEXUALITIES

Group A. Five upper-division courses (twenty units) in the sexualities cluster area, from the critical gender studies approved course list.

Group B. Five upper-division courses (twenty units) in cluster areas other than sexualities to be selected from the critical gender studies approved and petitionable course list. At least one of these courses must be chosen from Critical Gender Studies 102-103-104. All five courses may be chosen from Critical Gender Studies 102-103-104 (i.e., each course may be repeated once, provided the course content is different). A maximum of three courses (twelve units) may be selected in any one cluster area.

CONCENTRATION IN WORK, MIGRATION, AND GLOBALIZATION

Group A. Five upper-division courses (twenty units) in the work, migration, and globalization cluster area, from the critical gender studies approved course list.

Group B. Five upper-division courses (twenty units) in cluster areas other than work, migration, and globalization to be selected from the critical gender studies approved and petitionable course list. At least one of these courses must be chosen from Critical Gender Studies 102-103-104. All five courses may be chosen from Critical Gender Studies 102-103-104 (i.e., each course may be repeated once, provided the course content is different). A maximum of three courses (twelve units) may be selected in any one cluster area.

CONCENTRATION IN SCIENCE, TECHNOLOGY, AND MEDICINE

Group A. Five upper-division courses (twenty units) in the science, technology, and medicine cluster area, from the critical gender studies approved course list.

Group B. Five upper-division courses (twenty units) in cluster areas other than science, technology, and medicine to be selected from the critical gender studies approved and petitionable course list. At least one of these courses must be chosen from Critical Gender Studies 102-103-104. All five courses may be chosen from Critical Gender Studies 102-103-104 (i.e., each course may be repeated once, provided the course content is different). A maximum of three courses (twelve units) may be selected in any one cluster area.

CONCENTRATION IN HISTORY, SOCIETY, AND INEQUALITIES

Group A. Five upper-division courses (twenty units) in the history, society, and inequalities cluster area, from the critical gender studies approved course list.

Group B. Five upper-division courses (twenty units) in cluster areas other than history, society, and inequalities to be selected from the critical gender studies approved and petitionable course list. At least one of these courses must be chosen from Critical Gender Studies 102-103-104. All five courses may be chosen from Critical Gender Studies 102-103-104 (i.e., each course may be repeated once, provided the course content is different). A maximum of three courses (twelve units) may be selected in any one cluster area.

Honors Program

The Critical Gender Studies Honors Program allows advanced critical gender studies majors to pursue individual projects in the context of collective intellectual exchange with their peers and advising faculty. Students are eligible if they a) have senior standing at the time they begin the program, b) are approved by the critical gender studies faculty director and steering committee. Normally, students eligible for honors will have a 3.5 grade-point average in upper-division courses taken for the major, but highly motivated students who do not meet this criterion may be admitted to the program at the discretion of the director and the critical gender studies steering committee.

In the fall quarter of their senior year, students take the Honors Seminar (CGS 190), taught by a member of the critical gender studies faculty. The first half of the quarter is devoted to intensive analysis and discussion of recent publications in the fields of gender and sexuality. During the second half of the quarter, each student develops a short thesis proposal and presents it for group discussion. While taking the Honors Seminar, each student also registers for CGS 196A: Honors Research, four units of independent study with a faculty member associated with critical gender studies. With the guidance of this advisor, the student carries out background research for the thesis prospectus and selects a thesis director. In the winter quarter, students complete the thesis under the supervision of their thesis director in the Honors Thesis course, CGS 196B.

Students who complete the thesis with a grade of B+ or above and make an oral presentation have the words “with distinction” added to the notation of the major on their diplomas and transcripts.

Double Major in Critical Gender Studies and Another Department or Program

Students who wish to major both in critical gender studies and in another department or program must fulfill all requirements for the critical gender studies major as described above. Students must submit a double major petition for approval by the participating departments and the student’s college advising office. Critical gender studies will accept up to two upper-division courses which overlap requirements for the two majors.

CRITICAL GENDER STUDIES MAJOR COURSE CHECKLIST

During advising sessions with the critical gender studies faculty director or staff, critical gender studies majors make use of a checklist to determine how courses already taken fulfill the major’s requirements. An example of the checklist may be found at the CGS Web site.

Minor Program (and Program of Concentration)

Critical gender studies minors are required to complete: Critical Gender Studies 2A-8, 100, and 101 and three additional upper-division courses (twelve units) applicable to the critical gender studies major and minor. Students who declare the critical gender studies minor (or program of concentration) with junior or senior standing may petition to substitute an upper-division critical gender studies course or a departmental elective course of comparable content for Critical Gender Studies 2A or 2B. Critical gender studies permits one lower-division course and one upper-division course to be taken P/NP. College grading options
vary. Please consult college academic advisors and critical gender studies advisors.

Special Studies, Internships, and Grade Options

Many critical gender studies majors and minors elect to do gender research under the rubrics of Directed Group Study (198), Independent Study (199), internships, and mentor programs. Because these courses can be taken only with a P/NP grade option, the number of such courses to be applied to the major should be carefully discussed with a critical gender studies advisor. Some graduate and professional schools will consider it easier to evaluate a student's transcript if there are more letter grades. College guidelines and requirements for grade options also vary. Please see college academic advisors and critical gender studies advisors.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

LOWER-DIVISION

CGS 2A. Introduction to Critical Gender Studies: Social Movements (4)
The role of social movements in contesting rights and representation in comparative and historical contexts. Historical examples in the U.S. and other locations including: civil rights, men's movements, antiracist feminism, women's movements, AIDS activism, transgender rights, and the labor movement in the U.S.

CGS 2B. Introduction to Critical Gender Studies: Gender and Institutions (4)
This course examines how gender organizes and is organized by institutions. Domains of inquiry may include family, education, medicine, technology, law, media, the workplace, immigration, and citizenship.

CGS 87. Critical Gender Studies Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small-seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

UPPER-DIVISION

CGS 100. Conceptualizing Gender: Theories and Methods (4)
This course will compare the uses of gender as a category of analysis across academic disciplines in the Humanities, Social Sciences, and Natural Sciences with particular attention to research methodologies.

CGS 101. Gender, Modernity, and Globalization (4)
The global effects of modernity, modernization, and globalization on men and women. Topics: international consumer culture; international divisions of labor; construction of sexuality and gender within global movements; the migrations of people, capital, and culture. Prerequisite: upper-division standing or consent of instructor.

CGS 102. Selected Topics in Critical Gender Studies (4)
An interdisciplinary course focusing on one of a variety of topics in gender studies, such as gender and science, the body, reproductive technologies, public policy. May be taken for credit three times when topics vary. Prerequisite: upper-division standing or consent of instructor.

CGS 103. Feminist Theory (4)
An interdisciplinary course in feminist theory. Topics may range from a general survey of feminist theory in a variety of disciplines to a more focused interdisciplinary theoretical topic such as postmodernism and feminism. May be taken for credit three times when topics vary. Prerequisite: upper-division standing or consent of instructor.

CGS 104. Advanced Topics in Comparative Perspectives (4)
Focuses on the relationship between gender and culture from a multiplicity of perspectives. Possible topics could include gender and ethnicity, gender across class, and other topics to be examined in a cross-cultural framework. May be taken for credit two times when topics vary. Prerequisite: upper-division standing or consent of instructor.

CGS 105. Queer Theory (4)
Examines the different methodologies and disciplinary histories that together constitute the interdisciplinary project called queer studies. Of particular interest will be how these different methodologies and history construe and construct the relations between gender, race, class, and nation. Prerequisite: upper-division standing or consent of instructor.

CGS 106. Gender Equality and the Law (4)
Explores the legal treatment of discrimination on the basis of gender, including equal protection doctrine and some statutory law such as Title VII. Topics include the meaning of gender equality in such areas as single-sex education, military service, sexual harassment, discrimination on the basis of pregnancy, and other current issues. Prerequisite: upper-division standing or consent of instructor.

CGS 107. Gender and Reproductive Rights (4)
Legal treatment of gender, reproductive rights, and the family, particularly as evolving law, primarily in the U.S., has created conflicting rights, roles, and responsibilities. Topics include abortion, fetal rights, surrogacy, marriage, and child custody issues. Prerequisite: upper-division standing or consent of instructor.

CGS 109B. Gender and Information Technology (4)
Explores how gender and racialized gender affect and are affected by information technology. Through the use of feminist and race-critical approaches, the course examines the impact of information technology on workplaces, the family, gender identity, and the environment. Prerequisite: upper-division standing or consent of instructor.

CGS 110. Gender and the Body (4)
Various approaches to the study of gendered bodies. Possible topics include masculinities/femininities; lifecycles; biology, culture, and identity; medical discourses and health issues. May be taken for credit three times when topics vary. Prerequisite: upper-division standing or consent of instructor.

CGS 112. Sexuality and Nation (4)
(Cross-listed with ETHN 127.) This course explores the nexus of sex, race, ethnicity, gender, and nation and considers their influence on identity, sexuality, migration, movement and borders, and other social, cultural, and political issues that these constructs affect. Prerequisite: upper-division standing or consent of instructor.

CGS 113. Gender and Sexuality in the Arts (4)
Examines gender and sexuality in artistic practices: music, theater, dance, performance, visual arts and new media. Topics may include study of specific artists, historical moments, genres, cross-cultural analyses and multi-culturalism. May be taken three times when topics vary. Prerequisite: upper-division standing or consent of instructor.

CGS 190. Honors Seminar (4)
Interdisciplinary readings in feminist theory and research methodology to prepare students for writing an honors thesis. Open to Critical Gender Studies majors who have been admitted to Critical Gender Studies Honors Program. May be applied toward primary concentration in Critical Gender Studies major. Prerequisites: admission to Critical Gender Studies Honors Program and department stamp required.

CGS 192: Senior Seminar in Critical Gender Studies (1)
The senior seminar is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in Critical Gender Studies (at the upper-division level). Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times with a change in topic and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: upper-division standing, department stamp and/or consent of instructor.

CGS 196A. Critical Gender Studies Honors Research (4)
A program of independent study guiding candidates for Critical Gender Studies honors to develop, in consultation with an advisor, a preliminary proposal for the honors thesis. An IP grade will be awarded at the end of this quarter. A final grade for both quarters will be given upon completion of Critical Gender Studies 196B. Prerequisites: consent of instructor and department stamp required.

CGS 196B. Honors Thesis (4)
Honors research and writing for students who have completed Critical Gender Studies 190 and 196A. A letter grade for both Critical Gender Studies 196A and 196B will be given at the completion of this quarter. Prerequisites: consent of instructor and department stamp required.

CGS 198. Directed Group Study (4)
Directed group study on a topic not generally included in the Critical Gender Studies curriculum. Prerequisites: consent of instructor and director of Critical Gender Studies Program and department stamp required.

CGS 199. Independent Study (4)
Tutorial; independent study on a topic not generally included in the curriculum. Prerequisites: consent of
instructor and director of Critical Gender Studies Program and department stamp required.

CGS 500. Apprentice Teaching in Critical Gender Studies (4) Consideration of pedagogical methods appropriate to undergraduate teaching in Critical Gender Studies courses under supervision of instructor of course. Instructor will define apprentice’s responsibilities in preparing class presentations, directing student discussions, evaluating and grading students’ work, and maintaining productive association with students.

APPLICABLE AND PETITIONABLE COURSES

Departmental courses available to CGS majors and minors fall into two categories. Applicable courses are those approved as always applicable to the CGS major and minor. Petitionable courses are either new and therefore not yet approved as applicable or are "topics" courses that focus on gender only in particular quarters. Petitionable courses may be approved by petition to the major/minor during the quarters in which they appear in the CGS quarterly lists.

QUARTERLY LISTS

Each quarter, when the upcoming quarter’s Schedule of Classes is published, the Critical Gender Studies quarterly list is available in the CGS office and at the Web site. It is an important, comprehensive source of information about CGS course offerings as well as those from departments throughout the campus. It identifies by cluster areas both applicable as well as petitionable courses for a given quarter. For reference, the office and the Web site maintain archives of quarterly lists.

CRITICAL GENDER STUDIES CLUSTER AREAS

(Note: Only applicable courses are listed here. For petitionable courses, please see the quarterly lists mentioned above.)

1. Culture and Representation:

ANGN 125. Gender, Sexuality, and Society
COCU 132. Gender and Media
COCU 137. Politics of Bodies
COCU 138. Feminist Theory
COCU 139. Reproductive Discourse and Gender
ETHN 165. Sex and Gender in African American Communities
ETHN 183. Gender, Race, Ethnicity and Class
HIEA 125. Women and Gender in East Asia
HIEA 137. Women and Family in Chinese History
HIEA 162/262. History of Women in China
HIEU 133. Gender in Antiquity and the Early Medieval Mediterranean
HIEU 147. The History of Women in Europe: Middle Ages to the Early Modern Era
HIEU 148. European Women: The Enlightenment to the Victorian Era
HIEU 149. History of Women in Europe: 1870 to Present
HIEU 180. Topics in European Women's History
HILA 117. Indians, Blacks, and Whites: Family Relations in Latin America
HILA 164/264. Women's Work and Family Life in Latin America
HIS 167/267. Gender and Science
HIUS 130. Cultural History from 1607 to the Civil War
HIUS 131. Cultural History from the Civil War to the Present
HIUS 156. American Women, American Womanhood
HIUS 157. American Women, American Womanhood 1870 to Present
HIUS 176. Race and Sexual Politics
LIGN 174. (SOC/B 118A) Gender and Language in Society
LTCS 130. Gender, Race/Ethnicity, Class and Culture
LTCS 135. Interdisciplinary Approaches to Lesbian, Gay, Bisexual, and Transgendered Studies
LTER 143. Gender and Sexuality in Korean Literature and Culture
LTEN 120E. Women in the Eighteenth Century
LTEN 146. Women and English/American Literature
LTEN 150. Gender, Text, and Culture
LTEN 185. Themes in African American Literature
LTEU 102. Women in Antiquity (was LTGN 101)
LTEU 147. Women in Italy
LTWL 155. Gender Studies (was LTGN 189)
LTWL 160. Women and Literature (was LTGN 187)
MUSIC 115. Women in Music
PHIL 169. Feminism and Philosophy
POLI 116A. Feminist Theory
SOC/B 118. Sociology of Gender and Roles
SOC/B 118A. (Crosslisted with LIGN 174) Gender and Language in Society
SOC/B 119. Sociology of Sexuality and Sexual Identities
SOC/B 130. Interdisciplinary Approaches to Lesbian, Gay, Bisexual, and Transgendered Studies
SOC/C 129. The Family
VIS 121C. Art and Gender

2. Sexualities

ANGN 125. Gender, Sexuality, and Society
COCU 137. Politics of Bodies
COCU 138. Feminist Theory
COCU 139. Reproductive Discourse and Gender
ETHN 165. Sex and Gender in African American Communities
HIEU 133. Gender in Antiquity and the Early Medieval Mediterranean
HIEU 176. Race and Sexual Politics

3. Work, Migration, and Globalization

ANGN 125. Gender, Sexuality, and Society
COCU 138. Feminist Theory
HIEA 125. Women and Gender in East Asia
HIEA 137. Women and Family in Chinese History
HIEA 162/262. History of Women in China
HILA 161. History of Women in Latin America
HILA 164/264. Women's Work and Family Life in Latin America
HITO 106. Love and Family in the Jewish Past
LTCS 130. Gender, Race/Ethnicity, Class and Culture
SOC/C 132. Gender and Work
SOC/C 139. Social Inequality: Class, Race, and Gender

4. Science, Technology, Medicine

COCU 137. Politics of Bodies
COCU 138. Feminist Theory
COCU 139. Reproductive Discourse and Gender
HISC 103. Gender and Science in Historical Perspective
HISC 167/267. Gender and Science
PSYCH 147. Gender

5. History, Society, and Inequalities

ANGN 125. Gender, Sexuality, and Society
COCU 137. Politics of Bodies
COCU 138. Feminist Theory
ETHN 165. Sex and Gender in African American Communities
ETHN 183. Gender, Race, Ethnicity and Class
HIEA 125. Women and Gender of East Asia
HIEA 137. Women and Family in Chinese History
HIEA 162/262. History of Women in China
HIEU 133. Gender in Antiquity and the Early Medieval Mediterranean
HIEU 147. History of Women in Europe: Middle Ages to Early Modern Era
students to explore the ways in which human beings have come to express and shape themselves and their world through their own creations. The core sequence takes an interdisciplinary, integrated approach to the college theme, with students examining a series of problems and issues from multiple perspectives. These issues center on how culture, art, and technology have developed over time in different societies, how they interact with each other, how human beings have used them to address challenges and how their uses have generated fresh challenges by reshaping people’s relationships to each other and to their environment. The sequence spans the whole range of human experience, from the prehistoric through the present, ending with a consideration of future possibilities.

The college writing program is imbedded in the core sequence, with writing-intensive quarters in CAT 2 and CAT 3. Students learn to use writing to probe and experiment with new ideas as well as to express themselves clearly and effectively to others in their own voices. The core sequence provides students with instruction and multiple opportunities for practice so they may develop a repertoire of strategies and tools for communication.

Students in CAT learn through a combination of lectures, discussions, questions, readings, guest speakers, hands-on activities, writing assignments, and multimedia projects. Sixth College offers a learning environment that extends beyond the classroom and emphasizes group emphasis where group emphasis would be limited to fifteen to twenty students with preference given to entering freshmen.

The freshman seminar program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students with preference given to entering freshmen. Prerequisites: none.

CAT 97. Culture, Art, and Technology Lower-Division Internship (2 or 4) Course designated for lower-division Sixth College students to have the opportunity to work on a community-based or industry-based project supervised by a faculty member and community or industry mentor. Prerequisites: lower-division standing and cumulative GPA of 3.0.

CAT 98. Culture, Art, and Technology Lower-Division Group Study (2 or 4) Course designated for lower-division Sixth College students to have the opportunity to work together as a group or team on a project supervised by a faculty member in a specific department, not included in a regular curriculum, where group emphasis would be more beneficial and constructive then individual special studies. Prerequisites: lower-division standing and cumulative GPA of 3.0.
CAT 99. Culture, Art, and Technology Lower-Division Independent Research (2 or 4)
Course designated for lower-division Sixth College students to have the opportunity to work on a research project supervised by a faculty member in a specific department, where the subject of the project cannot be represented by the academic department or faculty member. Prerequisites: lower-division standing and cumulative GPA of 3.0.

UPPER-DIVISION

CAT 124. Sixth College Practicum (4)
Students initiate, plan, and carry out community-based and/or research-based projects that connect classroom-based experiences and knowledge to the outlying community, and that explicitly explore the interplay of culture, art, and technology. Prerequisites: upper-division standing and consent of instructor.

CAT 125. Sixth Practicum Writing (4)
Writing to report and reflect on the practicum experience. Students will link general education to practicum projects, practice communicating with people of various constituencies; use writing as a tool for mediating culture and for understanding self in relation to community. Prerequisites: upper-division standing, completion of CAT 1, 2, and 3 or (for transfer students) completion of general-education requirements, including lower-division writing requirement. Completion of the Practicum course/project. CAT 125 should be taken within one quarter of completion of the practicum project (CAT 124).

CAT 192. Senior Seminar in Culture, Art, and Technology (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in Culture, Art, and Technology (at the upper-division level). Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times with a change in topic and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: upper-division standing; departmental stamp and/or consent of instructor.

CAT 195. Apprentice Teaching (4)
Undergraduate instructional assistance. Responsibilities in areas of learning and instruction. May collect course material and assist with course projects, digital workshops, and collection, organization and analysis of formative assessment data. Prerequisites: upper-division standing; 3.0 cumulative GPA; consent of instructor.

CAT 197. Culture, Art, and Technology Field Studies (4)
Supervised community-based or industry-based field work. Designated for Sixth College students to have the opportunity to work on a community-based or industry-based project supervised by a faculty member and community or industry mentor, where the subject/content of the project cannot be represented by a specific academic department. Students will submit written evaluations each week of their ongoing field study. Prerequisites: upper-division standing, completion of CAT 1, 2, and 3 or (for transfer students) completion of general-education requirements, including lower-division writing requirement.

CAT 198. Culture, Art, and Technology Directed Group Studies (4)
Directed group studies or, in group, field studies of a creative project. Designated for Sixth College students to have the opportunity to work together as a group or team on a project supervised by a faculty member in a specific department, not included in a regular curriculum, where group emphasis would be more beneficial and constructive than individual special studies. Prerequisites: upper-division standing, completion of CAT 1, 2, and 3 or (for transfer students) completion of general-education requirements, including lower-division writing requirement.

CAT 199. Culture, Art, and Technology Independent Studies (4)
Individual independent research or creative project. Designated for Sixth College students to have the opportunity to work on a project supervised by a faculty member in a specific department, where the subject or content of the project cannot be represented by the academic department of the faculty member. Prerequisites: upper-division standing, completion of CAT 1, 2, and 3 or (for transfer students) completion of general-education requirements, including lower-division writing requirement.

Dimensions of Culture

OFFICE: 132 Sequoyah Hall, Marshall College
http://doc-tmc.ucsd.edu

Program Director
Abraham Shragge, Ph.D.

Assistant Program Director
Pamela S. Wright, Ph.D.

The Dimensions of Culture program (DOC) is a multidisciplinary, issues-oriented, writing-intensive three-quarter social science and humanities sequence required of all first-year students at Thurgood Marshall College. Successful completion of the DOC sequence satisfies the University of California writing requirement.

DOC’s course content closely identifies with the educational philosophy and goals of Thurgood Marshall College, in particular its concerns for social justice, the history and cultural experience of minorities and otherwise under-represented groups, and the development of intelligent citizenship. Central to the course objective is the question of how scholars move from knowledge to action.

Offered each fall, DOC 1, “Diversity,” introduces students to basic distinctions in academic inquiry about systematic social differences among human individuals and groups. The aim is to convey a range of stratifications that shape our human attachments to self, work, community, and nation; in short, a descriptive sociology of our differences as they intersect along lines of race, ethnicity, class, gender, religion, and ability—themes that DOC 2 and DOC 3 will revisit from different academic perspectives.

DOC 2, “Justice,” offered each winter quarter, introduces students to fundamental concepts in political and social theory and moral philosophy, presenting them in concrete historical and contemporary social contexts. The course provides special focus on political and constitutional implications of American diversity and pluralistic society. Course readings include numerous original sources, especially Supreme Court opinions, as well as pieces drawn from the rich field of American history.

DOC 3, “Imagination,” presented each spring, investigates the ways in which these same publicly significant social differences examined in DOC 1 and DOC 2 have been imagined and reimagined in a wide variety of cultural productions since the World War II era. In particular, they will examine how primary texts such as films, television, short stories, poetry, music, technology, journalism, and advertisements imaginatively represent public tensions in the U.S. as they have emerged and changed over time.

Perhaps unique among the UCSD college programs, DOC also provides its students with a full menu of academic and cultural enrichment opportunities, which have included visits to the Veterans Museum in Balboa Park to learn the rudiments of oral history with a group of former prisoners of war; meeting Pulitzer Prize-winning journalists in an intimate setting; attending talks given by a MacArthur fellow and a former prime minister of Norway and Director General of the World Health Organization; participating in a DOC Film Festival; and attending the premier of a play commissioned by the Thurgood Marshall Institute.

To enroll in DOC 2 or 3, students must satisfy the UC Entry Level Writing requirement, formerly called the Subject A requirement. Transfer students should also see their college academic advisor regarding the appropriate course requirements.

For further details on Marshall College requirements, see “Marshall College, General-Education Requirements.”
COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

LOWER-DIVISION

1. Dimensions of Culture: Diversity (4)
This course focuses on sociocultural diversity in examining class, ethnicity, race, gender, and sexuality as significant markers of differences among persons. Emphasizing American society, it explores the cultural understandings of diversity and its economic, moral, and political consequences. Three hours of lecture, one hour of discussion. Open to Marshall College students only. (Letter grade only.) (F)

2. Dimensions of Culture: Justice (6)
This course considers the nature of justice in philosophical, historical, and legal terms. Topics include racial justice, political representation, economic justice, gender and justice, the rights of cultural minorities, and crime and punishment. The course offers intensive instruction in writing university-level expository prose. Three hours of lecture, two hours of discussion and writing instruction. Open to Marshall College students only. (Letter grade only.) Prerequisite: completion of UC Entry Level Writing requirement. (W)

3. Dimensions of Culture: Imagination (6)
Using the arts, this course examines the evolution of pluralistic culture to the modern period. There is a special emphasis on the interdisciplinary study of twentieth-century American culture, including music, literature, art, film, and photography. The course offers intensive instruction in writing university-level expository prose. Three hours of lecture, two hours of discussion and writing instruction. Open to Marshall College students only. (Letter grade only.) Prerequisite: completion of UC Entry Level Writing requirement. (S)

Economics

ECONOMICS STUDENT SERVICES:
245 Sequoyah Hall
http://www.econ.ucsd.edu

Professors
James Andreoni, Ph.D.
Richard E. Attiyeh, Ph.D.
Donald V. T. Bear, Ph.D., Emeritus
Julian Betts, Ph.D., Vice Chair, Graduate Studies
Richard T. Carson, Ph.D.
John Conlisk, Ph.D., Emeritus
Vincent P. Crawford, Ph.D.
Graham Elliott, Ph.D.
Roger H. Gordon, Ph.D.
Theodore Groves, Ph.D.
James D. Hamilton, Ph.D.
Gordon Hanson, Ph.D.
Mark J. Machina, Ph.D.
Ramachandra Ramanathan, Ph.D., Emeritus
Garey Ramey, Ph.D.
Valerie A. Ramey, Ph.D.
James E. Rauch, Ph.D.
Joel Sobel, Ph.D.
Ross M. Starr, Ph.D.
Allan Timmermann, Ph.D.
Joel Watson, Ph.D., Chair
Halbert L. White, Ph.D.
Michelle J. White, Ph.D.

Research Professors
Robert F. Engle, Ph.D.
Clive W.J. Granger, Ph.D.
Harry M. Markowitz, Ph.D.

Associate Professors
Eli Berman, Ph.D.
Julie Berry Cullen, Ph.D.
Marjorie Flavin, Ph.D.
Dennis E. Smallwood, Ph.D., Emeritus

Assistant Professors
Arnaud Costinot, Ph.D.
Gordon Dahl, Ph.D.
Nora E. Gordon, Ph.D.
Silke Januszewski Forbes, Ph.D.
Nalin Kartik, Ph.D.
David A. Miller, Ph.D.
Ivana Komunjic, Ph.D.
Marc A. Muendler, Ph.D.
Michael D. Noel, Ph.D.
Yixiao Sun, Ph.D.
Irina Telyukova, Ph.D.

Adjunct Professor
Dale Squires, Ph.D. (NMFS)

Associated Faculty
Takeo Hoshi, Ph.D. (Professor, IR/PS)
Alex Kane, Ph.D. (Professor, IR/PS)
Bruce Lehmann, Ph.D. (Professor, IR/PS)
Dimitrus Politis, Ph.D. (Professor, Mathematics)

Christopher Woodruff, Ph.D. (Professor, IR/PS)

Lecturer with Security of Employment
Kate Antonovics, Ph.D.

Lecturer with Potential Security of Employment
Melissa Famulari, Ph.D., Vice Chair, Undergraduate Studies

Introduction

Economics is the study of how individuals, organizations, and societies deal with scarcity—the fact that resources are not sufficient to satisfy everyone’s wants. Because scarcity requires choice among alternative uses of resources, economists study both the technology by which resources are turned into the products people want and the preferences through which people choose among alternatives. Further, since society is composed of many individuals and groups, economists study markets, governments, and other institutions through which a society might gain the advantages of cooperation and resolve the conflicts due to competing goals. The economics curriculum develops tools and uses them to analyze a wide range of societal problems, and also to study the role of the government in solving these problems.

Economics is a different discipline from business administration. However, there are substantial overlaps. Both disciplines study the behavior of people and firms within the context of market, legal, and other institutions. In evaluating economic institutions, economists tend to emphasize the viewpoint of the larger society, and business scholars tend to emphasize the viewpoint of firms. A more complete discussion is available in the department Undergraduate Handbook, which contains a comparison between the economics major at UCSD and a business administration major at UC Berkeley.

The department Undergraduate Handbook is available on the Internet at the department Web site at http://www.econ.ucsd.edu. The handbook contains answers to frequently asked questions, gives practical tips for avoiding problems, and provides a more detailed discussion of the department’s majors than is possible in the general catalog. It is important for students contemplating a major in the department to be familiar with the handbook and the prerequisite requirements.
listed therein. Time-sensitive information, job and internship announcements, and other important information are sent to all declared majors and minors through campus e-mail.

Students interested in the Education Abroad Program (EAP) are encouraged to check out the brochure “Opportunities in Business and Economics” that is available at the EAP office.

Transfer students should see the department Web site at: http://www.econ/ugradprog/transfer.shtml.

The Undergraduate Program

Lower-Division Economic Courses

MICROECONOMICS AND MACROECONOMICS—ECON. 1-2-3

The department offers three lower-division economics classes, ECON 1-2-3. ECON 1 is an introduction to the study of the economic system from the micro, or individual decision maker’s perspective. The focus of ECON 1 is the allocation of resources and the distribution of income in perfectly competitive markets. ECON 2 is a continuation of the study of microeconomics with a focus on the allocation of resources in monopoly and other imperfectly competitive markets, market imperfections, and the role of government in markets. ECON 3 introduces macroeconomics: unemployment, inflation, business cycles, and monetary and fiscal policy. ECON 1 is a prerequisite for both ECON 2 and ECON 3. ECON 2 and ECON 3 can be taken in any order and may be taken concurrently.

Accounting Course

The department offers an accounting course, ECON 4. ECON 4 is a lower-division requirement for the B.S. in management science and the management science minor. ECON 4 is open to students who take no other courses from the department.

Upper-Division Economics Core Courses

The upper-division economics and management science core courses are expected to be offered according to the following academic schedule:

Fall—100A-B-C, 110A, 120A-B-C, 171, 172A, and 173A;
Spring—100A-B-C, 110B, 120A-B-C, 171, 172B, and 173B.

The 100, 110, 120, 172 and 173 core courses are sequential. That is, “A” must be taken before “B” and when applicable “B” before “C”.

Entry to the Majors

Any student in good standing may declare a major in the department by filling out a form at the Office of the Registrar. The major codes are as follows: Economics, EN 25; Management Science, EN 26; and Joint Mathematics-Economics, EN 28.

The Economics Major (B.A.)

The economics B.A. program is designed to provide a broad understanding of resource-allocation and income-determination mechanisms. Both the development of the tools of economic analysis and their application to contemporary problems and public policy are stressed.

When choosing which mathematics series to take, Math. 10A-B-C or Math. 20A-B-C, it is important to remember that only Math. 20A-B-C allows students access to Math. 20F and several upper-division math courses that are recommended as preparation for Ph.D. study in economics and business administration, as well as for graduate studies for professional management degrees, including the MBA. Therefore, while we require economics majors to take Math. 10A-B-C, we recommend that economics students take Math. 20A-B-C.

A student majoring in economics must meet the following requirements:
1. Lower-division mathematics courses. Math. 10A-B-C (required) or Math. 20A-B-C (recommended).
2. Lower-division economics courses. ECON 1 and ECON 3.
3. Upper-division economics core courses: ECON 100A-B-C (microeconomics), ECON 110A-B (macroeconomics), and ECON 120A-B-C (econometrics).
4. Upper-division economics electives. Five more economics courses at the upper-division level. At least two of these elective courses must be "advanced electives." The economics advanced electives are:
 ECON 103: International Monetary Relations
 ECON 104: Economics of Network Industries
 ECON 105: Industrial Organization and Firm Strategy
 ECON 109: Game Theory
 ECON 113: Mathematical Economics
 ECON 119: Law and Economics: Contracts and Corporations
 ECON 121: Applied Econometrics
 ECON 125: Demographic Analysis and Forecasting
 ECON 141: Economics of Health Consumers
 ECON 142: Behavioral Economics
 ECON 143: Experimental Economics
 ECON 147: Economics of Education
 ECON 150: Public Economics: Taxation
 ECON 151: Public Economics: Expenditures I
 ECON 152: Public Economics: Expenditures II
 ECON 155: Political Economics
 ECON 171: Decisions Under Uncertainty
 ECON 172A: Operations Research A
 ECON 172B: Operations Research B
 ECON 173A: Financial Markets
 ECON 173B: Corporate Finance
 ECON 174: Financial Risk Management
 ECON 176: Marketing
 ECON 178: Economic and Business Forecasting

Note that many of these advanced economics electives recommend 100C as a prerequisite for the class. In the fall quarter of 2010, 100C will become a prerequisite for the advanced electives that currently only recommend 100C as a prerequisite. Therefore, economics majors are strongly encouraged to take ECON 100A-B-C and either ECON 110A-B or ECON 120A-B-C in their sophomore year.

The following schedule, though not the only possibility, is a well-constructed one for majoring in economics.

FRESHMAN YEAR
 ECON 1 and ECON 3
 Math. 10A-B-C (required) or Math. 20A-B-C (recommended)

SOPHOMORE YEAR
 ECON 100A-B-C
 ECON 120A-B-C

JUNIOR YEAR
 ECON 110A-B
 Economics Electives
SENIOR YEAR
Economics Electives

The Management Science Major (B.Sc.)

Management science builds on a set of related quantitative methods commonly used to solve problems arising in the private (business and finance) and public (government) sectors. While students will gain some familiarity with the traditional functional fields of business management, this program is more tightly focused and more quantitative than a traditional business administration major. It is not, however, a program in applied mathematics or operational research, since the economic interpretation and application of the tools are continually stressed. Rather, it is a quantitative major in applied economics with a management focus.

A student majoring in management science must meet the following requirements:
1. Lower-division mathematics courses. Math. 20A-B-C and Math. 20F.
2. Lower-division economics courses. ECON 1, ECON 3, and ECON 4.
3. Upper-division economics core courses. ECON 100A-B-C (microeconomics), ECON 120A-B-C (econometrics), ECON 171 (decisions under uncertainty), ECON 172A-B (operations research) and ECON 173A-B (finance).
4. Upper-division economics electives. Four more economics courses at the upper-division level. At least two of these elective courses must be “advanced electives.” The management science advanced electives are:
 - ECON 103: International Monetary Relations
 - ECON 104: Economics of Network Industries
 - ECON 105: Industrial Organization and Firm Strategy
 - ECON 109: Game Theory
 - ECON 113: Mathematical Economics
 - ECON 119: Law and Economics: Contracts and Corporations
 - ECON 121: Applied Econometrics
 - ECON 125: Demographic Analysis and Forecasting

ECON 150: Public Economics: Taxation
ECON 151: Public Economics: Expenditures I
ECON 152: Public Economics: Expenditures II
ECON 155: Political Economics
ECON 174: Financial Risk Management
ECON 176: Marketing
ECON 178: Economic and Business Forecasting

Note that many of these advanced management science electives recommend 100C as a prerequisite for the class. In the fall quarter of 2010, 100C will become a prerequisite for the advanced electives that currently only recommend 100C as a prerequisite. Therefore, management science majors are strongly encouraged to take ECON 100A-B-C and ECON 120A-B-C in their sophomore year. The following schedule, though not the only possibility, is a well-constructed one for a student majoring in management science.

FRESHMAN YEAR
ECON 1 and ECON 3
ECON 4
Math. 20A-B-C

SOPHOMORE YEAR
ECON 100A-B-C
ECON 120A-B-C
Math. 20F

JUNIOR YEAR
ECON 171
ECON 172A-B
ECON 173A-B
Economics Electives

SENIOR YEAR
Economics Electives

Joint Major in Mathematics and Economics (B.A.)

This major is considered to be excellent preparation for the Ph.D. study in economics and business administration, as well as for graduate studies for professional management degrees, including the M.B.A.

Majors in economics generally recognize the importance of mathematics to their discipline. Undergraduate students who plan to pursue doctoral study in economics or business need the more advanced mathematics training prescribed in this major. Majors in mathematics often feel the need for a more formal introduction to issues involving business applications of science and mathematics. Extending their studies into economics provides this application and can provide a bridge to successful careers or advanced study. This major provides a formal framework making it easier to combine study in economics and mathematics.

Course requirements of the joint major in mathematics and economics consist principally of the required courses of the mathematics major and the economics/management science majors:

Lower-Division Requirements:
1. Calculus and Linear Algebra. Math. 20A-B-C-D and 20F
2. Introductory economics. ECON 1 and ECON 3.

Upper-Division Requirements:
Fifteen upper-division courses in mathematics and economics, with a minimum of seven courses from one department and eight from the other department, chosen from the courses listed below (prerequisites are strictly enforced):
2. One of the following:
 a. Applied Linear Algebra. Math. 102
 b. Numerical Linear Algebra. Math.170A
 c. Linear Algebra. Math. 100A-B
3. One of the following:
 a. Foundations of Analysis. Math. 140A
 b. Advanced Calculus. Math. 142A
4. One of the following:
 a. Ordinary Differential Equations. Math. 130A
 b. Foundations of Analysis. Math. 140B
 c. Advanced Calculus. Math. 142B
5. Microeconomics. ECON 100A-B-C
6. Econometrics/Statistics. One of the following:
 a. ECON 120A-B-C
 b. Math. 180A and ECON 120B-C
 c. Math. 180A and 181A and ECON 120C
7. One of the following:
 a. Macroeconomics. ECON 110A-B
 c. Introduction to Operations Research. ECON 172A-B
 d. Decisions Under Uncertainty. ECON 171 and Introduction to Operations Research. ECON 172A.
When choosing across the Math. 140 or the Math. 142 series, it is recommended that students take Math. 142. Other courses which are strongly recommended are: Math. 130B, 131, 181B, 190, and 193A-B and ECON 109, 113, 173A-B, 174, and 178.

Further information may be obtained in the mathematics and economics undergraduate advising offices.

Honors

ECONOMICS MAJORS:

To graduate with the phrase “with distinction” on your diploma, you must complete two additional advanced electives (for a total of seven electives, four of which are advanced). You must also have an upper-division GPA in your major greater than or equal to 3.5. The upper-division major GPA will only include grades for courses taken at universities in the UC system and through EAP.

To graduate with the phrase "with highest distinction" on your diploma, you must complete two additional advanced electives (for a total of seven electives, four of which are advanced), take the honors sections of at least two upper-division courses (ECON 100AH-BH-CH, ECON 110AH-BH, and ECON 120AH-BH-CH), and take the Senior Essay Seminar (ECON 191A-B). You must also have an upper-division GPA in your major greater than or equal to 3.5. The major GPA in your honors sections and ECON 191A-B must be 3.5 or above. Admission to honors sections and ECON 191A-B is by special permission; check with the undergraduate advisors in the Economics Student Services Office. Note that we generally offer A honors sections in the fall, B honors sections in the winter, and the C honors sections in the spring.

MANAGEMENT SCIENCE MAJORS:

To graduate with the phrase “with distinction” on your diploma, you must have an upper-division GPA in your major greater than or equal to 3.5. The upper-division major GPA will only include grades for courses taken at universities in the UC system and through EAP.

To graduate with the phrase "with highest distinction" on your diploma, you must complete the honors sections of at least two upper-division courses (ECON 100AH-BH-CH or ECON 120AH-BH-CH), and take the Senior Essay Seminar (ECON 191A-B). You must also have an upper-division GPA in your major greater than or equal to 3.5. The major GPA in your honors sections and ECON 191A-B must be 3.5 or above. Admission to honors sections and ECON 191A-B is by special permission; check with the undergraduate advisors in the Economics Student Services Office. Note that we generally offer A honors sections in the fall, B honors sections in the winter, and the C honors sections in the spring.

JOINT MATHEMATICS/ECONOMICS MAJORS:

It is possible to earn honors as a joint mathematics/economics major through the mathematics department. For details, please see the mathematics course catalog.

Grade Rules for Majors

All courses used in meeting requirements for a departmental major must be taken on a letter-grade basis, and must be passed with a grade of C- (C minus) or better. These rules apply to lower-division courses, upper-division courses, and to required courses taken from other departments (such as required mathematics courses). Exceptions are ECON 195, ECON 198, and ECON 199, for which P/NP grading is mandatory. No more than twelve units of ECON 195, ECON 198, and ECON 199 taken P/NP may be counted toward a major. Further, no more than eight units of ECON 195 may be counted toward a major.

Economics Department Residency Requirement

To receive a bachelor of arts or bachelor of science degree from the economics department, all students must pass with a C- (C minus) or better at least nine of the required upper-division courses (at least four units each) for the major, taken through the UCSD economics department, while officially enrolled at UCSD, to satisfy the residency requirement.

Advanced Placement Credits

Because no high school economics course provides the kind of background needed for upper-division economics and management science courses, the department is strict on allowance of credits. The policy is as follows: If the AP score is 5, accept AP Micro (AP Macro) as equivalent to ECON 1 (ECON 3) in meeting major or minor requirements. If the score is 3 or 4, the student is required to take ECON 1 (ECON 3) for the major or minor. There is not an advanced placement exam equivalent to ECON 2.

Minors and Programs of Concentration

The economics minor or program of concentration consists of eight courses: introductory microeconomics (ECON 1); microeconomic applications (ECON 2) or ECON 100A; introductory macroeconomics (ECON 3) or ECON 110A; and five additional upper-division economics courses, which are otherwise not restricted.

The management science minor, paralleling the economics minor, consists of nine courses: introductory microeconomics (ECON 1); microeconomic applications (ECON 2) or ECON 100A; introductory macroeconomics (ECON 3) or ECON 110A; financial accounting (ECON 4), and any additional five classes from the following list (Caution: all courses have prerequisites):

- ECON 100A Microeconomics A
- ECON 100B Microeconomics B
- ECON 100C Microeconomics C
- ECON 120A Econometrics A
- ECON 120B Econometrics B
- ECON 120C Econometrics C
- ECON 171 Decisions Under Uncertainty
- ECON 172A Operations Research A
- ECON 172B Operations Research B
- ECON 173A Financial Markets
- ECON 173B Corporate Finance
- ECON 174 Financial Risk Management
- ECON 175 Marketing
- ECON 177 Forecasting

Grades of P/NP are acceptable for minor courses. If courses are taken for a letter grade, passing is considered with a “D” or better. To declare a minor or program of concentration, obtain a minor declaration form, fill it out, and turn it in to Sequoyah Hall 245. Students should check with their colleges regarding area of focus, programs of concentration, and project minors.

The Graduate Program

The department offers a Ph.D. degree in economics, designed to provide a solid, analytically oriented training in microeconomics, macroeconomics, econometrics, and advanced specialties. Since the program is structured as a doctoral program, only students who intend to pursue a doctorate should apply.
The main economics Ph.D. requirements are that a student pass qualifying exams in microeconomics, macroeconomics, econometrics, and select courses of specialization, and prepare an acceptable dissertation.

Detailed descriptions of the Ph.D. program are available on the Internet at the department Web site at http://www.econ.ucsd.edu. Residence and other campus-wide regulations are described in the graduate studies section of this catalog.

Departmental Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of five years. Total university support cannot exceed six years. Total registered time at UCSD cannot exceed seven years. Students will not be permitted to continue beyond the pre-candidacy and total registered time limits. Students will not be permitted to receive UCSD administered financial support beyond the support limit.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

LOWER-DIVISION

1. Principles of Microeconomics (4)
 Introduction to the study of the economic system. Course will introduce the standard economic models used to examine how individuals and firms make decisions in perfectly competitive markets. Credit not allowed for both ECON 1 and ECON 1A

2. Market Imperfections and Policy (4)
 Analysis of monopoly and imperfectly competitive markets, market imperfections and the role of government. Prerequisite: ECON 1 or 1A

3. Principles of Macroeconomics (4)
 Introductory macroeconomics: unemployment, inflation, business cycles, monetary and fiscal policy. Credit not allowed for both ECON 1B and ECON 3. Prerequisite: ECON 1 or 1A

4. Financial Accounting (4)
 Recording, organizing, and communicating financial information relating to business entities. No prerequisites.

87. Freshman Seminar (1)
 The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to 15-20 students, with preference given to entering freshmen. May be repeated when course topics vary. (IP/NO grades only.)

UPPER-DIVISION

100A. Microeconomics A (4)
 Economic analysis of household determination of the demand for goods and services, consumption/saving decisions, and the supply of labor. Credit not allowed for both ECON 100A and ECON 170A. Prerequisite: ECON 1A or 1; and Math. 10C or 20C.

100B. Microeconomics B (4)
 Analysis of firms’ production and costs, the supply of output and demand factors of production. Analysis of perfectly competitive markets. Credit not allowed for both ECON 100B and ECON 170B. Prerequisite: ECON 100A or 170A.

100C. Microeconomics C (4)
 Analysis of the effects of imperfect market structure, strategy, and imperfect information. Prerequisite: ECON 100B or 170B.

100AH. Honors Microeconomics A (1)
 Honors sequence expanding on the material taught in ECON 100A. ECON 100A must be taken with ECON 100AH. Credit not allowed for both ECON 100AH and ECON 170AH. GPA of 3.5 or better. Prerequisite: department stamp required.

100BH. Honors Microeconomics B (1)
 Honors sequence expanding on the material taught in ECON 100B. ECON 100B must be taken with ECON 100BH. Credit not allowed for both ECON 100BH and ECON 170BH. GPA of 3.5 or better. Prerequisite: department stamp required.

100CH. Honors Microeconomics C (1)
 Honors sequence expanding on the material taught in ECON 100C. ECON 100C must be taken with ECON 100CH. GPA of 3.5 or better. Prerequisite: department stamp required.

101. International Trade (4)
 Examines theories of international trade in goods and services as well as international migration and capital flows. The course discusses comparative advantage, motives for trade policies, and the effects of trade barriers and trading blocs on income distribution and welfare. Prerequisites: ECON 1A-B or 2 or 100B or 170B.

103. International Monetary Relations (4)
 Analyzes exchange rates and the current account, and relates their joint determination to financial markets and the domestic macroeconomy. Discusses macroeconomic models under different exchange rate regimes and implications for financial stability and current account sustainability. Prerequisites: ECON 110B or 173A.

104. Economics of Network Industries (4)
 Economics of industries with network effects such as telecommunications, internet, software, and airlines. Analysis of standards, complementarities, switching costs, economies of scale, and optimal price setting in the presence of network effects. ECON 100C is recommended. Prerequisite: ECON 100B or 170B.

105. Industrial Organization and Firm Strategy (4)
 Theory of monopoly and oligopoly pricing, price discrimination, durable goods pricing, cartel behavior, price wars, strategic entry barriers, mergers, pro- and anti-competitive restraints on business. ECON 100C is recommended. Prerequisite: ECON 100B or 170B.

107. Economic Regulation and Antitrust Policy (4)
 Detailed treatment of antitrust policy: Sherman Act, price fixing, collusive practices, predatory pricing, price discrimination, double marginalization, exclusive territories, resale price maintenance, refusal to deal, and foreclosure. Theory of regulation and regulatory experience in electrical utilities, oil, telecommunications, broadcasting, etc. Prerequisites: ECON 1A-B or 2 or 100B or 170B; and Math. 10C or 20C.

109. Game Theory (4)
 Introduction to game theory. Analysis of people's decisions when the consequences of the decisions depend on what other people do. This course features applications in economics, political science, and law. ECON 100C is recommended. Prerequisite: ECON 100B or 170B.

110A. Macroeconomics A (4)
 Analysis of the determination of long run growth and models of the determination of output, interest rates, and the price level. Analysis of inflation, unemployment, and monetary and fiscal policy. Prerequisite: ECON 1A-B or 3; and Math. 10C or 20C.

110B. Macroeconomics B (4)
 Analysis of the determination of consumption spending at the aggregate level; extension of the basic macro model to include exchange rates and international trade; the aggregate money supply, and the business cycle. Prerequisite: ECON 110A.

110AH. Honors Macroeconomics (1)
 Honors sequence expanding on the material taught in ECON 110A. ECON 110A must be taken with ECON 110AH. GPA of 3.5 or better. Prerequisite: department stamp required.

110BH. Honors Macroeconomics (1)
 Honors sequence expanding on the material taught in ECON 110B. ECON 110B must be taken with ECON 110BH. GPA of 3.5 or better. Prerequisite: department stamp required.

111. Monetary Economics (4)
 Financial structure of the U.S. economy. Bank behavior. Monetary control. Prerequisites: ECON 1A-B or 3; and Math. 10A or 20A.

113. Mathematical Economics (4)
 Mathematical concepts and techniques used in advanced economic analysis; applications to selected aspects of economic theory. ECON 100C is recommended. Prerequisite: ECON 100B, or ECON 170B; or Math. 140A or Math. 142A.

114. Economics of Immigration (4)
 Impact of immigration on the U.S. economy. Empirical evidence on the labor market and fiscal impacts of immigration. Consequences of U.S. immigration policies on the economy. Prerequisites: ECON 1A-B or ECON 1 and 3.

116. Economic Development (4)
 Introduction to the economics of less developed countries, covering their international trade, human resources, urbanization, agriculture, income distribution, political economy, and environment. Prerequisites: ECON 1A-B or 2 or 100B.
117. Economic Growth (4)
Models of the economic growth of developed economies. Prerequisite: ECON 100A or 170A.

118. Law and Economics: Torts, Property, and Crime (4)
Uses economic theory to evaluate the economic effects of U.S. law in several legal fields, including tort law (accidents), products liability law, property law, criminal law (law enforcement), and litigation. Also considers risk bearing and why people buy insurance. Renumbered from ECON 118A. Credit not allowed for both ECON 118 and ECON 118A. Prerequisites: ECON 1A-B or 2 or 100A; and Math. 10A or 20A.

119. Law and Economics: Contracts and Corporations (4)
Uses economic theory to evaluate the economic effects of U.S. law in contract law, corporate law (how large firms are organized and governed), debtor-creditor law, and bankruptcy law. ECON 100C and 118 are recommended. Prerequisite: ECON 100B or 170B.

120A. Econometrics A (4)
Probability and statistics used in economics. Probability and sampling theory, statistical inference, and use of spreadsheets. Credit not allowed for ECON 120A and any of the following: ECE 109; Math. 180A; Math. 183; Math. 186. Prerequisites: ECON 1A or 1, and Math. 10C or 20C.

120B. Econometrics B (4)
Basic econometric methods, including the linear regression, hypothesis testing, quantifying uncertainty using confidence intervals, and distinguishing correlation from causality. Credit not allowed for both ECON 120B and Math. 181A. Prerequisite: ECON 120A or ECE 109 or Math. 180A or Math. 183 or Math. 186.

120C. Econometrics C (4)
Advanced econometric methods: estimation of linear regression models with endogeneity, economic methods designed for panel data sets, estimation of discrete choice models, time series analysis, and estimation in the presence of autocorrelated and heteroskedastic errors. Prerequisite: ECON 120B or Math. 181A.

120AH. Honors Macroeconomics (1)
Honors sequence expanding on the material taught in ECON 120A. ECON 120A must be taken with ECON 120AH, GPA of 3.5 or better. Prerequisite: department stamp required.

120BH. Honors Macroeconomics (1)
Honors sequence expanding on the material taught in ECON 120B. ECON 120B must be taken with ECON 120BH, GPA of 3.5 or better. Prerequisite: department stamp required.

120CH. Honors Macroeconomics (1)
Honors sequence expanding on the material taught in ECON 120C. ECON 120C must be taken with ECON 120CH, GPA of 3.5 or better. Prerequisite: department stamp required.

121. Applied Econometrics (4)
Application of econometric methods to such areas as labor supply, human capital, and financial time series. Concurrent enrollment in ECON 120C is permitted. Prerequisite: ECON 120C.

125. Demographic Analysis and Forecasting (4)
Interaction between economic forces and demographic changes is considered, as are demographic composition and analysis; fertility, mortality, and migration processes and trends. Course emphasizes the creation, evaluation, and interpretation of forecasts for states, regions and subcounty areas. ECON 178 is recommended. Prerequisite: ECON 120B or Math. 181A.

130. Public Policy (4)
Course uses basic microeconomic tools to discuss a wide variety of public issues, including the war on drugs, global warming, natural resources, health care and safety regulation. Appropriate for majors who have not completed ECON 100A-B-C or ECON 170A-B and students from other departments. Prerequisites: ECON 1A-B or 2 or 100A.

131. Economics of the Environment (4)
Environmental issues from an economic perspective. Relation of the environment to economic growth. Management of natural resources, such as forest and fresh water. Policies on air, water, and toxic waste pollution. International issues such as ozone depletion and sustainable development. Prerequisites: ECON 1A-B or 2 or 100A.

132. Energy Economics (4)
Energy from an economic perspective. Fuel cycles for coal, hydro, nuclear, oil, and solar energy. Emphasis on efficiency and control of pollution. Comparison of energy use across sectors and across countries. Global warming, role of energy in the international economy. Prerequisites: ECON 1A-B or 2 or 100A; and Math. 10C or 20C.

133. International Environmental Agreements (4)
Addresses environmental issues that transcend national boundaries, such as climate change, biodiversity loss, over-fishing. Examines why international agreements are required, how they are negotiated and implemented, and studies their effectiveness. Explores whether more effective environmental treaties could be designed. Prerequisites: ECON 1A-B or 2 or 100A.

135. Urban Economics (4)
Economic analysis of why and where cities develop, problems they cause, and public policies to deal with these problems. Determination of urban land rent/use, reasons for suburbanization. Transportation and congestion in cities, zoning, poverty and housing, urban local government. Credit not allowed for both ECON 135 and USP 102. Prerequisites: ECON 1A-B or 2 or 100A; and Math. 10A or 20A.

136. Human Resources (4)
A practical yet theory-based study of the firm’s role in managing workers, including issues related to hiring, education and training, promotions, layoffs and buyouts, and the overarching role that worker compensation plays in all of these. Prerequisite: ECON 100B or 170B.

137. Inequality and Poverty (4)
Analysis of inequality in the distribution of income, education, and wealth; causes of poverty and public policies to combat it. Prerequisites: ECON 1A-B or 2 or 100A; and ECON 120A or ECE 109 or Math. 180A or Math. 183 or Math. 186.

139. Labor Economics (4)
Theoretical and empirical analysis of labor markets. Topics include: labor supply, labor demand, human capital investment, wage inequality, labor mobility, immigration, labor market discrimination, labor unions and unemployment. Prerequisites: ECON 1A-B or 2 or 100B.

140. Economics of Health Producers (4)
Physician and nurse supply, medical malpractice, incentives to avoid patient injury, patents and pricing in the pharmaceutical industry, not-for-profit firms, and government regulation of healthcare producers. Renumbered from ECON 138A. Credit not allowed for both ECON 140 and ECON 138A. Prerequisites: ECON 1A-B or 2 or 100B.

141. Economics of Health Consumers (4)
Demand for health care and health insurance, employer-provision of health insurance and impact on wages and job changes. Cross country comparisons of health systems. ECON 100C is recommended. Renumbered from ECON 138B. Credit not allowed for both ECON 141 and ECON 138B. Prerequisites: ECON 100B or 170B.

142. Behavioral Economics (4)
Course will study economic models in which standard economic rationality assumptions are combined with psychologically plausible assumptions on behavior. We consider whether the new models improve ability to predict and understand phenomena including altruism, trust and reciprocity, procrastination, and self-control. ECON 100C is recommended. Prerequisite: ECON 100B or 170B.

143. Experimental Economics (4)
Explores use of experiments to study individual and interactive (strategic) decision-making. Topics may include choice over risky alternatives, altruism and reciprocity, allocation and information aggregation in competitive markets, cooperation and collusion, bidding in auctions, strategy in coordination and “out-guessing” games. ECON 100C is recommended. Prerequisite: ECON 100B or 170B.

145. Economics of Ocean Resources (4)
Economic issues associated with oceans. Economics of managing renewable resources in the oceans, with an emphasis on fisheries, economics of conservation and biodiversity preservation for living marine resources, with an emphasis on whales, dolphins, sea-turtles, and coral reefs. Prerequisites: ECON 1A-B or 2 or 100A.

146. Economic Stabilization (4)
Theory of business cycles and techniques used by governments to stabilize the economy. Discussion of recent economic experience. Prerequisite: ECON 110B.

147. Economics of Education (4)
Examination of issues in education using theoretical and empirical approaches from economics. Analysis of decisions to invest in education. Consideration of various market structures in education, including school choice and school finance programs. Prerequisites: ECON 1A-B or 2 or 100A; and ECON 120B or Math. 181A.

150. Public Economics: Taxation (4)
Overview of the public sector in the U.S. and the scope of government intervention in economic life. Basic principles of taxation, tax incidence, and tax efficiency. Analysis of the U.S. tax system before and after the Tax Reform Act of 1986. ECON 100C is recommended. Prerequisite: ECON 100B or 170B.

151. Public Economics: Expenditures I (4)
Overview of the public sector in the U.S. and the scope of government intervention in economic life. Theory of public goods and externalities. Discussion of specific expenditure programs such as education and national defense. ECON 100C is recommended. Prerequisite: ECON 100B or 170B.
152. Public Economics: Expenditures II (4)
Overview of the public sector in the U.S. and the justifications for government intervention in economic life. Theory of income redistribution and social insurance. Applications to current policy in such areas as welfare, unemployment insurance, and Social Security. ECON 100C is recommended. Renumbered from ECON 153. Credit not allowed for both ECON 152 and ECON 153. Prerequisites: ECON 100B or 170B.

155. Political Economics (4)
An economic analysis of social decision making, including such topics as the desirable scope and size of the public sector, the efficiency of collective decision-making procedures, voting theory and collective vs. market resource allocation. Prerequisite: ECON 109.

158A-B. Economic History of the United States (4-4)
(As same as History 140—141.) 158A: The United States as a raw materials producer, as an agrarian society, and as an industrial nation. Emphasis on the logic of the growth process, the social and political tensions accompanying expansion, and nineteenth- and early-twentieth-century transformations of American capitalism. 158B: The United States as a modern industrial nation. Emphasis on the logic of the growth process, the social and political tensions accompanying expansion, and twentieth-century transformations of American capitalism.

161. Global Integration of Latin America (4)
Examines the integration of Latin American and Caribbean countries into the global economy. Topics include trade in agricultural and manufactured goods, regional trade agreements, international capital flows to Latin America, financial vulnerabilities, and policy responses. Prerequisites: ECON 1A-B or ECON 1 and 3.

162. Economics of Mexico (4)
Survey of the Mexican economy. Topics such as economic growth, business cycles, saving-investment balance, financial markets, fiscal and monetary policy, labor markets, industrial structure, international trade, and agricultural policy. Prerequisites: ECON 1A-B or ECON 1 and 3.

163. Japanese Economy (4)
Survey of the Japanese economy. Economic growth, business cycles, saving-investment balance, financial markets, fiscal and monetary policy, labor markets, industrial structure, international trade, and agricultural policy. Prerequisites: ECON 1A-B or ECON 1 and 3.

165. Middle East Economics (4)
Internal economies of radical religious groups and terrorist organizations. Ottoman economic history, economic demography and migration, Islamic banking, economic development and peace in Palestine, and oil economics. Prerequisites: ECON 1A-B or ECON 1 and 3.

171. Decisions Under Uncertainty (4)
Decision-making when the consequences are uncertain. Decision trees, payoff tables, decision criteria, expected utility theory, risk aversion, sample information. Prerequisites: ECON 100A or 170A; and ECON 120A or ECE 109 or Math. 180A or Math. 183 or Math. 186.

172A. Operations Research A (4)
Linear and integer programming, elements of zero-sum, two-person game theory, and specific combinatorial algorithms. Credit not allowed for both ECON 172A and Math. 171A. Prerequisites: ECON 100A or 170A; and ECON 120A or ECE 109 or Math. 180A or Math. 183 or Math. 186; and Math. 20F.

172B. Operations Research B (4)
Non-linear programming, deterministic and stochastic dynamic programming, queuing theory, search models, and inventory models. Credit not allowed for both ECON 172B and Math. 171B. Prerequisites: ECON 172A or Math. 171A.

173A. Financial Markets (4)
Financial market functions, institutions and instruments: stocks, bonds, cash instruments, derivatives (options), etc. Discussion of no-arbitrage arguments, as well as investors' portfolio decisions and the basic risk-return trade-off established in market equilibrium. Renumbered from ECON 175. Credit not allowed for both ECON 173A and ECON 175. Prerequisite: ECON 100A or 170A; and ECON 120B.

173B. Corporate Finance (4)
Introduces the firm's capital budgeting decision, including methods for evaluation and ranking of investment projects, the firm's choice of capital structure, dividend policy decisions, corporate taxes, mergers and acquisitions. Renumbered from ECON 173. Credit not allowed for both ECON 173B and ECON 173. Prerequisite: ECON 4; and ECON 173A or 175.

174. Financial Risk Management (4)
Risk measures, hedging techniques, value of risk to firms, estimation of optimal hedge ratio, risk management with options and futures. ECON 171 is recommended. Prerequisite: ECON 173A or 175.

176. Marketing (4)
Role of marketing in the economy. Topics such as buyer behavior, marketing mix, promotion, product selection, pricing, and distribution. Concurrent enrollment in ECON 120C is permitted. Prerequisite: ECON 120C.

178. Economic and Business Forecasting (4)
Survey of theoretical and practical aspects of statistical and economic forecasting. Such topics as long-run and short-run horizons, leading indicator analysis, econometric models, technological and population forecasts, forecast evaluation, and the use of forecasts for public policy. Concurrent enrollment in ECON 120C is permitted. Prerequisite: ECON 120C.

182. Topics in Microeconomics (4)
Selected topics in microeconomics. ECON 100C is recommended. Prerequisite: ECON 100B or 170B; consent of department is required.

191A-B. Senior Essay Seminar (4-4)
Senior essay seminar for students with superior records in department majors. Prerequisite: department stamp required.

200A-B-C. Microeconomics (4-4-4)
Background mathematical techniques, static and intertemporal consumer and producer theory, partial and general equilibrium, modern producer and consumer theory, risk, time, and interdependence, modern welfare economics.

201. Advanced Economic Theory (4)
An intensive examination of selected topics in economic theory. Course topic nonrepetitive in a three-year cycle. Prerequisites: ECON 207 and 213.

202A-B-C. Workshop in Economic Theory (0-4/0-4/0-4)
An examination of recent research in economic theory, including topics in general equilibrium, welfare economics, duality, and social choice; development of related research topics by both graduate students and faculty. Course may be repeated an unlimited number of times. (S/U grades only.) Prerequisite: ECON 207 or consent of instructor.

205. Mathematics for Economists (4)
Advanced calculus review for new graduate students.

206. Decisions (4)
Further topics in consumer and producer theory, intertemporal optimization, and decision-making under uncertainty. (Previously numbered ECON 200D.) Prerequisites: ECON 200A-B-C or consent of instructor.

207. Markets and Welfare (4)
Further topics in general equilibrium, welfare analysis, and social choice theory. (Previously numbered ECON 200E.) Prerequisite: ECON 200A-B-C or consent of instructor.

208. Games and Information (4)
Further topics in game theory and the economics of information. (Previously numbered ECON 200F.) Prerequisite: ECON 200A-B-C or consent of instructor.

210A-B-C. Macroeconomics (4-4-4)
Neoclassical and Keynesian theories of employment, income, interest rate, price level, and other aggregate variables; macroeconomic policy; balance of payments and exchange rates; conflicts between external and internal balance; disequilibrium theory; growth theory.

211. Advanced Macroeconomics (4-4-4)
Covers various topics in macroeconomics at the frontiers of research, including theory, computation, and empirical work. Emphasis depends on the instructor. Students will read the latest working papers and publications in the covered areas. Prerequisite: Graduate standing and ECON 210A-B-C or consent of instructor.

212A-B-C. Workshop in Macroeconomics (0-4/0-4/0-4)
Examination of recent research in macroeconomics; development of own research by graduate students and faculty. Course may be repeated an unlimited number of times. (S/U grades only.) Prerequisite: ECON 210C.
213. Advanced Macroeconomic Theory (4)
This course develops purely theoretical models for problems in macroeconomics. Topics include dynamic general equilibrium, asset market equilibrium, and economic growth and distribution. Prerequisites: ECON 210A-B-C or consent of instructor.

214. Applied Macroeconomics (4)
This course considers macroeconomics from an applied standpoint, with an emphasis on applied theory and empirical analysis. Topics include business cycles, macroeconomic policy, labor and capital adjustment, and economic growth. Prerequisites: ECON 210A-B-C or consent of instructor.

215. Macroeconomic Policy (4)
This course focuses on theoretical models and empirical analysis aimed at understanding and directing macroeconomic policy, including monetary, fiscal and structural policies. Prerequisite: ECON 210A-B-C or consent of instructor.

216. Computation for Macroeconomics (4)
This course covers advanced computation techniques that are widely used in macroeconomics, finance, and other fields. Students will learn a range of numerical methods for handling systems of equations, integration, optimization, and other problems. Prerequisite: ECON 210A-B-C or consent of instructor.

219. Readings in Macroeconomics (4)
This course will cover numerical analysis of dynamic macroeconomic models. Topics include numerical techniques, dynamic programming, linear systems, solution algorithms, and applications to dynamic general equilibrium. Prerequisite: graduate standing or consent of instructor.

220 A-B-C D-E-F. Econometrics (4-4-4-4-4)
The construction and application of stochastic models in economics. This includes both single and simultaneous equations models. Matrix algebra and basic statistics are covered. Also covered (in 220F) are empirical applications to micro and macroeconomics. These require the completion of an empirical project.

221. Advanced Econometrics (4)
Advanced Topics in Econometrics. Topics may vary from year to year, covering areas such as cross-section, time-series, panel, limited dependent variables, conditional quantile estimation, bootstrapping, and large- and small-sample distribution theory. Prerequisite: graduate standing and ECON 220A, 220B, 220C, 220D, and 220E or consent of instructor.

222A-B-C. Workshop in Econometrics (4-4-4)
Examination of recent econometric research, development of own research by students and faculty. Course may be repeated an unlimited number of times. (S/U grades only.)

224. Readings in Econometrics (1)
Examination of recent research in econometrics to facilitate the development of thesis research by graduate students. (S/U grades only.)

225. Forecasting (4)
Topics include testing for rationality of forecasts, Mincer-Zarnowitz regressions, asymmetric loss functions, tests for equal (superior) predictive ability, multivariate forecasting. Prerequisites: graduate standing and ECON 220A, 220B, 220C, 220D, and 220E or consent of instructor.

226. Bayesian and Numerical Methods (4)
Topics include Bayesian inference and decision theory, loss functions, estimation of dynamic stochastic general equilibrium models, nonlinear time series, state-space models, spatial-temporal models, and high-frequency data. Prerequisites: graduate standing and ECON 220A, 220B, 220C, 220D, and 220E or consent of instructor.

227. Nonparametric and Semi-Parametric Methods (4)
Topics include neural networks, kernels, series, splines, estimation of densities and spectra, smoothing parameter selection, semi-parametric models, efficiency and adaptation, forecasting with nonlinear models, over-fit, computation, and interpretation. Prerequisites: graduate standing and ECON 220A, 220B, 220C, 220D, and 220E or consent of instructor.

230. Public Economics: Taxation (4)
Exploration of existing theoretical literature evaluating the efficiency and distribution effects of income and commodity taxes. Characterization of an "optimal" tax structure, and examination of problems faced in tax administration. Scrutiny of behavioral responses to existing tax structures. Prerequisites: ECON 200A-B-C and ECON 220A-B-C.

231. Public Economics: National Government Expenditures (4)
Examination of possible normative justification of government expenditures (public goods, externalities, and market failures). Exploration of positive government-behavior models. Analysis of behavioral responses to key existing government-expenditure programs (social security, Medicare, and unemployment insurance). Overview of cost-benefit analysis. Prerequisites: ECON 200A-B-C and ECON 220A-B-C.

232. Public Economics: Redistribution and Social Insurance (4)
Justifications for government involvement in redistribution and insurance markets. Optimal design of transfer and social insurance programs. Overview of program-evaluation methods. Theoretical and empirical analyses of specific programs, such as welfare, unemployment insurance, and social security. Prerequisites: ECON 200A-B-C and ECON 220A-B-C.

235A-B-C. Workshop in Applied Economics (0-4/0-4/0-4)
Examination of recent research in applied economics; development of own research by graduate students and faculty. Course may be repeated an unlimited number of times. (S/U grades only.)

240. Economic Development (4)
Theoretical and empirical issues in economic development. Prerequisite: consent of instructor.

245. International Trade (4)
This course covers the determinants of the pattern and volume of trade in goods and services, the interaction of international trade and income distribution and economic growth, and commercial policy. The emphasis is on theory, with some empirical illustration and motivation. Prerequisite: consent of instructor.

246. International Macroeconomics (4)
This course presents open-economy macroeconomics and international finance. Topics include theories of the exchange rate, foreign-exchange regimes, current account adjustments, and international portfolio investments. The course examines real and monetary explanations, and implications of international capital market integration. Prerequisite: consent of instructor.

247. Empirical Topics in International Economics (4)
This course examines the empirical work in international trade or international macroeconomics. International trade topics include empirical tests of theories of international trade and international capital movements. International macroeconomics topics include empirical studies of exchange rate and relative price adjustments. Prerequisite: consent of instructor.

250. Labor Economics (4)
Theoretical and empirical issues in labor economics. (Previously numbered ECON 236A-B.) Prerequisite: consent of instructor.

260. Industrial Organization (4)
Theoretical and empirical issues in industrial organization. (Previously numbered ECON 234.) Prerequisite: ECON 220F or consent of instructor.

264. Experimental Economics (4)
Design and interpretation of controlled experiments using human subjects. (Previously numbered ECON 207.) Prerequisite: consent of instructor.

266. Economics of Natural Resources (4)
Theoretical and empirical issues in natural resource economics. (Previously numbered ECON 242.) Prerequisite: consent of instructor.

270. Finance—Core Asset Pricing (4)
Theoretical and empirical issues in finance. (Previously numbered ECON 214A.)

Theoretical and empirical issues in finance. (Previously numbered ECON 214B.)

272. Finance—Theory and Testing of Intertemporal Asset Pricing Models (4)
Theoretical and empirical issues in finance. (Previously numbered ECON 214C.)

279. Readings in Finance (1)
Examination of recent research in finance to facilitate the development of thesis research by graduate students. Prerequisite: consent of instructor.

280. Computation (2)
Introduction to econometric computing. (S/U grades only.)

281. Special Topics in Economics (4)
Lecture course at an advanced level on a special topic. May be repeated for credit if topic differs. (Previously numbered ECON 267.) Prerequisite: consent of instructor.

282. Third-Year Paper (4)
Written project, such as a critical review of a body of literature, including a proposal for an original research paper. For third-year students in winter quarter. (Previously numbered ECON 272.)
Education Abroad Program (EAP)

OFFICE: Programs Abroad Office in the International Center (corner of Gilman Drive and Library Walk)
(858) 534-1123
E-mail: abroad@ucsd.edu
http://programsabroad.ucsd.edu

David Mares, Political Science, Faculty Director
Ramon Piñon, Biology, Faculty Director
Lynn Anderson, Dean of International Education
Kimberly Burton, Director for Programs Abroad
Molly Ann McCarren, EAP Coordinator
Bill Clabby, EAP Advisor
Marisa Alioto, EAP Advisor
Tonia Luo, EAP Advisor
Maribeth Binnie, EAP Advisor
Rachel Rigoli, EAP Advisor
Kathleen McLaren-Hawking, EAP Intake Advisor
Christine Trinidad, Office Manager

Administrated by the University of California, the Education Abroad Program (EAP) has established study centers in Australia, Barbados, Brazil, Canada, Chile, China, Costa Rica, Denmark, Egypt, France, Germany, Ghana, Hong Kong (S.A.R.), Hungary, India, Ireland, Israel, Italy, Japan, Korea, Mexico, Netherlands, New Zealand, the Philippines, Russia, Singapore, South Africa, Spain, Sweden, Taiwan, Thailand, Turkey, the United Kingdom, and Vietnam. EAP offers full-year and short-term programs in a wide range of academic disciplines. Please see the EAP Web site (http://eap.ucop.edu) for the most up-to-date information about all aspects of the program. Students may use the EAP Program Wizard (http://eap.ucop.edu/programwizard) to search for programs by country, specific areas of study, language of instruction, etc. EAP participants are eligible for financial aid and many scholarships. Other non-EAP study-abroad opportunities at UCSD are described at the end of this section.

Purpose

The Education Abroad Program offers undergraduate (sophomores, juniors, and seniors) and graduate students opportunities to integrate into the academic and social life of select foreign universities while continuing to work in major fields of study or otherwise fulfilling UC requirements. EAP provides students access to distinguished academic programs that complement those of the UC campuses and where students can make normal progress toward their degrees at a cost as close as possible to that of education on a UC campus. EAP helps students acquire the knowledge and skills necessary to function confidently and compete successfully in our global environment.

The program stimulates the intellectual development of the participants, broadening their general education, and giving a new depth to their particular academic interests. Many gain fluency in a language other than their own, and all grow in their ability to engage in independent study. Perhaps most valuable of all are increased self-understanding, clarified life purpose, and a broadening and deepening of personal values.

The Academic Program

The Education Abroad Program places students at the finest universities abroad. In most cases students take courses side by side with local students in a wide range of academic fields. In some programs EAP students pursue language study and take special courses designed for foreign students. In others, they pursue specialized studies in their major, take courses to add breadth to their general education, concentrate on language or area studies, and conduct research.

Each student is concurrently enrolled on the home campus of the University of California and at the host university. Full academic credit is received for courses satisfactorily completed. With advance planning and wise choice of courses abroad, most students can make normal progress toward completion of major, minor, and/or general-education requirements for their UCSD degree.

Academic Planning and Advising

In order to make normal progress toward graduation students should consult in advance with departmental advisors and an academic advisor in their college provost’s office in order to ascertain how participation will affect their academic program. Descriptions of individual courses currently approved for UC credit may be found in the Programs Abroad Resource Library and on the EAP Web site (http://eap.ucop.edu/coursefinder). Many of the same or similar courses will be available in future years, but students should plan programs that are sufficiently flexible to allow them to take alternate courses. Each year new courses taken by UC students are added to a center’s approved offerings. Although courses approved by the University of California carry full credit, each department retains the right to determine the extent to which it will accept specific courses to fulfill requirements for its own majors.

In order to facilitate the academic work of the students, University of California professors serve as directors and associate directors of the study centers. They work with their counterparts in the host university in developing the academic program and advise students on their coursework. In addition, the directors are responsible for all aspects of student welfare and conduct.

Cost, Financial Aid, and Scholarships

The regents endeavor to bring the program within the reach of all students, regardless of their financial resources. The cost of studying abroad is usually comparable to the cost of studying on a UC
The only additional costs directly related to the program are for round-trip transportation, on-site orientation, and personal expenses beyond what normally would be spent at home. Programs in some countries actually cost less than a comparable period of study at a UC campus.

Many forms of financial assistance are available to EAP students. Those already receiving UC financial aid maintain their eligibility for grants, loans, and scholarships while studying on EAP. Financial aid is based on the cost of studying at each EAP location and on individual need. Students who might not normally be eligible for financial aid may qualify for the period they are on EAP. In addition to UC financial aid, scholarships are also available from EAP; the Friends of the International Center, various campus offices and departments, and outside organizations. Annually, UCSD students access about $500,000 in special scholarships available only for study abroad. Information about these scholarships is available in the Programs Abroad Office, and on the UCSD Financial Aid Web site (http://fao.ucsd.edu).

Prospective participants who require financial assistance should counsel early with the Student Financial Services Office.

Applications

Applications for admission to the Education Abroad Program are given to students following a discussion of various aspects of the program with an EAP advisor in the Programs Abroad Office. Information on deadlines and related matters such as course offerings, selection, schedules of departures, and payment of fees may be obtained from the Programs Abroad Office, and online at http://eap.ucop.edu and http://programsabroad.ucsd.edu.

It is not too early to begin planning for an experience abroad prior to or during one’s freshman year. Students are then able to take the language classes needed for certain programs, as well as plan which degree requirements to fulfill at UCSD and which to take abroad. Early planning also allows students to apply for the many programs now open to sophomores. General group information sessions about the programs are held during Welcome Week and in October and January. “First Steps” workshops are held throughout the year.

Selection

Undergraduate selection is generally open to students with the following qualifications:

Summary of EAP Opportunities by Country

<table>
<thead>
<tr>
<th>EAP HOST COUNTRY</th>
<th>YEAR</th>
<th>SEMESTER</th>
<th>QUARTER</th>
<th>SUMMER</th>
<th>SOPHOMORE</th>
<th>JUNIOR</th>
<th>SENIOR</th>
<th>GRADUATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA*</td>
<td>X</td>
<td>FS</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BARBADOS</td>
<td>X</td>
<td>F</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BRAZIL*</td>
<td>X</td>
<td>FS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CANADA</td>
<td>X</td>
<td>FS</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CHILE*</td>
<td>X</td>
<td>FS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CHINA</td>
<td>X</td>
<td>FS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>COSTA RICA*</td>
<td>X</td>
<td>S</td>
<td>FS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DENMARK</td>
<td>X</td>
<td>F</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EGYPT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FRANCE</td>
<td>X</td>
<td>FS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GERMANY</td>
<td>X</td>
<td>FS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GHANA</td>
<td>X</td>
<td>FS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HONG KONG (S.A.R.)</td>
<td>X</td>
<td>FS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HUNGARY</td>
<td>X</td>
<td>FS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>INDIA</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IRELAND, REPUBLIC OF</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ISRAEL +</td>
<td>X</td>
<td>FS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ITALY</td>
<td>X</td>
<td>FS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>JAPAN</td>
<td>X</td>
<td>FS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>KOREA, REPUBLIC OF</td>
<td></td>
<td>FS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MEXICO</td>
<td>X</td>
<td>FS</td>
<td></td>
<td>FW</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NETHERLANDS</td>
<td>X</td>
<td>FS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NEW ZEALAND*</td>
<td>X</td>
<td>S</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PHILIPPINES +</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RUSSIA</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SINGAPORE</td>
<td>X</td>
<td>FS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SOUTH AFRICA*</td>
<td>X</td>
<td>FS</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SPAIN</td>
<td>X</td>
<td>FS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SWEDEN</td>
<td>X</td>
<td>F</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TAIWAN</td>
<td>X</td>
<td>F</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>THAILAND</td>
<td>X</td>
<td>FS</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TURKEY</td>
<td>X</td>
<td>FS</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>X</td>
<td>FS</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>VIETNAM</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

F=Fall Term W=Winter Term S=Spring Term
*The regular academic year begins in January or February rather than during the fall.
+ Program is on hold for 2007–08

For program details and application deadlines, visit the EAP and Programs Abroad Office Web sites: http://eap.ucop.edu and http://programsabroad.ucsd.edu
Education Studies

3.0 cumulative grade-point average at the time of departure (some programs are available to students with at least a 2.5 GPA); at least sophomore or junior standing by time of departure, depending on the specific program; support of the UCSD EAP Selection Committee; and completion of university-level language courses when required (one, two, or three years, depending on the host institution) with a 3.0 grade-point average in language. Exceptions to these requirements can be made on a case by case basis, in consultation with the EAP advisor.

In addition to academic criteria for selection, the faculty committee looks for indications of the student’s seriousness of purpose, maturity, and capacity to adapt to the experience of study abroad. As part of the planning process, students are required to consult with their college academic and department advisors.

Graduate Students

Graduate students can be accommodated at most EAP-affiliated host universities. Graduate students may take courses, conduct research, and participate in short-term language programs for a semester or year. Students must meet EAP minimum requirements, including language prerequisites, have completed at least one year of graduate work, and have the support of their academic department and graduate dean.

Transfer Students

Transfer students from other colleges and universities are eligible for EAP. Applications may be submitted prior to their first quarter at UCSD if appropriate for the specific program. Please contact the Programs Abroad Office for further information.

Safety, Student Conduct, and Parental Approval

EAP considers student health and safety while abroad one of its top priorities. All participants in EAP are covered by a mandatory health insurance policy while abroad. While no one can guarantee student security either in the U.S. or abroad, the program makes every reasonable effort to assure a safe environment in its programs abroad, and to counsel students on potential risks and necessary precautions. In return, participants have a responsibility to pay careful attention to safety and health information provided in pre-departure materials and at orientations in the U.S. and abroad.

It is anticipated that the students selected for the Education Abroad Program will be of high caliber, committed to profiting from both the intellectual and social aspects of the experience. Since they will be guests in another country and another university, their conduct will reflect on both the University of California and the United States.

Participation in the program by students who are minors must be approved by their parents or guardians. In approving such participation, parents and guardians should be aware that a greater degree of personal freedom is afforded to students in the foreign university and that the University of California cannot take responsibility for closely supervising the activities of individual students. The directors and staff of the centers will be available to students with problems and will maintain contact with the student group as a whole. The University provides for comprehensive medical and hospitalization coverage for all participants.

UCSD Opportunities Abroad Program

OFFICE: Programs Abroad Office in the International Center (corner of Gilman Drive and Library Walk)
(858) 534-1123
http://programsabroad.ucsd.edu

David Mares, Political Science, Faculty Director
Ramon Piñon, Biology, Faculty Director
Lynn Anderson, Dean of International Education
Kimberly Burton, Director for Programs Abroad
Bill Clabby, OAP Director
Marisa Alito, OAP Advisor
Tonia Luo, OAP Advisor
Maribeth Binne, OAP Advisor
Rachel Rigoli, OAP Advisor
Kathleen McLaren-Hawking, OAP Intake Advisor
Christine Trinidad, Office Manager

Students interested in going abroad should also investigate possibilities through the Opportunities Abroad Program which can assist with placement in a wide range of other academic programs. These programs include study for an academic year, semester, quarter, or summer. They may be sponsored by other U.S. universities, or include direct enrollment in foreign institutions. Academic credit may also be earned on a number of overseas internship programs which combine work experience and courses.

Students going abroad through the Opportunities Abroad Program earn transfer credit from the sponsoring institution. Courses taken abroad may satisfy general-education, major or minor requirements, depending on department or college approval. Federal and state financial aid for approved plans of study abroad is available. Special study abroad scholarships are also available.

In addition to these academic programs, the Programs Abroad Office can assist students in selecting a wide range of volunteer, paid work, and educational travel programs.

Education Studies

OFFICE: Building 517A, University Center
http://eds.ucsd.edu

Director
Randall J. Souviney

Associate Director
Tom L. Humphries

Professors
Mark I. Appelbaum, Ph.D., Psychology
Julian Betts, Ph.D., Economics
Linda Brodkey, Ph.D., Literature
Janet Chrispeels, Ed. D., Education Studies
Michael Cole, Ph.D., Communication (University Professor)
Grant Goodall, Ph.D., Linguistics
Guershon Harel, Ph.D., Mathematics
James D. Hollan, Ph.D., Cognitive Science
James Levin, Ph.D., Education Studies
Hugh B. Mehan, Ph.D., Sociology
Carol A. Padden, Ph.D., Anthropology
Ana Celia Zentella, Ph.D., Emeritus, Ethnic Studies

Associate Professors
Gerald J. Balzano, Ph.D., Music
Amy Binder, Ph.D., Sociology
Gedeon O. Deák, Ph.D., Cognitive Science
Brian Goldfarb, Ph.D., Communication
A primary focus of Education Studies is to provide equity of educational access for all students in public schools. We require candidates to master the subject matter that they will teach and develop a repertoire of effective teaching practices that utilize their students’ cultural knowledge and language diversity as educational resources.

Undergraduate Programs

Minors in Education Studies

The Education Studies program offers three specific Minor programs. These minors are designed for students considering K-12 teaching as a career; those interested in teaching at the college level; and students who are interested in becoming better, more reflective learners. The Minor in Education Studies provides course work and field experience for students interested in elementary teaching, or for English, mathematics, science, or engineering students who decide to pursue teaching during their junior or senior years. The Mathematics and Science Education Minors explore teaching and learning practices specific to these disciplines along with the components of the knowledge base necessary to teach K-12 science and mathematics successfully. All courses for these minors must be taken for letter grade except for EDS 39 and EDS 139. Depending on students’ majors and career plans, they may select from the following minor options:

- Minor in Education Studies
- Minor in Mathematics Education
- Minor in Science Education

Minor in Education Studies: Students must complete a minimum of one practicum course in Teaching and Learning (EDS 130, 134, 136, 138, 128AB, or 129ABC) and a minimum of one course from two of the remaining three categories of Learning Environments (EDS 114, 115, 118, 119), Language and Culture (EDS 117 or 125), or School and Society (EDS 126).

Students planning to apply for the UCSD graduate credential program must take specific courses in all four categories above. Please contact EDS for specific minor course that meet the prerequisite requirements for admission to the graduate credential program. The EDS minor requires a minimum of twelve units in EDS courses. A maximum of eight units of practicum (EDS 139) may be applied to this minor (total of twenty-eight quarter units).

Minor in Mathematics Education:

- MATH 95: Introduction to Teaching Mathematics
- EDS 39: Practicum in Science and Mathematics Teaching/Learning
- EDS 117: Language, Culture and Education
- MATH 121A: Foundations of Teaching and Learning Mathematics I
- MATH 121B: Foundations of Teaching and Learning Mathematics II
- EDS 129A: Introduction to Teaching and Learning
- EDS 139: Practicum in Teaching/Learning
- EDS 129B: Introduction to Teaching and Learning
- EDS 139: Practicum in Teaching/Learning
- EDS 129C: Introduction to Teaching and Learning
- EDS 139: Practicum in Teaching/Learning (total of thirty-four quarter units)

Minor in Science Education:

- CHEM 96: Introduction to Teaching Science
- EDS 39: Practicum in Science and Mathematics Teaching/Learning
- EDS 117: Language, Culture and Education
- CHEM 187: Teaching and Learning Science
- CHEM 188: Capstone Seminar in Science
- EDS 129A: Introduction to Teaching and Learning
- EDS 139: Practicum in Teaching/Learning
- EDS 129B: Introduction to Teaching and Learning
- EDS 139: Practicum in Teaching/Learning
- EDS 139: Practicum in Teaching/Learning (total of thirty-four quarter units)

Students interested in pursuing a graduate teaching credential program at UCSD should contact EDS for the specific prerequisite requirements for admission to the UCSD graduate credential program.
Graduate Programs

Master of Education (M.Ed.)/Credential Program

The M.Ed. articulates with the Preliminary Multiple Subject and Preliminary Single Subject credential programs. It is a rigorous fifteen- to twenty-four-month professional degree program designed specifically to prepare preservice elementary and secondary teachers earning their initial teaching credential at UCSD. This course of study allows candidates to earn a Preliminary California Teaching Credential and the M.Ed. degree from UCSD prior to entering the teaching profession. The program seeks applicants with strong subject matter preparation and clear career intentions.

M.Ed./Credential Admissions Process

The application deadline for the M.Ed./Credential programs is February 1. All applicants must apply online at http://eds.ucsd.edu.

Applicants interested in financial aid should complete the FAFSA application by March 2, and may contact Graduate Student Financial Services at (858) 534-3807.

Each applicant is carefully reviewed for admission by a committee. The selection committee ensures that applicants have completed the prerequisite course requirements for admission and evaluates each applicant on the basis of the following criteria:

A. A strong interest in multicultural approaches to education; a strong desire to improve the quality of American education; a strong desire to develop self-activated learners;
B. Experience working with children in educational environments, especially with students from diverse backgrounds;
C. Participation in public service activities;
D. Academic excellence in their undergraduate and graduate studies.

More information about the entire application process is available on the EDS Web site at http://eds.ucsd.edu.

M.Ed./Preliminary Multiple Subject (Elementary) Credential

Students working toward any major at UCSD may complete the prerequisite admission requirements and educational foundations courses while they are undergraduates for the M.Ed./Multiple Subject Credential Program.

Candidates who have already received a Bachelor of Arts or Science from any University of California campus, or an appropriate equivalent degree from another institution, must apply for graduate status as a M.Ed. Preliminary Multiple Subject Credential student.

Students applying for admission to the UCSD graduate credential program must contact EDS for information on the required prerequisite course requirements.

Examples of majors from other universities not eligible for application to the M.Ed./Multiple Subject Credential program include Business, Education, Liberal Studies, Marketing, and Recreation.

Prerequisite Requirements for the Multiple Subject Preliminary Credential

1. A 3.0 cumulative GPA is required from the institution awarding the bachelor’s degree.
2. Subject Matter Competence: This requirement is satisfied by either:
 • Completion of a course covering the provisions and principles of the U.S. Constitution, or
 • Passage of an appropriate exam offered through the County Office of Education (Contact the EDS office for information.)
3. The California Basic Educational Skills Test (CBEST): Evidence of passing the CBEST satisfies this requirement.
4. U.S. Constitution requirement: This requirement is satisfied by either:
 • Completion of a course covering the provisions and principles of the U.S. Constitution, or
 • Passage of an appropriate exam offered through the County Office of Education (Contact the EDS office for information.)
5. Sensitivity to second language learning: Applicants must demonstrate, through course work or equivalent experience, an informed sensitivity to the challenges of second language learning and acquisition. This can be fulfilled in one of three ways:
 • Completion of nine quarter units of college course work in a single language that is not the applicant’s native language, or
 • Completion of three years of secondary school course work in a language other than English. The course work must be taken in grades 7 through 12, with at least a B average, or
 • Demonstration of an “equivalent experience” in a second language situation. Applicants who wish to satisfy this requirement by one of the three options listed below must submit an essay that describes the length and circumstances of the experience, including at least three specific examples of situations that helped you gain personal knowledge and appreciation of issues surrounding second language acquisition in a diverse cultural setting. The three equivalent experience options are:
 • The applicant has lived for a prolonged period of time in a country where the language spoken was not native to the applicant, and where the applicant was continuously required to speak that second language (e.g., Peace Corps).
 • The applicant has had an extended experience immersed in a multilingual community in his/her native country.
 • The applicant was raised in a multilingual community.
6. Satisfactory scores on the Graduate Record Exam (GRE) General Test
7. Satisfactory completion of the education foundations prerequisites for the Multiple Subject Credential (contact EDS for the current prerequisite requirements).
8. Prerequisites for BCLAD (Bilingual Crosscultural, Language and Academic Development) Emphasis in Spanish or American Sign Language options: These emphases are designed for students who have sufficient bilingual skills to effectively teach in English and either Spanish or American Sign Language. Students interested in applying for admission to the BCLAD program must demonstrate:
 • Spanish or American Sign Language fluency:
 Spanish: Completion of two Spanish literature courses (Spanish/English BCLAD only), at least one of which must be upper-division in either Latin American or Chicano literature, and completion of the EDS Spanish Language Assessment, with an FSI score of at least 3 (scores of 3– will
be accepted, but students must receive a score of 3 prior to being recommended for the BCLAD credential. Since these exams are coordinated by EDS, please contact EDS in January prior to your application to the credential program.

American Sign Language: Completion of the EDS American Sign Language assessment with a rating of "acceptable" by a panel of assessors

- Cultural Knowledge:
 - Spanish: One history course and one culture course covering Chicano or Latin American-related topics
 - American Sign Language: At least one course on the language or culture of deaf people in the U.S., or intensive experience living among deaf people in the U.S.
 - History, Politics, and Theory of Bilingual Education: EDS 125 or ETHN 140.

9. A desire to teach in a bilingual setting.

Note: A grade of B– or higher is required for all BCLAD courses.

MULTIPLE SUBJECT PROFESSIONAL PREPARATION

The professional preparation component of the Preliminary Multiple Subject credential consists of twelve courses and fifteen weeks of student teaching in elementary school classrooms.

A typical student schedule for the Multiple Subject Professional Preparation Program is shown in Table 1:

Table 1: Schedule of Professional Preparation Activities for the M.Ed./Preliminary Multiple Subject Credential

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
<th>SUMMER</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDS 351 (4)</td>
<td>EDS 361B (6)</td>
<td>EDS 361C (4)</td>
<td>EDS 204 (4)</td>
</tr>
<tr>
<td>EDS 361A (6)</td>
<td>EDS 369A (9)</td>
<td>EDS 369B (9)</td>
<td>EDS 206 (4)</td>
</tr>
<tr>
<td>EDS 390 (4)</td>
<td>EDS 205A (2)</td>
<td>EDS 382 (4)</td>
<td>EDS 201 (4)</td>
</tr>
<tr>
<td>EDS 201 (4)</td>
<td></td>
<td>EDS 205B (2)</td>
<td></td>
</tr>
<tr>
<td>EDS 203 (4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDS 250 (4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For BCLAD Candidates:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDS 352A (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDS 352B (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M.Ed./Preliminary Single Subject (Secondary) Credential

UCSD Students working towards a Literature, Linguistics, Mathematics, Engineering or any Science major may complete the prerequisite single subject credential requirements if they take specified courses for one of the EDS Minors while they are undergraduates. Contact EDS for the prerequisite requirements for admission to the UCSD graduate credential program.

PREREQUISITE REQUIREMENTS FOR THE SINGLE SUBJECT PRELIMINARY CREDENTIAL

1. Undergraduates working toward selected majors at UCSD may complete the foundation requirements for the Preliminary Single Subject Credential prior to completing their degree. Students must be working toward a major in the discipline corresponding to that of the desired credential:

- English: any UCSD Literature or Linguistics major, or equivalent
- Mathematics: any UCSD Mathematics, Engineering, or Computer Science major, or equivalent,
- Biology, Chemistry, Geosciences, or Physics: any UCSD Natural Science major, or equivalent.

2. Candidates, who have already received a literature, linguistics, mathematics, or science Bachelor of Arts or Science degree from any University of California campus, or an appropriate equivalent degree from another institution, must apply for graduate status as an M.Ed./Preliminary Single Subject credential student.

3. A 3.0 cumulative GPA is required from the institution awarding the bachelor's degree.

4. Subject Matter Competence: This requirement is satisfied by either:

- Providing evidence of satisfactory completion of the appropriate sections of the California Subject Examinations for Teachers (CSET) or
- Having completed the entire subject matter preparation program for the desired single subject credential.

5. The California Basic Educational Skills Test (CBEST): Evidence of passing the CBEST satisfies this requirement.

6. U.S. Constitution requirement:

- Completion of a course covering the provisions and principles of the U.S. Constitution or
- Passage of an appropriate exam offered through the County Office of Education (Contact the EDS office for information.)

7. Sensitivity to second language learning: Applicants must demonstrate, through course work or equivalent experience, an informed sensitivity to the challenges of second language learning and acquisition. This can be fulfilled in one of three ways:

- Completion of nine quarter units of college course work in a single language that is not the applicant’s native language or
- Completion of three years of secondary school course work in a language other than English. The course work must be taken in grades 7 through 12, with at least a B average or
- Demonstration of an "equivalent experience" in a second language situation. Applicants who wish to satisfy this requirement by one of the three options listed below must submit an essay that describes the length and circumstances of the experience, including at least three specific examples of situations that helped you gain personal knowledge and appreciation of issues surrounding second language acquisition in a diverse cultural setting. The three equivalent experience options are:

 The applicant has lived for a prolonged period of time in a country where the language spoken was not native to the applicant, and where the applicant was continuously required to speak that second language (e.g., Peace Corps).

 The applicant has had an extended experience immersed in a multilingual community in his/her native country.

 The applicant was raised in a multilingual community.

8. Satisfactory scores on the Graduate Record Exam (GRE) General Test.

9. Satisfactory completion of the education foundations prerequisites for the Single Subject Credential (contact EDS for the current prerequisite requirements).

10. Prerequisites for BCLAD Emphasis in Spanish: This emphasis is designed for students who
have sufficient bilingual skills to effectively teach in English and Spanish. Students interested in applying for admission to the BCLAD program must demonstrate:

• Spanish Language Fluency:
 Completion of two Spanish literature courses, at least one of which must be upper-division in either Latin American or Chicano literature, and
 Completion of the EDS Spanish Assessment, with an FSI score of at least 3 (Scores of 3– will be accepted, but student must receive a score of 3 prior to being recommended for the BCLAD credential.)
 Since these exams are coordinated by EDS, please contact EDS in January prior to application to the credential program.

• Cultural Knowledge: One history course and one culture course covering Chicano or Latin American-related topics.

• History, Politics, and Theory of Bilingual Education: EDS 125 or ETHN 140.

11. A desire to teach in a bilingual setting.

Note: A grade of B– or higher is required for all BCLAD courses.

SINGLE SUBJECT PROFESSIONAL PREPARATION

Students engage in an intensive program of professional preparation, including five teaching methods courses in the summer prior to the internship, and seminars offered throughout the academic year that address classroom management techniques and strategies for dealing with individual teaching situations.

Students admitted to the M.Ed./Preliminary Single Subject Professional Preparation Program are eligible to be interviewed in the summer for a paid internship in a local middle or high school for the following school year. Availability of internship positions is not guaranteed, though EDS attempts to facilitate internship positions for all Single Subject students. Students who do not receive an internship position will do their practicum as student teachers instead. Interns are responsible for teaching classes in their subject area under the guidance of an EDS supervisor and an on-site support-provider. Interns are typically hired as part-time teachers and receive a salary from the school district commensurate with the number of sections taught.

A typical student schedule for the Preliminary Single Subject Professional Preparation Program is shown in Table 2.

Table 2: The Professional Preparation Program for the M.Ed./Preliminary Single Subject Credential

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
<th>SUMMER</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDS 373 (4)</td>
<td>EDS 379A (8)</td>
<td>EDS 379B (8)</td>
<td>EDS 379C (8) or (374 or 375)</td>
</tr>
<tr>
<td>EDS 376 (4)</td>
<td>EDS 351 (4)</td>
<td>EDS 381 (4)</td>
<td>EDS 382 (4)</td>
</tr>
<tr>
<td>EDS 201 (4)</td>
<td>EDS 205A (2)</td>
<td>EDS 205B (2)</td>
<td></td>
</tr>
<tr>
<td>EDS 203 (4)</td>
<td>EDS 250 (4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For BCLAD Candidates:

EDS 352A (2) EDS 32B (2)

The Master of Arts in Teaching and Learning: Curriculum Design

The M.A in Teaching and Learning (Curriculum Design) offers professional educators in elementary and secondary schools an extensive overview of principles of educational research and curriculum design.

A key feature of the M.A. program is the integration of research and practice. M.A. students remain full-time teachers for the duration of the program. They design, implement, and evaluate curricular innovations in their own classrooms. The culmination of the M.A. work is a thesis describing the rationale, development, and effectiveness of these innovations.

Examples of M.A. Research Projects

The topics of the M.A. theses in past years are varied, and have included: multimedia approaches to secondary biology and chemistry instruction; writing revision among emergent writers; building partnerships between families and schools; activities which link home and school experiences in the content areas of reading and writing, mathematics, science, and social studies; improved integration of curriculum and assessment; motivation and art; using technology for mathematics and geography teaching; and embedding ESL in native-language instruction.

THE M.A. COURSE OF STUDY (TEACHING AND LEARNING: EMPHASIS IN CURRICULUM DESIGN)

The M.A. program requirements consist of forty quarter units of course work, including the master’s thesis. Courses are usually offered for four quarter units of credit, and are typically offered one night per week, from 5:00–8:00 p.m. Core course work comprises twenty-eight units, with the remaining twelve units consisting of elective course work.

A typical program consists of:

Core M.A. Course Work

First Summer (mid June–late August)

• EDS 231 Advanced Instructional Practices or EDS 232 Special Topics in Education (offered alternating summers)
• EDS 229 Introduction to Educational Resources

Fall, Winter, and Spring:

• EDS 230A-B-C Research in Curriculum Design
• EDS 233A-B Topics in Education Research and Design
• EDS 290 Research Practicum

Second Summer (mid June–late August)

• EDS 231 Advanced Instructional Practices or EDS 232 Special Topics in Education (offered alternating summers)
• EDS 295 M.A. Thesis
• Completion of M.A. thesis writing

ADMISSION REQUIREMENTS

Admission to the M.A. program in teaching and learning at UCSD is competitive. Factors considered by the selection committee include:

• Teaching experience
• Professional development activities
• Experience and interest in curriculum design
• Academic record

Admission to graduate standing at UCSD requires a minimum cumulative GPA of 3.0 for any prior graduate work, and for the bachelor’s degree. Official scores from the GRE verbal, analytic, and quantitative sections are also required. The application deadline is February 1.
The Master of Arts in Teaching and Learning: Bilingual Education (ASL-English)

Education Studies (EDS) at UCSD offers a master of arts in teaching and learning: bilingual education emphasis (ASL-English) and the California Deaf and Hard-of-Hearing Specialist Teaching Credential and the Preliminary Multiple Subject Teaching Credential with BCLAD emphasis for elementary school teachers. This program of study includes extensive practicum experience combined with the latest research and innovation in bilingual education and deaf education. Students in the program participate in research and development on the leading edge of bilingual, multicultural education for deaf and hard-of-hearing children.

In keeping with its aim of training teachers who will be able to meet the needs of deaf and hard-of-hearing children from various language and cultural backgrounds, EDS requires fluency in ASL for acceptance into the program. EDS’s teacher training program is designed to prepare teachers to work in various types of school settings from residential school classrooms to local public school classrooms for deaf and hard-of-hearing children. EDS recognizes that deaf and hard-of-hearing children need teachers who are bilingual and knowledgeable about the role of culture in human development.

PREREQUISITE COURSE REQUIREMENTS

Prior to admittance to the credential and master’s study, foundation students (or UCSD undergraduates pursuing the minor in education studies) complete the following five courses offered during the first summer. UCSD students can complete these prerequisites as part of the Minor in Education Studies. Contact EDS for more information on the graduate credential prerequisite requirements:

• EDS 128A-B: Introduction to Teaching and Learning (Elementary)
• EDS 115: Cognitive Development and Education
• EDS 117: Language, Culture and Education
• EDS 125: History, Politics, and Theory of Bilingual Education

The Program of Study for the Deaf and Hard-of-Hearing Specialist Credential, the Preliminary Multiple Subject Teaching Credential with BCLAD Emphasis, and the Master of Arts in Teaching and Learning.

After completion of the prerequisite component, students complete a program of study resulting in the California Deaf and Hard-of-Hearing Specialist Credential at the elementary level. Students also qualify for the Preliminary Multiple Subject (BCLAD) credential.

This program of study consists of courses in bilingual education theory, methods, and applications to deaf education in addition to intensive classroom practice. During the second year of study the focus is on designing, implementing and evaluating a research-based project. This integration of research and practice is central to the goal of the M.A. program to develop teachers as researchers.

A typical program of study includes:

Year 1
Fall
• COHI 124: Voice: Deaf People in America
• EDS 342A: ASL-English Bilingual Education Practices
• EDS 361A: Innovative Instructional Practices
• EDS 390: Research Practicum (four units)
• EDS 203: Technology, Teaching, and Learning
• EDS 201: Introduction to Resources for Teaching and Learning, and
• EDS 250: Equitable Educational Research and Practice

Winter
• EDS 342B: ASL-English Bilingual Education Practices,
• EDS 361B: Innovative Instructional Practices,
• EDS 369A: Practicum in Student Teaching

Spring
• EDS 342C: ASL-English Bilingual Education Practices
• EDS 361C: Innovative Instructional Practices
• EDS 369B: Practicum in Student Teaching, and
• EDS 382: Inclusive Educational Practices

Year 2
Fall
• EDS 351: Teaching the English Language Learner,
• EDS 240A: Research in ASL-English Bilingual Education, and
• EDS 241: Advanced Topics in Deaf Education

Winter
• EDS 233A: Topics in Education Research and Design
• EDS 240B: Research in ASL-English Bilingual Education, and
• EDS 290: Research Practicum

Summer
• EDS 295: M.A. Thesis

ADMISSION REQUIREMENTS

Candidates will apply for graduate admission to the foundation component of this program. Upon satisfactory completion of the prerequisite component, students will advance to the professional/master’s component, which requires two years of study. The following are the minimum eligibility requirements for admission to the graduate prerequisite component. Applications are available beginning in January. The application deadline is March 1.

1. A bachelor’s degree with a 3.0 cumulative GPA
2. Official Graduate Record Exam (GRE) scores
3. Subject matter competence (CSET)
4. The California Basic Educational Skills Test (CBEST)
5. Completion of a course including the provisions and principles of the U.S. Constitution, or passage of the appropriate exam
6. Official Graduate Application and fee
7. Statement of Purpose and reference letters
8. Fluency in American Sign Language
9. Knowledge and experience of the social and cultural life of deaf people
10. A desire to teach deaf children of varying language and cultural backgrounds
Admission to graduate standing at UCSD requires a minimum cumulative GPA of 3.0 for any prior graduate work, and for the bachelor's degree. Official scores from the GRE verbal, analytic, and quantitative sections are also required.

Doctor of Education (Ed.D.) in Teaching and Learning

Education Studies at UCSD offers a Doctor of Education (Ed.D.) Degree in Teaching and Learning. This cohort-based four-year doctorate is designed to enable professional educators to participate in a research-based program while working in an educational setting. The Ed.D. course of study provides a research perspective on educational reform, with the expectation of developing regional leadership for K–12 and postsecondary teaching and learning. With its rich tradition of research and technological innovation, UCSD is uniquely positioned in the region to provide the research expertise for this program.

The Doctor of Education in Teaching and Learning program provides professional educators with the knowledge and skills to serve as faculty of pre-service teacher education and leaders of professional development for practicing teachers. Students take courses which address the topics of school reform and educational equity; learning and educational technology; curriculum research and theory; qualitative and quantitative research methods; cognition and learning theory; the social organization of schooling; language and culture; and research on teaching and learning.

The following is a typical course of study:

Year 1

Summer
- EDS 229: Introduction to Educational Resources,
- EDS 231 Advanced Instructional Practices, or EDS 232 Special Topics in Education (offered alternating summers)

Fall-Winter-Spring
- EDS 230A,B,C: Research in Curriculum Design
- EDS 295: M.A. Thesis

Summer
- EDS 295: M.A. Thesis
- EDS 231 Advanced Instructional Practices, or EDS 232 Special Topics in Education (offered alternating summers)

Year 2

Fall
- EDS 260A: Educational Research and Evaluation Design
- EDS 270: Leadership and Equity in Educational Reform

Winter
- EDS 260B: Educational Research and Evaluation Design
- Elective Graduate Seminar

Spring
- EDS 260C: Educational Research and Evaluation Design
- Elective Graduate Seminar

Year 3

Fall-Winter-Spring
- EDS 261A-B-C: Advanced Research and Evaluation Methods
- Elective Graduate Seminar

Year 4

Fall-Winter-Spring
- EDS 262A-B-C: Dissertation Writing Seminar
- EDS 299: Dissertation Research

ADMISSION REQUIREMENTS

See the EDS Web site for current admission requirements. The application deadline is February 1.

Doctor of Education (Ed.D.) in Educational Leadership

The Doctor of Education in Educational Leadership is offered through a partnership between UCSD and California State University, San Marcos (CSUSM). The program is designed as a professional degree for P-12 and postsecondary educators who will develop advanced leadership and research skills related to their own institutional settings. Students are typically mid-career working professional educators who attend classes on weeknights and weekends over a thirty-six-month period. Students take courses designed to develop four specific leadership capacities: (1) leadership for learning; (2) leadership for a diverse society; (3) leadership for organizational change; and (4) leadership for organizational development. This program prepares leaders for culturally, linguistically, and economically diverse educational settings. Students will conduct research on professional practice within their own institutions, addressing specific local problems that have national implications for teaching and learning, school reform, and professional development. Students completing the program will receive a joint degree from UCSD and CSUSM.

The following is a typical course of study taught by UCSD and CSUSM faculty:

Year 1

Winter
- EDS 280: Re-Thinking Leadership
- EDS 287A: Educational Research and Evaluation Design
- EDS 291A: Leadership Research Practicum

Spring
- EDS 281: Leadership for Learning
- EDS 287B: Educational Research and Evaluation Design
- EDS 291B: Leadership Research Practicum

Summer
- EDS 282: Leadership for a Diverse Society
- EDS 287C: Educational Research and Evaluation Design
- EDS 291C: Leadership Research Practicum

Year 2

Winter
- EDS 283: Leadership for Organizational Change
- EDS 288A: Advanced Research and Evaluation Methods
- EDS 293A: Advanced Leadership Practicum

Spring
- EDS 284: Leadership for Organizational Development
- EDS 288B: Advanced Research and Evaluation Methods
- EDS 293B: Advanced Leadership Practicum

Summer
- EDS 285: Leadership for the Future
The application deadline is August 1.

Courses

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

The following courses are offered by the EDS faculty. Students are advised to consult with an EDS advisor to determine which courses satisfy credential requirements. Undergraduate students may enroll in graduate seminars with the consent of instructor.

Lower-Division

EDS 20. Introduction to Principles of Learning (4)
Students will study discipline-specific principles of effective learning, including critical thinking, problem solving, collaboration and group communication, laboratory and hypothesis testing, library research and writing skills, and self-assessment. Students will explore concepts and procedures in mathematics, science, and economics as the context for making explicit these often-tacit principles of learning. Prerequisite: Summer Bridge participation.

EDS 293A: Advanced Leadership Practicum

Fall

• EDS 286: Advanced Topics in Leadership
• EDS 299: Dissertation Research

Year 3

Winter

• EDS 299: Dissertation Research
• EDS 289A: Dissertation Writing Seminar
• EDS 294A: Colloquium on Educational Leadership

Spring

• EDS 299: Dissertation Research
• EDS 289B: Dissertation Writing Seminar
• EDS 294B: Colloquium on Educational Leadership

Summer

• EDS 299: Dissertation Research
• EDS 289C: Dissertation Writing Seminar
• EDS 294B: Colloquium on Educational Leadership

Fall

• EDS 299: Dissertation Research
• EDS 289D: Dissertation Writing Seminar

Admission Requirements

See the EDS Web site for current admission requirements. The application deadline is August 1.

Upper-Division

EDS 105. Teaching and Learning Physics (4)
(Same as PhyS 180.) A course on how people learn and understand key concepts in Newtonian mechanics. Reading in physics and cognitive science plus fieldwork teaching and evaluating K–12 students. Useful for students interested in teaching. Prerequisite: PhyS 1A, 2A, or 4A or consent of the instructor.

EDS 109. Teaching Physical Education (4)
This course is designed to assist future elementary teachers and recreation leaders in developing quality physical education programs for children. Instruction focuses on theory and practice of movement activities that are physically and emotionally safe, health promoting, and developmentally appropriate.

EDS 114. Cognitive Development and Interactive Computing Environments (4)
Learning and development considered as an evolving interplay between “internal representations” and “external representations” of the world, with special attention devoted to the design, history, and educational implications of computer-based tools and learning environments. Prerequisite: upper-division standing.

EDS 115. Cognitive Development and Education (4)
This course examines the development of thinking and language in preschool and elementary school children, with implications for education. Themes include facilitating children’s learning, and individual differences in cognition. Examples of topics covered are word learning, mathematical knowledge, and scientific thinking. Letter grade only.

EDS 116. The Psychology of Teaching and Structures of Information for Human Learning (0–4)
College students tutoring college students. Curriculum: basic applied learning principles, specifying objectives, planning and designing instruction, testing, evaluation, interpersonal communication skills, study skills. Objectives will be assessed by project completion and practicum feedback. This course is not creditable toward professional preparation requirements for the multiple subject credential. Prerequisite: departmental approval (consent of instructor)—department stamp restriction.

EDS 117. Language, Culture, and Education (4)
(Same as Soc/B 117) The mutual influence of language, culture, and education. Explorations of students’ school success and failure that employ linguistic and cultural variables, bilingualism, and cultural transmission through education are explored.

EDS 118. Adolescent Development and Education (4)
This course introduces prospective secondary teachers to the cognitive, social, and emotional development of adolescents, including developmental learning theory, the teaching/learning process, effective learning environments, and cross-cultural variation in development. Implications for classroom practice are drawn.

EDS/LIGN 119. First and Second Language Learning: From Childhood through Adolescence (4)
An examination of how human language learning ability develops and changes over the first two decades of life, including discussion of factors that may affect this ability. Prerequisite: upper-division standing or consent of instructor.

EDS 121A/Math. 121A. Foundations of Teaching and Learning Mathematics I (4)
Develop teachers’ knowledge base (knowledge of mathematics content, pedagogy, and student learning) in the context of advanced mathematics. This course builds on the previous courses where these components of knowledge were addressed exclusively in the context of high-school mathematics. Prerequisite: Math. 95. Introduction to Teaching Math, Calculus 10C or 20C.

EDS 121B/Math. 121B. Foundations of Teaching and Learning Mathematics II (4)
Examine how learning theories can consolidate observations about conceptual development with the individual student as well as the development of knowledge in the history of mathematics. Examine how teaching theories explain the effect of teaching approaches addressed in the previous courses. Prerequisites: EDS 121A/Math. 121A. Foundations of Teaching and Learning Mathematics I, Calculus 10C or 20C.

EDS 122/Chem. 187. Foundations of Teaching and Learning Science (4)
Examine theories of learning and how they are important in the science classroom. Conceptual development in the individual student, as well as the development of knowledge in the history of science.
Key conceptual obstacles in science will be explored. Prerequisites: EDS 31/Chem. 87: Introduction to Teaching Science, Chemistry 6C.

EDS 123/Chem. 188. Capstone Seminar in Science Education (4)
Examine theories of learning and how they are important in the science classroom. Conceptual development in the individual student, as well as the development of knowledge in the history of science. Key conceptual obstacles in science will be explored. Prerequisites: EDS 122/Chem. 187. Foundations of Teaching and Learning Science.

COHI 124. Voice: Deaf People in America (4)
The relationship between small groups and dominant culture is studied by exploring the world of deaf people who have for the past twenty years begun to speak as a cultural group. Issues of language, communication, self-representation, and social structure are examined. Prerequisite: Com/HIP 100 or consent of the instructor.

EDS 125. History, Politics, and Theory of Bilingual Education (4)
This course provides a historical overview and models of bilingual education in the United States. Students will examine socio-cultural, theoretical, and policy issues associated with native language and second-language instruction, and legal requirements for public bilingual program.

EDS 126. Social Organization of Education (4)
(Same as Soc/C 126) The social organization of education in the U.S. and other societies; the functions of education for individuals and society; the structure of schools; educational decision-making; educational testing; socialization and education; formal and informal education; cultural transmission. Prerequisite: upper-division standing.

EDS 127A-B-C. Practicum in Interactive Computing (4-4-4)
The course focuses on interactive computing in teaching/learning. Course work concentrates on interactive computing, application to teaching, learning, bilingualism, and communication. Concurrent with course work, students are assigned to a school or community field site implementing interactive computing. Students will write research reports integrating course work and field experience. (F,W,S)

EDS 128 A-B. Introduction to Teaching and Learning (Elementary) (4-4)
This course series is for undergraduates who are exploring a career in elementary school teaching. Topics addressed include: theories of teaching and learning processes and motivation for science, mathematics, and English instruction. EDS 129A focuses on the analysis of the needs of individual learners and small group instruction techniques; EDS 129B emphasizes the various roles of the classroom teacher and planning individual lessons; and EDS 129C emphasizes the assessment of student work and long-range curriculum planning. Prerequisites: department stamp. EDS 139 must be taken as corequisite. Must have successfully completed EDS 136, 138, or 129A for 129B, and 129B for 129C. EDS 129A and 129C are restricted for students applying to the EDS M.Ed./Single Subject Credential Program.

EDS 130. Introduction to Academic Mentoring of Elementary/Secondary Students (4)
This course focuses on the role of undergraduate mentors in raising academic expectations for students and families traditionally underrepresented at the university. The relationship between the school and community, the social and political organization of elementary schools, and the academic achievement of elementary children are examined. Prerequisites: department stamp required. EDS 139 must be taken as a corequisite.

EDS 134. Introduction to Literacy and Numeracy Tutoring (4)
This course examines effective practices for language arts and mathematics learning for elementary school children. The field experience and seminar focus on the tutor/student relationship, teaching and learning processes for literacy and numeracy, and community service. Prerequisites: department stamp required. EDS 139 must be taken as a corequisite.

EDS 136. Introduction to Academic Tutoring of Secondary School Students (4)
This course focuses on the role of undergraduate tutors in building academic resiliency in secondary students traditionally underrepresented at the university. The relationship between the school and community, the social and political organization of secondary schools, the philosophical, sociological, and political issues which relate to the U.S. secondary educational system, and the academic achievement of secondary children are examined. Prerequisites: department stamp required. EDS 139 must be taken as a corequisite.

EDS 138. Introduction to Academic Tutoring at the Preuss School (4)
This course focuses on the effects of the Charter School movement on public education in the U.S., the role of the research universities in K-12 education, the social and political organization of the schools, the philosophical, sociological, and political issues which relate to the U.S. secondary educational system, and the academic achievement of secondary children. Students investigate the role of undergraduate tutors in building academic resiliency in secondary students traditionally underrepresented at the university. Prerequisites: department stamp required. EDS 139 must be taken as a corequisite.

EDS 139. Practicum in Teaching/Learning (2)
Students are placed in local schools and work with students in classrooms and the community. Students work on educational activities with K-12 students a minimum of four hours/week. Prerequisites: department stamp required. One of the following courses (may be taken concurrently) EDS 109, or EDS 127A-B-C, or EDS 128A-B, or 129A-B-C, or 130, or 134, or 136, or 138.

EDS 190. Research Practicum (1-6)
Supervised research studies with individual topics selected according to students’ special interests. Students will develop a research proposal and begin to gather and analyze data. Prerequisite: consent of instructor. (F,W,S)

EDS 195. Apprentice Teaching (2-4)
Advanced EDS students are prepared in effective methods of supervising the preparation of UCSD students serving as paraprofessionals in K-12 classrooms. Topics covered include: classroom management, interpersonal relations, supervision techniques, multicultural and multi-lingual education, politics in the school, and curriculum development. Each student serves as a discussion leader and conducts at least two workshops. Prerequisites: department stamp required and TE79 or TE80 major code.

EDS 198. Directed Group Study (4-2)
Directed group study, guided reading, and study involving research and analysis of activities and services in multicultural education, bilingual education, the teaching-learning process, and other areas that are not covered by the present curriculum. Prerequisite: consent of instructor.

EDS 199. Special Studies (4)
Individual guided reading and study involving research and analysis of activities and services in multicultural education, bilingual education, the teaching-learning process, and other areas that are not covered by the present curriculum. Prerequisite: consent of instructor.

EDS 342A. ASL-English Bilingual Education Practices (4)
Students will examine the history, current theory, philosophy, legislation, and trends in deaf education. Methods of first- and second-language development, communication, and literacy skills for deaf and hard-of-hearing children will be introduced. Prerequisites: EDS 115, EDS 117, EDS 126, EDS 128A, EDS 128B. Must be a ED76 major. (F)

EDS 342B. ASL-English Bilingual Education Practices (2)
Students will investigate formal and informal assessment techniques used for deaf and hard-of-hearing children, bilingual/multicultural education practices across the curriculum, effective learning environments and approaches for educating and interacting with families and communities. Prerequisites: EDS 342A, EDS 361A. Must be a ED76 major. Concurrent enrollment in EDS 361B and 369A.

EDS 342C. ASL-English Bilingual Education Practices (2)
Students will continue to investigate formal and informal assessment techniques used for deaf and hard-of-hearing children, bilingual/multicultural education practices across the curriculum, effective learning environments and approaches for educating and interacting with families and communities. Prerequisites: EDS 342A, EDS 342B, EDS 361A. Must be a ED76 major.

EDS 349. Deaf Education Specialist Student Teaching Practicum (9)
Education specialist credential candidate performs student teaching in participating schools for a minimum of seven weeks full-time under the supervision of a cooperating teacher and university supervisor. The field experience provides professional preparation and diversified teaching responsibilities for post-
baccalaureate students pursuing the California Deaf and Hard of Hearing Specialist and BCLAD Credential. Prerequisites: must be a ED76 major. Teaching and Bilingual Education (ASL-English) only.

EDS 351. Teaching the English Language Learner (4) Students will examine the principles of second language acquisition and approaches to bilingual education. They will develop a repertoire of strategies for teaching in elementary or secondary content areas. Prerequisite: ED76 or ED78 major: Elementary Multiple Subject or Single Subject candidates at UCSD who have advanced to student teaching or internship. (F)

EDS 352A. Bilingual Instructional Practices (2) History and models of bilingual education; socio-cultural issues associated with second language instruction, legal requirements for public school bilingual programs, native language and ESL teaching methods. First course in a two-course sequence. Prerequisite: ED78 major: Elementary Multiple Subject or Single Subject candidates at UCSD who have advanced to student teaching or internship. (F)

EDS 352B. Bilingual Instructional Practices (2) History and models of bilingual education; socio-cultural issues associated with second language instruction, legal requirements for public school bilingual programs, native language and ESL teaching methods. Prerequisite: EDS352A, ED78 major: Elementary Multiple Subject or Single Subject candidates at UCSD who have advanced to student teaching or internship. (Su,W)

EDS 355A. Advanced Mathematics Teaching Practices for Grades K-6 (2) Provides a theoretical and practical grounding in pedagogy and professional factors influencing high-quality elementary mathematics education. Students will review research literature and various content standards, assessment materials, and curriculum materials in preparation for specialized mathematics instruction in elementary classrooms. Prerequisites: admission into the ED78: Multiple Subject (MS-2 program), and concurrent enrollment in EDS 361A or consent of instructor.

EDS 355B. Advanced Mathematics Teaching Practices for Grades K-6 (2) Provides a theoretical and practical grounding in pedagogy and professional factors influencing high-quality elementary mathematics education. Students will review research literature and various content standards, assessment materials, and curriculum materials in preparation for specialized mathematics instruction in elementary classrooms. Prerequisites: EDS 355A, admission into the EDBS: Multiple Subject (MS-2 program), and concurrent enrollment in EDS 361B or consent of instructor.

EDS 355C. Advanced Mathematics Teaching Practices for Grades K-6 (2) Provides a theoretical and practical grounding in pedagogy and professional factors influencing high-quality elementary mathematics education. Students will review research literature and various content standards, assessment materials, and curriculum materials in preparation for specialized mathematics instruction in elementary classrooms. Prerequisites: EDS 355B, admission into the EDBS: Multiple Subject (MS-2 program), and concurrent enrollment in EDS 361C or consent of instructor.

EDS 361A. Innovative Instructional Practices (6) First course in a three-course sequence. It provides pedagogical methods for multi-subject teaching. Diverse subject areas (math, science, fine arts, PE, and social studies) are integrated into a single intercurricular course of study by emphasizing activity/inquiry techniques of instruction. Prerequisite: must be a ED76 major: Teaching and Learning Bilingual Education (ASL-English) or ED78 major only for Elementary Multiple Subject candidate who has advanced to student teaching.

EDS 361B. Innovative Instructional Practices (6) Second course in three course sequence. It provides pedagogical methods for multi-subject teaching. Diverse subject areas (language arts, English language development, health education, mathematics, sciences, social studies, fine arts, and physical education) are integrated into a single intercurricular course of study by emphasizing activity/inquiry techniques of instruction. Prerequisites: EDS 361A, ED76 major: Teaching and Learning Bilingual Education (ASL-English) or ED78 major only for Elementary Multiple Subject candidate who has advanced to student teaching.

EDS 361C. Innovative Instructional Practices (4) Last course in a three course sequence. It provides pedagogical methods for multi-subject teaching. General teaching methods are integrated into a single intercurricular course of study by emphasizing activity/inquiry techniques of instruction. Prerequisites: EDS 361A, ED76 major: Teaching and Learning Bilingual Education (ASL-English) or ED78 major only for Elementary Multiple Subject candidate who has advanced to student teaching.

EDS 369A. Multiple Subject (Elementary) Student Teaching Practicum-I (9) First course in a series. The elementary credential candidate performs student teaching in participating schools for seven to eight weeks full-time for each course (fifteen weeks total) under the supervision of a cooperating teacher and university supervisor. The student teaching experience offers professional preparation and diversified teaching responsibilities for post-baccalaureate students pursuing the California Multiple Subject Teaching Credential. Prerequisites: ED78 major for Elementary Multiple Subjects only. Affirmed Multiple Subject Credential candidate teaches approximately one academic quarter for each course in this series (one public school academic year) under the guidance of a university supervisor with additional support provided by an on-site teacher. The internship offers extensive professional preparation and diversified teaching experience under actual classroom conditions for post-baccalaureate students pursuing the California Multiple Subject Teaching Credential. Prerequisites: ED78 Single Subject major only. Affirmed Single Subject candidate at UCSD who has advanced to student teaching or internship.

EDS 369B. Multiple Subject (Elementary) Student Teaching Practicum-II (9) Second course in a three-course series. The elementary credential candidate performs student teaching in participating schools for seven to eight weeks full-time for each course (fifteen weeks total) under the supervision of a cooperating teacher and university supervisor. The student teaching experience offers professional preparation and diversified teaching responsibilities for post-baccalaureate students pursuing the California Multiple Subject Teaching Credential. Prerequisites: ED 269A, ED78 major for Elementary Multiple Subjects only. Affirmed Multiple Subject Credential candidate at UCSD who has advanced to student teaching.

EDS 373. Secondary English Teaching Practices (4) The course introduces prospective secondary teachers to principles and strategies of teaching English language arts. Topics include: writing processes, reading processes, integrated language arts, assessment, the second language learner, the classroom community, the California English Language Arts Framework. Prerequisite: ED78 Single Subject major only: Affirmed Single Subject candidate at UCSD who has advanced to internship or consent of instructor.

EDS 374. Secondary Mathematics Teaching Practices (4) Mathematics teaching techniques including, curriculum design, California Model Curriculum Standards, instructional methods, computer applications, selection and use of textbooks, student assessment, lesson planning, and classroom organization. Professional matters including curriculum planning, professional organizations, para-professionals, professional ethics, education law, and parent involvement are addressed. Prerequisite: ED78 Single Subject major only. Affirmed Single Subject candidate at UCSD who has advanced to internship or consent of instructor. (Su)

EDS 375. Secondary Science Teaching Practices (4) Science teaching techniques, including science curriculum design, California Model Curriculum Standards, instructional methods, computer applications, selection and use of textbooks, student assessment, lesson planning, and classroom organization. Professional matters including curriculum planning, professional organizations, para-professionals, professional ethics, education law, and parent involvement are addressed. Prerequisite: ED78 Single Subject major only. Affirmed Single Subject candidate at UCSD who has advanced to internship or consent of instructor. (Su)

EDS 376. Language and Learning Instruction (4) This course satisfies the California Commission on Teacher Credentialing requirement for preparation in reading theory and methods for all credential candidates. Theories of reading development, integration of the language arts, reading and writing in the content areas, teaching methods, and literature. Prerequisite: ED78 Elementary Multiple Subject or Single Subject candidates at UCSD who have advanced to student teaching or internship.

EDS 379A. Single Subject (Secondary) Internship Practicum I (8) The secondary credential candidate teaches approximately one academic quarter for each course in this series (one public school academic year) under the guidance of a university supervisor with additional support provided by an on-site teacher. The internship offers extensive professional preparation and diversified teaching experience under actual classroom conditions for post-baccalaureate students pursuing the California Single Subject Teaching Credential. Prerequisites: ED78 Single Subject major only. Affirmed Single Subject candidate at UCSD who has advanced to internship or consent of instructor.

EDS 379B. Single Subject (Secondary) Internship Practicum II (8) Second course in the series. The secondary credential candidate teaches approximately one academic quarter for each course in this series (one public school academic year) under the guidance of a university supervisor with additional support provided by an on-site teacher. The internship offers extensive professional preparation and diversified teaching experience under actual classroom conditions for post-baccalaureate students pursuing the California Single Subject Teaching Credential. Prerequisites: EDS 379A. ED78 Single Subject major only. Affirmed Single Subject candidate at UCSD who has advanced to internship.

EDS 379C. Single Subject (Secondary) Internship Practicum III (8) Third course in the series. The secondary credential candidate teaches approximately one academic quarter for each course in this series (one public school academic year) under the guidance of a university supervisor with additional support provided by an on-site teacher. The internship offers extensive professional preparation and diversified teaching experience under actual classroom conditions for post-baccalaureate students pursuing the California Single Subject Teaching Credential. Prerequisites: EDS 379A. ED78 Single Subject major only. Affirmed Single Subject candidate at UCSD who has advanced to internship.
supervisor with additional support provided by an on-site teacher. The internship offers extensive professional preparation and diversified teaching experience under actual classroom conditions for post-baccalaureate students pursuing the California Single Subject Teaching Credential. Prerequisites: EDS 379B. EDS 78 Single Subject major only. Affirmed Single Subject candidate at UCSD who has advanced to internship.

EDS 381. Health Education (4)
This course satisfies the Commission on Teacher Credentialing requirement for Health Education. Topics include: physical education, substance abuse, sex education, cardio-pulmonary resuscitation, nutrition, and first aid. Prerequisite: ED 78 or ED 81 major: Elementary Multiple Subject or Single Subject candidates at UCSD who have advanced to student teaching or internship.

EDS 382. Inclusive Educational Practices (4)
This course satisfies the Commission on Teacher Credentialing requirement for Special Education. Topics include: teaching methods for accommodating special-needs students in the regular classroom, developing an Individual Education Plan, characteristics of special-needs students, lesson planning to accommodate individual differences, and legislated mandates. Prerequisite: EDS 78 or EDS 81 major: Elementary Multiple Subject or Single Subject candidates at UCSD who have advanced to student teaching or internship and department stamp required.

EDS 385. Elementary School Mathematics Content and Pedagogy (4)
Examines the underlying mathematical concepts of the elementary school mathematics curriculum and related pedagogical implications for teaching. Topics include number concepts, algebraic thinking, geometry, and data collection and analysis. Prerequisite: students must be ED 78 majors: M.Ed./Elementary Multiple Subject Credential candidates who have advanced to student teaching or internship.

EDS 390. Graduate Research Practicum (1–6)
Supervised research studies with individual topics selected according to student’s special interests. Students will develop a research proposal, gather and analyze data. Prerequisite: Consent of instructor.

EDS 398. Directed Group Study (1–6)
Study and analysis of teaching and learning topics for credential students under the guidance of a faculty member. Offered for repeated registration. Prerequisite: Consent of instructor.

EDS 399. Independent Study (1–6)
Individual guided study and/or research in an area not covered by present curriculum course offerings for credential graduate students. Offered for repeated registration. Prerequisite: Consent of instructor.

GRADUATE

Soc. 270. The Sociology of Education (4)
A consideration of the major theories of schooling and society, including functionalist, conflict, critical, and interactional; selected topics in the sociology of education will be addressed in a given quarter, including: the debate over inequality, social selection, cultural reproduction and the transition of knowledge, the cognitive and economic consequences of education. Major research methods will be discussed and critiqued.

EDS 201. Introduction to Resources for Teaching and Learning (4)
This course introduces students to educational resources, both in print and on-line. Students compile and evaluate research studies, curricular materials, and instructional approaches in preparation for future projects in developing and evaluating various approaches to teaching and learning. Prerequisite: students must be registered EDS graduate students.

EDS 203. Technology, Teaching, and Learning (4)
This course will review current literature on effective applications of technology in the classroom. Students will also become fluent in the use of productivity tools, presentation software, and Web development for teaching and learning; critique software relevant to their area of teaching, and develop an educational activity based on their review of the literature that harnesses the power of technology. Prerequisite: students must be registered EDS graduate students.

EDS 204. Technology and Professional Assessment (4)
Advanced techniques for using network-based resources for teaching and learning will be introduced. Students will review relevant research on advanced technologies related to assessment of professional performance and student achievement. Students will present a Web-based professional Teaching Performance Assessment Portfolio that reflects teaching performance during their student teaching or internship field experience. Prerequisite: students must be registered EDS graduate students.

EDS 205A. Reflective Teaching Practice (2)
This course introduces principles and practices of reflective teaching. Student teachers and interns will systematically document their practice teaching and analyze observation data to improve performance. Students will collaborate with supervisors and expert teachers throughout the yearlong preservice teaching experience. Prerequisite: students must be registered EDS graduate students.

EDS 205B. Reflective Teaching Practice (2)
This course introduces principles and practices of reflective teaching. Student teachers and interns will systematically document their practice teaching and analyze observation data to improve performance. Students will collaborate with supervisors and expert teachers throughout the yearlong preservice teaching experience. Prerequisite: students must be registered EDS graduate students.

EDS 206. Teaching Performance Assessment Portfolio (4)
This course introduces the use of a Teaching Performance Assessment Portfolio for assessment of teaching performance. Student teachers and interns will design an electronic portfolio that demonstrates acceptable performance on essential credential standards, National Board of Professional Teaching Standards will also be introduced. Prerequisite: students must be registered EDS graduate students.

EDS 229. Introduction to Educational Resources (4)
This course prepares K-12 teacher-researchers to design, implement, and evaluate classroom research. Students learn how to access and evaluate research studies, curricular materials, and instructional approaches both on-line and in print. Prerequisite: students must be registered TE 76 majors.

EDS 230A-B-C. Research on Curriculum Design (4-4-4)
A year-long course sequence which provides an extensive overview of curriculum design principles appropriate for K–12 instruction. Consensus and model building methods will be discussed using case studies of curriculum research and development projects appropriate for various subject areas and grade levels. Participants will design, implement, and evaluate a curriculum project in their own classrooms. Prerequisite: must be TE 76 major or consent of instructor. (F, W, S)

EDS 231. Advanced Instructional Practices (4)
Selected advanced topics in K–12 instructional practices in various subject areas. Techniques for teaching higher-level cognitive processes and advanced applications of computers and other technology will be stressed. Participants will conduct a field study of promising teaching practices appropriate to their grade level(s) and subject area(s) of instruction. Prerequisite: must be TE 76 major or consent of instructor. (Su)

EDS 232. Special Topics in Education (4)
This course explores topical issues in education. It focuses on recent developments which have broad implications for research and practice in teaching and learning. Course topics will vary each time the course is offered. Prerequisite: TE 76 major or consent of instructor.

EDS 233A. Topics in Education Research and Design (2)
Current topics and issues in education and educational research methodology, including action research, participant observation, ethnography, and survey research. This is the first in a two-course series. Prerequisite: TE 76 major or consent of instructor.

EDS 233B. Topics in Education Research and Design (2)
Current topics and issues in education and educational research methodology, including action research, participant observation, ethnography, and survey research. This is the second in a two-course series. Prerequisite: EDS 233A and TE 76 major or consent of instructor.

EDS 240A. Research in ASL-English Bilingual Education (4)
A three-course sequence in which participants conduct an overview of research and design and conduct a study related to bilingual, bicultural education for deaf children. Prerequisite: TE 76 major: Teaching and Learning Bilingual Education (ASL-English) or consent of instructor.

EDS 240B. Research in ASL-English Bilingual Education (4)
A three-course sequence in which participants conduct an overview of research and design and conduct a study related to bilingual, bicultural education for deaf children. Prerequisite: EDS 240A and TE 76 major: Teaching and Learning Bilingual Education (ASL-English) or consent of instructor.

EDS 240C. Research in ASL-English Bilingual Education (4)
A three-course sequence in which participants conduct an overview of research and design and conduct a study related to bilingual, bicultural education for deaf children. Prerequisites: EDS 240A/EDS 240B, and TE 76 major: Teaching and Learning Bilingual Education (ASL-English) or consent of instructor.
EDS 241. Advanced Topics in Deaf Education (2)
Topics in human development and education that relate to deaf and hard-of-hearing children and the relationship between home, community/culture, and classroom. Prerequisite: admission to the Ed.D. program or consent of instructor.

EDS 250. Equitable Educational Research and Practice (4)
This course introduces students to research studies and educational practices of educational equity, both in general and within specific content areas. Research studies relevant to educational equity will be examined, as will practices that have attempted to enable all students to achieve to the best of their abilities. Prerequisite: students must be registered EDS graduate students.

EDS 260A. Educational Research and Evaluation Design (4)
This course integrates a variety of social and behavioral science perspectives and research methodologies in examining topics of central relevance to education. Students have opportunities to design and apply to educational-research questions a variety of methodologies, including survey, interview, ethnographic, case study, video data analysis, and discourse analysis methods. This is the first of a three-course series. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 260B. Educational Research and Evaluation Design (4)
This course integrates a variety of social and behavioral science perspectives and research methodologies in examining topics of central relevance to education. Students have opportunities to design and apply to educational-research questions a variety of methodologies, including survey, interview, ethnographic, case study, video data analysis, and discourse analysis methods. This is the second of a three-course series. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 260C. Educational Research and Evaluation Design (4)
This course integrates a variety of social and behavioral science perspectives and research methodologies in examining topics of central relevance to education. Students have opportunities to design and apply to educational-research questions a variety of methodologies, including survey, interview, ethnographic, case study, video data analysis, and discourse analysis methods. This is the third of a three-course series. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 261A. Advanced Research and Evaluation Methods (4)
This course addresses more advanced topics in research design and methodology. Students hone the requisite research skills to conduct dissertation research. Students gain varied hands-on experiences in collecting and analyzing data relevant to schooling, as well as learn how to develop, manage, and analyze large data files. Students create a research agenda and develop skills needed in proposal writing: development, organization and coherence, conceptualization of research design, and attention to audience and writing style. This is the second of a three-course series. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 261B. Advanced Research and Evaluation Methods (4)
This course addresses more advanced topics in research design and methodology. Students hone the requisite research skills to conduct dissertation research. Students gain varied hands-on experiences in collecting and analyzing data relevant to schooling, as well as learn how to develop, manage, and analyze large data files. Students create a research agenda and develop skills needed in proposal writing: development, organization and coherence, conceptualization of research design, and attention to audience and writing style. This is the second of a three-course series. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 261C. Advanced Research and Evaluation Methods (4)
This course addresses more advanced topics in research design and methodology. Students hone the requisite research skills to conduct dissertation research. Students gain varied hands-on experiences in collecting and analyzing data relevant to schooling, as well as learn how to develop, manage, and analyze large data files. Students create a research agenda and develop skills needed in proposal writing: development, organization and coherence, conceptualization of research design, and attention to audience and writing style. This is the second of a three-course series. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 262A. Dissertation Writing Seminar (4)
This seminar provides an opportunity for doctoral candidates to present qualitative research findings to varied audiences. This is the first of a three-course series. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 262B. Dissertation Writing Seminar (4)
This seminar provides an opportunity for doctoral candidates to present and critique in-progress dissertation research and writing. Topics addressed will include writing for professional publications and presenting research findings to varied audiences. This is the second of a three-course series. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 262C. Dissertation Writing Seminar (4)
This seminar provides an opportunity for doctoral candidates to present and critique in-progress dissertation research and writing. Topics addressed will include writing for professional publications and presenting research findings to varied audiences. This is the third of a three-course series. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 270. Leadership and Equity in Educational Reform (4)
This course provides a framework for understanding school reform movements that integrates relevant theory and research from a number of academic disciplines. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 271. Language and Diversity in the Schooling Process (4)
This course examines current research and theory which relate language and diversity to educational outcomes. Topics addressed include the development of language and literacy in schools and other settings, socio-cultural perspectives on language learning, and implications for educational policy and practice. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 272. Education and Culture (4)
This course examines schooling from an anthropological perspective, focusing on the impact of social and cultural forces on teaching and learning in U.S. public schools using comparative materials from other societies and settings. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 273. Research in Teaching and Learning: Reading and Writing (4)
This seminar will address current theories and research on the teaching and learning of reading and writing, as well as how research can be used to analyze and foster effective teaching practices. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 274. Research in Teaching and Learning: Mathematics (4)
This seminar will address current theories and research on the teaching and learning of mathematics, as well as how research can be used to analyze and foster effective teaching practices. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 275. Research in Teaching and Learning: Science (4)
This seminar will address current theories and research on the teaching and learning of science, as well as how research can be used to analyze and foster effective teaching practices. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 276. Research in Teaching and Learning: English Language Learning (4)
This seminar will address current theories and research on the teaching and learning of second-language learning, as well as how research can be used to analyze and foster effective practices in teaching English to non-native speakers. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 277. Research in Teaching and Learning: History and Social Sciences (4)
This seminar will address current theories and research on the teaching and learning of social sciences, as well as how research can be used to analyze and foster effective teaching practices. Prerequisite: admission into the Ed.D. program or consent of instructor.

EDS 278/COGR 278. Talking Culture, Culture Talking: Voices of Diversity (4)
This course explores the discourse of culture in American society and the problem of “silenced” or unheard voices. The interaction of individual and collective voice, language, and identity are discussed as they bear on the ways that culture moves through important social institutions such as schools. Of particular interest are issues of teaching, learning, displacement, inclusion, marginality, and the “speaking center.” Prerequisite: graduate status or consent of instructor.

EDS 280. Re-Thinking Leadership (4)
This course will present the evolution of leadership thought and theory, with an emphasis on the distinction between, and interrelatedness of, effective
management and leadership. The ethics of leadership practice and epistemological perspectives of emerging leadership styles will be explored, and students will have opportunities to reflect on the nature of leadership as it is practiced in educational settings. Applying critical, self-reflective leadership practice through structured activities is also an element of this course.

EDS 281. Leadership for Learning (4)
This course will explore various models of curriculum and instruction in response to students’ learning needs. It also will examine models of school organization and the leader’s role and responsibility in developing a school culture that promotes student achievement, using evidence-based decision-making. A major emphasis will be on evaluating research on which theories and practice are based. Prerequisite: joint Ed.D. in Educational Leadership student status.

EDS 282. Leadership for a Diverse Society (4)
This course will address theories and practices for achieving schools and classrooms that are informed by and built around the participation of diverse communities and cultures. The emphasis is on how leadership intersects with sociohistorical and sociocultural theories that suggest that the organization of schools and instruction is critical to student inclusion and outcomes. A basic premise of this course is that a socially just learning theory begins with using all of the resources and knowledge of families, communities, and cultures in formulating policy and practice. Prerequisite: joint Ed.D. in Educational Leadership student status.

EDS 283. Leadership for Organizational Change (4)
This course will present multiple theories of organizational change, explore group processes and identify models of decision-making, and analyze human motivation theories. Establishing and nurturing a purpose-driven organization, while dealing with competing demands, will be discussed. A major emphasis in this course is on people as agents of change and on the creation of high-quality ethical and productive workplaces where employees can achieve success and satisfaction, while advancing the mission of the educational organization. Prerequisite: joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 284. Leadership for Organizational Development (4)
This course will investigate the skills and dispositions needed for students to lead the development of learning organizations. Faculty will teach and model concepts of working with people within educational organizations and programs. Emphasis will be placed on individual’s team development and facilitation, organizational communications, adult learning, and professional development. Prerequisite: joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 285. Leadership for the Future (4)
This course addresses interdisciplinary influences on leadership practice within learning organizations. Contributions from scholars in futures’ studies, including those influenced by modernism and postmodernism, will be used to explore topics such as long-range planning, demographic trends, technology, and brain theory. Prerequisite: joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 286. Advanced Topics in Leadership (4)
This course explores topical issues in the field of leadership. It focuses on recent developments that have broad implications for research and practice in educational leadership. Course topics will vary each time the course is offered. Prerequisite: joint Ed.D. in Educational Leadership student status.

EDS 287A. Educational Research and Evaluation Design (4)
This course integrates a variety of social and behavioral science perspectives and research methodologies in examining topics of central relevance to education. Students have opportunities to design and apply to educational-research questions a variety of methodologies, including experimental and quasi-experimental survey, interview, ethnographic, case study, video data analysis, and discourse analysis methods. This is the first in a three-course sequence. Prerequisite: TEP Education Doctorate student or consent of instructor.

EDS 287B. Educational Research and Evaluation Design (4)
This course integrates a variety of social and behavioral science perspectives and research methodologies in examining topics of central relevance to education. Students have opportunities to design and apply to educational-research questions a variety of methodologies, including experimental and quasi-experimental survey, interview, ethnographic, case study, video data analysis, and discourse analysis methods. Prerequisites: EDS 287A, and TEP Education Doctorate student or consent of instructor.

EDS 287C. Educational Research and Evaluation Design (4)
This course integrates a variety of social and behavioral science perspectives and research methodologies in examining topics of central relevance to education. Students have opportunities to design and apply to educational-research questions a variety of methodologies, including experimental and quasi-experimental survey, interview, ethnographic, case study, video data analysis, and discourse analysis methods. Prerequisites: EDS 287B, and TEP Education Doctorate student or consent of instructor.

EDS 288A. Advanced Research and Evaluation Methods (4)
This course addresses more advanced topics in research design and methodology. Students hone the requisite research skills to conduct dissertation research. Students gain varied hands-on experiences in collecting and analyzing data relevant to schooling, as well as learn how to develop, manage, and analyze large data files. Students create a research agenda to develop skills needed in proposal writing: development, organization and coherence, conceptualization of research design, and attention to audience and writing style. This is the second in a three-course series. Prerequisites: EDS 288B, and joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 288B. Advanced Research and Evaluation Methods (4)
This course addresses more advanced topics in research design and methodology. Students hone the requisite research skills to conduct dissertation research. Students gain varied hands-on experiences in collecting and analyzing data relevant to schooling, as well as learn how to develop, manage, and analyze large data files. Students create a research agenda to develop skills needed in proposal writing: development, organization and coherence, conceptualization of research design, and attention to audience and writing style. This is the second in a three-course series. Prerequisites: EDS 288A, and joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 288C. Advanced Research and Evaluation Methods (4)
This course addresses more advanced topics in research design and methodology. Students hone the requisite research skills to conduct dissertation research. Students gain varied hands-on experiences in collecting and analyzing data relevant to schooling, as well as learn how to develop, manage, and analyze large data files. Students create a research agenda to develop skills needed in proposal writing: development, organization and coherence, conceptualization of research design, and attention to audience and writing style. This is the third course in a three-course series. Prerequisites: EDS 288B, and joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 289A. Dissertation Writing Seminar (4)
This seminar provides an opportunity for doctoral candidates to present and critique in-progress dissertation research and writing. Topics addressed will also include writing for professional publications and presenting research findings to varied audiences. This is the first in a four-course series. Prerequisite: joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 289B. Dissertation Writing Seminar (4)
This seminar provides an opportunity for doctoral candidates to present and critique in-progress dissertation research and writing. Topics addressed will also include writing for professional publications and presenting research findings to varied audiences. This is the second in a four-course series. Prerequisites: EDS 289A, and joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 289C. Dissertation Writing Seminar (4)
This seminar provides an opportunity for doctoral candidates to present and critique in-progress dissertation research and writing. Topics addressed will also include writing for professional publications and presenting research findings to varied audiences. This is the third in a four-course series. Prerequisites: EDS 289B, and joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 289D. Dissertation Writing Seminar (4)
This seminar provides an opportunity for doctoral candidates to present and critique in-progress dissertation research and writing. Topics addressed will also include writing for professional publications and presenting research findings to varied audiences. This is the fourth course in a four-course series. Prerequisites: EDS 289C, and joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 290. Research Practicum (1-6)
Supervised research studies with individual topics selected according to students’ special interests. Students will develop a research proposal appropriate for M.A. thesis, begin to gather and analyze data. Prerequisites: M.A. candidate and consent of instructor. (S/U grades only.)

EDS 291A. Leadership Research Practicum (2)
Students use their placements in local schools and educational settings to examine leadership research and practice topics raised in the Leadership core courses and Research and Evaluation
Design/Methods courses. This is the first in a three-course series. Prerequisite: joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 291B. Leadership Research Practicum (2)
Students use their placements in local schools and educational settings to examine leadership research and practice topics raised in the Leadership core courses and Research and Evaluation Design/Methods courses. This is the second course in a three-course series. Prerequisite: EDS 291A, and joint Ed.D. in Educational Leadership student status.

EDS 291C. Leadership Research Practicum (2)
Students use their placements in local schools and educational settings to examine leadership research and practice topics raised in the Leadership core courses and Research and Evaluation Design/Methods courses. This is the third course in a three-course series. Prerequisite: EDS 291B, and joint Ed.D. in Educational Leadership student status.

EDS 292. Qualifying Paper Preparation (2)
This course will provide students with time, resources, and guidance for the purpose of developing a review of literature on a student-related topic, which typically becomes the focus of the dissertation research project. Students will be expected to use a variety of research tools in order to discover and identify relevant information. (S/U grade permitted)

EDS 293A. Advanced Leadership Research Practicum (2)
Students use their placements in local schools and educational settings to examine leadership research and practice topics raised in the Leadership core courses and Research and Evaluation Design/Methods courses. This is the second course in a three-course series. Prerequisite: joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 293B. Advanced Leadership Research Practicum (2)
Students use their placements in local schools and educational settings to examine leadership research and practice topics raised in the Leadership core courses and Research and Evaluation Design/Methods courses. This is the third course in a three-course series. Prerequisite: EDS 293A, and joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 293C. Advanced Leadership Research Practicum (2)
Students use their placements in local schools and educational settings to examine leadership research and practice topics raised in the Leadership core courses and Research and Evaluation Design/Methods courses. This is the second course in a three-course series. Prerequisite: EDS 293B, and joint Ed.D. in Educational Leadership student status or consent of instructor.

EDS 294A. Colloquium on Educational Leadership (2)
Program faculty and visiting lecturers present leadership research in progress. Serves as a forum to discuss current research in educational leadership. This is the first course of a two-course series. Prerequisite: graduate student status or consent of instructor.

EDS 294B. Colloquium on Educational Leadership (2)
Program faculty and visiting lecturers present leadership research in progress. Serves as a forum to discuss current research in educational leadership. This is the second course in a two-course series. Prerequisite: EDS 294A, and graduate student status or consent of instructor.

EDS 295. MA Thesis (1-8)
Research for the Master’s thesis (Educational Research) or Curriculum Design Portfolio thesis (Curriculum Design). Open for repeated registration up to eight units (S/U grade only). Prerequisite: consent of instructor.

EDS 297. Directed Group Study (1-6)
Study and analysis of specific topics under the guidance of a faculty member. Offered for repeated registration. Prerequisite: consent of instructor.

EDS 298. Independent Study (1-6)
Individual guided study and/or independent research in an area not covered by present course offerings. Offered for repeated registration. Prerequisite: consent of instructor.

EDS 299. Dissertation Research (1-12)
Directed research on dissertation topic for students who have been admitted to candidacy for the Ed.D. degree. May be repeated for credit. Prerequisite: admission into the Ed.D. program.

EDS 500. Apprentice Teaching in Education (2-4)
The course, designed for graduate students serving as teaching assistants in teacher education courses, includes discussion of teaching theory and practice, instructional materials, organization of discussion sections, liaison with participating schools, and methods of evaluation/grading under the supervision of the instructor of the course.

Eleanor Roosevelt College
OFFICE: Provost, Eleanor Roosevelt College, ERC Administration Building
http://roosevelt.ucsd.edu

The Making of the Modern World/Writing Program
OFFICE: Eleanor Roosevelt College MMW Program, ERC Administration Building
See “The Making of the Modern World” program for Eleanor Roosevelt Writing.

Eleanor Roosevelt College Honors Program
OFFICE: Provost, Eleanor Roosevelt College, ERC Administration Building

Honors programs at Eleanor Roosevelt College have been established to provide exceptionally motivated and capable students with enhanced educational experiences through close interaction with faculty and other honors students. There are two main components to the program: the Freshman Honors Program and the Sophomore Honors Research Project. Participation in either is by invitation.

In the fall quarter of their freshman year, selected students are invited to enroll in the Freshman Honors Seminar, a two- to three-quarter course. During the fall quarter, students meet with a variety of faculty members to learn more about their research, and about academic enrichment opportunities at UCSD. The seminar continues during the winter quarter, focusing on an international theme with faculty speakers. Honors students may receive opportunities for particular cultural and social events. Second-year students with GPAs of 3.5 or higher have the opportunity to pursue independent study with individual faculty.

Additional honors opportunities are offered in the Making of the Modern World (MMW) sequence. Students with excellent grades in MMW 1, 2, and 3 and high cumulative grade-point averages are eligible to take MMW 4H, 5H, and 6H. Students attend regular course lectures, but meet in separate honors sections. They may also be invited to special guest lectures and enrichment activities connected with MMW.

There are also opportunities for university-wide honors, including provost’s honors. Students who maintain a GPA of 3.5 for a full academic year are awarded certificates of merit by the college. UCSD’s reputation for excellence is also reflected in the numbers of students who enroll in departmental senior honors programs and who earn college or university honors or election to Phi Beta Kappa.

10. ERC Freshman Honors Seminar (0)
Weekly seminar with faculty members from a variety of disciplines. This seminar provides students with the opportunity to learn more about research and scholarly activities available to them, and acquaints them with UCSD faculty members. Prerequisite: by invitation only: Pass/Not Pass grades only.

20. Freshman Honors Seminar: International Themes (1)
This weekly seminar focuses on a chosen international theme with faculty speakers. The structure of the seminar is informal, giving students the opportunity to participate in interactive discussions. Prerequisite: by invitation only: Pass/Not Pass only. May be taken for credit two times.
Acceptance to the Jacobs School of Engineering

92. Honors Project (2)
Individual project on a topic chosen by the student, done under direction of a faculty member. Prerequisite: by invitation only. Pass/Not Pass only. Repeatable for credit twice, up to a total of six units over three quarters.

196. Honors Project (4)
Senior thesis research project for students who have been accepted into the Eleanor Roosevelt College Individual Studies major. Project will be carried out under supervision of one or more faculty members. Depending on scope of the project, may be taken for four or eight units of credit in a single quarter, or eight units distributed over two quarters. Prerequisite: admission to Eleanor Roosevelt Individual Studies major.

199. ERC Independent Studies (4)
The content of this independent study course, which may not duplicate any existing course on campus, will be determined by a supervising faculty member and tailored to fit specific content needs of students pursuing the Eleanor Roosevelt College Individual Studies major. Prerequisite: admission to ERC Individual Studies major.

Eleanor Roosevelt Seminar

OFFICE: Provost, Eleanor Roosevelt College, ERC Administration Building

90. Undergraduate Seminar (1)
A seminar intended for exposing undergraduate students, especially freshmen and sophomores, to exciting research programs conducted by the faculty. Prerequisite: none. Pass/Not Pass only.

Acceptance to the Jacobs School of Engineering

Student demand exceeds program capacity in several of the undergraduate majors. Owing to limited departmental resources, major programs to which more students apply than can be accepted have been declared impacted majors. Acceptance into an impacted engineering major is based on academic excellence demonstrated in high school or at a community college. Acceptance will be granted to the maximum number of students in each of these impacted major programs consistent with maintaining acceptable program quality and in compliance with admissions procedures and criteria approved by the Academic Senate’s Committee on Educational Policy.

Remember that admission to the university and to a college does not guarantee acceptance to an impacted major.

FRESHMAN

Freshmen are admitted to engineering majors in one of three ways: open majors, pre-majors and impacted majors.

Open Majors

The following seven majors are open to all admitted UCSD students: aerospace engineering, chemical engineering (offered through the Chemical Engineering Program), engineering science (offered through MAE department), engineering sciences (offered through SE department), environmental engineering, mechanical engineering, and structural engineering. All applicants who have been accepted to UCSD and indicated a pre-major or open engineering major on their application are placed directly into that major.

Required Review of Student Progress for Electrical Engineering Majors

Effective fall 2006 the electrical engineering major within the Department of Electrical and Computer Engineering (ECE) is no longer considered an impacted major. Entering freshmen and transfer students who have indicated the desire to major in electrical engineering will be admitted directly to the major. Continuing UCSD students who wish to transfer into the electrical engineering major will be evaluated under the rules that are in effect for the year in which they enter the major. Effective fall 2006, to remain in good standing as an electrical engineering major, a student must complete a minimum of eight Progress Review Courses with a C- or better during his or her first five quarters for freshmen or during the first three quarters for continuing UCSD or transfer students. The average GPA from any six of the Progress Review Courses, including at least two from EE Progress Review Courses, must exceed 2.50.

The required review of student progress for electrical engineering majors is explained in greater detail under the “Department of Electrical and Computer Engineering (ECE)” section of this catalog.

Pre-major Programs

There are two engineering pre-major programs offered: (1) bioengineering: pre-medical and (2) engineering physics. Incoming freshmen who identified either of these pre-majors as their first choice on their UCSD admissions application are accepted directly into these pre-majors upon admission to UCSD. Subsequent acceptance to the major is dependent on performance in selected mathematics, science, and engineering screening courses as well as competitive grade-point average in the pre-major screening courses.

Pre-major engineering students are expected to apply for acceptance to the major during the spring quarter of their freshman year. Acceptance to the major is based on the grade-point average in the screening courses only. The grade-point average required for acceptance to the major by pre-majors is set individually by each engineering program. Pre-majors should consult their departments concerning the appropriate screening courses and the current grade-point average standards for acceptance. In addition to the courses required by the departments, it is expected that all pre-major students will take twelve to eighteen units of general-education college requirements during their first year.
Pre-major engineering students who are not able to apply before the end of their third quarter, or who wish to reapply following an unsuccessful application, must contact their department as soon as possible for further advising as acceptance to any engineering major will not be considered after six quarters of enrollment.

Impacted Majors
The following five engineering majors are impacted: bioengineering, bioengineering: biotechnology, computer engineering (CSE), computer engineering (ECE), and computer science. Applicants must indicate one of these impacted majors as their first choice on their UC application in order to be considered for acceptance to the major by the Jacobs School. The Jacobs School will subsequently notify all engineering students admitted to UCSD of their acceptance status.

Effective fall 2001, this selection is based on the freshman review criteria (Comprehensive Review) administered by the UCSD Office of Admissions and Relations with Schools.

It is strongly suggested that all students accepted into engineering programs consult their department's academic advisor at an early stage to plan their lower-division engineering courses, and that they consult with a college academic counselor to arrange general-education courses around the required screening courses. Students admitted fall quarter should attend the engineering department's orientation meetings during Welcome Week.

Bioinformatics Programs
Students interested in applying to either the bioengineering:bioinformatics major (offered by the Department of Bioengineering), or the computer science major with a specialization in bioinformatics (offered by the Department of Computer Science and Engineering) should consult individual department listings which follow this section of the catalog.

TRANSFERS
Following California’s Master Plan for Higher Education, The Jacobs School of Engineering gives high priority to students transferring from California community colleges.

Transfer students are admitted to engineering majors in one of three ways: open majors, pre-majors, and impacted majors. Effective fall 2006, all applicants who have been accepted to UCSD and indicated an engineering major on their UC application will be reviewed for major-preparation course work (see courses below.) For major-specific advising, please contact the relevant departmental undergraduate academic advising office.

Effective fall 2004, it is strongly recommended that transfer students complete the following preparation for engineering majors*. *Effective fall 2006, these courses will be required preparation for all engineering transfer students.

• Calculus I—for Science and Engineering (Math. 20A)
• Calculus II—for Science and Engineering (Math. 20B)
• Calculus and Analytic Geometry (Math. 20C)
• Differential Equations (Math. 20D)
• Linear Algebra (Math. 20F)
• Complete calculus-based physics series with lab experience (Physics 2A-B-C)
• Chemistry 6A (except Computer Science and Computer Engineering majors)

Note: Effective fall 2007, a total of ten quarter-units of general chemistry (including laboratory) will be required for students applying to all majors offered by the Department of Bioengineering.

• Highest level of introductory computer programming language course offerings at the community college**
• Community college equivalent courses can be found at: http://www.asist.org

**Refer to the UCSD General Catalog to select major prerequisite requirement for computer language courses.

For impacted majors (bioengineering, bioengineering: biotechnology, computer science, computer engineering (CSE), and computer engineering (ECE), we recommend a competitive UCSD transferable cumulative GPA of 3.20 and 3.40 in the major-preparation courses.

Open Majors
The following seven majors are open to all admitted UCSD students: aerospace engineering, chemical engineering (offered through the Chemical Engineering Program), engineering science (offered through MAE), engineering sciences (offered through SE), environmental engineering, mechanical engineering, and structural engineering. Through the fall 2005 admissions cycle, all transfer applicants who have been admitted to UCSD and indicated an open engineering major on their application are placed directly into that major. Effective fall 2006, transfer applicants to open majors will be screened for completion of the above preparation courses.

Required Review of Student Progress for Electrical Engineering Majors
Effective fall 2006 the electrical engineering major within the Department of Electrical and Computer Engineering (ECE) is no longer considered an impacted major. Entering freshmen and transfer students who have indicated the desire to major in electrical engineering will be admitted directly to the major. Continuing UCSD students who wish to transfer into the electrical engineering major will be evaluated under the rules that are in effect for the year in which they enter the major. Effective fall 2006, to remain in good standing as an electrical engineering major, a student must complete a minimum of eight Progress Review Courses with a C- or better during his or her first five quarters for freshmen or during the first three quarters for continuing UCSD or transfer students. The average GPA from any six of the Progress Review Courses, including at least two from EE Progress Review Courses, must exceed 2.50.

The required review of student progress for electrical engineering majors is explained in greater detail under the Department of Electrical and Computer Engineering (ECE) section of this catalog.

Pre-major Programs
There are two engineering pre-major programs offered: (1) bioengineering: pre-medical and (2) engineering physics. Subsequent acceptance to the major is dependent on performance in selected mathematics, science, and engineering screening courses as well as competitive grade-point average in the pre-major screening courses.

Pre-major transfer engineering students are expected to apply for acceptance to the major during their third quarter of their first year at UCSD. Acceptance to the major is based on the grade-point average in the screening courses only. The grade-point average required for acceptance to the major by pre-majors is set
individually by each engineering program. Pre-majors should consult their departments concerning the appropriate screening courses and the current grade-point average standards for acceptance. In addition to the courses required by the departments, it is expected that all pre-major students will take twelve to eighteen units of general-education college requirements during their first year.

Pre-major transfer engineering students must apply to the major before the end of their third quarter as acceptance to any engineering major by a transfer student will not be considered after the end of third quarter of enrollment.

Impacted Majors

Since acceptance to impacted engineering majors is quite competitive for freshman and transfer applicants alike, academic standards are high. Transferring students must demonstrate both the completion of most of their lower-division courses at the community college, and a high level of academic competence (GPA) in these courses.

The Jacobs School evaluates transfer students who choose impacted engineering major programs as their first choice major on their UC application. Those seeking acceptance to the following impacted engineering majors: bioengineering and bioengineering: biotechnology, computer science, and computer engineering will have their community college work evaluated by the Jacobs School of Engineering.

Acceptance to impacted majors may be limited to the best transfer applicants, e.g., those who have been admitted to UCSD with the most complete lower-division preparation and the highest college grade-point averages. For impacted majors, a competitive UCSD transferable cumulative GPA of 3.20 and 3.40 in the major-preparation courses is recommended. Since acceptance is restricted to these majors, transfer students are encouraged to apply to more than one major degree program.

It is strongly suggested that all students accepted into engineering programs consult their department’s academic advisor at an early stage to plan their lower-division engineering courses, and that they consult with a college academic counselor to arrange general-education courses around the required screening courses. Students admitted fall quarter should attend the engineering department’s orientation meetings during Welcome Week.

For specific program requirements for transfer students, please refer to the appropriate department’s listing which follow this section of the catalog.

Bioinformatics Programs

Students interested in applying to either the bioengineering: bioinformatics major (offered by the Department of Bioengineering), or the computer science major with a specialization in bioinformatics (offered by the Department of Computer Science and Engineering) should consult individual department listings which follow this section of the catalog.

CONTINUING UCSD STUDENTS

Through the fall 2005 admissions cycle, UCSD undergraduate students who were not accepted into an engineering major as entering students may, with engineering departmental approval, change their major to any non-impacted engineering major. Effective fall 2006, continuing transfer students to open majors will be screened for completion of required major preparation course work (see beginning of “TRANSFERS” section above for more details). Interested students should make an appointment to speak with the departmental undergraduate advisor prior to changing their major for more details.

EXCEPTIONAL ADMISSION PROGRAM (CSE AND ECE IMPACTED MAJORS)

The Departments of Computer Science and Engineering and Electrical and Computer Engineering may periodically grant admission to the computer engineering (CE) or computer science (CS) majors to a small number of academically exceptional UCSD undergraduate students who were not admitted to these majors as entering students. Refer to the department section in this catalog for program requirements and information. At this time, the Department of Bioengineering does not participate in the Exceptional Admission Program for its impacted major programs.

Access of Non-Engineering Majors to the Jacobs School of Engineering Courses

The number of students enrolled in some courses offered by the Jacobs School of Engineering must be restricted to meet the resources available. Students who have successfully completed all prerequisite courses will be enrolled in these restricted courses in the following order:

1. students accepted by the department to a major curriculum
2. students accepted by the department to a minor curriculum
3. students fulfilling a requirement for another major
4. all others, with permission of the department and instructor

Students should check with the departments concerning the limitations on specific courses and the requirements needed prior to attempting to enroll.

Double Majors and Minors

It is the policy of the Jacobs School of Engineering not to approve double majors within engineering. Students who qualify for admission to graduate school and who have the extra time are encouraged to consider co-terminal B.S./Master’s degrees in one or two engineering disciplines. Engineering minors may be taken only by non-engineering majors.

For more information, visit: http://www.jacobschool.ucsd.edu/academic/academic_undergrad/bs-ms.shtml.

Integrative Engineering Education

ESS—Office of the Dean: The mission of ESS (Engineering Student Services) is to promote the personal and professional development of the undergraduate and graduate engineering student body. ESS activities and programs are designed to assist students as they pursue their chosen degrees and to prepare them for life outside of the university as engineering professionals and responsible citizens. To this end, the office serves as a resource for those interested in applying to engineering majors; getting involved in student organizations; locating an internship; accessing tutoring information; or simply as a referral to on-campus and community resources. In addition, the office supports the Teams in Engineering Service (TIES) Program, Team Internship Program (corporate), and the...
California State Summer School for Mathematics and Science (COSMOS). For more details, visit the office in Engineering Building Unit 1, Room 1400, e-mail ess@soe.ucsd.edu, or visit http://www.jacobsschool.ucsd.edu/student/.

Teams in Engineering Service (TIES): Jacobs School undergraduates can place their technical and creative skills to work for San Diego non-profit organizations through the new Teams in Engineering Service (TIES) Program. Through TIES, multidisciplinary teams of UCSD students design, build, and deploy projects that solve technology-based problems for local community organizations, and receive technical elective (or academic) credit. For details, visit http://ties.ucsd.edu.

Team Internship Program: This corporate-sponsored program gives students the opportunity to develop their engineering skills in a collaborative work environment that mirrors what they will encounter as they enter the workforce. In these full-time, competitive summer paid internships, students work on-site with industry partners as a systems-oriented solution team focused on a clearly defined and significant project. For details, visit http://www.jacobsschool.ucsd.edu/student/student_team/team_intern/.

The California State Summer School for Mathematics and Science (COSMOS) is a four-week residential pre-college academic experience in math, science, and engineering for top high school students. Students participate in one of the following seven academic courses (or clusters): 1. Adventures in Media Computing; 2. Kinetic Sculpture and Clocks; 3. Living Oceans and the Impacts of Climate Change; 4. Earthquakes in Action; 5. The Molecular Biology Revolution; 6. The Physics of Waves and Stars; and 7. Bioengineering and Modeling of the Red Blood Cell Membrane. In summer 2006, one-third of the admitted students were awarded full financial aid. For more information, visit http://www.jacobsschool.ucsd.edu/cosmos.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

100. Principles of Team Engineering (2)
Introduction to the practice of engineering as a team-driven profession. Levels of the design process, verbal and written communication, principles of teamwork, project management, ethics, legal issues, quality management, entrepreneurship, and community involvement. Prerequisite: concurrent enrollment in or completion of one of the following: DOC 2, CAT 2, HUM 2, MMW 2, MCWP 5G, or WCWP 108 and one university-level mathematics course (or equivalent) or consent of instructor. Preference given to engineering majors. Not open to graduate students.

100L. Team Engineering Laboratory (2)
Faculty-directed, multi-disciplinary, long-term engineering projects. Students use their technical knowledge to design and develop solutions to real problems in consultation with customers such as community organizations. Prerequisite: ENG 100 (required prior to or in concurrent enrollment with ENG 100).

101. Team Engineering (4)
Fundamental principles of team engineering practice. Team formation and leadership, project creation and management, statistical tools for quality improvement, engineering business economics, law, and ethics. Interdisciplinary student teams will research, refine, and propose the design, manufacture, and marketing of a novel engineering product. Four hours of lecture. Prerequisite: a course in probability of statistics.

201. Venture Mechanics (4)
Examines the engineering/entrepreneurism interface. Discovery, development, and implementation of new product ideas. Understanding markets, competitors, and selling innovations. Cultivating effective working relationships between research, engineering, manufacturing, and marketing elements of an organization. Priority enrollment given to engineering majors.

202. Enterprise Dynamics (4)
Case studies of start-ups, strategic technology management, practice in use of industrial decision-making tools, and speakers from successful firms combined with experience in making management decisions dynamically in a competitive computer-simulated enterprise. Field study of ongoing processes in a local high technology company. Priority enrollment given to engineering majors.

203. Applied Innovations (4)
Course includes the examination of business plans developed by early stage technology businesses. Students expected to work on the development of business plans for real, innovative business organizations. Will explore all of the business research and analysis that needs to be undertaken in order to develop a complete business plan. Completion of ENG 201 or ENG 202 preferred.

204. Theory and Practice of University Teaching (2)
Teaching and learning at the college/university level. Readings in engineering and cognitive science, plus opportunities for teaching and evaluating college level students. Covers theoretical underpinnings and the practice of teaching. Participation in some practicum teaching experience will be required.

Applied Mechanics and Engineering Sciences (AMES)

Program name changed to Mechanical and Aerospace Engineering (MAE).

Bioengineering

STUDENT AFFAIRS:
141 Powell-Focht Bioengineering Hall,
Warren College
http://www-bioeng.ucsd.edu/homepage.html

Professors
S. Chien, M.D., Ph.D., Director, Whitaker Institute for Biomedical Engineering
Y. C. Fung, Ph.D., Professor Emeritus
D. A. Gough, Ph.D.
M. J. Heller, Ph.D.
M. Intaglietta, Ph.D.
A. D. McCulloch, Ph.D., Chair
B. O. Palsson, Ph.D.
R. L. Sah, M.D., Sc.D., Vice Chair
G. W. Schmid-Schoenbein, Ph.D.
S. Subramaniam, Ph.D.
J. T. Watson, Ph.D., Vice Chair, External Affairs (In-Residence)

Associate Professors
J. M. Hasty, Ph.D.
T. G. Ideker, Ph.D.
L. A. Sung, Ph.D.

Assistant Professors
X. Huang, Ph.D.
G. A. Silva, Ph.D.

Lecturer with Potential for Security of Employment
M. K. Micou, Ph.D.

Adjunct Professors
M. W. Berns, Ph.D.
L. M. Bjursten, Ph.D.
C. R. Cantor, Ph.D.
P. Citron
D. J. Galas, Ph.D.
Engineering, Bioengineering

W. R. Giles, Ph.D.
T. E. Hugli, Ph.D.
B. S. Jacobson, Ph.D.
J. S. Lee, Ph.D.
E. I. Ruoslahti, M.D., Ph.D.
P. Tong, Ph.D.
R. M. Winslow, M.D.

Affiliated Faculty
P. C. Chau, Ph.D., Professor, Mechanical and Aerospace Engineering
J. W. Covell, M.D., Professor Emeritus, Medicine
M. H. Ellisman, Ph.D., Professor, Neurosciences
A. L. Kellner, Ph.D., Associate Project Scientist, Electrical and Computer Engineering
R. L. Lieber, Ph.D., Professor, Orthopaedics
J. H. Omens, Ph.D., Adjunct Professor, Medicine
K. L. P. Sung, Ph.D., Professor In-Residence, Orthopaedics
S. Thomson, M.D., Ph.D., Professor in Research, Medicine
P. D. Wagner, M.D., Professor, Medicine
J. B. West, M.D., Ph.D., Professor, Medicine

Professional Research Staff
A. C. Chen, Ph.D., Assistant Project Scientist
P. C. Chen, Ph.D., Associate Project Scientist
Y. L. Hu, Ph.D., Associate Project Scientist
W. Huang, M.D., Ph.D., Associate Project Scientist
Y. S. Li, Ph.D., Associate Project Scientist
A. P. Mihaylova, Ph.D., Assistant Research Scientist
T. Ravasi, Ph.D., Assistant Research Scientist
A. G. Tsai, Ph.D., Associate Research Scientist
D. Volfson, Ph.D., Assistant Project Scientist
N. Wang, M.D., Assistant Research Scientist
Y. H. Zhao, Ph.D., Associate Project Scientist

Departmental Focus

Bioengineering is an interdisciplinary major in which the principles and tools of traditional engineering fields, such as mechanical, materials, electrical, and chemical engineering, are applied to biomedical and biological problems. Engineering plays an increasingly important role in medicine in projects that range from basic research in physiology to advances in biotechnology and the improvement of health care delivery. By its very nature, bioengineering is broad and requires a foundation in the engineering sciences as well as in physiology and other biological sciences.

The overall mission of the Department of Bioengineering is to provide students with an education that enables successful, innovative, and lifelong careers in bioengineering industries and professions, including

- depth, breadth, and creativity in the central areas of bioengineering, its underlying mathematical, physical and biological sciences, and related technologies
- effective communication, learning, and teamwork skills that facilitate bioengineering practice, continued professional advancement, and adaptation
- recognition of professional and social responsibilities, including sensitivity to ethical and health-related issues

At the undergraduate level, the department offers several four-year engineering majors. One leads to a B.S. degree in Bioengineering. This major prepares students for careers in the biomedical device industry and for further education in graduate school. Students completing the B.S. degree in Bioengineering have a broad preparation in traditional topics in engineering, allowing for a variety of career pathways. This program addresses the bioengineering topics of biomechanics, biotransport, bioinstrumentation, bioelectricity, biosystems, and biomaterials, and the complementary fields of systems and integrative physiology. Education in these areas allows application of bioengineering and other scientific principles to benefit human health by advancing methods for effective diagnosis and treatment of disease, e.g., through development of medical devices and technologies. The bioengineering program is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (EAC/ABET).

In the Bioengineering major, the specific educational objectives are to instill in students:

- a solid theoretical and experimental foundation in the basic sciences, including physics, biology, systemic physiology, and chemistry, that underlie bioengineering;
- a solid theoretical and practical foundation in mathematics and computation that underlie bioengineering modeling, experimental design, and data analysis;
- a solid theoretical and analytical bioengineering foundation, with core curricula in the areas of (1) biomechanics, (2) biotransport, (3) bioinstrumentation and bioelectricity, (4) biosystems, and (5) biomaterials;
- in-depth individual and team experiences in bioengineering problem specification and solution, and in bioengineering design, where the core knowledge is applied creatively to bioengineering systems, components, and processes;
- first-hand individual and team experiences in bioengineering experimentation, including hypothesis formulation, model development, measurement, and data interpretation;
- effective written, oral, and audiovisual communication skills;
- specialization and professional engineering preparation tailored to the interests of individual students;
- a strong education in the humanities and social sciences; and
- a recognition of ethical issues in bioengineering, exposure to contemporary bioengineering and health-care issues, and opportunities to gain community service experience.

The department also offers a B.S. degree in Bioengineering: Biotechnology. This major prepares students for careers in the biotechnology industry and for further education in graduate school. The curriculum has a strong engineering foundation with emphasis on biochemical process applications. This program addresses the bioengineering topics of biochemistry, metabolism, kinetics, biotransport, biosystems, bioreactors, bioseparations, tissue engineering, and the complementary fields of cellular physiology. Education in these areas allows application of bioengineering and physicochemical principles to cellular and molecular biology, with the applications that benefit human health. The Bioengineering: Biotechnology program is accredited by EAC/ABET.

In the Bioengineering: Biotechnology major, the specific educational objectives are to instill in students:

- a solid theoretical and experimental foundation in the basic sciences, including physics, biology, cellular physiology, and chemistry, that underlie bioengineering;
- a solid theoretical and practical foundation in mathematics and computation that underlie bioengineering modeling, experimental design, and data analysis;
• a solid theoretical and analytical Bioengineering: Biotechnology foundation, with core curricula in the areas of (1) biochemistry and metabolism, (2) kinetics, (3) biotransport, (4) biosystems, (5) bioreactors, and (6) bioseparations;
• in-depth individual and team experiences in bioengineering problem specification and solution, and in bioengineering design, where the core knowledge is applied creatively to bioengineering systems, components, and processes;
• first-hand individual and team experiences in bioengineering experimentation, including hypothesis formulation, model development, measurement, and data interpretation;
• effective written, oral, and audiovisual communication skills;
• specialization and professional engineering preparation tailored to the interests of individual students;
• a strong education in the humanities and social sciences; and
• a recognition of ethical issues in bioengineering, exposure to contemporary bioengineering and health-care issues, and opportunities to gain community service experience.

In addition, the department offers a four-year major leading to a B.S. degree in Bioengineering: Premedical. This curriculum is designed to meet the requirements for admission to medical schools and other schools of the health professions. This program provides a quantitative understanding of the engineering design of the body, as well as certain technologies used in medical practice. It has less engineering content but more biological sciences and is one of many majors that can serve as preparation for further training in medical, veterinary, or allied health professions. In addition to entering these health science professional schools, graduates of this program can also pursue graduate education in bioengineering, neurosciences, or related fields, or work in industry.

The department also offers a major leading to a B.S. degree in Bioengineering: Bioinformatics. Bioinformatics is the study of the flow of information (genetic, metabolic, and regulatory) in living systems to provide an understanding of the properties of cells and organisms. This major has been developed by the Departments of Bioengineering, Chemistry and Biochemistry, Computer Science and Engineering, and Division of Biology. Students wishing to major in bioinformatics may apply through any of these departments or the division. The Bioinformatics major in Bioengineering emphasizes systems engineering and model-based approaches to interpreting and integrating bioinformatics data. The Bioinformatics major prepares students for careers in the pharmaceutical, biotechnology, and biomedical software industries, and for further studies in graduate school.

The programs and curricula of bioengineering emphasize education in the fundamentals of engineering sciences that form the common basis of all engineering subspecialties. Education with this emphasis is intended to provide students with a solid engineering foundation for a career in which engineering practice may change rapidly. In addition, elements of bioengineering design are incorporated at every level in the curricula. This is accomplished by integration of laboratory experimentation, computer applications, and exposure to real bioengineering problems throughout the program. In the Bioengineering and Bioengineering: Biotechnology majors, students also work in teams on a senior design project to design a solution to a multidisciplinary bioengineering problem suggested by professionals in bioengineering industry, academia, or medicine.

At the graduate level, specialized curricula lead to the M.S., M.Eng. (master of engineering), and Ph.D. degrees, as well as an integrated B.S./M.S. degree. In addition to the Ph.D. degree, the department offers a Ph.D. degree with a specialization in Bioinformatics. It is intended for students who have an interdisciplinary persuasion to work across computers, biology, medicine, and engineering. For further information on the specialization please consult with the Student Affairs Office. There are also M.D./M.S., M.D./M.Eng. and M.D./Ph.D. degrees offered in conjunction with UCSD School of Medicine, pending independent admission to the medical school. The M.Eng. degree is a terminal professional degree whereas the M.S. and Ph.D. degrees are research programs. (See section on master’s degree programs.) The graduate programs are characterized by strong interdisciplinary relationships with the other engineering departments and Departments of Physics, Mathematics, Biology, Chemistry and Biochemistry, Medicine, and others, as well as with campus organizations such as the Whitaker Institute for Biomedical Engineering, Institute for Mechanics and Materials, and the School of Medicine.

The Undergraduate Program

Major Requirements

Specific course requirements for each of the majors are outlined in tables below. In addition to the required technical courses specifically indicated, a suggested scheduling of humanities and social science courses (HSS) is included in the curricula for students to use to meet college general-education requirements. To graduate, students must maintain an overall GPA of at least 2.0, and obtain at least a C– grade in each course required for the major. All courses required for the major must be taken for a letter grade.

Deviations from the required programs of study must be approved by the Undergraduate Studies Committee prior to students taking alternative courses. In addition, students must obtain departmental approval of technical elective (TE) course selections prior to taking the course. In the ABET-accredited programs, TE courses are restricted to those that meet ABET standards. Courses such as Bioengineering 196, 197, and 198 are encouraged, but they do not count as upper-division technical electives. Bioengineering 195 and 199 can be used as technical electives under certain conditions. Policy information may be obtained from the Student Affairs Office.

Students with accelerated academic preparation at admission to the university may vary the scheduling of lower-division courses such as mathematics, physics, and chemistry, but must first consult the department. Most lower-division courses are offered more than once each year to permit students some flexibility in their program scheduling. However, most upper-division bioengineering courses are taught only once each year. Deviations in the scheduling of upper-division bioengineering courses are strongly discouraged, as such changes usually lead to a delay in graduation. The curricula shown in the tables below are consistent with the current scheduling of classes.

Minors are not offered in bioengineering, and double major options are restricted. Students interested in double majors should consult the Student Affairs Office as early as possible.
General-Education/College Requirements

For graduation, each student must satisfy general-education course requirements determined by the student's college, as well as the major requirements determined by the department. The six colleges at UCSD require different general-education courses, and the number of such courses differs from one college to another. Each student should choose his or her college carefully, considering the special nature of the curriculum and the breadth of general education.

The bioengineering programs allow for humanities and social science (HSS) courses so that students can fulfill their college requirements. In the bioengineering ABET-accredited programs, students must develop a program that includes a total of at least forty units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. It should be noted, however, that some colleges require more than the ten HSS courses indicated in the Bioengineering, Bioengineering: Premedical, Bioengineering: Biotechnology, and Bioengineering: Bioinformatics curriculum tables. Accordingly, students in these colleges may take longer to graduate than the four years indicated in the schedule. Students must consult with their colleges to determine which HSS courses to take.

Bioengineering: Biotechnology

(ABET-Accredited Program)

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 20A</td>
<td>Math. 20B</td>
<td>Math. 20C</td>
</tr>
<tr>
<td>Chem. 6A</td>
<td>Chem. 6B</td>
<td>BILD 1</td>
</tr>
<tr>
<td>MAE 9 or 10</td>
<td>Phys. 2A</td>
<td>Phys. 2B/2BL</td>
</tr>
<tr>
<td>HSS4</td>
<td>BENG 12</td>
<td>HSS4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 20D</td>
<td>Math. 20F</td>
<td>Math. 20E</td>
</tr>
<tr>
<td>Chem. 140A</td>
<td>Phys. 2C/2CL</td>
<td>Chem. 140B</td>
</tr>
<tr>
<td>BILD 1</td>
<td>BENG 130</td>
<td>BENG 100</td>
</tr>
<tr>
<td>HSS4</td>
<td>HSS4</td>
<td>HSS4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIBC 100</td>
<td>BENG 123</td>
<td>BENG 103B</td>
</tr>
<tr>
<td>CENG 101A</td>
<td>BIBC 102</td>
<td>BENG 160</td>
</tr>
<tr>
<td>MAE 170</td>
<td>BICD 100</td>
<td>BENG 168</td>
</tr>
<tr>
<td>HSS4</td>
<td>HSS4</td>
<td>BENG 187A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSS4</td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENG 161A</td>
<td>BENG 161B</td>
<td>BENG 125</td>
</tr>
<tr>
<td>BENG 166A</td>
<td>BENG 187C</td>
<td>BENG 186A</td>
</tr>
<tr>
<td>BENG 187B</td>
<td>DE5</td>
<td>BENG 187D</td>
</tr>
<tr>
<td>DE5</td>
<td>TE1</td>
<td>TE1</td>
</tr>
<tr>
<td>BENG 162</td>
<td>HSS4</td>
<td>BENG 1915</td>
</tr>
</tbody>
</table>

* Seven of the eight courses used to compute the performance index upon which Pre-Bioengineering: Premedical majors are admitted to the major at the end of the freshman year. The other course must be in engineering, science, or mathematics.

Chem. 6B may be taken concurrently with Chem. 6C or in any quarter within the first two years after completion of Chem. 6b.

* Chem. 6B may be taken in any quarter within the first two years after completion of Chem. 6b.

* BENG 1 may be taken in sophomore year.

* Technical elective (TE) courses must be selected from a departmental approved list. Consult the Student Affairs Office.

* Ten HSS courses are listed here; individual college requirements may be higher.

* Recommended course, not required. For graduating seniors only.

* Design elective (DE) courses must be selected from a two-quarter sequence, BENG 119AB, 126AB, 127AB, 128AB, 129AB, 139AB, 147AB, 148AB, 149AB, 169AB, 179AB.

Bioengineering: Premedical

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 20A5</td>
<td>Math. 20B5</td>
<td>Math. 20C5</td>
</tr>
<tr>
<td>Chem. 6A5</td>
<td>Chem. 6B</td>
<td>Chem. 6B1/6C</td>
</tr>
<tr>
<td>MAE 9 or 105</td>
<td>Phys. 2A5</td>
<td>Phys. 2B/2BL</td>
</tr>
<tr>
<td>HSS4</td>
<td>BENG 12</td>
<td>HSS4</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR		
BILD 1	Math. 20F	Math. 20E
Phys. 2C/2CL	BENG 109	BENG 100
HSS4	HSS4	
JUNIOR YEAR		
BIBC 100	BENG 112A	BENG 112B
Chem. 140C5	BICD 100	BIC 100
Chem. 143A	MAE 140	MAE 170
BILD 2	HSS4	HSS4
SENIOR YEAR		
BIBC 140	BENG 168B	BENG 172
BIBC 100	BIBC 102	BENG 186A
BENG 10B5	TE1	TE1
HSS4	HSS4	

* Seven of the eight courses used to compute the performance index upon which Pre-Bioengineering: Premedical majors are admitted to the major at the end of the freshman year. The other course must be in engineering, science, or mathematics.

Chem. 6B may be taken concurrently with Chem. 6C or in any quarter within the first two years after completion of Chem. 6b.

* BENG 1 may be taken in sophomore year.

* Technical elective (TE) courses must be selected from a departmental approved list. Consult the Student Affairs Office.

* Ten HSS courses are listed here; individual college requirements may be higher.

* Chem. 140C is not required for the major and can be used as a technical elective. Chem. 140C is a requirement for application to most medical schools.

Bioengineering: Bioinformatics

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BILD 3</td>
<td>BILD 1</td>
<td>BILD 2</td>
</tr>
<tr>
<td>Chem. 6A</td>
<td>Chem. 6B</td>
<td>BILD 94</td>
</tr>
<tr>
<td>Math. 20A</td>
<td>Math. 20B</td>
<td>Math. 20C</td>
</tr>
<tr>
<td>HSS4</td>
<td>HSS4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 112</td>
<td>CSE 12</td>
<td>CSE 21</td>
</tr>
<tr>
<td>Math. 20D</td>
<td>Math. 140A</td>
<td>Math. 15B</td>
</tr>
<tr>
<td>Phys. 2A</td>
<td>Phys. 2B</td>
<td>Chem. 140B</td>
</tr>
<tr>
<td>HSS4</td>
<td>HSS4</td>
<td>HSS4</td>
</tr>
</tbody>
</table>
Transfer Student Admission into Bioengineering, Bioengineering: Biotechnology, Bioengineering: Premedical, or Bioengineering: Bioinformatics

The following courses are required preparation for all engineering transfer students.

- Calculus I—for Science and Engineering (Math. 20A)
- Calculus II—for Science and Engineering (Math. 20B)
- Calculus and Analytic Geometry (Math. 20C)
- Differential Equations (Math. 20D)
- Linear Algebra (Math. 20F)
- Complete calculus-based physics series with lab experience (Physics 2A-B-C)
- Chemistry 6A (except Computer Science and Computer Engineering majors) NOTE: Effective fall 2007, a total of ten quarter-units of general chemistry (including laboratory) will be required for students applying to all majors offered by the Department of Bioengineering.
- Highest level of introductory computer programming language course offerings at the community college**

**Refer to the UCSD General Catalog to select major prerequisite requirements for computer language courses.

Freshman Students

Students intending to complete a Bioengineering: Premedical major are initially identified as Pre-Bioengineering: Premedical majors and admitted into a pre-major status. Pre-Bioengineering: Premedical majors who have achieved a GPA of 3.0 or better in the eight required pre-major courses (Mathematics 20A-B-C; Physics 2A-B; Chemistry 6A; MAE 9 or 10, and one other pre-bioengineering course by the end of the freshman year) are assured of admission into the Bioengineering: Premedical major. Students who have not completed the pre-major courses or achieved the necessary GPA for entry into the Bioengineering: Premedical major by the end of the freshman year may still enter the Bioengineering: Premedical major if these requirements have been satisfied before the end of the sixth quarter of study at UCSD. At the end of the appropriate quarter, students should contact the Student Affairs Office to check on their status and complete an Undergraduate Change of Major Request form to switch their status from “Pre-Bioengineering: Premedical” to “Bioengineering: Premedical” or “Bioengineering: Biotechnology major as a freshman at UCSD is to be directly admitted from high school at the time of entrance into UCSD.

Transfer Students

Admission of transfer applicants into Bioengineering or Bioengineering: Biotechnology is limited to those who have demonstrated a high level of achievement commensurate with the prospect of success in these majors. Successful applicants must have completed substantial training at the community college and must have achieved a high level of academic performance there. The required minimum of ninety quarter transfer units must include eighteen quarter-units of calculus, twelve quarter-units of calculus-based physics, ten quarter units of general chemistry (including laboratory), and the highest level computer science course offered at their community college.

Applicants seeking admission as transfer students will be considered for direct admission into the Bioengineering and Bioengineering: Biotechnology majors in the Department of Bioengineering. The only way to become a Bioengineering or Bioengineering: Biotechnology major is to be directly admitted as an entering transfer student. Although the actual required GPA cutoff depends on the number of openings, at least a 3.2 GPA in the community college transfer courses, and a 3.4 GPA in math, physics, and computer science courses are likely to be needed to gain admission.

Policies and Procedures

Transfer Student Admission into Bioengineering, Bioengineering: Biotechnology, Bioengineering: Premedical, or Bioengineering: Bioinformatics

The following courses are required preparation for all engineering transfer students.

- Calculus I—for Science and Engineering (Math. 20A)
- Calculus II—for Science and Engineering (Math. 20B)
- Calculus and Analytic Geometry (Math. 20C)
- Differential Equations (Math. 20D)
- Linear Algebra (Math. 20F)
- Complete calculus-based physics series with lab experience (Physics 2A-B-C)
- Chemistry 6A (except Computer Science and Computer Engineering majors) NOTE: Effective fall 2007, a total of ten quarter-units of general chemistry (including laboratory) will be required for students applying to all majors offered by the Department of Bioengineering.
- Highest level of introductory computer programming language course offerings at the community college**

**Refer to the UCSD General Catalog to select major prerequisite requirements for computer language courses.

ADMISSION TO BIOENGINEERING OR BIOENGINEERING: BIOTECHNOLOGY

Because of heavy student interest in the Bioengineering and Bioengineering: Biotechnology majors, and the limited resources available to accommodate this demand, maintenance of a high quality program makes it necessary to limit enrollments to the most qualified students.

Freshman Students

Freshman students who have excelled in high school and have declared Bioengineering or Bioengineering: Biotechnology on their UCSD application are eligible for direct admission into those majors. These students will be notified directly by the Jacobs School of Engineering whether they have been admitted into their chosen major, based on admissions criteria and their ranking in the applicant pool. The only way for a student to become a Bioengineering or Bioengineering: Biotechnology major as a freshman at UCSD is to be directly admitted from high school at the time of entrance into UCSD.

Transfer Students

Admission of transfer applicants into Bioengineering or Bioengineering: Biotechnology is limited to those who have demonstrated a high level of achievement commensurate with the prospect of success in these majors. Successful applicants must have completed substantial training at the community college and must have achieved a high level of academic performance there. The required minimum of ninety quarter transfer units must include eighteen quarter-units of calculus, twelve quarter-units of calculus-based physics, ten quarter units of general chemistry (including laboratory), and the highest level computer science course offered at their community college.

Applicants seeking admission as transfer students will be considered for direct admission into the Bioengineering and Bioengineering: Biotechnology majors in the Department of Bioengineering. The only way to become a Bioengineering or Bioengineering: Biotechnology major is to be directly admitted as an entering transfer student. Although the actual required GPA cutoff depends on the number of openings, at least a 3.2 GPA in the community college transfer courses, and a 3.4 GPA in math, physics, and computer science courses are likely to be needed to gain admission.
ADMISSION TO BIOENGINEERING: BIOINFORMATICS

As the number of pre-majors and majors will be limited as described in the catalog section on bioinformatics, student demand may exceed program capacity. Therefore, admission to the major is not guaranteed and will be based on academic excellence, as described below. Since bioinformatics is an interdisciplinary major, a steering committee involving faculty from the participating departments will select among the best candidates applying and recommended through each department, while insuring active participation of the departments and division offering the major.

Freshman Students

Bioengineering: Bioinformatics has been recently developed, and there is a multistep process into this major for students entering UCSD as freshmen. First, high school students should apply to UCSD for direct admission into the Bioengineering, Bioengineering: Biotechnology, or Pre-Bioengineering: Premedical major. Those admitted should then complete the freshman courses, prescribed in the preceding table for Bioengineering: Bioinformatics major. After completing BILD 1, Chem. 6A, Math. 20B, and Math. 20C during the freshman year, such students can apply to Pre-Bioengineering: Bioinformatics. Admission will be based primarily on the GPA in the four preceding courses, but also on a written statement, completion of the other listed requirements, and overall academic excellence. Students approved for Pre-Bioengineering: Bioinformatics should then continue with the sophomore courses, prescribed in the preceding table, including CSE 11 and 12 which serve as two additional screening courses. By the end of the sophomore year, these students can then apply to major in Bioengineering: Bioinformatics. Admission to the Bioengineering: Bioinformatics major will be based on the GPA in all six screening courses. The final decision on admission to the pre-major and major will be made by the Bioinformatics Steering Committee, in consultation with the departments. Those students who are not selected for the Bioengineering: Bioinformatics major will be eligible to remain in the Department of Bioengineering in the status in which they were originally admitted.

Continuing Students

Students who have not declared the Pre-Bioengineering: Bioinformatics major, but who have completed the screening courses for the Bioengineering: Bioinformatics major, may apply for entry to the program after six quarters (the end of sophomore year). Students will be admitted on a space-available basis, after pre-majors have been screened for admission to the major.

Transfer Students

As Bioengineering: Bioinformatics has been recently developed, there is a multistep process into this major for transfer students. First, such students should complete at their community colleges as many of the following courses as possible, with a strong GPA that is competitive with that of UCSD students applying for entry into this major. The required courses include a year of calculus (equivalent to Math. 20A, 20B, and 20C), two quarters of biology (equivalent to BILD 1 and 2), a year of general chemistry with laboratory (equivalent to Chem. 6A, 6B, 6C, and 6BL), and the highest level programming courses (equivalent to CSE 11 and 12). Next, such students should apply to UCSD for direct admission into the Bioengineering, Bioengineering: Biotechnology, or Pre-Bioengineering: Premedical major. After completing the necessary screening requirements equivalent to those that apply for students entering UCSD as freshmen, such students can apply to Pre-Bioengineering: Bioinformatics and subsequently apply to major in Bioengineering: Bioinformatics. Admission will be based primarily on the GPA in the required screening courses, but also on a written statement, completion of the other listed requirements and overall academic excellence. The final decision on admission to the pre-major and major will be made by the Bioinformatics Steering Committee, in consultation with the departments. Those who are not selected for the Bioengineering: Bioinformatics major, will be eligible to remain in the Department of Bioengineering in the status in which they were originally admitted.

ACADEMIC ADVISING

Upon admission to the major, students are encouraged to seek advice from departmental staff in the Bioengineering Student Affairs Office, Room 141, Powell-Focht Bioengineering Hall, to plan a program of study. Students are expected to chart their progress within their major. As the department may make a small number of course and/or curricular changes every year, it is imperative that students check their e-mail for updates and consult a bioengineering undergraduate advisor on an annual basis.

To enroll in any courses required for a bioengineering major, a student must have satisfied prerequisite courses with a C– or better. (The department does not consider D or F grades as adequate preparation for subsequent material.) Also, the majority of bioengineering courses have enrollment restrictions and are open only to students who have been admitted to a bioengineering pre-major or major. Where these restrictions apply, the registrar will not enroll other students except by department approval. The department expects students to adhere to these policies and enroll in courses accordingly. Students are advised that they may be dropped from course rosters if prerequisites and/or performance standards have not been met.

Bioengineering courses are typically offered only once a year and therefore should be taken in the recommended sequence. If courses are taken out of sequence, it may not always be possible to enroll in courses as desired or needed for timely graduation. If this occurs, students should seek immediate departmental advice.

Programmatic advice may be obtained from the Student Affairs Office. In addition, technical advice may be obtained from a specific bioengineering faculty advisor assigned to each student upon admission to the major.

PROGRAM ALTERATIONS, EXCEPTIONS TO REQUIREMENTS, AND SPECIAL PROGRAMS

Exceptions to any program or course requirements are possible if approved by the Undergraduate Studies Committee before the courses in question are taken. Petitions may be obtained from the Bioengineering Student Affairs Office.

Capstone Design Course Sequence for Bioengineering and Bioengineering: Biotechnology

A capstone design course sequence is required for senior level students in the Bioengineering and Bioengineering: Biotechnology majors. The capstone design course sequence consists of a multiquarter upper-division sequence of courses that totals ten quarter-units and includes (1) a series of four one-unit courses on selection (BENG 187A), design (BENG 187B),
implementation (BENG 187C), and presentation (BENG 187D) of design projects, with consideration of professional issues, and (2) a sequence of two three-unit laboratory design projects, offered in many of the primary areas of bioengineering, including biomechanics (BENG 119AB), systems bioengineering (BENG 127AB, 128AB, 129AB), nanoscale and molecular bioengineering (BENG 139AB), organ system bioengineering (BENG 147AB, 148AB, 149AB), tissue engineering and regenerative medicine (BENG 169AB), and bioinstrumentation (BENG 179AB). The design projects and presentations will be performed by student teams in the course sequence.

Independent Study for Undergraduates

Under the guidance of a bioengineering faculty member, lower- and upper-division level bioengineering students have opportunities to participate in independent study and research. Upper-division bioengineering students may take Bioengineering 199, Independent Study for Undergraduates. Lower-division bioengineering students may enroll in Bioengineering 99 which is similar to Bioengineering 199, except that less background in the curriculum is needed. These courses are taken as electives on a P/NP basis. Under certain conditions a Bioengineering 199 course may be used to satisfy upper-division technical elective course requirements for the major. Students interested in this alternative must identify a faculty member with whom they wish to work and propose a two-quarter research or study topic for Bioengineering and Bioengineering: Biotechnology majors, a one- or two-quarter research topic for Bioengineering: Premedical majors, and a one-quarter research topic for Bioengineering: Bioinformatics majors. Completion of two consecutive quarters of BENG 199 will satisfy both technical elective requirements in the Bioengineering and Bioengineering: Biotechnology majors. A Bioengineering: Premedical major may satisfy up to two of the three technical elective requirements in that major by completion of BENG 199 courses. Additionally, Bioengineering: Bioinformatics majors may also use a BENG 199 course to satisfy the major’s one technical elective course requirement. After obtaining the faculty advisor’s concurrence on the topic and scope of the study, the student must submit a Special Studies Course Form (each quarter) and a Bioengineering 199 as Technical Elective Contract to the Undergraduate Studies Committee. These forms must be completed, approved, and processed prior to the beginning of the quarter in which the course is to be taken.

Teaching

Students interested in participating in the instructional activities of the department may take Bioengineering 195, Undergraduate Teaching as an elective on a P/NP basis. Under certain conditions, it may be used to satisfy upper-division technical elective course requirements for the Bioengineering: Premedical major. Policy in this regard may be obtained from the Student Affairs Office.

Integrated Bachelor’s/Master’s Degree Program

An integrated program leading to a bachelor of science and a master of science degree in bioengineering is offered to undergraduate students who are enrolled in any of the major programs offered by the Department of Bioengineering. Students interested in obtaining the M.S. degree within one year following completion of the B.S. degree may apply to the department for admission to the program during the fourth quarter prior to the receipt of the B.S. degree. The program is open only to UCSD undergraduates.

To be eligible, students must have completed the first two quarters of their junior year in residence at UCSD and have an upper-division GPA of 3.5 or better and a 3.0 overall UC GPA. Twelve units of bioengineering graduate-level courses must be completed during the student’s senior undergraduate year, in addition to the requirements for the bachelor’s degree; these twelve units will count toward the requirements for the master’s degree only and must be taken for a letter grade. It is the responsibility of the prospective B.S./M.S. student to select a bioengineering faculty member who is willing to serve as the student’s advisor. The student will also arrange (with their faculty advisor’s approval) a schedule of courses for the senior year that will fulfill the requirements for the B.S. degree while also serving the program planned for the M.S. degree. Students are expected to meet the requirements for the M.S. degree in one year (three consecutive academic quarters) from the date of the receipt of the B.S. degree.

Industrial Internship Program and Graduate Industrial Training Program

The Department of Bioengineering offers two industry-related programs: the Industrial Internship Program for undergraduates and the Graduate Industrial Training Program for graduate students. Both industrial programs are designed to complement the department’s academic curriculum with practical industry experience. Students interested in these programs should contact the Bioengineering Industrial Internship Office (125 Powell-Focht Bioengineering Hall) well in advance of the quarter in which they would like to start their internship.

The Industrial Internship Program is available to undergraduate students who have completed all lower-division course requirements. Academic credit under Bioengineering 196, Bioengineering Industrial Internship, can be earned by spending ten weeks or more as interns in an industrial setting. The intern may be involved in a range of activities including design, analysis, manufacturing, testing, regulatory affairs, etc., under the direction of a mentor in the workplace. At the completion of the internship experience, students are required to submit a brief report to the mentor and faculty advisor describing their activities.

The Graduate Industrial Training Program is designed for students in the Master of Engineering Degree Program. This program serves to significantly enhance the professional development of M.Eng. students in preparation for leadership in the bioengineering industry. Students will complete an independent industrial bioengineering project in a company setting under the direction of an industrial and faculty advisor.

The Graduate Program

Admission to the M.Eng., M.S., and Ph.D., as well as to the Ph.D. with a specialization in bioinformatics programs, is in accordance with the general requirements of the graduate division. Applicants are required to have completed a B.S. and/or M.S. degree by time of admission in a branch of engineering, natural sciences, mathematics, or quantitative life sciences. M.S. and Ph.D. applicants must have a GPA of 3.4 or better in technical courses. M.Eng. applicants should have
competitive grades (greater than a 3.0 GPA). All applicants must submit GRE General Test scores, as well as three letters of recommendation from individuals who can attest to the academic or professional competence and to the depth of their interest in pursuing graduate study. Attention will be paid to the background and statement of purpose to ensure that they are consistent with the goals of the program. For example, whereas undergraduate research experience and the intention to pursue a research career or advanced studies are qualifications and interests typically well-suited to the M.S. program, industrial experience and the intention to pursue a professional career are better suited to the M.Eng. program.

A minimum score of 550 (paper based) or 213 (computer based) on the Test of English as a Foreign Language (TOEFL) is required of all international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English. Students who score below 600 on the TOEFL examination are strongly encouraged to enroll in an English as a Second Language program before beginning graduate work. (UCSD Extension offers an English language program during the summer as well as the academic year.) Admission to the M.S. or Ph.D. degree program is designated when the applicants are judged to be appropriately qualified to pursue the degree requested at the time of application. Applicants are considered for admission for the fall quarter only.

A new graduate student who does not meet the prerequisites of required courses in the M.Eng., M.S., or Ph.D. curricula may have to take some basic courses to make up the deficiency. Thus, a student deficient in mathematics and mechanics may have to take Math. 100, CENG 101B or Bioengineering 103B, Bioengineering 110, 122A in the first year and Bioengineering 250A-B, 253 in the second year. A student deficient in biology and chemistry may have to take Chemistry 131 or Bioengineering 130 and BIPN 100, 102 in the first year and Bioengineering 230A-B-C in the second year.

Nonmatriculated students are welcome to seek enrollment in bioengineering courses via UCSD Extension’s concurrent registration program. However, such enrollment in a bioengineering graduate course must be approved by the instructor.

Master of Science Degree Programs

The master of science (M.S.) program is intended to extend and broaden an undergraduate background and equip the graduates with fundamental knowledge in bioengineering. It is intended for those students wishing to gain experience in academic research, especially those considering continuing graduate studies at the doctoral level. The M.S. degree may be terminal or may be obtained while pursuing a doctorate. Doctoral degree students wishing to obtain the M.S. degree should refer to “Obtaining M.S. Degree” under the section, "Doctoral Degree Program."

An individualized program is agreed upon by the student and a faculty advisor. The plan of study must involve both course work and research, culminating in the preparation of a thesis. A total of forty-eight units of credit is required:

- Thirty-six units in course work
 Nine courses, of which six are core courses, described below, and three are elective courses which can be drawn from Bioengineering course offerings, other engineering/science course offerings, and School of Medicine courses. The faculty advisor must approve the three elective courses.

- Twelve units in research
 Bioengineering Research (BENG 299) under the direction of the chosen faculty research advisor.

A thesis based on the research is written and subsequently reviewed by the thesis advisor and two other faculty members appointed by the dean of Graduate Studies. The oral defense of the thesis constitutes the departmental master’s exam.

REQUIRED CORE COURSES FOR M.S. DEGREE PROGRAM

Integrative Bioengineering
- BENG 250A. Biomechanics
- BENG 253. Biomedical Transport Phenomena
- A third required course chosen from a list of approved courses that satisfy the Integrative Bioengineering requirement i.e., BENG 250B. Advanced Biomechanics, BENG 280B. Biomedical Imaging, BENG 203/CSE 283. Bioinformatics III—Functional Genomics, or other core bioengineering graduate courses that satisfy the

Integrative Bioengineering requirement as approved by the Graduate Studies Committee. A list of applicable approved courses is available from the Bioengineering Student Affairs Office.

Life Science
- BENG 230A. Biochemistry
- BENG 230B. Cell and Molecular Biology
- BENG 230C/Biom 271. Cardiovascular Physiology

Restrictions to core course work requirements are as follows:
1. Units obtained in Bioengineering 281 or 299 or 501 may not be applied toward the course work requirement.
2. No more than a total of eight units of Bioengineering 296 and 298 may be applied toward the course work requirement.
3. No more than twelve units of upper-division 100-level bioengineering courses may be applied toward the course work requirement.

Students must maintain at least a B average in the courses taken to fulfill the degree requirements.

MASTER’S TIME LIMIT POLICY

Full-time M.S. students are permitted seven quarters in which to complete all requirements. While there are no written time limits for part-time students, the department has the right to set individual deadlines if necessary.

A strong effort is made to schedule M.S.–level course offerings so that students may obtain their M.S. degree in one year of full-time study or two years of part-time study (see regulations on part-time study under "Graduate Studies").

Entering students who do not meet the prerequisites of these core courses may have to take some basic courses to make up the deficiency.

A candidate admitted for the M.S. degree who wishes to transfer to the Ph.D. program must consult the Student Affairs Office for the transfer before completion of the M.S. program.

CHANGE OF DEGREE AIM

Upon completion of the requirements for the M.S. degree, students are not automatically eligible for admission to the Ph.D. program.

M.S. candidates who wish to pursue a doctorate must submit an application for a change in status to the Graduate Studies Committee. The application must be approved and signed by a
bioengineering faculty member who expects to serve as the student’s Ph.D. advisor. Applications will be reviewed by an ad hoc faculty committee. If the committee recommends that the student has good potential for success in the doctoral program, the student will be given the opportunity to take an oral examination equivalent to the Ph.D. Departmental Qualifying Examination. At the time of that exam, an assessment will be made concerning admission to the Ph.D. program.

A change of status from a master’s program to the doctoral program requires that the student meet the minimal grade-point average required by the department of doctoral candidates.

Master of Engineering Degree Program

The department offers a master of engineering (M.Eng.) degree. The purpose of this degree is to prepare design and project engineers for careers in the biomedical and biotechnology industries within the framework of the graduate program of the Department of Bioengineering. It is a terminal professional degree in engineering which includes a recognition of the importance of breadth in technical knowledge, sufficient electives to address job-specific interests and professional skills such as economics, management, and business. It is intended for students who are primarily interested in engineering design, development, manufacturing, and management within an industrial setting.

The M.Eng. program is a flexible, course-intensive terminal professional degree, designed to be completed in one academic year of full-time study. It does not require a research project, a thesis, or a comprehensive exam. However, students do have the option of enrolling for technical elective credit in BENG 295, Bioengineering Design Project and Industrial Training under the direction of a faculty advisor. This is done by participating in the Graduate Industrial Training Program which allows students to work in an industrial setting on bioengineering projects in order to gain practical experience. (See “Industrial Internship Program” and “Graduate Industrial Training Program” sections of this catalog.) Students who may be interested in continuing to the Ph.D. program should apply to the M.S. program and not the terminal M.Eng. degree.

Students must select six courses from approved core areas, three additional approved technical elective courses from any graduate engineering program, and three general elective courses which may be drawn from the bioengineering core areas, engineering technical electives or other nontechnical courses. Such core courses and technical and general electives are described below. In selecting breadth courses, students must be mindful of the prerequisite requirements for some of the courses listed. The lists below are based on the current graduate course offerings of the bioengineering and other engineering departments. The Graduate Studies Committee will review the M.Eng. course lists annually and update them as course offerings change. Students must maintain at least a B average in the courses taken to fulfill the degree requirements.

Required Core Courses for M.Eng. Program (Six Required)

- Biomechanics and Transport Phenomena—BENG 250A-B, 253
- Tissue Engineering—BENG 241A-B-C
- Life Science—BENG 230A-B-C
- Other approved core graduate courses taught by bioengineering faculty that satisfy the depth requirement of the M.Eng. degree as approved by the Graduate Studies Committee. A list of applicable approved courses is available from the Department of Bioengineering Student Affairs Office.

Examples of Technical Electives for M.Eng. (Three Required)

BENG 202/CSE 282. Bioinformatics II: Sequence and Structure Analysis–Methods and Applications
BENG 203/CSE 283. Bioinformatics III: Functional Genomics
BENG 207. Neuromuscular Physiology and Biomechanics
BENG 208. Topics in Bioengineering with Lab
BENG 209. Continuum Mechanics
BENG 211/212/213. Systems Bioengineering
BENG 230A-B-C-D. Biochem/Physiology
BENG 238/MED 238. Molecular Biology of the Cardiovascular System
BENG 241A-B-C. Tissue Engineering
BENG 247/A-B. Biophotonics
BENG 250A-B, 253. Biomechanics
BENG 267. Microcirculation in Health and Disease
BENG 275. Computational Biomechanics
BENG 280A-B. Biomedical Imaging

Examples of General Electives for M.Eng. (Three Required)

BENG 161A-B-C. Biochemical, Bioreactor, and Metabolic Engineering
BENG 186A-B-C. Principles of Biomaterials, Bioinstrumentation and Bioengineering Design
BENG 207. Topic Courses
BENG 225. BioBusiness: Biotech Company
Chem. 140A-B-C. Organic Chemistry
CSE 167. Computer Graphics
ENG 201, 202, 203. Entrepreneurism
ECE 138L. Microstructuring Processing Technology Laboratory
ECE 254. Detection Theory
IR/PS Management: IRGN 420, 434, 438, 439, 442, 444, 445, IRCO 420, 421, 490G
IR/PS International Issues: IRCO 401, IRGN 407, 411, 413, 418
Econ 133. International Environmental Agreements
Econ 172A-B-C. Introduction to Operations Research
Econ 175. Financial Investments
Econ 178. Economic and Business Forecasting

For other courses that address job-specific interests and professional skills such as economics, management, and business, consult with the Student Affairs Office.

MAE 133. Finite Element Method
MAE 152. Computer Graphics for Engineers and Scientists
MAE 290A. Numerical Methods in Science and Engineering
Phys. 206. Biophysics
Sample M.Eng. Program of Study

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENG 230A</td>
<td>BENG 230B</td>
<td>BENG 230C</td>
</tr>
<tr>
<td>Tech Elec</td>
<td>BENG 250A</td>
<td>BENG 250C</td>
</tr>
<tr>
<td>Gen Elec</td>
<td>BENG 253</td>
<td>Tech Elec</td>
</tr>
<tr>
<td>Gen Elec</td>
<td>Tech Elec</td>
<td>Gen Elec</td>
</tr>
</tbody>
</table>

Doctoral Degree Program

The bioengineering Ph.D. program is intended to prepare students for a variety of careers in research and teaching. Therefore, depending on the student’s background and ability, research is initiated as soon as possible. Bioengineering students have specific course requirements and must maintain a minimum grade-point average of 3.4 in these courses. Students, in consultation with their advisors, develop course programs that will prepare them for the Departmental Qualifying Examination and for their dissertation research. These programs of study and research must be planned to meet the time limits established to advance to candidacy and to complete the requirements for the degree.

Doctoral students who have passed the Departmental Qualifying Examination may take any course for an S/U grade with the exception of courses required by the Departmental or Senate Qualifying Examination Committee. It is recommended that all bioengineering graduate students take a minimum of two courses (other than research) per academic year after passing the Departmental Qualifying Examination. Details can be obtained from the Student Affairs Office.

Doctoral Examinations

A bioengineering Ph.D. student is required to pass three examinations. The first is a Departmental Qualifying Examination which must be taken during the spring quarter of the first year of study. The exam is designed to ensure that all successful candidates possess a firm command of the engineering and life science subjects that form the foundations of bioengineering research and their integration at a level appropriate for the doctorate. It is administered by a committee designated by the department, consisting of departmental faculty members and, in some cases, one other faculty member from a related academic department (e.g., MAE, ECE, medicine). The scope of the oral examination includes the three broad areas that form the core first-year Ph.D. curriculum, namely engineering foundations, life science, and integrative bioengineering. The purpose of the exam is not merely to recapitulate the content of first-year courses, but rather to establish that students are able to synthesize this knowledge and apply it to solve problems in contemporary bioengineering research.

1. Engineering Foundations

Defined by the content of three graduate engineering courses drawn from the following:

- BENG 202/CSE 282. Bioinformatics II: Sequence and Structure Analysis—Methods and Applications
- BENG 211/212. Systems Biology
- BENG 275. Computational Biomechanics
- BENG 280A. Principles of Biomedical Imaging
- CSE 202. Algorithm Design and Analysis
- ECE 222A. Applied Electromagnetic Theory
- ECE 238A. Thermodynamics of Solids
- ECE 247A/BENG 247A. Advanced Biophotonics
- ECE 247B/BENG 247B. Bioelectronics
- ECE 251AN. Digital Signal Processing
- ECE 270A-B-C. Neurocomputing
- MAE 210A. Fluid Mechanics (best suited to students with some undergraduate background in mechanics or mechanical engineering)
- MAE 221A. Heat and Mass Transfer
- MAE 223. Computational Fluid Dynamics
- MAE 231A. Foundations of Solid Mechanics (best suited to students with some undergraduate background in mechanics or mechanical engineering)
- MAE 233A. Fracture Mechanics
- MAE 252. Chemical Reaction Engineering
- MAE 280A. Linear Systems Theory
- MAE 281A. Nonlinear Systems
- MAE 290A. Numerical Methods in Science and Engineering
- MATS 201B. Solid State Diffusion and Reaction Kinetics

Other topics may be approved by the Graduate Studies Committee.

2. Integrative Bioengineering

Defined by the content of the following three bioengineering courses:

- BENG 250A. Biomechanics
- BENG 253. Biomedical Transport Phenomena

A third required course chosen from the following list of approved courses that satisfy the Integrative Bioengineering requirement.

- BENG 250B. Advanced Biomechanics
- BENG 280B. Biomedical Imaging
- BENG 213. Systems Biology and Bioengineering: Building In Silico Models
- BENG 247C/ECE 247C. Bionanotechnology

Or other core bioengineering graduate courses that satisfy the Integrative Bioengineering requirement as approved by the Graduate Studies Committee. A list of applicable approved courses is available from the Department of Bioengineering Student Affairs Office.

3. Life Science

The life science subject area consists of the following topics: biochemistry, cell and molecular biology, organ physiology, and tissue engineering. These subject areas are defined by the contents of the following four courses:

- BENG 230A. Biochemistry or Chem. 211. Metabolic Biochemistry
- BENG 230B. Cell and Molecular Biology
- BENG 230C. Cardiovascular Physiology or BENG 230D. Respiratory and Renal Physiology
- BENG 241A. Foundations of Tissue Engineering

In addition to the above mentioned breadth requirements, students must complete the following courses in their second and subsequent years of study:

- At least two four-unit courses from an approved list that includes the continuation of Bioengineering Foundations course sequences, bioengineering graduate course sequences, other engineering/science course offerings, and School of Medicine courses. Students often take SOM courses to fulfill the second-year course requirement. The faculty advisor must approve the courses. Approved courses include: BENG 203, BENG 207, BENG 230D, BENG 247A-B-C, BENG 250B, BENG 238, MAE 231A-B-C, MAE 210A-B-C, MAE 207, MAE 221A, MATS 253, ECE 251, Chem. 211, and MAM 238
Courses comprising subject areas as well as subsequent requirements, and composition of the examination committee must be approved by the Graduate Studies Committee. Students are advised to seek such approval well in advance of their expected examination date, preferably while planning graduate studies.

Teaching experience is required of all bioengineering Ph.D. students prior to taking the Senate Qualifying Exam described below. Teaching experience is defined as service as a graduate student instructor in a course designated by the department. The total teaching requirement for new Ph.D. students is four quarters at 25 percent effort (ten hours per week). At least one quarter of teaching experience is required during the first year (prior to the departmental qualifying examination) and at least one quarter in the second year. Teaching experience can be fulfilled as a requirement for student support or taken as a course for academic credit (Bioengineering 501). Students must contact the Student Affairs Office to plan for completion of this requirement.

The **Senate Qualifying Examination** is the second examination required of bioengineering Ph.D. students. In preparation for this examination, students must have completed the Departmental Qualifying Examination and the departmental teaching experience requirement, obtained a faculty research advisor, and identified a topic for their dissertation research and made initial progress. At the time of application for advancement to candidacy, a doctoral committee responsible for the remainder of the student's graduate program is appointed by the Graduate Council. The committee conducts the Senate Qualifying Examination, during which students must demonstrate the ability to engage in thesis research. This involves the presentation and defense of a plan for the thesis research project. Upon successful completion of this examination, students are advanced to candidacy and are awarded the Candidate in Philosophy degree (see "Graduate Studies" section in this catalog).

The **dissertation defense** is the final Ph.D. examination. Upon completion of the dissertation research project, the student writes a dissertation that must be successfully defended in a public presentation and oral examination conducted by the doctoral committee. A complete copy of the student's dissertation must be submitted to each member of the doctoral committee approximately four weeks before the defense. It is understood that this copy of the dissertation given to committee members will not be the final copy, and that the committee members may suggest changes in the text at the time of the defense. This examination must be conducted after at least three quarters of the date of advancement to doctoral candidacy. Acceptance of the dissertation by the Office of Graduate Studies and the university librarian represents the final step in completion of all requirements for the Ph.D.

Ph.D. Time Limit Policy

Precandidacy status is limited to four years. Doctoral students are eligible for university support for six years. The defense and submission of the doctoral dissertation must be within seven years.

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

Note: The department will endeavor to offer the courses as outlined below; however, unforeseen circumstances sometimes mandate a change of scheduled offerings. Students are strongly advised to check with the department's Student Affairs Office. This is of particular importance in planning schedules to satisfy graduation requirements.

The following schedule is tentative for the academic year 2007-08 only. The quarter in which a course is scheduled may differ in subsequent academic years. Students should consult TritonLink and the Student Affairs Office to obtain current information.

Prerequisites are enforced when students register for courses. Students who have satisfied prerequisites at another institution or by AP credit need to be pre-authorized to register in these courses. If pre-authorization is necessary, students should contact the Student Affairs Office before the scheduled registration period.

Some courses require a course material fee.
lower-division standing, completion of thirty units of UCSD undergraduate study, a minimum UCSD GPA of 3.0, and a completed and approved "Special Studies" form. (F,W,S)

98. Directed Group Study (1-4) Directed group study on a topic or in a field not included in the regular department curriculum. (P/NP grades only.) Prerequisites: lower-division standing, completion of thirty units of undergraduate study at UCSD with a UCSD GPA of at least 3.0 and consent of a Bioengineering faculty member; completed and approved Special Studies form.

99. Independent Study for Undergraduates (4) Independent reading or research by arrangement with a Bioengineering faculty member. (P/NP grades only.) Prerequisites: lower-division standing, completion of thirty units of undergraduate study at UCSD with a UCSD GPA of at least 3.0 and consent of a Bioengineering faculty member; completed and approved Special Studies form.

UPPER-DIVISION

100. Introduction to Bioengineering Design (4) A general introduction to bioengineering design, including examples of engineering analysis and design applied to representative topics in biomechanics, bioinstrumentation, biomaterials, biotechnology, and related areas. A review of technological needs, design methodology, testing procedures, statistical analysis, governmental regulation, evaluation of costs and benefits, quality of life, and ethical issues. Prerequisites: BENG 1; grade of C– or better in Math. 21C or Math. 20C and Math. 21D or Math. 20D, and Physics 2C; majors only. (S)

101. Foundations of Biomedical Imaging (4) An introduction to the principles and applications of biomedical imaging, with emphasis on the acquisition, processing, display of imagery, and design of imaging systems. Filtering, convolution, and Fourier methods. Microscopy, radiography, computed tomography, magnetic resonance, ultrasound, and nuclear imaging. Prerequisites: grade of C– or better in BENG 100; majors only or consent of department. (F)

103B. Bioengineering Mass Transfer (4) Mass transfer in solids, liquids, and gases with application to biological systems. Free and facilitated diffusion, Convective mass transfer. Diffusion-reaction phenomena. Active transport. Biological mass transfer coefficients. Steady and unsteady state. Flux-force relationships. (Credit not allowed for both CENG 101C and BENG 103B.) Prerequisites: grade of C– or better in CENG 101A or BENG 112A; majors only or consent of instructor. (S)

109. Bioengineering Statics and Dynamics (4) Newton’s Laws. Static resultant forces and moments. Conservation laws of dynamics. Muscle and joint loads. Human body dynamics, locomotion, and clinical applications. Bodies in contact: friction, momentum, and impulse; impact and injury. Work, power, and energy relationships. Bioengineering design problems. Prerequisites: grade of C– or better in Math. 21D or Math. 20D; Physics 2C; majors only or consent of instructor. (W)

112A. Biomechanics (4) Introduction to physiological systems, with emphasis on structure and function of major tissues and organs. Application of mechanics to understand the behavior of these tissues and organs at gross and microscopic levels. Bioelastic solids. Rigid body biomechanics. Biofluids. Bioengineering and medical design. Prerequisites: grade of C– or better in BENG 110; majors only or consent of instructor. (W)

112B. Biomechanics (4) Biomechanics of living tissues with emphasis on continuum analysis of problems in biofluid and cell mechanics. Engineering design and problem solving in the biomechanics of mammalian tissues, especially those of the cardiovascular system. Prerequisites: grade of C– or better in BENG 112A; majors only or consent of instructor. (S)

119A. Design Development in Biomechanics (3) Development of design project in biomechanics. Prerequisites: concurrent enrollment in BENG 187B; Bioengineering or Biotechnology majors only or consent of instructor. (F)

119B. Design Implementation in Biomechanics (3) Implementation of design project in biomechanics. Prerequisites: grade of C– or above in BENG 119A; concurrent enrollment in BENG 187C; Bioengineering or Biotechnology majors only or consent of instructor. (W)

122A. Biosystems and Control (4) Systems and control theory applied to bioengineering. Modeling, linearization, transfer functions, Laplace transforms, closed-loop systems, design and simulation of controllers. Dynamic behavior and controls of first and second order processes. PID controllers. Stability. Bode design. Features of biological controls systems. A simulation term project using MATLAB and an oral presentation are required. Prerequisites: grade of C– or better in BENG 112B; majors only or consent of department. (W)

123. Systems Biology and Bioengineering (4) Systems biology and bioengineering consists of (1) enumeration of biological components participating in a biological process, (2) reconstruction of interactions to form a network, (3) mathematical representation for analysis, interpretation, and prediction, (4) model validation and use in prospective design. Prerequisites: grade of C– or better in BIOC 100; majors only or consent of instructor. (W)

125. Modeling and Computation in Bioengineering (4) Computational modeling of molecular bioengineering phenomena: excitable cells, regulatory networks, and transport. Application of ordinary, stochastic, and partial differential equations. Introduction to data analysis techniques: power spectra, wavelets, and nonlinear time series analysis. Prerequisites: grade of C– or better in BENG 122A or BENG 123; majors only or consent of instructor. (S)

126A. Design Development in Bioinformatics Bioengineering (3) Development of design project in bioinformatics bioengineering. Prerequisites: concurrent enrollment in BENG 187B; Bioengineering or Biotechnology majors only or consent of instructor. (F)

126B. Design Implementation in Bioinformatics Bioengineering (3) Implementation of design project in bioinformatics bioengineering. Prerequisites: grade of C– or above in BENG 126A; concurrent enrollment in BENG 187C; Bioengineering or Biotechnology majors only or consent of instructor. (W)

127A. Design Development in Molecular Systems Bioengineering (3) Development of design project in molecular systems bioengineering. Prerequisites: concurrent enrollment in BENG 187B; Bioengineering or Biotechnology majors only or consent of instructor. (F)

127B. Design Implementation in Molecular Systems Bioengineering (3) Implementation of design project in molecular systems bioengineering. Prerequisites: grade of C– or above in BENG 127A; concurrent enrollment in BENG 187C; Bioengineering or Biotechnology majors only or consent of instructor. (W)

128A. Design Development in Genetic Circuits Bioengineering (3) Development of design project in genetic circuits bioengineering. Prerequisites: concurrent enrollment in BENG 187B; Bioengineering or Biotechnology majors only or consent of instructor. (F)

128B. Design Implementation in Genetic Circuits Bioengineering (3) Implementation of design project in genetic circuits bioengineering. Prerequisites: grade of C– or above in BENG 128A; concurrent enrollment in BENG 187C; Bioengineering or Biotechnology majors only or consent of instructor. (W)

129A. Design Development in Cell Systems Bioengineering (3) Development of design project in cell systems bioengineering. Prerequisites: concurrent enrollment in BENG 187B; Bioengineering or Biotechnology majors only or consent of instructor. (F)

129B. Design Implementation in Cell Systems Bioengineering (3) Implementation of design project in cell systems bioengineering. Prerequisites: grade of C– or above in BENG 129A; concurrent enrollment in BENG 187C; Bioengineering or Biotechnology majors only or consent of instructor. (W)

130. Molecular Physical Chemistry (4) An introduction to physical principles that govern biological matter and processes. Thermodynamic principles and their molecular origin, structural basis of life and physical and conceptual models to illustrate life phenomena. (Credit allowed for one of the following: Chem. 126, Chem. 127, Chem. 131, or BENG 130.) Prerequisites: grade of C– or better in Chem 6B, Math. 20A, 20B, Physics 2A, 2B, 2C. (Physics 3C may be taken concurrently); majors only or consent of instructor. (W)

139A. Design Development in Molecular Bioengineering (3) Development of design project in molecular bioengineering. Prerequisites: concurrent enrollment in BENG
106. Chemical and Molecular Bioengineering Techniques (4)

Introductory laboratory course in current principles and techniques of chemistry and molecular biology applicable to bioengineering. Quantitation of proteins and nucleic acids by spectrophotometric, immunological, and enzymatic methods. Separations and purification by centrifugation, chromatographic, and electrophoretic methods. Prerequisites: grade of C– or better in BIBC 102; BICD 100; BENG 100; MAE 170; majors only or consent of instructor. (S)

161A. Bioreactor Engineering (4)

Bioengineering, biochemical, and physiological considerations in the design of bioreactor processes: enzyme kinetics, mass transfer limitations, microbial growth, and product formation kinetics. Fermentation reactor design, scale-up, control. Quantitative bioengineering analysis and design of biochemical processes and experiments on biomolecules. Prerequisites: grade of C– or better in Chem 114B or BIBC 102 (may be taken concurrently), BENG 122A or BENG 123, and BIBC 103 or BENG 160; majors only or consent of instructor. (F)

161B. Biochemical Engineering (4)

Commercial production of biochemical commodity products. Application of genetic control systems and mutant populations. Recombinant DNA and eucaryotic proteins in E. coli and other host organisms. Product recovery operations, including the design of bioseparation processes of filtration, adsorption, chromatography, and crystallization. Bioprocess economics. Human recombinant erythropoietin as an example, from genomic cloning to CHO cell expression, to bioreactor manufacturing and purification of medical products for clinical application. Prerequisites: grade of C– or better in BENG 140A; majors only or consent of instructor. (W)

161C. Metabolic Engineering (4)

Engineering systems analysis of metabolic and regulatory processes. Use of high-throughput data for network reconstruction. Formulation of the stoichiometric matrix and its use to determine steady state flux distributions. Kinetics of individual enzymatic reactions. Computer simulations of metabolic networks, systemic sensitivity coefficients, bifurcations to study dynamic network functions. Temporal decomposition of metabolic processes into multiple time scales and the physiologic roles of metabolic events in each scale. Prerequisites: grade of C– or better in BENG 161A; majors only or consent of instructor. (W)

162. Biotechnology Laboratory (4)

Laboratory practices and design principles for biotechnology. Culture of microorganisms and mammalian cells, recombinant DNA bioreactor design and operation. Design and implementation of biosensors. A team design-based term project and oral presentation required. Prerequisites: grade of C– or above in MAE 170; BIBC 102; BIBC 103 or BENG 160; BENG 161A (may be taken concurrently); BENG 166A (may be taken concurrently); majors only or consent of instructor. (F)

166A. Cell and Tissue Engineering (4)

Engineering analysis of physico-chemical rate processes that affect, limit, and govern the function of cells and tissues. Cell migration, mitosis, apoptosis, and differentiation. Dynamic and structural interactions between mesenchymal and parenchymal. The role of the tissue microenvironment including cell-cell interactions, extracellular matrix, and growth factor communication. The design of functional tissue substitutes including cell and material sourcing, scale-up and manufacturability, efficacy and safety, regulatory, and ethical topics. Clinical Applications. Prerequisites: grade of C– or better in BENG 103B or BENG 112B; senior standing; majors only or consent of department. (F)

167. Cell and Tissue Engineering Laboratory (4)

An introduction to contemporary methods and applications. Students will formulate and test hypotheses related to the design and production of functional tissue substitutes. Topics to be explored include tissue characterization, biomaterial scaffolds, cell migration, adhesion, and growth. Prerequisite: BENG 166A; majors only, or consent of instructor. (S)

168. Biomolecular Engineering (4)

Basic molecular biology; recombinant DNA technologies; design and manufacture of recombinant proteins and genetically engineered cells; architecture and mechanism of molecular nano-machinery that perform gene regulation, energy conversion, enzymatic catalysis, and active transport. Prerequisites: grade of C– or better in BILD 1 and BENG 100; majors only or consent of instructor. (S)

169A. Design Development in Tissue Engineering (3)

Design of development project in tissue engineering. Prerequisites: concurrent enrollment in BENG 187B; Bioengineering or Bioengineering: Biotechnology majors only or consent of instructor. (F)

169B. Design Implementation in Tissue Engineering (3)

Implementation of design project in tissue engineering. Prerequisites: concurrently enrolled in BENG 187C; Bioengineering or Bioengineering: Biotechnology majors only or consent of instructor. (W)

172. Bioengineering Laboratory (4)

A laboratory course demonstrating basic concepts of biomechanics, bioengineering design, and experimental procedures involving animal tissue. Sources of error and experimental limitations. Computer data acquisition, modeling, statistical analysis. Experiments on artery, muscle and heart mechanics, action potentials, viscoelasticity, electrophysiology, and hemodynamics. Prerequisites: grade of C– or better in MAE 170; junior or senior standing in the major, or consent of instructor. (S)

173. Bioengineering Project Laboratory (4)

Applications of bioengineering concepts to the solution of practical and research problems. Planning, design, and testing of prototype devices. Term project and oral presentation are required. Prerequisites: majors only; consent of instructor; BENG 112B, BENG 172. (S)

179A. Design Development in Bioinstrumentation (3)

Development of design project in bioinstrumentation. Prerequisites: concurrent enrollment in BENG 187B; Bioengineering or Bioengineering: Biotechnology majors only or consent of instructor. (F)

179B. Design Implementation in Bioinstrumentation (3)

Implementation of design project in bioinstrumentation. Prerequisites: grade of C– or above in BENG 179A; concurrent enrollment in BENG 187C; Bioengineering or Bioengineering: Biotechnology majors only or consent of instructor. (W)

181/BIMM 181/CSE 181. Molecular Sequence Analysis (4)

(Cross-listed as BIMM 181 and CSE 181.) This course covers the analysis of nucleic acid and protein
182/BIMM 182/ CSE 182/ CHEM 182. Biological
Databases (4)
(Cross-listed as BIMM 182, CSE 182, and Chem. 182.)
This course provides an introduction to the features of
biological data, how those data are organized ef-
ciently in databases, and how existing data resources
are used to solve a variety of biological prob-
lems. Object-oriented databases, data modeling and
description. Survey of current biological database
with respect to above, implementation of database
focused on a biological topic. Prerequisites: CSE 100 or
Math. 176; Bioinformatics majors only. (F)

183. Applied Genomic Technologies (4)
Principles and technologies for using genomic infor-
mation for biomedical applications. Techniques will be
introduced progressively, from DNA to RNA to pro-
etin to whole cells. The integration of biology,
chemistry, engineering, and computation will be
stressed. Topics include: Technology for the Genome,
DNA Chips, RNA Technologies, Proteomic Techno-
logies, Physiome and Phenome Technologies,
Analysis of Cell Function. Prerequisites: grade of C– or
better in BIMM 100 or Chem 114C; BICD 110; Bioinfor-
matics majors only. (F)

184/BIMM 184/ CSE 184/ CHEM 184. Computation-
Molecular Biology (4)
(Cross-listed as BIMM 184, CSE 184, and Chem. 184.)
This advanced course covers the application of
machine learning and modeling techniques to biologi-
cal systems. Topics include gene structure, recognition
of DNA and protein sequence patterns, classification,
and protein structure prediction. Pattern discovery, hid-
den Markov models/support vector machines/neural
network/profiles, protein structure prediction, func-
tional characterization of proteins, functional
genomics/proteomics, metabolic pathways/gene net-
works. Prerequisites: BENG 181 or BIMM 181 or CSE 181;
BENG 182 or CSE 182 or CHEM 182; Bioinformatics majors only. (W)

186A. Principles of Biomaterials Design (4)
Fundamentals of materials science as applied to bio-
engineering design. Natural and synthetic polymeric
materials. Materials characterization and design. Wound
repair, blood clotting, foreign body response, transplan-
tation biology, biocompatibility of materials, tissue
engineering. Artificial organs and medical devices.
Ethical issues. A term project and oral presentation are
required. Prerequisites: grade of C– or better in BENG 112B
or senior standing in Bioengineering: Biotechnology
major; majors only or consent of department. (S)

186B. Principles of Bioinstrumentation Design (4)
Biophysical phenomena, transducers, and electronics
as related to the design of biomedical instrumenta-
tion. Potentiometric and amperometric signals and
amplifiers. Biopotentials, membrane potentials, chem-
ical sensors. Electrical safety. Mechanical transducers
for displacement, force, and pressure. Temperature
Prerequisites: grade of C– or better in MAE 140 and MAE
170; majors only or consent of instructor. (W)

186C. Bioengineering Design (4)
Development of a bioengineering design described in
a formal engineering report. Engineering analysis and
application of methodology from applied sciences,
biology, physiology, and biochemistry. Analysis of eco-
nomics, environmental, manufacture, ethical, health
and safety, social issues, and application of govern-
mental regulations. Prerequisites: grade of C– or
better in BENG 103B, BENG 106B, BENG 112B, BENG 186B,
and MAE 130A; majors only or consent of instructor. (W)

187A. Bioengineering Design Project: Planning (1)
Attendance at a weekly planning session on design
projects. Prerequisites: grade of C– or better in MAE 170;
BENG 101 or BICD 100; BENG 112A or CENG 101A; BENG
140A or BIBC 102; BENG 186B or BENG 123; Bioen-
gineering or Bioengineering: Biotechnology majors only
or consent of instructor. (S)

187B. Bioengineering Design Project: Development (1)
Development of original bioengineering design to
solution of problem in biology or medicine. Analysis of
economic issues, manufacturing and quality assur-
ance, ethics, safety, government regulations, and patent
requirements. Oral presentation and formal engineering
reports. Prerequisites: grade of C– or better in MAE 170,
and BENG 112B or BENG 123; concurrent enrollment in one of:
BENG 119A, BENG 126A, BENG 127A, BENG 128A, BENG
129A, BENG 139A, BENG 147A, BENG 148A, BENG 149A,
BENG 169A, or BENG 179A; Bioengineering or Bioen-
gineering: Biotechnology majors only or consent of instructor. (F)

187C. Bioengineering Design Project: Implementation (1)
Approaches to implementation of senior design proj-
et, including final report. Teams will report on con-
struction of prototypes, conduct of testing, collection of
data, and assessment of reliability and failure.
Prerequisites: grade of C– or better in BENG 187B; concur-
rent enrollment in one of the following lab sections:
BENG 119B, BENG 126B, BENG 127B, BENG 128B, BENG
129B, BENG 139B, BENG 147B, BENG 148B, BENG 149B,
BENG 169B, or BENG 179B. Bioengineering or Bioen-
gineering: Biotechnology majors only or consent of instructor. (W)

187D. Bioengineering Design Project: Presentation (1)
Oral presentations of design projects, including design,
development, and implementation strategies and
results of prototype testing. Prerequisites: grade of C– or
better in BENG 187C; Bioengineering or Bioengineering:
Biotechnology majors only or consent of instructor. (S)

187E. Bioengineering Design Project: Final Report (1)
Role of bioengineers in industry. Professional identity.
Structures of bioengineering industries and product
development process. Job market analysis. Current
employment opportunities. Recruiting process and
interview. Analysis of the employer. Marketing vs.
enGINEERING.

191. Senior Seminar I: Professional Issues in
Bioengineering (2)
Role of bioengineers in industry. Professional identity.
Structure of bioengineering industries and product
development process. Job market analysis. Current
employment opportunities. Recruiting process and
interview. Analysis of the employer. Marketing vs.
enGINEERING.

192. Senior Seminar in Bioengineering (1)
The Senior Seminar Program is designed to allow sen-
lors to meet with faculty members in a small group setting
to explore an intellectual topic in bioengineering
(the upper-division level). Senior seminars may be offered in all campus departments.
Topics will vary from quarter to quarter. Senior semi-
nars may be taken for credit up to four times with a
change in topic and permission of the department.
Enrollment is limited to twenty students, with prefer-
ence given to seniors.

195. Teaching (2-4)
Teaching and tutorial assistance in a bioengineering
course under supervision of instructor. Not more than
four units may be used to satisfy graduation require-
ments. (P/NP grades only). Prerequisites: B average in
the major and departmental approval. (F,W,S)

196. Bioengineering Industrial Internship (1-4)
Under the joint supervision of a faculty advisor and
industry mentor, the student will work at a bioengi-
neering industrial site to gain practical bioengineering
experience. No more than twelve units may be
used to satisfy graduation unit requirements. (P/NP
grades only). Prerequisites: consent of department and
completion of all lower-division course requirements,
including general-science requirements; some labora-
tory experience; completion of ninety units with a 2.5
GPA, and consent of a bioengineering faculty coordina-
ator. (F,W,S,Su)

197. Engineering Internship (1-4)
An enrichment program, available to a limited number
of undergraduate students, which provides work
experience with industry, government offices, hospi-
tals, and their practices. Subject to the availability of
positions, students will work in a local industry or hos-
pital (on a salaried or unsalaried basis) under the
supervision of a faculty member and industrial, gov-
ernment, or hospital employee. Coordination of the
Engineering Internship is conducted through UCSD's
Academic Internship Program, Time and effort to be
arranged. Units may not be applied towards major
graduation requirements unless prior approval of a
faculty advisor is obtained and internship is an
unsalaried position. Prerequisites: completion of ninety
units with a 2.5 GPA and consent of a bioengineering fac-
culty coordinator. (F,W,S,Su)

198. Directed Group Study (1-4)
Directed group study, on a topic or in a field not
included in the regular department curriculum, by
arrangement with a bioengineering faculty member.
(P/NP grades only.) Prerequisites: upper-division stand-
ing, completion of ninety units of UCSD undergraduate
study, a minimum UCSD GPA of 2.5, consent of instructor,
and a completed and approved Special Studies form. (F,W,S)

199. Independent Study for Undergraduates (4)
Independent reading or research by arrangement
with a bioengineering faculty member. (P/NP grades
only.) Prerequisites: upper-division standing, completion
of ninety units of UCSD undergraduate study, a mini-
num UCSD GPA of 2.5, consent of instructor, and a com-
pleted and approved Special Studies form. (F,W,S)

GRADUATE
202/CSE 282. Bioinformatics II: Sequence and Structure
Analysis—Methods and Applications (4)
(Formerly BENG 202/CSE 257A.) Introduction to meth-
ods for sequence analysis. Applications to genome
and proteome sequences. Protein structure, sequence-structure analysis. Prerequisite: Pharm. 201 or
consent of instructor. (W)
Annotating genomes, characterizing functional genes, profiling, reconstructing pathways. Prerequisites: Pharm. 201, BENG 202/CSE 262 or consent of instructor. (S)

207. Topics in Bioengineering (4)
Course given at the discretion of the faculty on current topics of interest in bioengineering. (F.W.S)

208. Topics in Bioengineering with Lab (4)
A course to be given at the discretion of the faculty on topics of current interest in engineering science. This course is intended to be a lecture and lab companion topics course. Prerequisite: consent of instructor. (S)

Introduction to the basic definitions of Continuum Mechanics and their mathematical formulation at the graduate level with applications to problems in medicine and biology. This course is intended for students with little or no background in mechanics; it is an introduction to the Biomechanics courses BENG 250 A-B in the Department of Bioengineering and to Solid and Fluid Mechanics courses MAE 210A and MAE 231A in the Department of Mechanical and Aerospace Engineering. This course should NOT be taken concurrently with MAE 210A or MAE 231A. Prerequisite: consent of instructor. (F)

211. Systems Biology and Bioengineering I: Biological Components (4)
Components of biological systems, their biochemical properties and function. The technology used for obtaining component lists. Relationship within and integration of component lists. Structured vocabularies and component ontologies. Algorithms for comparative approaches in deciphering and mining component lists. Prerequisite: BENG 230A or BIMM 100 or consent of instructor. (F)

212. Systems Biology and Bioengineering II: Network Reconstruction (4)
This course will cover the process of reconstructing complex biological reaction networks. Reconstruction of metabolic networks, regulatory networks and signaling networks. Bottom-up and top-down approaches. The use of collections of historical data. The principles underlying high-throughput experimental technologies and examples given on how this data is used for network reconstruction, consistency checking, and validation. Prerequisite: BENG 211 or consent of instructor. (W)

213. Systems Biology and Bioengineering III: Building and Simulating Large-scale In Silico Models (4)
Mathematical models of reconstructed reaction networks and simulation of their emergent properties. Classical kinetic theory, stoichiometric simulation for studies with little or no background in mechanics; it is an introduction to the Biomechanics courses BENG 250 A-B in the Department of Bioengineering and to Solid and Fluid Mechanics courses MAE 210A and MAE 231A in the Department of Mechanical and Aerospace Engineering. This course should NOT be taken concurrently with MAE 210A or MAE 231A. Prerequisite: consent of instructor. (F)

230A. Biochemistry (4)
A graduate course in biochemistry especially tailored to the requirements and background of bioengineering graduate students. It will cover the important macro- and small molecules in cells that are the major constituents, or that function as signaling molecules or molecular machineries. The structures, pathways, interactions, methodologies, and molecular designs using recombinant DNA technology will be covered. Prerequisites: BIPN 100 and 102 or consent of instructor. (F)

230B. Cell and Molecular Biology (4)
A general survey of structure-function relationships at the molecular and cellular levels. Emphasis on basic genetic mechanisms; control of gene expression; membrane structure, transport and traffic; cell signaling; cell adhesion; mechanics of cell division; and cytoskeleton. Prerequisites: BIPN 100 and 102, and BENG 230A, or consent of instructor. (W)

230C/BIM 271. Cardiovascular Physiology (4)
Physical concepts of behavior of heart, large blood vessels, vascular beds in major organs and the microcirculation. Physical and physiological principles of blood flow, blood pressure, cardiac work, electrophysiology of the heart. Special vascular beds, including their biological and hemodynamic importance. Integration through nervous and humoral controls. Prerequisites: BIPN 100, 102, and BENG 230B, or consent of instructor. (S)

230D. Respiratory and Renal Physiology (4)

238/MED 238. Molecular Biology of the Cardiovascular System (4)
An overview of heart vascular development and associated diseases from a molecular biological perspective. Current approaches for generating mouse models of cardiovascular disease and recently developed technologies for physiological assessment in small animal models will be presented. (S)

241A. Foundations of Tissue Engineering Science (4)
Molecular and cell biological basis of tissue engineering science. Paracrine control of tissue growth and differentiation. Biomechanics and the molecular basis of cell-cell and cell-matrix interactions. Cell motility, mechanics of tissue growth and assembly, tissue repair. Mass transfer in tissue. Microcirculation of blood and lymph. Prerequisite: BENG 230A or consent of instructor. (S)

247A/ECE 247A. Advanced BioPhotonics (4)
Basic physics and chemistry for the interaction of photons with matter, including both biological and synthetic materials; use of photonic radiation pressure for manipulation of objects and materials; advanced optoelectronic detection systems, devices and methods, including time resolved fluorescent and chemiluminescent methods, fluorescent energy transfer (FRET) techniques, quantum dots, and near-field optical techniques; underlying mechanisms of the light sensitive biological systems, including chloroplasts for photosynthetic energy conversion and the basis of vision processes. Prerequisite: graduate standing. (F)

247B/ECE 247B. BioElectronics (4)
Topics to be covered will include photolithographic techniques for high-density DNA microarray production, incorporation of CMOS control into electronic DNA microarrays, direct electronic detection technology used in microarrays and biosensor devices, and focus on problems related to making highly integrated devices (lab-on-a-chip, in vivo biosensors, etc.) form heterogeneous materials and components. Prerequisite: graduate standing. (F)

247C/ECE 247C. Bionanotechnology (4)
Topics include: nanosensors and nanodevices for both clinical diagnostics and bio warfare (bioterror), agent detection; nanostructures for drug delivery; nanorobots and nanodevices; use of nanoscale devices and systems; methods and techniques for functionalization of nanoparticles and nanostructures with biological molecules; nanostructural aspects of fuel cells and biofuel cells; potential use of DNA and other biomolecules for computing and ultra-high-density data storage. Prerequisite: graduate standing. (S)

250A. Biomechanics (4)
An introduction to biomechanics and transport phenomena in biological systems at the graduate level. Biomechanics, biosolid mechanics, muscle mechanics, mass transfer, momentum transfer, energy transfer. Prerequisites: CENG 101C and BENG 112B, or consent of instructor. (W)

250B. Advanced Biomechanics (4)
Modern development of biomechanics at an advanced mathematical level. Selected topics in the dynamics of the heart, pulsatile, blood flow, microcirculation, and muscle mechanics. Prerequisite: BENG 253 or consent of instructor. (S)

253. Biomedical Transport Phenomena (4)
Nonequilibrium thermodynamic analysis of transport phenomena. The osmotic effect. Diffusion and exchange in biological systems. Prerequisite: consent of instructor. (W)

267. Microcirculation in Health and Disease (4)
Structural and functional aspects of transport and blood-tissue exchange in key organs during circulatory shock, bacterial toxemia, hypertension. Physical and ultrastructural techniques used to analyze small-vessel dynamics. Prerequisite: consent of instructor. (S)

275. Computational Bioengineering (4)
276/CHEM 276/MATH 276. Numerical Analysis in Multi-Scale Biology (4)
Introduces mathematical tools to simulate biological processes at multiple scales. Numerical methods for ordinary and partial differential equations (deterministic and stochastic), and methods for parallel computing and visualization. Hands-on use of computers emphasized; students will apply numerical methods in individual projects. Prerequisite: consent of instructor. (F,W,S)

280A. Principles of Biomedical Imaging (4)
Fundamentals of Fourier transform and linear systems theory including convolution, sampling, noise, filtering, image reconstruction and visualization with an emphasis on applications to biomedical imaging. Examples from optical imaging, CT, MR, ultrasound, nuclear, PET, and radiography. Prerequisite: consent of instructor. (F)

280B. Comparative Biomedical Imaging (4)
Application of biomedical imaging to the measurement of structure, function, and dynamics of organ systems from the microscopic to the organ level. Emphasis on detailed evaluation and comparison of specific imaging modalities. Prerequisite: consent of instructor. (W,S)

281. Seminar in Bioengineering (1)
Weekly seminars by faculty, visitors, postdoctoral research fellows, and graduate students concerning research topics in bioengineering and related subjects. May be repeated for credit. This course does not apply toward the M.S. graduation requirements. (S/U grades only) (F,W,S)

290. Bioengineering Special Graduate Seminar (1-2)
Seminars by faculty, visitors, post-doctoral research fellows, and/or graduate students in selected topic(s) in bioengineering and/or related subjects. This course does not apply toward M.S. graduation requirements.

295. Bioengineering Design Project and Industrial Training (4)
Independent work by graduate students focused on design, applied research, and professional experience. Prerequisite: consent of department and bioengineering faculty advisor. (F,W,S)

296. Independent Study (4)
Prerequisite: consent of instructor.

298. Directed Group Study (1-4)
Directed group study on a topic or in a field not included in regular department curriculum, by special arrangement with a faculty member. Prerequisite: consent of instructor. (S/U grade only.)

299. Graduate Research (1-12)
Independent work by graduate students engaged in research and writing theses. Prerequisite: consent of instructor. (S/U grades only.)

501. Teaching Experience (2)
Teaching experience in an appropriate bioengineering undergraduate course under direction of the faculty member in charge of the course. Lecturing one hour per week in either a problem-solving section or regular lecture. (S/U grade only). Prerequisites: consent of instructor and departmental approval. (F,W,S)

Chemical Engineering Program (CENG)

Student Affairs: 182 Engineering Building II, Warren College

Professors
- P. C. Chau, Ph.D., MAE, Co-Director
- R. E. Conti, Ph.D., Chemistry and Biochemistry
- J. E. Crowell, Ph.D., Chemistry and Biochemistry
- C. H. Gibson, Ph.D., MAE
- D. A. Gough, Ph.D., Bioengineering
- A. Groisman, Ph.D., Physics
- M. Krstic, Ph.D., MAE
- A. C. Kummel, Ph.D., Chemistry and Biochemistry
- J. Lasheras, Ph.D., MAE
- P. F. Linden, Ph.D., MAE
- J. M. McKinley, Ph.D., MAE
- B. O. Palsson, Ph.D., Bioengineering
- C. Pozrikidis, Ph.D., MAE
- K. Seshadri, Ph.D., MAE
- J. B. Talbot, Ph.D., MAE, Program Director
- F. A. Williams, Ph.D., MAE

Professor Emeritus
- S. Middleman, Ph.D., MAE
- D. R. Miller, Ph.D., MAE

Associate Professors
- R. deCallafon, Ph.D., MAE
- R. K. Herz, Ph.D., MAE

Affiliated Faculty
- L. A. Sung, Ph.D., Associate Professor, Bioengineering

Program Mission and Objectives

The Chemical Engineering Program has affiliated faculty from the Department of Mechanical and Aerospace Engineering, Department of Chemistry and Biochemistry, and the Department of Bioengineering. The program is administered by the Department of Mechanical and Aerospace Engineering. The curricula at both the undergraduate and graduate levels are designed to support and foster chemical engineering as a profession that interfaces engineering and all aspects of basic sciences (physics, chemistry, and biology).

The mission of the Chemical Engineering Program is to provide the next generation of chemical engineers with an excellent and innovative chemical engineering education. The primary goals are:

- To provide chemical engineering students with a strong technical education and communication skills that will enable them to have successful careers in a wide range of industrial and professional environments.
- To prepare chemical engineering students for rapidly changing technological environments with the core knowledge central to multidisciplinary development and personal improvement throughout their professional careers.
- To instill in chemical engineering students a strong sense of humanistic values and professionalism such that they can conduct ethically and knowledgeably regarding technological impact in societal issues.

The curriculum is designed to prepare chemical engineering graduates for further education and personal development through their entire professional career. We strive to accomplish these goals by providing a rigorous and demanding curriculum that incorporates lectures, discussions, laboratory and project development experiences in basic sciences, mathematics, engineering sciences, and design as well as the humanities and social sciences. The main objectives are:

1. To enable students to understand and apply scientific principles and engineering and computational tools to analyze and solve problems of importance to society.
2. To enable students to apply appropriate experimental and statistical techniques in engineering analysis and applications.
3. To enable students to incorporate engineering economics and information from multiple disciplines in the analysis, synthesis, and design of engineering systems under realistic settings.
4. To enable students to acquire effective technical writing and oral communication skills necessary for successful participation on teams and in leadership positions.
5. To enable students to acquire the basic knowledge of chemical and process safety.
6. To instill in our students an understanding of their professional and ethical responsibilities.

Unless otherwise stated, the requirements and policies follow those of the Department.
The Undergraduate Program

The B.S. program in chemical engineering is accredited by the Engineering Accreditation Commission of the Accreditation Board of Engineering and Technology (ABET/EAC). The curriculum is tailored to provide breadth and flexibility by taking advantage of the strength of basic sciences and other engineering disciplines at UCSD. The intention is to graduate chemical engineers who are multidisciplinary and can work in a broad spectrum of industries rather than solely traditional chemical and petrochemical industries.

Areas of specialization are available whereby a graduate can be in a position for a career in environmental technology, microelectronic device fabrication, materials and polymer processing, pharmaceutical and biotechnology, biomedical engineering, energy and thermal systems, control and system engineering, and so forth.

For students who aspire to pursue a graduate degree and a career in research and development, the units in an area of specialization can be allocated to more fundamental science and engineering courses. These students are also encouraged to perform independent projects in one of the faculty research laboratories or groups.

Whether the career goal is industry, or graduate or professional school, the curriculum has a strong emphasis on developing problem-solving skills and the ability to think and learn independently. The capstone courses in this respect are the two senior design courses and the two very unique senior process laboratory courses where the environment is not unlike product development in either an industrial or academic setting.

Elective courses in an area of specialization (12 units): Electives are intended to broaden and enhance professional goals. They may be chosen to achieve either breadth or depth in one's education. These electives must be upper-division courses in either science or engineering. Suggestions are listed below. To ensure that your selections have proper engineering content, you must have at least one engineering course among your electives.

Biotechnology/Biochemical Engineering: Both Chem. 114A-B (or BIBC 100,102) must be taken as part of the advanced chemistry requirement. These two classes are prerequisites to the following courses: BIMM 100, BIMM 120, BIBC 110, Chem. 115, BE 160A-B-C.

Electronic Materials: Chem. 133 must be taken as part of the advanced chemistry requirement. This course is a prerequisite to the following courses: ECE 103, 134, 135A, 136, 136L.

Engineering Science: MAE 105, 107, 140; Chem. 135, 136; Phys. 152 (requires Chem. 133).

Environmental Engineering: Chem. 149A-B, 173; MAE 120, 121, 122, 124, 125A-B.

Materials Science: Chem. 133 must be taken as part of the advanced chemistry requirement. This course is a prerequisite to the following courses: Chem. 107; Phys. 152; ECE 137; MS 201A-B-C, 205A, 227.

Process Control: ECE 101, 171A-B or MAE 140, 143A-B.

Independent Research: CENG 199 as equivalent to a senior thesis can be approved as equivalent to two elective courses (8 units). Consult department Student Affairs Office for details.

Major Requirements

For policies in general education requirements, professional licensing, academic advising, and application for admission to the major, please refer to the Mechanical and Aerospace Engineering section.

To receive a B.S. in chemical engineering, students must complete 194 units for graduation, which includes 44 units of general education (HSS) requirements of their colleges and the ABET requirements in the arts, humanities, and social sciences. The balance consists of basic sciences (53 units), chemistry core (24 units), chemical engineering core (32 units), process laboratory and design (16 units), general engineering (12 units), and an area of specialization (12 units). Beyond the 53 units of basic sciences, the science and engineering courses total to 96 units. A one-unit introductory seminar (CENG1) is required of all incoming freshmen. The specific breakdown is as follows:

Basic sciences (53 units): This lower-division requirement includes 24 units of mathematics (Math. 20A-F), 14 units of physics (Phys. 2A-C, 2CL), and 15 units of chemistry (Chem. 6A-C, 6BL).

Chemistry core (24 units): This requirement must include two physical and one organic chemistry courses (Chem. 131, 132, 140A).

Three additional advanced chemistry courses must be chosen among biochemistry, physical, organic, and inorganic chemistries. Two courses must be selected among Chem. 133, 135, 140B or 141B, 114A-B, 120A-B, and the third must be a laboratory course selected among Chem. 100B, 105, and 143A.

Chemical engineering core (32 units): This requirement covers chemical process modeling, solution thermodynamics, transport phenomena, chemical reaction engineering, process control, and unit operations (CENG 100, 101A-C, 102, 113, 120, 122).

Process laboratory and design (16 units): This requirement is crucial to fulfill the ABET design content (CENG 124A-B, 176A-B).

General engineering (12 units): This requirement covers basics in computer programming, probability and statistics, and instrumentation. The computer programming requirement can be satisfied with a course in either Fortran (MAE 10), C (MAE 9), or Java (CSE 8B or 11). If you have no programming experience you need CSE 8A before 8B, but no credit is given for 8A alone. Probability and statistics can be satisfied with ECE 109 or a course with equivalent content. Instrumentation is satisfied with MAE 170.

CHEMICAL ENGINEERING

ABET ACCREDITED PROGRAM

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 20A</td>
<td>Math. 208</td>
<td>Math. 20C</td>
</tr>
<tr>
<td>Phys. 2A</td>
<td>Phys. 2A</td>
<td>Phys. 2B</td>
</tr>
<tr>
<td>MAE 9</td>
<td>Chem. 6B</td>
<td>Chem. 6C/6BL</td>
</tr>
<tr>
<td>HSS2</td>
<td>CENG 1</td>
<td>HSS</td>
</tr>
<tr>
<td></td>
<td>HSS</td>
<td></td>
</tr>
</tbody>
</table>
Transfer students can petition with an equivalent course in AS. The electives in an area of specialization (AS) must be chosen from the approved set of courses for specialization in process control. Two advanced chemistry electives must be selected among Chem. 133, 135, 140B or 141B, 114A-B, and 120 A-B, and the third laboratory elective must be selected from Chem. 6BL.

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Math. 20D</th>
<th>Math. 20F</th>
<th>Math. 20E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys. 2C/2CL or Chem. 131</td>
<td>CENG 100</td>
<td>CENG 102</td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>CENG 101A</th>
<th>CENG 101B</th>
<th>CENG 101C</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 170</td>
<td>Adv. Chem.</td>
<td>ECE 109</td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>CENG 120</th>
<th>CENG 124A</th>
<th>CENG 124B</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENG 122</td>
<td>CENG 176A</td>
<td>CENG 176B</td>
</tr>
<tr>
<td>AS*</td>
<td>AS</td>
<td>AS</td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
</tr>
</tbody>
</table>

1. HSS 9 can be replaced by MAE 10, CSE 8B or 11.
2. Humanities and social sciences (HSS).
3. Chem. 141A is offered only in the fall quarter. Chem 133, 105, or 166 may fit in the spring quarter schedule.
4. If a student chooses process control as the area of specialization, CENG 120 can be replaced by a relevant course within the approved set of courses for specialization in process control.
5. Two advanced chemistry electives must be selected among Chem. 133, 135, 140B or 141B, 114A-B, and 120 A-B, and the third laboratory elective must be selected from Chem. 100B, 105, and 143A. Students who choose Chem. 105 must take Chem 6BL.
6. The electives in an area of specialization (AS) must be upper-division or graduate courses in engineering, natural sciences or mathematics based on the pre-approved sequences. Otherwise, the selections must receive prior approval of the department to meet ABET standards.
7. If students do not require these additional HSS courses to meet their College requirements, they may substitute an unrestricted elective in order to meet the minimum 194 unit graduation requirement. The twelfth HSS course is intended only for students who have additional College requirements to fulfill. To meet ABET requirements, students must have a total of twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance or personnel administration.

Transfer Students

The chemical engineering curriculum is designed to integrate four years of college educational experience. It is not easy for transfer students to complete the major requirements in only two additional years beyond their junior college work. However, if transfer students seek a College for which they already satisfy the general education requirements, have taken the lower-division science and mathematics, and have completed the organic chemistry requirement, then the rigorous first-year schedule below will permit them to graduate in two years. Other students should consult their advisor for a transition program compatible with their junior college preparation.

Effective fall 2006, these courses will be required preparation for all engineering transfer students. For major-specific advising, please contact the MAE undergraduate academic advising office.

- Calculus I—for Science and Engineering (Math. 20A)
- Calculus II—for Science and Engineering (Math. 20B)
- Calculus and Analytic Geometry (Math. 20C)
- Differential Equations (Math. 20D)
- Linear Algebra (Math. 20F)
- Complete calculus-based physics series with lab experience (Physics 2A-B-C)
- Chemistry 6A (except computer science and computer engineering majors)
- Highest level of introductory computer programming language course offerings at the community college*

*Refer to the UCSD General Catalog to select major prerequisite requirement for computer language courses.

Integrated BS/MS Requirements

An integrated co-terminal program leading to a bachelor of science and a master of science degree in chemical engineering is offered to a student with junior standing who has an upper-division GPA of 3.5 or better and a 3.0 overall UCSD GPA. Details of the program are available from the MAE Graduate Student Affairs Office.

Program Accreditation

The B.S. program in chemical engineering is accredited by the Accreditation Board for Engineering and Technology (ABET/EAC).

Graduate Program

The Chemical Engineering Program offers graduate instruction leading to the M.S. and Ph.D. degrees in engineering sciences with a designated specialization in chemical engineering.

Admission is in accordance with the general requirements of the graduate division, which requires at least a B.S. in some branch of engineering, sciences, or mathematics; an overall GPA of 3.0; and three letters of recommendation from individuals who can attest to the academic or professional competence and to the depth of their interest in pursuing graduate study.

In addition, all applicants are required to submit GRE General Test Scores. A minimum score of 550 on the Test of English as a Foreign Language (TOEFL) is required of all international applicants whose native language is not English. Students who score below 600 on the TOEFL are strongly encouraged to enroll in an English as a second language program before beginning graduate work. UCSD Extension offers an excellent English language program during the summers as well as the academic year.

Applicants are judged competitively. Based on the candidate’s background, qualifications, and goals, admission to the program is in one of three categories: M.S. only, M.S., or Ph.D. Admission to the M.S. only category is reserved for students for whom the M.S. degree is likely to be the terminal graduate degree. The M.S. designation is reserved for students currently interested in obtaining an M.S. degree but who at a later time may wish to continue in the doctoral degree program. Admission to the Ph.D. program is reserved for qualified students whose final aim is a doctoral degree.

Non-matriculated students are welcome to seek enrollment in graduate level courses via UC Extension’s concurrent registration program, but an extension student’s enrollment in a graduate course must be approved by the instructor.

Master’s Degree Program

The M.S. program is intended to extend and broaden an undergraduate education with fundamental knowledge in different fields. The degree may be terminal, or obtained on the way to the Ph.D. The degree is offered under both the Thesis Plan I and the Comprehensive Examination Plan II.

M.S. Time Limit Policy: Full-time M.S. students are permitted seven quarters in which to complete all requirements. While there is no written time limit for part-time students, the department has the right to intervene and set individual deadlines if it becomes necessary.
Course requirements: All M.S. students must complete a total of 48 units which include a core of five courses (20 units) chosen among fluid dynamics (CENG 210A, MAE 210B), heat and mass transfer (CENG 221AB), kinetics (CENG 252), and mathematics. To maintain a certain balance in the core, no more than two mathematics courses should be chosen among the choices of applied mathematics (MAE 294AB or Math. 210AB), and numerical mathematics (MAE 290AB or Math. 270AB).

No more than three courses (12 units) of upper-division courses may be applied toward the total course work requirement. No more than a total of 8 units of CENG 296 and 298 may be applied toward the course work requirement. Units in seminars (CENG 259) may not be applied toward the degree requirement.

Thesis Plan I: Completion of the research thesis (CENG 299) fulfills 12 units toward the total graduation requirement. The balance is made up of the five core courses (20 units) and additional four elective courses (16 units) subject to the restrictions described above.

Comprehensive Examination Plan II: This plan involves course work only and culminates in an oral comprehensive examination based on topics selected from the core courses. In addition to the five core courses (20 units), one must choose an additional seven electives (28 units) subject to the restrictions of CENG 259, 296, and 298 described above. Sample electives are listed in the table below. A student should consult their academic advisor to choose an appropriate course schedule, including alternatives in bioengineering, electrical and computer engineering, materials science, basic sciences, and mathematics.

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENG 210A</td>
<td>CENG 221A</td>
<td>CENG 221B</td>
</tr>
<tr>
<td>MAE 290A or 294A</td>
<td>MAE 210B</td>
<td>CENG 252</td>
</tr>
<tr>
<td>MAE 290B or 294B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUGGESTED ELECTIVES

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 201A</td>
<td>MS 201B</td>
<td>MS 201C</td>
</tr>
<tr>
<td>MAE 211</td>
<td>MAE 212</td>
<td>MAE 213</td>
</tr>
<tr>
<td>Math. 270A</td>
<td>Math. 270B</td>
<td>Math. 270C</td>
</tr>
<tr>
<td>Chem. 211</td>
<td>Chem. 212</td>
<td>Chem. 213</td>
</tr>
</tbody>
</table>

Change of Degree: Upon completion of the requirements for the M.S. degree, students admitted as M.S. only or M.S. candidates are not automatically eligible for admission to the Ph.D. program.

M.S. only and M.S. candidates who subsequently wish to pursue a doctorate must submit an application for a change in status to their examining committee. The application, if approved by the committee, must be signed by a faculty member who expects to serve as the student's Ph.D. advisor. The student must also submit a general petition for graduate students to effect the change of status. If the student elects the comprehensive examination plan for the M.S. degree, the examining committee may recommend that the comprehensive examination may replace the preliminary qualifying examination expected of Ph.D. students.

Doctoral Degree Program

The Ph.D. program is intended to prepare students for a variety of careers in research and teaching. The emphasis is on research. In general, there are no formal course requirements. All students, in consultation with their advisors, develop appropriate course programs that will prepare them for the Preliminary Qualifying Examination and for their dissertation research. These programs must be planned to meet the time limits established to advance to candidacy and to complete the requirements of the degree.

All Ph.D. students are required to pass three examinations. The first is a Preliminary Qualifying Examination which should be taken within three to four quarters of full-time graduate study. The second is the Ph.D. Qualifying Examination. The last is the Dissertation Defense.

Preliminary Qualifying Examination: The examination is intended to determine a candidate's basic understanding of engineering fundamentals and the candidate's ability to pursue successfully a research project at a level appropriate for the doctorate. The scope of the examination is based on topics selected from the core curriculum as listed under the M.S. degree program. A candidate is expected to demonstrate knowledge equivalent to these courses and formal enrollment record is not a prerequisite. The format is an oral examination administered by a committee of three faculty members in the Chemical Engineering Program. The candidate should present to the committee, prior to the examination, the five core courses that will constitute the basis of the examination.

Depth Requirement: A candidate must have the ability to perform in-depth analysis in the dissertation topic. A candidate should consult with the thesis advisor to develop a proper course program if it is deemed necessary. Depending on an individual's background and the nature of the research problem, a candidate should either complete a set of a minimum of four courses or demonstrate to the thesis advisor the equivalent knowledge and ability.

Ph.D. Qualifying Examination: Prior to taking this examination, the candidate must have completed the departmental qualifying examination, obtained a faculty research advisor, and must have made initial progress on a chosen dissertation project. At the time of application for advancement to candidacy, a doctoral committee responsible for the remainder of the student's graduate program is appointed by the Graduate Council under the policy listed in the Graduate Studies section of the General Catalog. The committee conducts the Ph.D. Qualifying Examination, during which the student must demonstrate the ability to engage in thesis research. The process involves the presentation of a plan for the thesis research project. The committee may ask questions directly or indirectly related to the project and general questions that it determines to be relevant. Upon successful completion of the examination, subject to the UCSD time limit policy, the student is advanced to candidacy and is awarded the candidate in Philosophy degree (see "Graduate Studies" section in this catalog).

Teaching Experience: Prior to the dissertation defense, the candidate must serve at least once as a teaching assistant with the responsibility to hold a problem-solving section one hour a week.

Dissertation Defense: This is the final Ph.D. examination. Upon completion of the dissertation research project, the candidate writes a dissertation that must be successfully defended in an oral examination and public presentation conducted by the doctoral committee. A complete copy of the student's dissertation must be submitted to each member of the doctoral committee four weeks before the defense. It is understood that this copy of the dissertation given to committee members will not be the final copy, and that the committee members may request changes in the text at the time of the defense. This examination may not be conducted earlier than three quarters after the date of advancement to doctoral candidacy. Acceptance of the dissertation by the Office of Graduate Studies and the University Librarian represents the final step in completion of all requirements for the Ph.D. degree.
Ph.D. Time Limit Policy: Pre-candidacy status is limited to four years. Doctoral students are eligible for university support for six years. The defense and submission of the doctoral dissertation must be within seven years.

Annual Evaluation: In the spring of each year, the faculty advisor evaluates each doctoral student’s overall performance in course work, research, and prospects for financial support for future years. A written assessment is given to the student after the evaluation. If a student’s work is found to be inadequate, the faculty may determine that the student cannot continue in the graduate program.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

All students enrolled in CENG courses or admitted to the CENG program (including pre-majors) are expected to meet prerequisite and performance standards, i.e., students may not enroll in any CENG courses or courses in another department which are required for the major prior to having satisfied prerequisite courses with a C– or better. (The program does not consider D or F grades as adequate preparation for subsequent material.) Additional details are given under the program outline, course descriptions, and admission procedures for the Jacobs School of Engineering in this catalog.

LOWER-DIVISION

CENG 1. The Scope of Chemical Engineering (1)
Demonstrations and discussions of basic knowledge and the opportunities in chemical engineering for professional development. Introduction to campus library and computer resources. Use of personal software tools such as spreadsheeting and student edition of MATLAB. Prerequisites: none. (P/NP grading only.)

CENG 87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshman.

UPPER-DIVISION

CENG 100. Process Modeling and Computation in Chemical Engineering (4)
Introduction to elementary numerical methods with applications to chemical engineering problems using a variety of problem solving strategies. Error analysis. Concepts of mathematical modeling, material and energy balances and probability and statistics with applications to design problems. Prerequisites: admission to the chemical engineering or bioengineering major and grades of C– or better in MAE 9 or 10, and Chem. 8C, or consent of instructor.

CENG 101A. Introductory Fluid Mechanics (4)
Kinematics and equation of motion; hydrostatics; Bernoulli’s equation; viscous flows; turbulence, pipe flow; boundary layers and drag in external flows; applications to chemical, structural, and bioengineering. Students may not receive credit for both MAE 101A and CENG 101A. Prerequisites: admission to the major and grades of C– or better in Phys. 2A and Math. 210D or 200D, and 20E or consent of instructor.

CENG 101B. Heat Transfer (4)
Conduction, convection, radiation heat transfer; design of heat exchangers. Students may not receive credit for both MAE 101C and CENG 101B-103C. Prerequisites: admission to the major and a grade of C– or better in CENG 101A.

CENG 101C. Mass Transfer (4)
Diffusive and convective mass transfer in solids, liquids, and gases; steady and unsteady state, mass transfer coefficients; applications to chemical engineering and bioengineering. Prerequisites: admission to the major and grade of C– or better in CENG 101A.

CENG 102. Chemical Engineering Thermodynamics (4)
Thermodynamic behavior of pure substances and mixtures. Properties of solutions, phase equilibria. Thermodynamic cycles. Chemical equilibria for homogeneous and heterogeneous systems. Prerequisites: grade of C– or better in CENG 100 and Chem. 131. Enrollment restricted to chemical engineering majors only.

CENG 113. Chemical Reaction Engineering (4)
Principles of chemical reactor analysis and design. Experimental determination of rate equations, design of batch and continuous reactors, optimization of selectivity in multiple reactions, consideration of thermal effects and residence time distribution. Introduction to multi-phase reactors. Prerequisites: grade of C– or better in CENG 100 and Chem. 68 or consent of instructor. (Chem. 132 may be taken concurrently.)

CENG 120. Chemical Process Dynamics and Control (4)
Examination of dynamic linear and linearized models of chemical processes. Stability analysis. Design of PID controllers. Selection of control and manipulated variables. Root locus, Bode and Nyquist plots. Cascade, feed-forward and ratio controls. Prerequisites: admission to the major and grades of C– or better in Math. 21D or Math. 202D. (Students may not receive credit for both MAE 141A or MAE 143B and CENG 120.)

CENG 122. Separation Processes (4)
Principles of analysis and design of systems for separation of components from a mixture. Topics will include staged operations (distillation, liquid-liquid extraction), and continuous operations (gas absorption, membrane separation) under equilibrium and non-equilibrium conditions. Prerequisites: admission to the major and grades of C– or better in CENG 100, CENG 102 and CENG 101C.

CENG 124A. Chemical Plant and Process Design I (4)
Principles of chemical process design and economics. Process flow diagrams and cost estimation. Computer-aided design and analysis. Representation of the structure of complex, interconnected chemical processes with recycle streams. Ethics and professionalism. Health, safety, and the environmental issues. Prerequisites: admission to chemical engineering major and grades of C– or better in CENG 113 and CENG 122 or consent of instructor.

CENG 124B. Chemical Plant and Process Design II (4)
Engineering and economic analysis of integrated chemical processes, equipment, and systems. Cost estimation, heat and mass transfer equipment design and costs. Comprehensive integrated plant design. Optimal design. Profitability. Prerequisites: admission to chemical engineering major and grade of C– or better in CENG 124A.

CENG 176A. Chemical Engineering Process Laboratory I (4)
Laboratory projects in the areas of applied chemical research and unit operations. Emphasis on applications of engineering concepts and fundamentals to solution of practical and research problems. Prerequisites: admission to the major and grades of C– or better in CENG 113, CENG 122, and MAE 170 or consent of instructor and department approval.

CENG 176B. Chemical Engineering Process Laboratory II (4)
Training in planning research projects, execution of experimental work and articulation (both oral and written) of the research plan and results in the areas of applied chemical technology and engineering operations related to mass, momentum, and heat transfer. Prerequisites: admission to the major and grade of C– or better in CENG 176A.

CENG 192. Senior Seminar in Chemical Engineering (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in chemical engineering (at the upper-division level). Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students with preference given to seniors. Prerequisites: department stamp or consent of the instructor.

CENG 199. Independent Study for Undergraduates (4-4)
Independent reading or research on a problem by special arrangement with a faculty member. Prerequisites: consent of instructor. (P/NP Only.)

CHEMICAL ENGINEERING GRADUATE COURSES

CENG 205. Graduate Seminar in Chemical Engineering (1)
Each graduate student in CENG is expected to attend one seminar per quarter, of his or her choice, dealing with current topics in chemical engineering. Topics will vary. Prerequisites: none.

CENG 210A. Fluid Mechanics I (4)
(Cross-listed with MAE 210A.) Basic conservation laws, flow kinematics. The Navier-Stokes equations and some of its exact solutions, non-dimensional parameters and different flow regimes, vorticity dynamics. Prerequisites: MAE 101A-B and MAE 110A or consent of instructor.

CENG 221A. Heat Transfer (4)
(Cross-listed with MAE 221A.) Conduction, convection, and radiation heat transfer development of energy conservation equations. Analytical and numerical solutions to heat transport problems.
Specific topics and applications vary. Prerequisites: MAE 101A-B-C or CENG 103A-B-C or consent of instructor.

CENG 221B Mass Transfer (4)
(Cross-listed with MAE 221B.) Fundamentals of diffusive and convective mass transfer and mass transfer with chemical reaction. Development of mass conservation equations. Analytical and numerical solutions to mass transport problems. Specific topics and applications will vary. Prerequisites: MAE 101A-B-C or CENG 103A-B-C or consent of instructor.

CENG 251. Thermodynamics (4)
Prerequisites: MAE 101A-B-C or CENG 103A-B-C or consent of instructor.

CENG 252. Chemical Reaction Engineering (4)
Analysis of chemical rate processes; complex kinetic systems. Chemical reactor properties in steady state and transient operations; optimal design policies. The interaction of chemical and physical transport processes in affecting reactor design and operating characteristics. Uniqueness/multiplicity and stability in reactor systems. Applications of the heterogeneous reactor systems. Prerequisite: consent of instructor.

CENG 253. Heterogeneous Catalysis (4)
Physics and chemistry of heterogeneous catalysis. Adsorption/desorption kinetics, chemical bonding, isotherms, kinetic models, selection of catalysts, poisoning, experimental techniques. Prerequisite: consent of instructor.

CENG 254. Biochemical Engineering Fundamentals (4)
Introduction to microbiology as relevant to the main topic, biological reactor analysis. Fermentation and enzyme technology. Prerequisite: consent of instructor.

CENG 255. Electrochemical Engineering (4)
Fundamentals of electrochemistry and electrochemical engineering. Structure of the double layer, cell characteristics. Uniqueness/multiplicity and stability in reactor systems. Applications of the heterogeneous reactor systems. Prerequisite: consent of instructor.

CENG 259. Seminar in Chemical Engineering (4)
Presentations on research progress by graduate students and by visitors from industrial and academic research laboratories. (May be repeated for credit. S/U grades only). Prerequisite: consent of instructor.

CENG 296. Independent Study in Chemical Engineering (4)
Independent reading or research on a problem as arranged by a faculty member. Must be taken for a letter grade only. Prerequisite: consent of instructor.

CENG 299. Graduate Research in Chemical Engineering (1-12)
S/U grades only. Prerequisite: consent of instructor.

Computer Science and Engineering (CSE)

OFFICES:
Undergraduate Affairs Room 1200D
Graduate Affairs Room 1200D
Engineering Building Unit 3B
Warren College
http://www.cse.ucsd.edu

Professors
Donald W. Anderson, Ph.D., Emeritus
Scott B. Baden, Ph.D.
Mihir Bellare, Ph.D.
Francine D. Berman, Ph.D.
Walter A. Burkhard, Ph.D.
Bradley G. Calder, Ph.D.
J. Lawrence Carter, Ph.D., Emeritus
Chung-Kuan Cheng, Ph.D.
Andrew Chien, Ph.D.
Garrison W. Cottrell, Ph.D.
Charles P. Elkan, Ph.D.
Jeanne Ferrante, Ph.D.
Yoav Freund, Ph.D.
Fan Chung Graham, Ph.D.
Ronald L. Graham, Ph.D.
William G. Griswold, Ph.D.
Rajesh Gupta, Ph.D.
William E. Howden, Ph.D.
T. C. Hu, Ph.D.
Russell Impagliazzo, Ph.D.
Ramesh Jain, Ph.D., Emeritus
Andrew B. Kahng, Ph.D.
Sidney Karin, Ph.D., (In-Residence)
David Kriegman, Ph.D.
Keith Marzullo, Ph.D., Chair
Alex Orailoglu, Ph.D.
Joseph Pasquale, Ph.D.
Ramamohan Paturi, Ph.D.
Pavel Pevzner, Ph.D.
Walter J. Savitch, Ph.D., Emeritus
Larry L. Smarr, Ph.D.
Dean M. Tullsen, Ph.D.
George Varghese, Ph.D.
Victor Vianu, Ph.D.
S. Gill Williamson, Ph.D., Emeritus

Associate Professors
Henrik Wann Jensen, Ph.D.
Daniele Micciancio, Ph.D.
Yannis Papakonstantinou, Ph.D.
Lawrence K. Saul, Ph.D.
Stefan Savage, Ph.D.
M. Amin Vahdat, Ph.D.
Geoffrey Voelker, Ph.D.

Assistant Professors
Vineet Bafna, Ph.D.
Serge J. Belongie, Ph.D.
Sanjoy Dasgupta, Ph.D.
Alin Deutsch, Ph.D.
Ranjit Jhala, Ph.D.
Ingolf Krueger, Ph.D. (In-Residence)
Sorin Lerner, Ph.D.
Tajana S. Rosing, Ph.D.
Alex M. Snoeren, Ph.D.
Steven J. Swanson, Ph.D.
Michael Taylor, Ph.D.
Matthias Zwicker, Ph.D.

Adjunct Faculty
Samuel R. Buss, Ph.D.
Kimberly Claffy, Ph.D. (Associate Adjunct)
Alon Orlitsky, Ph.D.
Jeffrey B. Remmel, Ph.D.
J. Benjamin Rosen, Ph.D.
Allan Snively, Ph.D.

Research Faculty
Philip Papadopoulos, Ph.D., Associate Research Professor

Lecturers with Security of Employment
Paul Kube, Ph.D.
Elizabeth Simon, Ph.D.

Continuing Lecturers
Gary Gillespie, Ph.D.
Susan Marx, Ph.D.
Richard Ord, M.S.

Academic Coordinator
Paul Kube, Ph.D., Lecturer with Security of Employment

The Undergraduate Program

DEGREE AND PROGRAM OPTIONS

The Department of Computer Science and Engineering (CSE) offers four degree programs: the B.S. degree in computer science, the B.A. degree in computer science, the B.S. degree in computer engineering, and the B.S. degree in computer science with a specialization in bioinformatics. The B.A. degree in computer science is a
flexible program that allows comprehensive studies beyond computer science and engineering.

All CSE programs of study provide a broad and rigorous curriculum and are designed to provide students with the strong technical education necessary for placement in the competitive high-tech job market as well as for advanced studies in graduate school.

CSE offers courses in the following areas:

- Theory
- Artificial intelligence
- Software
- Hardware
- Computer security and cryptography
- Computer vision and graphics
- Databases and XML
- Systems and networking
- Bioinformatics
- Software engineering

In addition, CSE seniors can participate in challenging project-courses in: software systems, where teams create multiplayer games; Internet systems, where students create sophisticated Web transaction systems; and mobile wireless computing, where teams create applications for handheld devices.

The CSE department supports and encourages students to explore opportunities outside the classroom. Students assist in many CSE courses as paid lab tutors and readers, getting an excellent opportunity to interact more closely with faculty and other students. In addition, CSE students participate in research projects with graduate students and faculty in CSE, the San Diego Supercomputer Center, and the California Institute for Telecommunications and Information Technology (Calit2). Under the direction of our faculty, CSE students may also earn credit by participating in independent research projects. The CSE department has strong ties with local and national high-tech industry, where students can earn course credit while applying their academic knowledge toward exciting commercial technologies in paid internships.

B.S. Computer Science Program

The lower-division B.S. computer science program is designed to provide a strong foundation in mathematics, physics, electrical engineering, programming methodology and skills, and computer organization. Upper-division core courses deal with the theory and design of algorithms, hardware, and software. Students can gain additional breadth and/or depth in computer science and engineering by an appropriate selection of technical electives.

Students should have sufficient background in high school mathematics so that they can take freshman calculus in their first quarter. Courses in high school physics and computer programming, although helpful, are not required for admission to the program.

The department requires a total of 132 units for the B.S. computer science program (not including the general-education requirements). There are three varieties of requirements: lower-division, upper-division, and technical electives.

1. LOWER-DIVISION REQUIREMENTS

Students are expected to complete the following seventy-two units by the end of their sophomore year.

Computer Science and Engineering: CSE 8B or 11, 12, 15L, 20 or Math. 15A, CSE 21 or Math. 15B, CSE 30, CSE 70, and CSE 91; twenty-eight units.

Note: Students without any programming experience are advised to take CSE 8A, CSE 8AL, and then CSE 8B, instead of CSE 11. CSE 11 is a faster paced version of CSE 8A, CSE 8AL, and CSE 8B, and requires experience in programming with a compiled language.

Mathematics: Math. 20A-B-C-D and 20F; twenty units.

Physics: Phys. 2A-B-C; 12 units. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the Department of Mathematics placement test permits them to start with Math. 20B or a higher course may take Phys. 2A in the fall quarter of the freshman year; all others will take Phys. 2A in the winter quarter of the freshman year. Students who received high grades in both calculus and physics in high school may substitute the major’s sequence, Phys. 4A-B-C for Phys. 2A-B-C.

Introduction to Electrical Engineering: ECE 53A-B; eight units. ECE 53A-B are courses that give a comprehensive introduction to electrical engineering.

Probability and Statistics: Math. 183 or CSE 103; four units.

2. UPPER-DIVISION REQUIREMENTS

All B.S. computer science students are required to take CSE 100 or Math. 176, CSE 101 or Math. 188, CSE 105 or Math. 166, CSE 120, 130, 131, 140, 140L, 141 and 141L; thirty-six units.

Students are expected to complete almost all of these courses by the end of their junior year. If students want to accelerate their program, they should consider taking CSE 100 or Math. 176, CSE 105, and/or CSE 140 and 140L in the sophomore year.

3. TECHNICAL ELECTIVES

B.S. computer science students are required to take six technical electives for a total of twenty-four units. Four electives must be computer science and engineering upper-division or graduate courses.

The remaining two technical electives can be chosen from the wider set of courses that includes computer science and engineering upper-division courses, graduate courses, and other electives as listed under the section titled Electives. Other restrictions in the selection of technical electives are also given in the section Electives.

4. B.S. COMPUTER SCIENCE, SAMPLE PROGRAM

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 8A, CSE 8AL, or CSE 11</td>
<td>CSE 15L</td>
<td>CSE 70</td>
</tr>
<tr>
<td>Math. 20A or GE</td>
<td>CSE 12</td>
<td>Math. 20C</td>
</tr>
<tr>
<td>CSE 91</td>
<td>Math. 15A or GE</td>
<td></td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 20D</td>
<td>CSE 100 or Math. 176</td>
<td>CSE 105 or Math. 166</td>
</tr>
<tr>
<td>CSE 30</td>
<td>Math. 20F</td>
<td>GE</td>
</tr>
<tr>
<td>Phys. 2A</td>
<td>Phys. 2B</td>
<td>CSE 101 or Math. 188</td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 140</td>
<td>CSE 141</td>
<td>CSE 35B</td>
</tr>
<tr>
<td>CSE 140L</td>
<td>CSE 141L</td>
<td>Math. 183</td>
</tr>
<tr>
<td>CSE 120</td>
<td>ECE 53A</td>
<td>CSE Tech. Elec.</td>
</tr>
<tr>
<td>CSE Tech. Elec.</td>
<td>GE</td>
<td></td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 130</td>
<td>CSE 131</td>
<td>CSE Tech. Elec.</td>
</tr>
<tr>
<td>CSE Tech. Elec.</td>
<td>GE</td>
<td></td>
</tr>
</tbody>
</table>

Notes for Selecting and Scheduling Classes
(All courses must be taken for a letter grade)
1. First Programming Course: CSE 11 is a faster paced version of CSE 8A, CSE 8AL and CSE 8B. CSE 8B or CSE 11 must be taken before CSE 12.* Students may self-select which course they wish to take. Students without experience in programming in a compiled language are advised to take CSE 8A and CSE 8AL, and then CSE 8B, instead of CSE 11.

2. CSE 11, and CSE 20/Math. 15A, can be taken in the same quarter. Please obtain department approval for enrollment at ugradinfo@cs.ucsd.edu.

3. CSE 15L and CSE 70 are new courses starting fall 2007.

4. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the Math Placement Exam permits them to start with Math. 20B or higher may take Phys. 2A in the fall quarter of their freshman year.

5. You must complete six technical electives. Four of your six technical electives must be CSE upper division courses. You must obtain approval to use a CSE graduate course for technical elective credit. Once a graduate course is used for an undergraduate degree that course may not be reused for a graduate degree. In addition, only four units of either a CSE 197, 198, or 199 may be used toward technical elective credit.

6. Two of the technical electives may be chosen from a list of approved electives. This list is at http://www.cse.ucsd.edu/ugrad/degreeprograms/electives.html. If you want to deviate from this list of approved electives, you must petition the CSE student advisor at ugradinfo@cs.ucsd.edu.

B.S. Computer Engineering Program

(Curriculum is the same in both the CSE and ECE departments.)

The B.S. computer engineering program is jointly administered by the Departments of Computer Science and Engineering and Electrical and Computer Engineering. Students wishing to take the computer engineering program must be admitted to one of the departments.

The lower-division computer engineering program is designed to provide a strong foundation in mathematics, physics, electrical engineering, programming methodology and skills, and computer organization. Upper-division core courses deal with the theory and design of algorithms, hardware and software, as well as electronic systems. Students can gain additional breadth and/or depth in computer science and engineering by an appropriate selection of technical electives. Students should have sufficient background in high school mathematics so that they can take freshman calculus in their first quarter. Courses in high school physics and computer programming, although helpful, are not required for admission to the program.

B.S. computer engineering program requires a total of 152 units (not including the general-education requirements). There are three varieties of requirements: lower-division, upper-division, and technical electives.

1. **LOWER-DIVISION REQUIREMENTS**

 Students are expected to complete the following eighty units by the end of their sophomore year.

 Computer Science and Engineering: CSE 8B or 11, 12, 15L, 20 or Math. 15A, CSE 21 or Math. 15B, CSE 30, CSE 70, and CSE 91; twenty-eight units.

 Mathematics: Math. 20A-B-C-D and 20F; twenty units.

 Physics: Phys. 2A-B-C-D; sixteen units. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the Department of Mathematics placement test permits them to start with Math. 20B or a higher course may take Phys. 2A in the fall quarter of the freshman year; all others will take Phys. 2A in the winter quarter of the freshman year. Students who received high grades in both calculus and physics in high school may substitute the major’s sequence, Phys. 4A-B-C-D for Phys. 2A-B-C-D.

 Introduction to Electrical Engineering: ECE 35, 45, 65; twelve units. These courses give a comprehensive introduction to electrical engineering.

 Probability and Statistics: ECE 109; four units. This course can be taken in the sophomore year.

2. **UPPER-DIVISION REQUIREMENTS**

 All B.S. computer engineering students are required to take CSE 100 or Math. 176, CSE 101 or Math. 188, CSE 105 or Math. 166, CSE 120, 130, 131, 140, 140L, 141, and 141L; thirty-six units.

 In addition, all B.S. computer engineering students have to fulfill the following upper-division ECE requirements.

 Linear Systems: ECE 101, four units. The department recommends that these courses be taken in the junior year.

 Electronic Circuits and Systems: ECE 102, ECE 108; eight units. The department recommends that these courses be taken in the junior year.

 If students want to accelerate their program, they should consider taking CSE 100 or Math. 176, CSE 105 or Math. 166, and/or CSE 140 and 140L in the sophomore year.

3. **TECHNICAL ELECTIVES**

 All B.S. computer engineering students are required to take six technical electives for a total of twenty-four units. One of these courses must be either ECE 111 or ECE 118. Of the remaining five courses, four must be computer science and engineering or electrical and computer engineering upper-division or graduate courses.

 The remaining course can be any computer science and engineering or electrical and computer engineering upper-division or graduate course, or any other course listed under the section titled Electives. Other restrictions in the selection of technical electives are also given in the section Electives.

4. **B.S. COMPUTER ENGINEERING, SAMPLE PROGRAM**

 ![Sample Program Table](image-url)
Notes for Selecting and Scheduling Classes

(All courses must be taken for a letter grade)

1. **First Programming Course**: CSE 11 is a faster paced version of CSE 8A, CSE 8AL and CSE 8B. CSE 8B or CSE 11 must be taken before CSE 12.* Students may self-select which course they wish to take. Students without experience in programming in a compiled language are advised to take CSE 8A and CSE 8AL, and then CSE 8B, instead of CSE 11.

2. **CSE 11**, and **CSE 20/Math. 15A**, can be taken in the same quarter. Please obtain department approval for enrollment permission at ugradinfo@cs.ucsd.edu.

3. **CSE 15L** and **CSE 70** are new courses starting fall 2007.

4. **Math. 20A** is a prerequisite for Phys. 2A. Students whose performance on the Math Placement Exam permits them to start with Math. 20B or higher may take Phys. 2A in the fall quarter of their freshman year.

5. Effective fall 2006, ECE 35 and ECE 45 are new courses for computer engineering. These courses replace ECE 35A and 35B, respectively.

6. You must complete six technical electives. Four of your six technical electives must be CSE upper division courses. You must obtain approval to use a CSE graduate course for technical elective credit. Once a graduate course is used for an undergraduate degree that course may not be reused for a graduate degree. In addition, only four units of either a CSE 197, 198, or 199 may be used toward technical elective credit.

7. Two of the technical electives may be chosen from a list of approved electives. This list is at http://www.cse.ucsd.edu/undergrad/degreeprograms/electives.html. If you want to deviate from this list of approved electives, you must petition the CSE student advisor at ugradinfo@cs.ucsd.edu.

B.S. Computer Science with a Specialization in Bioinformatics

The explosion in biological knowledge spawned by the various genome projects has created entirely new fields and industries, and a need for trained computational biologists who are familiar with biology, mathematics, and computer sciences. The computer science and engineering department offers rigorous, interdisciplinary training in the new and rapidly evolving field of bioinformatics. Bioinformatics refers to advanced computational and experimental methods that model the flow of information (genetic, metabolic, and regulatory) in living systems to provide an integrated understanding of the system properties of organisms. This interdisciplinary major will be offered by three other programs (Division of Biology, Department of Chemistry and Biochemistry, and Department of Bioengineering). The computer science and engineering requirements comprise 152 units to be taken from the divisions of physical sciences, biology, and engineering.

1. LOWER-DIVISION REQUIREMENTS

Lower-division requirements, sixty-four units: Students are expected to complete all lower-division requirements by the end of their sophomore year.

1. **Math. 20A, 20B, 20C, 20F**, (16 units)
2. **Chem. 6A, 6B, 6C, and one lab**, (15 units)
3. **BILD 1, BILD 2, and BILD 94**, (9 units)
4. **CSE 11, CSE 12**, and **CSE 21 or Math. 15B**, (12 units)
5. **Phys. 2A, 2B, 2C**, (12 units)

2. UPPER-DIVISION REQUIREMENTS

Upper-division requirements, eighty-eight units (includes five CSE technical electives)

1. **CSE 100 or Math. 176** (Data Structures), (4 units)
2. **CSE 101 or Math. 188** (Algorithms), (4 units)
3. **Chem. 140A–140B** (Organic Chemistry), (8 units)
4. **Chem. 114B** (Biochemical Energetics and Metabolism) or **BIBC 102** (Structural and Metabolic Biochemistry), (4 units)
5. **BIBC 103** (Biochemical Techniques), (4 units)
6. **BICD 100** (Genetics), (4 units)
7. **BIMM 100** (Molecular Biology) or Chem. 114D (Molecular and Cellular Biochemistry), (4 units)
8. **BIMM 101** (Recombinant DNA Lab), (4 units)
9. **BICD 110** (Cell Biology), (4 units)
10. **BIBC 110** (Physical Biochemistry) or Chem. 127 (Physical Chemistry), (4 units)
11. **Five additional CSE upper-division electives** (electives 1, 2, 3, 4, and 5).

At least one course from each of the three groups for a total of five electives:

- **Group I**: CSE 30, 111, 131A, 131B, 134A
- **Group II**: CSE 105, 150, 151, Math. 184A
- **Group III**: CSE 132A, 132B, 133

The bioinformatics series comprises the following six courses, twenty-four units:

12. **CSE 181** or **BIMM 181** or **BENG 181** (Molecular Sequence Analysis), (4 units)
13. **CSE 182** or **BIMM 182** or **BENG 182** or **Chem. 182** (Biological Databases), (4 units)
14. **BENG 183** (Applied Genomic Technologies), (4 units)
15. **CSE 184** or **BIMM 184** or **BENG 184** (Computational Molecular Biology), (4 units)
16. **BIMM 185** (Bioinformatics lab), (4 units)
17. **Math. 186** (Probability and Statistics), (4 units)

3. B.S. Computer Science with a Specialization in Bioinformatics, Sample Program

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 8A/8AL+8B</td>
<td>CSE 12</td>
<td>BILD 94*</td>
</tr>
<tr>
<td>or 11*</td>
<td>Math. 20B</td>
<td>Math. 20C</td>
</tr>
<tr>
<td>Math. 20A</td>
<td>Chem. 6B</td>
<td>Chem. 6C</td>
</tr>
<tr>
<td>Chem. 6A</td>
<td>BILD 1</td>
<td>Chem. 6BL</td>
</tr>
<tr>
<td>GE 1</td>
<td>GE 2</td>
<td>GE 3</td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 21 or</td>
<td>Math. 20F</td>
<td>Chem. 140B</td>
</tr>
<tr>
<td>Math. 15B</td>
<td>Phys. 2B</td>
<td>BIBC 103</td>
</tr>
<tr>
<td>BILD 2</td>
<td>Chem. 140A</td>
<td>Phys. 2C</td>
</tr>
<tr>
<td>Phys. 2A</td>
<td>GE 5</td>
<td>GE 6</td>
</tr>
<tr>
<td>GE 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 100 or</td>
<td>CSE 101 or</td>
<td>CSE 181*</td>
</tr>
<tr>
<td>Math. 176</td>
<td>Math. 188</td>
<td>BIMM 101</td>
</tr>
<tr>
<td>BICD 100</td>
<td>Math. 186</td>
<td>BICD 110</td>
</tr>
<tr>
<td>GE 7</td>
<td>BIBC 102 or</td>
<td>BICD 110 or</td>
</tr>
<tr>
<td>GE 8</td>
<td>Chem. 114B</td>
<td>Chem. 127</td>
</tr>
<tr>
<td></td>
<td>BIMM 100 or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chem. 114D</td>
<td></td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 182</td>
<td>CSE 184</td>
<td>BIMM 185</td>
</tr>
<tr>
<td>BENG 183</td>
<td>Elec. 2</td>
<td>Elec. 4</td>
</tr>
<tr>
<td>Elec. 1*</td>
<td>Elec. 3</td>
<td>Elec. 5</td>
</tr>
<tr>
<td>GE 9</td>
<td>GE 10</td>
<td>GE 11</td>
</tr>
</tbody>
</table>

* Students may take the slower paced version, CSE 8A + CSE 8AL + CSE 8B, instead of CSE 11.

* BILD 94 (1 unit seminar) is recommended in students first spring quarter of study at UCSD. This course gives an overview of issues and topics in bioinformatics.

* CSE 30 prerequisite will be waived.
New courses for the bioinformatics program: CSE 181 is cross-listed with BIMM 181 and BENG 181; CSE 182 is cross-listed with BIMM 182, Chem. 182, and BENG 182; CSE 184 is cross-listed with BIMM 184 and BENG 184; and (BENG 183, BIMM 185, and Math. 186 are not cross-listed with any other courses).

Students must complete five CSE technical electives from the approved list.

B.A. Computer Science Program

The B.A. computer science program gives students more latitude in designing their course of study. The lower-division program is designed to provide a strong foundation in mathematics, physics, programming methodology and skills, and computer organization. Upper-division core courses deal with the theory and design of algorithms, hardware, and software. Students can gain additional breadth and/or depth in computer science and engineering by an appropriate selection of technical electives. By requiring fewer technical electives, the B.A. computer science program serves those students desiring more time for undergraduate studies outside their major subject.

The department requires a total of 112 units for the B.A. computer science program (not including the general-education requirements). There are three varieties of requirements: lower-division, upper-division, and technical electives.

1. LOWER-DIVISION REQUIREMENTS

Students are expected to complete the following sixty units by the end of their sophomore year.

Computer Science and Engineering: CSE 8B or 11, 12, 15L, 20 or Math. 15A, CSE 21 or Math. 15B, CSE 30, CSE 70, and CSE 91; twenty-eight units.

Mathematics: Math. 20A-B-C and 20F; twenty units.

Physics: Phys. 2A-B-C; twelve units. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the Department of Mathematics placement test permits them to start with Math. 20B or a higher course may take Phys. 2A in the fall quarter of the freshman year; all others will take Phys. 2A in the winter quarter of the freshman year. Students who received high grades in both calculus and physics in high school may substitute the major’s sequence, Phys. 4A-B-C, for Phys. 2A-B-C.

2. UPPER-DIVISION REQUIREMENTS

All B.A. computer science students are required to take CSE 100 or Math. 176, CSE 101 or Math. 188, CSE 105 or Math. 166, CSE 120, 130, 131, 140, 140L, 141, and 141L; thirty-six units.

Students are expected to complete almost all of these courses by the end of their junior year. If students want to accelerate their program, they should consider taking CSE 100 or Math. 176, CSE 105 or Math. 166, and/or CSE 140 and 140L in the sophomore year.

3. TECHNICAL ELECTIVES

B.A. computer science students are required to take four technical electives for a total of sixteen units. Of these four electives, at least two must be computer science and engineering upper-division or graduate courses.

The remaining two technical electives can be chosen from a wider set of courses that includes computer science and engineering upper-division courses, graduate courses, and other electives as listed under the section titled Electives. Other restrictions in the selection of technical electives are also given in the section Electives.

4. B.A. COMPUTER SCIENCE, SAMPLE PROGRAM

FALL	WINTER	SPRING
FRESHMAN YEAR
CSE 8A, CSE 8AL, or CSE 11 | CSE 12 | CSE 21
Math. 20 | Math. 20B | or Math. 15B
GE | CSE 20 or Math. 15A | Math. 20C
CS 91 | GE | CSE 15L

SOPHOMORE YEAR
CSE 30 | Math. 20F | Phys. 2C
Math. 20D | Phys. 2B | CSE 101 or Math. 188
Phys. 2A | CSE 70 | CSE 100 or Math. 176

JUNIOR YEAR
CSE 120 | CSE 105 or Math. 166 | CSE Tech. Elec.
CSE 140 | CSE 141 | CSE Tech. Elec.
GE | CSE 141L | GE

SENIOR YEAR
CSE 130 | CSE 131 | Tech. Elec.

Notes for Selecting and Scheduling Classes

(All courses must be taken for a letter grade)

1. First Programming Course: CSE 11 is a faster paced version of CSE 8A, CSE 8AL and CSE 8B. CSE 8B or CSE 11 must be taken before CSE 12.* Students may self-select which course they wish to take. Students without experience in programming in a compiled language are advised to take CSE 8A and CSE 8AL, and then CSE 8B, instead of CSE 11.

2. CSE 11, and CSE 20/Math. 15A, can be taken in the same quarter. Please obtain department approval for enrollment permission at ugradinfo@cs.ucsd.edu.

3. CSE 15L and CSE 70 are new courses starting fall 2007.

4. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the Math Placement Exam permits them to start with Math. 20B or higher may take Phys. 2A in the fall quarter of their freshman year.

5. You must complete six technical electives. Four of your six technical electives must be CSE upper division courses. You must obtain approval to use a CSE graduate course for technical elective credit. Once a graduate course is used for an undergraduate degree that course may not be reused for a graduate degree. In addition, only four units of either a CSE 197, 198, or 199 may be used toward technical elective credit.

6. Two of the technical electives may be chosen from a list of approved electives. This list is at http://www.cse.ucsd.edu/undergrad/degreeprograms/electives.html. If you want to deviate from this list of approved electives, you must petition the CSE student advisor at: ugradinfo@cs.ucsd.edu.

Electives

The discipline of computer science and engineering interacts with a number of other disciplines in a mutually beneficial way. These disciplines include mathematics, electrical engineering, and cognitive science. The following is a list of upper-division courses from these and other disciplines that can be counted as technical electives.

At most four units of CSE 197, 198, or 199 may be used towards technical elective requirements. CSE 195 cannot be used towards course
requirements. Undergraduate students must get instructor’s permission and departmental stamp to enroll in a graduate course.

Students may not get duplicate credit for equivalent courses. The UCSD General Catalog should be consulted for equivalency information and any restrictions placed on the courses. Additional restrictions are noted below. Any deviation from this list must be petitioned.

Mathematics: All upper-division courses except Math. 168A (Math. 183—Computer Engineering majors only), 184A, and 195–199.

If a student has completed CSE 167, then he or she cannot get elective credit for Math. 155A. Students may receive elective credit for only one of the following courses: CSE 164A, Math. 174, Math. 173, Phys. 105A-B, CENG 100, MAE 107. No credit for any of these courses will be given if Math. 170A-B-C is taken.

Students may receive credit for either one of the following: Math. 166 or CSE 105 (but not both), Math. 188 or CSE 101 (but not both), Math. 176 or CSE 100 (but not both).

Credit will be given for only one of the following: ECE 109 or Math. 183 or Econ. 120A.

Electrical and Computer Engineering: All ECE upper-division courses except 195–199.

Students may not get credit for both CSE 123A and ECE 158A or CSE 143 and ECE 165. Credit will be given for only one of the following: ECE 109 or Math. 183 or Econ. 120A.

Students may not get credit for both CSE 150 and Advanced Programming Methods for Cognitive Science 108F.

Mechanical and Aerospace Engineering: All upper-division MAE courses except MAE 140 (ONLY Computer Science majors may take MAE 140) and 195–199.

Students may receive elective credit for only one of the following courses: CSE 164A, Math. 174, Math. 173, Phys. 105A-B, CENG 100, MAE 107. Students may only get credit for one of the two courses, CSE 167 or MAE 152.

Credit will be given for only one of the following: ECE 109 or Math. 183 or Econ. 120A.

Linguistics: Phonetics 110, Phonology I 111, Phonology II 115, Morphology 120, Syntax I 121, Syntax II 125, Semantics 130, Mathematical Analysis of Language 160, Computers and Language 163, Computational Linguistics 165, Principles of Discourse and Dialog 169, Psycholinguistics 170, Language and the Brain 172, and Sociolinguistics 175.

Engineering: Principles of Team Engineering 100, Team Engineering Laboratory 100L, Team Engineering 101.

Computer Science and Computer Engineering: Students are eligible to receive six units of technical elective credit for completing a combination of ENG 100 (two units) and ENG 100L (two units). Students must complete one quarter of ENG 100 for two units, and two quarters of ENG 100L for a total of four units. With this combination, students will get credit for one technical elective. To receive credit for two technical electives, students must complete one more quarter of ENG 100L. This credit can be applied to fulfill the technical elective requirements.

Computer Science with a Specialization in Bioinformatics: Students must petition department for technical elective credit.

Music: Computer Music II 172, Audio Production: Mixing and Editing 173.

Psychology: Introduction to Engineering Psychology 161

Minor and Program of Concentration

The CSE minor requires successful completion of a total of nine CSE courses. To be admitted into the minor, students must have a 2.5 GPA and a C– or better in CSE 8B or 11, 12, 20, 21, 30. The remaining four CSE courses are CSE 100, CSE 101, and two additional CSE upper-division courses subject to enforcement of prerequisites. In order for the minor to be awarded students must receive an average 2.0 GPA in the upper-division courses.

Note: Students without any programming experience are advised to take CSE 8A, CSE 8AL, and then CSE 8B, instead of CSE 11. CSE 11 is a faster paced version of CSE 8A, CSE 8AL, and CSE 8B, and requires experience in programming with a compiled language.

Students should consult their college provost’s office concerning the rules for the minor or program of concentration. Because our undergraduate program is highly impacted, winter or spring enrollment is recommended for CSE 8A or CSE 8B or CSE 11.

Effective fall 2000, mathematics/computer science majors will not be allowed the minor in computer science.

Computing Courses for Non-Majors

The department offers a slow-pace course providing a practical introduction to computers, computation, and programming: CSE 5A—an introduction to structured programming using the C/Java programming language. We also offer an introduction in fluency in information technology: CSE 3—an introduction to basic information students need to deal with information technology. It is more of a concepts course than a programming course, but some simple programming will be done as part of the teaching of concepts.

Admission to Major

FRESHMEN STUDENTS

Freshman students who have excelled in high school and have declared CSE on their application will be directly admitted by the dean of the School of Engineering into their major. The only way to become a computer science (CS) or computer engineering (CE) major is to be directly admitted as an entering freshman (transfer students see TRANSFER STUDENTS section below). These students will be notified directly of their status.

Because of heavy student interest in departmental programs, and the limited resources available to accommodate this demand, maintenance of a high quality program makes it necessary to limit enrollments to the most qualified students.
Admission to the department as a major, transfer, or minor is in accordance with the general requirements established by the Jacobs School of Engineering.

TRANSFER STUDENTS

The B.S. or B.A. in computer science and the B.S. in computer engineering are heavily impacted majors and admission is limited to applicants who have demonstrated a high level of achievement commensurate with the prospect of success in these majors. Successful applicants must have completed substantial training at the community college and must have achieved a high level of academic performance there. For example, the required minimum of ninety quarter transfer units must include eighteen quarter units of calculus, twelve quarter units of calculus-based physics, and the highest level computer science course offered at their community college.

Effective fall 2001 applicants seeking admission as transfer students will be considered for direct admission into the computer science (CS) or computer engineering (CE) majors in the Department of Computer Science and Engineering (CSE). The only way to become a computer science (CS) or computer engineering (CE) major is to be directly admitted as an entering transfer student. Although the actual required GPA cutoff depends on the number of openings, at least a 3.2 GPA in the community college transfer courses, and a 3.4 GPA in math, physics and computer science courses, are likely to be needed to gain admission. Transfer students who have declared pre-CSE will be considered for direct admission to the major.

Effective fall 2004, it is strongly recommended that transfer students complete the following preparation for engineering majors*:

- Calculus I—for Science and Engineering (Math. 20A)
- Calculus II—for Science and Engineering (Math. 20B)
- Calculus and Analytic Geometry (Math. 20C)
- Differential Equations (Math. 20D)
- Linear Algebra (Math. 20F)
- Complete calculus-based physics series with lab experience (Phys. 2A-B-C)
- Chem. 6A (except computer science and computer engineering majors)
- Highest level of introductory computer programming language course offerings at the community college**

*Effective fall 2006, these courses will be required preparation for all engineering transfer students.

**Refer to the UCSD General Catalog to select major prerequisite requirement for computer language courses.

CONTINUING UCSD STUDENTS

Exceptional Admission Program

The computer science and engineering department may periodically grant admission to the computer science (CS) or computer engineering (CE) majors to a small number of academically exceptional UCSD undergraduate students who were not admitted to these majors as entering students. Exceptional admission will be considered for students having an overall UCSD GPA of 3.5 or better who have taken at least two CSE, math, or science courses demonstrating special aptitude for the CS or CE curriculum. Applications for exceptional admission must include submission of a course plan demonstrating ability to satisfy graduation requirements and a personal statement addressing the applicant’s motivation to join the CS or CE major, in addition to other criteria established by the department.

For admission into the B.S. in computer science with a specialization in bioinformatics, please see the following section: Admission into B.S. in Computer Science with a Specialization in Bioinformatics). See Web site for complete information and application (http://www.cse.ucsd.edu/undergrad/admissions/exceptionaladmissions/exceptionaladmissionsprogramshome.html)

Admission into B.S. in Computer Science with a Specialization in Bioinformatics

Since the number of pre-majors and majors will be limited as described in the section on bioinformatics, student demand may exceed capacity. Therefore, admission to the specialization is not guaranteed and will be based on academic excellence, as described below. Since bioinformatics is an interdisciplinary major, a steering committee involving faculty from the participating departments will select among the best candidates applying and recommended through each department, while insuring active participation of the departments and divisions offering the major. The final decision on admission to the pre-major and major will be made by the Bioinformatics Steering Committee, in consultation with the departments. The application is found at http://www.cse.ucsd.edu/undergrad/admissions/admissionshome.html, or see the CSE department at EBU 3B, Room 1231.

FRESHMEN AND CONTINUING STUDENTS

Students (freshmen or continuing UCSD students) will be admitted into one of our existing undergraduate majors (B.A. computer science, B.S. computer science, and B.S. computer engineering) through the direct admission process or through the exceptional admission program. Students will then have the option of trying to enter the bioinformatics program by applying for the bioinformatics pre-major (while still retaining their current major status) once they complete the first four screening courses (Math. 20B, Math. 21C, BILD 1, Chem. 6A). Students will then formally apply to the bioinformatics major upon completion of the remaining screening courses CSE 11 and CSE 12. If admitted, students will become bioinformatics majors in CSE. If not, they can continue in their current CSE major.

TRANSFER STUDENTS

Transfer students will be admitted into one of our existing undergraduate majors (B.A. computer science, B.S. computer science, and B.S. computer engineering) through the direct admission process or through the exceptional admission program. Effective fall 2003, CSE transfer students can directly apply to the bioinformatics major if they completed the following courses prior to transferring to UCSD.

- A year of calculus (equivalent to Math. 20A-B-C at UCSD)
- A year of general chemistry, with lab (equivalent to Chem. 6A, 6B/6BL and Chem. 6C at UCSD)
- The highest level programming course offered at the community college (equivalent to CSE 11 and CSE 12 at UCSD)
- One semester of cell biology (equivalent to BILD 1 and BILD 2 at UCSD)

Those who have not completed the above courses may be admitted as bioinformatics pre-majors and will be allowed a maximum of three quarters to complete pre-major requirements. Students will then formally apply to the bioinformatics major upon completion of the remaining screening courses CSE 11 and CSE 12. If admitted, students will become bioinformatics majors in CSE. If not, they can continue in their current CSE major. Transfer students are
encouraged to complete these requirements at the community college.

ADVANCED PLACEMENT CREDIT: APPLICATION TO MAJOR REQUIREMENTS

Effective January 14, 2005, the following CSE advanced placement equivalencies have been approved (a four-unit maximum for both tests).

- Computer Science A Exam (Java Programming), two units:
 - Score of 4 = exempt CSE 8A and 8AL;
 - student should take CSE 11
 - Score of 5 = exempt CSE 11

- Computer Science AB Exam (Java Programming, and Data Structures and Object-Oriented Programming), four units:
 - Score of 4 or 5 = exempt CSE 11
 - Score of 5 = exempt CSE 12 with department approval

Enrollment in CSE courses

Student demands exceed capacity in many CSE courses. Accordingly, many CSE courses may have enrollment restrictions which give priority to students in the following order:

1. CSE majors, CSE M.S., and CSE Ph.D. students.
2. CSE pre-majors, and ECE CE majors and pre-majors, and Math-CS majors. CSE pre-major status is conferred to transfer students and to those students admitted prior to fall 1998.
3. Students fulfilling a non-elective requirement in another program.
4. CSE minors.
5. All other majors or pre-majors in other SOE departments.
6. All others, with permission of the department of Computer Science and Engineering.

Where these restrictions apply, the registrar will not enroll low-priority students in the course.

ENROLLING IN UPPER-DIVISION COURSES

The Department of Computer Science and Engineering will attempt to provide sufficient sections of all lower-division courses. Students will, however, be screened to ensure that they meet all course enrollment restrictions.

Admission to upper-division courses will be restricted to students having completed all prerequisites with a C- or better (or consent of the instructor.) Courses have enrollment restrictions which give priority in the following order: students admitted by the department to a major or minor curriculum; students fulfilling a requirement for another major; all others. Within these categories, priority is determined on the basis of graduation date and/or credits completed. Where these restrictions apply, the registrar will not enroll nonmajors except by department approval. Students who are undeclared will not be admitted to upper-division computer science and engineering courses.

Those students not in compliance with the above restrictions should be forewarned that they will automatically be dropped from course rosters (at any time during the quarter) when it comes to the attention of the department that a student is enrolled in a course without being eligible because of restrictions and/or the performance standards have not been met. Admission to all computer science and engineering courses will require obtaining approval by the student affairs personnel. You may also contact ugradinfo@cs.ucsd.edu for more information.

UC EDUCATION ABROAD PROGRAM (EAP) AND UCSD’S OPPORTUNITIES ABROAD PROGRAM (OAP)

CSE majors are encouraged to participate in the UC Education Abroad Program (EAP) or UCSD’s Opportunities Abroad Program (OAP). Subject to approval by the faculty director of the major, courses taken through EAP/OAP will be accepted for credit toward the major. Students interested in studying abroad should see a CSE undergraduate program advisor to discuss appropriate courses and programs for their plan of study. The advising office is located in Engineering Building Unit #3 (EBU 3B), Room 1231.

Information on EAP/OAP is given in the “Education Abroad Program” section of the UCSD General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit its Web site at http://programsabroad.ucsd.edu. Financial aid can be used for EAP/OAP study, and special study-abroad scholarships are also available.

Graduation Requirements

All major requirements and technical electives except CSE 197, 198, or 199 must be taken for a letter grade. To graduate, a grade-point average of 2.0 will be required in upper-division courses in the major, including technical electives. In addition, each student must satisfy general-education course requirements determined by the student’s college, as well as major requirements determined by the department. The five colleges at UCSD require widely different numbers of general-education courses. Each student should choose his or her college carefully, considering the special nature of the college and breadth of education, realizing that some colleges require considerably more courses than others.

Five-year Bachelor’s-Master’s Program

Undergraduate students in the Department of Computer Science and Engineering who are enrolled in the B.S. or B.A. computer science or B.S. computer engineering degree programs, and who have a cumulative GPA of 3.4 and also a GPA of 3.4 in at least seven core courses, are eligible to apply for the Five-Year Bachelor’s-Master’s Degree Program. Students must apply four quarters before graduation. Acceptance into this program is an honor which carries with it practical benefits—the graduation application process is simplified (no GREs required), and students accepted into this program can be admitted fall, winter, and spring quarter, based upon availability of openings in the program. Advanced students are given access to graduate level courses and have the opportunity to do graduate level research earlier under the direct supervision of UCSD’s faculty, and students are able to complete the B.A., B.S., and M.S. degree within a five-year time period. Courses taken can be used toward either the B.A., B.S., or M.S. degree, but not counted toward both degrees. Additional information and applications can be obtained by contacting the CSE Student Affairs Office, EBU 3B, Room 1234. For an application, visit http://www.cse.ucsd.edu/gradedu/ degreeprograms/bachelormasterscombined.html.

The Graduate Program

The graduate program offers master of science and doctor of philosophy degrees in computer science and computer engineering. To be accepted into either course of study, a student should have a B.A./B.S. degree in computer science, computer engineering, or a related area, or be able to demonstrate an equivalent competency.
The graduate program is concerned with fundamental aspects of computation. The computer science specialization is divided among the following areas:

- Algorithms and complexity
- Artificial intelligence
- Bioinformatics
- Computer architecture and compilers
- Computer graphics and computer vision
- Databases and information management
- Embedded systems and software
- High-performance computing
- Security and cryptography
- Software engineering
- Systems and networking
- VLSI/CAD (computer-aided design)

The computer engineering specialization places a greater emphasis on hardware and the design of computer systems.

Admission to the graduate program is done through the Office of Graduate Admissions, Department of CSE. The application deadline is in December. Admissions are always effective the following fall quarter. For admission deadline and requirements, please refer to the departmental Web page: http://www.cse.ucsd.edu/gradedu/advising/newstudentinfo/mastersconcentration.html.

Admission decisions for the M.S. and Ph.D. programs are made separately. A current M.S. student who wishes to enter the Ph.D. program must submit a petition, including a new statement of purpose and three new letters of recommendation, to the CSE Admissions Committee.

Computer Science Program

Master of Science Program

The department offers the master of science degree in computer science. The degree can be pursued under either the Thesis Plan I or the Comprehensive Examination Plan II. Each plan requires forty-nine units of work. For full-time students, all the requirements can be completed within two years. Students with an adequate background in computer science can complete the M.S. program within four to five quarters of full-time study.

THESIS OR COMPREHENSIVE EXAM

There are two plans of study for the master's degree: Plan I, in which the student writes a thesis, and Plan II, in which the student takes a set of comprehensive exams.

Plan I: Thesis Option, No Comprehensive Exam

This plan involves both course work and research, culminating in the preparation of a thesis. The student must take twelve units of CSE 298 (Independent Study) to fulfill the research requirement, and a thesis based on research must be written and subsequently reviewed by the thesis committee. This committee, which is appointed by the dean of Graduate Studies and Research, consists of three faculty members, with at least two members from within the CSE department.

Plan II: Comprehensive Examination, No Thesis

Under this plan, the student must pass a written comprehensive examination designed to test the student's knowledge in basic computer science material. The examination can normally be passed with a thorough knowledge of topics covered in the undergraduate and first-year graduate computer science programs. It is offered every year in the first few weeks of the fall quarter and in the first few weeks of the spring quarter. Each student is allowed three attempts to pass the examination. The student must secure at least a master's-level pass in the written comprehensive examination. More information regarding the comprehensive examination can be found in a separate document provided by the CSE graduate office.

In particular, the written examination is structured around the three CSE core areas: algorithms and data structures; operating systems; and computer architecture and digital logic design.

Electives

In addition to completing the required core courses and fulfilling either the thesis or comprehensive examination requirements described above, the student must also complete additional approved courses to bring the total number of units to forty-nine. The number of units of electives depends upon whether the student chooses Plan I or Plan II. The electives consist of other CSE graduate courses or courses from a list of approved electives. Units obtained in the courses CSE 293, 298, 299, 500, 501, 599, and any of the seminar courses.
Computer Engineering Program

Computer engineering, jointly administered between the CSE and ECE departments, offers the master of science and doctoral degrees with the degree title computer science and engineering (computer engineering). Computer engineering explores the engineering analysis and design aspects of algorithms and technology. Specific research areas include computer systems, signal processing systems, architecture, networks, computer-aided design, fault tolerance, and data storage systems.

Master of Science Program

The degree can be pursued under either the Thesis Plan I or the Comprehensive Examination Plan II. Each plan requires forty-nine units of work. For full-time students, all the requirements must be completed within two years. Students with an adequate background in computer engineering can complete the M.S. program within four to five quarters of full-time study.

PLAN I: THESIS OPTION, NO COMPREHENSIVE EXAM

This plan of study involves both course work and research, culminating in the preparation of a thesis. A total of forty-nine units of credit is required, as follows:

Core Courses

The following core courses must be completed with an average grade of B and no grade below B–:

Three Software Courses:
- CSE 202
- CSE 221
- CSE 231

Three Hardware Courses:
- CSE 240A
- ECE 260A
- CSE 243A or CSE 244A or CSE 244B or ECE 251A

Two Analysis Courses:
- CSE 200 or CSE 201A
- CSE 222A or ECE 257A

Electives

Students must elect at least four technical units among graduate courses within the Departments of MAE, CSE, ECE, Mathematics, and Physics.

Thesis

Twelve units of CSE 298 must be taken with a faculty member in CSE or ECE who agrees to act as advisor for the thesis to fulfill the research requirement.

A thesis based on research must be written and subsequently reviewed by a committee, consisting of three faculty members, with at least two members from within the CSE department. The committee is appointed by the dean of Graduate Studies.

PLAN II: COMPREHENSIVE EXAMINATION, NO THESIS

In order to receive the M.S. degree in computer engineering under this plan, a student must complete the course requirements listed below and pass a written comprehensive examination.

The written examination is structured around the following three CSE core areas: algorithms and data structures; operating systems; and computer architecture and digital logic design.

Core Courses

Three Software Courses:
- CSE 202
- CSE 221
- CSE 231

Three Hardware Courses:
- CSE 240A
- ECE 260A
- CSE 243A or CSE 244A or CSE 244B or ECE 251A

Two Analysis Courses:
- CSE 200 or CSE 201A
- CSE 222A or CSE 257A

Electives

Students must elect at least twelve technical units among graduate courses within the Departments of MAE, CSE, ECE, Mathematics, and Physics.

Project

Four units of CSE 293.

Comprehensive Examination

The comprehensive examination is designed to test the student’s knowledge in basic computer science and engineering material. The examination can normally be passed with a thorough knowledge of topics covered in the undergraduate and the first-year graduate computer science or computer engineering programs.

It is offered every year in the first few weeks of the fall quarter and in the first few weeks of the spring quarter. If fewer than seven people sign up, then the department may cancel the examination in the spring quarter. Each student is allowed three attempts to pass the examination. The student must secure at least a master’s-level pass in the written comprehensive examination.

This examination is the same for both the computer science and the computer engineering graduate programs. More information about the comprehensive examination can be obtained in a separate document from the CSE graduate office.

Doctoral Programs

Ph.D. Degree Programs in Computer Science and Computer Engineering

CSE offers doctor of philosophy degrees in computer science and in computer engineering, providing a research-oriented education in preparation for a research, industrial, or entrepreneurial career. These programs explore both the fundamental aspects and application of computation, spanning theory, software, hardware, and applications. Our particular areas of research expertise include:

- algorithms
- artificial intelligence
- bioinformatics
- complexity theory
- computer architecture/compilers
- VLSI/CAD and embedded systems
- databases and information management
- distributed systems and networking
- graphics and vision
- high performance computing
- mobile computing
- security and cryptography
- software engineering
COMPETENCY REQUIREMENT

We consider command of the materials covered in the following courses to be an adequate background for the Ph.D. program. The competency requirement is intended to ensure that Ph.D. students already have or acquire this undergraduate background. Students, who do not have this background at the time of entry, may be asked to either enroll in the following undergraduate class or to study it independently and demonstrate their knowledge by obtaining a B+ or better in the class or in the final exam.

CSE 101 (Algorithms)
CSE 105 (Theory of Computation)
CSE 120 (Principles of Computer Operating Systems)
CSE 130 (Programming Languages)
CSE 131 (Compilers)
CSE 141 (Introduction to Computer Architecture)

COURSE REQUIREMENTS

The course requirement is intended to ensure that students are exposed to fundamental concepts and tools (core requirement), a deep up-to-date view of their research area (depth requirement), and advanced, up-to-date view of the some topics outside their area (breadth requirement). Ph.D. students are expected to complete the core, depth, and breadth requirements in the first two years of the program. All required coursework must be taken for a letter grade except for CSE 291 (Topics in CSE), CSE 292 (Faculty Research Seminar), CSE 299 (Research), and CSE 500 or CSE 501 (Teaching Assistantship) for which only S/U grades are allowed.

Units obtained from a single course cannot count more than once towards satisfying the requirement in each of the core, depth, breadth, and elective areas. Ph.D. students who have taken similar courses elsewhere may petition for a waiver of the required courses or for substitution by alternative courses.

Core Requirements

The core requirements ensure that the Ph.D. students share knowledge of fundamental concepts and tools. Each Ph.D. student must take these courses for letter grade and maintain an overall core course GPA of 3.3 with no grade lower than a B- (except for CSE 292, for which a letter grade is not assigned). A student will typically complete all the core courses within the first year of graduate study, and must complete all core courses within two years of entry.

CSE 202 (Algorithms)
CSE 221 (Operating Systems)
CSE 240A (Architecture)
CSE 200 (Complexity) for Computer Science or CSE 241A (Introduction to Computing Circuitry) for Computer Engineering
CSE 292 (Faculty Research Seminar)

Depth Requirements

The depth requirement ensures that a Ph.D. student has, early on in his or her career, acquired some depth of knowledge in a general research area. Each Ph.D. student must select one of the following areas as his or her major area. The student must take three courses (twelve units) from this major area. The student must take these courses for letter grade and maintain an overall depth course GPA of 3.4 with no grade lower than B- in these courses. One of these three courses can be Topics in CSE (CSE 291) or Independent Study (CSE 299), which are not taken for a letter grade. The department will maintain a list of appropriate courses for each major area.

The major areas are:

Theroretical Computer Science
Programming Languages, Compilers, and Software Engineering
Computer Systems
Database Systems
Computer Engineering
Artificial Intelligence
Graphics and Vision
Bioinformatics

Breadth Requirements

Research in computer science and engineering is increasingly interdisciplinary, and acquiring a broader view of the field in general is important. Each Ph.D. student must take three courses (twelve units) from at least two other areas different from the major area. Any course that is listed in a student’s depth area cannot be used to fulfill the breadth requirement, even if it is cross-listed in another area. Courses must be taken for letter grade and students must maintain an overall breadth course GPA of 3.0 with no grade lower than B- in these courses. Units obtained in CSE 209 series, 229 series, 239 series, 249 series, 259 series, 269 series, 279 series, 289 series, 290, 292, 293, 294, 298, 291, 299, 500, 501, and 599 do not count toward the breadth requirement.

Electives

In addition to the above required coursework, each student is expected to take two additional courses (eight units). Students must obtain no grade lower than C- in these courses. Undergraduate upper-division courses, CSE 291, and CSE 299 may fulfill this requirement. Units obtained in CSE 209 series, 229 series, 239 series, 249 series, 259 series, 269 series, 279 series, 289 series, 290, 292, 293, 294, 298, 500, 501, and 599 do not count toward the elective requirement.

RESEARCH EXAM REQUIREMENT

The research exam is intended to verify three components of the student’s preparation for Ph.D. research: (1) breadth of comprehension sufficient to enable computer science research in areas beyond the topic(s) of the research exam and thesis; (2) ability to perform critical study, analysis, and writing in a focused area; and (3) research experience.

The research exam has both an oral part and a written part. The oral part of the research exam is distinct from, and cannot be combined with the University Qualifying Exam. Grading criteria for each part, and standards for passing, are available from the CSE department graduate office.

The research exam is conducted by a committee of three faculty members approved by the Graduate Committee and the chair of the department. At least two committee members must be CSE senate faculty, and the student’s advisor must be a member of the committee. The normative time for passing the research exam is by the end of the second year of study; the exam must be passed by the end of the third year if the student is to continue in the Ph.D. program. Passing the research exam enables a Ph.D. student to receive the M.S. degree. Ph.D. students who do not pass the exam after two attempts will be given the opportunity to write a thesis in order to receive a terminal M.S. degree. The M.S. degree is only granted to those students who do not already hold an M.S. degree prior to entering the CSE department at UCSD.

TEACHING ASSISTANT REQUIREMENT

All students enrolled in the Ph.D. program must have one quarter of training as a teaching
COURSES
For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

CSE 3. Fluency in Information Technology (4) Introduces the concepts and skills necessary to effectively use information technology. Includes basic concepts and some practical skills with computer and networks. Prerequisite: none.

CSE 5A. Introduction to Programming I (4) (Formerly CSE 62A) Introduction to algorithms and top-down problem solving. Introduction to the C language including functions, arrays, and standard libraries. Basic skills for using a PC graphical user interface operating system environment. File maintenance utilities are covered. (A student may not receive credit for CSE 5A after receiving credit for CSE 10 or CSE 11 or CSE 8B or CSE 9B or CSE 62B or CSE 65.) Prerequisite: A familiarity with high-school level algebra is expected, but this course assumes no prior programming knowledge.

CSE 8A. Introduction to Computer Science: JAVA (3) Basic Unix, Basics of Java language. Classes, methods, and parameters. Modularity and abstraction. Documentation techniques. Testing and verification techniques. Basic inheritance. Event-driven programming. Programming with AWT library or other similar library. CSE 8A, CSE 8B, and CSE 8AL is a slower paced version of CSE 11 with more programming practice. Concurrent enrollment with CSE 8AL is required. Students who have taken CSE 8B or CSE 11 may not take CSE 8A. Majors only. Prerequisites: high school algebra. Specified majors only.

CSE 8AL. Introduction to Computer Science: JAVA Lab (1) Exercises in the theory and practice of computer science under the supervision of an instructor. Hands-on experience with designing, editing, compiling, and executing programming constructs and applications. Must be taken concurrently with CSE 8A, CSE 8B, and CSE 8AL is a slower paced version of CSE 11 with more programming practice. Students who have taken CSE 8B or CSE 11 may not take CSE 8AL. Majors only. Prerequisites: high school algebra. Specified majors only.
or CSE 11, CSE 8B or CSE 11 may be taken concurrently with CSE 20/Math 15A.

This course will provide an introduction to the discrete mathematical tools needed to analyze algorithms and systems. Enumerative combinatorics: basic counting principles, inclusion-exclusion, and generating functions. Matrix notation. Applied discrete probability. Infinite automata. Credit not offered for both Math.15B and CSE 21. Equivalent to Math 15B. Prerequisites: CSE 12 or Math. 15A.

CSE 30. Computer Organization and Systems Programming (4)
Introduction to organization of modern digital computers—understanding the various components of computers and their inter-relationships. Study of a specific architecture/machine with emphasis on systems programming in C and Assembly languages in a UNIX environment. Prerequisites: CSE 12, CSE 15L, and CSE 20 or Math. 15A, or consent of the instructor. Majors only.

CSE 70. Software Engineering (4)
Introduction to software development and engineering methods, including specification, design, implementation, testing, and process. An emphasis on team development, agile methods, and use of tools such as IDE’s, version control, and test harnesses. Prerequisites: CSE 20 or Math. 15A.

CSE 80. UNIX Lab (2)
The objective of the course is to help the programmer create a productive UNIX environment. Topics include customizing the shell, file system, shell programming, process management, and UNIX tools. Prerequisites: CSE 8B or CSE 11. Majors only.

CSE 86. C++ for Java Programmers (2)
The objective of the course is to help the Java programmer to be productive in the C++ programming environment. Topics include the similarities and differences between Java and C++ with special attention to pointers, operator overloading, templates, the STL, the preprocessor, and the C++ Runtime Environment. Prerequisites: CSE 12 or consent of the instructors.

CSE 87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to 15 to 20 students, with preference given to entering freshmen. Prerequisite: none.

CSE 91. Perspectives in Computer Science and Engineering (2)
A seminar format discussion led by CSE faculty on topics in central areas of computer science, concentrating on the relation among them, recent developments, and future directions. Majors only.

CSE 92. Reading and Writing in Computer Science (2)
This course helps students to read and write technical English better, and to read and write software better. They write short papers responding to a CSE-related book, learn the basics of functional programming, and do a project using a functional language. Prerequisites: CSE 12. Majors only.

CSE 99. Independent Study in Computer Science and Engineering (4)
Independent reading or research by special arrangement with a faculty member. Prerequisites: lower-division standing. Completion of 30 units at UCSD with a UCSD GPA of 3.0. Special Studies form required. Department stamp required. Consent of instructor and approval of the department. Majors only.

UPPER-DIVISION

CSE 100. Advanced Data Structures (4)
Descriptive and analytical presentation of data structures and algorithms. Lists, tables, priority queues, disjoint sets, and dictionaries data types. Data structuring techniques include linked lists, arrays, hashing, and trees. Performance evaluation involving worst case, average and expected case, and amortized analysis. Prerequisites: CSE 12, CSE 15L, CSE 21 or Math. 15B, and CSE 30 and CSE 70, or consent of instructor. Majors only.

CSE 101. Design and Analysis of Algorithms (4)
Design and analysis of efficient algorithms with emphasis of non-numerical algorithms such as sorting, searching, pattern matching, and graph and network algorithms. Measuring complexity of algorithms, time and storage. NP-complete problems. Credit not offered for both Math. 188 and CSE 101. Equivalent to Math 188. Prerequisites: CSE 12, CSE 21 or Math. 15B or Math. 100A or Math. 103A and CSE 100 or Math. 176. Majors only.

CSE 102. Storage System Architectures (4)
Descriptive and analytic introduction to storage system architectures. Disk drive storage media organization and run-time performance; external indexing data structures B-trees and linear hashing algorithms. Disk arrays, RAID data organization, reliability, sparing, data declustering, and video servers. Prerequisites: CSE 100 or Math 176, CSE 120, CSE 123A, or consent of the instructor. Majors only.

CSE 103. A Practical Introduction to Probability and Statistics (4)

CSE 105. Theory of Computability (4)
An introduction to the mathematical theory of computability. Formal languages. Finite automata and regular expression. Push-down automata and context-free languages. Computable or recursive functions; Turing machines, the halting problem. Undecidability. Credit not offered for both Math. 166 and CSE 105. Equivalent to Math 166. Prerequisites: CSE 12, CSE 21 or Math. 15B or Math. 100A or Math. 103A. Majors only.

CSE 107. Introduction to Modern Cryptography (4)
Topics include private and public-key cryptography, block ciphers, data encryption, authentication, key distribution and certification, pseudorandom number generators, design and analysis of protocols, zero-knowledge proofs, and advanced protocols. Emphasizes rigorous mathematical approach including formal definitions of security goals and proofs of protocol security. Prerequisites: CSE 21 or Math. 15B, CSE 101 or Math. 188, CSE 105 or Math. 166. Majors only.

CSE 111. Object Oriented Software Design (4)
Introduction to object-oriented analysis and design. Object-oriented modeling methods for analysis and design, object-oriented general design paradigms, object-oriented design techniques. Cyclic development of object-oriented systems. Prerequisites: CSE 8B or CSE 9B or CSE 10 or CSE 11, CSE 12, and CSE 100 or Math. 176. Majors only.

CSE 112. Software Engineering (4)
(Formerly CSE 110.) This course will cover software engineering topics associated with large systems development such as requirements and specifications, testing and maintenance, and design. Prerequisites: CSE 111. Majors only.

CSE 118. Ubiquitous Computing (4)
Explores emerging opportunities enabled by cheap sensors and networking computing devices, and is organized as a preparatory course for graduate school. Students read, present, and discuss research papers. Small research projects will be conducted in teams, culminating in project presentations at the end of the term. The weekly discussion section will cover material relevant to the project on research methods, software engineering, teamwork, and project management. Prerequisites: successful completion of a major project course, including: CSE 131B, CSE 132B, Cog Sci 102C, Cog Sci 121, Cog Sci 184, ECE 117, ECE 118, ECE 191, ECE 192, COMT 111B, COMT 115, or ICAM 160B. Other project courses, experience, or accomplishments may be petitioned. Majors only.

CSE 120. Principles of Computer Operating Systems (4)
Basic functions of operating systems; basic kernel structure, concurrency, memory management, virtual memory, file systems, process scheduling, security and protection. Prerequisites: CSE 100 or Math. 176 and CSE 101 or Math. 188. Majors only.

CSE 121. Operating Systems: Architecture and Implementation (4)
(Formerly CSE 171B.) Case study of architecture and implementation of a selected modern operating system. In-depth analysis through a detailed study of source code. Topics include process creation, context-switching, memory allocation, synchronization mechanisms, inter-process communication, I/O buffering, device drivers, and file systems. Prerequisite: CSE 120.

CSE 123. Computer Networks (4)
(RENUMBERED FROM CSE 123A.) Introduction to concepts, principles, and practice of computer communication networks with examples from existing architectures, protocols, and standards with special emphasis on the Internet protocols. Layering and the OSI model; physical and data link layers; local and wide area networks; datagrams and virtual circuits; routing and congestion control; internetworking. Transport protocols. Credit may not be received for both CSE 123A and 158A or CSE 123B and 158B. Prerequisites: CSE 120 or consent of instructor. Majors only.

CSE 124. Communications Software (4)
(RENUMBERED FROM CSE 123B.) The architecture of modern networking services, including data center design, enterprise storage, fault tolerance, and load balancing. Protocol software structuring, the Transmission Control Protocol (TCP), remote procedure calls, protocols for digital audio and video communication, overlay and peer-to-peer systems, secure
communication. Prerequisites: CSE 120 or consent of instructor. Majors only.

CSE 125. Software System Design and Implementation (4) Design and implementation of large, complex software systems involving multiple aspects of CSE curriculum. Emphasis is on software system design applied to a single, large group project with close interaction with instructor. Prerequisites: senior standing with substantial programming experience, and consent of instructor. Department stamp required. Majors only.

CSE 127. Introduction to Computer Security (4) Topics include basic cryptography, security/threat analysis, access control, auditing, security models, distributed systems security, and theory behind common attack and defense techniques. The class will go over formal models as well as the bits and bytes of security exploits. Prerequisite: CSE 21 or Math. 15B, and CSE 120. Majors only.

CSE 128. Concurrency (4) Specification of concurrent programs safety, liveness, and fairness: producer-consumer; mutual exclusion; atomic read/writes; semaphores; monitors; distributed algorithms and memory coherency; programming with threads; concurrency in popular programming languages and operating systems. Prerequisite: CSE 120. Majors only.

CSE 130. Programming Languages: Principles and Paradigms (4) (Formerly CSE 173.) Introduction to programming languages and paradigms, the components that comprise them, and the principles of language design, all through the analysis and comparison of a variety of languages (e.g., Pascal, Ada, C++, PROLOG, ML). Will involve programming in most languages studied. Prerequisites: CSE 12 and CSE 100 or Math. 176. Majors only.

CSE 131. Compiler Construction (4) (Formerly CSE 171A) Introduction to the compilation of programming languages, practice of lexical and syntactic analysis, symbol tables, syntax-directed translation, type checking, code generation, optimization, interpretation, and compiler structure. Prerequisites: CSE 100 or Math. 176, CSE 105 or Math. 166, and CSE 130. Majors only.

CSE 132A. Database System Principles (4) Basic concepts of databases, including data modeling, relational databases, query languages, optimization, dependencies, schema design, and concurrency control. Exposure to one or several commercial database systems. Advanced topics such as deductive and object-oriented databases, time allowing. Prerequisite: CSE 100 or Math. 176. Majors only.

CSE 132B. Database Systems Applications (4) Design of databases, transactions, use of trigger facilities and databases. Performance measuring, organization of index structures. Prerequisite: CSE 132 or CSE 132A or equivalent.

CSE 133. Information Retrieval (4) (Formerly CSE 181.) How to find “relevant” documents (e.g., an electronic mail message or a book) from very large corpora (e.g., all the world’s electronic mail or the library). Students will construct and experimentally evaluate a complete IR system for a modest textual corpus. Prerequisite: CSE 100 or Math. 176. Majors only.

CSE 134A. Web Server Languages (4) Design and implementation of interactive World Wide Web documentation using server-side programs. Languages covered include HTML, Perl, and JavaScript. Other languages as time allows. Prerequisite: CSE 100 or Math. 176. Majors only.

CSE 134B. Web Client Languages (4) Design and implementation of interactive World Wide Web clients using helper applications and plug-ins. The main language covered will be Java. Prerequisite: CSE 100 or Math. 176. Majors only.

CSE 135. Server-side Web Applications (4) Design and implementation of dynamic web-based applications. Multi-tier architecture, scripting languages, SQL, XML, session handling, non-browser clients, Web services, and scalability, security, and usability in the Web context. Prerequisites: CSE 100 or Math. 176. Majors only.

CSE 136. Enterprise-class Web Applications (4) Design and implementation of large scale web-based applications. Modeling organizational needs, design and revision management, J2EE or similar software platforms, Web and application server functionality, reuse of object-oriented components, model-view-controller and other design patterns, clustering, load-balancing, fault-tolerance, authentication, usage accounting. Prerequisite: CSE 135. Majors only.

CSE 140. Components and Design Techniques for Digital Systems (4) (Formerly CSE 170A) Design of Boolean logic and finite state machines; two-level, multi-level combinational logic design, combinational modules and modular networks, Mealy and Moore machines, analysis and synthesis of canonical forms, sequential modules. Prerequisites: CSE 20 or Math. 15A, CSE 30. CSE 140L must be taken concurrently. Majors only.

CSE 140L. Digital Systems Laboratory (2) (Formerly CSE 175B) Implementation with computer-aided design tools for combinational logic minimization and state machine synthesis. Hardware construction of a small digital system. Prerequisites: CSE 20, CSE 30. CSE 140 must be taken concurrently.

CSE 141. Introduction to Computer Architecture (4) Introduction to computer architecture. Computer system design. Processor design. Control design. Memory systems. Prerequisites: CSE 140, CSE 140L, or consent of the instructor. CSE 141L should be taken concurrently. Majors only.

CSE 141L. Project in Computer Architecture (2) Hands-on computer architecture project aiming to familiarize students with instruction set architecture, and design of process. Control and memory systems. Prerequisites: CSE 140, CSE 140L, or consent of the instructor. CSE 141L should be taken concurrently. Majors only.

CSE 142. Advanced Digital Logic Design (4) (Formerly CSE 170C) Digital logic optimization; functional decomposition and symmetric functions; reliable design and fault diagnosis; structure of sequential machines; asynchronous circuit design. Assignments using logic synthesis tools. Prerequisites: CSE 140, CSE 140L.

CSE 143. Microelectronic System Design (4) VLSI process technologies; circuit characterization; logic design styles; clocking strategies; computer-aided design tools; subsystem design; design case studies. System design project from hardware description logic synthesis, physical layout to design verification. Students may not receive credit for both CSE 143 and ECE 161B. Prerequisites: CSE 140 and CSE 141. Majors only.

CSE 146. Introduction to Reliable Hardware (4) Fault models and tests, combinational circuit test generation, fault collapsing, fault simulation, synchronous sequential circuit testing, functional testing, memory testing. Prerequisites: CSE 140 and CSE 140L, or consent of instructor. Majors only.

CSE 148. Advanced Processor Architecture Design Project (4) Students will use hardware description language tools to add advanced architectural features to a basic processor design. These features may include pipelining, superscalar execution, branch prediction, and advanced cache features. Designs will be implemented in programmable logic devices. Prerequisites: CSE 141, CSE 141L, or consent of instructor. Majors only.

CSE 150. Introduction to Artificial Intelligence: Search and Reasoning (4) Search algorithms including BFS, DFS, iterative deepening and A*, randomized search algorithms including Walksat, syntax and semantics of first-order logic (FOL), knowledge representation in FOL including reasoning, basic reasoning with probabilities, basic Bayesian learning. Prerequisites: CSE 100 or Math. 176 or consent of instructors. Majors only.

CSE 151. Introduction to Artificial Intelligence: Statistical Approaches (4) Reasoning with probabilities, reasoning and learning with Bayesian networks, decision-making under uncertainty, sequential decision-making, statistical learning methods, and reinforcement learning. Prerequisites: CSE 100 or Math. 176 or consent of instructor. Majors only.

CSE 152. Introduction to Computer Vision (4) The goal of computer vision is to compute scene and object properties from images and video. This introductory course includes feature detection, image segmentation, motion estimation, object recognition, and 3-D shape reconstruction through stereo, photometric stereo, and structure from motion. Prerequisites: Math. 20F, CSE 100 or Math. 176, CSE 101 or Math. 188, Knowledge of C, C++ or Matlab programming. Majors only.

CSE 160. Introduction to Parallel Computing (4) Introduction to high performance parallel computing: parallel architecture, algorithms, software, and problem-solving techniques. Areas covered: Flynn’s taxonomy, processor-memory organizations, shared and non-shared memory models: message passing and multithreading, data parallelism; speedup, efficiency and Amdahl’s law, communication and synchronization, isoefficiency and scalability, Assignments given to provide practical experience. Prerequisites: CSE 100 or Math. 176. Majors only.

CSE 166. Image Processing (4) Principles of image formation, analysis, and representation. Image enhancement, restoration, and segmentation; stochastic image models. Filter design,
(Formerly CSE 177) Representation and manipulation of pictorial data. Two-dimensional and three-dimen-
sional transformations, curves, surfaces. Projection, illumination, and shading models. Raster and vector
graphic I/O devices; retained-mode and immediate-
mode graphics software systems and applications.
Prerequisites: Math. 20F or Math. 176. Majors only.

CSE 168. Computer Graphics II: Rendering (4)
Weekly programming assignments that will cover graphs rendering algorithms. During the course the
students will learn about ray tracing, geometry, tessela-
tion, acceleration structures, sampling, filtering,
shading models, and advanced topics such as global
illumination and programmable graphics hardware.
Prerequisites: CSE 167 or concurrent enrollment. Majors only.

CSE 169. Computer Animation (4)
Advanced graphics focusing on the programming
techniques involved in computer animation. Algo-
rithms and approaches for both character animation
and physically based animation. Particular subjects
may include skeletons, skinning, key framing, facial
animation, inverse kinematics, locomotion, motion
capture, video game animation, particle systems, rigid
bodies, clothing, and hair. Prerequisites: a good under-
standing of linear algebra. CSE 167 or consent of instruc-
tor. Majors only.

CSE 171. User Interface Design (4)
Explores usability, representation and coordination
issues in user interface design with some focus on dis-
tributed cooperative work, semiotics, and the interplay
between socio-cognitive and technical issues. Most
examples and homework involve the Web. Prerequisites:
CSE 88 or 11, CSE 20 or Math. 15A, and CSE 100 or Math.
176. Majors only.

CSE 175. Social and Ethical Issues in Information
Technology (4)
Social aspects of information technology, with an
emphasis on ethical issues. Topics include ethical theo-
ries, privacy and security, spam, e-commerce, the digital
divide, open source software, medical informatics, actor-
network theory, and some neo-classical economics.
Prerequisites: CSE 100 or Math. 176. Majors only.

CSE 181. Molecular Sequence Analysis (4)
This course covers the analysis of nucleic acid and pro-	ein sequences, with an emphasis on the application of
algorithms to biological problems. Topics include
sequence alignments, database searching, comparative
genomics, and phylogenetic and clustering analyses.
Pairwise alignment, multiple alignment, DNA sequenc-
ing, scoring functions, fast database search, compara-
tive genomics, clustering, phylogenetic trees, gene
finding/DNA statistics. Prerequisites: CSE 100 or Math.
176, CSE 101 or Math. 188, BIMM 100 or Chem. 114D.
Bioinformatics majors only. CSE 181 is crosslisted with
BIMM 182 and BENG 182.

CSE 182. Biological Databases (4)
This course provides an introduction to the features
of biological data, how that data are organized efficiently
in databases, and how existing data resources can be
utilized to solve a variety of biological problems.

CSE 184. Computational Molecular Biology (4)
This advanced course covers the application of
machine learning and modeling techniques to biolog-
ical systems. Topics include gene structure, recognition
of DNA and protein sequence patterns, classification,
and protein structure prediction. Pattern discovery,
Hidden Markov models/support vector machines/
neural network/profiles. Protein structure prediction,
functional characterization or proteins, functional
genomics/proteomics, metabolic pathways/gene net-
works. Prerequisites: BIMM 181 or CSE 181, BIMM
182 or CSE 182 or CHEM 182. Bioinformatics majors
only. CSE 184 is crosslisted with BIMM 184, BENG
184, and Chem 184.

CSE 190. Topics in Computer Science and
Engineering (4)
Topics of special interest in computer science and
engineering. Topics may vary from quarter to quarter.
May be repeated for credit with the consent of instruc-
tor. Prerequisites: consent of the instructor and depart-
ment stamp required. Majors only.

CSE 195. Teaching (4)
Teaching and tutorial assistance in a CSE course under
the supervision of the instructor. (P/NP grades only.)
Prerequisite: consent of the department chair. Depart-
ment stamp required.

CSE 197. Field Study in Computer Science and
Engineering (4, 8, 12, or 16)
Directed study and research at laboratories away from
the campus. (P/NP grades only.) Prerequisite: consent
of the instructor and approval of the department.
Department stamp required.

CSE 198. Directed Group Study (2 or 4)
Computer science and engineering topics whose study
involves reading and discussion by a small group of
students under the supervision of a faculty member. (P/NP grades only.) Prerequisite: consent of the
instructor. Department stamp required.

CSE 199. Independent Study for Undergraduates
(2 or 4)
Independent study or research by special arrange-
ment with a faculty member. (P/NP grades only.)
Prerequisite: consent of the instructor. Department
stamp required.

CSE 200. Computability and Complexity (4)
Computability review, including halting problem,
decidable sets, r.e. sets, many-one reductions; TIME(n),
SPACE(n) and general relations between these
classes; L, P, PSPACE, NP—completeness; hierarchy
theorems; RP, BPP. Prerequisite: CSE 105 or equivalent.

CSE 201A. Advanced Complexity (4)
Polynomial-time hierarchy (PH); BPP in second level
of PH; Savitch's theorem; NL=coNL; non-uniform and cir-
cuit complexity; some circuit lower bounds; IP=PSPACE;
probabilistic proof checking (PCP); Application of PCP
to approximation hardness; Complexity of proof sys-
tems; Parallel complexity classes NC and AC; P-com-
pleteness. Prerequisite: CSE 200.

CSE 202. Algorithm Design and Analysis (4)
The basic techniques for the design and analysis of
algorithms. Divide-and-conquer, dynamic program-
ming, data structures, graph search, algebraic problems,
randomized algorithms, lower bounds, probabilistic
analysis, parallel algorithms. Prerequisite: CSE 101 or
equivalent.

CSE 203A. Advanced Algorithms (4)
Modern advances in design and analysis of algo-
rithms. Exact syllabus varies. Topics include approxi-
mation, randomized algorithms, probabilistic analysis,
heuristics, online algorithms, competitive analysis,
models of memory hierarchy, parallel algorithms, num-
ber-theoretic algorithms, cryptography, computational
geometry, computational biology, network algo-
rithms, VLSI CAD algorithms. Prerequisite: CSE 202.

CSE 204A. Combinatorial Optimization (4)
Linear programming, simplex method, duality, and col-
umn generating technique. Integer programming introduced
via the Knapsack problem. The periodic
nature of all integer programs. Why the round-off
technique cannot work in general. The solution of the
Knapsack problem in polynomial time since nonba-
sic columns form a group. Prerequisites: CSE 202 or
Linear Algebra or consent of instructor.

CSE 205A. Logic in Computer Science (4)
(Formerly CSE 208D) Mathematical logic as a tool in
computer science. Propositional logic, resolution, first-
order logic, completeness and incompleteness theo-
rems with computational viewpoint, finite model
theory, descriptive complexity, logic programming,
non-
monotonic logic, modal logic. Applications to
databases, automatic theorem proving, program verifi-
cation, and distributed systems. Prerequisite: CSE 200 or
consent of instructor.

CSE 206A. Lattice Algorithms and Applications (4)
(Formerly CSE 207C) Introduction to the algorithmic
theory of point lattices (A.K.A. algorithmic geometry of
numbers), and some of its most important applica-
tions in cryptography and cryptanalysis. Topics usually
include: LLL basis reduction algorithm, cryptanalysis of
broadcast RSA, hardness of approximating lattice
problems. Prerequisites: CSE 202, CSE 200, or concurrent.

CSE 207. Modern Cryptography (4)
Private and public key cryptography, introduction to
reduction based proofs of security, concrete security,
block ciphers, pseudorandom functions and genera-
tors, symmetric encryption, asymmetric encryption,
computational number theory, RSA and discrete log
systems, message authentication, digital signatures,
key distribution and key management. Prerequisites:
CSE 202 or consent of instructor.

CSE 207C. Lattices and Cryptology (4)
Renumbered to CSE 206A (see above).

CSE 208. Advanced Cryptography (4)
Zero-knowledge, secure computation, session-key
distribution, protocols, electronic payment, one-way
functions, trapdoor permutations, pseudorandom
bit generators, hardcore bits. Prerequisites: CSE 202, CSE 200, and CSE 207 or consent of instructor.

CSE 208D. Logic in Computer Science (4)
Renumbered to CSE 205A (see above).

CSE 209A. Topics/Seminar in Algorithms, Complexity, and Logic (1-4)
Topics of special interest in algorithms, complexity, and logic to be presented by faculty and students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. Prerequisites: consent of instructor.

CSE 209B. Topics/Seminar in Cryptography (1-4)
Topics of special interest in cryptography to be presented by faculty and students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. Prerequisite: consent of instructor.

CSE 210. Principles of Software Engineering (4)
(Formerly CSE 264A.) General principles in modern software engineering. Both theoretical and practical topics are covered. Theoretical topics include proofs of correctness, programming language semantics, and theory of testing. Practical topics include structured programming, modularization techniques, design of languages for reliable programming, and software tools. Prerequisites: CSE 100, 131A, 120, or consent of instructor.

CSE 211. Software Testing and Analysis (4)
Survey of testing and analysis methods. Introduction to advanced topics in area as well as traditional production methods. Topics include inspections and reviews, formal analysis, verification and validation standards, non-statistical testing, statistical-testing and reliability models, coverage methods, testing and analysis tools, and organization management and planning. Methods special to special development approaches such as object-oriented testing will also be described. Prerequisite: undergraduate major in computer science or extensive industrial experience.

CSE 218. Advanced Topics in Software Engineering (4)
This course will cover a current topic in software engineering in depth. Topics in the past have included software tools, impacts of programming language design, and software system structure. (S/U grades permitted.) Prerequisite: none.

CSE 221. Operating Systems (4)
Operating system structures, concurrent computation models, scheduling, synchronization mechanisms, address spaces, memory management protection and security, buffering, streams, data-copying reduction techniques, file systems, naming, caching, disk organization, mapped files, remote file systems, case studies of major operating systems. Prerequisites: CSE 120 and 121, or consent of instructor.

CSE 222. Communication Networks (4)
Renumbered to CSE 222A (see below).

CSE 222A. Computer Communication Networks (4)
(Formerly CSE 222.) Computer communication network concepts, protocols, and architectures, with an emphasis on an analysis of algorithms, protocols, and design methodologies. Topics will include layering, error control, flow control, congestion control, switching and routing, quality of service management, mobility, naming, security, and selected contemporary topics. Prerequisite: CSE 123A or consent of instructor.

CSE 222B. Internet Algorithmics (4)
(Formerly CSE 228H.) Techniques for speeding up Internet implementations including system restructuring, new algorithms, and hardware innovations. Topics include: models for protocols, systems and hardware; efficiency principles; applying these principles to deriving techniques for efficient implementation of common endnode and router functions. Prerequisites: CSE 123A or CSE 222A or consent of instructor.

CSE 223. Distributed Systems (4)
Renumbered to CSE 223A (see below).

CSE 223A. Principles of Distributed Computing (4)
(Formerly CSE 223.) Logical and physical time, snapshot protocols, failure models, replication strategies, consensus and reliable broadcast, self-stabilization, atomic commit. Prerequisites: CSE 221 or consent of instructor.

CSE 223B. Distributed Computing and Systems (4)
Efficient primitives for distributed operating systems and high-performance network servers, including concurrent and event-driven server architectures, remote procedure calls, and load shedding. Distributed naming, directory, and storage services, replication for fault tolerance, and security in distributed systems. Prerequisites: CSE 221, CSE 222A, or consent of instructor.

CSE 226. High Performance Distributed Computing (and Computational Grids) (4)
Architecture of high performance distributed systems (e.g., frameworks and middleware). High performance distributed objects (DCOM, Corba, Java Beans) and networking with crosscut issues for performance, availability, and performance predictability. Scalable servers, metacomputing, and scientific computing. Prerequisites: CSE 121 and CSE 123A or consent of instructor.

CSE 226B. Storage Systems (4)
(Formerly CSE 228B.) Secondary and tertiary storage systems, optical and magnetic media, performance analysis, modeling, reliability, redundant arrays of inexpensive disks, striping, log and maximum distance separable data organizations, sparing. Prerequisite: CSE 221 or consent of instructor.

CSE 227. Computer Security (4)
Security and threat models, risk analysis, authentication and authorization, auditing, operating systems security, access control mechanisms, protection mechanisms, distributed systems/network security, security architecture, electronic commerce security mechanisms, security evaluation. Prerequisite: CSE 221 or consent of instructor.

CSE 228. Multimedia Systems (4)
(Formerly CSE 228F.) Emerging multimedia technologies; multimedia storage models and structures; video/audio networking; intra-media continuity; inter-media synchronization; admission control and support for real-time; distributed multimedia systems; structured interaction support (collaboration and teamwork); multimedia encoding. Prerequisite: consent of instructor.

CSE 228B. Storage Systems (4)
Renumbered to CSE 226 (see above).

CSE 228F. Multimedia Systems (4)
Renumbered to CSE 228 (see above).

CSE 228H. Internet Algorithmics (4)
Renumbered to CSE 228 (see above).

CSE 229A. Topics/Seminar in Computer Systems (1-4)
Discussion on problems of current research interest in computer systems. Possible areas of focus include: distributed computing, computational grid, operating systems, fault-tolerant computing, storage systems, system services for the World Wide Web. Topics to be presented by faculty and students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. Prerequisite: consent of instructor.

CSE 229B. Topics/Seminar in Networks and Communication (1-4)
Discussion on problems of current research interest in computer networks and communication. Possible areas of focus include: wide-area networking, wireless networks, the Internet, computational grid, operating systems, fault-tolerant computing, storage systems. Topics to be presented by faculty and students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. Prerequisite: consent of instructor.

CSE 229C. Topics/Seminar in Computer Security (1-4)
Discussion on problems of current research interest in computer security. Topics to be presented by faculty and students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. Prerequisite: consent of instructor.

CSE 230. Principles of Programming Languages (4)
(Formerly CSE 273.) Functional versus imperative programming. Type systems and polymorphism; the ML language. Higher-order functions, lazy evaluation. Abstract versus concrete syntax, structural and well-founded induction. The lambda calculus, reduction strategies, combinators. Denotational semantics, elementary domain theory. Prerequisite: CSE 130 or equivalent, or consent of instructor.

CSE 231. Advanced Compiler Design (4)
(Formerly CSE 264C.) Advanced material in programming languages and translator systems. Topics include compilers, code optimization, and debugging interpreters. Prerequisites: CSE 100, 131A-B, or consent of instructor.

(Formerly CSE 264D.) Database models including relational, hierarchical, and network approaches. Implementation of databases including query languages and system architectures. Prerequisite: CSE 100 or consent of instructor.

CSE 232B. Database System Implementation (4)
A hands-on approach to the principles of databases implementation. Algebraic rewriters/optimizers, query processors, triggers. Beyond centralized relational databases. Prerequisites: CSE 232.

CSE 233. Database Theory (4)
Theory of databases. Theory of query languages, dependency theory, deductive databases, incomplete information, complex objects, object-oriented databases, and more. Connections to logic and complexity theory including finite model theory and descriptive complexity. Prerequisite: CSE 200.

CSE 237A. Introduction to Embedded Computing (4)
Embedded system technologies including processors, DSP memory, and software. System interfacing basics, communication strategies, sensors, and actuators. Mobile and wireless technology in embedded systems. Using pre-designed hardware and software components. Design case studies in wireless, multimedia,
and/or networking domains. Prerequisites: basic courses in digital hardware, algorithms and data structures, elementary calculus, and probability, or consent of instructor.

CSE 237B. Software for Embedded Systems (4)
Embedded computing elements, device interfaces, time-critical IO handling. Embedded software design under size, performance, and reliability constraints. Software timing and functional validation. Programming methods and compilation for embeddable software. Embedded runtime systems. Case studies of real-time software systems. Prerequisites: CSE 237A or basic courses in programming, algorithms and data structures, elementary calculus, discrete math, computer architecture, or consent of instructor.

CSE 237C. Validation and Testing of Embedded Systems (4)
Embedded system building blocks including IP cores. Co-simulation. Formal verification using model checking. Verification environments. Test challenges in core integration: compliance, feature, random, and collision testing. Core access and test integration. Interface-based verification and standards. Prerequisites: CSE 237A or basic courses in algorithms and data structures, elementary calculus, discrete math, symbolic logic, computer architecture, or consent of instructor.

CSE 237D. Design Automation and Prototyping for Embedded Systems (4)
System representation and modeling. Abstract and language models. Simulation as a modeling activity. Computational and hw/sw system prototypes. System analysis using models. Constraint and interface modeling. Behavioral compilation and synthesis. Prerequisites: CSE 237A or basic courses in digital logic design, algorithms and data structures, elementary calculus, discrete math, symbolic logic, computer architecture, or consent of instructor.

CSE 239A. Topics/Seminar in Databases (1-4)
Discussion on problems of current research interest in databases. Possible areas of focus include: core database issues, data management, web data integration, new database models and applications, formal methods in databases. Topics to be presented by faculty and students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. Prerequisite: consent of instructor.

CSE 240. Principles in Computer Architecture I (4)
Renumbered to CSE 240A (see below).

CSE 240A. Principles of Computer Architecture (4)
(Formerly CSE 240.) This course will cover fundamental concepts in computer architecture. Topics include instruction set architecture, pipelining, pipeline hazards, bypassing, dynamic scheduling, branch prediction, superscalar issue, memory-hierarchy design, advanced cache architectures, and multiprocessor architecture issues. Prerequisite: CSE 141 or consent of instructor.

CSE 241. Advanced Computer Architecture (4)
Renumbered to CSE 240B (see below).

CSE 240B. Advanced Computer Architecture (4)
(Formerly CSE 241.) This course covers advanced topics in computer architecture, including multiprocessor architecture, interconnection networks, cache coherence, cache consistency. It incorporates the latest research and development on topics such as branch prediction, instruction-level parallelism, multithreading, and cache hierarchy design. Prerequisite: CSE 240A or consent of instructor.

CSE 241A/EC 260B. VLSI Integration of Computing Circuity (4)
VLSI integrated-circuit building blocks of computing systems, and their implementation. Computer-aided design and performance simulations, design exercises and projects. Devices, standard cells and interconnections, clocking, power/ground distribution, arithmetic modules, memories. Methodologies and tradeoffs in system implementation. Prerequisites: Layout (CSE 165 or EC 260A) and logic design (CSE 140 or EC 111), or consent of instructor.

CSE 242A. Integrated Circuit Layout Automation (4)
Couplings among timing, circuits and spatial embedding in nanometer-scale CMOS design. The role, and key problems, of physical layout in IC implementation. Example topics: RTL-to-GDSII methodologies, analyses and estimations, partitioning, floor planning, placement, routing, special net routing, cell generation, compaction. Prerequisite: CSE 241A or consent of instructor.

CSE 243A. Introduction to Synthesis Methodologies in VLSI CAD (4)
Hardware software co-design, architectural level synthesis, control synthesis and optimization, scheduling, binding, register and bus sharing, interconnect design, module selection, combinational logic optimization, state minimization, state encoding, and retiming. Prerequisite: CSE 241A or consent of instructor.

CSE 244A. VLSI Test (4)
Design for test, testing economics, defects, failures and faults, fault models, fault simulation, automatic test pattern generation, functional testing, memory, PLA, FPGA, microprocessor test, and fault diagnosis. Prerequisite: CSE 244A or consent of instructor.

CSE 244B. Testable and Fault Tolerant Hardware Design (4)
Scan path design, BIST architectures, test point insertion, self-checking circuits, test and fault tolerance in architectural synthesis, reconfigurable fault tolerant hardware, and SOC test design. Prerequisite: CSE 244A or consent of instructor.

CSE 245. Computer Aided Circuit Simulation and Verification (4)
This course is about the computer algorithms, techniques, and theory used in the simulation and verification of electrical circuits. Prerequisite: CSE 241A or consent of instructor.

CSE 246. Computer Arithmetic Algorithms and Hardware Design (4)
Number representation, fixed point adders, subtractors, and multipliers; modified booth’s recoding, high-radix multiplication, (non)restoring dividers, SRT division, high-radix dividers, division by convergence, square-rooting, floating point arithmetic, rounding schemes, errors and error control, and floating point adders, subtractors, multipliers, dividers. Prerequisite: CSE 241A or consent of instructor.

CSE 247. Application Specific and Reconfigurable Computer Architecture (4)
This course covers architecture concepts used to tailor processors to a specific application or sets of applications. It covers Field-Programmable Gate Arrays (FPGAs), various forms of Application Specific Integrated Circuit (ASIC) designs, Application Specific Integrated Processors (ASIP), and augmenting customizable VHDL cores. Prerequisite: CSE 241A or consent of instructor.

CSE 248. Algorithmic and Optimization Foundations for VLSI CAD (4)
Algorithmic techniques and optimization frameworks for large-scale, difficult optimizations. Primal-dual multi-commodity flow approximations, approximations for geometric and graph Steiner formulations, continuous placement optimization, heuristics for Boolean satisfiability, multilevel methods, semidefinite programming, and application to other formulations (e.g., scheduling). Prerequisites: CSE 241A or CSE 242A or consent of instructor.

CSE 249A. Topics/Seminar in Computer Architecture (1-4)
Topics of special interest in computer architecture to be presented by faculty and students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. Prerequisite: consent of instructor.

CSE 249B. Topics/Seminar in VLSI (1-4)
Topics of special interest in VLSI to be presented by faculty and students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. Prerequisite: consent of instructor.

CSE 249C. Topics/Seminar in CAD (1-4)
Topics of special interest in CAD to be presented by faculty and students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. Prerequisite: consent of instructor.

CSE 250A. Artificial Intelligence I (4)
(Formerly CSE 278A.) Issues in knowledge representation (using logic, semantic networks, production systems, and connectionist representations) will be the focus of this course. A discussion of logic programming languages (like PROLOG) and automatic theorem proving will then lead to a discussion of heuristic search. Prerequisite: CSE 151 or equivalent.

CSE 250B. Artificial Intelligence II (4)
(Formerly CSE 278B.) This course will discuss knowledge representations used to search for solutions, make deductions, plan, and problem solve. The application of these techniques to expert systems will be mentioned. Machine learning will also be a major topic of this course. Prerequisite: CSE 250A.

CSE 252A. Computer Vision I (4)
Comprehensive introduction to computer vision providing broad coverage including low-level vision (image formation, photometry, color, image feature detection), inferring 3-D properties from images (shape-from shading, stereo vision, motion interpretation) and object recognition. Companion to CSE 252B, covering complementary topics. Prerequisites: Math. 10D and Math. 20A-F or equivalent.

CSE 252B. Computer Vision II (4)
Comprehensive introduction to computer vision providing focused coverage of multiview geometry, structure from motion, image segmentation, motion segmentation, texture analysis and recognition, object detection, and image-based rendering. Companion to CSE 252A, covering complementary topics. Prerequisites: Math. 10D and Math. 20A-F or equivalent.

CSE 252C. Selected Topics in Vision and Learning (1-4)
Selected topics in computer vision and statistical pattern recognition, with an emphasis on recent developments. Possible topics include: grouping and segmentation, object recognition and tracking, multiple view geometry, kernel-based methods, dimensionality reduction, and mixture models. Prerequisite: CSE 252 or equivalent and CSE 250B or equivalent.
CSE 253. Neural Networks (4) This course covers Hopfield networks, application to optimization problems, layered perceptrons, recurrent networks, and unsupervised learning. Programming exercises explore model behavior, with a final project on a cognitive science, artificial intelligence, or optimization problem of the student's choice. Prerequisite: knowledge of C and consent of instructor. (S/U grades permitted.)

CSE 254. Machine Learning (4) (Formerly CSE 281T) This course will discuss a wide range of techniques used to allow computers to learn directly from experience with their environment rather than requiring programming by humans. The survey will span both high- and low-level learning techniques as well as theoretical models that allow these various techniques to be compared. (S/U grades permitted.) Prerequisite: CSE 250B.

CSE 256. Statistical Natural Language Processing (4) An introduction to modern statistical approaches to natural language processing; part of speech tagging, work sense disambiguation and parsing, using Markov models, hidden Markov models and probabilistic context free grammars. Prerequisite: CSE 250B or equivalent experience.

CSE 257. Computational Biology (4) Computational methods are indispensable to an understanding of the vast datasets emerging from human and other organisms' genomes. This course surveys algorithms underlying genome analysis, sequence alignment, phylogenetic trees, protein folding, gene expression, metabolic pathways, and biological knowledge base design. Prerequisite: Pharm. 201 or consent of instructor.

CSE 257B. Algorithms in Computational Biology (4) Renumbered to CSE 206B (see above).

CSE 258A. Connectionists Natural Language Processing (4) (Formerly CSE 281P) This course will explore connectionist (or parallel distributed processing) models and their relation to cognitive processes. The course will cover various learning algorithms and the application of the paradigm to models of language processing, memory, sequential processes, and vision. (S/U grades permitted.) Prerequisite: CSE 250B or equivalent experience.

CSE 259. Seminar in Artificial Intelligence (1) A weekly meeting featuring local (and occasional external) speakers discussing their current research in Artificial Intelligence Neural Networks, and Genetic Algorithms. (S/U grades only.) Prerequisite: none.

CSE 260. Parallel Computation (4) (Formerly CSE 274A) This course provides an overview of parallel hardware, algorithms, models, and software. Topics include Flynn's taxonomy, interconnection networks, memory organization, a survey of commercially available multiprocessors, parallel algorithm paradigms and complexity criteria, parallel programming environments and tools for parallel debugging, language specification, mapping, performance, etc. Prerequisite: graduate standing or consent of instructor.

CSE 262. System Support for Applications of Parallel Computation (4) This course will explore design of software support for applications of parallel computation. Topics include: programming languages, run time support, portability, and load balancing. The course will terminate in a project. Prerequisite: consent of instructor.

CSE 271. User Interface Design: Social and Technical Issues (4) Web technologies (HTML, Java, JavaScript, etc.) can quickly build superb new systems, as well as phenomenally ugly systems that still fully meet their performance and functional requirements. This course explores interface usability and representation issues, with some focus on hypermedia and cooperative work. Prerequisites: CSE 20, CSE 100, or equivalent experience.

CSE 272. Advanced Appearance Modeling (4) Computer graphics algorithms for creating a given appearance. The course will cover algorithms and physics necessary to simulate light transport, light scattering, reflection models, subsurface scattering, participating media, and procedural modeling and texturing. Prerequisites: CSE 168 or equivalent, or consent of instructor.

CSE 275. Social Aspects of Technology and Science (4) Note: CSE 275 is pending CEP approval. Explores approaches to the sociology of technology and science, especially information technology. Topics include requirements engineering, actor-network theory, post-modernism, the Web, user interface design, and public policy. Prerequisites: CSE 88 or CSE 11, and background in the humanities.

CSE 280A. Algorithms in Computational Biology (4) (Formerly CSE 206B) The course focuses on algorithmic aspects of modern bioinformatics and covers the following topics: computational gene hunting, sequencing, DNA arrays, sequence comparison, pattern discovery in DNA, genome rearrangements, molecular evolution, computational proteomics, and others. Prerequisite: CSE 202 preferred or consent of instructor.

CSE 280B. Advanced Topics in Computational Biology (4) The advanced topics include, but are not limited to: population genetics, pathways, RNA, database filtering, comparative genomics, and others. Students are expected to pick one of the topics for an intensive research project, and report on their findings at the end of the class. Prerequisites: CSE 280A preferred or consent of instructor.

CSE 282/BENG 202. Bioinformatics II: Sequence and Structure Analysis—Methods and Applications (4) (Formerly CSE 257A/BENG 202) Introduction to methods for sequence analysis. Applications to genome and proteome sequences. Protein structure, sequence-structure analysis. Prerequisite: Pharm. 201 or consent of instructor.

CSE 290. Seminar in Computer Science and Engineering (1-4) (Formerly CSE 280A) A seminar course in which topics of special interest in computer science and engineering will be presented by faculty members and graduate students under faculty direction. Topics vary from quarter to quarter. May be repeated for credit. (S/U grades only.) Prerequisite: consent of instructor. (Offered as faculty resources permit.)

CSE 291. Topics in Computer Science and Engineering (1-8) (Formerly CSE 281A) Topics of interest in computer science and engineering. Topics may vary from quarter to quarter. May be repeated for credit with the consent of instructor. (S/U grades permitted.) Prerequisite: consent of instructor. (Offered as faculty resources permit.)

CSE 292. Faculty Research Seminar (1) (Formerly CSE 282.) Computer science and engineering faculty will present one hour seminars of the current research work in their areas of interest. Prerequisite: CSE graduate status.

CSE 293. Special Project in Computer Science and Engineering (1-8) (Formerly CSE 269.) The student will conceive, design, and execute a project in computer science under the direction of a faculty member. The project will typically include a large programming or hardware design task, but other types of projects are possible. One-six units may be repeated for a total of nine units. Prerequisite: CSE graduate student status. (S/U grades only.)

CSE 294. Research Meeting in CSE (2) Advanced study and analysis of active research in computer science and computer engineering. Discussion of current research and literature in the research specialty of the staff member teaching the course. Prerequisite: consent of instructor.

CSE 298. Independent Study (1-16) Open to properly qualified graduate students who wish to pursue a problem through advanced study under the direction of a member of the staff. (S/U grades only.) Prerequisite: consent of instructor.

CSE 299. Research (1-16) Research. Prerequisite: consent of faculty.

CSE 500. Teaching Assistantship (2-4) A course in which teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty; handling of discussions, preparation and grading of examinations and other written exercises, and student relations. May be used to meet teaching experience requirement for candidates for the Ph.D. degree. Number of units for credit depends on number of hours devoted to class or section assistance. Prerequisites: graduate standing and consent of instructor.

CSE 501. Teaching Assistantship (2-4) Renumbered to CSE 500 (see above).

CSE 599. Teaching Methods in Computer Science (2) Training in teaching methods in the field of computer science. This course examines theoretical and practical communication and teaching techniques particularly appropriate to computer science. Prerequisite: consent of faculty.
Engineering, Electrical and Computer Engineering (ECE)

OFFICES:
Undergraduate Affairs, Room 2705
Graduate Affairs, Room 2718
Engineering Building Unit 1, Warren College
http://www.ece.ucsd.edu

Professors
Anthony S. Acampora, Ph.D.
Victor C. Anderson, Ph.D., Emeritus
(Not in-residence)
Peter M. Asbeck, Ph.D., Skyworks Endowed Chair
H. Neal Bertram, Ph.D., Emeritus
Research Professor
William S. C. Chang, Ph.D., Emeritus
Research Professor
William A. Coles, Ph.D.
Pamela C. Cosman, Ph.D.
Rene L. Cruz, Ph.D., Vice Chair
Sujit Dey, Ph.D.
Sadik C. Esener, Ph.D.
Shaya Fainman, Ph.D.
Eric Fullerton, Ph.D., CMRR Endowed Chair
Ian GaJton, Ph.D.
Michael J. Heller, Ph.D.
Carl W. Helstrom, Ph.D. Emeritus
Andrew B. Kahng, Ph.D.
Kenneth Kreutz-Delgado, Ph.D.
Walter H. Ku, Ph.D., Emeritus
Lawrence E. Larson, Ph.D., CWC Industry Endowed Chair in Wireless Communications
S. S. Lau, Ph.D.
Sing H. Lee, Ph.D., Research Professor
Yu Hwa Lo, Ph.D.
Robert Lugannani, Ph.D.
Huey-Lin Luo, Ph.D., Emeritus
Elias Masry, Ph.D.
D. Asoka Mendis, Ph.D., Research Professor
Laurence B. Milstein, Ph.D., Ericsson Endowed Chair
Farrokh Najmabadi, Ph.D.
Truong Q. Nguyen, Ph.D.
Alon Orlitsky, Ph.D.
George Papen, Ph.D.
Kevin B. Quest, Ph.D., Vice Chair
Stojan Radic, Ph.D.
Bhaskar Rao, Ph.D.
Ramesh Rao, Ph.D., Qualcomm Endowed Chair, Director, Calit2, San Diego Division
Gabriel Rebeiz, Ph.D.
Barnaby J. Rickett, Ph.D., Research Professor
Manuel Rothenberg, Ph.D., Research Professor
M. Lea Rudee, Ph.D., Research Professor
Victor H. Rumsey, Ph.D., Emeritus (not in-residence)
Vitali Shapiro, Ph.D.
Paul H. Siegel, Ph.D., Director, Center for Magnetic Recording Research
Bang-Sup Song, Ph.D., Charles Lee Powell Endowed Chair in Wireless Communications
David Sworder, Ph.D., Associate Dean, OGSR
Yuan Taur, Ph.D.
Mohan Trivedi, Ph.D.
Charles W. Tu, Ph.D.
Alexander Vardy, Ph.D.
Andrew J. Viterbi, Ph.D., Emeritus (not in-residence)
Harry H. Wieder, Ph.D., Research Professor-In-Residence
Jack K. Wolf, Ph.D., Stephen O. Rice Professor of Electrical and Computer Engineering
Edward T. Yu, Ph.D.
Paul Yu, Ph.D., Chair
Kenneth A. Zeger, Ph.D.

Associate Professors
Paul M. Chau, Ph.D.
Joseph Ford, Ph.D.
Clark C. GueSt, Ph.D.
George J. Lewak, Ph.D., Emeritus (not in-residence)
Bill Lin, Ph.D.
Anthony V. Sebald, Ph.D., Emeritus
Kenneth Y. Yun, Ph.D.

Assistant Professors
James F. Buckwalter, Ph.D.
Massimo Franceschetti, Ph.D.
Bhoomi V. Javidi, Ph.D.
Gert Lanckriet, Ph.D.
Vitalii Lomakin, Ph.D.
Shayan Mookerjea, Ph.D.
Curt Schurgers, Ph.D.
Nuno Vasconcelos, Ph.D.
Deli Wang, Ph.D.

Adjunct Professors
C. K. Cheng, Ph.D., Professor, Computer Science and Engineering
Pankaj K. Das, Ph.D., Rensselaer Polytechnic Institute
Madhu Gupta, Ph.D., SDSU
Rajesh Gupta, Ph.D., Professor, Computer Science and Engineering
Robert Hecht-Nielsen, Ph.D., Hecht-Nielsen Neurocomputing Corporation

John A. Hildebrand, Ph.D., Marine Physical Laboratory, Scripps Institution of Oceanography
William S. Hodgkiss, Ph.D., Professor, Marine Physical Laboratory, Scripps Institution of Oceanography
James U. Lemke, Ph.D., Center for Magnetic Recording Research
Roberto Padovani, Ph.D., Qualcomm
John Proakis, Ph.D., Northeastern University
LuJeu Sham, Ph.D., Professor, Physics
Jin-Joo Song, Ph.D.

Associated Faculty
Gustaf O. S. Arhenius, Ph.D., Professor, Marine Research Division, Scripps Institution of Oceanography
George Tynan, Ph.D., Associate Professor, Mechanical and Aerospace Engineering

Program Mission Statement
To educate tomorrow carrier's technology leaders.

Program Educational Objectives
• To provide our students with training in the fundamental science and mathematics that underlie engineering, and with a general breadth and depth in engineering and in engineering design so that they are prepared for graduate school and for engineering careers. Students should have both proficiency in a specific technical area, and the flexibility and broad knowledge base needed for life-long engineering careers in a changing technical environment.
• To ensure that our students are educated in the classical sense. In particular, that they are broadly aware of social and environmental issues and of the impact of their profession on these issues.
• To assist our students in preparing themselves to work effectively in their profession. Specifically, to develop communications, teamwork, and leadership skills.

Program Outcomes and Assessment
Program outcomes have been established based on the Program Educational Objectives. Graduates of the ECE Program in Electrical Engineering are expected to have:
1. An understanding of the underlying principles of, and an ability to apply knowledge
of mathematics, science, and engineering
to electrical engineering problems
2. An ability to design and conduct experiments,
as well as to analyze and interpret data
3. A knowledge of electrical engineering
safety issues
4. An ability to design a system, component,
or process to meet desired needs
5a. An ability to collaborate effectively with
others
5b. An ability to function on multidisciplinary
teams
6. An ability to identify, formulate, and solve
engineering problems
7. An ability to use the techniques, skills, and
modern engineering tools necessary for
engineering practice, including familiarity
with computer programming and information
technology
8. An understanding of professional and
ethical responsibility
9a. An ability to communicate effectively
in writing
9b. An ability to communicate effectively
in speech
9c. An ability to communicate effectively
with visual means
10. The broad education necessary to under-
stand the impact of engineering solutions
in a global and societal context
11. A recognition of the need for, and the ability
to engage in, life-long learning
12. A knowledge of contemporary issues

The Undergraduate Programs

The Department of Electrical and Computer Engineering offers undergraduate programs leading to the B.S. degree in electrical engineering, engineering physics, and computer engineering. Each of these programs can be tailored to provide preparation for graduate study or employment in a wide range of fields. The Electrical Engineering Program is accredited by the Accreditation Board for Engineering and Technology (ABET).

The Electrical Engineering Program has a common lower-division and a very flexible structure in the upper-division. After the lower-division core, all students take six breadth courses during the junior year. They must then satisfy a depth requirement which can be met with five courses focused on some speciality, and a design requirement of at least one project course. The remainder of the program consists of seven electives, which may range as widely or as narrowly as needed.

The Engineering Physics Program is conducted in cooperation with the Department of Physics. Its structure is very similar to that of electrical engineering except the depth requirement includes seven courses and there are only five electives.

The Computer Engineering Program is conducted jointly with the Department of Computer Science and Engineering. It has a more prescribed structure. The program encompasses the study of hardware design, data storage, computer architecture, assembly languages, and the design of computers for engineering, information retrieval, and scientific research.

For information about admission to the program and about academic advising, students are referred to the section on ECE departmental regulations. In order to complete the programs in a timely fashion, students must plan their courses carefully, starting in their freshman year. Students should have sufficient background in high school mathematics so that they can take freshman calculus in the first quarter.

For graduation, each student must also satisfy general-education requirements determined by the student's college. The six colleges at UCSD require widely different numbers of general-education courses. Students should choose their college carefully, considering the special nature of the college and the breadth of education required. They should realize that some colleges require considerably more courses than others. Students wishing to transfer to another college should see their college advisor.

Graduates of community colleges may enter ECE programs in the junior year. However, transfer students should be particularly mindful of the freshman and sophomore course requirements when planning their programs.

These programs have strong components in laboratory experiments and in the use of computers throughout the curricula. In addition, the department is committed to exposing students to the nature of engineering design. This is accomplished throughout the curricula by use of design-oriented homework problems, by exposure to engineering problems in lectures, by courses which emphasize student-initiated projects in both laboratory and computer courses, and finally by senior design-project courses in which teams of students work to solve an engineering design problem, often brought in from industry.

IT IS IMPERATIVE THAT STUDENTS DISCUSS THEIR CURRICULUM WITH THE APPROPRIATE DEPARTMENTAL ADVISOR IMMEDIATELY UPON ENTRANCE TO UCSD, AND THEN AT LEAST ONCE A YEAR UNTIL GRADUATION.

B.S. Electrical Engineering Program

FRESHMAN ADMITS

Entering students who have indicated the desire to major in electrical engineering will be admitted directly to the major. To remain in good standing, a student must complete a minimum of eight of the following Post-screening courses (or equivalent) with a grade of C- or better during his or her first five quarters at UCSD. At least two of the eight courses must be from the “EE Post-screening Courses” list.

Post-Screening Courses for the EE Major:

EE Post-screening Courses: ECE 25, 30, 35, 45, 65
Other Post-screening Courses: Chemistry 6A; Math 20A-B-C-D; Physics 2A-B-C

The average GPA from any six of the above courses successfully completed, including at least two EE Post-screening courses, must exceed 2.5. If a student fails to complete the eight required courses or to obtain the required minimum GPA, he or she will be dismissed from the electrical engineering major.

CONTINUING-STUDENT ADMITS

Continuing UCSD students who wish to transfer into the EE major will be evaluated under the rules in effect the year in which they enter the major. To remain in good standing, a student must complete a minimum of eight of the Post-screening courses given above (see "Post-screening Courses for the EE Major") with a grade of C- or better during his or her first three quarters as an EE major. At least two of the eight courses must be from the "EE Post-screening Courses" list.

The average GPA from any six of the above courses successfully completed, including at least two EE Post-screening courses, must exceed 2.5. If a student fails to complete the eight required courses or to obtain the required minimum GPA, he or she will be dismissed from the electrical engineering major.
TRANSFER-STUDENT ADMITS

Entering transfer students who have indicated the desire to major in electrical engineering will be admitted directly to the major. To remain in good standing, the student must complete a minimum of eight of the Post-screening courses given above (see "Post-screening Courses for the EE Major") with a grade of C– or better during his or her first three quarters as an EE major. At least two of the eight courses must be from the "EE Post-screening Courses" list.

The average GPA from any six of the above courses successfully completed, including at least two EE Post-screening courses, must exceed 2.5. If a student fails to complete the eight required courses, or to obtain the required minimum GPA, he or she will be dismissed from the electrical engineering major.

MINIMUM REQUIREMENTS AND COURSE EQUIVALENTS

Please note that the above Post-screening process represents the minimum requirement to remain in the major, and does not satisfy all the lower-division and upper-division requirements for the electrical engineering major. Please consult the sections "Lower-Division Requirements" and "Upper-Division Requirements" to ensure that you satisfy all lower-division and upper-division course requirements.

Petitions to have courses from other departments or institutions considered as equivalents to the Post-screening courses will be approved (or denied) on a case-by-case basis. If approved, both the course and the grade received can be used to satisfy the screening requirements detailed above.

Students must complete 180 units for graduation, including the general-education requirements (GER). Note that 144 units (excluding GER) are required.

LOWER-DIVISION REQUIREMENTS
(total of sixty-eight units)

Mathematics (twenty-four units):
Math. 20A-B-C-D-E-F.
Physics (sixteen units): Phys. 2A-B-C-D or Phys. 4A-B-C-D-E. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the mathematics placement test permits them to start with Math. 20B or higher may take Phys. 2A in the fall quarter of the freshman year.
Chemistry (four units): Chem. 6A.

Programming Course (four units): ECE 15.
Electrical engineering (twenty units): ECE 25, 30, 35, 45, and 65.

Additional Notes:
1. Students with AP math credit are strongly advised to take Math. 20B in the fall quarter, leaving room for a GER in the winter quarter.
2. The ECE undergraduate Web site shows several scheduling options. Please refer to the Web site and consult with the staff advisors in the undergraduate offices, rooms 2705 and 2707 in EBU1.

UPPER-DIVISION REQUIREMENTS
(total of seventy-six units)

a. Electrical Engineering BREADTH Courses (twenty-four units)
Courses required of all electrical engineering majors:
The six courses, ECE 101, 102, 103, 107, 108, and 109 are required of all electrical engineering majors and they are assumed prerequisites for senior-level courses, even if they are not explicitly required. Although the courses are largely independent, there are some prerequisites. ECE 102 is a prerequisite for ECE 108. Students who delay some of the breadth courses into the spring should be careful that it does not delay their depth sequence.

b. Electrical Engineering DESIGN Course (four units)

Note: In order to fulfill the design requirement, students must complete one of the following courses with a grade C– or better. Graduation will not be approved until a written copy of the design project is submitted to the ECE undergraduate office. ECE 111, 118, 191 cannot be used to satisfy both the Design and Depth requirements.

The electrical engineering design requirement can be fulfilled in any of the following three ways:
1. Take ECE 191: Engineering Group Design Project
2. Take ECE 190: Engineering Design
This course requires the department stamp. Specifications and enrollment forms are available in the undergraduate office.
3. Take one of the following courses:
 • ECE 111: Advanced Digital Design Project
 • ECE 118: Computer Interfacing
 • ECE 155B or 155C: Digital Recording Projects
Students who wish to take one of these courses to satisfy the design requirement must fill out an enrollment form and have departmental approval for the design credit prior to taking the course. The project must meet the same specifications as ECE 192.

c. Electrical Engineering ELECTIVES (twenty-eight units)
 • Four engineering, mathematics, or physics courses. Three of these electives must be upper-division. The fourth may be either lower- or upper-division.
 • Three additional electives which students may use to broaden their professional goals.
 (For additional information, please refer to the section on "Elective Policy for Electrical Engineering and Engineering Physics Majors.")

d. Electrical Engineering Depth Requirement (twenty units)

Students must complete a "depth" requirement of at least five quarter courses to provide a focus for their studies. This set must include a clear chain of study of at least three courses which depend on the "breadth" courses. Students may choose one of the approved depth sequences listed below, or propose another with the approval of their faculty advisor. Some of the approved sequences have lower-division prerequisites and thus list six courses. Students choosing one of these sequences will have to complete only two "professional" electives. Guidelines for meeting the depth requirement can be obtained from the undergraduate office. ECE 111, 118, 191 cannot be used to satisfy both the Design and Depth requirements.

Electronics Circuits and Systems:
ECE 163, 164, 165, and any two of ECE 111, 118, 161A, 161B, 161C, and 166.

Electronic Devices and Materials:
ECE 135A, ECE 135B, 136L, 139, and 183.

Controls and Systems Theory:
ECE 171A, 171B, 173, 174, and 118 or 191.

Machine Intelligence:
ECE 173, 174, 172A and any two of ECE 161A, ECE 175, ECE 176A, 187, 253A, 285, and COGS 108F.
Photonics:
ECE 181, 182, 183, 184, and 185.

Communications Systems:
ECE 161A, 153, 154A-B-C.

Networks:
ECE 153, 159A, 159B, 158A-B.

Queuing Systems:
ECE 171A, 174, 159A-B, and Math. 181A.

Signal and Image Processing:
ECE 161A, 161B, 161C, 153, and ECE 172A or 174.

Computer Design:
CSE 12, 21, and 141, ECE 158A, 111 or 118, and 165.

Software Systems:
CSE 12, 21, 100, 101, 141, and 120.

B.S. Engineering Physics

Students must complete a total of 180 units for graduation, including the general-education requirements. Note that 146 units (excluding GER) are required.

All students will initially be placed in pre-major status. Upon successful completion of the following courses (with a minimum 2.0 GPA by the end of the first three quarters if a transfer student, six quarters if an incoming freshman), students will be admitted into full Engineering-Physics major status.

1. Math. 20A-B-C
2. Phys. 2A-B
3. ECE 15, 25, and 35

To initiate the change from pre-major status to full major status, transfer students must see the ECE undergraduate advisor by the end of their third quarter at UCSD; incoming freshmen must complete one of the following courses with a grade C– or better.

- Math. 20B or higher may take Phys. 2A in the fall quarter, leaving room for a GER in the winter quarter.
- The ECE undergraduate Web site shows several scheduling options. Please refer to the Web site and consult with the staff advisors in the undergraduate offices, rooms 2705 and 2707 in EBU1.

LOWER-DIVISION REQUIREMENTS

(total of seventy units)

Mathematics (twenty-four units):
Math. 20A-B-C-D-E-F.

Physics (sixteen units): Phys. 2A-B-C-D or Phys. 4A-B-C-D-E. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the mathematics placement test permits them to start with Math. 20B or higher may take Phys. 2A in the fall quarter of the freshman year.

Physics Lab (two units): Phys. 2DL is required.

Chemistry (four units): Chem. 6A.

Programming Course (four units): ECE 15.

Electrical engineering (twenty units): ECE 25, 30, 35, 45, and 65.

Additional Notes:
1. Students with AP math credit are strongly advised to take Math. 20B in the fall quarter, leaving room for a GER in the winter quarter.
2. The ECE undergraduate Web site shows several scheduling options. Please refer to the Web site and consult with the staff advisors in the undergraduate offices, rooms 2705 and 2707 in EBU1.

UPPER-DIVISION REQUIREMENTS

(seventy-six units)

a. **Engineering Physics BREADTH Courses (twenty-four units)**

The electrical engineering breadth courses ECE 101, 102, 103, 107, 108, and 109, and also required of engineering physics majors. However, because of the scheduling of Math. 110, Phys. 110A and 130A, they can only be taken in a specific order (please consult the ECE Web site).

b. **Engineering Physics DESIGN Course (four units)**

 Note: In order to fulfill the design requirement, students must complete one of the following courses with a grade C– or better. **Graduation will not be approved until a written copy of the design project is submitted to the ECE undergraduate office.**

 The engineering physics design requirement can be fulfilled in any of the following three ways:

 1. Take ECE 191: Engineering Group Design Project
 2. Take ECE 190: Engineering Design
 This course requires the department stamp. Specifications and enrollment forms are available in the undergraduate office.
 3. Take one of the following courses:
 - ECE 111: Advanced Digital Design Project
 - ECE 118: Computer Interfacing
 - ECE 155B or 155C: Digital Recording Projects

Students who wish to take one of these courses to satisfy the design requirement must fill out an enrollment form and have departmental approval for the design credit prior to taking the course. The project must meet the same specifications as ECE 192.

c. **Engineering Physics ELECTIVES (twenty units)**

 • Two engineering, mathematics, or physics courses. One must be upper-division, while the other can be either upper- or lower-division.
 • Three additional electives which students may use to broaden their professional goals.

 (For additional information, please refer to the section on Elective Policy for Electrical Engineering and Engineering Physics Majors.)

d. **Engineering Physics DEPTH Courses (twenty-eight units)**

All B.S. engineering physics students are required to take Phys. 110A, 130A-B, 140A, Math. 110, ECE 123 and 166; or ECE 135A and 135B; or ECE 182 and (181 or 183).

Elective Policy for Electrical Engineering and Engineering Physics Majors

1. **Technical Electives:**

 Technical electives must be upper-division engineering, math or physics courses (except for the bioengineering track). At most one lower-division course in engineering may be used but it must receive prior approval from the ECE department. Certain courses listed below are not allowed as electives because of overlap with ECE courses.

 Physics: Students may not receive upper-division elective credit for any lower-division physics courses. Students may not receive credit for both Phys. 100A and ECE 107, Phys. 100B and ECE 107, Phys. 100C and ECE 123.

 Mathematics: Math. 180A overlaps ECE 109 and 153, and therefore will not qualify for elective credit of either type. Math. 183 or Math. 186 will not be allowed as an elective. Math. 163 will only be allowed as a professional elective. All lower-division mathematics is excluded from elective credit of either type.

 Bioengineering: The following series of courses will provide “core” preparation in bioengineering and will satisfy five of the ECE elective requirements:
The following courses are excluded as electives: Math. 20A-B-C-D-F.

At most four units of Econ. 120A, and 158A-B will not be allowed.

Suitable electives would include:

Credit will not be allowed for MAE 105.

Of the three electives Phys. 2A-B-C-D, or Phys. 139, 140, 143B, or 170.

139, 140, 143B, or 170.

Economics:

Biology and Chemistry:

Special Studies Courses 195–199: At most four units of 195–199 may be used for elective credit.

2. Professional Electives:

Normally these will be upper-division courses in engineering, mathematics, or physics. Students may also choose upper-division courses from other departments provided that they fit into a coherent professional program. In such cases, a lower-division prerequisite may be included in the electives. Courses other than upper-division engineering, mathematics, or physics must be justified in terms of such a program, and must be approved by a faculty advisor.

Biology and Chemistry: Of the three electives intended to allow for the professional diversity, one lower-division biology or chemistry course from BILD 1, 2, Chem. 6B-C may be counted for credit in combination with two upper-division biology or chemistry courses. Furthermore, this will count only if the student can demonstrate to a faculty advisor that they constitute part of a coherent plan for professional/career development.

Upper-division biology and chemistry courses will count toward the three professional electives but not the three math/physics/engineering electives.

Economics: Suitable electives would include:

Econ. 1 and 3 followed by the courses in one of the following tracks:

• Macroeconomics: Econ. 110A-B.

• Monetary economics: Econ. 111, and another economics upper-division elective.

Econ. 1 and 2 followed by two courses in one of the following tracks:

• Public and Environmental: Econ. 118, 130, 131, 132, 133, 137, 145.

Labor and Human Resources: Econ. 137, 139, 140.

Note: Econ. 100A can be substituted for Econ. 2 Econ. 1 and 100A followed by two courses in one of the following tracks:

• Microeconomics: Econ. 100B-C.

• Financial Markets: Econ. 120B and 173A.

• Human Resources: Econ. 100B and 136.

Note: Econ. 120A, and 158A-B will not be allowed as professional electives. If economics is chosen for professional electives, only three technical electives are required for electrical engineering majors; only one technical elective is required for engineering physics majors.

B.S. Computer Engineering

Students wishing to pursue the computer engineering curriculum must be admitted to either the ECE or CSE department. The set of required courses and allowed electives is the same in both departments; please note that the curriculum requires twenty upper-division courses. The Computer Engineering Program requires a total of 151 units (not including the general-education requirements).

The Computer Engineering Program offers a strong emphasis on engineering mathematics and other basic engineering science as well as a firm grounding in computer science. Students should have sufficient background in high school mathematics so that they can take freshman calculus in their first quarter. Courses in high school physics and computer programming, although helpful, are not required for admission to the program.

LOWER-DIVISION REQUIREMENTS (total of seventy-five units)

Mathematics (twenty units): Math. 20A-B-C-D-F.

Physics (sixteen units): Phys. 2A-B-C-D, or Phys. 4A-B-C-D. Math. 20A is a prerequisite for Phys. 2A. Students whose performance on the mathematics placement test permits them to start with Math. 20B or higher may take Phys. 2A in the fall quarter of the freshman year.

Computer Science (twenty-seven units): CSE 11 or 88*, 12, 15L, CSE 20 or Math. 15A, CSE 21 or Math. 15B, CSE 30, CSE 70, and CSE 91.

Note: CSE 8A and CSE 8B are not required if a student completes CSE 11. CSE 11 is a faster paced version of CSE 8A and CSE 8B. Students will self-select which course they wish to take. Students without programming experience in a compiled language are advised to take CSE 8A and then CSE 8B instead of CSE 11.

Electrical Engineering (twelve units): ECE 35, ECE 45, ECE 65

UPPER-DIVISION REQUIREMENTS (total of seventy-six units)

a. All B.S. computer engineering students are required to take CSE 100 or Math. 176, CSE 101 or Math. 188, CSE 105 or Math. 166, CSE 120, 131, 139, 140, 140L (CSE 140 and 140L must be taken concurrently), 141, 141L (CSE 141 and 141L must be taken concurrently).

b. In addition, all B.S. computer engineering students must fulfill the following upper-division ECE requirements:

• Engineering Probability and Statistics ECE 109. This course can be taken in the sophomore year.

• Electronic Circuits and Systems ECE 102 and 108. The department recommends that these courses be taken in the junior year.

• Linear systems ECE 101.

c. Technical electives: All B.S. computer engineering majors are required to take six technical electives.

• One technical elective must be either ECE 111 or ECE 118.

• Of the remaining five technical electives, four must be ECE or CSE upper-division or graduate courses.

• The remaining course can be any upper-division course listed under the non-CSE/ECE electives. (See the section on electives below.)

Electives

The discipline of computer engineering interacts with a number of other disciplines in a mutually beneficial way. These disciplines include mathematics, computer science, and cognitive science. The following is a list of upper-division courses from these and other disciplines that can be counted as technical electives.

At most four units of 197, 198, or 199 may be used towards technical elective requirements. ECE/CSE 195 cannot be used towards course requirements. Undergraduate students must get instructor’s permission and departmental stamp to enroll in a graduate course.
Students may not get duplicate credit for equivalent courses. The UCSD General Catalog should be consulted for equivalency information and any restrictions placed on the courses. Additional restrictions are noted below. Any deviation from this list must be petitioned.

Mathematics: All upper-division courses except Math. 168A-B, 179A-B, 183, 184A-B, 189A-B, and 195–199. If a student has completed CSE 167, then he or she cannot get elective credit for Math. 155A. Students may receive elective credit for only one of the following courses: CSE 164A, Math. 174, Math. 173, Phys. 105A-B, MAE 107, CENG 100. No credit for any of these courses will be given if Math. 170A-B-C is taken. Students will receive credit for either Math. 166 or CSE 105 (but not both), either Math. 188 or CSE 101 (but not both), and either Math. 176 or CSE 100 (but not both).

Computer Science and Engineering: All CSE upper-division courses except CSE 195. Students will receive credit for either CSE 123A or ECE 158A (but not both).

Students may not get credit for both CSE 150 and Advanced Programming Methods for Cognitive Science 108F or for both CSE 151 and Artificial Intelligence Modeling II 182.

Mechanical and Aerospace Engineering (MAE): All upper-division MAE courses except MAE 140, and MAE 195-199.

Students may receive elective credit for only one of the following courses: CSE 164A, Math. 174, Math. 173, Phys. 105A-B, CENG 100, MAE 107. Students may only get credit for one of the two courses, CSE 167 or MAE 152.

Students cannot take Economics 120A since it duplicates ECE 109.

Linguistics: Phonetics 110, Phonology I 111, Phonology II 115, Morphology 120, Syntax I 121, Syntax II 125, Semantics 130, Mathematical Analysis of Languages 160, Computers and Language 163, Computational Linguistics 165, Psycholinguistics 170, Language and the Brain 172, and Sociolinguistics 175.

Engineering: Team Engineering 101 (see course description under the Jacobs School of Engineering section).

Music: Computer Music II 172, Audio Production: Mixing and Editing 173.

Psychology: Engineering Psychology 161.

Minor Curricula

ECE offers three minors in accord with the general university policy that a minor requires five upper-division courses. **Students must realize that these upper-division courses have extensive lower-division prerequisites (please consult the ECE undergraduate office).** Students should also consult their college provost's office concerning the rules governing minors and programs of concentration.

Electrical Engineering: Twenty units chosen from the breadth courses ECE 101, 102, 103, 107, 108, and 109.

Engineering Physics: Twenty units chosen from the junior year courses Phys. 110A, 130A, Math. 110, ECE 101, 102, 103, 107, 108, 109.

Computer Engineering: Twenty units chosen from the junior year courses ECE 102, 108, CSE 100, 101, 105, 120, 140, 140L, 141, 141L.

The department will consider other mixtures of upper-division ECE, CSE, physics, and mathematics courses by petition.

Undergraduate Admissions, Policies, and Procedures

Freshman Eligibility

1. **Computer Engineering:**

 Admission to the computer engineering major is currently restricted as described in the section “Admission to the School of Engineering.” The only way to become a computer engineering (CE) major is to be directly admitted as an entering freshman or as an entering transfer (Transfer students, see TRANSFER STUDENTS section below).

 The electrical and computer engineering department may periodically grant admission to the computer engineering (CE) major to a small number of academically exceptional UCSD undergraduate students who were not admitted to this major as entering students. Exceptional admission will be considered for students having an overall UCSD GPA of 3.5 or better who have taken at least two CSE, math, or science courses demonstrating special aptitude for the CE curriculum. Applications for exceptional admission must include submission of a course plan demonstrating ability to satisfy graduation requirements and a personal statement addressing the applicant’s motivation to join the CE major, in addition to other criteria established by the department.

2. **Electrical Engineering:**

 See sections above—“B.S. Electrical Engineering Program” and “Freshman Admits.”

3. **Engineering Physics:**

 All students will initially be placed in pre-major status. Upon successful completion of the following courses (with a minimum 2.0 GPA by the end of the first three quarters if a transfer student, six quarters if an incoming freshman), students will be admitted into full Engineering Physics major status.

 1. Math. 20A-B-C
 2. Phys. 2A-B
 3. ECE 15, 25, and 35

 To initiate the change from pre-major status to full major status, transfer students must see the ECE undergraduate advisor by the end of their third quarter at UCSD; incoming freshmen by the end of their sixth quarter.
Please refer to the sections “Undergraduate Regulations and Requirements” and “Acceptance to the Jacobs School of Engineering” for important details.

Transfer Student Eligibility

Effective fall 2004, it is strongly recommended that transfer students complete the following preparation for engineering majors:

- Calculus I—for Science and Engineering (Math. 20A)
- Calculus II—for Science and Engineering (Math. 20B)
- Calculus and Analytic Geometry (Math. 20C)
- Linear Algebra (Math. 20F)
- Complete calculus-based physics series with lab experience (Phys. 2A-B-C)
- Chemistry 6A (except Computer Science and Computer Engineering majors)
- Highest level of introductory computer programming language course offerings at the community college

*Effective fall 2006, these courses will be required preparation for all engineering transfer students.

**Refer to the UCSD General Catalog to select major prerequisite requirement for computer language courses.

1. **Computer Engineering:**

The B.S. in Computer Engineering is an impacted major and admission is limited to applicants who have demonstrated a high level of achievement commensurate with the prospect of success in this major. Successful applicants must have completed substantial training at the community college and must have achieved a high level of academic performance there. For example, the required minimum of ninety quarter transfer units must include eighteen quarter units of calculus, twelve quarter units of calculus-based physics, and the highest level computer science course offered at their community college. Although the actual required GPA cutoff depends on the number of openings, at least a 3.2 GPA in the community college transfer courses, and a 3.4 GPA in math, physics and computer science courses, are likely to be needed to gain admission.

When planning their programs, students should be mindful of lower-division prerequisites necessary for admission to upper-division courses. Effective fall 2004 applicants seeking admission as transfer students will be considered for direct admission into the Computer Engineering (CE) major in the Department of Electrical and Computer Engineering (ECE). The only way to become a Computer Engineering (CE) major is to be directly admitted as an entering transfer student.

2. **Electrical Engineering:**

See sections above—“B.S. Electrical Engineering Program” and “Transfer-Student Admits.”

3. **Engineering Physics:**

Students are accepted into the pre-major and must complete the following courses in order to be accepted into the engineering physics major: Math. 20A-B-C, Phys. 2A-B, ECE 15, 25, and 35. Students who wish to enter in the engineering physics major must contact the department before the beginning of the fall quarter, submitting course descriptions and transcripts for courses used to satisfy their lower-division requirements. Normally, admission will be for the fall quarter; students entering in the winter or spring quarter should be aware that scheduling difficulties may occur because upper-division sequences normally begin in the fall quarter.

Grade Requirement in the Major

Courses required for the major must be taken for a letter grade. All major courses must be completed with a grade of C– or better.

A GPA of 2.0 is required in all upper-division courses in the major, including technical electives. The grade of D will not be considered an adequate prerequisite for any ECE course and will not be allowed for graduation. The engineering design requirement must be completed with a grade of C– or better.

Advising

Students are required to complete an academic planning form and to discuss their curriculum with the appropriate departmental advisor immediately upon entrance to UCSD, and then every year until graduation. This is intended to help students in: a) their choice of depth sequence, b) their choice of electives, c) keeping up with changes in departmental requirements. A faculty advisor will be assigned by the ECE department undergraduate office.

New Transfer Students in Electrical Engineering and Engineering Physics

The entire curriculum is predicated on the idea of actively involving students in engineering from the time they enter as freshmen. The freshman courses have been carefully crafted to provide an overview of the engineering mindset with its interrelationships among physics, mathematics, problem solving, and computation. All later courses are specifically designed to build on this foundation. All transfer students should understand that the lower-division curriculum is demanding. Transfer students will be required to take all lower-division requirements or their equivalent. Transfer students are advised to consult the ECE Web site for sample recommended course schedules and for the ECE course requirement guide.

New Transfer Students in Computer Engineering

Transfer students are advised to consult the ECE Web site for sample recommended course schedules and for the ECE course requirement guide.

Students who do not have any programming experience are encouraged to take the CSE 8A-B sequence instead of CSE 11. Experience has shown that most students who are not familiar with programming and take CSE 11 have to retake the class because the accelerated pace makes it difficult to learn the new material.

Note: Transfer students are encouraged to consult with the ECE undergraduate office for academic planning upon entrance to UCSD.

ECE Honors Program

The ECE Undergraduate Honors Program is intended to give eligible students the opportunity to work closely with faculty in a project, and to honor the top graduating undergraduate students.
Eligibility for Admission to the Honors Program:
1. Students with a minimum GPA of 3.5 in the major and 3.25 overall will be eligible to apply. Students may apply at the end of the winter quarter of their junior year and no later than the end of the second week of fall quarter of their senior year. No late applications will be accepted.
2. Students must submit a project proposal (sponsored by an ECE faculty member) to the honors program committee at the time of application.
3. The major GPA will include ALL lower-division required for the major and all upper-division required for the major that are completed at the time of application (a minimum of twenty-four units of upper-division course work).

Requirements for Award of Honors:
1. Completion of all ECE requirements with a minimum GPA of 3.5 in the major based on grades through winter quarter of the senior year.
2. Formal participation (i.e., registration and attendance) in the ECE 290 graduate seminar program in the winter quarter of their senior year.
3. Completion of an eight-unit approved honors project (ECE 193H: Honors Project) and submission of a written report by the first day of spring quarter of the senior year. This project must contain enough design to satisfy the ECE BS four-unit design requirement.
4. The ECE honors committee will review each project final report and certify the projects which have been successfully completed at the honors level.

Procedure for Application to the Honors Program:
Between the end of the winter quarter of their junior year and the second week of the fall quarter of their senior year, interested students must advise the department of their intention to participate by submitting a proposal for the honors project sponsored by an ECE faculty member. Admission to the honors program will be formally approved by the ECE honors committee based on GPA and the proposal.

Unit Considerations
Except for the two-unit graduate seminar, this honors program does not increase a participant’s total unit requirements. The honors project will satisfy the departmental design requirement and students may use four units of their honors project course as a technical elective.

Five-Year B.S./Master’s Program
Undergraduates in the ECE department who have maintained a good academic record in both departmental and overall course work are encouraged to participate in the five-year B.S./master’s program offered by the department. Participation in the program will permit students to complete the requirements for the M.S. or M.Eng. degree within one year following receipt of the B.S. degree. Complete details regarding admission to and participation in the program are available from the ECE Undergraduate Affairs office.

Admission to the Program
Students should submit an application for the B.S./master’s program, including three letters of recommendation, by the program deadline during the spring quarter of their junior year. Applications are available from the ECE Undergraduate Affairs office. No GRE’s are required for application to the B.S./master’s program. A GPA of at least 3.0 both overall and in the major and strong letters of recommendation are required to be considered for program admission. Students should indicate at that time whether they wish to be considered for the M.S. or the M.Eng. degree program.

In the winter quarter of the senior year, applications of students admitted to the program will be forwarded by the department to the UCSD Office of Graduate Studies and Research. Each student must submit the regular graduate application fee prior to the application deadline for their application to be processed. Students who have been accepted into the B.S./master’s program will automatically be admitted for graduate study beginning the following fall provided they maintain an overall GPA through the winter quarter of the senior year of at least 3.0. Upper-division (up to twelve units) or graduate courses taken during the senior year that are not used to satisfy undergraduate course requirements may be counted towards the forty-eight units required for the M.S. or M.Eng. degree.

Continuation in the Program
Once admitted to the B.S./master’s program, students must maintain a 3.0 cumulative GPA in all courses through the winter quarter of the senior year and in addition must at all times maintain a 3.0 cumulative GPA in their graduate course work. Students not satisfying these requirements may be re-evaluated for continuation in the program.

Admission for graduate study through the B.S./master’s program will be for the M.S. or M.Eng. degree only. Undergraduate students wishing to continue toward the Ph.D. degree must apply and be evaluated according to the usual procedures and criteria for admission to the Ph.D. program.

Curriculum
Students in the five-year B.S./master’s program must complete the same requirements as those in the regular M.S. or M.Eng. program. Completion of the M.S. or M.Eng. degree requirements within one year following receipt of the B.S. degree will generally require that students begin graduate course work in their senior year. All requirements for the B.S. degree should be completed by the end of the senior (fourth) year, and the B.S. degree awarded prior to the start of the fifth year. Courses taken in the senior year may be counted toward the B.S. degree requirements or the M.S. or M.Eng. degree requirements, but not both. Students must have received their B.S. degree before they will be eligible to enroll as graduate students in the department.

The Graduate Programs
The department offers graduate programs leading to the M.Eng., M.S., and Ph.D. degrees in electrical engineering. Students can be admitted into ECE graduate studies through either the M.Eng. M.S. or Ph.D. programs.

The Ph.D. program is strongly research oriented and is for students whose final degree objective is the Ph.D. If a student with a B.S. is admitted to this program, he or she will be expected to complete the requirements for the M.S. degree (outlined below) before beginning doctoral research. The M.S. is a technically intensive, research-oriented degree intended as prepa-
ration for advanced technical work in the engineering profession, or subsequent pursuit of a Ph.D. By contrast, the M.Eng. is intended to be a terminal professional degree, for those not planning to pursue the Ph.D. The M.Eng. has only a course work requirement.

In addition, the department offers M.S. and Ph.D. programs in computer engineering jointly with CSE, and a Ph.D. program in applied ocean science jointly with MAE and Scripps Institution of Oceanography.

Admission to an ECE graduate program is in accordance with the general requirements of the UCSD graduate division, and requires at least a B.S. degree in engineering, physical sciences, or mathematics with a minimum upper division GPA of 3.0. Applicants must provide three letters of recommendation and recent GRE General Test scores. TOEFL or IELTS scores are required from international applicants whose native language is not English. Applicants should be aware that the University does not permit duplication of degrees.

Support: The department makes every effort to provide financial support for Ph.D. students who are making satisfactory progress. Support may take the form of a fellowship, teaching assistantship, research assistantship, or some combination thereof. International students will not be admitted unless there is reasonable assurance that support can be provided for the duration of their Ph.D. program. Students in the M.Eng. and M.S. programs may also obtain support through teaching or research assistantships, but this is less certain.

Advising: Students should seek advice on requirements and procedures from the departmental graduate office and/or the departmental Web site http://www.ece.ucsd.edu. All students will be assigned a faculty advisor upon admission and are strongly encouraged to discuss their academic program with their advisor immediately upon arrival and subsequently at least once per academic year.

Master of Engineering

The Master of Engineering (M. Eng.) program is intended primarily for engineers who desire master’s-level work but do not intend to continue with Ph.D.-level research. It differs from the M.S. program in that it is a terminal professional degree, whereas the M.S. may serve as an entry to a Ph.D. program. Salient features of the M.Eng. program include the following: It can be completed in four quarters at full-time or eight quarters at half-time; it does not require a thesis, a research project, or a comprehensive exam; and it has an option of three courses in business, management, and finance.

Course Requirements:

The total course requirements are forty-eight units (twelve quarter courses). At least thirty-six units must be at the graduate level. The choice of courses is subject to general focus and breadth requirements. Students will be assigned a faculty advisor who will help select courses.

1. The Focus Requirement: (five courses)

The M. Eng. program should reflect, among other things, a continuity and focus in one subject area. The course selection must therefore include at least twenty units (five quarter courses) in closely related courses leading to the state of the art in that area. The requirement may be met by selecting five courses from within one of the focus areas listed below. In some cases it may be appropriate to select five closely related courses from two of the areas listed below. Such cases must be approved by a faculty advisor and the ECE Graduate Affairs Committee.

2. The Breadth Requirement: (two courses)

A graduate student often cannot be certain of his or her future professional career activities and may benefit from exposure to interesting opportunities in other subject areas. The breadth requirement is intended to provide protection against technical obsolescence, open up new areas of interest, and provide for future self-education and interaction with people from related and sometime disparate disciplines. The minimum breadth requirement is eight units (two quarter courses) of ECE/CSE graduate courses selected from among the courses listed below, in an area distinctly different from that of the focus requirement.

3. Technical Electives: (two courses)

Two technical electives may be any graduate courses in ECE, CSE, Physics, or Mathematics. Other technical courses may be selected with the approval of the faculty advisor and the ECE Graduate Affairs Committee. Technical electives may include a maximum of four units of ECE 298 (Independent Study), or ECE 299 (Research).

4. Professional Electives: (three courses)

The three professional electives may be used in several ways: for the IP/Core 401, 420, 421 series in business, management, and finance; for upper-division undergraduate technical courses specified as prerequisites for graduate-level focus, breadth, or technical elective courses taken to satisfy the M.Eng. degree requirements; or for additional graduate technical electives. Use of other courses to satisfy the Professional Elective requirement must be approved by the faculty advisor.

Scholarship Requirement: The forty-eight units of required course work must be taken for a letter grade (A-F), except for ECE 298 or 299, for which only S/U grades are allowed. Courses for which a D or F is received may not be counted. Students must maintain a GPA of 3.0 overall.

Master of Engineering Program Focus Courses

Please consult the ECE graduate office or the ECE Web site http://www.ece.ucsd.edu for the current list of focus areas and courses.

1. Applied Physics

ECE 222A-B-C. Electromagnetic Theory
ECE 230A-B-C. Solid State Electronics
ECE 236A-B-C-D. Semiconductors
ECE 238A-B. Materials Science
MS 201A-B-C. Materials Science
ECE 240A-B-C. Optics
ECE 241A-B-C. Optics

2. Communications and Signal Analysis

ECE 250. Random Processes
ECE 251AN-BN-CN-DN. Digital Signal Processing
ECE 252A-B. Speech Compression and Recognition
The forty-eight students in Engineering, Electrical and Computer Engineering (ECE) Ph.D. program at the time of admission have the option to circumvent the normal Ph.D. admissions process. This option should not be used in an attempt to change. At the outset, however, we stress that a change must be followed to effect such a change. A student admitted to the M. Eng. may wish to pursue a Ph.D. To this end, we outline below the procedure that must be followed to effect such a change. Should the student not be admitted to the Ph.D. program, this program of course work will serve, with the approval of the academic advisor and the ECE Graduate Affairs Committee, to satisfy the course work requirements for the M. Eng. degree.

The comprehensive examination at the level required for continuation in the Ph.D. program. A student failing to pass the comprehensive exam at this required level will not be admitted to the Ph.D. program, and will instead continue in the M.S. or M. Eng. degree program (see below).

Maintain a GPA of at least 3.4 in the appropriate core graduate courses. A student who has fulfilled all of the above requirements should, after passing the departmental comprehensive exam, submit a petition to change their degree objective from M. Eng. to Ph.D.

Master of Science

The ECE department offers M.S. programs in electrical and computer engineering. The M.S. program in computer engineering is jointly administered with the Department of Computer Science and Engineering. The M.S. programs are research oriented, are intended to provide the intensive technical preparation necessary for advanced technical work in the engineering profession or subsequent pursuit of a Ph.D. The M.S. degree may be earned either with a thesis (Plan 1) or with a research project followed by a comprehensive examination (Plan 2). However, continuation in the Ph.D. program requires a comprehensive examination so most students opt for Plan 2.

Course Requirements:

The total course requirements for the master of science degrees in electrical engineering and in computer engineering are forty-eight units (twelve quarter courses) and forty-nine units, respectively, of which at least thirty-six units must be in graduate courses. Note that this is greater than the minimum requirements of the university. The department maintains a list of core courses for each disciplinary area from which the thirty-six graduate course units must be selected. The current list may be obtained from the department graduate office or the official Web site of the department. Students in interdisciplinary programs may select other core courses with the approval of their academic advisor. The course requirements must be completed within two years of full-time study. Students will be assigned a faculty advisor who will help select courses and approve their overall academic curriculum.

Scholarship Requirement: The forty-eight units of required course work must be taken for a letter grade (A-F), except for graduate research (e.g. ECE 298, 299) for which only S/U grades are allowed. Courses for which a D or F is received may not be counted. Students must maintain a GPA of 3.0 overall.

Thesis and Comprehensive Requirements: The department offers both M.S. Plan 1 (thesis) and M.S. Plan 2 (written comprehensive exam). Students in the M.S. program may elect either Plan 1 or Plan 2 any time. Students in the M.S. Plan 1 (thesis) must take twelve units of ECE 299 (Research) and must submit a thesis as described in the general requirements of the university. Students in the M.S. Plan 2 (written comprehensive exam) may count four units of ECE 299 (Research) toward the thirty-six graduate units required and must pass the departmental written comprehensive examination not later than the end of the fall quarter of their second year of study. Students who pass the written examination at the M.S. level will receive a terminal master's degree, if they do not already have one.

Students in the computer engineering discipline may elect to take examinations in the Department of Computer Science and Engineering, in accordance with the CSE guidelines, in place of the written comprehensive examination in ECE.

Transfer to the Ph.D. Program: Students in the M.S. program wishing to be considered for
admission to the Ph.D. program should consult their academic advisor as soon as possible. Transfer from the M.S. to the Ph.D. program is possible provided that the student:

- Satisfy all requirements for initial admission to the Ph.D. program, including submission of GRE general test scores, and be approved for consideration for transfer to the Ph.D. program by the ECE Graduate Admissions Committee.
- Identify a faculty member who agrees, in writing, to serve as that student’s academic and Ph.D. research advisor.
- In consultation with the academic advisor, design and complete a program of course work that satisfies all course requirements and constraints for a Ph.D. discipline appropriate to the student’s research. All students in the Ph.D. program are required to satisfy all Ph.D. degree requirements as described below. Should the student not be admitted to the Ph.D. program, this program of course work will serve, with the approval of the academic advisor and the ECE Graduate Affairs Committee, to satisfy the course work requirements for the M.S. degree.
- Pass the comprehensive examination at the level required for continuation in the Ph.D. program. A student failing to pass the comprehensive exam at this required level will not be admitted to the Ph.D. program, and will instead continue in the M.S. degree program.
- Maintain a GPA of at least 3.4 in the appropriate core graduate courses.

A student who has fulfilled all of the above requirements should, after passing the departmental comprehensive exam, submit a petition to change his or her degree objective from M.S. to Ph.D.

The Doctoral Programs

The ECE department offers graduate programs leading to the Ph.D. degree in ten disciplines within electrical and computer engineering, as described in detail below. The Ph.D. is a research degree requiring completion of the Ph.D. program course requirements, satisfactory performance on the comprehensive (Ph.D. Preliminary) examination and University Qualifying Examination, and submission and defense of a doctoral thesis (as described under the “Graduate Studies” section of this catalog). Students in the Ph.D. program must pass the comprehensive exam (Ph.D. Preliminary) before the beginning of the third year of graduate study. To ensure timely progress in their research, students are strongly encouraged to identify a faculty member willing to supervise their doctoral research by the end of their first year of study.

Students should begin defining and preparing for their thesis research as soon as they have passed the comprehensive exam (Ph.D. Preliminary). They should plan on taking the University Qualifying Examination about one year later. The University does not permit students to continue in graduate study for more than four years without passing this examination. At the Qualifying Examination the student will give an oral presentation on research accomplishments to date and the thesis proposal to a campus-wide committee. The committee will decide if the work and proposal has adequate content and reasonable chance for success. They may require that the student modify the proposal and may require a further review.

The final Ph.D. requirements are the submission of a dissertation and the dissertation defense (as described under the “Graduate Studies” section of this catalog).

Course Requirements: The total course requirements for the Ph.D. degree in electrical engineering are essentially the same as the M.S. degree and consists of forty-eight units (twelve quarter courses), of which at least thirty-six units must be in graduate courses. Note that this is greater than the minimum requirements of the university. The department maintains a list of core courses for each disciplinary area from which the thirty-six graduate course units must be selected. The current list may be obtained from the ECE department graduate office or the official Web site of the department. Students in the interdisciplinary programs may select other core courses with the approval of their academic advisor. The course requirements must be completed within two years of full-time study.

Students in the Ph.D. programs may count no more than eight units of ECE 299 towards their course requirements.

Students who already hold an M.S. degree in electrical engineering must nevertheless satisfy the requirements for the core courses. However, graduate courses taken elsewhere can be substituted for specific courses with the approval of the academic advisor.

Scholarship Requirement: The forty-eight units of required courses must be taken for a letter grade (A-F), except for ECE 299 (Research) for which only S/U grades are allowed. Courses for which a D or F is received may not be counted. Students must maintain a GPA of 3.0 overall. In addition, a GPA of 3.4 in the core graduate courses is generally expected.

Comprehensive Exam (Ph.D. Preliminary): Ph.D. students must find a faculty member who will agree to supervise their thesis research. This should be done during the first year of study. Students may complete at least four units of ECE 299 (Research) and must pass the departmental comprehensive exam not later than the end of the fall quarter of their second year of study. The comprehensive examination consists of a written examination, possibly followed by an oral examination. Students that pass the written examination with sufficiently high score during the spring quarter of their first year will not be required to take the oral exam. Students not meeting this threshold but who still pass at the Ph.D. level will be required to take the oral exam and to have identified a thesis advisor. The oral examination must be taken not later than the end of the fall quarter of their second year of study. Students who pass the written part of the comprehensive examination at the M.S. level will receive a terminal masters degree, if they do not already have one. Successful completion of the comprehensive examination (Ph.D. Preliminary) at any of these levels will also satisfy the M.S. Plan 2 comprehensive exam requirement.

* Students in the computer engineering discipline may elect to take examinations in the Department of Computer Science and Engineering, in accordance with the CSE guidelines, in place of the ECE comprehensive examination as described above.

University Qualifying Exam: Students who have passed the comprehensive exam (Ph.D. Preliminary) should plan to take the University Qualifying Examination approximately a year after passing the comprehensive exam (Ph.D. Preliminary). The University does not permit students to continue in graduate study for more than four years without passing this examination. The University Qualifying Examination is an oral exam in which the student presents his or her thesis proposal to a universitywide committee. After passing this exam the student is “advanced to candidacy.”

Dissertation Defense: The final Ph.D. requirements are the submission of a dissertation, and
the dissertation defense (as described under the “Graduate Studies” section of this catalog). Students who are advanced to candidacy may register for any ECE course on an S/U basis.

Departmental Time Limits: Students who enter the Ph.D. program with an M.S. degree from another institution are expected to complete their Ph.D. requirements a year earlier than B.S. entrants. They must discuss their program with an academic advisor in their first quarter of residence. If their Ph.D. program overlaps significantly with their earlier M.S. work, the time limits for the comprehensive and qualifying exams will also be reduced by one year. Specific time limits for the Ph.D. program, assuming entry with a B.S. degree, are as follows:

1. **The Comprehensive Exam (Ph.D. Preliminary)** must be completed before the start of the winter quarter of the second year of full-time study.

2. **The University Qualifying Exam** must be completed before the start of the fifth year of full-time study.

3. **Support Limit**: Students may not receive financial support through the university for more than seven years of full-time study (six years with an M.S. degree).

4. **Registered Time Limit**: Students may not register as graduate students for more than eight years of full-time study (seven years with an M.S. degree).

Half-Time Study: Time limits are extended by one quarter for every two quarters of approved half-time status. Students on half-time status may not take more than six units each quarter.

Ph.D. Research Programs:

1. **Applied Ocean Sciences**: This program in applied science related to the oceans is interdepartmental with the Graduate Department of the Scripps Institution of Oceanography (SIO) and the Department of Mechanical and Aerospace Engineering (MAE). It is administered by SIO. All aspects of man’s purposeful and unusual intervention into the sea are included.

2. **Applied Physics—Applied Optics and Photonics**: These programs encompass a broad range of interdisciplinary activities involving optical science and engineering, optical and optoelectronic materials and device technology, communications, computer engineering, and photonic systems engineering. Specific topics of interest include ultrafast optical processes, nonlinear optics, quantum cryptography and communications, optical-image science, multidimensional optoelectronic I/O devices, spatial light modulators and photodetectors, artificial dielectrics, multifunctional diffractive and micro-optics, volume and computer-generated holography, optoelectronic and micromechanical devices and packaging, wave modulators and detectors, semiconductor-based optoelectronics, injection lasers, and photodetectors. Current research projects are focused on applications such as optical interconnects in high-speed digital systems, optical multidimensional signal and image processing, ultrahigh-speed optical networks, 3D optical memories and memory interfaces, 3D imaging and displays, and biophotonic systems. Facilities available for research in these areas include electron-beam and optical lithography, material growth, microfabrication, assembly, and packaging facilities, cw and femtosecond pulse laser systems, detection systems, optical and electro-optic components and devices, and electronic and optical characterization and testing equipment.

3. **Communication Theory and Systems**

 Communications theory and systems concern the transmission, processing, and storage of information. Topics covered by the group include wireless and wireline communications, spread-spectrum communication, multi-user communication, network protocols, error-correcting codes for transmission and magnetic recording, data compression, time-series analysis, and image and voice processing.

4. **Computer Engineering** consists of balanced programs of studies in both hardware and software, the premise being that knowledge and skill in both areas are essential both for the modern-day computer engineer to make the proper unbiased trade-offs in design, and for researchers to consider all paths towards the solution of research questions and problems. Toward these ends, the programs emphasize studies (course work) and competency (comprehensive examinations, and dissertations or projects) in the areas of VLSI and logic design, and reliable computer and communication systems. Specific research areas include: computer systems, signal processing systems, multiprocessing and parallel and distributed computing, computer communications and networks, computer architecture, computer-aided design, fault-tolerance and reliability, and neurocomputing. The faculty is composed of interested members of the Departments of Electrical and Computer Engineering (ECE), Computer Science and Engineering (CSE), and related areas. The specialization is administered by both departments; the requirements are similar in both departments, with students taking the comprehensive exam, if necessary, given by the student’s respective department.

5. **Electronic Circuits and Systems**: This program involves the study and design of analog, mixed-signal (combined analog and digital), and digital electronic circuits and systems. Emphasis is on the development, analysis, and implementation of integrated circuits that perform analog and digital signal processing for applications such as wireless and wireline communication systems, test and measurement systems, and interfaces between computers and sensors. Particular areas of study currently include radio frequency (RF) power amplifiers, RF low noise amplifiers, RF mixers, fractional-N phase-locked loops (PLLs) for modulated and continuous-wave frequency synthesis, pipelined analog-to-digital converters (ADCs), delta-sigma ADCs and digital-to-analog converters (DACs), PLLs for clock recovery, adaptive and fixed continuous-time, switched-capacitor, and digital filters, echo cancellation circuits, adaptive equalization circuits, wireless receiver and transmitter linearization circuits, mixed-signal baseband processing circuits for wireless transmitters and receivers, high-speed digital circuits, and high-speed clock distribution circuits.

6. **Applied Physics—Electronic Devices and Materials**: This program addresses the synthesis and characterization of advanced electronic materials, including semiconductors, metals, and dielectrics, and their application in novel electronic, optoelectronic, and photonic devices. Emphasis is placed on exploration of techniques for high-quality epitaxial growth of semiconductors, including both molecular-beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD); fabrication and characterization of materials and devices.
Mathematical optimization theory and contemporary near-optimal approaches such as evolutionary computation; to act upon the world requires familiarity with concepts of control theory and robotics. Very often learning and adaptation are required as either critical aspects of the world are poorly known at the outset, and must be refined online, or the world is non-stationary and our system must constantly adapt to it as it evolves. In addition to the theoretical information and computer science aspects, many important hardware and software issues must be addressed in order to obtain an effective fusion of a complicated suite of sensors, computers, and problem dynamics into one integrated system.

Faculty affiliated with the ISRC subarea are involved in virtually all aspects of the field, including applications to intelligent communications systems; advanced human-computer interfacing; statistical signal- and image-processing; intelligent tracking and guidance systems; biomedical system identification and control; and control of teleoperated and autonomous multiagent robotic systems.

8. **Magnetic Recording** is an interdisciplinary field involving physics, material science, communications, and mechanical engineering. The physics of magnetic recording involves studying magnetic heads, recording media, and the process of transferring information between the heads and the medium. General areas of investigation include: nonlinear behavior of magnetic heads, very high frequency loss mechanisms in head materials, characterization of recording media by micromagnetic and many body interaction analysis, response of the medium to the application of spatially varying vectorial head fields, fundamental analysis of medium nonuniformities leading to media noise, and experimental studies of the channel transfer function emphasizing non-linearities, interferences, and noise. Current projects include numerical simulations of high density digital recording in metallic thin films, micromagnetic analysis of magnetic reversal in individual magnetic particles, theory of recorded transition phase noise and magnetization induced nonlinear bit shift in thin metallic films, and analysis of the thermal-temporal stability of interacting finite particles.

Research laboratories are housed in the Center for Magnetic Recording Research, a national center devoted to multi-disciplinary teaching and research in the field.

9. **Applied Physics—Radio and Space Science:**

The Radio Science Program focuses on the study of radio waves propagating through turbulent media. The primary objectives are probing of otherwise inaccessible media such as the solar wind and interstellar plasma. Techniques for removing the effects of the turbulent medium to restore the intrinsic signals are also studied.

The Space Science Program is concerned with the nature of the sun, its ionized and supersonic outer atmosphere (the solar wind), and the interaction of the solar wind with various bodies in the solar system. Theoretical studies include: the interaction of the solar wind with the earth, planets, and comets; cosmic dusty plasmas; waves in the ionosphere; and the physics of shocks. A major theoretical effort involves the use of supercomputers for modeling and simulation studies of both fluid and kinetic processes in space plasmas.

Students in radio science will take measurements at various radio observatories in the U.S. and elsewhere. This work involves a great deal of digital signal processing and statistical analysis. All students will need to become familiar with electromagnetic theory, plasma physics, and numerical analysis.

10. **Signal and Image Processing:** This program explores engineering issues related to the modeling of signals starting from the physics of the problem, developing and evaluating algorithms for extracting the necessary information from the signal, and the implementation of these algorithms on electronic and opto-electronic systems. Examples of research areas include filter design, fast transforms, adaptive filters, spectrum estimation and modeling, sensor array processing, image processing, image restoration, video processing, pattern recognition, and the implementation of signal processing algorithms using appropriate technologies. Signal and image processing techniques have found application in a number of areas such as sonar, radar, speech, geophysics, medical imaging, robotic vision, digital communications, and multimedia systems among others.
11. Nanoscale Devices and Systems: This program area will address the science and engineering of materials and device structures at length scales of ~100nm and below, at which phenomena such as quantum confinement and single-electron effects in electronics, near-field behavior in optics and electromagnetics, single-domain effects in magnetics, and a host of other effects in mechanical, fluidic, and biological systems emerge and become dominant. Engineering activities such as scaling of transistors and other circuit elements in microelectronics, design of new, artificial materials with engineered optical properties and of photonic components and systems based on these materials, engineering of high-density magnetic storage media and systems, development of new technologies for renewable energy conversion and storage, advancement of sensor technology, and others now depend upon engineering both solid-state and “soft” materials and device structures at the nanoscale. Furthermore, the integration of such technologies into complex systems, as well as consideration of system drivers and constraints as guides for the development of new materials and devices, is emerging as a critical aspect of nanotechnology.

Research Facilities
Most of the research laboratories of the department are associated with individual faculty members or small informal groups of faculty. Larger instruments and facilities, such as those for electron microscopy and e-beam lithography are operated jointly. In addition the department operates several research centers and participates in various university-wide organized research units.

The department-operated research centers are the Center for Wireless Communications which is a university-industry partnership; the Institute for Neural Computation, and the Center for Information Theory and Application in conjunction with Calit2.

Department research is also associated with the Center for Astronomy and Space Science, the Center for Magnetic Recording Research, the California Space Institute, the Institute for Nonlinear Science, and Calit2 (http://www.calit2.net). Departmental researchers also use various national and international laboratories, such as the National Nanofabrication Facility, the National Radio Astronomy Laboratory, and the Center for Networked Systems (CSE).

The department emphasizes computational capability and maintains numerous computer laboratories for instruction and research. One of the NSF national supercomputer centers is located on the campus. This is particularly useful for those whose work requires high data bandwidths.

COURSES
For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

The department will endeavor to offer the courses as outlined below, however, unforeseen circumstances sometimes require a change of scheduled offerings. Students are strongly advised to check the Schedule of Classes or the department before relying on the schedule below. For the names of the instructors who will teach the course, please refer to the quarterly Schedule of Classes. The departmental Web site http://www.ece.ucsd.edu includes the present best estimate of the schedule of classes for the entire academic year.

LOWER-DIVISION

1A-B-C. Mesa Orientation Course (1-1-1)
Students will be given an introduction to the engineering profession and our undergraduate program. Exercises and practicums will develop the problem-solving skills needed to succeed in engineering. Prerequisite: none. (F, W, S)

15. Engineering Computation (4)
Students learn the C programming language with an emphasis on high-performance numerical computation. The commonality across programming languages of control structures, data structures, and I/O is also covered. Techniques for using Matlab to graph the results of C computations are developed. Prerequisites: a familiarity with basic mathematics such as trigonometry functions and graphing is expected but this course assumes no prior programming knowledge. (F, W, S)

25. Introduction to Digital Design (4)
This course emphasizes digital electronics. Principles introduced in lectures are used in laboratory assignments, which also serve to introduce experimental and design methods. Topics include Boolean algebra, combination and sequential logic, gates and their implementation in digital circuits. Prerequisite: none. (F, W, S)

30. Introduction to Computer Engineering (4)
The fundamentals of both the hardware and software in a computer system. Topics include: representation of information, computer organization and design, assembly and microprogramming, current technology in logic design. (Students who have taken CSE 30 may not take ECE 30 for credit.) Prerequisites: ECE 15 and 25 with grades of C– or better. (F, S)

35. Introduction to Analog Design (4)
Fundamental circuit theory concepts, Kirchoff’s voltage and current laws, Thevenin’s and Norton’s theorems, loop and node analysis, time-varying signals, transient first order circuits, steady-state sinusoidal response. Prerequisites: Math. 20A-8: Math. 20C and Physics 2B may be taken concurrently. (F, W, S)

45. Circuits and Systems (4)
Steady-state circuit analysis, first and second order systems, Fourier Series and Transforms, time domain analysis, convolution, transient response, Laplace Transform, and filters. Prerequisites: Math. 20A-B-C, ECE 15, and ECE 35. (F, W, S)

53A. Fundamentals of Electrical Engineering I (4)
This is a coordinated lecture and laboratory course for students majoring in other branches of science and engineering. It covers analysis and design of passive and active circuits. The course emphasizes problem-solving and laboratory work on passive circuits. Prerequisites: Math. 20C, Math. 20D must be concurrent, Phys. 2B or 2S or 4C with grades of C– or better. (F, W, S)

53B. Fundamentals of Electrical Engineering II (4)
This is a coordinated lecture and laboratory course for students majoring in other branches of science and engineering. It covers analog and digital systems and active circuit design. Laboratory work will include operational amplifiers, diodes and transistors. Prerequisites: ECE 53A with a grade of C– or better. (W, S)

65. Components and Circuits Laboratory (4)
In this course, students learn to model, simulate, and design simple circuits and account for interaction between components. Concept of feedback is emphasized. Labs are designed to highlight the differences among analytical solution, simulation, and measurements of the circuit. Each lab includes a design experiment. Prerequisites: Math. 20A-8-B-C, ECE 15, and ECE 35. (F, W, S)

80. Photonics of Everyday Life (4)
This course is a general elective for students interested in the impact of photonic technology in our everyday lives. Topics include digital camera and photography, photography vs. holography, holograms for counterfeit, LCD display and optical storage (CD and DVD) in computers, some varieties of lasers, differences between laser light and ordinary light, optics for telecommunication, telescope, microscope, spectroscopy, and biophotonics. Prerequisite: simple concepts of calculus (see instructor), or Math. 10A or 20A. (W, S)

87. Freshman Seminar (1)
The freshman seminar program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to 10 to 20 students, with preference given to entering freshmen. Prerequisite: none.

90. Undergraduate Seminar (1)
This seminar class will provide a broad review of current research topics in both electrical engineering and computer engineering. Typical subject areas are signal processing, VLSI design, electronic materials and devices, radio astronomy, communications, and optical computing. Prerequisite: none. (F, W, S)
101. Linear Systems Fundamentals (4)

102. Introduction to Active Circuit Design (4)
Nonlinear active circuits design. Nonlinear device models for diodes, bipolar and field-effect transistors. Linearization of device models and small signal equivalent circuits. Circuit designs will be simulated by computer and tested in the laboratory. (Lab fee: $510) Prerequisites: ECE 45 and 65, or ECE 53B, with grades of C– or better. (F,W)

103. Fundamentals of Devices and Materials (4)
Introduction to semiconductor materials and devices. Semiconductor crystal structure, energy bands, dop- ing, carrier statistics, drift and diffusion, p-n junctions, metal-semiconductor junctions. Bipolar junction tran- sistors: current flow, amplification, switching, non-ideal behavior Metal-oxide-semiconductor structures, MOSFETs, device scaling. Prerequisites: Phys. 2D or Phys. 4D and 4E with grades of C– or better. (F,W)

107. Electromagnetism (4)
Electrostatics and magnetostatics; electrodynamics; Maxwell's equations; plane waves; skin effect. Electromagnetics of transmission lines: reflection and transmission at discontinuities, Smith chart, pulse propag- ation, dispersion. Rectangular waveguides. Dielectric and magnetic properties of materials. Electromagnetics of circuits. Prerequisites: Phys. 2A-D or 4A-E and ECE 45 or 53B with grades of C– or better. (F,W)

108. Digital Circuits (4)
Digital integrated electronic circuits for processing technologies. Analytical methods for static and dynamic characteristics. MOS field-effect transistors and bipolar junction transistors, circuits for logic gates, flip-flop, data paths, programmable logic arrays, mem- ory elements. (Lab fee: $10) Prerequisites: Math. 20A-B, 21C-D, 20F-E; Phys. 2A-D or 4A-E; (ECE 25, 35, 45, and 65) or (ECE 53A and 53B); ECE 30 or CSE 30; ECE 102 with grades of C– or better. (W,S)

109. Engineering Probability and Statistics (4)
Axioms of probability, conditional probability, theo- rem of total probability, random variables, densities, expected values, characteristic functions, transforma- tion of random variables, central limit theorem. Random number generation, engineering reliability, elements of estimation, random sampling, sampling distributions, tests for hypothesis. Students who com- pleted Math. 180A-B, Math. 183, Math. 186, or Econ. 120A will not receive credit for ECE 109. Prerequisites: Math. 20A-B-C or 21C, 20D or 21D, 20F, with grades of C– or better. (ECE 101 recommended). (F,W,S)

111. Advanced Digital Design Project (4)
Advanced topics in digital circuits and systems. Use of computers and design automation tools. Hazard elim- ination, synchronous/asynchronous FSM synthesis, synchronization and arbitration, pipelining and timing issues. Problem sets and design exercises. A large-scale design project. Simulation and/or rapid prototyping. Prerequisite: ECE 108 or CSE 140 with grades of C– or better. (F,W,S)

118. Computer Interfacing (4)
Interfacing computers and embedded controllers to the real world: busses, interrupts, DMA, memory map- ping, concurrency, digital I/O, standards for serial and parallel communications, A/D, D/A, sensors, signal condition- ing, video, and closed loop control. Students design and construct an interfacing project. (Lab fee: $520) Prerequisites: ECE 30 or CSE 30 and ECE 60A-B-L or ECE 53A-B. (S)

120. Solar System Physics (4)
General introduction to planetary bodies, the overall structure of the solar system, and space plasma physics. Course emphasis will be on the solar atmos- phere, how the solar wind is produced, and its interac- tion with both magnetized and unmagnetized planets (and comets). Prerequisites: Phys. 2A-C or 4A-D, Math. 20A-B, 20C or 21C with grades of C– or better. (S)

123. Antenna Systems Engineering (4)
The electromagnetic and systems engineering of radio antennas for terrestrial wireless and satellite communi- cations. Antenna impedance, beam pattern, gain, and polarization. Dipoles, monopoles, paraboloids, phased arrays. Power and noise budgets for communication links. Atmospheric propagation and multipath. Prere- quisite: ECE 107 with a grade of C– or better. (F)

134. Electronic Materials Science of Integrated Circuits (4)
Electronic materials science with emphasis on topics pertinent to microelectronics and VLSI technology. Concept of the course is to use components in inte- grated circuits to discuss structure, thermodynamics, reaction kinetics, and electrical properties of materials. Prerequisites: Phys. 2C-D with grades of C– or better. (S)

135A. Semiconductor Physics (4)
Crystal structure and quantum theory of solids; elec- tronic band structure; review of carrier statistics, drift and diffusion, p-n junctions; nonequilibrium carriers, immers, traps, recombination, etc; metal-semiconduc- tor junctions and heterojunctions. Prerequisite: ECE 103 with a grade of C– or better. (F)

135B. Electronic Devices (4)
Structure and operation of bipolar junction transis- tors, junction field-effect transistors, metal-oxide-semiconductor diodes and transistors. Analysis of dc and ac characteristics. Charge control model of dynamic behavior. Prerequisite: ECE 135A with a grade of C– or better. (W)

136. Fundamentals of Semiconductor Device Fabrication (4)
Crystal growth, controlled diffusion, determination of junction-depth and impurity profile, epitaxy, ion- implantation, oxidation, lithography, chemical vapor deposition, etching, process simulation and robust design for fabrication. Prerequisite: ECE 103 with a grade of C– or better. (S)

136L. Microelectronics Laboratory (4)
Laboratory fabrication of diodes and field effect tran- sistors covering photolithography, oxidation, diffusion, thin film deposition, etching and evaluation of devices. (Lab fee: $35) Prerequisite: ECE 103 with a grade of C– or better. (F,S)

138. Microstructuring Processing Technology Laboratory (4)
A laboratory course covering the concept and practice of microstructuring science and technology in fabricat- ing devices relevant to sensors, lab-chips and related devices. (Lab fee: $40) Prerequisite: upper-division stand- ing for science and engineering students. (W)

139. Semiconductor Device Design and Modeling (4)
Device physics of modern field effect transistors and bipolar transistors, including behavior of submicron structures. Relationship between structure and circuit models of transistors. CMOS and BICMOS technolo- gies. Emphasis on computer simulation of transistor operation and application in integrated circuits. Prere- quisites: ECE 135A-B with grades of C– or better. (S)

145AL-BL-CL. Acoustics Laboratory (4-4-4)
Automated laboratory based on H-P GIPB controlled instruments. Software controlled data collection and analysis. Vibrations and waves in strings and bars of electromechanical systems and transducers. Transmis- sions, reflection, and scattering of sound waves in air and water. Aural and visual detection. Prerequisite: ECE 107 with a grade of C– or better or consent of instructor. (F-W-S)

146. Introduction to Magnetic Recording (4)
A laboratory introduction to the writing and reading of digital information in a disk drive. Basic magnetic recording measurements on state-of-art disk drives to evaluate signals, noise, erasure, and non-linearities that characterize this channel. Lectures on the record- ing process will allow comparison of measurements with batch voltage expressions. E/M FEM software utili- zed to study geometric effects on the record and play transducers. Prerequisite: ECE 107 with a grade of C– or better. (W)

153. Probability and Random Processes for Engineers (4)
Random processes. Stationary processes: correlation, power spectral density. Gaussian processes and linear transformation of Gaussian processes. Point processes. Random noise in linear systems. Prerequisite: ECE 109 with a grade of C– or better. (F,S)

154A. Communications Systems I (4)
Study of analog modulation systems including AM, SSB, DSB, VSB, FM, and PM. Performance analysis of both coherent and noncoherent receivers, including threshold effects in FM. Prerequisite: ECE 101 and 153 with a grade of C– or better. (F)

154B. Communications Systems II (4)
Design and performance analysis of digital modula- tion techniques, including probability of error results for PSK, DPSK, and FSK. Introduction to effects of inter- symbol interference and fading. Detection and estima- tion theory, including optimal receiver design and maximum-likelihood parameter estimation. Prerequi- site: ECE 154A with a grade of C– or better. (W)

154C. Communications Systems III (4)
Introduction to information theory and coding, includ- ing entropy, average mutual information, channel capacity, block codes and convolutional codes. Prere- quisite: ECE 154B with a grade of C– or better. (S)

155A. Digital Recording Systems (4)
This course will be concerned with modulation and coding techniques for digital recording channels. Prerequisites: ECE 109 and 153 with grades of C–or better and concurrent registration in ECE 154A required. Department stamp required. (F)

155B. Digital Recording Projects (I) (4)
Students registered in this course work one-on-one with a researcher on a project involving the design and evaluation of a digital recording system based upon material covered in ECE 155A. Prerequisites: ECE 155A with grade of C– or better. Concurrent registration in ECE 154B. Department stamp required. (W,S)
155C. Digital Recording Projects II (4)
Students registered in this course work one-on-one with a researcher on a project involving the design and evaluation of a digital recording system based upon material covered in ECE 155A. The project can be a continuation of a project initiated in Digital Recording Projects I or it can be an entirely new project. Prerequisites: ECE 155B with grade of C- or better. Concurrent registration in ECE 154C. Department stamp required. (W,S)

156. Sensor Networks (4)
Characteristics of chemical, biological, seismic, and other physical sensors; signal processing techniques supporting distributed detection of salient events; wireless communication and networking protocols supporting formation of robust sensor fabrics; current experience with low power, low cost sensor deployments. Undergraduate students must take a final exam; graduate students must write a term paper or complete a final project. Cross-listed with MAE 149 and SIO 238. Prerequisite: upper-division standing and consent of instructor; or graduate student in science and engineering.

157A. Communications Systems Laboratory I (4)
Experiments in the modulation and demodulation of baseband and passband signals. Statistical characterization of signals and impairments. Prerequisite: ECE 154A with a grade of C+ or better. (W)

157B. Communications Systems Laboratory II (4)
Advanced Projects in communication systems. Students will plan and implement design projects in the laboratory, updating progress weekly and making plan/design adjustments based upon feedback. Prerequisite: ECE 154A with a grade of C+ or better. (S)

158A. Data Networks I (4)
Layered network architectures, data link control protocols and multiple-access systems, performance analysis. Flow control; prevention of deadlock and throughput degradation. Routing, centralized and decentralized schemes, static dynamic algorithms. Shortest path and minimum average delay algorithms. Comparisons. Prerequisite: ECE 109 with a grade of C– or better. ECE 159A recommended. (W)

158B. Data Networks II (4)
Layered network architectures, data link control protocols and multiple-access systems, performance analysis. Flow control; prevention of deadlock and throughput degradation. Routing, centralized and decentralized schemes, static dynamic algorithms. Shortest path and minimum average delay algorithms. Comparisons. Prerequisite: ECE 158A with a grade of C– or better. (S)

159A. Queuing Systems: Fundamentals (4)
Analysis of single and multiserver queuing systems; queue size and waiting times. Modeling of telephone systems, interactive computer systems and the machine repair problems. Prerequisite: ECE 109 with a grade of C– or better. (F)

159B. Queuing Systems: Computer Systems and Data Networks (4)
M/G/1 queuing systems. Computer systems applications: priority scheduling; time-sharing scheduling. Open and closed queuing networks; modeling and performance of interactive computer systems. Elements of computer-communication networks: stability and delay analysis; optimal design issues. Prerequisite: ECE 159A with a grade of C– or better. (W)

161A. Introduction to Digital Signal Processing (4)
Review of discrete-time systems and signals, Discrete-Time Fourier Transform and its properties, the Fast Fourier Transform, design of Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters, implementation of digital filters. Prerequisite: ECE 101 and 109 with grades of C– or better. (F,S)

161B. Digital Signal Processing I (4)
Sampling and quantization of baseband signals; A/D and D/A conversion, quantization noise, oversampling and noise shaping. Sampling of bandpass signals, undersampling downconversion, and Hilbert transform. Coefficient quantization, roundoff noise, limit cycles and overflow oscillations. Insensitive filter structures, lattice and wave digital filters. Systems will be designed and tested with Matlab, implemented with DSP processors and tested in the laboratory. Prerequisite: ECE 161A with a grade of C– or better. (W)

161C. Applications of Digital Signal Processing (4)
This course discusses several applications of DSP. Topics covered will include: speech analysis and coding; image and video compression and processing. A class project is required, algorithms simulated by MATLAB. Prerequisite: ECE 161A with a grade of C– or better. (S)

163. Electronic Circuits and Systems (4)

164. Analog Integrated Circuit Design (4)
Design of linear and non-linear analog integrated circuits including operational amplifiers, voltage regulators, drivers, power stages, oscillators, and multipliers. Use of feedback and evaluation of noise performance. Parasitic effects of integrated circuit technology. Laboratory simulation and testing of circuits. Prerequisite: ECE 102 with a grade of C– or better. ECE 163 recommended. (F)

165. Digital Integrated Circuit Design (4)
VLSI digital systems. Circuit characterization, performance estimation, and optimization. Circuits for analog and digital logic styles and clocking schemes. Subsystems include ALUs, memory, processor arrays, and PLAs. Techniques for gate arrays, standard cell, and custom design. Design and simulation using CAD tools. (Students who have taken CSE 143 may not take ECE 165 for credit.) Prerequisite: ECE 108 with a grade of C– or better. (W)

166. Microwave Systems and Circuits (4)
Waves, distributed circuits, and switching matrix methods. Passive microwave elements. Impedance matching. Detection and frequency conversion using microwave diodes. Design of transistor amplifiers including noise performance. Circuits designs will be simulated by computer and tested in the laboratory. Prerequisites: ECE 102 and 107 with grades of C– or better. (S)

171A. Linear Control System Theory (4)
Stability of continuous- and discrete-time single-input/single-output linear time-invariant control systems emphasizing frequency domain methods. Transient and steady-state behavior. Stability analysis by root locus, Bode, Nyquist, and Nichols plots. Compensator design. Prerequisite: ECE 608 or ECE 53A-B or MAE 140 with a grade of C– or better. (S)

171B. Linear Control System Theory (4)
Time-domain, state-variable formulation of the control problem for both discrete-time and continuous-time linear systems. State-space realizations from transfer function system description. Internal and output-feedback stability, controllability/observability, minimal realizations, and pole-placement by full-state feedback. Prerequisite: ECE 171A with a grade of C– or better. (F)

172A. Introduction to Intelligent Systems: Robotics and Machine Intelligence (4)
This course will introduce basic concepts in machine learning. Topics covered will include: edge detection, segmentation, texture analysis, image registration, and compression. Prerequisite: ECE 101 with a grade of C– or better, ECE 109 recommended. (F)

173. Theory and Applications of Neural Networks and Fuzzy Logic (4)
Theory of fuzzy logic, reasoning and control; mathematical aspects of neural architectures for pattern classification, functional approximation, and adaptive estimation and control; theory of computer-assisted learning (supervised, unsupervised and hybrid); theory and practice of recurrent networks (stability, placement of equilibria); computer-aided design of fuzzy and neural systems. Bayes and minimax design. Prerequisite: Math. 20F with a grade of C– or better. (S)

174. Introduction to Linear and Nonlinear Optimization with Applications (4)
The linear least squares problem, including constrained and unconstrained quadratic optimization and the relationship to the geometry of linear transformations. Introduction to nonlinear optimization. Applications to signal processing, system identification, robotics, and circuit design. Prerequisite: Math. 20F with a grade of C– or better. (S)

175. Elements of Machine Intelligence: Pattern Recognition and Machine Learning (4)

181. Physical Optics and Fourier Optics (4)
Ray optics, wave optics, beam optics, Fourier optics, and electromagnetic optics. Ray transfer matrix, matrices of cascaded optics, numerical apertures of step and graded index fibers. Fresnel and Fraunhofer diffractions, interference of waves. Gaussian and Bessel beams, the ABCD law for transmissions through arbitrary optical systems. Spatial frequency, impulse response and transfer function of optical systems, Fourier transform and imaging properties of lenses, holography. Wave propagation in various (inhomogeneous, dispersive, anisotropic or nonlinear) media. Prerequisites: ECE 103 and 107 with grades of C– or better. (S)

182. Electromagnetic Optics, Guided-wave, and Fiber Optics (4)
Polarization optics: crystal optics, birefringence. Guided-wave optics: modes, losses, dispersion, coupling, switching. Fiber optics: step and graded index, single and multimode operation, attenuation, dispersion, fiber optic communications. Resonator optics. Prerequisites: ECE 103 and 107 with grades of C– or better. (F)

183. Optical Electronics (4)
Quantum electronics, interaction of light and matter in atomic systems, semiconductors. Laser amplifiers
186L. Optical Information Systems (4)
Lab covering concepts in optical data systems including free-space communications, remote sensing and wavelength-multiplexed optical fiber transmission. (Lab fee: $35.00) Prerequisites: ECE 181 and 182 or 183 with grades of C– or better, or consent of instructor.

187. Introduction to Biomedical Imaging and Sensing (4)
Image processing fundamentals: imaging theory, image processing, pattern recognition; digital radiography, computerized tomography, nuclear medicine imaging, nuclear magnetic resonance imaging, ultrasound imaging, microscopy imaging. Prerequisite: Math. 20A-B-F, 20C or 21C, 20D or 21D, Phys. 2A-D, ECE 101 (may be taken concurrently) with grades of C– or better. (F)

190. Engineering Design (4)
Students complete a project comprising at least 50 percent or more engineering design to satisfy the following features: student creativity, open-ended formulation of a problem statement/specifications, consideration of alternative solutions/realistic constraints. Written final report required. Prerequisites: students enrolling in this course must have completed all of the breadth courses and one depth course. The department stamp is required to enroll in ECE 190. (Specifications and enrollment forms are available in the undergraduate office.)

191. Engineering Group Design Project (4)
Groups of students work to design, build, demonstrate, and document an engineering project. All students give weekly progress reports of their tasks and contribute a section to the final project report. Prerequisites: Completion of all of the breadth courses and one depth course. (F,W,S)

192. Senior Seminar (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small setting to explore an intellectual topic in ECE (at the upper-division level). Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. ECE 192 is no longer valid for ECE design credit, students should take ECE 190 instead. Prerequisites: department stamp and/or consent of instructor.

193H. Honors Project (4-8)
An advanced reading or research project performed under the direction of an ECE faculty member. Must contain enough design to satisfy the ECE program's four-unit design requirement. Must be taken for a letter grade. May extend over two quarters with a grade assigned at completion for both quarters. Prerequisite: admission to the ECE departmental honors program.

195. Teaching (2 or 4)
Teaching and tutorial activities associated with courses and seminars. Not more than four units of ECE 195 may be used for satisfying graduation requirements. (P/NP grades only.) Prerequisite: consent of the department chair.

197. Field Study in Electrical and Computer Engineering (4, 6, 12, or 16)
Directed study and research at laboratories and observatories away from the campus. (P/NP grades only) Prerequisites: consent of instructor and approval of the department.

198. Directed Group Study (2 or 4)
Topics in electrical and computer engineering whose study involves reading and discussion by a small group of students under direction of a faculty member. (P/NP grades only.) Prerequisite: consent of instructor.

199. Independent Study for Undergraduates (2 or 4)
Independent reading or research by special arrangement with a faculty member. (P/NP grades only) Prerequisite: consent of instructor.

GRADUATE

200. Research Conference (2)
Group discussion of research activities and progress of group members. (S/U grades only.) Prerequisite: consent of instructor. (F,W,S)

210. Information Systems in Manufacturing (4)
Basic problem solving and search techniques. Knowledge based and expert systems. Planning and decision support systems. Fuzzy logic and neural nets. Topics covered will include data models, query processing, distributed systems, enterprise computing and intelligent agents, fuzzy logic, neural nets. Prerequisite: basic engineering and introduction to computers. (W)

211. Manufacturing Engineering Seminar and Laboratory (2)
Combination of seminars, laboratory activities, and field trips. Seminars by top manufacturing engineers, managers, and student interns. Visits to manufacturing facilities. Techniques in accessing international technical and patent databases. Prerequisite: none.

212A. Principles of Nanoscience and Nanotechnology (4)
Introduction to and rigorous treatment of electronic, photonic, magnetic, and mechanical properties of materials at the nanoscale. Concepts from mathematical physics, quantum mechanics, quantum optics, and electromagnetic theory will be introduced as appropriate. Prerequisite: consent of instructor. (F)

212B. Nanophotonics (4)
Photonic properties of artificially engineered inhomogeneous nanoscale composite materials incorporating dielectrics, semiconductors, and/or metals. Near-field localization effects and applications. Device and component applications. Prerequisites: ECE 212A or consent of instructor. (W)

212C. Nanoelectronics (4)
Quantum states and quantum transport of electrons; single-electron devices; nanoelectronic devices and system concepts; introduction to molecular and organic electronics. Prerequisites: ECE 212B or consent of instructor. (S)

222. Nonlinear Waves with Dispersion (4)
This course explores nonlinear wave phenomena developing in a dispersive media. We shall investigate such phenomena as formation of solitons, collisionless shocks, nonlinear self focusing, and wave collapse. Analysis will be based on the solution of the main equations of nonlinear physics—Korteweg de Vries (KDV), Burgers, and nonlinear Schrodinger equation. Possible areas of application include nonlinear optics, fluid dynamics, plasma and space physics. Prerequisite: ECE 222A or PHYS 203A or equivalent. (S)

230A. Solid State Electronics (4)
This course is designed to provide a general background in solid state electronic materials and devices. Course content emphasizes the fundamental and current issues of semiconductor physics related to the ECE solid state electronics sequences.Prerequisites: fundamentals of quantum mechanics, ECE 135A-B, or equivalent. (F)

230B. Solid State Electronics (4)
Physics of solid-state electronic devices, including p-n diodes, Schottky diodes, field-effect transistors, bipolar transistors, pn-pn structures. Computer simulation of devices, scaling characteristics, high frequency performance, and circuit models. Prerequisite: ECE 230A. (W)

230C. Solid State Electronics (4)
This course is designed to provide a treatise of semiconductor devices based on solid state phenomena. Band structures carrier scattering and recombination processes and their influence on transport properties will be emphasized. Prerequisite: ECE 230A or equivalent. (S)

232. The Field Effect and Field Effect Transistors (4)
Physics of the field effect of elemental and III-V compound semiconductors related to the technology and characteristics of Schottky barrier gate, insulated gate, and junction gate field effect transistors. Prerequisite: consent of instructor. (S)

234B. Advanced Study of Defects in Solids (4)
Advanced topics in dislocation theory and dislocation dynamics. Defects and defects interactions. Atomicistic and subatomicistic effects. Physical models based on microscopic considerations. Cross-listed with MATS 250B. Prerequisite: ECE 234A or consent of Instructor. (W)

235. Nanometer-Scale VLSI Devices (4)
This course covers modern research topics in sub-100 nm scale, state-of-the-art silicon VLSI devices. Starting with the fundamentals of CMOS scaling to nanometer dimensions, various advanced device and circuit concepts, including RF CMOS, low power CMOS, silicon memory, silicon-on-insulator, SiGe bipolar, strained silicon MOSFET’s, etc. will be taught. The physics of near-ballistic transport in an ultimately scaled 10 nm MOSFET will be discussed in light of the recently developed scattering theory. Prerequisite: graduate standing. (F)
236A. Semiconductor Heterostructure Materials
This course covers the growth, characterization, and heterojunction properties of III-V compound semiconductors and group-IV semiconductor heterostructures for the subsequent courses on electronic and photonic device applications. Topics include epitaxial growth techniques, electrical properties of heterojunctions, transport and optical properties of quantum wells and superlattices. Prerequisites: ECE 230A-B-C or consent of instructor. (W)

236B. Optical Processes in Semiconductors
Absorption and emission of radiation in semiconductors. Radiative transition and nonradiative recombination. Ultra-fast optical phenomena. Laser and photodetector devices will be emphasized. Prerequisites: ECE 230A and 230C or equivalent. (W)

236C. Heterojunction Field Effect Transistors
Device physics and applications of isotype and anisotype heterojunctions and quantum wells, including band-edge discontinuity, band bending and space charge layers at heterojunction interfaces, charge transport normal and parallel to such interfaces, two-dimensional electron gas structures, modulation doping, heterojunction and insulated gate field effect transistors. Prerequisite: consent of instructor. (S)

236D. Heterojunction Bipolar Transistors
Current flow and charge storage in bipolar transistors. Use of heterojunctions to improve bipolar structures. Transient electron velocity overshoot. Simulation of device characteristics. Circuit models of HBTs. Requirements for high-speed circuit applications. Elements of bipolar process technology, with emphasis on III-V materials. Prerequisite: consent of instructor. (F)

237. Modern Materials Analysis
Analysis of the near surface of materials via ion, electron, and x-ray spectroscopies. Topics to be covered include particle solid interactions. Rutherford backscattering, secondary ion mass spectrometry, electron energy loss spectroscopy, particle induced x-ray emission, Auger electron spectroscopy, extended x-ray absorption, fine structure and channeling. Prerequisite: consent of instructor. (F)

238A. Thermodynamics of Solids
The thermodynamics and statistical mechanics of solids. Basic concepts, equilibrium properties of alloy systems, thermodynamic information from phase diagrams, surfaces and interfaces, crystalline defects. Multiple listed with Materials Science 201A. Prerequisite: consent of instructor. (F)

238B. Solid State Diffusion and Reaction Kinetics
Thermally activated processes. Boltzmann factor, homogeneous and heterogeneous reactions, solid state diffusion, Fick’s law, diffusion mechanisms, Kirkendall effects, Boltzmann-Mannato analysis, high diffusivity paths. Multiple listed with Materials Science 201B. Prerequisite: ECE 238A. (W)

240A. Lasers and Optics
Fresnel and Fraunhofer diffraction theory. Optical resonators, interferometry. Gaussian beam propagation and transformation. Laser oscillation and amplification, Q-switching and mode locking of lasers, some specific laser systems. Prerequisites: ECE 123, 124 or equivalent; Introductory quantum mechanics or ECE183. (F)

240B. Optical Information Processing
Space-bandwidth product, superresolution, space-variant optical system, partial coherence, image processing with coherent and incoherent light, processing with feedback, real-time light modulators for hybrid processing, nonlinear processing. Optical computing and other applications. Prerequisite: ECE 182 or equivalent. (W)

240C. Optical Modulation and Detection
Propagation of waves and rays in anisotropic media. Electro-optical switching and modulation. Acoustooptical deflection and modulation. Detection theory. Heterodyne detection, incoherent and coherent detection. Prerequisites: ECE 181, 183 or equivalent. (S)

241A. Nonlinear Optics
Second harmonic generation (color conversion), parametric amplification and oscillation, photorefractive effects and four-wave mixing, optical bistability; applications. Prerequisites: ECE 240A-C or consent of instructor. (F)

241B. Optical Devices for Computing
Application of electro-optic, magneto-optic, acoustooptic, and electro-absorption effects to the design of photonic devices with emphasis on spatial light modulation and optical storage techniques. Prerequisites: ECE 240A-C, or consent of instructor. (F)

241C. Holographic Optical Elements
Fresnel, Fraunhofer, and Fourier holography. Analysis of thin and volume holograms, reflection and transmission holograms, color and polarization holograms. Optically recorded and computer-generated holography. Applications to information storage, optical interconnections, 2-D and 3-D display, pattern recognition, and image processing. Prerequisite: ECE 182 or equivalent, or consent of instructor. (W)

241AL. Lasers and Holography Laboratory
Laser resonator design, construction, alignment, characterization. Operation and evaluation of molecular, gas, liquid dye, semiconductor lasers. Spatial and temporal coherence measurements. Design and fabrication of transmission, reflection, bleached, color, multiple exposure holograms. Prerequisites: ECE 181, 182, 183 or consent of instructor. (This course is cojoint with ECE 184. Graduate students will choose 50 percent of the experiments and receive two units of credit.) (F)

241BL. Optical Signal Processing Laboratory
Construction and characterization of Fourier/Fresnel transform, coherent/incoherent, imaging-processing systems. Design, coding, fabrication of spatial filters, computer-generated holograms. Experiments in nonlinear photorefractive phenomena and image-processing applications. Construction of vector-matrix multipliers. Optical systems design using Code-V. Prerequisites: ECE 181, 182, 183, or consent of instructor. (This course is cojoint with ECE 185. Graduate students will choose 50 percent of the experiments and receive two units of credit.) (W)

241CL. Optoelectronics and Communications Laboratory

242A. Nanophotonics
Photonic properties of artificially engineered inhomogeneous nanoscale composite materials (e.g., dielectrics, semiconductors, metalo-dielectrics); nanophotonic devices and components; resonant nanostuctures and resonant photonic devices and circuits; near field localization effects and applications; nanophotonics for on-chip integration; overview of fabrication and characterization techniques for nanophotonics. Prerequisites: ECE 240A-B-C. (S)

243B. Optical Fiber Communication
Optical fibers, waveguides, laser communication system. Modulation and demodulation; detection processes and communication receivers. Prerequisites: ECE 240A or 240B or 240C or equivalent. (W)

244A. Statistical Optics
Introduction to statistical phenomena in optics including first order properties of light waves generated from various sources. Coherence of optical waves, high-order coherence. Partial coherence and its effects on imaging systems. Imaging in presence of randomly inhomogeneous medium. Limits in photodetector detection of light. Prerequisite: ECE 240A-B or consent of instructor. (F)

244B. Quantum Electronics of Femtosecond Optical Pulses
Femtosecond optical pulses in linear dispersive media, Self-action of optical pulses, Parametric interaction of optical pulses, Self- and cross-phase modulation. Fast phase control, compression and shaping of optical pulses. Optical solitons. Applications of Femtosecond optical pulses. Prerequisite: ECE 240A-B-C or consent of instructor. (W)

245A. Advanced Acoustics I
Boundary value problems in vibrating systems, wave propagation in strings, bars, and plates. Fundamentals of acoustical transducers. Prerequisite: concurrent registration in ECE 145AL recommended. (F)

245B. Advanced Acoustics II
Theory of radiation transmission and scattering of sound with special application to ocean acoustics. Prerequisite: ECE 245A or consent of instructor. Concurrent registration in ECE 145BL recommended. (W)

245C. Advanced Acoustics III
Signal processing in underwater acoustics. Theory and hardware embodiments. Prerequisite: ECE 245B or consent of instructor. Concurrent registration in ECE 145CL recommended. (S)

246A. Materials for Magnetic Recording
Properties of magnetic materials utilized as magnetic recording media and heads; magnetic structure of oxides and metals; fine particle magnetism; micro-magnetic analysis; hysteresis and reversal mechanisms of hard materials; dynamic processes and domain patterns of soft materials; thermal fluctuations; multilayer phenomena: giant magnetoresistance. Prerequisites: undergraduate electromagnetism and solid state physics or consent of instructor. (Alternate years)

246B. Analysis of the Magnetic Recording Process
In-depth analysis of the magnetic recording process. Magnetic fields and Fourier transforms of fields and magnetized media and heads; playback process for single and multiple transitions. Reciprocity theorem for inductive and magnetoresistive heads; record process modeling; interferences and nonlinearities; medium noise mechanisms and correlations; signal to noise ratios. Prerequisites: undergraduate electromagnetic theory and mathematical methods or consent of instructor. (Alternate years)
246C. Magnetic Recording Laboratory (4)
Basic measurements in magnetic recording. Fields and Fourier transforms of head structures using resistance paper measurements and computer analysis; inductance and B-H loop measurements of recording heads and core materials; recording system calibration and magnetization pattern investigation utilizing spectral measurements (FFT). Prerequisites: ECE 246B and laboratory experience. (alternate years)

247A. Advanced BioPhotonics (4)
Basic physics and chemistry for the interaction of photons with matter, including both biological and synthetic materials; use of photonic radiation pressure for manipulation of objects and materials; advanced optoelectronic detection systems, devices and methods, including time resolved fluorescent and chemiluminescent methods, fluorescent energy transfer (FRET) techniques, quantum dots, and near-field optical techniques; underlying mechanisms of the light sensitive biological systems, including chloroplasts for photosynthetic energy conversion and the basis of vision processes. Cross-listed with BENG 247A. Prerequisite: graduate standing. (F)

247B. BioElectronics (4)
Topics to be covered will include photolithographic techniques for high-density DNA microarray production, incorporation of CMOS control into electronic DNA microarrays, direct electronic detection technology used in microarrays and biosensor devices, and focus on problems related to making highly integrated devices (lab-on-a-chip, in-vivo biosensors, etc.) from heterogeneous materials and components. Cross-listed with BENG 247B. Prerequisite: graduate standing. (W)

247C. BioNanotechnology (4)
Topics include: nanosensors and nanodevices for both clinical diagnostics and biowarfare (bioterror) agent detection; nanomaterials for drug delivery; nanoarrays and nanodevices; use of nanoanalytical devices and systems; methods and techniques for modification or functionalization of nanoparticles and nanostructures with biological molecules; nanosstructural aspects of fuel cells and bio-fuel cells; potential use of DNA and other biomolecules for computing and ultra-high-density data storage. Cross-listed with BENG 247C. Prerequisite: graduate standing. (S)

250. Random Processes (4)
Random variables, probability distributions and densities, characteristic functions. Convergence in probability and in quadratic mean, Stochastic processes, stationarity. Processes with orthogonal and independent increments. Power spectrum and power spectral density. Stochastic integrals and derivatives. Spectral representation of wide sense stationary processes, homomorphic processes, moving average representations. Prerequisite: ECE 153 or equivalent or consent of instructor. (F)

251AN. Digital Signal Processing I (4)
Discrete random signals; conventional (FFT based) spectral estimation. Coherence and transfer function estimation; model-based spectral estimation; linear prediction and AR modeling. Levinson-Durbin algorithm and lattice filters, minimum variance spectrum estimation. Cross-listed with SIO 207A. Prerequisites: ECE 153 in addition to either ECE 161 or 161A, or consent of instructor. (W)

251BN. Digital Signal Processing II (4)
Adaptive filter theory, estimation errors for recursive least squares and gradient algorithms, convergence and tracking analysis of LMS, RLS, and Kalman filtering algorithms, comparative performance of Weiner and adaptive filters, transversal and lattice filter implementations, performance analysis for equalization, noise cancelling, and linear prediction applications. Cross-listed with SIO 207B. Prerequisite: ECE 251AN. (S)

251CN. Filter Banks and Wavelets (4)
Fundamentals of multirate systems (noble identities, polyphase representations), maximally decimated filter banks (QMF filters for 2-channels, M-channel perfect reconstruction systems), paraunitary perfect reconstruction filter banks, the wavelet transform (multiresolution, discrete wavelet transform, filter banks and wavelet). Prerequisite: ECE 161B or equivalent. (F)

251DN. Array Processing (4)
The coherent processing of data collected from sensors distributed in space for signal enhancement and noise rejection purposes or wavefield directivity estimation. Conventional and adaptive beamforming, Matched field processing. Sparse array design and processing techniques. Applications to acoustics, geophysics, and electromagnetics. Prerequisite: 251AN, ECE 161 or 151A (ECE 161, 162A-B series recently renumbered to ECE 161A-B-C), or consent of instructor. (F)

252A. Speech Compression (4)
Speech signals, production and perception, compression theory, high rate compression using waveform coding (PCM, DPCM, ADPCM, ...), DSP tools for low rate coding, LPC vocoders, sinusoidal transform coding, multi-band coding, medium rate coding using code excited linear prediction (CELP). Prerequisite: ECE 161A or 161. (W)

252B. Speech Recognition (4)
Signal analysis methods for recognition, dynamic time warping, isolated word recognition, hidden markov models, connectedword, and continuous speech recognition. Prerequisites: ECE 109, ECE 262A. (S)

253A. Fundamentals of Digital Image Processing (4)
Image quantization and sampling, image transforms, image enhancement, image compression. Prerequisites: ECE 109, ECE 262A. (S)

253B. Digital Image Analysis (4)
Image morphology, edge detection, scene segmentation, texture analysis, registration and fusion, feature analysis, time-varying images. Prerequisite: ECE 253A or consent of instructor. (S)

254. Detection Theory (4)
Hypothesis testing, detection of signals in white and colored Gaussian noise; Karhunen-Loeve expansion, estimation of signal parameters, maximum-likelihood detection; resolution of signals; detection and estimation of stochastic signals; applications to radar, communications, and optics. Prerequisite: ECE 153. (F)

255A. Information Theory (4)
Introduction to basic concepts, source coding theorems, capacity, noisy-channel coding theorem. Prerequisite: ECE 154A-B-C or consent of instructor. (F)

255BN/CN. Source Coding I, II (4/4)
Theory and practice of lossy source coding, vector quantization, predictive and differential encoding, universal coding, source-channel coding, asymptotic theory, speech and image applications. Prerequisite: ECE 250 and 259A or 259AN, or consent of instructor. (WS)

256A. Time Series Analysis and Applications (4-4)
Stationary processes; spectral representation; linear transformation. Recursive and nonrecursive prediction and filtering; Wiener-Hopf and Kalman-Bucy filters. Series expansions and applications. Time series analysis; probability density, covariance and spectral estimation. Inference from sampled-data, sampling theorems; equally and non-equally spaced data, applications to detection and estimation problem. Prerequisite: ECE 153. (F,W)

257A. Multiuser Communication Systems (4)
Multiple access systems, random access protocols, capacity, stability, delay and control, reservation and hybrid schemes. Prerequisites: ECE 153 and 159A, or equivalent. Note: ECE 159A is an integral part of this course and should be taken in the fall quarter. (W)

257B. Principles of Wireless Networks (4)
This course will focus on the principles, architectures, and analytical methodologies for design of multi-user wireless networks. Topics to be covered include cellular approaches, call processing, digital modulation, adaptive arrays, broadband networks, and wireless packet access for multimedia service. Prerequisites: ECE 159B and 154B. (S)

258A-B. Digital Communication (4-4)
Digital communication theory including performance of various modulation techniques, effects of inter-symbol interference, adaptive equalization, spread spectrum communication. Prerequisites: ECE 154A-B-C and ECE 254 or consent of instructor. (W)

259AN. Algebraic Coding (4)
Fundamentals of block codes, introduction to groups, rings and finite fields, nonbinary codes, cyclic codes such as BCH and RS codes, decoding algorithms, applications. Prerequisite: consent of instructor. (F)

259BN. Trellis-Coded Modulation (4)
Coding theory developed from the viewpoint of digital communications engineering, information theoretic limits for basic channel models, convolutional codes, maximum-likelihood decoding, Ungerboeck codes, codes based on lattices and cosets, rotational invariance, performance evaluation, applications of modem design. Prerequisites: ECE 154A-B-C, ECE 259A or 259AN, or consent of instructor. (W)

259CN. Advanced Coding and Modulation for Digital Communications (4)
Advanced coding and modulation techniques for efficient data transmission and recording; constellation shaping by regions, Voronoi constellations, shell mapping, coding for intersymbol-interference channels, precoding methods, multilevel coding; coding for fading channels, applications to wireline and wireless communications, digital recording. Prerequisites: ECE 259A-B or 259AN-BN. (S)

260A. VLSI Digital System Algorithms and Architectures (4)
Custom and semicustom VLSI design from the system designer's perspective. VLSI system algorithms, parallel processing, architectures and interconnection networks, and design mapping methodologies will be emphasized. VLSI computer-aided design (CAD) tools will be introduced. Knowledge of basic semiconductor electronics and digital design is assumed. Prerequisite: undergraduate level semiconductor electronics and digital system design; ECE 165 or equivalent or consent of instructor. (F)
260B. VLSI Integrated Circuits and Systems Design (4)
Computer arithmetic, control and memory structures for VLSI implementations at logic, circuit, and layout level. Computer-aided design and performance simulations, actual design projects for teams of two to three students per team. Layout done on CAD workstations for project IC chip fabrication. Design projects will be reviewed in class presentation. Prerequisite: ECE 260A. (W)

260C. VLSI Advanced Topics (4)
Advanced topics seminar with issues from system theory, to new technologies, to alternative design methodologies will be subject for review. Class discussion, participation and presentations of projects and special topics assignments will be emphasized. The testing results of fabricated IC chips from other VLSI design classes will be presented in class and in a final report. Prerequisite: ECE 260B. (S)

261A. Design of Analog and Digital GaAs Integrated Circuits I (4)
Introduction to analytical and computer-aided design (CAD) techniques for microwave integrated circuits. Design of active two-ports using scattering parameters. Monolithic realization of low-noise amplifiers using GaAs FETs and HEMTs. Design of monolithic distributed amplifiers. Design of monolithic power amplifiers and mixers. Prerequisite: consent of instructor. (W)

261B. Design of Analog and Digital GaAs Integrated Circuits II (4)
Introduction to GaAs digital integrated circuits (IC). Design of simple digital GaAs ICs using DCFL. Design of digital building blocks for complex multipliers, FET butterfly chips, DDS, and oversampled A/D converters. Prerequisite: consent of instructor. (S)

264A. CMOS Analog Integrated Circuits and Systems I (4)
Frequency response of the basic CMOS gain stage and current mirror configurations. Advanced feedback and stability analysis; compensation techniques. High-Performance CMOS amplifier topologies. Switched capacitor circuits. Analysis of noise and distortion. Prerequisites: ECE 164 and 153 or equivalent courses. (W)

264B. CMOS Analog Integrated Circuits and Systems II (4)
Continuous-time filters: synthesis techniques and CMOS circuit topologies. Switched-capacitor filters: synthesis techniques and CMOS circuit topologies. Overview of CMOS samplers, data converters, mixers, modulators, oscillators, and PLLs. Prerequisites: ECE 264A and 251A or 251AN. (S)

264C. CMOS Analog Integrated Circuits and Systems III (4)
Integrated CMOS analog/digital systems: Analog to digital and digital to analog converters, Nyquist versus oversampling, linearity, jitter, randomization, calibration, speed versus resolution, pipeline, folding, interpolation, averaging. Prerequisites: ECE 163 and 164. (W)

264D. CMOS Analog Integrated Circuits and Systems IV (4)
PLL: Phase noise effect, VCO, phase detector, charge pump, integer/fractional-N frequency synthesizer, clock and data recovery, decision feedback, Filter: Continuous-time filter, I-Q complex filter, raised-cosine, Gaussian, delay, zero equalizers. Prerequisites: ECE 163 and 164. (S)

265A. Communication Circuit Design I (4)
Introduction to noise and linearity concepts. System budgeting for optimum dynamic range. Frequency plan tradeoffs. Linearity analysis techniques. Down-conversion and up-conversion techniques. Modulation and de-modulation. Microwave and RF system design communications. Current research topics in the field. Prerequisites: consent of instructor. (F)

265B. Communication Circuit Design II (4)
Radio frequency integrated circuits: impedance matching concepts, low-noise amplifiers, AGCs, Mixers, filters. Comparison between BJTs, CMOS, and GaAs technologies for radio frequency and microwave applications. Device modeling for radio frequency applications. Design tradeoffs of linearity, noise, power dissipation, and dynamic range. Current research topics in the field. Prerequisites: ECE 164 and 265A or consent of instructor. (W)

267. Wireless Embedded and Networked Systems (4)
Mobile computing, wireless networking systems, strong communication and computation modules, behavior of emerging wireless/networked systems, and strong focus on sensor networks. Operation of physical layer communication, communication modules, emerging wireless and networked systems behavior (sensor networks, ubiquitous computing, and personal area networks). Prerequisite: consent of instructor. (F)

270A-C. Neurocomputing (4-4-4)
Neurocomputing is the study of biological information processing from an artificial intelligence engineering perspective. This three-quarter sequence covers neural network structures for arbitrary objects (perceptrons, motor, thought process, abstraction, etc.) representation, learning of pairwise object attribute descriptor antecedent support relationships, the general mechanism of thought, and situationally responsive generation of movements and thoughts. Experimental homework assignments strongly reinforce the fundamental concepts and provide experience with myriad associated technical issues. Prerequisite: graduate standing, an understanding of mathematics through basic linear algebra and probability, or consent of instructor. (F,WS)

271A. Statistical Learning I (4)
Bayesian decision theory; parameter estimation; maximum likelihood; the bias-variance trade-off; Bayesian estimation; the predictive distribution; conjugate and noninformative priors; dimensionality and dimensionality reduction; principal component analysis; Fisher's linear discriminant analysis; density estimation; parametric vs. kernel-based methods; expectation-maximization; applications. Prerequisites: ECE 109. (F)

271B. Statistical Learning II (4)
Linear discriminants; the Perceptron; the margin and large margin classifiers; learning theory; empirical vs. structural risk minimization; the VC dimension; kernel functions; reproducing kernel Hilbert spaces; regularization theory; Lagrangian optimization; duality theory; the support vector machine; boosting; Gaussian processes; applications. Prerequisites: ECE 109, 271A. (F)

272A. Stochastic Processes in Dynamic Systems (4)
Stochastic processes, focusing on detailed discussion of discrete-time Markov chains. Demonstrate the relationship to dynamic systems under uncertainty, introducing ergodicity, diffusion, estimation, and detection. Extend to continuous-time Markov chains and optimization of stochastic dynamic systems. Prerequisite: ECE 250A. (F)

273. Convex Optimization and Applications (4)
This course covers some convex optimization theory and algorithms. It will mainly focus on recognizing and formulating convex problems, duality, and applications in a variety of fields (system design, pattern recognition, combinatorial optimization, financial engineering, etc.). Prerequisite: basic linear algebra is strongly recommended. (F)

275A. Parameter Estimation I (4)
Linear least squares (batch, recursive, total, sparse, pseudo-inversion, QR, SVD) statistics, figures of merit (bias, consistency, Cramer-Rao lower-bound, efficiency); maximum likelihood estimation (MLE); sufficient statistics; algorithms for computing the MLE including the expectation-maximization (EM) algorithm. The problem of missing information: the problem of outliers. Prerequisites: ECE 109 and ECE 153 with grades of C– or better. (F)

275B. Parameter Estimation II (4)
The Bayesian framework and the use of statistical priors; sufficient statistics and reproducing probability distributions; maximum mean square estimation (MSE); linear minimum mean square estimation; maximum a posteriori (MAP) estimation; minimax estimation; Kalman filter and extended Kalman filter (EKF) Baum-Welsh algorithm; Viterbi algorithm. Applications to identifying the parameters and states of hidden Markov models (HMMs) including ARMA, state-space, and finite-state dynamical systems. Applications to parametric and non-parametric density estimation. Prerequisites: ECE 153 and ECE 275A with grades of C– or better. (W)

276A-B. Robot Kinematics, Dynamics, and Control (4-4)

280. Special Topics in Electronic Devices and Materials (4)
A course to be given at the discretion of the faculty at which topics of interest. In electronic devices and materials will be presented by visiting or resident faculty members. It will not be repeated so it may be taken for credit more than once. Prerequisite: consent of instructor. (S)

282. Special Topics in Optoelectronics (4)
A course to be given at the discretion of the faculty at which topics of interest in optoelectronic materials, devices, systems, and applications will be presented by visiting or resident faculty members. It will not be repeated so it may be taken for credit several times. Prerequisite: consent of instructor.

283. Special Topics in Electronic Circuits and Systems (4)
A course to be given at the discretion of the faculty at which topics of interest in electronic circuits and systems will be presented by visiting or resident faculty.
members. It will not be repeated so it may be taken for credit more than once. Prerequisite: consent of instructor.

284. Special Topics in Computer Engineering (4)
A course to be given at the discretion of the faculty at which topics of interest in computer engineering will be presented by visiting or resident faculty members. It will not be repeated so it may be taken for credit more than once. Prerequisite: consent of instructor.

285. Special Topics in Robotics and Control Systems (4)
A course to be given at the discretion of the faculty at which topics of interest in robotics and control systems will be presented by visiting or resident faculty members. It will not be repeated so it may be taken for credit more than once. Prerequisite: consent of instructor.

287A. Special Topics in Communication Theory and Systems (4)
A course to be given at the discretion of the faculty at which topics of interest in information science will be presented by visiting or resident faculty members. It will not be repeated so it may be taken for credit more than once. Prerequisite: consent of instructor.

288. Special Topics in Applied Physics (4)
Topics of interest in applied physics. Topics will vary from quarter to quarter. May be repeated for credit not more than three times. Prerequisite: consent of instructor.

290. Graduate Seminar on Current ECE Research (2)
Weekly discussion of current research conducted in the Department of Electrical and Computer Engineering by the faculty members involved in the research projects.

291. Industry Sponsored Engineering Design Project (4)
One or two students as a group design, build, and demonstrate an engineering project that is sponsored by local industry. All students give a weekly progress report on their tasks and write a final report. The projects originate from the actual needs of industry in the general area of electrical and computer engineering. This course may count towards the fulfillment of the MEng degree. Individual final exam and final presentation. Prerequisite: ECE 230 or 240 or 251 or 253 or 258 or equivalent.

292. Graduate Seminar in Communication Theory and Systems (2)
Weekly discussion of current research literature.

293. Graduate Seminar in Applied Solid State Physics (2)
Research topics in applied solid state physics and quantum electronics.

294. Graduate Seminar in Computational Statistics and Machine Learning (2)
Weekly discussion of both fundamental and state-of-the-art research topics in computational statistics and machine learning. Topics vary based upon current research, and have included: Non-parametric Bayesian models; sampling methods for inference in graphical models; Markov Chain Monte Carlo (MCMC) methods. Prerequisites: consent of instructor. (FW/WS)

295. Graduate Seminar in Optical Signal Processing (2)
Research topics of current interest in holography.

296. Graduate Seminar in Applied Solid State Physics (2)
Research topics in applied solid state physics and quantum electronics.

297. Graduate Seminar in Computational Statistics and Machine Learning (2)
Weekly discussion of both fundamental and state-of-the-art research topics in computational statistics and machine learning. Topics vary based upon current research, and have included: Non-parametric Bayesian models; sampling methods for inference in graphical models; Markov Chain Monte Carlo (MCMC) methods. Prerequisites: consent of instructor. (FW/WS)

298. Independent Study (1-16)
Open to properly qualified graduate students who wish to pursue a problem through advanced study under the direction of a member of the staff. (S/U grades only.) Prerequisite: consent of instructor.

299. Research (1-16)
(S/U grade only.)

501. Teaching (1-4)
Teaching and tutorial activities associated with courses and seminars. Not required for candidates for the Ph.D. degree. Number of units for credit depends on number of hours devoted to class or section assistance. (S/U grade only.) Prerequisite: consent of department chair.

Mechanical and Aerospace Engineering (MAE)

STUDENT AFFAIRS: 182 Engineering Building II, Warren College
http://maeweb.ucsd.edu
http://aerospace.ucsd.edu

Professors
D. J. Benson, Ph.D.
R. Bitmead, Ph.D., Cymer Corporation
Endowed Chair
R. J. Cattolica, Ph.D.
P. C. Chau, Ph.D.
C. H. Gibson, Ph.D.
J. D. Goddard, Ph.D.
A. Hoger, Ph.D.
J. Jin, Ph.D., Director, Materials Science Program,
Kazuo Iwama Endowed Chair
J. Kosmatka, Ph.D., Calloway Golf Endowed Chair
S. Krasheninnikov, Ph.D.
M. Krtic, Ph.D.
J. Lasheras, Ph.D.
P. F. Linden, Ph.D., Blaker Chair in Environmental Engineering
X. Markenscoff, Ph.D.
W. M. McEneaney, Ph.D.
J. M. McKittrick, Ph.D.
M. A. Meyers, Ph.D.
H. Murakami, Ph.D.
S. Nemat-Nasser, Ph.D., Director, Center of Excellence for Advanced Materials
V. Nesterenko, Ph.D.
C. Pozrikidis, Ph.D.
S. Sarkar, Ph.D.
K. Seshadri, Ph.D.
R. E. Skelton, Ph.D.
J. B. Talbot, Ph.D.
F. E. Talke, Ph.D., CMRR Endowed Chair
G. Tynan, Ph.D.
K. S. Vecchio, Ph.D.
F. A. Williams, Ph.D., Director, Center for Energy Research

Professors Emeritus
H. Bradner, Ph.D.
R. W. Conn, Ph.D.
P. A. Libby, Ph.D.
S.-C. Lin, Ph.D.
S. Middleman, Ph.D.
John W. Miles, Ph.D.
D. R. Miller, Ph.D.
D. B. Olfe, Ph.D.
S. S. Penner, Ph.D.
A. M. Schneider, Sc.D.
H. W. Sorenson, Ph.D.
G. Thomas, Ph.D.

Associate Professors
T. R. Bewley, Ph.D.
S. Buckley, Ph.D.
R. deCallafon, Ph.D.
S. Gille, Ph.D.
R. K. Herz, Ph.D.
S. G. Llewellyn-Smith, Ph.D.
K. Nomura, Ph.D.
D. M. Tartakovsky, Ph.D.

Assistant Professors
P. Bandaru, Ph.D.
F. Beg, Ph.D.
J. Kleissl, Ph.D.
S. Matinez Diaz, Ph.D.

Affiliated Faculty
L. Armi, Ph.D., Professor, SIO
Y. Bahadori, Ph.D., Associate Adjunct Professor, MAE
M. Buckingham, Ph.D., Professor, SIO
N. Delson, Ph.D., Academic Coordinator
R. Freeman, Ph.D., Adjunct Professor, MAE
A. Groisman, Ph.D., Assistant Professor, Physics
G. Hegemier, Ph.D., Professor, Structural Engineering
V. Lubarda, Ph.D., Adjunct Professor, MAE
W. K. Melville, Ph.D., Professor, SIO
F. Najmabadi, Professor, Electrical and Computer Engineering
R. Pinkel, Ph.D., Professor, SIO
J. Rottman, Ph.D., Adjunct Professor, MAE
J. Whitesell, Ph.D., Chemistry/Biochemistry
K. Winters, Ph.D., Adjunct Professor, MAE

Professional Research Staff
G. Antar, Ph.D., Assistant Research Scientist, CER/MAE
The Department of Mechanical and Aerospace Engineering (MAE) offers traditional ABET accredited engineering programs leading to the B.S. degree in mechanical engineering, and aerospace engineering. MAE also offers traditional nonaccredited engineering programs leading to the B.S. degree in engineering science and environmental engineering. The B.S. programs require a minimum of 196 units. The Chemical Engineering Program (CENG) is an interdepartmental program and is described more completely under the Chemical Engineering Program section in this catalog.

All MAE programs of study have strong components in laboratory experimentation, numerical computation, and engineering design. Design is emphasized throughout the curricula by open-ended homework problems, by laboratory and computer courses which include student-initiated projects, and finally by senior design project courses which often involve teams of students working to solve engineering design problems brought in from industry. The MAE programs are designed to prepare students receiving bachelor’s degrees for professional careers or for graduate education in their area of specialization. In addition, the programs can also be taken by students who intend to use their undergraduate engineering education as preparation for postgraduate professional training in nontraditional fields such as business administration, law, or medicine.

The Undergraduate Program

Degree and Program Options

The Department of Mechanical and Aerospace Engineering (MAE) offers traditional ABET accredited engineering programs leading to the B.S. degree in mechanical engineering, and aerospace engineering. MAE also offers traditional nonaccredited engineering programs leading to the B.S. degree in engineering science and environmental engineering. The B.S. programs require a minimum of 196 units. The Chemical Engineering Program (CENG) is an interdepartmental program and is described more completely under the Chemical Engineering Program section in this catalog.

All MAE programs of study have strong components in laboratory experimentation, numerical computation, and engineering design. Design is emphasized throughout the curricula by open-ended homework problems, by laboratory and computer courses which include student-initiated projects, and finally by senior design project courses which often involve teams of students working to solve engineering design problems brought in from industry. The MAE programs are designed to prepare students receiving bachelor’s degrees for professional careers or for graduate education in their area of specialization. In addition, the programs can also be taken by students who intend to use their undergraduate engineering education as preparation for postgraduate professional training in nontraditional fields such as business administration, law, or medicine.

Mechanical engineering is a traditional four-year curriculum in mechanics, vibrations, thermodynamics, fluid flow, heat transfer, materials, control theory, and mechanical design. Graduates find employment in the mechanical and aerospace industries as well as electro-mechanical or biomedical industries. Mechanical engineers are involved in material processing, manufacturing, assembling, and maintenance of life-line facilities such as power plants.

Mechanical design includes conceptual design, drafting with 3D CAD programs, stress, dynamics, heat transfer or fluid dynamics analyses, and the optimization of the total system for superior performance and customer satisfaction. In manufacturing, the objective is to enhance efficiency and economy by utilizing numerical control (NC) of machine tools, mechatronics, micro-machining, and rapid prototyping. Currently, engineers have available computers, process models, and sensors to improve the quality and productivity of the manufacturing lines. In preparation for this modern era, the mechanical engineering curriculum emphasizes CAD courses, computer courses, laboratory courses, and design courses in addition to providing a strong background in basic science.

The following educational objectives have been established for the mechanical engineering program:

1. To provide a sound introduction to the basic sciences that underlie the disciplines of mechanical and aerospace engineering
2. To provide a thorough training in methods of analysis, including problem formulation and the mathematical and computational skills required by mechanical engineers
3. To teach students the experimental and data analysis techniques required for engineering applications
4. To teach the fundamentals of the design process, including project management, the synthesis of information from different disciplinary areas, and innovation and creative problem solving in an engineering setting
5. To prepare students in the skills required for successful participation on teams and in leadership positions, including effective written and oral communication
6. To instill in our students an understanding of their professional and ethical responsibilities
7. To provide students with the opportunity to gain a range of experiences through classroom and extramural activities on campus and through partnerships and internships with industry, with primary and secondary schools, and with other organizations

Aerospace engineering is a four-year curriculum that prepares students for a career in the aeronautical and astronautical industries, related technology industries, or for graduate school.

The mission of the aerospace engineering program is to prepare students to be outstanding scientists and engineering leaders by emphasizing engineering fundamentals, principles of professional practices, and their integration into the design/development of advanced aeronautical and astronautical systems. The primary goals are:

• to provide our students with a strong technical education that will enable them to have successful careers as professional aerospace engineers, as educators in academia, and as members of other professions
• to prepare our students for rapid technological change with the core knowledge central to assuring that they are able to continuously improve their skills across a range of disciplines throughout their professional careers
• to prepare our students to communicate effectively and to deal knowledgeably and ethically with the impact of technology in our society and on global issues

The curriculum was developed to emphasize engineering fundamentals, aerospace topics, and the integration of these fundamentals and topics into the design of an aerospace system. Courses in engineering fundamentals include materials, solid and fluid mechanics, thermodynamics, computer modeling, computer-aided-design, numerical analysis, and controls. Courses covering the aerospace engineering topics include aerodynamics, aerospace structures, flight mechanics, dynamics and control of aerospace vehicles, and propulsion. Students complete the program by taking a two-quarter capstone design course that integrates all of their aerospace education into the design, development, and testing of an aeronautical or astronautical vehicle or component. Throughout the program, students take laboratory courses that expose them to modern testing techniques and enhance their understanding of complex engineering topics. The program’s main objectives are:

1. to provide students with a strong foundation in engineering fundamentals; in-depth knowledge of key topics in aerospace engineering including aerodynamics, propulsion, flight mechanics, orbital mechanics, aerospace structures and materials, and design and control of aerospace systems; and an awareness of the value of life-long learning
2. to provide thorough training in methods of analysis and problem-solving including mathematical and computational skills and use of contemporary software and information technology tools
3. to teach students the experimental and data analysis techniques required for aerospace engineering applications
4. to teach the fundamentals of the open-ended design process, including project management, synthesis and integration of information from fundamental and interdisciplinary areas, manufacturing and incorporation of non-technical issues, and innovation and creative problem solving in an engineering environment
5. to prepare students with the skills required for successful participation on teams and for leadership positions, including effective written and oral communication skills and professionalism
6. to instill in our students an understanding of the role and importance of professional responsibility and engineering ethics
7. to provide students with the opportunity to gain a range of experiences through classroom and extramural activities on campus and through participation and internships with industry and other organizations

Further discussion of the degree requirements and policies are provided in the Aerospace Engineering Undergraduate Student Handbook.

The engineering science program resembles the Mechanical Engineering Program, except the amount of mechanical design is reduced and control theory is not required. In addition to core courses in dynamics, vibrations, structures, fluid mechanics, thermodynamics, heat transfer, and laboratory experimentation, a large number of technical electives are scheduled. This aspect of the curriculum allows flexibility by permitting specialization and in-depth study in one area of the engineering sciences or through a sequence of courses on various emerging technologies. Students must consult their advisors to develop a sound course of study to fulfill the technical elective of this program. Although a sequence in non-sciences may be permitted, the faculty advisors may insist on a substantial number of MAE or other science courses as technical electives.

Environmental engineering is a four-year curriculum that resembles the chemical engineering curriculum in its first two years, with fundamental engineering courses in mechanics, thermodynamics, physics, chemistry, and mathematics. In the third and fourth year, the programs diverge: an environmental engineering sequence is offered, as well as further specialization in fluid mechanics, and a wide choice of technical electives, both from within MAE and other departments. The environmental engineering major focuses on conveying an understanding and awareness of the fundamental processes associated with human industrial activity that have environmental implications, and on equipping the next generation of engineers with the tools to develop technologies that enable sustainable economic growth.

The following educational objectives have been established for the environmental engineering program:

1. to provide a sound introduction to the basic sciences that underlie the disciplines of environmental engineering
2. to provide a thorough training in methods of analysis, including problem formulation and the mathematical and computational skills required by environmental engineers
3. to teach students the experimental and data analysis techniques required for engineering applications
4. to teach the fundamentals of the design process, including project management, the synthesis of information from different
disciplinary areas, and innovation and creative problem solving in an engineering setting

5. to prepare students in the skills required for successful participation on teams and in leadership positions, including effective written and oral communication

6. to instill in our students an understanding of their professional and ethical responsibilities

7. to provide students with the opportunity to gain a range of experiences through classroom and extramural activities on campus and through partnerships and internships with industry, with primary and secondary schools, and with other organizations

Other Undergraduate Programs of Study in MAE

The engineering mechanics minor involves successful completion of seven MAE courses, including at least five upper-division courses open to students who meet the course prerequisites: one must be MAE 130A; one must be 101A (or CENG 101A) or 131A (or both may be taken); and the balance must be selected from MAE 3, 9 or 10, 20, 110A, CENG 102, 130B, and 160. This set of courses provides a good introduction to engineering analysis and would be useful to non-engineering majors desiring a background that could be used in professional communication with engineers.

Program Accreditation

The B.S. programs in mechanical engineering and aerospace engineering are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET/EAC).

Major Requirements

Specific course requirements for each major program are outlined in tables in this section of the catalog. In addition to the required technical courses specifically indicated, a suggested scheduling of humanities and social science courses (HSS) are distributed in the curricula for students to use to meet college general-education requirements. To graduate, students must maintain an overall GPA of at least 2.0, and the department requires at least a C– grade in each course required for the major.

Deviations from these programs of study must be approved by the Undergraduate Affairs Committee prior to taking alternative courses. In addition, technical elective (TE) course selections must have departmental approval prior to taking the courses. In the accredited programs, TE courses are restricted to meet ABET standards. Courses such as MAE 195, 197, and 198 are not allowed as a technical elective in meeting the upper-division major requirements. MAE 199 can be used as a technical elective only under restrictive conditions. Policy regarding these conditions may be obtained from the department’s Student Affairs Office.

Students with different academic preparation may vary the scheduling of lower-division courses such as math, physics and chemistry, but should consult the department. Deviations in scheduling MAE upper-division courses is discouraged and requires prior approval. Most lower-division courses are offered more than once each year to permit students some flexibility in their program scheduling. However, many MAE upper-division courses are taught only once per year, and courses are scheduled to be consistent with the curricula as shown in the tables. When possible, MAE does offer large enrollment courses more than once each year. A tentative schedule of course offerings is available from the department each spring for the following academic year.

General-Education/College Requirements

For graduation each student must satisfy general-education course requirements determined by the student’s college as well as the major requirements determined by the department. The six colleges at UCSD require widely different general-education courses, and the number of such courses differs from one college to another. Each student should choose his or her college carefully, considering the special nature of the college and the breadth of general education.

Each MAE program allows for humanities and social science (HSS) courses so that students can fulfill their college requirements. In the ABET accredited programs, students must develop a program that includes a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. It should be noted, however, that some colleges require more than the nine or ten HSS courses indicated in the curriculum tables. Accordingly, students in these colleges could take longer to graduate than the indicated four-year schedule. Students must consult with their college to determine which HSS courses to take.

Professional Licensing

After graduation, all students are encouraged to take the Fundamentals of Engineering (FE) examination as the first step in becoming licensed as a professional engineer (PE). Students graduating from an accredited program can take the FE examination after FE certification and two years of work experience; students graduating from a nonaccredited program can take the PE examination after FE certification and four years of work experience.

For further information please contact your local Board of Registration for Professional Engineers and Land Surveyors.

Mechanical Engineering

The Mechanical Engineering Program has a traditional ABET accredited four-year curriculum involving mechanics, vibrations, thermodynamics, fluid flow, heat transfer, materials, control theory, and mechanical design. Graduates of this program are expected to have the following skills, knowledge, and abilities:

1. An ability to apply knowledge of mathematics, science, and engineering to mechanical engineering problems

2. An ability to design and conduct experiments, as well as to analyze and interpret data

3. An ability to design mechanical and thermal systems, components, or processes to meet desired needs

4. An ability to function on multi-disciplinary teams

5. An ability to identify, formulate, and solve engineering problems

6. An understanding of professional and ethical responsibility

7. An ability to communicate effectively with written, oral, and visual means

8. The broad education necessary to understand the impact of engineering solutions in a global and societal context

9. A recognition of the need for, and an ability to engage in life-long learning
10. A knowledge of contemporary issues
11. An ability to use modern engineering techniques, skills, and computing tools necessary for engineering practice.
12. A familiarity with chemistry, calculus-based physics, and advanced mathematics
13. Familiarity with probability theory, statistics, and linear algebra

Recommended Course Sequence— Mechanical Engineering

FALL	**WINTER**	**SPRING**
FRESHMAN YEAR
Math. 20A | Math. 20B | Math. 20C
MAE 1 | Phys. 2A | Phys. 2B & 2BL
Chem. 6A | Chem. 6B | MAE 3
HSS | HSS | HSS

SOPHOMORE YEAR
Math. 20D | Math. 20F | Math. 20E
Phys. 2C & 2CL | MAE 9 or 10 | MAE 130B
MAE 20 | MAE 130A or SE 101B | MAE 131A
HSS or SE 101A | HSS | HSS

JUNIOR YEAR
MAE 110A | MAE 101A | MAE 101B
MAE 105 | MAE 143A | MAE 143B
MAE 140 | MAE 130C | MAE 170
MAE 107 | MAE 160 | HSS

SENIOR YEAR
MAE 101C | MAE 171A | MAE 171B
MAE 156A | MAE 156B | TE
MAE 150 | TE | HSS
TE | HSS | HSS

- Chem. 6AH-6BH sequence may be taken in place of Chem. 6A-B.
- In fulfilling the humanities and social science requirements (HSS), students must take a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. Ten HSS courses are listed here; individual college requirements may be higher.
- Technical electives (TE) must be upper-division or graduate course in the engineering sciences, natural sciences or mathematics.

See the MAE Student Affairs Office for a complete list of technical electives.

Engineering Science

The engineering science program resembles the mechanical engineering program, except that the course load of mechanical design is reduced, and control theory is not required. In addition to core courses in dynamics, vibrations, structures, fluid mechanics, thermodynamics, heat transfer, and laboratory experimentation, a large number of technical electives are scheduled. This aspect of the curriculum allows flexibility, permitting specialization and in-depth study in one area of the engineering sciences or development of a sequence of courses emerging from the current research interests of the faculty of MAE and/or other departments, e.g., sequences in the earth sciences, transportation, or energy-related studies. Students intending to pursue postgraduate professional careers in non-technical fields such as business administration, law, or medicine may develop an appropriate sequence of courses. Although a sequence in the non-sciences may be permitted, the faculty advisor may insist on a substantial number of HSS or other science courses as technical electives. Students must consult their advisors to develop a balanced course of study to fulfill the technical elective requirements of this program. This curriculum also allows the highest number of humanities and social science courses (HSS) to meet college general-education requirements.

Recommended Course Sequence— Engineering Science

FALL	**WINTER**	**SPRING**
FRESHMAN YEAR
Math. 20A | Math. 20B | Math. 20C
MAE 1 | Phys. 2A | Phys. 2B & 2BL
Chem. 6A | Chem. 6B | MAE 3
HSS | HSS | HSS

SOPHOMORE YEAR
Math. 20D | Math. 20F | Math. 20E
Phys. 2C & 2CL | MAE 9 or 10 | MAE 130B
MAE 20 | MAE 130A or SE 101B | MAE 131A
HSS or SE 101A | HSS | HSS

JUNIOR YEAR
MAE 110A | MAE 101A | MAE 101B
MAE 105 | MAE 160 | MAE 170
MAE 107 | MAE 171A | MAE 171B

SENIOR YEAR
MAE 101C | MAE 171A | MAE 171B
MAE 150 | TE | TE
TE | TE | HSS
HSS | HSS | HSS

- Chem. 6AH-6BH sequence may be taken in place of Chem. 6A-B.
- Humanities and social science (HSS) courses should be selected to meet general-education requirements of the colleges. Individual college requirements may be higher or lower than what is listed here.
- Four technical elective (TE) courses must be upper-division or graduate courses in the engineering sciences, natural sciences or mathematics selected with prior approval of the department. A sequence of non-science courses may also be selected with prior approval (see program description).

See the Student Affairs Office for a complete list of technical electives.

Aerospace Engineering

Aerospace engineering is an ABET-accredited four-year curriculum that begins with fundamental engineering courses in mechanics, thermodynamics, materials, solid mechanics, fluid mechanics, and heat transfer. Additional courses are required in aerospace structures, aerodynamics, flight mechanics, propulsion, controls, and aerospace design. Graduates of this program enter graduate school or enter the aerospace industry to develop aircraft and spacecraft, but also they find employment in other areas that use similar technologies, such as mechanical and energy-related fields. Examples include automobile, naval, and sporting equipment manufacturing.

Graduates of this program are expected to have the following skills, knowledge, and abilities:

1. an ability to apply knowledge of mathematics, science, and engineering to aerospace engineering problems
2. an ability to design and conduct experiments, as well as to analyze and interpret data
3. an ability to design a system, component, or process to meet desired needs
4. an ability to function on multi-disciplinary teams
5. an ability to identify, formulate, and solve engineering problems
6. an understanding of professional and ethical responsibility.
7. an ability to communicate effectively with written, oral, and visual means
8. the broad education necessary to understand the impact of engineering solutions in a global and societal context
9. a recognition of the need for, and an ability to engage in life-long learning
10. a knowledge of contemporary issues
11. an ability to use modern engineering techniques, skills, and computing tools necessary for engineering practice
12. knowledge of key topics in aeronautical engineering including aerodynamics, aerospace materials, structures, propulsion, flight mechanics, and stability and control
13. knowledge of topics in astronomical engineering including attitude determination and control, space structures, orbital mechanics, and rocket propulsion

14. an ability to integrate knowledge of the fundamental topics in the design of an aerospace system

Recommended Course Sequence—Aerospace Engineering

FALL	**WINTER**	**SPRING**
FRESHMAN YEAR
Math. 20A | Math. 20B | Math. 20C
MAE 2 | Phys. 2A | Phys. 2B & 2BL
Chem. 6A | HSS | SE 2
HSS | HSS | HSS

SOPHOMORE YEAR
Math. 20D | Math. 20F | Math. 20E
Phys. 2C & 2CL | MAE 9 or 10 | MAE 131A
MAE 3 | MAE 130A or | MAE 130B or
HSS | SE 101A | SE 101B
HSS | HSS | HSS

JUNIOR YEAR
MAE 105 | MAE 101A | MAE 101B
MAE 110A | MAE 101A | MAE 101B
MAE 140 | MAE 130C | MAE 130B
MAE 107 | MAE 143A | MAE 170
HSS | HSS | HSS

SENIOR YEAR
MAE 101C | MAE 126A | MAE 126B
MAE 125A | MAE 125B | TE
TE | TE | TE
HSS | HSS | HSS

- Chem. 6AH may be taken in place of Chem. 6A.
- In fulfilling the humanities and social science (HSS) requirements, students must take a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. Ten HSS courses are listed here; individual college requirements may be higher.
- Technical elective (TE) course must be upper-division, and two or more of them must be from the MAE department. See Student Affairs in MAE for a current list of approved TEs.

Environmental Engineering

The environmental engineering program resembles the chemical engineering program for the first two years. In the third and fourth year, the programs diverge: an environmental engineering sequence is offered, as well as further specialization in fluid mechanics, and a wide choice of technical elective (TE) courses, both from within MAE and in other departments.

Policies and Procedures for MAE Undergraduate Students

Application for Admission to the Major

Admission to the department as an MAE major or minor, or to fulfill a major in another department which requires MAE courses, is in accordance with the general requirements established by the Jacobs School of Engineering. The admission requirements and procedures are described in detail in the section on “Admission to the Jacobs School of Engineering” in this catalog. Applicants who have demonstrated excellent academic performance prior to being admitted to UCSD will be admitted directly to the engineering major of their choice. These directly admitted students and all students are expected to complete lower- and upper-division courses, as suggested in the curriculum tables, in a timely fashion in the sequences outlined.

Transfer Students

Requirements for admission as an MAE major or minor, or into MAE courses, are the same for transfer students as they are for continuing students (see section on “Admission to the Jacobs School of Engineering” in this catalog). Accordingly, when planning their program, transfer students should be mindful of lower-division prerequisite course requirements, as well as for meeting collegiate requirements.

Students who have taken equivalent courses elsewhere may request to have transfer credit apply toward the department’s major requirements. To receive transfer credit, complete a MAE Student Petition form and submit it to MAE Student Affairs. For mathematics, chemistry and physics, transfer equivalencies are determined by the respective departments. An Undergraduate Student Petition must be submitted to each department from which you are requesting transfer credit.

Effective fall 2006, these courses will be required preparation for all engineering transfer students. For specific advising, please contact the MAE undergraduate academic advising office.

- Calculus I—for Science and Engineering (Math. 20A)
- Calculus II—for Science and Engineering (Math. 20B)
- Calculus and Analytic Geometry (Math. 20C)
- Differential Equations (Math. 20D)
- Linear Algebra (Math. 20F)
- Complete calculus-based physics series with lab experience (Physics 2A-B-C)
- Chemistry 6A (except Computer Science and Computer Engineering majors)
- Highest level of introductory computer programming language course offerings at the community college**

Academic Advising

Upon admission to the major, students should consult the catalog or MAE Web site (http://maeweb.ucsd.edu) for their program of study or their undergraduate advisor if they have questions. The program plan may be revised in subsequent years, but revisions involving curricular requirements require approval by the undergraduate advisor or the Undergraduate Affairs Committee. Because some course and/or curricular changes may be
made every year, it is imperative that students consult with the department’s undergraduate advisor on an annual basis.

Some MAE courses are offered only once a year and therefore should be taken in the recommended sequence. If courses are taken out of sequence, it may not always be possible to enroll in courses as desired or needed. If this occurs, students should seek immediate departmental advice. When a student deviates from the sequence of courses specified for each curriculum in this catalog, it may be impossible to complete an MAE major within the normal four-year period.

In addition to the advising available through the Student Affairs Office, programmatic or technical advice may be obtained from MAE faculty members. A specific MAE faculty mentor is assigned to each MAE student. All MAE students are required to meet with their faculty mentor at least once a quarter.

Program Alterations/Exceptions to Requirements

Variations from or exceptions to any program or course requirements are possible only if a petition is approved by the MAE Undergraduate Affairs Committee before the courses in question are taken. Petition forms may be obtained from the MAE Student Affairs Office and must be processed through this office.

Independent Study

MAE students may take MAE 199, Independent Study for Undergraduates, under the guidance of an MAE faculty member. This course is taken as an elective on a P/NP basis. Under very restrictive conditions, however, it may be used to satisfy upper-division technical elective course requirements for the major. Students interested in this alternative must identify an MAE faculty member with whom they wish to work and propose a two-quarter research or study topic. After obtaining the faculty member’s concurrence on the topic and scope of the study, the student must submit a Special Studies Course form (each quarter) and an MAE 199 as Technical Elective Contract form to the Undergraduate Affairs Committee. These forms must be completed, approved, and processed prior to the add/drop deadline. Detailed policy in this regard and the requisite forms may be obtained from the Student Affairs Office.

Teaching

Students interested in participating in the instructional activities of the department may take MAE 195, Undergraduate Teaching. Normally, this course is taken as an elective on a P/NP basis. Under very restrictive conditions, it may be used to satisfy upper-division technical elective course requirements for the major. Policy in this regard and the appropriate forms may be obtained from the Student Affairs Office.

B.S./M.S. Integrated Program

An integrated program leading to a Bachelor of Science and a Master of Science degree in mechanical or aerospace engineering is offered to a student with junior standing who has an upper-division GPA of 3.5 or better and a 3.0 overall UCSD GPA. During the last quarter of their junior year (more specifically, the fourth quarter prior to the receipt of the B.S. degree), students interested in obtaining the M.S. degree within one year following receipt of the B.S. degree may apply to the department for admission to the program. Note that this integrated program is distinctly different from the standard M.S. program, and students must follow regulations as presented in the section on Graduate Studies.

The M.S. program is intended to extend and broaden an undergraduate background and/or equip practicing engineers with fundamental knowledge in their particular fields. The degree is offered under both the Thesis Plan I and the Comprehensive Examination Plan II.

CURRICULUM

The mechanical engineering plan requires that during the senior year (the last three quarters of the BS degree), a student must choose three graduate level courses in place of the technical elective requirement. The aerospace engineering plan is slightly different because these students only have one technical elective requirement. To address this, the aerospace students are both allowed and encouraged to take two specific graduate-level courses in place of two specific undergraduate-level courses. Fundamentally, both the undergraduate and graduate courses cover the same material. Specifically, the aerospace students are allowed to:

- Take MAE 213 (Mechanics of Propulsion) in lieu of the senior undergraduate course MAE 113 (Fundamentals of Propulsion)

Take MAE 221A (Heat Transfer) in lieu of the senior undergraduate course MAE 101C (Heat Transfer)*

The third course will be a graduate-level course in place of the one technical elective.

All other elements of the B.S./M.S. program apply to both the mechanical and aerospace engineering programs.

*Note: This program is undergoing changes. Please see department advisor.

The Graduate Program

The Department of Mechanical and Aerospace Engineering offers graduate instruction leading to the M.S. and Ph.D. degrees in engineering sciences with a designated specialization in each of the following areas: aerospace engineering, applied mechanics, applied ocean sciences, engineering physics, and mechanical engineering.

In fall 2007, a new Ph.D. specialization will be introduced: computational science. Computational science seeks to understand principally through the analysis of mathematical models on high performance computers. It is a blend of applications, computations, and mathematics. It is a mode of scientific investigation that supplements the traditional lab and theoretical models of acquiring knowledge. This is done by formulating mathematical models whose solutions are approximated by computer simulations.

The computational science specialization will leverage the strength of the existing mathematics, science, and engineering departments. Ph.D. students must demonstrate advanced undergraduate-level proficiency in numerical analysis and in computer algorithms and data structures.

For more information, please contact the MAE Graduate Affairs Office.

Admission is in accordance with the general requirements of the graduate division, which requires a B.S. and/or M.S. degree in some branch of engineering, the physical sciences, or mathematics; an overall GPA of 3.0; and three letters of recommendation from individuals who can attest to the academic or professional competence and to the depth of their interest in pursuing graduate study. In addition, all applicants are required to submit GRE General Test scores. A minimum score of 550 on the Test of English as a Foreign Language (TOEFL) is required of all international applicants whose native language is not English and whose undergraduate education...
was conducted in a language other than English. Students who score below 600 on the TOEFL examination are strongly encouraged to enroll in an English as a second language program before beginning graduate work. (UCSD Extension offers an excellent English language program during the summer as well as the academic year.) Applicants are judged competitively. Based on the candidate’s background, qualifications, and goals, admission to the program is in one of three categories: M.S. only, M.S., or Ph.D. Admission to the M.S. only category is reserved for students for whom the MS degree is likely to be the terminal graduate degree. The M.S. designation is reserved for students currently interested in obtaining an M.S. degree but who at a later time may wish to continue in the doctoral degree program. Admission to the Ph.D. program is reserved for qualified students whose final aim is a doctoral degree. Policies for possible changes in status are given under the “Master's Degree Program” below.

Non-matriculated students are welcome to seek enrollment in MAE courses via UC Extension’s concurrent registration program, but an extension student’s enrollment in an MAE graduate course must be approved by the instructor.

Master’s Degree Program

The M.S. program is intended to extend and broaden an undergraduate background and/or equip practicing engineers with fundamental knowledge in their particular fields. The degree may be terminal, or obtained on the way to the Ph.D. The degree is offered under both the Thesis Plan I and the Comprehensive Examination Plan II (see “Graduate Studies: Master’s Degree”). A strong effort is made to schedule M.S.-level course offerings so that students may obtain their M.S. degree in one year of full-time study or two years of part-time study.

M.S. Time Limit Policy: Full-time M.S. students are permitted seven quarters in which to complete all requirements. While there are no written time limits for part-time students, the department has the right to intervene and set individual deadlines if it becomes necessary.

Course requirements are flexible in the applied mechanics and engineering physics programs. Specific departmental requirements for the M.S. degree are as follows:

Thesis Plan I: This plan of study involves both course work and research, culminating in the preparation of a thesis. A total of forty-eight units of credit is required: thirty-six units (nine courses) must be in course work, and twelve units must be in research. The student’s program is arranged, with prior approval of the faculty advisor, according to the following policies:
1. Course work must include sixteen units (four courses) of MAE 200-level courses.
2. Units obtained in MAE 205, 259, or 299 may not be applied toward the course work requirement.
3. No more than a total of eight units of MAE 296 and 298 may be applied toward the course work requirement.
4. No more than twelve units of upper-division 100-level courses (engineering-based or technically serious) may be applied toward the course work requirement.
5. Twelve units of MAE 299 must be taken to fulfill the research requirement.

Students must maintain at least a B average in the courses taken to fulfill the degree requirements. A thesis based on the research is written and subsequently reviewed by the thesis advisor and two other faculty members appointed by the dean of Graduate Studies. The review is normally an oral defense of the thesis.

Comprehensive Examination Plan II: This plan of study involves course work only and culminates in a comprehensive examination. A total of forty-eight units of credit (twelve courses) is required. The student’s program is arranged, with prior approval of the faculty advisor, according to the following policies:
1. At least sixteen units (four courses) must be MAE 200-level courses.
2. Units obtained in MAE 205, 259, or 299 may not be applied toward the degree requirements.
3. No more than a total of eight units of MAE 296 and 298 may be applied toward the degree requirements.
4. No more than twelve units of upper-division 100-level courses may be applied toward the degree requirements.

Students must maintain at least a B average in the courses taken to fulfill the degree requirements. The comprehensive examination is conducted by the advisor and at least two other faculty members. The examination committee normally conducts an oral examination in two areas of specialization covered by course work taken by the student. A student working toward the Ph.D. degree who has successfully passed two areas of the department’s Ph.D. examination need not take the comprehensive examination for the M.S. degree.

Change of Degree. Upon completion of the requirements for the M.S. degree, students admitted as M.S. only or M.S. candidates are not automatically eligible for admission to the Ph.D. program. M.S. only candidates who subsequently wish to pursue a doctorate must submit an application for a change in status to their examining committee. If the recommendation is positive and the request approved, the student must submit a general petition for graduate students to effect the change of status. In addition, the examining committee may recommend that the examination satisfy one of the three topics required in the departmental qualifying examination for the doctorate.

M.S. candidates who subsequently wish to pursue a doctorate must also submit an application for a change in status to their examining committee. In this case, a special examination is not required. The application, however, must be approved and signed by an MAE faculty member who expects to serve as the student’s Ph.D. advisor. When the request is approved, the student must submit a general petition for graduate students to effect the change of status. If the student elects the comprehensive examination plan for the M.S. degree, this examination may be used not only to fulfill the requirement for the M.S. degree but also to satisfy one of the three topics required in the departmental qualifying examination for the doctorate. In fact, the M.S. examination may be part of the doctoral examination.

M.S. Program

To complete an M.S. degree with specialization in aerospace engineering, engineering physics, mechanical engineering, applied mechanics, or applied ocean sciences, students must complete a sequence of courses unique to their area. Students should consult with their faculty advisor, as well as the MAE Graduate Student Affairs Office, when choosing their courses.
Doctoral Degree Program

The MAE Ph.D. program is intended to prepare students for a variety of careers in research and teaching. Therefore, depending on the student's background and ability, research is initiated as soon as possible. In general, there are no formal course requirements for the Ph.D. All students, in consultation with their advisors, develop course programs that will prepare them for the MAE Departmental Qualifying Examination and for their dissertation research. However, these programs of study and research must be planned to meet the time limits established to advance to candidacy and to complete the requirements for the degree. Doctoral students who have passed the Departmental Examination may take any course for an S/U grade with the exception of any course that the student's Departmental or Ph.D. Qualifying Examination Committee stipulates must be taken in order to remove a deficiency. It is strongly recommended that all MAE graduate students take a minimum of two courses (other than research) per academic year after passing the Departmental Qualifying Examination. Specific details in this regard can be obtained from the MAE Student Affairs Office.

Doctoral Examinations: An MAE Ph.D. student is required to pass three examinations. The first is a Departmental Qualifying Examination (DQE) which is intended to determine the candidate's ability to successfully pursue a research project level appropriate for the doctorate. This exam must be taken within the first six quarters of registration as a graduate student. The DQE is an oral examination by a committee of four persons (two of which must be in the MAE department) and is based on material taught over 36 units in three areas of study: a major area (four courses), a minor area (two introductory courses), and a study in mathematics or basic science (three courses). Students must submit a plan of study, approved by their advisor, to the Graduate Affairs Committee for final approval by the end of their second quarter of graduate study.

The Teaching Experience is required of all MAE Ph.D. students prior to taking the Ph.D. Qualifying Exam. The teaching experience is defined as lecturing one hour per week in either a problem-solving section or regular lecture for one quarter in a course designated by the department. The requirement can be fulfilled by teaching assistant service or taken as a course for academic credit (MAE 501). Students must contact the Student Affairs Office to plan for completion of this requirement.

The Ph.D. Qualifying Examination is the second examination required of MAE Ph.D. students. In preparation for the Ph.D. Qualifying Examination, students must have completed the Departmental Qualifying Examination and the Departmental Teaching Experience requirement, obtained a faculty research advisor, and have identified a topic for their dissertation research and have made initial progress. At the time of application for advancement to candidacy, a doctoral committee responsible for the remainder of the student's graduate program is appointed by the Graduate Council. The committee conducts the Ph.D. Qualifying Examination, during which students must demonstrate the ability to engage in dissertation research. This involves the presentation of a plan for the dissertation research project. The committee may ask questions directly or indirectly related to the project and general questions that it determines to be relevant. Upon successful completion of this examination, students are advanced to candidacy and are awarded the candidate in philosophy degree (see "Graduate Studies" section in this catalog).

The Dissertation Defense is the final Ph.D. examination. Upon completion of the dissertation research project, the student writes a dissertation that must be successfully defended in an oral examination and public presentation conducted by the doctoral committee. A complete copy of the student's dissertation must be submitted to each member of the doctoral committee approximately four weeks before the defense. It is understood that this copy of the dissertation given to committee members will not be the final copy, and that the committee members may suggest changes in the text at the time of the defense. This examination may not be conducted earlier than three quarters after the date of advancement to doctoral candidacy. Acceptance of the dissertation by the Office of Graduate Studies and the university librarian represents the final step in completion of all requirements for the Ph.D.

There is no formal foreign language requirement for doctoral candidates. Students are expected to master whatever language is needed for the pursuit of their own research.

Ph.D. Time Limit Policy. Pre-candidacy status is limited to four years. Doctoral students are eligible for university support for six years (engineering physics, seven years). The defense and submission of the doctoral dissertation must be within seven years (engineering physics, eight years).

Evaluations. In the spring of each year, the faculty evaluate each doctoral student’s overall performance in course work, research, and prospects for financial support for future years. A written assessment is given to the student after the evaluation. If a student’s work is found to be inadequate, the faculty may determine that the student cannot continue in the graduate program.

Joint Doctoral Program with San Diego State University

The Department of Mechanical and Aerospace Engineering at UCSD participates in a joint doctoral program with the Graduate Group in Applied Mechanics at SDSU. The program leads to the degree of doctor of philosophy in engineering sciences (applied mechanics). Participants in the program are required to spend one year enrolled at UCSD; their dissertation research is carried out under the supervision of an SDSU faculty member.

Information regarding admission may be obtained from the departmental Student Affairs Office.

The Graduate Curriculum in Chemical Engineering

The chemical engineering (CENG) graduate program is an interdepartmental program and is described more completely under the Chemical Engineering Program in this catalog.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

All students enrolled in MAE courses or admitted to an MAE program are expected to meet prerequisite and performance standards, i.e., students may not enroll in any MAE courses or courses in another department which are required for the major prior to having satisfied prerequisite courses with a C– or better. (The department does not consider D or F grades as adequate preparation for subsequent
material.) Additional details are given under the various program outlines, course descriptions, and admission procedures for the Jacobs School of Engineering in this catalog. Furthermore, the majority of MAE courses have enrollment restrictions which give priority to or are open only to students who have been admitted to an MAE major. Where these restrictions apply, the registrar will not enroll other students except by department stamp on class enrollment cards. The department expects that students will adhere to these policies of their own volition and enroll in courses accordingly. Students are advised that they may be dropped at any time from course rosters if prerequisites have not been met. While most lower-division courses are offered more than once each year, many MAE upper-division courses are taught only once per year, and courses are scheduled to be consistent with the curricula as shown in the tables. When possible, MAE does offer selected large enrollment courses more than once each year.

LOWER-DIVISION

MAE 01. Introduction to Mechanical Engineering (4)
General introduction to mechanical engineering. Basic concepts from statics and solid mechanics with application to simple problems. Introduction to engineering ethics and applications. Technical communication via report writing. Searching for technical information. Engineering majors must take this course for a letter grade. Prerequisite: None.

MAE 02. Introduction to Aerospace Engineering (4)
An introduction to topics in aeronautical and astronautical engineering including aerodynamics, propulsion, flight mechanics, structures, materials, orbital mechanics, design, mission planning, and environments. General topics include historical background, career opportunities, engineering ethics, and professionalism. Must be taken for a letter grade. Prerequisite: None.

MAE 03. Introduction to Engineering Graphics and Design (4)
Introduction to design process through a hands-on design project performed in teams. Topics include problem identification, concept generation, project management, risk reduction. Engineering graphics and communication skills are introduced in the areas of: Computer-Aided Design (CAD), hand sketching, and technical communication. Prerequisite: grade of C- or better in Physics 2A or 4A (or concurrent enrollment). Priority enrollment given to engineering majors.

MAE 05. Quantitative Computer Skills (4)
Introductory course for non-engineering majors. Use of computers in solving problems; applications from life sciences, physical sciences, and engineering. Students run existing computer programs and complete some programming in BASIC. Prerequisite: none.

MAE 09. C/C++ Programming (4)
C/C++ computer programming under the UNIX environment with applications to numerical problems fundamental to computational mechanics. Arithmetic operations, branches, arrays, data structures, and use of pointers are introduced. Programming ethics are discussed. Priority enrollment given to pre-engineering and engineering majors.

MAE 10. FORTRAN for Engineers (4)
FORTRAN 90 computer programming under UNIX environment with applications to numerical problems relevant to engineering applications. Arithmetic operations, control constructs, subprograms, arrays and array processing, input/output handling and some advanced features of FORTRAN 90 are introduced. Programming ethics. Priority enrollment given to pre-engineering and engineering majors.

MAE 20. Elements of Materials Science (4)
The structure of materials: metals, ceramics, glasses, semiconductors, superconductors and polymers. Control of internal structure to produce desired properties. Mechanical, rheological, electrical, optical, superconducting and magnetic properties and classification. Prerequisites: Phys. 2A or 4A, Chem. 6A, Math. 21C or 20D (or concurrent registration).

MAE 87. Freshman Seminar (1)
The Freshman Seminar program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges. Topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen. Prerequisite: none.

MAE 90. Undergraduate Seminar (1)
Selected topics of interest to the faculty will be used to introduce students to engineering science. Prerequisite: none. Not open to upper-division students.

MAE 92A. Design Competition—Design, Build, and Fly Aircraft (1)
(Cross-listed with SE 10A.) Student teams design, build, and fly unmanned aircraft for a national student competition. Students concentrate on vehicle system design including aerodynamics, structures, propulsion, and performance. Teams engineer, fabricate the aircraft, submit a design report, and prepare aircraft for competition. Prerequisites: consent of instructor.

UPPER-DIVISION

MAE 101A. Introductory Fluid Mechanics (4)
Fluid statics; fluid kinematics; integral and differential forms of the conservation laws for mass, momentum and energy; Bernoulli equation; potential flows; dimensional analysis and similarity. Prerequisites: admission to an engineering major and grades of C- or better in Phys. 2A, Math. 202, 20E, or consent of instructor.

MAE 101B. Advanced Fluid Mechanics (4)
Laminar and turbulent flow. Pipe flow including friction factor. Boundary layers, separation, drag, and lift. Compressible flow including shock waves. Professional ethics will be discussed. Prerequisite: admission to an engineering major and grade of C- or better in MAE 101A or CENG 101A, and MAE 110A or CENG 102.

MAE 101C. Heat Transfer (4)
Extension of fluid mechanics in MAE 101B-A to viscous, heat-conducting flows. Application of the energy conservation equation to heat transfer in ducts and external boundary layers. Heat conduction and radiation transfer. Heat transfer coefficients in forced and free convection. Design applications. Prerequisite: admission to an engineering major and grade of C- or better in MAE 101A or CENG 101A and MAE 101B or consent of instructor.

MAE 104. Aerodynamics (4)
Basic relations describing flow field around wings and bodies at subsonic and supersonic speed. Thin-wing theory. Slender-body theory. Formulation of theories for evaluating forces and moments on airplane geometries. Application to the design of high-speed airplanes. Prerequisites: admission to the engineering major and grade of C- or better in MAE 101A-B.

MAE 105. Introduction to Mathematical Physics (4)
Fourier series, Sturm Liouville theory, elementary partial differential equations, integral transforms with applications to problems in vibration, wave motion, and heat conduction. Prerequisites: admission to engineering major or and grades of C- or better in Phys. 2A-B and Math. 20D or Math. 21D.

MAE 107. Computational Methods in Engineering (4)
Introduction to scientific computing and algorithms; iterative methods, systems of linear equations with applications; nonlinear algebraic equations; function interpolation and differentiation and optimal procedures; data fitting and least-squares; numerical solution of ordinary differential equations. Prerequisites: engineering majors only and grades of C- or better in MAE 9 or MAE 10 and Math. 20F.

MAE 110A. Thermodynamics (4)
Fundamentals of engineering thermodynamics: energy, work, heat, properties of pure substances, first and second laws for closed systems and control volumes, gas mixtures. Application to engineering systems, power and refrigeration cycles, combustion. Prerequisites: grades of C- or better in Phys. 2C and Chem 6A. Enrollment restricted to engineering majors only.

MAE 110B. Thermodynamic Systems (4)
Thermodynamic analysis of power cycles with application to combustion driven engines: internal combustion, diesel, and gas turbines. Thermodynamics of mixtures and chemical and phase equilibrium. Computational methods for calculating chemical equilibrium. Prerequisite: grade of C- or better in MAE 110A.

MAE 113. Fundamentals of Propulsion (4)
Compressible flow, thermodynamics, and combustion relevant to aircraft and space vehicle propulsion. Analysis and design of components for gas turbines, including turbines, inlets, combustion chambers and nozzles. Fundamentals of rocket propulsion. Prerequisites: admission to engineering major and grades of C- or better in MAE 110A or CENG 102 and MAE 101B-C or CENG 101A-B-C (formerly CENG 103A-B-C).

MAE 117A. Elementary Plasma Physics (4)
(Cross-listed with Physics 151.) Particle motions, plasmas as fluids, waves, diffusion, equilibrium and stability, nonlinear effects, controlled fusion. Prerequisites: Math. 21D or consent of instructor. Phys. 100B-C or ECE 107 are suggested.

MAE 117B. Industrial Plasma Applications (4)
Charged particle motion in DC and RF electro-magnetic; atomic processes in plasmas; ionization, excitation, dissociation, rate constants, electron energy balance electric breakdown of the gases; debye length, plasmas quasi-neutrality, sheath; DC, capacitive, inductive, and wave-heated discharges; etching, deposition, and implantation. Prerequisites: Phys. 100B-C or ECE 107 or consent of instructor; Math. 21D.
M.E. 117L Elements of Experimental Plasma Physics (4)
Measurements of electron density and temperature with the langmuire probes, emission spectroscopy measurements of neutrals and ions in plasmas; electric breakdown of the gases; plasmas etching of materials. Prerequisites: none.

M.E. 118A Introduction to Energy Systems (4)
Overview of present-day energy sources and availability; stationary and mobile power plant technologies; air pollution and controls; introduction to climate change; overview of renewable energy resources and technologies. Prerequisites: M.E. 101A or CENG 101A, or consent of instructor.

M.E. 118B Twenty-First Century Energy Technologies I (4)
A survey of projected energy demands and resources. Climate change physics and impacts on energy systems. Basic physics of photovoltaics, fuel cells, wind power, and other renewable and developing energy technologies. An exploration of the “Hydrogen Economy.” Prerequisites: M.E. 101A or CENG 101A, or consent of instructor.

M.E. 118C, Twenty-First Century Energy Technologies II (4)
Overview of basic fission processes and fusion processes. Elementary fission reactor physics and engineering; environmental and waste disposal issues. Introduction to power-producing fusion reactor physics. Survey of fusion technology issues, status and prospects for fusion energy. Prerequisites: M.E. 101A or CENG 101A, or consent of instructor.

M.E. 124 The Human Earth: An Introduction to Environmental Engineering and Policy (4)
(Cross-listed with EYSY 103.) This course explores the impacts of human social, economic, and industrial activity on the environment. It highlights the central roles in ensuring sustainable development played by market forces, technological innovation and governmental regulation on local, national, and global scales. Prerequisites: grade of C– or better in Math 20B or Math. 10A–C, Phys. 28 or Phys. 1A–C and Chem. 6B or by consent of instructor.

M.E. 125A Flow and Transport in the Environment (4)
Study of river flow and hydraulic control; surface waves; applications to reservoirs and estuaries. Introduction to stratification and buoyancy; applications to atmospheric surface layer and the ocean mixed layer. Ideas behind turbulent dispersion. Turbulent and scaling laws. Gravity currents and catastrophic flows. Prerequisites: engineering majors and students receiving a grade of C– or better in M.E. 101A or CENG 103A or CENG 101A.

M.E. 125B Fluid-Solid Interactions in Environment Engineering (4)

M.E. 125C Case Studies In Environmental Engineering (4)
This course is project-oriented. Students will conduct research in small groups, give oral presentations and write reports. Topics reflect material in M.E. 125A and M.E. 125B. Possible topics: air pollution modeling, building ventilation, wetland preservation. Prerequisites: engineering majors and students receiving a grade of C– or better in M.E. 125A-B.

M.E. 126A, Environmental Engineering Laboratory I (4)
Design and analysis of experiments in environmental engineering. Experiments in wind tunnel, water tunnel, and other equipment. Use of instrumentation. Laboratory report writing; error analysis; engineering ethics. Prerequisites: grade of C– or better in M.E. 101A or CENG 101A, M.E. 125A.

M.E. 126B, Environmental Engineering Laboratory II (4)
Design and analysis of original studies in environmental engineering. Students work on environmental projects and use computational and laboratory facilities. Students propose and design studies, collect and analyze data, and prepare a major report. Prerequisite: grade of C– or better in M.E. 126A.

M.E. 127 Statistical Methods for Environmental Sciences and Engineering (4)
Methods for evaluating environmental data including probability distributions, confidence intervals, functional fitting, spectral analysis, and programming methods for data analysis. Prerequisite: grade of C– or better in M.E. 20C.

M.E. 130A, Mechanics I: Statics (4)
(Cross-listed with SE101A.) Principles of statics using vectors; two and three-dimensional equilibrium problems. Determinate structures under discrete and distributed loading including hydrostatics; internal forces and concepts of stress; free body diagrams; moment, product of inertia; analysis of trusses and beams. Prerequisites: Math. 20C or 21C and Phys. 2A with grades of C– or better. Students cannot also receive credit for SE 101A.

M.E. 130B, Mechanics II: Dynamics (4)
(Cross-listed with SE101B.) Kinematics and kinetics of particles in 2-D and 3-D motion using vector representation. Orbital mechanics. Work, energy, and power. Conservative forces, conservation principles. Momentum, impulsive motion and impact; rigid body kinetics and kinematics; Coriolis acceleration, eulerian angles. Undamped vibrating systems. Prerequisites: Math. 20D and M.E. 130A or SE 101A with grades of C– or better. Student cannot also receive credit for SE 101B.

M.E. 130C, Mechanics III: Vibrations (4)
Free and forced vibrations of damped one-degree of freedom systems, matrix representation of discrete multiple degree of freedom systems. Use of Matlab for both modal analyses and response analyses of systems subjected to impulse and step loading. Lagrange’s equations. Modal superposition for analysis of continuous vibrating systems with applications to structures. Prerequisites: admission to the engineering major and grades of C– or better in Math. 20F and M.E. 130B or SE 101B.

M.E. 131A, Fundamentals of Solid Mechanics I (4)
Stress and strain, generalized Hooke’s law. Mechanics of deformable bodies under torsional, shearing and bending loads. Deflection of beams, Stability of columns. St. Venant’s semi-inverse torsion analysis. Strain energy and energy principles. Design of statically indeterminate rods, shafts, beams and columns. Professional ethics. Prerequisites: admission to the engineering major and Grades of C– or better in Math. 20D or 21D, 20F, and M.E. 130A or SE 101A.

M.E. 131B, Fundamentals of Solid Mechanics II (4)
Continuum mechanics of solids and its application to the mechanical response of machine and structural elements. Stress and strain in indical notation; field equations and constitutive relations. Linear elastic stress analysis in torsion, plane stress and plane strain; stress concentrations; fracture mechanics. Extremum principles and structural stability. Viscoelasticity, plasticity, and failure criteria. Theorems of plastic limit analysis. Prerequisites: admission to the engineering major and grades of C– or better in M.E. 131A, and M.E. 105 or concurrent enrollment.

M.E. 131C, Solid Mechanics III (4)
Small deflection theory of plates. Solutions for rectangular and circular plates. Large deflections and shear deformations. Energy methods and finite element method of analysis. Prerequisites: admission to the engineering major and grade of C– or better in M.E. 131A.

M.E. 132, Finite Element Methods in Mechanical and Aerospace Engineering (4)
Development of stiffness and mass matrices based upon variational principles and application to static, dynamic, and stability design problems in structural and solid mechanics. Architecture of computer codes for linear and nonlinear finite element analysis and basic computer implementation. The use of general purpose finite element structural analysis computer codes. Prerequisites: grades of C– or better in M.E. 131A or SE 110A.

M.E. 135, Computational Mechanics (4)
Mathematical modeling in terms of systems of algebraic and differential equations. Overview of numerical methods. Problem statement, boundary, and initial conditions. Overview of commerical packages for solving the equations of Mathematical and Engineering Physics. Numerical solutions of selected examples drawn from real-life applications of fluid flow, solid mechanics, and heat transfer with emphasis on design. Prerequisite: consent of instructor.

M.E. 140, Linear Circuits (4)

M.E. 142, Dynamics and Control of Aerospace Vehicles (4)
The dynamics of vehicles in space or air are derived for analysis of the stability properties of spacecraft and aircraft. The theory of flight, lift, drag, and thrust and their relationship to mode of flight and type of spacecraft are discussed. Optimal state space control theory for the design of analog and digital controllers (autopilots). Prerequisites: admission to the engineering major and grades of C– or better in M.E. 104 and M.E. 141A or M.E. 143B or ECE 171A.

M.E. 143A, Signals and Systems (4)
First-order vector ordinary differential equations, concepts of state, input and output. Linearity and linearity concepts introduced with solutions. Laplace and Fourier transforms are defined for signals. Transfer functions and frequency response for systems. Spectral analysis and filtering for deterministic signals. Probability and statistics of random signals and treatment. Prerequisites: admission to M.E. or bioengineering major and grade of C– or better in Math. 20E, 20F, and 20D.

Engineering, Mechanical and Aerospace Engineering (MAE)
MAE 138B. Linear Control (4)

MAE 142C. Digital Control Systems (4)
Discrete time systems; sampling, aliasing, stability, Z-transform, discrete time signals, state space models; state equations, canonical forms, observability, controllability. Pole placement design, observer design, output feedback, linear quadratic regulator design, implementation; digital approximation, computational and numerical issues. Prerequisite: grade of C– or better in MAE 143B.

MAE 149. Sensor Networks (4)
(Cross-listed with ECNE 225 and ASIO 238.) Characteristics of chemical, biological, seismic and other physical sensors; signal processing techniques supporting distributed detection of salient events; wireless communication and networking protocols supporting formation of robust sensor fabrics; current experience with low power, low-cost sensor deployments. Prerequisites: upper-division standing and consent of instructor, or graduate student in science or engineering.

MAE 150. Computer-Aided Design (4)
Computer-Aided Analysis and Design. Design methodology, tolerance analysis, Monte Carlo analysis, kinematics and computer-aided design of linkages, numerical calculations of moments of inertia, design of cams and cam dynamics; finite element analysis, design using Pro-E, Mechanica Motion and Mechanica Structures. Prerequisites: grade of C– or better in MAE 130A or SE 101A or BENG 110, MAE 107 or SE 121, and MAE 3, senior standing in engineering major, or consent of instructor.

MAE 152. Computer Graphics for Engineers and Scientists (4)
Computer graphics algorithms using C programming and Ironcad. Applications in engineering and science. Line-drawing algorithms. Area fill algorithms, color, CAD user interface, spline curves and surfaces, 2-D and 3-D transformations, wireframe and solid models. Hidden-surface elimination. Prerequisites: grade of C– or better in MAE 3 and MAE 9 or 10.

MAE 155A. Aerospace Engineering Design I (4)
Fundamental principles of aerospace vehicle design including the conceptual, preliminary, and detailed design phases. Aeronautical or astronomical design project that integrates all appropriate engineering disciplines as well as issues associated with optimization, teamwork, manufacturability, reporting, and professionalism. Prerequisites: grade of C– or better in MAE 2, 104, 113, 130C, 142, SE 2 and SE 160B or consent of instructor. Students may enroll concurrently with MAE 113, 142, and 150.

MAE 155B. Aerospace Engineering Design II (4)
Fundamental principles of aerospace vehicle design including the conceptual, preliminary, and detailed design phases. Aeronautical or astronomical design project that integrates all appropriate engineering disciplines as well as issues associated with optimization, teamwork, manufacturability, reporting, and professionalism. Prerequisites: grade of C– or better in MAE 113, 142, 150, 155A or consent of instructor.

MAE 156A. Fundamental Principles of Mechanical Design I (4)
Fundamental principles of mechanical design and the design process. Application of engineering science to the design and analysis of mechanical components. Initiation of team design projects that culminate in MAE 156B with a working prototype designed for a real engineering application. Professional ethics. Prerequisites: grade of C– or better in MAE 3, MAE 101C, MAE 130C, MAE 131A, MAE 150, MAE 160, and MAE 170 or consent of instructor. MAE 101C and MAE 150 may be taken concurrently.

MAE 156B. Fundamental Principles of Mechanical Design II (4)
Fundamental principles of mechanical design and the design process. Culmination of a team design project initiated in MAE 156A which results in a working prototype designed for a real engineering application. Prerequisite: grade of C– or better in MAE 156A in the immediately preceding quarter, MAE 101C, MAE 150 or consent of instructor.

MAE 160. Mechanical Behavior of Materials (4)
Elasticity and anelasticity, dislocations and plasticity of crystals, creep, and strengthening mechanisms. Mechanical behavior of ceramics, composites, and polymers. Fracture: mechanical and microstructural. Fatigue. Laboratory demonstrations of selected topics. Prerequisites: grade of C– or better in MAE 20, MAE 130A (or SE 101A) and MAE 131A, or consent of instructor.

MAE 161. Electronic, Magnetic, and Photonic Materials (4)
Introduction to the worlds of electronic, magnetic/photonic materials, the unique properties of advanced engineering materials in relation to processing, fabrication, and microstructure. Semiconductors, metals, alloys, ceramics, polymers, and composite materials and their practical applications. Prerequisite: consent of instructor.

MAE 162. Advanced Materials: Processing, Selection and Design (4)
Introduction to various techniques used in fabricating useful bodies with optimal structural, magnetic, optical, or electronic properties. Influence of the type of raw material, densification techniques and methods to tailor composition and microstructure. Ceramics, metals, semiconductors, and composites will be discussed. Prerequisite: MAE 160 or consent of instructor.

MAE 165. Fatigue and Failure Analysis of Engineering Components (4)
The engineering and scientific aspects of crack nucleation, slow crack growth, and unstable fracture in crystalline and amorphous solids. Microstructural effects on crack initiation, fatigue crack growth and fracture toughness. Methods of fatigue testing and fracture toughness testing. Fractography and microfractography. Design safe methodologies and failure prevention. Failure analysis of real engineering structures. Prerequisite: consent of instructor.

MAE 166. Nanomaterials (4)
Basic principles of synthesis techniques, processing, microstructural control and unique physical properties of materials in nano-dimensions. Nanowires, quantum dots, thin films, electrical transport, optical behavior, mechanical behavior, and technical applications of nanomaterials. Prerequisite: consent of instructor.

MAE 167. Wave Dynamics in Materials (4)
Pressure and shear waves in infinite solids. Reflection and diffraction. Rayleigh and Love waves in semi-infinite space. Impulse load on a half space. Waveguides and group velocity. Prerequisite: consent of instructor.

MAE 168. MEME Materials, Fabrication, and Applications (4)
The principles of micro Electro-Mechanical systems (MEMS) fabrication, materials involved, actuation principles utilized, and the fundamentals of MEMS operation in relation to stresses and deformation. Novel device applications, future trends, and nano-electro-mechanical (NEMS) systems. Prerequisite: consent of instructor.

MAE 170. Experimental Techniques (4)
Principles and practice of measurement and control and the design and conduct of experiments. Technical report writing. Lectures relate to dimensional analysis, error analysis, signal-to-noise problems, filtering, data acquisition and data reduction, as well as background of experiments and statistical analysis. Experiments relate to the use of electronic devices and sensors. Prerequisite: Grade of C– or better in Phys. 2CL and admission to any engineering major.

MAE 171A. Mechanical Engineering Laboratory I (4)
Design and analysis of experiments in fluid mechanics, solid mechanics, and control engineering. Experiments in wind tunnel, water tunnel, vibration table and material testing machines, and refined electromechanical systems. Laboratory report writing; error analysis; engineering ethics. Prerequisites: grade of C– or better in MAE 101C (or CENG 103C); MAE 160, MAE 141A or MAE 143B, MAE 170, and senior standing in engineering major or consent of instructor.

MAE 171B. Mechanical Engineering Laboratory II (4)
Design and analysis of original experiments in mechanical engineering. Students research projects using experimental facilities in undergraduate laboratories: wind tunnel, water channel, vibration table, and testing machine and control systems. Students pose and design experiments, obtain data, complete engineering analysis and write a major report. Prerequisite: requires a grade of C– or better in MAE 171A.

MAE 175A. Aerospace Engineering Laboratory I (4)
Analysis of aerospace engineering systems using experimental facilities in undergraduate laboratories: wind tunnel, water channel, vibration table, and testing machine. Students operate facilities, obtain data, complete engineering analysis and write major reports. Prerequisites: grade of C– or better in MAE 101C or CENG 103C or CENG 101C, MAE 143B, and MAE 170.

MAE 180A. Spacecraft Guidance I (4)

MAE 180B. Space Science and Engineering (4)
Introduction to space science. Overview of the universe and solar system; the sun and its atmosphere. The outer and inner planets and their moons. Asteroids and comets; other solar systems; extraterrestrial life; space transportation. Prerequisites: Math. 20A, Physics 2A or 4A, Chem. 6A-B.
MAE 191. Topics in Engineering Science (4) Course to be given at the discretion of the faculty in which topics of current interest in engineering will be presented by visiting or resident faculty members. Prerequisite: consent of instructor.

MAE 192. Senior Seminar in Aerospace, Environmental or Mechanical Engineering (1) The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in aerospace, environmental or mechanical engineering (at the upper-division level). Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic and permission from the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: department stamp or consent of instructor.

MAE 193. Taught by B-4) Teaching and tutorial assistance in an MAE course under supervision of instructor. Not more than four units may be used to satisfy graduation requirements. P/NP grades only. Prerequisites: junior status and a B average in major and consent of department chair.

MAE 197. Engineering Internship (1-4) Coordinated through UCSD Academic Internship Program, this course provides work experience through industry, government offices, hospitals and their practices. Students will work in local industry or hospital under faculty supervision. Units may not be applied toward major graduation requirements. Internship is unsalaried. Prerequisites: completion of ninety units with 2.5 GPA and consent of faculty advisor.

MAE 198. Directed Group Study (1-4) Directed group study on a topic or in a field not included in the regular department curriculum, by special arrangement with a faculty member. May be taken P/NP only. Prerequisite: consent of instructor.

MAE 199. Independent Study for Undergraduates (4) Independent reading or research on a problem by special arrangement with a faculty member. P/NP grades only. Prerequisite: consent of instructor.

GRADUATE COURSES

205. Graduate Seminar (1) Each graduate student in MAE is expected to attend one seminar per quarter, of his or her choice, dealing with current topics in fluid mechanics, solid mechanics, applied plasma physics and fusion, chemical engineering, applied ocean sciences, energy and combustion, environmental engineering, or materials science, and dynamics and controls. Topics will vary. (S/U grades only)

207. Topics in Engineering Science (4) A course to be given at the discretion of the faculty in which topics of current interest in engineering will be presented. Prerequisite: consent of instructor.

209. Continuum Mechanics Applied to Medicine/Biology (4) (Cross-listed with BENG 209.) Introduction to the basic definitions of continuum mechanics and their mathematical formulation at the graduate level with applications to problems in medicine and biology. This course is intended for students with little or no background in mechanics; it is an introduction to the Biomechanics courses BENG 250 A-B in the Department of Bioengineering and to Solid and Fluid Mechanics courses MAE 210A and MAE 231A in the Department of Mechanical and Aerospace Engineering. This course should not be taken concurrently with MAE 210A, or MAE 231A. Prerequisite: consent of instructor.

210A. Fluid Mechanics I (4) (Cross-listed with CENG 210A.) Basic conservation laws. Flow kinematics. The Navier-Stokes equations and some of its exact solutions. Non-dimensional parameters and different flow regimes, vorticity dynamics. Prerequisites: MAE 101A-B and MAE 110A, or consent of instructor.

210B. Fluid Mechanics II (4) Potential flows, boundary layers, low-Reynolds number flows. Prerequisites: MAE 210A, MAE 101A-B, and MAE 110A, or consent of instructor.

210C. Fluid Mechanics III (4) Flow instabilities, linear stability theory; introduction to turbulent flows. Prerequisites: MAE 210A-B, MAE 101A-B, and MAE 110A, or consent of instructor.

211. Introduction to Combustion (4) Fundamental aspects of flows of reactive gases, with emphasis on processes of combustion, including the relevant thermodynamics, chemical kinetics, fluid mechanics, and transport processes. Topics may include deflagrations, detonations, diffusion flames, ignition, extinction, and propellant combustion. Prerequisites: MAE 101A-B-C or CENG 101A-B-C, MAE 110A, or consent of instructor.

212. Introductory Compressible Flow (4) Equations of motion for compressible fluids; one-dimensional gas dynamics and wave motion, waves in supersonic flow, including oblique shock waves, flow in ducts, nozzles, and wind tunnels; methods of characteristics. Prerequisites: MAE 101A-B-C or CENG 103A-B-C, MAE 110A, or consent of instructor.

213. Mechanics of Propulsion (4) Fluid mechanics, thermodynamics and combustion processes involved in propulsion of aircraft and rockets by air breathing engines, and solid and liquid propellant rocket engines characteristics and matching of engine components; diffusers, compressors, combustors, turbines, pumps, nozzles. Prerequisites: MAE 101A-B-C, MAE 110A, or consent of instructor.

214B. Ocean Turbulence and Mixing (4) (Cross-listed with SIO 213.) Mixing mechanisms, their identification, description and modeling. Introduction to turbulence, semi-empirical theories, importance of coherent structures, effects of stratification and rotation on turbulent structure, entrainment and mixing. S/U grades permitted.

220A. Physics of Gases (4) Thermodynamics of gases for use in gasdynamics. Derivation of thermodynamic functions from statistical mechanics. Applications of classical and quantum statistical mechanics to chemical, thermal, and radiative properties of gases. Equilibrium and nonequilibrium radiation, chemical equilibrium, and elements of chemical kinetics. Laser and reacting-flow applications. Prerequisite: MAE 110A or consent of instructor.

221A. Heat Transfer (4) (Cross-listed with CENG 221A.) Conduction, convection, and radiation heat transfer. Development of energy conservation equations. Analytical and numerical solutions to transport problems. Specific topics and applications vary. Prerequisite: MAE 101A-B-C or CENG 101A-B-C, or consent of instructor.

221B. Mass Transfer (4) (Cross-listed with CENG 221B.) Fundamentals of diffusive and convective mass transfer and mass transfer with chemical reaction. Development of mass conservation equations. Analytical and numerical solutions to mass transport problems. Specific topics and applications vary. Prerequisite: MAE 101A-B-C or CENG 101A-B-C, or consent of instructor.

223. Computational Fluid Dynamics (4) Numerical methods in fluid dynamics and convective transport processes. Numerical solution of the Euler and Navier-Stokes equations. Additional topics will vary according to instructor. Examples include eigenvalue problems in hydrodynamic stability, vortex methods, spectral and panel methods. Prerequisite: MAE 210A, 210B, 290A-B or equivalent.

224. Environmental Fluid Dynamics (4) (Cross-listed with SIO 214B.) Single-layer flows with a free surface, two layer flows including exchange flows in harbors, estuaries, seas, and buildings. Continuously
stratified flows with meteorological and oceanographic applications. Topographic effects, plumes, jets, and thermals. Planetary boundary layers. Prerequisites: introductory level graduate course in fluid mechanics.

227A. Fundamentals of Fusion Plasma Physics (4)

227B. Fundamentals of Modern Plasma Physics (4)
Fusion plasma turbulence, magnetic reconnection, strong electromagnetic wave/plasma interactions, numerical simulations of nonlinear plasma phenomena, issues of plasma astrophysics and space plasmas, plasma based propulsion, plasma boundary layers in fusion devices, plasma chemistry. Prerequisite: MAE 227A or consent of instructor.

228. High Energy Density Plasmas (4)
High energy density phenomena, characteristics of high energy density plasmas (HEDP), plasma shock waves, instabilities, radiation transport, survey of ways to create HED conditions (laser driven hohlraum, z-pinch, and ultra-fast lasers). Applications of HEDP (inertial confinement fusion, hadron therapy, radiography, PET scanning, lithography, etc.). Prerequisites: MAE 101A, CENG 103A, either Phys. 100B or 100C, ECE 107; or consent of instructor.

229A. Mechanical Properties (4)
(Cross-listed with MATS 211A.) Review of basic concepts in mechanics of deformation: elasticity, plasticity, viscoelasticity and creep; effects of temperature and strain-rate on inelastic flow; microstructure and mechanical properties; application of basic concepts to selected advanced materials. Prerequisite: consent of instructor.

231A. Foundations of Solid Mechanics (4)
Specification of stress and strain; infinitesimal and finite deformation; conservation equations; typical constitutive equations; minimum potential energy principle. Prerequisite: MAE 131B or consent of instructor.

231B. Elasticity (4)
Basic field equations. Typical boundary value problems of classical linear elasticity. Problems of plane stress and plane strain. Variational principles. Prerequisite: MAE 231A or consent of instructor.

231C. Anelasticity (4)
Mechanical models of viscoelastic, plastic, and viscoplastic behavior in simple shear or uniaxial stress. Constitutive relations for three-dimensional states of stress and strain. Application to selected technological problems. Prerequisite: MAE 231B or consent of instructor.

232A. Finite Element Methods in Solid Mechanics I (4)
Finite element methods for linear problems in solid mechanics. Emphasis on the principle of virtual work, finite element stiffness matrices, various finite element formulations and their accuracy and the numerical implementation required to solve problems in small strain, isotropic elasticity in solid mechanics. Prerequisite: graduate standing.

232B. Finite Element Methods in Solid Mechanics II (4)
Finite element methods for linear problems in structural dynamics. Beam, plate, and doubly curved shell elements are derived. Strategies for eliminating shear locking problems are introduced. Formulation and numerical solution of the equations of motion for structural dynamics are introduced and the effect of different mass matrix formulations on the solution accuracy is explored. Prerequisites: graduate standing and MAE 230 or MAE 232A.

233A. Fracture Mechanics (4)
Theoretical strength; stress concentration. Linear and nonlinear fracture mechanics: stress singularity, fracture modes, crack tip plastic zone, dugdale model, the R-curve; power-law materials, the J-integral; fatigue; special topics. Prerequisite: MAE 231A, MAE 231B, or consent of instructor.

233B. Micromechanics (4)
General theory of transformation strains and corresponding elastic fields; Green’s functions and other solution methods; dislocations; inclusions and inhomogeneities; micromechanics of plastic flow, microcracking, cavitation, and damage in crystalline and other solids. Prerequisite: MAE 231A-B or consent of instructor.

238. Stress Waves in Solids (4)
Linear wave propagation; plane waves; reflection and refraction; dispersion induced by geometry and by material properties. Application of integral transform methods; Selected topics in nonlinear elastic, anelastic, and anisotropic wave propagation. Prerequisite: MAE 231A-B or consent of instructor.

251. Structure and Analysis of Solids (4)
(Cross-listed with MATS 227 and Chem. 222.) Key concepts in the atomic structure and bonding of solids such as metals, ceramics, and semiconductors. Symmetry operations, point groups, lattice types, space groups, simple and complex inorganic compounds, structure/property comparisons, structure determination with x-ray diffraction, Ionic, covalent, metallic bonding compared with physical properties. Atomic and molecular orbitals, bands vs. bonds, free electron theory. Prerequisite: consent of instructor.

252AB. Processing and Synthesis of Advanced Materials (4)
(Cross-listed with MATS 233A-B.) Introduction to various materials processing techniques used in fabricating dense bodies with optimal structure and properties. Solidification processing, chemical synthesis of ceramics, theory of densification, composite fabrication, superconductor synthesis, electronic and optical materials processing, and techniques to generate amorphous solids. Prerequisite: consent of instructor.

253. Ceramic and Glass Materials (4)
(Cross-listed with MATS 236.) Powder synthesis, powder compaction and densification via different processing routes. Phase equilibria and crystallography in ceramic materials. Sintering, liquid and vapor phase processing, and single crystal growth. Control of the microstructural development and interfacial properties to optimize properties for structural, thermal, electrical, or magnetic use. Topics in processing and use of advanced ceramic materials. Glass formation and structure, phase separation, viscous flow and relaxation. Prerequisite: consent of instructor.

265A. Electronic and Photonic Properties of Materials (4)
(Cross-listed with MATS 251A.) The electronic and optical properties of metals, semiconductors, and insulators. The concept of the band structure. Electronic and lattice conductivity. Type I and Type II superconductivity. Optical engineering using photonic band gap crystals in one-, two-, and three-dimensions. Current research frontiers. Prerequisite: consent of instructor.

265B. Magnetic Materials: Principles and Applications (4)
(Cross-listed with MATS 251B.) The basis of magnetism: Classical and quantum mechanical points of view. Different kinds of magnetic materials. Magnetic phenomena including anisotropy, magnetostiriction, domains, and magnetization dynamics. Current frontiers of nano-magnetics research including thin films and particles. Optical, data storage, and biomedical engineering applications of soft and hard magnetic materials. Prerequisite: consent of instructor.

266. Biomaterials (4)
(Cross-listed with MATS 252.) This class will cover biomaterials and biomimetic materials. Metal, ceramic, and polymer biomaterials will be discussed. Emphasis will be on the structure-property relationships, biocompatibility/ degradation issues and tissue/material interactions. Synthesis and mechanical testing of biomimetic materials will also be discussed. Prerequisite: consent of instructor.

267. Nanomaterials and Properties (4)
(Cross-listed with MATS 253.) This course discusses synthesis techniques, processing, microstructural control and unique physical properties of materials in nano-dimensions. Topics include nanowires, quantum dots, thin films, electrical transport, electron emission properties, optical behavior, mechanical behavior, and technical applications of nanomaterials. Prerequisite: consent of instructor.

(Cross-listed with MATS 254.) Fabrication of Micro-Electro Mechanical Systems (MEMS) by bulk and surface micromachining of single crystal, polycrystal and amorphous silicon and other materials. Performance issues including electrostatic, magnetic, piezoelectric actuations, residual stresses, deformation. Novel device applications, future trends in smart materials and nano-electro-mechanical (NEMS) systems. Prerequisite: consent of instructor.

269. Presentations, Inventions and Patents (4)
(Cross-listed with MATS 255.) This course covers methodology and skills for oral and written presentations. Topics include preparation of presentation materials, presentation exercise, publication manuscripts, research work proposals, understanding and securing of inventions and intellectual properties, patent applications and licensing. Prerequisite: consent of instructor.

271A. Thermodynamics of Solids (4)
(Cross-listed with MATS 201A and ECE 238A.) The thermodynamics and statistical mechanics of solids. Basic concepts, equilibrium properties of alloy systems, thermodynamic information from phase diagrams, surfaces and interfaces, crystalline defects. Prerequisite: consent of instructor.

271B. Solid State Diffusion and Reaction Kinetics (4)
(Cross-listed with MATS 201B and ECE 238B.) Thermally activated processes, Boltzmann factor, homogenous and heterogenous reactions, solid state diffusion, Fick’s laws, diffusion mechanisms, Kirkendall effect, Boltzmann-Matano analysis, high diffusivity paths. Prerequisite: consent of instructor.

272. Imperfections in Solids (4) (Cross-listed with MATS 205A). Point, line, and planar defects in crystalline solids, including vacancies, self interstitials, solute atoms, dislocations, stacking faults, and grain boundaries; effects of imperfections on mechanical properties; interactions of dislocations with point defects; strain hardening by micro-obstacles, precipitation, and alloying elements.

277. Ceramic and Glass Materials (4) (Cross-listed with MATS 236.) Powder synthesis, powder compaction and densification with different processing routes. Phase equilibria and crystallography in ceramic materials. Sintering, liquid and vapor phase processing and single crystal growth. Control of the microstructural development and interfacial properties optimize properties for structural, thermal, electrical, or magnetic use. Topics in processing and use of advanced ceramic materials. Glass formation and structure, phase separation, viscous flow and relaxation. Prerequisite: consent of instructor.

280A. Linear Systems Theory (4) Linear algebra: inner products, outer products, vector norms, matrix norms, least squares problems, Jordan forms, coordinate transformations, positive definite matrices, etc. Properties of linear dynamic systems described by ODEs: observability, controllability, detectability, stabilizability, trackability, optimality. Control systems design: state estimation, pole assignment, linear quadratic control. Prerequisite: MAE 141A or 143B, or consent of instructor.

280B. Linear Control Design (4) Parametrization of all stabilizing output feedback controllers, covariance controllers, H-infinity controllers, and L-2 to L-infinity controllers. Continuous and discrete-time treatment. Alternating projection algorithms for solving output feedback problems. Model reduction. All control design problems reduced to one critical theorem in linear algebra. Prerequisite: MAE 280A.

285A. Optimal Estimation (4) Least squares and maximum likelihood estimation methods, Gauss-Markov models, state estimation and Kalman filtering, prediction and smoothing. The extended Kalman filter. Prerequisite: MAE 280A or consent of instructor.

290A. Numerical Methods in Science and Engineering (4) A general introductory course to numerical methods. Introduction to linear calculus, solution of systems of linear and nonlinear algebraic equations, the algebraic eigenvalue problem, polynomial and trigonometric function interpolation, function differentiation and integration, function approximation. Prerequisite: MAE 107 or consent of instructor.

290B. Numerical Methods for Differential Equations (4) Numerical solution of differential equations in mathematical physics and engineering, ordinary and partial differential equations. Linear and nonlinear hyperbolic, parabolic, and elliptic equations, with emphasis on prototypical cases, the convection-diffusion equation, Laplace’s and Poisson equation. Finite difference methods will be considered in depth, and additional topics. Prerequisite: MAE 290A or consent of instructor.

291. Design and Mechanics in Computer Technology (4) Design and mechanics problems inherent in computer peripherals such as disk files, tape drives, and printers. Formulation and solution of problems involving mechanics, fluid mechanics, and materials; Reynolds equation, slider bearings; friction and wear; actuator design, impact printing; silicon fluid jets. Prerequisite: consent of instructor.

292. Computer-Aided Design and Analysis (4) Introduction to 2-D and 3-D computer-aided design. Design problems may include: ball bearing kinematics, Weibull statistics, non-repeatable spindle run-out, four bar linkages, beam deflection and vibration, design of magnetic head suspension, hydrodynamic theory of lubrication, air bearings, heat transfer, optical servo, design of ink jet print head. Prerequisite: consent of instructor.

293. Advanced Computer Graphics for Engineers and Scientists (4) Advanced topics used to enhance scientific and engineering visualization. C programming assignments and the use of advanced graphics software. Continuation of topics from MAE 152, including color, computational geometry, 3-D contouring, volume visualization, and hardware architectures. Prerequisite: MAE 152 or consent of instructor.

294B. Introduction to Applied Mathematics II (4) (Cross-listed with SIO 203B) Asymptotic methods: method of steepest descent (if not covered in I), WKBJ, method of multiple scales, boundary layer theory. Elements of complex analysis. Prerequisites: MAE 294A or SIO 203A or consent of instructor.

294C. Introduction to Applied Mathematics III (4) (Cross-listed with SIO 203C) Partial differential equations: characteristics, similarity solutions, Green’s functions, images, wave equation, diffusion equation, Laplace’s equation. Applications to continuum
Structural Engineering (SE)

The Department of Structural Engineering offers an unique engineering program leading to the B.S. degree in structural engineering which is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (EAC/ABET). The Department of Structural Engineering also offers a nonaccredited B.S. degree in engineering sciences. The B.S. programs require a minimum of 148 units, plus college requirements in humanities and social sciences.

All Structural Engineering programs of study have strong components in laboratory experimentation, numerical computation, and engineering design. Design is emphasized throughout the curricula by open-ended homework problems, by laboratory and computer courses which include student-initiated projects, and finally, by senior design project courses which involve teams of students working to solve engineering problems.
design problems brought in from industry. The Structural Engineering programs are designed to prepare students receiving bachelor’s degrees for professional careers or for graduate education in their area of specialization. In addition, the programs can also be taken by students who intend to use their undergraduate engineering education as preparation for postgraduate professional training in non-technical fields such as business administration, law or medicine.

Structural Engineering is concerned with the design and analysis of civil, mechanical, aerospace, marine, naval, and offshore structures. Examples include bridges, dams, buildings, aircraft, spacecraft, ships, oil platforms, automobiles, and other transportation vehicles. This field requires a thorough knowledge of the behavior of solids (concrete, soils, rock, metals, plastics, and composite materials), fluid mechanics as it relates to structural loads, dynamics as it relates to structural response, mathematics for the generation of theoretical structural models and numerical analysis, and computer science for simulation purposes associated with computer-aided design, response analyses, and data acquisition. Basic understanding of materials behavior and structural performance is enhanced by laboratory courses involving static and dynamic stress failure tests of structural models, and response of structural systems. Within this area, students can specialize in (a) civil structures, (b) aerospace structures, (c) renewal of structures, or (d) earthquake engineering.

The engineering sciences program follows the overall Structural Engineering program except that the number of required design courses is reduced. In addition to core courses in dynamics, vibrations, structures, fluid mechanics, thermodynamics, heat transfer, and laboratory experimentation, a large number of technical electives are scheduled. This aspect of the curriculum allows flexibility by permitting specialization and in-depth study in one area of the engineering sciences or through a sequence of courses on various emerging technologies. Students must consult their advisors to develop a sound course of study to fulfill the technical elective requirements of this program.

Major Requirements

Specific course requirements for the major are outlined in a table herein. In addition to the required technical courses specifically indicated, a suggested scheduling of humanities and social science courses (HSS) are distributed in the curricula for students to use to meet college general-education requirements. To graduate, students must maintain an overall GPA of at least 2.0, and the department requires at least a C- grade in each course required for the major.

Deviations from the program of study must be approved by the Undergraduate Affairs Committee prior to taking alternative courses. In cases where a student needs to take a course outside UCSD, prior departmental approval is essential. In addition, technical elective (TE) course selections must have departmental approval prior to taking the courses. In the accredited program, TE courses are restricted to meet ABET standards. Courses such as SE 195, SE 197 and SE 198 are not allowed as technical electives in meeting the upper-division major requirements. SE 199 can be used as a technical elective only under restrictive conditions. Policies regarding these conditions may be obtained from the department’s Student Affairs Office. Graduate level courses may be petitioned for technical elective credit.

Students with different academic preparations may vary the scheduling of lower-division courses such as math, physics and chemistry, but should consult the department prior to doing so. Deviations in scheduling lower-division Structural Engineering courses are discouraged due to scheduling constraints. A tentative schedule of course offerings is available from the department each spring quarter for the following academic year.

General-Education/College Requirement

For graduation, each student must satisfy general-education course requirements determined by the student’s college, as well as the major requirements determined by the department. The six colleges at UCSD require widely different general-education courses, and the number of such courses differs from one college to another. Each student should choose his or her college carefully, considering the special nature of the college and the breadth of general education.

The Structural Engineering program allows for twelve humanities and social science (HSS) courses so that students can fulfill their college requirements. In the ABET accredited programs, students must develop a program that includes a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. It should be noted, however, that some colleges may require more than twelve HSS courses indicated in the curriculum tables. Accordingly, students in these colleges may take longer to graduate than the indicated four-year schedule. Students must consult with their college to determine which HSS courses to take.

Professional Licensing

All students are encouraged to take the Engineering-in-Training (EIT) examination as the first step in becoming licensed as a professional engineer (PE). Students graduating from an accredited program can take the PE examination after EIT certification and two years of work experience; students graduating from a nonaccredited program can take the PE examination after EIT certification and four years of work experience.

For further information please contact your local Board of Registration for Professional Engineers and Land Surveyors or visit http://www.dca.ca.gov/pels.

STRUCTURAL ENGINEERING (ABET Accredited Program)

Mission Statement

To provide a comprehensive education and training to engineers using a holistic approach to structural systems engineering by emphasizing and building on the commonality of engineering disciplines at the levels of materials, mechanics, analysis, and design.

GOALS

1. To provide our students with a strong technical education that will prepare students receiving Bachelor’s degrees for professional careers in industry, or for continued graduate education in their area of specialization.
2. To provide our students with cross-disciplinary technical education to adequately prepare them for a rapidly changing technological world based on the commonality of knowledge across structural engineering disciplines thereby ensuring that they are able to continuously meet professional objectives throughout their careers.
3. To provide our students with a firm foundation for professional advancement not just through...
technical expertise, but also through communication skills, team and group activities, and ethical/professional responsibility as designers and engineers.

OBJECTIVES

• To provide a sound basis in the general sciences and mathematics that underlie the cross-disciplinary field of structural engineering.
• To provide a thorough training in the design principles and structural action as related to components and systems over a broad range of application areas.
• To provide a thorough training in the methods of analysis, including problem formulation and the use of current mathematical and computational tools.
• To provide an understanding of structural action at the component and systems level through design, analysis, and experimentation.
• To provide through structure and flexibility in the curriculum the opportunity for students to have both specialization (through focus sequences) and breadth (through technical electives) in the area of structural engineering.
• To instill in students the ability of critical and innovative thinking, and ability to formulate solutions based on sound principles of structural mechanics and materials.
• To teach students techniques of experimentation and data analysis, including the use of statistics and reliability methods required for structural applications.
• To teach the fundamentals of the design process initiating in conceptual design and culminating in final design including the use of appropriate codes of practice.
• To prepare students in the skills needs for successful professional practice as related to team participation, and effective verbal and written communication.
• To instill in our students an understanding and acceptance of their professional and ethical responsibilities.

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 20D</td>
<td>Math. 20F</td>
<td>Math. 20E</td>
</tr>
<tr>
<td>Phys. 2C/2CL</td>
<td>SE 102</td>
<td>SE 103</td>
</tr>
<tr>
<td>SE 101A</td>
<td>SE 101B</td>
<td>SE 110A</td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE 121</td>
<td>SE 120</td>
<td>MAE 170</td>
</tr>
<tr>
<td>SE 125</td>
<td>MAE 101A</td>
<td>TE²</td>
</tr>
<tr>
<td>SE 110B</td>
<td>SE 130A</td>
<td>SE 130B</td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE 101C</td>
<td>SE 131</td>
<td>SE 140</td>
</tr>
<tr>
<td>TE</td>
<td>TE</td>
<td>TE</td>
</tr>
<tr>
<td>FS¹</td>
<td>FS</td>
<td>FS</td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
</tr>
</tbody>
</table>

1 In fulfilling the humanities and social science requirements (HSS), students must take a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. Twelve HSS courses are listed here; individual college requirements may be higher.

2 Technical elective (TE) course must be an upper-division or graduate course in the engineering sciences, natural sciences or mathematics, selected with prior approval of the department to meet ABET standards.

Policies and Procedures for Structural Engineering Undergraduate Students

Admission to the Major

Admission to the department as a Structural Engineering major, or to fulfill a major in another department which requires Structural Engineering courses, is in accordance with the general requirements established by the School of Engineering. The admission requirements and procedures are described in detail in the section on “Admission to the School of Engineering” in this catalog. All students are expected to complete lower- and upper-division courses, as suggested in the curriculum tables, in a timely fashion in the sequences outlined.

Transfer Students

Requirements for admission as a Structural Engineering major, or into Structural Engineering courses, are the same for transfer students as they are for continuing students (see section on “Admission to the School of Engineering” in this general catalog). Accordingly, when planning their program, transfer students should be mindful of lower-division prerequisite course requirements, as well as for meeting collegiate requirements.

Students who have taken equivalent courses elsewhere may request to have transfer credits apply toward the department’s major requirements. This is accomplished by submitting a petition for transfer credits together with a transcript and catalog course description from the institution where the course(s) were taken. These documents are reviewed for approval by the Structural Engineering Undergraduate Affairs Committee.

*Effective fall 2006, these courses will be required preparation for all engineering transfer students.

**Refer to the UCSD General Catalog to select major prerequisite requirement for computer language courses.

No transfer credit will be given for courses similar to SE 1 and SE 2. SE 1 and SE 2 must be taken by all students majoring in Structural Engineering. Transfer petitions are available from the Structural Engineering Student Affairs Office.
Academic Advising

Upon arrival, students must make an appointment with the undergraduate advisor in the Structural Engineering Student Affairs Office to plan a program of study. The program plan may be revised in subsequent years, but revisions involving curricular requirements require approval by the undergraduate advisor or the Undergraduate Affairs Committee. Because some courses and/or curricular changes may be made every year, it is imperative that students consult with the department’s undergraduate advisor and their assigned faculty advisor on an annual basis.

Many Structural Engineering courses are offered only once a year and therefore should be taken in the recommended sequence. If courses are taken out of sequence, it may not always be possible to enroll in subsequent courses as desired or needed. If this occurs, students should seek immediate department advice. When a student deviates from the sequence of courses specified for the curriculum in this catalog, it may be impossible to complete the Structural Engineering major within the normal four-year period. Students should refer to the four-year plan and course prerequisite map on the department Web site at http://www.structures.ucsd.edu.

In addition to the advising available through the Structural Engineering Student Affairs Office, programmatic or technical advice may be obtained from Structural Engineering faculty members. A specific Structural Engineering faculty advisor is assigned to each Structural Engineering student. All Structural Engineering students are required to meet with their faculty advisor at least once a year, preferably before the beginning of fall quarter.

Program Alterations/Exceptions to Requirements

Variations from, or exceptions to, any program or course requirements are possible only if a petition is approved by the Structural Engineering Undergraduate Affairs Committee before the courses in question are taken. Petition forms may be obtained from the Structural Engineering Student Affairs Office and must be processed through this office.

Independent Study

Structural Engineering students may take SE 199, Independent Study for Undergraduates, under the guidance of a Structural Engineering faculty member. Normally, this course is taken as an elective on a P/NP basis. Under very restrictive conditions, however, it may be used to satisfy upper-division technical elective course requirements for the major. Students interested in this alternative must identify a faculty member with whom they wish to work and propose a two-quarter research or study topic. After obtaining the faculty member’s concurrence on the topic and scope of the study, the student must submit a Special Studies Course form (each quarter) and the “SE 199 as Technical Elective Contract” form to the Structural Engineering Undergraduate Affairs Committee. These forms must be completed, approved, and processed prior to the beginning of the quarter in which the course is to be taken. This should not be done during the add/drop period. Detailed policy in this regard and the requisite forms may be obtained from the Student Affairs Office.

Teaching

Students interested in participating in the instructional activities of the department may take SE 195, Undergraduate Teaching. Policy in this regard and the appropriate forms may be obtained from the Structural Engineering Student Affairs Office.

Bachelor’s/Master’s Program

The department offers a bachelor’s/master’s degree program to enable students to complete both the B.S. and M.S. degrees in an accelerated timeframe. Undergraduate students in the Department of Structural Engineering who have at least 148 quarter units with a cumulative 3.5 M.W. GPA are eligible to apply. Admission to the bachelor’s/master’s degree program is not automatic. Student applications are reviewed and the final decision is made by the Department of Structural Engineering. Acceptance into this program is an honor which carries with it practical benefits—the graduate application process is simplified (no GREs required) and advanced students are given access to graduate level courses. Upon acceptance as an undergraduate into the program, a faculty member will be assigned who will serve as the student’s advisor. Interested students should contact the Structural Engineering Student Affairs Office. Students must fulfill all requirements for the B.S. degree prior to being formally admitted to graduate status.

The Graduate Program

The Department of Structural Engineering offers instruction leading to the degrees of master of science (M.S.) and doctor of philosophy (Ph.D.) in structural engineering (SE). In addition, an M.S. degree in structural health monitoring, prognosis, and validated simulations has been activated. The graduate program is aimed at training a select number of highly skilled professionals in structural engineering with the academic and engineering credentials to assume leadership roles in industry and academia.

The M.S. degree program is intended to provide students with additional fundamental knowledge as well as specialized advanced knowledge in selected structural engineering aspects over and above the undergraduate degree course work.

The doctor of philosophy (Ph.D.) degree program is intended to prepare students for careers in teaching, research, and/or in their chosen professional specialties. The Ph.D. program requires a departmental comprehensive examination, a Ph.D. candidacy examination, a Ph.D. dissertation based on new and unique research, and a dissertation defense.

Both degrees offer opportunities for training in one or more of the four primary research thrusts within the SE department which are in (1) Earthquake Engineering, (2) Advanced Composites and Aerospace Structural Systems, (3) Renewal Engineering, and (4) Structural Health Monitoring, Prognosis, and Validated Simulations.

Admission to the UCSD graduate division requires at least a B.S. degree in engineering, physical sciences, or mathematics with an overall upper-division GPA of 3.0. Applicants must provide three letters of recommendation and recent GRE general test scores. A minimum TOEFL score of 550 (213 computer-based) is required from international applicants whose native language is not English. Based on the candidate’s background, qualifications, and career objectives, admission to the program is in one of two categories: M.S. or Ph.D.

Applicants seeking enrollment in SE courses via UC Extension’s concurrent registration program are advised to refer to the “Graduate Studies: Transferring Credit” section of the UCSD General Catalog for clarification.
Master’s Degree Program

The M.S. degree program is intended to provide the student with additional fundamental knowledge as well as specialized advanced knowledge in selected structural engineering aspects over and above the undergraduate degree course work. Two plans, the M.S. Thesis Plan and the M.S. Comprehensive Examination Plan, are offered. The M.S. Thesis Plan is designed for those students with an interest in research prior to entering the structural engineering profession or prior to entering a doctoral degree program. The M.S. Thesis Plan involves course work and research culminating with the preparation and defense of a master’s thesis. The M.S. Comprehensive Examination Plan involves course work and culminates with a report and a public oral presentation related to the courses the student has taken. The topic is selected by the student’s advisor, and must draw on at least two focus sequences the student has taken. The student will be required to prepare a final written report on the topic that must be approved by the student’s advisor and must be presented orally to a committee of three faculty members (one being the student’s advisor) during the final quarter of study. The written report must be submitted to the advisor two weeks before the oral presentation and to the other committee members one week before the oral presentation.

M.S. students must complete forty-eight units of credit for graduation. For the M.S. Comprehensive Examination Plan all forty-eight units of credit must consist of regular courses (twelve courses). For the M.S. Thesis Plan, thirty-six units (nine courses) from regular courses are required, in addition to twelve units of graduate research for the master’s thesis. For both M.S. plans, students are required to complete a minimum of two sequences from the following focus areas:

1. Structural Analysis
2. Structural Design
3. Earthquake Engineering
4. Advanced Composites
5. Solid Mechanics
6. Advanced Structural Behavior

A sequence is composed of three regular courses from the same focus area. The courses comprising the focus sequences are listed in the table in this section. To meet the specific needs of some students, other focus areas may be developed by a student in consultation with his or her advisor, but these must be approved by the SE Graduate Affairs Committee. To allow for greater flexibility in the program, the remaining credits required from courses may be earned by completing additional focus sequences, parts of focus sequences, or other appropriate courses. Students may elect to take other appropriate technical electives (with the approval of their advisor and the SE Graduate Affairs Committee). Up to twelve units of upper-division undergraduate (100-level) courses will be allowed in the M.S. program. Units obtained in SE 290, 291, and 298 may not be applied towards course work requirements. No more than four units of SE 296 may be applied toward course work requirements and only with prior approval of the SE Graduate Affairs Committee.

The department also offers two seminar courses each quarter dealing with current research topics in Earthquake Engineering (SE 290) and Advanced Composites (SE 291). The SE distinguished seminar series is administered by a student in consultation with his or her advisor, but these must be approved by the SE Graduate Affairs Committee.

The thesis defense is the final examination for students enrolled in the M.S. thesis plan and must be conducted after completion of all course work. Upon completion of the research project, the student writes a thesis that must be successfully defended in an oral examination and public presentation conducted by a committee composed of three faculty. A complete copy of the student’s thesis must be submitted to each member of the M.S. thesis committee (comprised of a minimum of three faculty) at least two weeks before the defense.

M.S. Degree in Structural Engineering with Specialization in Health Monitoring, Prognosis, and Validated Simulations (SHMP&VS)

The M.S. degree in SHMP&VS provides specialized multidisciplinary knowledge in the three technology areas of (1) sensing technology, (2) data interrogation, and (3) predictive modeling. Many courses currently offered within the Jacobs School of Engineering may be grouped into numerous focus sequences within each technology area, as shown in the following list:

A. SENSING TECHNOLOGY AREA

FOCUS SEQUENCE	**COURSES**
Sensing Methodologies	SE 252 Experimental Mechanics and NDE
MAE 261 Sensors and Measurements	
MAE 268 MEMS Materials, Fabrication, and Applications	

Solid Mechanics	**Solid Mechanics for Structural and Aerospace Engineering**
Theory of Elasticity	
Theory of Plasticity and Viscoelasticity	
Experimental Mechanics and NDE	

FOCUS SEQUENCE	**COURSES**
Advanced Structural Behavior	Nonlinear Mechanical Vibrations
Structural Reliability and Risk Analysis	
Random Vibrations	
Experimental Mechanics and Nondestructive Evaluation	
Structural Health Monitoring Principles	
B. DATA INTERROGATION TECHNOLOGY AREA

<table>
<thead>
<tr>
<th>FOCUS SEQUENCE</th>
<th>COURSES</th>
</tr>
</thead>
</table>
| **Signal Processing** | ECE 257B Principles of Wireless Networks
ECE 258A-B Digital Communications
ECE 259CN Advanced Coding and Modulation for Digital Communications
MAE 261 Sensors and Measurements
CSE 237A Introduction to Embedded Computing
CSE 237B Software for Embedded Computing
CSE 237C Validation/Testing of Embedded Systems
CSE 237D Design Automation and Prototyping for Embedded Systems |
| **System Identification** | MAE 280A Linear Systems Theory
MAE 280B Linear Control Design
MAE 282 Adaptive Control
MAE 284 Robust and Multi-Variable Control
MAE 285 Optimal Control and Estimation |
| **Statistical/Probabilistic Methods** | ECE 253B Digital Image Analysis
ECE 253A Fundamentals of Digital Image Processing
ECE 253B Digital Image Analysis
ECE 254 Detection Theory
ECE 255AN Information Theory |
| **Finite Element** | MAE 233A Advanced Mechanics of Composite Materials
MAE 233C Advanced Mechanics of Composite Materials
SE 274 Nonlinear Finite Element Methods |
| **Solid Mechanics** | SE 271 Solid Mechanics for Structural and Aerospace Engineering
SE 272 Theory of Elasticity
SE 273 Theory of Plasticity and Viscoelasticity
SE 252 Experimental Mechanics and NDE
SE 235 Wave Propagation in Elastic Media |
| **Material Behavior/Modeling** | MAE 233B Micromechanics
MAE 233C Advanced Mechanics of Composite Materials
MAE 232C Finite Element Methods in Solid Mechanics I
MAE 232B Finite Element Methods in Solid Mechanics II
MAE 232C Advances in Materials Computations
SE 273A Dynamic Behavior of Materials
MAE 245 Constitutive Modeling and Numerical Implementation |
| **Advanced Structural Behavior** | SE 205 Nonlinear Mechanical Vibrations
SE 206 Random Vibrations
SE 224 Structural Reliability and Risk Analysis
SE 252 Experimental Mechanics and NDE
SE 265 Structural Health Monitoring Principles |
| **Earthquake Engineering** | SE 203 Structural Dynamics
SE 206 Random Vibrations
SE 221 Earthquake Engineering
SE 222 Geotechnical Earthquake Engineering
SE 223 Advanced Seismic Design of Structures |

C. PREDICTIVE MODELING TECHNOLOGY AREA

<table>
<thead>
<tr>
<th>FOCUS SEQUENCE</th>
<th>COURSES</th>
</tr>
</thead>
</table>
| **Structural Analysis** | SE 201 Advanced Structural Analysis
SE 202 Structural Stability
SE 203 Structural Dynamics
SE 224 Structural Reliability and Risk Analysis |
| **Advanced Composites** | SE 142 Design of Composite Structures
SE 251 Processing Science of Composites
SE 252 Mechanics of Laminated Composite Structures
MAE 233C Advanced Mechanics of Composite Materials
SE 254 FRP Rehabilitation of Civil Structures |

Two degree plans in SHMP&VS will be offered: M.S. Thesis Plan and M.S. Comprehensive Examination Plan. Students in both plans must complete forty-eight units of credit for graduation. For both plans, students must complete thirty-six units of course work consisting of one focus sequence from each of the three technology areas A, B, and C listed above. Any three of the courses listed under a specific topic area constitute a focus sequence. Courses must be chosen in consultation with the student’s advisor. The remaining twelve units must be completed as graduate research SE 299.

For the M.S. SHMP&VS Comprehensive Examination Plan, the twelve-unit graduate research SE 299 must be conducted as a mentored research project. This project is intended to provide a mentored practicum whereby students integrate knowledge learned from their technology areas into comprehensively solving a problem from structural health monitoring/prognosis or model validation and uncertainty quantification, at their discretion. This project will emphasize professional practice, with both oral and written communication of technical data, and will include a strong design component. The project will be presented to a committee of two faculty members in Structural Engineering and one from another department within the Jacobs School of Engineering or an adjunct faculty member in an appropriate area of focus.

For the M.S. SHMP&VS Thesis Plan, the twelve-unit graduate research SE 299 culminates with the preparation of a research thesis. The thesis must be successfully defended in an oral examination and public presentation conducted by a committee composed of three faculty members. The committee will consist of two faculty members in Structural Engineering and one from another department within the Jacobs School of Engineering or an adjunct faculty member in an appropriate area of focus. A complete copy of the student’s thesis must be submitted to each member of the M.S. thesis committee at least two weeks prior to the defense.
Because of the inherent multidisciplinary nature of the M.S. SHMP&VS degree, research within SE 299 can be conducted at outside locations (industry or government facilities). In this case a scientist on location, with an adjunct faculty appointment at UCSD, will be part of the student’s committee.

All students in the M.S. SHMP&VS program are required to take one of the two seminar courses (SE 290 or SE 291) each quarter they are registered.

Doctoral Degree Program

The Ph.D. program is intended to prepare students for a variety of careers in research, teaching and advanced professional practice in the broad sense of structural engineering, encompassing civil and aerospace structures, earthquake and geotechnical engineering, composites, and engineering mechanics. Depending on the student’s background and ability, research is initiated as soon as possible. All students, in consultation with their advisors, develop course programs that will prepare them for the Departmental Comprehensive Examination and for their dissertation research. However, these programs of study and research must be planned to meet the time limits established to advance to candidacy and to complete the requirements for the degree. Doctoral students who have passed the Departmental Comprehensive Examination may take any course for an S/U grade, with the exception of any course that the student’s Department Comprehensive or Ph.D. Candidacy Examination Committee stipulates must be taken in order to remove a deficiency. It is strongly recommended that all Structural Engineering graduate students take a minimum of two courses (other than research) per academic year after passing the Departmental Comprehensive Examination.

The department also offers two seminar courses each quarter dealing with current research topics in Earthquake Engineering (SE 290) and in Advanced Composite Materials (SE 291). All Ph.D. students are required to take one of these two seminar courses each quarter they are registered.

Doctoral Examinations: A Structural Engineering Ph.D. student is required to pass three examinations. The first is a Departmental Comprehensive Examination which should be taken within three to six quarters of full-time graduate study and requires a 3.5 GPA. This examination is intended to determine the student’s ability to successfully pursue a research project at a level appropriate for the doctoral degree. It is administered by at least four faculty, three of whom must be in Structural Engineering. The student is responsible for material pertaining to four focus areas. One focus area can be satisfied by course work, provided that all courses in that area have been taken at UCSD, the grade in each course is B or better, and the overall GPA in that area is at least 3.5. In order to insure appropriate breadth, the focus areas should consist of the following: (a) two focus areas within Structural Engineering which are closely related to the student’s research interests, (b) one focus area within Structural Engineering that is not directly related to the student’s area of research, and (c) one minor focus area outside the Department of Structural Engineering. An updated list of sample focus areas for Ph.D. students is available in the \textit{Structural Engineering Graduate Handbook}. Minor areas too closely related to the major areas will not be approved by the SE Graduate Affairs Committee. The Solid Mechanics Focus Sequence, which is jointly taught by the Department of Structural Engineering and the Department of Mechanical and Aerospace Engineering, cannot be used to satisfy the outside Structural Engineering requirement. Students intending to specialize in the emerging areas of structural health monitoring, damage prognosis, and validated simulations are advised to take courses in the focus areas of Advanced Structural Behavior and elective courses MAE 283, MAE 261, ECE 251AN, ECE251BN, ECE 254, and CSE 291, which can be used to satisfy the outside Structural Engineering requirement.

Since the examination areas must be approved by the Structural Engineering Graduate Affairs Committee, students are advised to seek such approval well before their expected examination date, preferably while planning their graduate studies. Although students are not required to take particular courses in preparation for the Departmental Comprehensive Examination, the scope of the examination in each area is associated with a set of three graduate courses, generally in focus areas offered or approved by the department. A list of focus areas is available in the \textit{Structural Engineering Graduate Handbook}. A candidate can develop a sense of the level of knowledge expected to be demonstrated during the examination by studying the appropriate syllabi and/or discussing the course content with faculty experienced in teaching the courses involved. The Departmental Comprehensive Examination may be a written or an oral examination, at the discretion of the committee.

Teaching experience is required of all Structural Engineering Ph.D. students prior to taking the Ph.D. Candidacy Examination. Teaching experience is defined as lecturing one hour per week in either a problem-solving section or laboratory session, for one quarter in an undergraduate course designated by the department. The requirement can be fulfilled by service as a teaching assistant or taken as a course for academic credit. Students must contact the Student Affairs Office to plan for completion of this requirement.

The Ph.D. Candidacy Examination is the second examination required of Structural Engineering doctoral students. In preparation for the Ph.D. Candidacy Examination, students must have completed the Departmental Comprehensive Examination and the Departmental Teaching Experience requirement, obtained a faculty research advisor, have identified a topic for their dissertation research, and have made initial progress in that research. At the time of application for advancement to candidacy, a doctoral committee responsible for the remainder of the student’s graduate program is appointed by the Graduate Council. In accordance with Academic Senate Regulations 715(D): “A doctoral committee of five or more members shall be appointed by the dean of Graduate Studies under the authority of the Graduate Council. The committee members shall be chosen from at least two departments, and at least two members shall represent academic specialties that differ from the student’s chosen specialty. In all cases, each committee must include one tenured UCSD faculty member from outside the student’s major department.” The committee conducts the Ph.D. Candidacy Examination, during which students must demonstrate the ability to engage in dissertation research. This involves the presentation of a plan for the dissertation research project. A short written document describing the research plan must be submitted to each member of the committee at least two weeks before the Ph.D. Candidacy Examination. The committee may ask questions directly or indirectly related to the research project and general questions that it determines to be relevant. Upon successful completion of this examination, students are advanced to candidacy and are awarded the
Candidate in Philosophy degree. The Ph.D. Candidacy Examination is an oral examination.

The Dissertation Defense is the final Ph.D. examination. Upon completion of the dissertation research project, the student writes a dissertation that must then be successfully defended in an oral examination and public presentation conducted by the doctoral committee. A complete copy of the student’s dissertation must be submitted to each member of the doctoral committee at least four weeks before the defense. While the copy of the dissertation handed to the committee is expected to be complete and in final form, it should be noted that students are expected to make changes in the text per direction of the committee as a result of the defense. This examination cannot be conducted earlier than three quarters after the date of advancement to doctoral candidacy. Acceptance of the dissertation by the Office of Graduate Studies and Research and the university librarian represents the final step in completion of all requirements for the Ph.D.

Ph.D. Time Limit Policy. Pre-candidacy status is limited to four years. Doctoral students are eligible for university support for six years. The defense and submission of the doctoral dissertation must be within seven years.

Evaluations. In the spring of each year, the faculty evaluates each doctoral student’s overall performance in course work, research, and prospects for financial support for future years. A written assessment is given to the student after the evaluation. If a student’s work is found to be inadequate, the faculty may determine that the student cannot continue in the graduate program.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

All students enrolled in Structural Engineering courses or admitted into a Structural Engineering program are expected to meet prerequisite and performance standards, i.e., students may not enroll in any SE courses or courses in another department which are required for the major prior to having satisfied prerequisite courses with a C– or better. (The department does not consider D or F grades as adequate preparation for subsequent material.) Additional details are given under the various program outlines, course descriptions, and admission procedures for the School of Engineering in this catalog. Furthermore, the majority of SE courses have enrollment restrictions which give priority to, or are open only to, declared pre-engineering students and/or to students who have been admitted to an engineering major. Where these restrictions apply, the registrar will not enroll other students except by department stamp on class enrollment cards. The department expects that students will adhere to these policies on their own volition and enroll in courses accordingly. Students are advised that they may be dropped at any time from course rosters if prerequisites and/or performance standards have not been met.

While some lower-division courses may be offered more than once each year, most SE upper-division courses are taught only once per year, and courses are scheduled to be consistent with the curricula as shown in the tables. When possible, SE does offer selected large-enrollment courses more than once each year. A tentative schedule of course offerings is available from the department each spring for the following academic year.

LOWER-DIVISION

SE 1. Introduction to Structures and Design (4)
Introduction to structural components, systems from aerospace, civil, mechanical, marine and offshore areas. Structural action, the design process. History of structural engineering. Role and responsibility of structural engineers in society. Engineering economics, costs-benefits analysis. Implications on safety, Professional ethics. Priority enrollment given to structural engineering majors.

SE 2. Structural Materials (4)
Structure of engineering materials (metals, ceramics, concrete, composites) tailoring to produce desired properties and response in structural components and systems. Mechanical tests, elasticity, plastic deformation, fracture, toughness, creep and fatigue. Selection based on performance requirements/application. Laboratory demonstrations and tests. Prerequisites: Chem. 6A, Phys. 2A. Priority enrollment given to structural engineering majors and mechanical and aerospace engineering majors.

Introduction to the Matlab environment. Variables and types, statements, functions, blocks, loops, and branches. Algorithm development. Functions, function handles, input and output arguments. Data encapsulation and object-oriented programming. Toolboxes and libraries. Models from physics (mechanics and thermodynamics) are used in exercises and projects. Prerequisites: grade of C– or better in Math. 20D and Math. 20F (20F may be concurrent).

SE 10A. Design Competition—Design, Build, and Fly Aircraft (1)
Student teams design, build, and fly unmanned aircraft for a national student competition. Students concentrate on vehicle system design including aerodynamics, structures, propulsion, and performance. Teams engineer and fabricate the aircraft, submit a design report, and prep aircraft for competition. Prerequisite: Consent of instructor.

SE 87. Freshman Seminar (1)
The freshman seminar program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Prerequisite: open to freshmen only.

UPPER-DIVISION

SE 101A. Mechanics I: Statics (4)
Principles of statics using vectors. Two- and three-dimensional equilibrium of statically determinate structures under discrete and distributed loading including hydrostatics; internal forces and concept of stress; free body diagrams; moment, product of inertia; analysis of trusses and beams. Prerequisites: grades of C– or better in Math. 20C and Phys. 2A.

SE 101B. Mechanics II: Dynamics (4)

SE 101C. Structural Mechanics III: Structural Dynamics (4)
Free and forced vibrations of damped 1-DOF systems; vibrations isolation, impact and packaging problems. Analysis of discrete MDOF systems using matrix representation; normal mode of frequencies and modal matrix formulation. Lagrange’s equations. Modal superposition for analysis of continuous vibrating systems. Prerequisites: grade of C– or better in Math. 20D (or MAE 130B), SE major.

SE 102. Numerical, Computational, and Graphical Tools for Structural Engineering I (4)

SE 103. Conceptual Structural Design (4)
Introduction to design principles and structural action. Development of design theories, approaches and methodology. Concepts of load and resistance factors, factors of safety, limit and ultimate states, design allowables. Simple design examples from aerospace, civil, marine, offshore and mechanical structural systems. Prerequisites: grade of C– or better in SE 9 and SE 101A (or MAE 130A), SE majors.

SE 110A. Solid Mechanics I (4)
Mechanics of deformable bodies under axial, torsional, shearing, and bending loads. Elastic and plastic uniaxial material response as well as 3-D Hooke’s law. Mohr’s circle for stress and strain. Problems of design for rods, shafts, beams, columns, pressure vessels, and thin walled members. Prerequisites: grades of C– or better in SE 101A (or MAE 130A), SE majors.
SE 110B. Solid Mechanics II (4)

Engineering graphics, solid modeling, CAD applications including 2-D and 3-D transformations, 3-D viewing, wire frame and solid models, Hidden surface elimination. Prerequisite: grade of C– or better in SE 102 and SE 103, SE majors.

SE 121. Numerical Methods in Engineering (4)
Advanced numerical methods for applications for engineering problems. Solution of systems of linear and nonlinear equations, function interpolation and curve fitting, function approximation, computation of integrals, numerical differentiation, and solution of systems of ordinary differential equations. Prerequisites: grade of C– or better in SE 102, SE major.

SE 125. Statistics, Probability and Reliability (4)
Probability theory. Statistics, data analysis and inferential statistics, distributions, confidence intervals. Introduction to structural reliability and random phenomena. Applications to components and systems. Prerequisites: SE majors.

SE 130A-B. Structural Analysis (4)
Classical methods of analysis for statically indeterminate structures. Development of computer codes for the analysis of civil, mechanical, and aerospace structures from the matrix formulation of the classical structural theory, through the direct stiffness formulation, to production-type structural analysis programs. Prerequisites: grades of C– or better in SE 110A, SE 121. Priority enrollment given to structural engineering majors.

SE 131. Finite Element Analysis (4)
Development of stiffness and mass matrices based upon variational principles. Application to static and dynamic problems in structural and solid mechanics. The use of general purpose and purpose finite element structural analysis codes. Prerequisites: grade of C– or better in SE 121, SE 130B, and SE major.

SE 140. Structures and Materials Laboratory (4)
Introduction to instrumentation and testing techniques. Discussion of standard tension and compression tests. Similar relationships for structural models. Term project in model structure including complete engineering report on theory, design and results of the term project. Prerequisites: grade of C– or better in SE 103, SE 130B, MAE 170), and senior standing in the major.

SE 142. Design of Composite Structures (4)
Design and analysis of lightweight structures composed of laminated composite materials. Stiffness, strength, failure mechanisms, micromechanics, and hygrothermal behavior. Fabrication and experimental testing. Design projects that involve computer implementation. Prerequisite: grade of C– or better in SE 110A-8. Priority enrollment given to engineering majors.

SE 144. Aerospace Structural Analysis (4)
Aspects of structural analysis pertinent to the design of flight vehicles; aerodynamic/inertial loadings, aero-
GRADUATE

SE 201. Advanced Structural Analysis (4)
Applications of advanced analytical concepts to structural engineering problems. Effects of approximations in the discretization and the type of finite elements under consideration. An introduction is given to the nonlinear behavior of structural systems focusing on basic concepts and computational techniques. Prerequisites: SE 231A-B or equivalent, or consent of instructor.

SE 202. Structural Dynamics (4)
Static, dynamic, and energy-based techniques and predicting elastic stability. Linear and nonlinear analysis of classical and shear deformable beams and plates. Ritz, Galerkin, and finite element approaches for frames and reinforced shells. Nonconservative aerodynamic (divergence flutter) and follower forces. Prerequisite: SE 110B or consent of instructor.

SE 203. Structural Dynamics (4)

SE 204. Advanced Structural Dynamics (4)

SE 205. Nonlinear Mechanical Vibrations (4)
Advanced analytical techniques to understand nonlinearity in mechanical vibration. Phase plane analysis instability, and bifurcations. Application in nonlinear structural resonances. Introduction to chaotic dynamics, advanced time series analysis, and using chaotic dynamics in applications such as structural damage assessment. Prerequisite: SE 206 or consent of instructor.

SE 206. Random Vibrations (4)
Introduction to probability theory and random processes. Dynamic analysis of linear and nonlinear structural systems subjected to stationary and nonstationary random excitations. Reliability Studies related to first excursion and fatigue failures. Applications in earthquake engineering, offshore engineering, wind engineering, and aerospace engineering. Prerequisites: SE 203 or equivalent and basic knowledge of probability theory (e.g., SE 125).

SE 207. Topics in Structural Engineering (4)
A course to be given at the discretion of the faculty in which topics of current interest in structural engineering will be presented.

SE 211. Advanced Reinforced and Prestressed Concrete Design (4)
Advanced topics in concrete design, including frame and shear wall structures, design of connections, reinforced and prestressed concrete system evaluation for seismic resistance including confinement and ductility requirements. Upper and lower bound theories for slab design. Prerequisite: SE 151, or equivalent background in basic RC/PC design, or consent of instructor.

SE 212. Advanced Structural Steel Design (4)
(Formerly AMES 245) Load and resistance factor design (LRFD) philosophy, Behavior and design of steel elements for global and local buckling. Bracing requirements for stability. Conventional and advanced analysis techniques for P-δ effects. Cyclic behavior. Ductility requirement for seismic design. Composite construction. Prerequisites: SE 201 and SE 150, or equivalent course, or consent of instructor.

SE 213. Bridge Design (4)
Design and analysis of bridge structures, construction methods, load conditions. Special problems in analysis—box girders, curved and skewed bridges, environmental and seismic loads. Bearings and expansion joints. Time-temperature-dependent superstructure deformations. Conceptual/preliminary bridge design project. Prerequisites: SE 201 and fundamental courses in RC and PC design, or consent of instructor.

SE 214. Masonry Structures (4)
Analysis and design of unreinforced and reinforced masonry structure using advanced analytical techniques and design philosophies. Material properties, stability, and buckling of unreinforced masonry. Flexural strength, shear strength, stiffness, and ductility of reinforced masonry elements. Design for seismic loads. Prerequisites: SE 151, or equivalent basic reinforced concrete course, or consent of instructor.

SE 215. Cable Structures (4)
The course deals with cable structures from a structural mechanics point of view. The theoretical and practical aspects of the application of cables to moorings, guyed structures, suspension bridges, cable-stayed bridges, and suspended membranes are discussed. Prerequisite: graduate standing or consent of instructor.

SE 216. Masonry Structures (4)
Analysis and design of unreinforced and reinforced masonry structure using advanced analytical techniques and design philosophies. Material properties, stability, and buckling of unreinforced masonry. Flexural strength, shear strength, stiffness, and ductility of reinforced masonry elements. Design for seismic loads. Prerequisites: SE 151, or equivalent basic reinforced concrete course, or consent of instructor.

SE 217. Bridge Design (4)
Design and analysis of bridge structures, construction methods, load conditions. Special problems in analysis—box girders, curved and skewed bridges, environmental and seismic loads. Bearings and expansion joints. Time-temperature-dependent superstructure deformations. Conceptual/preliminary bridge design project. Prerequisites: SE 201 and fundamental courses in RC and PC design, or consent of instructor.

SE 218. Geotechnical Earthquake Engineering (4)
Introduction to plate tectonics and seismology. Rupture mechanisms, measures of magnitude and intensity, earthquake occurrence and relation to geologic, tectonic processes. Probabilistic seismic hazard analysis. Strong earthquake ground motion; site effects on ground motion; structural response; soil-structure interaction; design criteria; code requirements.

SE 219. Geotechnical Earthquake Engineering (4)
Influence of soil conditions on ground motion characteristics; dynamic behavior of soils; computation of ground response using wave propagation analysis and finite element analysis; evaluation and mitigation of soil liquefaction; soil-structure interaction; lateral pressures on earth retaining structures; analysis of slope stability.

SE 220. Seismic Isolation and Energy Dissipation (4)
Concepts, advantages and limitations of seismic isolation techniques; fundamentals of dynamic response under seismic excitation; spectral analysis; damping; energy approach; application to buildings and structures. Prerequisite: background in structural dynamics, or consent of instructor.

SE 221. Earthquake Engineering (4)
Analysis and design of shear walls, reinforced concrete and masonry structures. Effects of earthquakes on buildings and structures. Prerequisite: SE 219 or equivalent.

SE 222. Geotechnical Earthquake Engineering (4)
Influence of soil conditions on ground motion characteristics; dynamic behavior of soils; computation of ground response using wave propagation analysis and finite element analysis; evaluation and mitigation of soil liquefaction; soil-structure interaction; lateral pressures on earth retaining structures; analysis of slope stability.

SE 223. Advanced Seismic Design of Structures (4)

SE 224. Structural Reliability and Risk Analysis (4)
Probability theory and random processes; fundamentals of structural reliability theory. Modern methods of structural reliability analysis including computational aspects; structural component and system reliability. Reliability-based design codes; structural modeling for performance and safety. Risk analysis of structural systems. Prerequisite: basic knowledge of probability theory (e.g., SE 125).

SE 225. Probabilistic Seismic Hazard Analysis (4)
Modern seismic hazard analysis including seismic source characterization, ground motion attenuation relations, near source effects, development of design spectra and time histories, seismic risk studies, and implementation of the PEER framing equation.

SE 226. Wave Propagation in Elastic Media (4)
Wave propagation in elastic media with emphasis on waves in unbound media and on uniform and layered half-spaces. Fundamental aspects of elastodynamics. Applications to strong-motion seismology, earthquake engineering, dynamics of foundations, computational wave propagation, and non-destructive evaluations. Prerequisite: graduate standing or consent of instructor.

SE 227. Wave Propagation in Continuous Structural Elements (4)
Propagation of elastic waves in thin structural elements such as strings, rods, beams, membranes, plates and shells. An approximate strength-of-materials approach is used to consider propagation of elastic waves in these elements and obtain the dynamic response to transient loads. Prerequisite: graduate standing or consent of instructor.

SE 228. Advanced Soil Mechanics (4)
Advanced treatment of topics in soil mechanics, including state of stress, pore pressure, consolidation and settlement analysis, shear strength of cohesionless and cohesive soils, mechanisms of ground improvement, and slope stability analysis. Concepts in course reinforced by laboratory experiments.

SE 229. Advanced Foundation Engineering (4)
Advanced treatment of topics in foundation engineering, including earth pressure theories, design of earth retaining structures, bearing capacity, ground improvement for foundation support, analysis and design of shallow and deep foundations, including drilled piers and driven piles.

SE 230. Soil-Structure Interaction (4)
Advanced treatment of soils interaction with structures, including shallow and deep foundations, bridge abutments, retaining walls, and buried structures subjected to static and dynamic loading. Elastic approximation. Linear and nonlinear Winkler models p-y and t-z curves.

SE 231. Constitutive Modeling and Numerical Implementation (4)
Development and numerical implementation of procedures to model the nonlinear behavior of engineering materials, including soil and concrete. Inelastic hyperbolic and elasto-plastic modeling of hysteretic response to cyclic loading. Behavior of soil-structure systems under transient loading, such as seismic earthquake excitation, will be discussed.

SE 232. Engineering Geology (4)
Influence of geology on design of engineering works. Inference of soil conditions on ground motion characteristics; dynamic behavior of soils; computation of ground response using wave propagation analysis and finite element analysis; evaluation and mitigation of soil liquefaction; soil-structure interaction; lateral pressures on earth retaining structures; analysis of slope stability.

SE 233. Advanced Seismic Design of Structures (4)
tri's. (Graduate students are required to submit a term project based on two extended weekend field trips and self-guided research.)

SE 251. Processing Science of Composites (4)
Introduction to processing, fabrication methods; process models; materials-processing-microstructure interaction; materials selection; form and quality control. Wet layup/sprayup, autoclave cure, SMC; injection molding, RTM; resin infusion; winding and fiber placement; pultrusion. Process induced defects, environmental considerations.

SE 252. Experimental Mechanics and NDE (4)
Theory of electrical resistance strain gages, full-field coherent optical methods including photelasticity, moiré and speckle interferometry, ultrasonics, thermography and fiberoptic sensing. Applications to materials characterization, defect detection and health monitoring of structures with emphasis on fiber-reinforced composites. Prerequisites: SE 101A, SE 110A, and MAE 131B, or consent of the instructor.

SE 253. Mechanics of Laminated Composite Structures (4)
Macro- and micro-material modeling. Classical and shear deformable laminate beam and plate theories developed via energy principles. Ritz, Galerkin, and finite element-based solutions to static, vibration, and stability problems. Assignments include computer program development and use of existing commercial programs. Prerequisites: SE 101C, SE 110B, and SE 162 or equivalent, or permission of the instructor.

SE 254. FRPs in Civil Structures (4)
Strengthening of existing reinforced concrete structures with fiber reinforced composites. Mechanics of Fiber Reinforced Plastic lamina, bond strength of FRP-to-concrete joints, shear and flexural strengthening of beams and walls, increased strength and ductility of axially loaded columns, and seismic retrofit of columns. Prerequisites: SE 142 Design of Composite Structures or equivalent; SE 251 Processing Sciences of Composites.

SE 256. Structural Health Monitoring (4)
A modern paradigm of structural health monitoring as it applies to structural and mechanical systems is presented. Concepts in data acquisition, feature extraction, data normalization, and statistical modeling will be introduced in an integrated context. MATLAB-based exercises. Term project. Prerequisites: graduate student, undergraduate vibrations or structural dynamics course.

SE 271. Solid Mechanics for Structural and Aerospace Engineering (4)
Application of principles of solid mechanics to structural components and systems, description of stresses, strains, and deformation. Use of conservation equations and principle of minimum potential energy. Development of constitutive equations for metallic, cementitious and polymeric materials. Prerequisite: SE 110A, or consent of instructor.

SE 272. Theory of Elasticity (4)
Development, formulation, and application of field equations of elasticity and variational principles for structural applications in civil and aerospace area. Use of plane stress and plane strain formulation, solution of typical boundary value problems. Prerequisite: SE 271, or consent of instructor.

SE 273. Theory of Plasticity and Viscoelasticity (4)
Mechanical models of viscoelastic, plastic, and viscoelastic behavior in simple shear or uniaxial stress. Constitutive relations for three-dimensional states of stress and strain. Application to selected technological problems for civil and aerospace structural applications. Prerequisite: SE 272, or consent of instructor.

SE 275. Fluid Dynamics in Marine Engineering (4)
Fluid dynamics equations; potential flow-theory; basic potential-flow solutions; added mass; 6-DOF hydrodynamic forces/moments on a body; water wave theory; irregular wave field; wave-body interactions; high/low-frequency responses; vortex-induced vibrations; galloping; numerical methods. Prerequisite: graduate standing.

SE 279. Seminar in Advanced Composite Structures (2)
Weekly seminar and discussion by faculty, visitors, postdoctoral research fellows and graduate students concerning research topics in advanced composite structures and related subjects. May be repeated for credit. Prerequisite: consent of instructor. (S/U grades only.)

SE 280. Directed Group Study (1-4)
Directed group study on a topic or in a field not included in regular department curriculum, by special arrangement with a faculty member. Prerequisite: consent of instructor.

SE 298. Directed Group Study (1-4)
Directed group study on a topic or in a field not included in regular department curriculum, by special arrangement with a faculty member. Prerequisite: consent of instructor.

SE 501. Teaching Experience (2)
Teaching experience in an appropriate SE undergraduate course under direction of the faculty member in charge of the course. Lecturing one hour per week in either a problem-solving section or regular lecture. Prerequisite: consent of instructor and the department. (S/U grades permitted.)

Prerequisites: SE 101A, SE 110A, and MAE 131B, or consent of the instructor.

Entry Level Writing

OFFICE: 232 Literature Building
http://basicwriting.ucsd.edu/

For information about satisfying the University of California Entry Level Writing Requirement, especially prior to enrollment, please refer to “UC Entry Level Writing Requirement” in the catalog section, “Academic Regulations.”

Students who have not satisfied the UC Entry Level Writing Requirement before enrolling at UCSD must satisfy the requirement by achieving a grade of C or better in SDCC 1 (English Composition–Entry Level Writing) and by passing the Entry Level Writing Exit Examination given at the end of SDCC 1. That examination is administered by the Basic Writing office. Students must enroll in SDCC 1 or SDCC 4 during the first quarter of residence at UCSD. SDCC 1 and SDCC 4 are Mesa College courses taught at UCSD as part of a cooperative program with the San Diego Community College District.

Under Academic Senate regulations, SDCC 1 and SDCC 4 cannot be counted toward graduation requirements; however, the course units do count as workload credit toward the minimum
progress requirement and eligibility for financial assistance.

For further information about the UC Entry Level Writing Requirement or the UC Analytical Writing Placement Examination, please visit the Basic Writing office, 232 Literature Building, or call (858) 534-6177.

Environmental Studies

OFFICE: 2073 Humanities and Social Sciences Building, Muir College, (858) 534-3589
http://provost.ucsd.edu/muir/instructional/environmental-studies

Director
Susan Smith, Ph.D., Visual Arts

Faculty
Craig Callender, Ph.D., Professor, Philosophy
Richard T. Carson, Jr., Ph.D., Professor, Economics
Pao C. Chau, Ph.D, Professor, MAE
Raymond Clemoncon, Ph.D., Lecturer, Political Science, IR/PS
Clark Gibson, Ph.D., Professor, Political Science
John Granger, Ph.D., Lecturer, Literature
James J. Moore, Ph.D., Associate Professor, Anthropology
Keith Pezzoli, Ph.D., Lecturer, Director/Field Studies, Urban Studies and Planning
Susan Smith, Ph.D., Associate Professor, Visual Arts
Shirley Strum, Ph.D., Professor, Anthropology
Donald Wesley, Ph.D., Professor, Literature
David Woodruff, Ph.D., Professor, Biology—Ecology, Behavior and Evolution

Minor in Environmental Studies

The minor addresses the scientific, technical, social, and cultural issues raised by the conflicting needs of the worldwide complex of preindustrial, industrial, and postindustrial societies.

Some of the courses related to the minor, particularly those in Group A, have significant prerequisites; students planning an Environmental Studies minor should check catalog course descriptions carefully. Some credit toward the minor may be gained through independent study, field research, study abroad, the Academic Internship Program, and others (prior approval strongly recommended). Petitions for petitionable courses, transfer courses, and individual additions to the courses listed below must be approved by the chair of the Environmental Studies Steering Committee. For updates, individual advising, and quarterly lists, please come to the Environmental Studies Office: Muir Interdisciplinary Studies, 2073 HSS, mail code 0106, phone (858) 534-3589.

Applicable and Petitionable Courses

Environmentally-based courses offered by UCSD departments fall into two categories: applicable and petitionable. Applicable courses are those which have been approved as always applying to the ENVR minor. Petitionable courses are either new and therefore not yet approved as applicable or are “topics” courses which focus on environmental matters only in particular quarters. Petitionable courses may be approved by petition to the minor during the quarters in which they appear in the ENVR quarterly lists.

Quarterly Lists

Each quarter, when the upcoming quarter’s Schedule of Classes is published, the Environmental Studies quarterly list is available in 2073 HSS and at the Web site. It is an important, comprehensive source of information about ENVR course offerings as well as those from departments throughout the campus. It identifies applicable as well as petitionable courses for a given quarter. For reference, the office and the Web site maintain archives of quarterly lists.

The minor is structured as follows:

Required:
Environmental Studies 30, usually offered in the fall quarter.
Environmental Studies 130, usually offered in the spring quarter (need not be taken consecutively).

Required:
Five additional courses, at least four in the upper-division, from the following two groups. At least one course must be taken from Group A and one from Group B.

Group A—Natural Sciences

Biology LD 3. Organismic and Evolutionary Biology
BIEB 120. General Ecology
BIEB 121. General Ecology Laboratory
BIEB 130. Introductory Marine Ecology
BIEB 131. Marine Invertebrate Ecology Laboratory
BIEB 132. Introduction to Marine Biology
BIEB 134. Introduction to Biological Oceanography
BIEB 140. Biodiversity
BIEB 165. Behavioral Ecology Laboratory
BIEB 166. Animal Behavior and Communication
BIEB 176. Conservation and the Human Predicament (cross-listed with ANBI 132)
BIEB 178. Principles of Conservation Biology
Biology EB 179. Conservation Biology Laboratory
Chemistry 15. Chemistry of the Universe
Chemistry 149A. Environmental Chemistry
Chemistry 149B. Environmental Chemistry
Chemistry 173. Atmospheric Chemistry
Environmental Studies 102. Selected Topics in Environmental Studies (when taught from a natural sciences perspective)
Environmental Systems 101. The Living Earth
Environmental Systems 103. The Human Earth
Environmental Systems 120. Science and Environmental Writing
Environmental Systems 150. Environmental Perils
MAE 118A. Energy: Non-Nuclear Energy Technologies
Physics 12. Energy and the Environment
Science, Technology, Public Affairs 35. Society and the Sea
SIO 10. The Earth
SIO 12. History of Earth and Evolution
SIO 15. Natural Disasters
SIO 16. Geology of National Parks
SIO 20. The Atmosphere
SIO 30. The Oceans
SIO 35. Water
SIO 110. Introduction to GIS and GPS for Scientists

Group B—Social Sciences/Humanities

ANGN 105. Archaeology of the UCSD Campus
ANGN 160. Nature, Culture and Environmentalism
ANGN 182. Origins of Agriculture and Sedentism (was ANGN 100)
ANBI 132. Conservation and the Human Predicament (cross-listed with BIEB 176)
Environmental Systems

Communication CUL 148. Communication and the Environment
Economics 131. Economics of the Environment
Economics 132. Energy Economics
Economics 145. Economics of Ocean Resources
Environmental Studies 102. Selected Topics in Environmental Studies (when taught from a humanities/social sciences perspective)
Environmental Studies 110. Environmental Law
Ethnic Studies 103. Environmental Racism
History SC 105A. History of Environmentalism
History US 137. The Built Environment in the Twentieth Century
History US 154. Western Environmental History (cross-listed with USP 160)
IRPS GN 458. International Environmental Policy
IRPS GN 459. Conflict Resolution of Environmental Issues
Philosophy 148. Philosophy and the Environment
Philosophy 164. Technology and Human Values
Political Science 162. Environmental Policy
Soc/C 149. Sociology of the Environment
Urban Studies & Planning 2. Urban World System
Urban Studies & Planning 124. Land Use Planning
Urban Studies & Planning 144. Environmental and Preventive Health Issues
Urban Studies & Planning 171. Sustainable Development

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

30. Environmental Issues: Natural Sciences (4)
Examines global and regional environmental issues. The approach is to consider the scientific basis for policy options. Simple principles of chemistry and biology are introduced. The scope of problems include: air and water pollution, climate modification, solid-waste disposal, hazardous-waste treatment, and environmental impact assessment. Prerequisite: none.

87. Environmental Studies Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

90. Undergraduate Seminar (1)
Provides an introduction to environmental studies. Faculty members from departments in natural sciences, social sciences, and humanities offer perspectives on human interaction with the environment and the ways in which the interplay between nature and culture can be analyzed. May be repeated for credit as topics vary.

102. Selected Topics in Environmental Studies (4)
An interdisciplinary course focusing on one of a variety of topics related to environmental studies such as environmental policy and politics, foreign study in environmental problems, environmental history, nature writers, ethics and the environment. May be repeated for credit as topics vary. Prerequisite: upper-division standing or consent of instructor.

110. Environmental Law (4)
Explores environmental policy in the United States and the ways in which it is reflected in law. The social and political issues addressed include environmental justice and environmental racism, as well as the role of government in implementing environmental law. Prerequisite: upper-division standing or consent of instructor.

130. Environmental Issues: Social Sciences (4)
Explores contemporary environmental issues from the perspective of the social sciences. It includes the cultural framing of environmental issues and appropriate social action, the analysis of economic incentives and constraints, and a comparison of policy approaches. Prerequisite: upper-division standing or consent of instructor.

192. Senior Seminar in Environmental Studies (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in Environmental Studies (at the upper-division level). Topics will vary from quarter to quarter. Senior Seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: upper-division standing, department stamp and/or consent of instructor.

195. Apprentice Teaching (0-4)
Instructor will define assistant’s responsibilities in preparing class presentations, leading students’ discussions, and evaluating students’ work.

198. Directed Group Study (4)
Directed group research and study, normally with a focus on areas not otherwise covered in the curriculum. Prerequisites: upper-division standing or consent of instructor. Department stamp required.

199. Independent Study (4)
Independent study in a topic not generally covered in the regular curriculum.

500. Apprentice Teaching in Environmental Studies (4)
A course in which teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty: handling of discussions, preparation and grading of examinations and other written exercises, and student relations. Prerequisite: graduate standing.

Environmental Systems

Office: 188 Galbraith Hall, Revelle College

Program Faculty

Mark H. Thiemens, Professor, Chemistry and Biochemistry, Program Director
Jane Teranes, Associate Director
Donna Blackman, Research Geophysicist, SIO
Ronald S. Burton, Professor, Marine Biology, SIO
Richard T. Carson, Professor, Economics
Christopher D. Charles, Professor, Oceanography, SIO
Clark Gibson, Professor, Political Science
Sarah T. Gille, Associate Professor, MAE, SIO
Philip Hastings, Professor, Marine Biology, SIO
Meryl C. Hendershott, Professor, Oceanography, SIO
William S. Hodgkiss, Professor, Electrical Engineering, SIO
Miriam Kastner, Professor, Geosciences, SIO
Joshua R. Kohn, Associate Professor, Biology
Paul Linden, Professor, MAE
T. Guy Masters, Professor, Geophysics, SIO
Kim McDonald, Lecturer, Director of Science Communication
Joel Norris, Assistant Professor, Climate Sciences, SIO
Brian Palenik, Professor, Marine Biology, SIO
Keith Pezzoli, Lecturer, Urban Studies and Planning
Frank L. Powell, Professor, Medicine/Director, White Mountain Research Station
Jeffrey B. Remmel, Professor, Mathematics
Lisa Shaffer, Director of Policy Programs and International Relations, SIO
Richard C. J. Somerville, Professor, Climate Sciences, SIO
Hubert Staudigel, Research Geophysicist, SIO
Lynne Talley, Professor, Physical Oceanography, SIO
Lisa Tauxe, Professor, Geosciences, SIO
Jeffrey R. Vincent, Professor, Environmental Economics, IR/PS
David Woodruff, Professor, Biology

There can be little doubt that in the twenty-first century the global human community is facing a substantial growth in the environmental consequences in providing food, energy, materials, and basic services to a population of almost 6.5 billion inhabitants. The Environmental Systems Program recognizes the growing demand for environmental specialists and is designed to pre-
prepare undergraduates to enter a broad spectrum of environmental careers and graduate programs, for example, the natural sciences, the social sciences, public policy, law, and business.

This interdisciplinary program recognizes that local, national, regional, international, and global environmental problems do not fit neatly into traditional academic departments. A measurable part of society’s inability to effectively manage complex environmental problems stems from the lack of specialists who can apply analytical tools that cross disciplinary boundaries. Many environmental specialists possess little training in the natural sciences including both the fundamental ideas and methodologies of the earth and environmental sciences. The environmental systems major was created to address both of these shortcomings.

To encourage and foster an interdisciplinary focus in the major, the Environmental Systems Program is supported by a wide range of UCSD faculty representing the natural sciences, the social sciences, the humanities, engineering, and medicine. The program includes a required lower-division core, an upper-division “integrating course sequence,” two other upper-division courses and statistics, an advanced track, and a senior integrative project and seminar. There is a strong emphasis on a rigorous natural science foundation as well as an introduction to the policy sciences for all students enrolled in the major.

The Environmental Systems program places a significant value on interdisciplinary problem solving and all majors are expected to complete an integrative Senior Project in their final year. The Senior Project is designed by the student to focus on an interdisciplinary environmental problem or research topic. Appropriate topics for the Senior Project could conceivably include biodiversity conservation, coastal zone management, environmental health, climate change, environmental justice, and/or urban air quality. An important component of the Senior Project is an off-campus or laboratory internship where students might work on, for example, the development of a comprehensive management plan for a threatened ecosystem. The Senior Seminar provides a venue for the presentation and group evaluation of the ESYS Senior Projects.

The Environmental Systems Major

The requirements for completion of the environmental systems major include a lower-division core, two upper-division courses, a three-course upper-division integrating sequence (ESYS 101, ESYS 102, ESYS 103), an upper-division statistics course, advanced courses in one of four tracks, and the senior project (ESYS 190A) and senior seminar (ESYS 190B). Any questions concerning the requirements should be directed to the associate director or the program advisor. Students completing the advanced tracks in “Earth Sciences,” “Ecology, Behavior, and Evolution,” and “Environmental Chemistry” will be awarded a B.S. in environmental systems. The B.A. in environmental systems will be granted to students completing the “Environmental Policy” track within the major.

A grade-point average of 2.0 or higher in the upper-division major program is required for graduation. Students must receive a grade of C– or better in any course to be counted toward fulfillment of the major requirements. In exceptional cases, students with a grade-point average in the major of 2.5 or greater may petition to have one grade of D accepted.

All courses (lower- and upper-division) required for the major must be taken for a letter grade.

LOWER-DIVISION REQUIREMENTS
(Should be completed early in student’s degree program.)

- Biology 3—BILD 3
- Chemistry 6A-B, 6BL, 6C
- Physics 1A, 1AL, 1B, 1BL, 1C, 1CL (Physics 2A-B-C recommended for Earth Sciences track.)
- Mathematics 10A-B-C (Math. 20A-B-C recommended for Earth Sciences track.)
- Economics 1
- SIO 50—for Earth Sciences track only

UPPER-DIVISION REQUIREMENTS

Economics 131. Economics of the Environment
Political Science 160AA. Introduction to Policy Analysis

"Integrating Course Sequence"

Environmental Systems 101. Environmental Biology
Environmental Systems 102. The Solid and Fluid Earth
Environmental Systems 103. The Human Earth
Environmental Systems 190A. Senior Project
(two quarters)
Environmental Systems 190B. Senior Seminar

Environmental Systems Major Tracks

There are four advanced tracks in which students must complete a minimum of seven upper-division courses. Students will select courses following the requirements below in consultation with a faculty advisor.

Earth Sciences Track

- **Required lower-division course:**
 - SIO 50. Introduction to Earth and Environmental Sciences
- **Required upper-division courses:**
 - SIO 102. Introduction to Geochemistry
 - MATH 183. Statistical Methods
- **Upper-division electives:** Students complete a minimum of seven courses selected from the following list.
 - SIO 100. Introduction to Field Methods
 - SIO 104. Paleobiology and History of Life
 - SIO 105. Sedimentology and Stratigraphy
 - SIO 110. Introduction to GIS and GPS for Scientists
 - SIO 112. Urban Landscapes
 - SIO 120. Introduction to Mineralogy
 - SIO 142. Atmospheric Chemistry and Biochemical Cycles of Atmospheric Trace Gases
 - SIO 144. Introduction to Isotope Geochemistry
 - SIO 160. Introduction to Tectonics
 - SIO 162. Structural Geology
 - SIO 185. Appliance Complex
 - SIO 199. Independent Study
 - ESYS 120. Science and Environmental Writing
 - ESYS 199. Independent Study
Curriculum Guide Planning

Environmental Systems

BIEB 132. Introduction to Marine Biology
BIEB 134. Introduction to Biological Oceanography
SIO 210. Physical Oceanography
SIO 240. Marine Geology
SIO 260. Marine Chemistry
SIO 263. Aqueous Chemistry
SIO 280. Biological Oceanography
Chemistry 149A. Environmental Chemistry
Chemistry 173. Atmospheric Chemistry

Other courses may be substituted by petition.

Curriculum Guide Planning

FALL WINTER SPRING
FRESHMAN
Chem. 6A Chem. 6B Chem. 6C
Math. 20A Math. 20B Math. 20C
or Math. 10A or Math. 10B or Math. 10C
SIO 50 BILD 3 Chem. 6BL

SOPHOMORE
Phys. 2A or 1A, 1B, or 1C, 1BL or 1CL
Poli. 160AA Econ. 1 UD elective

JUNIOR
ESYS 101 SIO 102 UD elective
Math. 183 ESYS 102 ESYS 103
UD elective UD elective

SENIOR
ESYS 190A ESYS 190A ESYS 190B
UD elective UD elective UD elective

Ecology, Behavior, and Evolution Track

Required upper-division courses:
BICD 100. Genetics
BIEB 100. Biometry (satisfies upper-division statistics requirement)

Upper-division electives [a total of seven courses required, one of which must be a lab course, selected from the courses below.]
BIBC 100. Structural Biochemistry
BIBC 102. Metabolic Biochemistry
BIBC 103. Biochemical Techniques
BIBC 120. Nutrition
BIBC 130. Marine Biochemistry
BICD 110. Cell Biology
BICD 120. Fundamental of Plant Biology
BICD 130. Embryos, Genes, and Development
BICD 134. Human Reproduction and Development
BIEB 102. Introductory Ecology—Organisms and Habitats
BIEB 121. Ecology Laboratory

Environmental Systems

BIEB 126. Plant Ecology
BIEB 131. Marine Invertebrate Ecology Lab
BIEB 132. Introduction to Marine Biology
BIEB 134. Introduction to Biological Oceanography
BIEB 140. Biodiversity
BIEB 144. Quantitative Ecology
BIEB 150. Evolution
BIEB 156. Population Genetics
BIEB 165. Behavioral Ecology Laboratory
BIEB 166. Animal Communication
BIEB 167. Animal Communication Lab
BIEB 176. Conservation and the Human Predicament

BIMM 100. Molecular Biology
BIMM 110. Molecular Basis of Disease
BIMM 114. Virology
BIMM 120. Bacteriology
BIMM 121. Laboratory in Microbiology
BIMM 124. Medical Microbiology
BIMM 126. Marine Microbiology (BIMM 120/BIBC 102 prerequisites WAIVED.)
BIMM 127. Marine Microbiology Laboratory

BIPN 100. Mammalian Physiology I
BIPN 102. Mammalian Physiology II
BIPN 105. Animal Physiology Lab (6)

ESYS 120. Science and Environmental Writing
ESYS 190A ESYS 190A ESYS 190B
ESYS 199. Independent Study

Other courses may be substituted by petition.

Environmental Policy Track

Required upper-division course
One upper-division Statistics course—Math 183.

Upper-division electives
Students complete a minimum of seven courses selected from the following:

Environmental Chemistry Track

Students must complete two of the following courses:
Chemistry 149A. Environmental Chemistry
Chemistry 149B. Environmental Chemistry
Chemistry 173. Atmospheric Chemistry
SIO 263. Aqueous Chemistry

Students must complete:
Math. 183. Statistical Methods OR
Math. 186. Probability Statistics for Bioinformatics
Chemistry 100A. Analytical Chemistry Laboratory
Chemistry 140A and B. Organic Chemistry
One upper-division lab from either:
Chemistry 100B. Instrumental Analysis Laboratory
Chemistry 143A. Organic Chemistry Laboratory

Two upper-division restricted electives from:
Chemistry 124. Bioinorganic Chemistry
Chemistry 126. Physical Chemistry or Chem. 133
(Note: Chem. 126 and Chem. 133 both require Physics 2D and Math. 20D as prerequisites.)
Chemistry 127. Physical Chemistry or Chem. 131, Chem. 132
Chemistry 140C. Organic Chemistry
ESYS 199. Independent Study

Other courses may be substituted by petition.

Curriculum Guide Planning

FALL WINTER SPRING
FRESHMAN
Chem. 6A Chem. 6B Chem. 6C
Math. 10A Math. 10B Math. 10C
or Math. 20A or Math. 20B or Math. 20C
SIO 50 BILD 3 Chem. 6BL

SOPHOMORE
Phys. 2A or 1A, 1B, or 1C, 1BL or 1CL
Poli. 160AA Econ. 1 UD elective

JUNIOR
ESYS 101 SIO 102 UD elective
Math. 183 ESYS 102 ESYS 103
UD elective UD elective

SENIOR
ESYS 190A ESYS 190A ESYS 190B
UD elective UD elective UD elective

* Choose (2) out of 4

Environmental Policy Track

Required upper-division course
One upper-division Statistics course—Math 183.

Upper-division electives
Students complete a minimum of seven courses selected from the following:

Environmental Chemistry Track

Students must complete two of the following courses:
Chemistry 149A. Environmental Chemistry
Chemistry 149B. Environmental Chemistry
Chemistry 173. Atmospheric Chemistry
SIO 263. Aqueous Chemistry

Students must complete:
Math. 183. Statistical Methods OR
Math. 186. Probability Statistics for Bioinformatics
Chemistry 100A. Analytical Chemistry Laboratory
Chemistry 140A and B. Organic Chemistry
One upper-division lab from either:
Chemistry 100B. Instrumental Analysis Laboratory
Chemistry 143A. Organic Chemistry Laboratory

Two upper-division restricted electives from:
Chemistry 124. Bioinorganic Chemistry
Chemistry 126. Physical Chemistry or Chem. 133
(Note: Chem. 126 and Chem. 133 both require Physics 2D and Math. 20D as prerequisites.)
Chemistry 127. Physical Chemistry or Chem. 131, Chem. 132
Chemistry 140C. Organic Chemistry
ESYS 199. Independent Study

Other courses may be substituted by petition.
Environmental Systems Minor

A minor in Environmental Systems will expose students to the interdisciplinary approach necessary to address environmental problems. The program places a strong emphasis on a rigorous natural science foundation. Thus, most of the courses related to the minor have significant prerequisites; students planning an Environmental Systems minor should check catalog course descriptions carefully.

The minor consists of twenty-eight units, at least twenty of which must be upper-division. Any upper-division course used to satisfy major requirements may not be applied toward a minor. Up to two courses for the minor may be taken on a Pass/Not Pass basis, (upper or lower division). Students must earn at least a letter grade of C– in the remaining five or more courses used for the minor. Students considering the Environmental Systems minor are strongly advised to meet with the associate director or the program advisor.

The minor is structured as followed:

Lower-Division Courses:

Any two of the following lower-division courses, if they are NOT lower-division requirements for the student’s major, may be applied to satisfy eight of the total units necessary for the minor:

- Biology 3
- Math. 10A-B-C
- Chemistry 6A-B-6BL-C
- Physics 1A-1AL, 1B-BL, 1C-CL
- Economics 1
- SIO: any lower-division course
- Environmental Studies 10

Required core courses:

- Environmental Systems 101, offered every fall quarter
- Environmental Systems 102, offered every winter quarter
- Environmental Systems 103, offered every spring quarter

Upper-Division Electives:

At least two additional upper-division courses from the advanced tracks in the Environmental Systems major. The lists of upper-division electives are reviewed and updated each quarter. They are available in the Environmental Systems office and on the Program Web site (http://esys.ucsd.edu). Students are advised to consult with the Environmental Systems program advisor or associate director.

SPECIAL STUDIES COURSES

Special Studies in the environmental systems is offered as ESYS 199. This course is subject to consent of the instructor and approval by the Environmental Systems faculty advisor. This course is open to students who have accrued at least ninety quarter-units and have a GPA of at least 3.0. No more than two quarters of environmental systems special studies may be counted toward the environmental systems major.

Study abroad through the Education Abroad Program or Opportunities Abroad Program can enhance a student’s major, particularly as an opportunity for diverse field experiences. However, careful planning is important to meet all major requirements. Please contact the Environmental Systems Office as early as possible if you are planning to study abroad.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

Many of the courses that are used to fulfill the requirements of the environmental systems major are offered by other departments and programs. Most of these courses are offered on a regular basis. Students should consult the
Schedule of Classes or contact the Environmental Systems Office in order to obtain current information. The courses below are offered directly through the Environmental Systems Program.

LOWER-DIVISION

ESYS 10. Introduction to Environmental Systems (4)
This course explores the interdisciplinary character of environmental issues through an examination of a particular topic (climate change, for example) from numerous disciplinary perspectives [e.g., biology, chemistry, physics, political science, and economics].
Prerequisite: none. (W)

ESYS 87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate college, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students with preference given to entering Freshmen.

ESYS 90. Perspectives on Environmental Issues (1)
Provides an introduction to environmental systems. Faculty members from departments in the natural sciences, geosciences, and social sciences will offer perspectives in these areas. (F)

UPPER-DIVISION

ESYS 101. Environmental Biology (4)
This course surveys biochemical and physiological processes governing the relationship between organisms and their environments, such as those involved in element cycling and cellular homeostasis. The course introduces biological perspectives on human activities ranging from antibiotic use to genetic engineering. Prerequisite: BILD 1 or 2 or equivalent, or consent of instructor. (F)

ESYS 102. The Solid and Fluid Earth (4)
The physical Earth system can be divided into three components: the solid earth, the liquid earth, and the atmosphere. These components are all dynamic and interact in complex ways with profound impacts on our environment. We will examine the controls of natural phenomena such as earthquakes, volcanoes, landslides, soil formation (and destruction), and changes in sea-level and climate. Prerequisite: Math. 10A, 10B, 10C, BILD 3, CHEM 6A-B-C, Physics 1A-B-C plus either Chem/Physics lab. (W)

ESYS 103/MAE 124. The Human Earth (4)
This course explores the impacts of human, social, economic, and industrial activity on the environment. It highlights the central roles in ensuring sustainable development played by market forces, technological innovation, and governmental regulation on local, national, and global scales. Prerequisites: grade of C– or better in Math. 20B or Math. 10A-C; Physics 2B or Physics A-C Chemistry 68 or by consent of instructor. In addition, ESYS majors, must take ESYS 101 and 102 or permission of instructor. (S)

ESYS 120. Science and Environmental Writing (4)
Course designed to improve the written communication of science majors through frequent writing assignments that develop the practical skills needed to communicate science to lay audiences. Topics include news writing, news releases, grant writing, broadcast script writing, and editorial writing. Prerequisites: upper-division standing in science or mathematics major and completion of college composition requirement (or consent of instructor). (W)

ESYS 150. Environmental Perils (4)
An advanced field-oriented course for engineering and science students stressing the geologic basis for environmental perils such as earthquakes, erosion, flooding, and waste disposal. Two one-hour lectures, and a two-hour lab/field trip each week. Prerequisites: Math. 10 A-B-C sequence and Physics 1A,AL, 1B, BL, 1C, 1CL sequence or equivalent. (S)

ESYS 190A. Senior Project (8)
All majors are required to complete an integrative Senior Project in their senior year. The Senior Project is designed by the student to focus on an interdisciplinary environmental problem or research topic and is developed either individually or as part of a team over two quarters. Appropriate topics could include biodiversity conservation, environmental health, and/or global change. An important component of the Senior Project is an off-campus or laboratory internship. Prerequisites: ESYS 103 and upper-division standing, departmental approval, majors only. (F,W)

ESYS 190A(W). ESYS/UCDC Senior Project (4)
ESYS majors may opt to complete the internship portion of their Senior Project through the UCDC Program. Students are expected to apply to the fall or winter quarter of UCDC Program and obtain an internship in a governmental agency, NGO, and/or research laboratory. Prerequisites: ESYS 103 and upper-division standing, departmental approval, majors only. (F,W)

ESYS 190B. Senior Seminar (2)
The Senior Seminar provides a venue for the presentation and group evaluation of the ESYS Senior Projects. Prerequisite: ESYS 190A or 190A(W) (NOTE: After completing (1) quarter of ESYS 190A, ESYS 190B may be taken concurrently), senior standing. (S)

ESYS 199. Independent Study (2-4)
Individually guided readings or projects in the area of environmental systems.

Ethnic Studies

OFFICE: Social Science Building, Rm. 201
http://www.ethnicstudies.ucsd.edu

Faculty

Pal Ahluwalia, Ph.D., Professor
Robert R. Alvarez, Ph.D., Professor
Yen Le Espiritu, Ph.D., Professor
Ross H. Frank, Ph.D., Associate Professor
Ramón A. Gutiérrez, Ph.D., Chancellor’s Associates Endowed Chair and Professor and Director, Center for the Study of Race and Ethnicity
Adria L. Imada, Ph.D., Assistant Professor

Natalia M. Molina, Ph.D., Associate Professor
Lisa Sun-Hee Park, Ph.D., Associate Professor
David Pellow, Ph.D., Associate Professor and Director, California Cultures in Comparative Perspective
Lisa E. Sanchez, Ph.D., Assistant Professor
Denise Ferreira da Silva, Ph.D., Associate Professor
K. Wayne Yang, Ph.D., Assistant Professor
Ana Celia Zentella, Ph.D., Professor

Associated Faculty

Luis A. Alvarez, Assistant Professor, History
Patrick W. Anderson, Assistant Professor, Communication
John D. Blanco, Assistant Professor, Literature
David Borgo, Associate Professor, Music
Robert Cancel, Associate Professor, Literature
Matthew Chen, Professor Emeritus, Linguistics
Wayne Cornelius, Director, Center for Comparative Immigration Studies and Professor, Political Science
Anthony Davis, Professor, Music
Ricardo R. Domínguez, Assistant Professor, Visual Arts
Gerald Doppelt, Professor, Philosophy
Steven Epstein, Associate Professor, Sociology
Steve Erie, Director, Urban Studies and Planning Program and Professor, Political Science
Ivan Evans, Associate Professor, Sociology
Claudio Fenner-Lopez, Lecturer with Security of Employment Emeritus, Communication/Visual Arts
Camille Forbes, Assistant Professor, Literature
Takashi Fujitani, Associate Professor, History
Floyd Gaffney, Professor Emeritus, Theatre and Dance
Rosemary George, Associate Professor, Critical Gender Studies Program and Literature
Nadine A. George, Associate Professor, Theatre and Dance
Nora Gordon, Assistant Professor, Economics
David Gutiérrez, Professor, History
Michael Hardimon, Associate Professor, Philosophy
Louis Hock, Professor, Visual Arts
James Holston, Associate Professor, Anthropology
Jorge Huerta, Professor, Theatre and Dance
Tomás R. Jiménez, Assistant Professor, Sociology
Sara Johnson, Assistant Professor, Literature
Bennetta Jules-Rosette, Professor, Sociology
Martha Lampland, Associate Professor, Critical Gender Studies and Sociology
Arend Lijphart, Professor Emeritus, Political Science
James Lin, Professor, Mathematics
Lisa Lowe, Professor, Literature
Cecil Lytle, Professor, Music
George Mariscal, Associate Professor, Literature
Michael Meeker, Professor Emeritus, Anthropology
Masao Miyoshi, Professor, Literature
John C. Moore, Professor, Linguistics
Elizabeth Newsome, Associate Professor, Visual Arts
David Pederson, Assistant Professor, Anthropology
Edward Reynolds, Professor Emeritus, History
Emily Roxworthy, Assistant Professor, Theatre and Dance
Ramón Eduardo Ruiz, Professor Emeritus, History
Marta Sánchez, Professor Emeritus, Literature
Rosaura Sánchez, Professor, Literature
Gershon Shafir, Professor, Sociology
Nayan Shah, Associate Professor, History
Faustina Solís, Professor Emeritus, Urban Studies/Family and Preventive Medicine
Roberto Tejada, Assistant Professor, Visual Arts
Olga Vásquez, Associate Professor, Communication
Daniel Widener, Assistant Professor, History
Mina Yang, Assistant Professor, Music
Lisa Yoneyama, Associate Professor, Literature
Elana Zilberg, Assistant Professor, Communication

Ethnic studies is the study of the social, cultural, and historical forces that have shaped the development of America’s diverse ethnic peoples over the last 500 years and which continue to shape our future. Focusing on immigration, slavery, and confinement, those three social processes that combined to create in the United States a nation of nations, ethnic studies intensively examines the histories, languages, and cultures of America’s racial and ethnic minority groups in and of themselves, in their relationships to each other, and, particularly, in structural contexts of power.

The curriculum of the Department of Ethnic Studies is designed to 1) study intensively the particular histories of different ethnic and racial groups in the United States, especially intragroup stratification; 2) to draw larger theoretical lessons from comparisons among these groups; 3) to articulate general principles that shape racial and ethnic relations both currently and historically; and 4) to explore how ethnic identity is constructed and reconstructed over time both internally and externally.

A degree in ethnic studies offers training of special interest to those considering admission to graduate or professional schools and careers in education, law, medicine, public health, social work, journalism, business, city planning, politics, psychology, international relations, or creative writing. A major in ethnic studies is designed to impart fundamental skills in critical thinking, comparative analysis, social theory and research analysis, and written expression. These skills will give students the opportunity to satisfy the increasingly rigorous expectations of graduate admissions committees and prospective employers for a broad liberal arts perspective.

The Major

To receive a B.A. degree with a major in ethnic studies, students must meet the following requirements:

1. A three-quarter course lower-division sequence (Ethnic Studies 1A-B-C). Ideally this sequence should be taken during the sophomore year as an intensive introduction to the history and theoretical dimensions of ethnic diversity in the United States. Ethnic Studies 1A-B-C, Introduction to Ethnic Studies, will consist of the following three courses: Population Histories of the United States, Immigration and Assimilation in American Life, Race and Ethnic Relations in the United States.

2. A minimum of twelve four-unit upper-division courses in the Department of Ethnic Studies must be completed from the following five categories:

A. One four-unit upper-division course that intensively explores the theory and comparative methods of ethnic studies (Ethnic Studies 100: Theories and Methods of Ethnic Studies). All ethnic studies majors should complete this course before proceeding with the other requirements listed below.

B. Four upper-division ethnic studies history and social science courses from those listed below:

- ETHN 103: Environmental Racism
- ETHN 104: Race, Space, and Segregation
- ETHN 105: Ethnic Diversity and the City
- ETHN 107: Field Work in Racial and Ethnic Communities
- ETHN 108: Race, Culture, and Social Change
- ETHN 109: Race and Social Movements
- ETHN 112A: History of Native Americans in the United States I

- ETHN 112B: History of Native Americans in the United States II
- ETHN 116: The United States-Mexico Border in Comparative Perspective
- ETHN 117: Organic Social Movements
- ETHN 118: Contemporary Immigration Issues
- ETHN 121: Contemporary Asian-American History
- ETHN 122: Asian-American Politics
- ETHN 125: Asian-American History
- ETHN 126: Comparative Filipino and Vietnamese-American Identities and Communities
- ETHN 127: Sexuality and Nation
- ETHN 129: Asian and Latina Immigrant Workers in the Global Economy
- ETHN 130: Social and Economic History of the Southwest I
- ETHN 131: Social and Economic History of the Southwest II
- ETHN 134: Immigration and Ethnicity in Modern American Society
- ETHN 149: African American History in the Twentieth Century
- ETHN 151: Ethnic Politics in America
- ETHN 152: Law and Civil Rights
- ETHN 159: Topics in African American History
- ETHN 161: Black Politics and Protest Since 1941
- ETHN 163: Leisure in Urban America
- ETHN 165: Sex and Gender in African American Communities
- ETHN 167: African-American History in War and Peace: 1917 to the Present
- ETHN 170A: Origins of the Atlantic World, c. 1450–1650
- ETHN 170B: Slavery and the Atlantic World
C. At least three upper-division courses that focus on language, ethnicity, and institutional discourses:

- ETHN 140: Language and American Ethnicity
- ETHN 141: Language, Culture, and Inequality
- ETHN 142: Medicine, Race, and the Global Politics of Inequality
- ETHN 144: Bilingual Communities in the U.S.A.
- ETHN 145: Spanish Language in the United States
- ETHN 164: African Americans and the Mass Media
- ETHN 166: The Black Press and Social Change (Not offered in 2007-2008.)
- ETHN 185: Discourse, Power, and Inequality
- ETHN 186: The Ethnic Press in the United States

Students may petition to count one course on language, ethnicity, and institutional discourses offered by other departments. In addition, one course in foreign language at the upper-division level may be counted in partial fulfillment of this requirement, with the consent of the department. Students must seek faculty advice on which courses would best satisfy the requirement and yield the most rigorous training.

D. At least three upper-division ethnic studies courses on the literature and cultural expressions of American racial and ethnic minorities:

- ETHN 101: Ethnic Images in Film
- ETHN 110: Cultural World Views of Native Americans
- ETHN 111: Native American Literature
- ETHN 122: Asian-American Culture and Identity
- ETHN 123: Asian-American Politics
- ETHN 124: Asian-American Literature
- ETHN 126: Comparative Filipino- and Vietnamese-American Identities and Communities
- ETHN 128: Hip Hop: The Politics of Culture
- ETHN 132: Chicano Dramatic Literature
- ETHN 133: Hispanic-American Dramatic Literature
- ETHN 135A: Early Latino/a-Chicano/a Cultural Production: 1848 to 1960
- ETHN 135B: Contemporary Latino/a-Chicano/a Cultural Production: 1960 to Present
- ETHN 136: Topics in Chicano/a-Latino/a Cultures
- ETHN 138: Chicano/a-Latino/a Poetry
- ETHN 139: Chicano Literature in English
- ETHN 146A: Theatrical Ensemble
- ETHN 148: Latino/a and Chicano/a Literature
- ETHN 168: Comparative Ethnic Literature
- ETHN 172: Afro-American Prose
- ETHN 173: Afro-American Poetry
- ETHN 174: Themes in Afro-American Literature
- ETHN 175: Literature of the Harlem Renaissance
- ETHN 176: Black Music/Black Texts: Communication and Cultural Expression
- ETHN 178: Blues: An Oral Tradition

E. One four-unit field methods course (Ethnic Studies 190: Research Methods: Studying Ethnic and Racial Communities).

3. Since the goal of the Department of Ethnic Studies is to intensively study both the particular histories of various ethnic and racial groups in the United States and to draw larger theoretical lessons from comparisons among and between groups, students may not fulfill requirements 2B and 2D by focusing all of the seven required courses on only one ethnic or racial group.

4. Ethnic studies majors, including students who are double majors, may petition up to four upper-division courses to fulfill major requirements as long as each of the following three conditions are met for each course: 1) the course is taken from another UCSD department, taken from a UCSD approved study abroad program, or taken at another UC campus; 2) the coursework is appropriate to the ethnic studies major; and 3) the student completes at least one course offered by the UCSD ethnic studies department in each of the five upper-division categories.

5. To satisfy the requirements for the major, lower- and upper-division courses must be completed with a P, C-, or better grade.

6. Except for independent study course electives (ETHN 197, 198, or 199) which are always taken with a Pass/No Pass grade option, students majoring in ethnic studies may take up to two courses, either lower- or upper-division, with a Pass/No Pass option.

The Honors Program

Consistent with other research opportunities offered to undergraduates on the UCSD campus, the department offers the Honors Program to ethnic studies majors in their senior or junior year the opportunity to conduct original research using interdisciplinary methodologies in the comparative study of race and ethnicity. To enroll in the Honors Program, an undergraduate must have a minimum grade-point average of 3.5 in ethnic studies classes counted towards the major. Students with a GPA lower than 3.5 in
the major may be admitted by exception if they show promise of success in research.

The Honors Program will be an extension of current departmental offerings using existing faculty resources. Ethnic studies and affiliated faculty will choose to advise students who successfully complete ETHN 191A and continue in the Honors Program based on related research interests. The student will enroll in ETHN 191B and ETHN 191C and work with the appropriate faculty advisor. Students will present their research projects at the annual Ethnic Studies Honors Symposium in June. Students who complete the sequence ETHN 191A, ETHN 191B, and ETHN 191C will receive one credit towards the "B" (Social Studies/Humanities) requirements for the ethnic studies major. Students who complete their research project with a grade of "B" or better and maintain a minimum 3.25 GPA in the ethnic studies major will receive "Distinction" in the major upon graduation from UCSD. Ethnic Studies 191A, 191B, and 191C must be taken for letter grade only.

191A. Undergraduate Research in Ethnic Studies (4)
This course is designed to help students conduct their own research rather than merely read the research of others. The course will introduce students to research paradigms in ethnic studies, familiarize them with finding aids and other library resources, and involve them in the design of research plans.

191B. Honors Research in Ethnic Studies (4)
This course is a continuation of Ethnic Studies 191A—Undergraduate Research in Ethnic Studies. Students who have completed ETHN 191A and selected a faculty research advisor may enroll in this course. During the quarter the research for the honors project will be completed under the faculty advisor's supervision. Faculty advisors will meet weekly with their honors students to oversee the progress made in carrying out the plan of research. Formerly ETHN 192. Prerequisites: upper-division standing, consent of instructor, and completion of 191A.

191C. Honors Research in Ethnic Studies (4)
This course is a continuation of Ethnic Studies 191B—Honors Research in Ethnic Studies. Students who have completed ETHN 191B and are continuing to work with a faculty research advisor may enroll in this course. During the quarter the written drafts and final honors paper will be completed under the faculty advisor's supervision. The student will meet weekly with the faculty advisor in order to prepare drafts and the final version of the honors paper. Formerly ETHN 193. Prerequisites: ETHN 191A and ETHN 191B.

Education Abroad Program

Students are able to participate in the UC Education Abroad Program (EAP) or UCSD's Opportunities Abroad Program (OAP) while still making progress toward completing their major. Students considering this option should discuss their plans with the undergraduate advisor prior to going abroad, and courses taken abroad must be approved by the department. Interested students should contact the Programs Abroad Office in the International Center.

The Minor

Students may minor in ethnic studies. Consistent with the provision for a minor curriculum for students entering after January 1, 1998, students wishing to minor in ethnic studies must satisfy the following requirements:

1) Students must take two four-unit courses in the history and theoretical dimensions of ethnic diversity in the United States from the lower division sequence (Ethnic Studies 1A-B-C); or students must take two four-unit upper-division courses in analytic and comparative study of ethnicity: Theories and Methods of Ethnic Studies (ETHN 100), and Research Methods: Studying Ethnic and Racial Communities (ETHN 190).

2) Students must take five four-unit upper-division ethnic studies elective courses; at least two, but no more than three of the five elective courses must be selected from either the ethnic studies history and social studies courses (listed above in section 2B) or the ethnic studies literature and cultural expressions courses (listed above in section 2D). While language and ethnicity courses offered by the department (listed above in section 2C) may also be used to satisfy this requirement, foreign language and area studies courses from other departments may not. No more than two independent study courses (ETHN 197, 198, or 199) may be used to satisfy this requirement.

3) To satisfy the requirements for the minor, lower- and upper-division courses must be completed with a P, C-, or better grade.

4) Except for independent study course electives (ETHN 197, 198, or 199) which are always taken with a Pass/No Pass grade option, students minoring in ethnic studies may take one course, either lower- or upper-division, with a Pass/No Pass grade option.

Students interested in the African-American experience should consider the following courses:

- ETHN 149: African American History in the Twentieth Century
- ETHN 159: Topics in African American History
- ETHN 161: Black Politics and Protest Since 1941
- ETHN 164: African Americans and the Mass Media
- ETHN 165: Sex and Gender in African American Communities
- ETHN 167: African-American History in War and Peace: 1917 to the Present
- ETHN 170A: Origins of the Atlantic World, c. 1450–1650
- ETHN 170B: Slavery and the Atlantic World
- ETHN 172: Afro-American Prose
- ETHN 173: Afro-American Poetry
- ETHN 174: Themes in Afro-American Literature
- ETHN 175: Literature of the Harlem Renaissance
- ETHN 176: Black Music/Black Texts: Communication and Cultural Expression
- ETHN 178: Blues: An Oral Tradition
- ETHN 179A: Jazz Roots and Early Development (1900–1943)
- ETHN 179B: Jazz Since 1946: Freedom and Form
- ETHN 181: Topics in the Comparative History of Modern Slavery
- ETHN 182: Segregation, Freedom Movements, and the Crisis of the Twentieth Century
- ETHN 184: Black Intellectuals in the Twentieth Century
- ETHN 187: Black Nationalism
- ETHN 188: African Americans, Religion, and the City
- ETHN 190: Racial Communities
- ETHN 191: Ethnic Studies
- ETHN 192: Undergraduate Research in Ethnic Studies
- ETHN 193: Honors Research in Ethnic Studies
- ETHN 197: Independent Study
- ETHN 198: Independent Study
- ETHN 199: Independent Study

Students interested in the Chicano experience should consider the following courses:

- ETHN 116: The United States-Mexico Border in Comparative Perspective
- ETHN 130: Social and Economic History of the Southwest I
The Graduate Program

The UCSD Department of Ethnic Studies emphasizes comparative, analytic, and relational study of ethnicity and race in the United States. Our fields of emphasis include intercultural communication and conflict, population histories of the Americas, ethnicity and identity, immigration and assimilation, ethnic politics and social movements, race and racism, urban ethnicity, gender and ethnicity, sexuality, intellectual and cultural histories of ethnic groups, cultural pluralism, national integration, language and ethnic life, and mass media representations of ethnic identity.

Admission

New students are admitted in the fall quarter of each academic year. Prospective applicants should submit the official application for admission and awards (same form), one set of official transcripts from each institution attended after high school, official scores from the Graduate Record Examination, application fee, at least three letters of recommendation, and one or more samples of the applicant’s own writing, such as term papers. Additionally, foreign applicants must submit official scores from the Test of English as a Foreign Language (TOEFL). Applicants are encouraged to visit the department to talk with faculty and graduate students. The application deadline is January 15.

Program of Study

Students are required to enroll as full-time graduate students, to carry a minimum enrollment of twelve units of graduate-level courses each quarter, and to maintain a grade-point average of 3.2 or better. To obtain an M.A. degree students must take fifty-four units of course work and write a master’s thesis.

Core Curriculum Sequence Requirements

1. Ethnic Studies 200A-B-C, Core Seminar
 All graduate students will be required to take the introductory three-quarter core seminar (four units each, twelve units total) during their first year in the program. This course covers ethnic studies theory, the history of ethnic studies, and controversies in ethnic studies.

2. Ethnic Studies 210, Research Seminar
 During the first year of graduate study, all students will be required to take (1) one-quarter of the research seminar (4 units). This course introduces students to the practice of original discovery research in the field of racial and ethnic studies, including articulating a research problem, placing it within theoretical discussions, selecting appropriate methods, and analyzing data.

3. Ethnic Studies 230, Department Colloquium
 During the first two years of graduate study, all students will be required to enroll in six one-quarter colloquia required by the department. In Ethnic Studies 230, department faculty and visiting lecturers will make presentations about research in progress in our field. This colloquium is a one-unit course and must be taken for a total of six quarters.

 During the first two years of graduate study, students must enroll in two (2) four-unit disciplinary methods courses. The first course must be Ethnic Studies 240; Multidisciplinary Research Methods in Ethnic Studies. Depending upon the student’s research interests, the second course will be selected (in consultation with the student’s graduate advisor) from those graduate methods courses offered by UCSD Humanities and Social Science Departments.

5. Ethnic Studies 290A-B, Master’s Thesis Preparation
 Students are required to write a master’s thesis as part of the requirements for the master of arts in ethnic studies. Students should enroll in thesis preparation courses in the fall and spring quarters of the second year of graduate studies.

Foreign Language Requirement

Competence in one or more foreign languages is encouraged but not required at the M.A. level. All doctoral candidates must satisfy the department’s graduate committee that they have adequate linguistic competence in one foreign language relevant to their area of research by translating three pages of scholarly text written in the designated foreign language. The graduate committee may waive the language requirement and test the candidate on other specialized skills in instances where knowledge of a foreign language is not relevant to the candidate’s areas of research.
Instruction in Quantification

The department encourages graduate students to employ quantitative methods where appropriate. Instruction in quantitative methods can fulfill elective requirements; recommended courses include Sociology 205 and 206—Survey and Demographic Methods, Political Science 270—Quantitative Methods in Political Science. In cases where a reading knowledge of evidence assembled through quantitative methods would be useful, students who obtain the permission of the director of Graduate Studies may fulfill elective requirements by taking no more than two selected undergraduate courses including Sociology 103—Computer Applications to Data Management in Sociology, Sociology 107—Demographic Methods, Sociology 108—Quantitative Analysis of Survey Data, Sociology 109—Quantitative Analysis of Sociological Data, Political Science 170—Quantitative Political Science, among others.

The Master’s Degree

Students entering the ethnic studies doctoral program must first complete a master’s degree before continuing toward the doctorate. University regulations prohibit entering students who already have a master’s degree in ethnic studies from receiving a second master’s degree. Nonetheless, students who are admitted to the ethnic studies doctoral program with a master’s degree must complete all the requirements for the ethnic studies master of arts degree. The M.A. will also be a terminal degree for those students denied admission to candidacy.

To obtain the M.A. degree, students must complete the department’s course requirements satisfactorily. At the end of the second year in the graduate program, students must submit a written thesis to their Master’s Thesis Committee (MTC). The committee will assess the quality of the work and determine whether it demonstrates the likelihood of success in conducting doctoral research.

The final decision regarding the M.A. degree is based on grades, the master’s thesis, and yearly faculty evaluations. The Graduate Program Committee awards three possible grades: Pass, M.A. Only, and No Pass. All passing students (with the exception of those who already have a master’s degree in ethnic studies from another institution) receive the master of arts degree and proceed in their course of studies for the doctorate. Students who receive M.A. Only evaluations gain the master’s degree but may not continue in the department’s Ph.D. program. Students who receive a No Pass evaluation must withdraw from the program without a graduate degree. The master’s degree is earned as one of the requirements for the Ph.D. and is based on the quality of the student’s work during the first two years in the graduate program. At the end of the second year, students are evaluated by the Graduate Program Committee for the master’s degree. At that time, the committee (GPC) ascertains the student’s suitability for doctoral work and recommends either advancement to Ph.D. work or termination.

Requirements for the Qualifying Examinations

When students complete all the core curriculum requirements and have taken five four-unit elective courses in appropriate areas or disciplines, they are eligible to take the qualifying examination for the Ph.D. degree. Students will be encouraged to take the exam by the end of their third year in the program, but this examination must be completed by the end of the student’s fourth year in the program. The qualifying exam is both written and oral; it consists of two parts. Part one tests the student’s basic competence and knowledge of ethnic studies scholarship as spelled out in the Department of Ethnic Studies required graduate reading list. The reading list will be distributed to every student entering the graduate program. Over the next three years, students are required to read all of these books and articles, and to have mastery of these readings tested during the qualifying examination. Part two of the examination requires the submission of a dissertation prospectus. The dissertation prospectus is a written document that 1) specifies the dissertation research topic; 2) places the dissertation research in the context of the relevant literature in the field; 3) identifies the significance of the project as original discovery scholarship; 4) explains and justifies the research methods to be employed; 5) establishes the feasibility of the research and identifies the primary sources or data bases to be used; 6) indicates the anticipated steps leading to completion of the project; and 7) provides a timetable for the research and writing phases of the project.

The Doctoral Dissertation

Once students pass the qualifying exam, they may begin dissertation research. Students are expected to consult with their committee members on a regular basis during the research process. All doctoral students will be evaluated annually by the doctoral committee and given a written report signed by the thesis advisor according to campus policy.

When the dissertation has been substantially completed and once committee members have had the opportunity to review drafts of the written work, the committee meets (with or without the student present at the discretion of the committee chair) to consider the progress made and to identify concerns, changes to be made, or further research to be done. Once the committee members are substantially satisfied with the written work, the student, in consultation with
the committee, schedules the oral defense of the dissertation. By university regulation, the defense is open to the public.

The final version of the dissertation must be approved by each member of the doctoral committee. Having successfully defended the dissertation in oral examination, the student is eligible to receive the Ph.D. degree. The final version of the dissertation is then filed with the university librarian via the office of Graduate Studies and Research. Acceptance of the dissertation by the university librarian is the final step in completing all requirements for the Ph.D.

Departmental Ph.D. Time Limits Policy

Pre-candidacy status, that is, the registered time before a student passes the qualifying examination and thereby advances to Ph.D. candidacy, may not exceed four years. Normative time for a Ph.D. in ethnic studies is six years. Normative time is defined as that period of time in which students under normal circumstances are expected to complete their doctoral program. To provide an incentive for students to complete the Ph.D. within normative time, students will only be eligible for departmental financial support for six years (eighteen quarters). By university policy, the doctoral dissertation must be submitted and defended within eight years. To meet this normative time limit, and to meet departmental requirements, students must complete the Qualifying Examination by the end of the fourth year.

In the spring quarter each year, the Graduate Program Committee will assess the progress of each pre-candidacy student on the basis of evaluations submitted by three faculty members chosen by the student. The committee will establish that the student is in good standing, recommend additional course work, or recommend dismissal. The committee may wish to meet with some students in person to discuss the student’s evaluation and progress toward the degree.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

LOWER-DIVISION

1A. Introduction to Ethnic Studies: Population Histories of the United States (4)
This course examines the comparative historical demography of what is today the United States, focusing on the arrival, growth, distribution, and redistribution of immigrants from Asia, Europe, Africa, and Latin America.

1B. Introduction to Ethnic Studies: Immigration and Assimilation in American Life (4)
A history of immigration to the United States from colonial times to the present, with emphasis on the roles of ethnic and racial groups in economics, power relations between dominant and subordinate groups, and contemporary ethnic and racial consciousness.

1C. Introduction to Ethnic Studies: Race and Ethnic Relations in the United States (4)
This course examines the theoretical literature on race and ethnicity, focusing on issues of domination and subordination, and the historical emergence of racism and ethnic conflict. Attention is given to class and gender differences within racial and ethnic groups.

20. Introduction to Asian-American History (4)
This course introduces students to key issues in Asian-American lives, with emphasis on the global historical context of migration; changing ethnic and racial consciousness; economic, social, and political status; cultural production; and family and gender relations.

87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

90. Undergraduate Seminar (1)
A seminar intended for exposing undergraduate students, especially freshmen and sophomores, to exciting research programs conducted by department faculty. Enrollment is limited.

97. Field Studies in Racial and Ethnic Communities (1 to 4)
Supervised community field work on topics of importance to racial and ethnic communities in the San Diego County region. Regular individual meetings with faculty sponsor and final project and/or written report are required. Prerequisites: lower-division standing, completion of at least thirty units of undergraduate study at UCSD, minimum 3.0 GPA at UCSD, consent of instructor, and completed and approved Special Studies Form.

98. Directed Group Studies (1 to 4)
Directed group study on a topic or in a field not included in the regular department curriculum by special arrangement with a faculty member. Prerequisites: lower-division standing, completion of at least thirty units of undergraduate study at UCSD, minimum 3.0 GPA at UCSD, consent of instructor, and completed and approved Special Studies Form.

99. Independent Study (1 to 4)
Directed study on a topic or in a field not included in the regular department curriculum by special arrangement with a faculty member. Prerequisites: lower-division standing, completion of at least thirty units of undergraduate study at UCSD, minimum 3.0 GPA at UCSD, consent of instructor, and completed and approved Special Studies Form.

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor.

100. Theories and Methods in Ethnic Studies (4)
An introduction to research in ethnic studies with special emphasis on theories, concepts, and methods. Students will explore how racial and ethnic categories are shaped by gender, class, and regional experiences and will study ethnicity and race in comparative perspective.

101. Ethnic Images in Film (4)
An upper-division lecture course studying representations of ethnicity in the American cinema. Topics include ethnic images as narrative devices, the social implications of ethnic images, and the role of film in shaping and reflecting societal power relations.

103. Environmental Racism (4)
This course will examine the concept of environmental racism, the empirical evidence of its widespread existence, and the efforts by government, residents, workers, and activists to combat it. We will examine those forces that create environmental injustices in order to understand its causes as well as its consequences. Students are expected to learn and apply several concepts and social scientific theories to the course material.

104. Race, Space, and Segregation (4)
Through in-depth studies of housing segregation, urban renewal and displacement, neighborhood race effects, and the location of hazards and amenities, this course examines how space becomes racialized and how race becomes spatialized in the contemporary U.S.

105. Ethnic Diversity and the City (4)
This course will examine the city as a crucible of ethnic identity exploring both the racial and ethnic dimensions of urban life in the U.S. from the Civil War to the present. (Cross-listed with USP 104.)

107. Field Work in Racial and Ethnic Communities (4)
This is a research course examining social, economic, and political issues in ethnic and racial communities through a variety of research methods which may include interviews, and archival, library, and historical research. (Cross-listed with USP 130.)

108. Race, Culture, and Social Change (4)
Aggrieved groups often generate cultural expressions by turning negative ascription into positive affirmation and by transforming segregation into congregation. This course examines the role of cultural expressions in struggles for social change by these communities inside and outside the U.S. (Cross-listed with MUS 151.)

109. Race and Social Movements (4)
This course explores collective mobilizations for resources, recognition, and power by members of aggrieved racialized groups, past and present. Emphasis will be placed on the conditions that generate collective movements, the strategies and ideologies that these movements have developed, and the prospect for collective mobilization for change within aggrieved communities in the present and future.
110. Cultural World Views of Native Americans (4)
Using interdisciplinary methods, this course examines the cultural world views of various Native American societies in the United States through an exploration of written literary texts and other expressive cultural forms such as dance, art, song, religious and medicinal rituals.

111. Native American Literature (4)
This course analyzes Native American written and oral traditions. Students will read chronicles and commentaries on published texts, historic speeches, trickster narratives, oratorical and prophetic tribal epics, and will delve into the methodological problems posed by tribal literature in translation.

112A. History of Native Americans in the United States I (4)
This course examines the history of Native Americans in the United States, with emphasis on the lifeways, mores, warfare, cultural adaptation and relations with the European colonial powers and the emerging United States until 1870. (Cross-listed with HIUS 108A.)

112B. History of Native Americans in the United States II (4)
This course examines the history of Native Americans in the United States, with emphasis on the lifeways, mores, warfare, cultural adaptation and relations with the United States from 1870 to the present. (Cross-listed with HIUS 108B.)

116. The United States-Mexico Border in Comparative Perspective (4)
This course critically explores the U.S.-Mexico frontier and the social-cultural issues on both sides of the international demarcation. Social-historical and political-economic patterns illuminate border life, ethnic identity, social diversity, and cultural expression. Border ethnicity is complemented by film and music.

117. Organic Social Movements (4)
Examination of local responses to global change and social disruption through the examination of organic movements in indigenous societies. In-depth analysis of the Kuna Indians of San Blas, Panama; Mayan Zapotistas of Chiapas, Mexico; and Micronesians of the western Pacific.

118. Contemporary Immigration Issues (4)
This course examines the diversity of today's immigrants—their social origins and contexts of exit and their adaptation experiences and contexts of incorporation.

119. Race in the Americas (4)
This course explores the genesis, evolution, and contradictions of racially heterogeneous societies in the Americas, from European conquest to the present. Topics: the social history of Native Americans, Blacks, and Asians, and their interactions with European settlers, and racial, sexual, and class divisions. Prerequisite: upper-division standing.

121. Contemporary Asian-American History (4)
The course will study changes in Asian-American communities as a result of renewed immigration since 1965; the influx of refugees from Vietnam, Kampuchea, and Laos; the impact of contemporary social movements on Asian-Americans’ current economic, social, and political status.

122. Asian-American Culture and Identity (4)
A survey of Asian-American cultural expressions in literature, art, and music to understand the social experiences that helped forge Asian-American identity. Topics: culture conflict, media portrayals, assimilation pressures, the model minority myth, and interethnic and class relations.

123. Asian-American Politics (4)
This course will examine the development of Asian-American politics by studying the historical and contemporary factors, such as political and economic exclusion, that have contributed to the importance and complexity of ethnicity as a mobilizing force in politics. Prerequisites: upper-division standing or instructor approval.

124. Asian-American Literature (4)
Selected topics in the literature by men and women of Asian descent who live and write in the United States. May be repeated for credit when topics vary. (Cross-listed with LTEN 181.)

125. Asian-American History (4)
Explore how Asian Americans were involved in the political, economic and cultural formation of United States society. Topics include migration; labor systems; gender, sexuality and social organization; racial ideologies and anti-Asian movements; and nationalism and debates over citizenship. (Cross-listed with HIUS 124.)

126. Comparative Filipino and Vietnamese-American Identities and Communities (4)
This course compares the historical and contemporary social, political, and economic experiences of Filipino and Vietnamese-Americans, paying particular attention to the impact of U.S. wars in the Philippines and in Vietnam on their respective lives. Prerequisite: upper-division standing.

127. Sexuality and Nation (4)
This course explores the nexus of sex, race, ethnicity, gender, and nation and considers their influence on identity, sexuality, migration, movement and borders, and other social, cultural, and political issues which these constructs affect. (Cross-listed with CGS 112.)

128. Hip Hop: The Politics of Culture (4)
Examination of hip hop's technology, lyrics, and dance and its influences in graffiti, film, music video, fiction, advertising, gender, corporate investment, government, and censorship with a critical focus on race, gender, and popular culture and the politics of creative expression. (Cross-listed with MUS 152.)

129. Asian and Latina Immigrant Workers in the Global Economy (4)
This course will explore the social, political, and economic implications of global economic restructuring, immigration policies, and welfare reform on Asian and Latina immigrant women in the United States. We will critically examine these larger social forces from the perspectives of Latina and Asian immigrant women workers, incorporating theories of race, class, and gender to provide a careful reading of the experiences of immigrant women on the global assembly line. (Cross-listed with MUS 152.)

130. Social and Economic History of the Southwest I (4)
This course examines the history of the Spanish and Mexican Borderlands (what became the U.S. Southwest) from roughly 1400 to the end of the U.S.-Mexican War in 1848, focusing specifically on the area's social, cultural, and political development. (Cross-listed with HIUS 158.)

131. Social and Economic History of the Southwest II (4)
This course examines the history of the American Southwest from the U.S.-Mexican War in 1846-48 to the present, focusing on immigration, racial and ethnic conflict, and the growth of Chicano national identity. (Cross-listed with HIUS 159.)

132. Chicano Dramatic Literature (4)
Focusing on the contemporary evolution of Chicano dramatic literature, the course will analyze playwrights and theatre groups that express the Chicano experience in the United States, examining relevant actors, plays, and documentaries for their contributions to the developing Chicano theatre movement. (Cross-listed with THHS 110.)

133. Hispanic-American Dramatic Literature (4)
This course examines the plays of leading Cuban-American, Puerto Rican, and Chicano playwrights in an effort to understand the experiences of these Hispanic-American groups in the United States. (Cross-listed with THHS 111.)

134. Immigration and Ethnicity in Modern American Society (4)
Comparative study of immigration and ethnic-group formation in the United States from 1880 to the present. Topics include immigrant adaptation, competing theories for the experiences of different ethnic groups, and the persistence of ethnic attachments in modern American society. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students may be required to submit a more substantial piece of work. (Cross-listed with HIUS 180 and conjoined with HIUS 280.) Prerequisites: upper-division standing and department stamp.

135A. Early Latino/a-Chicano/a Cultural Production: 1848 to 1960 (4)
Cross-disciplinary study of nineteenth and early twentieth century Latino/a-Chicano/a literature, folklore, music, testimony, or other cultural practices. Specific periods covered will fall between the immediate aftermath of the Treaty of Guadalupe Hidalgo to the Cuban revolution. Repeatable for credit when topics vary. (Cross-listed with LTSP 150A.) Prerequisites: upper-division standing.

135B. Contemporary Latino/a-Chicano/a Cultural Production: 1960 to Present (4)
Cross-disciplinary study of late twentieth century Latino/a-Chicano/a literature, the visual and performing arts, film, or other cultural practices. Specific periods covered will fall between the Kennedy years to the era of neoliberalism and the creation of “Hispanic” or Latino/a identities. Repeatable for credit when topics vary. (Cross-listed with LTSP 150B.) Prerequisites: upper-division standing.

136. Topics in Chicano/a-Latino/a Cultures (4)
Cross-disciplinary study of late twentieth century Latino/a-Chicano/a literature, the visual and performing arts, film, or other cultural practices. Representative areas of study are social movements, revolution, immigration, globalization, gender and sexuality, cultures of the U.S.-Mexican border, and Chicano/a/Mexican-American relations. Repeatable for a credit when topics vary. (Cross-listed with LTSP 151.) Prerequisites: upper-division standing.

138. Chicano/a and Latino/a Poetry (4)
A study of themes and issues in the poetic production of Latino communities in the United States. Every effort will be made to select text in Spanish but some will be bilingual. Repeatable for credits when topics vary. (Cross-listed with LTSP 153.) Prerequisites: upper-division standing.

140. Language and American Ethnicity (4)
This course examines the intersection of language and ethnicity in the United States, focusing on the social
and political impact of bilingualism, ethnically based English dialects, and standard and nonstandard English.

141. Language, Culture, and Inequality
A critical review of conceptions of language and how they have been deployed in constructing images of culture, race, ethnicity, gender, sexuality, and class. Topics include cultural and linguistic relativism, structuralism, symbolic and cognitive approaches, ethnomethodology, sociolinguistics, ethnography of speaking, performance, and ethno-poetics.

142. Medicine, Race, and the Global Politics of Inequality
Globalization fosters both the transmission of AIDS, cholera, tuberculosis, and other infectious diseases and gross inequalities in the resources available to prevent and cure them. This course focuses on how race, ethnicity, gender, sexuality, class, and nation both shape and are shaped by the social construction of health and disease worldwide.

144. Bilingual Communities in the U.S.A.
This course compares the many ways of "doing being bilingual" that exist among communities of speakers of varied national origins, generations, networks, localities, races, classes, and genders. Of particular interest are the varied types of bilingual individuals and linguistic repertoires that exist in communities of Native American, Chicano/Latino, and Asian origin, and the implications of shifting and hybrid linguistic identities for the drawing of community boundaries and the shaping of national language policy. Specific topics include factors that promote language loss or maintenance in families, the linguistic and cultural repercussions of code switching and word borrowing, bilingual education, linguistic profiling, and language ideologies.

145. Spanish Language in the United States
A sociolinguistic study of the popular dialects in the United States and their relation to other Latin American dialects. The course will cover phonological and syntactic differences between the dialects as well as the influence of English on the Southwest dialects. (Cross-listed with LTSP 162.)

146A. Theatrical Ensemble
An intensive theatre practicum designed to generate theatre created by an ensemble, with particular attention to and interpretations of these mediated images. (Cross-listed with TDAC 120.)

148. Latino/a and Chicano/a Literature
This course will study the representation of a variety of social issues (immigration, race, class differences, violence, inter/intra-ethnic relations, etc.) in works written in Spanish by Latino/a and Chicano/a writers. May be repeated for credit as topics, texts, and historical periods vary. (Cross-listed with LTSP 154.) Prerequisites: LTSP 308 or consent of instructor.

149. African American History in the Twentieth Century
This course examines the transformation of African America across the expanse of the long twentieth century: imperialism, migration, urbanization, desegregation, and deindustrialization. Special emphasis will be placed on issues of culture, international relations, and urban politics. (Cross-listed with HIUS 139.)

151. Ethnic Politics in America
This course will survey the political effects of immigration, ethnic mobilization, and community building in America, and the contemporary role of ethnicity in politics and intergroup relations.

152. Law and Civil Rights
In this course students explore the relationship between race, class, and law as it applies to civil rights both in an historical and a contemporary context. Topics include racism and the law, history of the 14th Amendment, equal protection, school desegregation, and affirmative action.

159. Topics in African American History
A colloquium dealing with special topics in the history of people of African descent in the United States. Themes will vary from quarter to quarter. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students will be required to submit a more substantial piece of work. (Cross-listed with HIUS 183 and conjoined with HIUS 283.)

160. Black Politics and Protest 1885-1941
An examination of the evolution of black thought and activism from Booker T. Washington's Atlanta Exposition Address to A. Philip Randolph's March on Washington. Particular attention paid to black institutions and their relationship to the federal government.

161. Black Politics and Protest Since 1941
Discussion of black social, political, and intellectual experiences since the publication of Richard Wright's Native Son. Close examination of blacks' involvement in and relationships to Second World War, Cold War, Civil Rights Movement, Black Power Movement, Reagan Revolution, and Underclass Debate.

163. Leisure in Urban America
Historical examination of how leisure has shaped the American urban landscape. Course will explore connections between spectator sports and the rise of "urban modernities"; sports franchises, urban development schemes, and racial and ethnic communities; and sports mythology and civic pride.

164. African Americans and the Mass Media
Examination of the media representations of African Americans from slavery to the present focusing on emergences and transmisions of enduring stereotypes, their relationship to changing social, political, and economic frameworks, and African Americans' responses to and interpretations of these mediated images. (Cross-listed with MUS 153.)

165. Sex and Gender in African American Communities
This course will investigate the changing constructions of sex, gender, and sexuality in African American communities defined by historical period, region, and class. Topics will include the sexual division of labor, myths of black sexuality, the rise of black feminism, black masculinity, and queer politics.

167. African-American History in War and Peace:
1917 to the Present
The social, political, economic, and ideological pressures generated during the international conflicts of the twentieth century have had an enormous impact on American life. This course examines how the pressures of "total war" and "cold war" shaped the African-American experience in both war and peace. (Cross-listed with HIUS 138)

168. Comparative Ethnic Literature
A lecture-discussion course that juxtaposes the experience of two or more U.S. ethnic groups and examines their relationship with the dominant culture. Students will analyze a variety of texts representing the history of ethnicity in this country. Topics will vary. (Cross-listed with LTEN 178.)

170A. Origins of the Atlantic World, c. 1450-1650
An examination of interactions among the peoples of western Europe, Africa, and the Americas that transformed the Atlantic basin into an interconnected "Atlantic world." Topics will include maritime technology and the European Age of Discovery, colonization in the Americas, the beginnings of the transatlantic slave trade, and early development of plantation slavery in the New World. (Cross-listed with HIUS 135A.)

170B. Slavery and the Atlantic World
The development of the Atlantic slave trade and the spread of racial slavery in the Americas before 1800. Explores the diversity of slave labor in the Americas and the different slave cultures African Americans produced under the constraints of slavery. (Cross-listed with HIUS 135B.)

172. Afro-American Prose
Students will analyze and discuss the novel, the personal narrative, and other prose genres, with particular emphasis on the developing characters of Afro-American narrative and the cultural and social circumstances that influence their development. (Cross-listed with LTEN 183.)

174. Themes in Afro-American Literature
This course focuses on the influence of slavery upon African American writers. Our concern is not upon what slavery was but upon what it is within the works and what these texts reveal about themselves, their authors, and their audiences. (Cross-listed with LTEN 185.)

175. Literature of the Harlem Renaissance
The Harlem Renaissance (1917–39) focuses on the emergence of the "New Negro" and the impact of this concept on black literature, art, and music. Writers studied include Claude McKay, Zora N. Hurston, and Langston Hughes. Special emphasis on new themes and forms. (Cross-listed with LTEN 186.)

176. Black Music/Black Texts: Communication and Cultural Expression
Explores role of music as a traditional form of communication among Africans, Afro-Americans, and West Indians. Special attention given to poetry of black music, including blues and other forms of vocal music expressive of contestatory political attitudes. (Cross-listed with LTEN 187 and MUS 154.)

178. Blues: An Oral Tradition
This course will examine the development of the Blues from its roots in work-songs and the minstrel show to its flowering in the Mississippi Delta to the development of Urban blues and the close relationship of the Blues with Jazz, Rhythm and Blues, and Rock and Roll. (Cross-listed with MUS 126.)

179A. Jazz Roots and Early Development
This course will trace the early development of Jazz and the diverse traditions which helped create this uniquely American art form. We will witness the emergence of Louis Armstrong in New Orleans and examine the composer's role in Jazz with Jelly Roll Morton and Duke Ellington. (Cross-listed with MUS 127A.)

179B. Jazz Since 1946: Freedom and Form
This course will examine the evolution of Jazz from 1943 to the present. The course will survey the contrasting competing styles in Jazz from BEBOP to COOL to the avant garde and fusion. (Cross-listed with MUS 127B.)
180. Topics in Mexican-American History (4)
This colloquium studies the racial representation of Mexican-Americans in the United States from the nineteenth century to the present, examining critically the theories and methods of the humanities and social sciences. (Cross-listed with HIUS 167.)

181. Topics in the Comparative History of Modern Slavery (4)
Slavery was both a thread of continuity in the history of the Americas and distinctive institution in the specific social settings. The purpose of this course is to examine and discuss readings that explore topics in the Caribbean and the U.S. Because topics will vary, the seminar may be taken more than once for credit, with permission of the instructor. Requirements vary for undergraduates, M.A., and Ph.D. students. Graduate students are required to submit a substantial piece of work. (Cross-listed with HIUS 164 and con-joined with HIUS 264.)

182. Segregation, Freedom Movements, and the Crisis of the Twentieth Century (4)
A reading and discussion seminar that views the origins of segregation and the social movements that challenged it between 1890 and 1970 in a comparative framework. (Cross-listed with HIUS 163.)

183. Gender, Race, Ethnicity, and Class (4)
Gender is often neglected in studies of ethnic/racial politics. This seminar explores the relationship of race, ethnicity, class, and gender by examining the participation of working class women of color in community politics and how they challenge mainstream political theory.

184. Black Intellectuals in the Twentieth Century (4)
An analysis of black cultural and intellectual production since 1895. Course will explore how race and race-consciousness have influenced the dialogue between ideas and social experience, and how other factors—i.e., age, gender, and class—affect scholars’ insights.

185. Discourse, Power, and Inequality (4)
While discourse analysis has transformed numerous disciplines, a gap separates perspectives that envision discourse as practices that construct inequality from approaches which treat discourse as everyday language. This course engages both perspectives critically in analyzing law, medicine, and popular culture.

186. The Ethnic Press in the United States (4)
Readings and research on news media institutions established in ethnic communities since the nineteenth century. The course will trace the emergence, development, and longevity of ethnic presses, their role in cultivating and maintaining ethnic identity, and their attempts to respond to and resist images in mainstream media.

187. Black Nationalism (4)
This course will investigate the ideologies and practices of black nationalist movements in the United States and/or across the black Diaspora, focusing on their political philosophy, political culture, and gender and class structure.

188. African Americans, Religion, and the City (4)
This course details the history of African American migration to urban areas after World War I and World War II and explores the role of religion in their lives as well as the impact that their religious experiences had upon the cities in which they lived. (Cross-listed with USP 132.)

189. Special Topics in Ethnic Studies (4)
A reading and discussion course that explores special topics in ethnic studies. Themes will vary from quarter to quarter; therefore, course may be repeated three times as long as topics vary.

190. Research Methods: Studying Racial and Ethnic Communities (4)
The course offers students the basic research methods with which to study ethnic and racial communities. The various topics to be explored include human and physical geography, transportation, employment, economic structure, cultural values, housing, health, education, and intergroup relations.

191A. Undergraduate Research in Ethnic Studies (4)
This course is designed to help students conduct their own research rather than merely read the research of others. The course will introduce students to research paradigms in ethnic studies, familiarize them with finding aids and other library resources, and involve them in the design of research plans. Prerequisite: instructor approval.

191B. Honors Research in Ethnic Studies (4)
This course is a continuation of Ethnic Studies 191. Undergraduate Research in Ethnic Studies. Students who have completed ETHN 191 and selected a faculty research advisor may enroll in this course. During the quarter the research for the honors project will be completed under the faculty advisor’s supervision. Faculty advisors will meet weekly with their honors students to oversee the progress made in carrying out the plan of research. Prerequisite: completion of 191.

191C. Honors Research in Ethnic Studies (4)
This course is a continuation of Ethnic Studies 192. Honors Research in Ethnic Studies. Students who have completed ETHN 192 and are continuing to work with a faculty research advisor may enroll in this course. During the quarter the written drafts and final honors paper will be completed under the faculty advisor’s supervision. The student will meet weekly with the faculty advisor in order to prepare drafts and the final version of the honors paper. Prerequisite: instructor approval.

197. Fieldwork in Racial and Ethnic Communities (4)
This course comprises supervised community fieldwork on topics of importance to racial and ethnic communities in the greater San Diego area. Regular individual meetings with faculty sponsor and written reports are required. (May be repeated for credit.)

198. Directed Group Studies (4)
Directed group study on a topic or in a field not included in the regular department curriculum by special arrangement with a faculty member. (May be repeated for credit.)

199. Supervised Independent Study and Research (4)
Individual research on a topic that leads to the writing of a major paper. (May be repeated for credit.)

200A. History of Ethnic Studies (4)
This course charts the origins of ethnic studies research, the emergence of dominant paradigms, and the history of race and ethnic issues across and within disciplines.

200B. Theories of Ethnic Studies (4)
A critical exploration of the ways in which theories of ethnic studies have constituted as well as analyzed knowledge and ethnic identity.

200C. Controversies in Ethnic Studies (4)
This course is structured around contemporary events and debates over theories, methods, and objects of inquiry in ethnic studies.

210. Research Seminar in Ethnic Studies (4)
This course introduces students to the practice of original discovery research in the field of racial and ethnic studies, including articulating a research problem, placing it within theoretical discussions, selecting appropriate methods, and analyzing data.

230. Departmental Colloquium (1)
This course is a forum for the presentation of recent research by guests, faculty, and students. This course may be taken for credit six times.

240. Multidisciplinary Research Methods in Ethnic Studies (4)
A critical introduction to the broad range of methods used in ethnic studies research and how they have shaped social constructions of race, ethnicity, gender, class, and sexuality.

241A. Community Ethnography I: Method and Theory (4)
This course reviews the major tenets of ethnography using case studies of ethnographic work and critical theory pertaining to epistemological concerns in the social sciences. Critical here are the major ethical parameters of conducting ethnography in ethnic communities, the role of researchers, and the practical implications of such research.

241B. Community Ethnography II: Practicum (4)
This course focuses on the practical application of ethnographic concepts and methods in actual field research in a local San Diego community. The purpose here is to provide experience in conducting ethnography through participant observation, interviews, and contributing to communities. This will include a brief overview of ethnographic method, but will focus on hands-on research, analysis, and ethnographic writing.

253. Mass Media and Ethnic Identity (4)
This course examines the ways that ethnic identity influences the practices of mass media, and the ways in which mass media shape and reflect ethnic identity.

254. Race and Racism (4)
This course examines inequality based on race with a focus on the institutions, symbols, and social practices which structure and maintain racism. Particular attention is given to laws and social policy which reinforce racial inequality.

256. Gender, Sexuality, and Race (4)
This course studies the body cross-culturally as a site for the construction of gender, sex, ethnic, and racial identities.

257A. Social Theory (4-4)
An intensive survey of social and cultural theory, focusing on how constructions of science, language, politics, and social inequality shaped early modernity. Romantic Nationalism, Marxism, cultural relativity, psychoanalysis, and fine d’écriture social thought. The second quarter surveys poststructuralist, postmodern, feminist, Subaltern Studies, globalization, and other critiques. ETHN 257A is not a prerequisite for ETHN 257B.
259. Comparative Conquests, Colonization, and Resistance in the Americas (4)
This course will offer a comparative survey of the impact of European interactions with Native nations and populations in the New World, from Peru to Canada. Readings will emphasize modes of initial interaction, patterns of European colonization, and Native adaptation and resistance, and broader changes in Native culture and cosmology as a result of conquest and colonization.

260. Transnationalism and Borderlands: The Local and Global (4)
This course critically reviews the analytical frameworks of transnationalism and borderlands. The goals are to assess traditional and current social science practice on immigration, identity, and community studies, and to understand how diverse peoples engage and participate in global processes.

261. Race and Law (4)
This seminar advances a critique of law’s innocence—of its claims for universality. The reading of legal and scientific texts will indicate how by incorporation existing constructions of the meanings of race, the law produces racialized modern subjects.

262. Race, Inequality, and Health (4)
New critical and multidisciplinary perspectives provide tools for examining entrenched and newly emerging diseases and inequalities. This course examines medicine and public health in relationship to race, gender, sexuality, class, and nation and explores how these connections affect the distribution of health and health services locally, nationally, and internationally.

263. Language and Socialization across Cultures (4)
This course will focus on the ways in which children in different ethnic and racial groups are socialized to language and through language. We will explore racial and class and gender ideologies that underpin the ways parents expect children to learn to speak; examine effective and appropriate methods for studying cultural patterns and understanding ideologies; and consider impacts of bilingualism, stigmatized dialects, immigration, religious training, and home-school conflicts in ways of speaking and using language(s). Prerequisite: graduate standing or consent of instructor.

264. War, Race, and Violence (4)
This course critically examines theories and research on war, race, and violence, including everyday forms of state violence, war and the making of empire, the politics of war memory, and war refugees. Prerequisite: graduate standing or consent of instructor.

265. Critical Immigration and Refugee Studies (4)
This course surveys the field of immigration and refugee studies and introduces students to recent theories and cutting-edge research in the field. Key topics: gender and migration; diaspora and transnationalism; immigration, race, and citizenship; and globalization and immigrant labor. Prerequisite: graduate standing or consent of instructor.

289. Topics in Ethnic Studies Research (4)
This course is a research seminar on themes of contemporary and historic importance in ethnic studies. Themes will be determined by instructor. Course may be repeated three times for credit.

290A-B. Master's Thesis Preparation (4-4)
All graduate students are required to write a master’s thesis as part of the requirements for the master of arts in ethnic studies. Students should enroll in the thesis preparation courses in the fall and spring quarters of the second year of graduate studies.

298. Directed Reading (1-12)
This is an independent research or individual guided tutorial in an area not covered by present course offerings. This course may be repeated for an indefinite number of times due to the independent nature of the content of the course.

299. Thesis Research (1-12)
Open to graduate students conducting doctoral thesis research. This course may be repeated for an indefinite number of times due to the independent nature of thesis research and writing.

500. Apprentice Teaching in Ethnic Studies (4)
A course in which teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty; handling of discussions, preparation and grading of examinations and other written exercises, and student relations.

The Minor
In the course of the twentieth century film in all its applications—as storytelling, as documentary, as propaganda, as popular entertainment—became a powerful social and cultural force on an international scale. The importance of film is reflected in the number of faculty at UCSD whose scholarship and teaching involves film and in the number of courses regularly offered which focus on some aspect of film studies and which use film as an essential component of the course material. The Film Studies minor is designed to give students a flexible introduction to the full range of courses on film available here. As noted below, the only constraints are that five of the seven courses must be in the upper division and that the seven courses must come from at least two different departments. This latter requirement is designed to insure some level of breath in the minor. The minor should be of interest to students with a wide range of interests from those who plan graduate study in film to those who simply wish to understand better this powerful and influential medium.

REQUIREMENTS
Seven courses, at least five of which must be upper-division, from the following list. The seven courses must be drawn from at least two different departments.

COURSES
COCU 110. Cinema in Latin America (4)
COCU 125. How to Read a Film (4)
COCU 132 Gender and Media (4)
COHI 143. The Psychology of the Filmic Text (4)
COSF 186. Film Industry (4)
ETHN 101. Ethnic Images in Film (4)
FILM 87. Film Studies Freshman Seminar (1)
FILM 192. Senior Seminar in Film Studies (1)
HIEA 133. Twentieth-Century China: Cultural History (4)
HIUS 122. History and Hollywood: America and the Movies since the Great Depression (4)
LTWL 4A-B-C-D-E-M. Fiction and Film in Twentieth-Century Societies (4-4-4-4-4)
LTAF 120. Literature and Film of Modern Africa (4)
LTEA 120A. Chinese Films (4)
LTEA 120B. Taiwan Films (4)
LTEA 120C. Hong Kong Films (4)
LTEA 120D. Filming Chinese Literature (4)
LTEU 159. Russian and Soviet Film (4)
LTWL 180. Film Studies and Literature: Film History (4)
LTWL 181. Film Studies and Literature: Film Movement (4)
LTWL 182. Film Studies and Literature: Film Genre (4)
LTWL 183. Film Studies and Literature: Director’s Work (4)
German Studies

OFFICE: 3024 Humanities and Social Sciences Building, Muir College (CAESAR Office)
(858) 534-3598
http://germanstudies.ucsd.edu
E-mail: germanstudies@ucsd.edu

Program Director
Lisa Lampert-Weissig, Associate Professor, Literature

Faculty
Frank Biess, Associate Professor, History
Elizabeth Bredeck, Lecturer, Literature
William M. Chandler, Professor, Political Science
Fatima El-Tayeb, Assistant Professor, Literature
Harvey S. Goldman, Professor, Sociology
Michael O. Hardimon, Associate Professor, Philosophy
Deborah Hertz, Professor, History
Todd C. Kontje, Professor, Literature
David S. Luft, Professor, History
William A. O’Brien, Associate Professor, Literature
Carol Plantamura, Professor, Music
John Rouse, Associate Professor, Theatre and Dance
Jane Stevens, Associate Professor, Music
Tracy B. Strong, Professor, Political Science

Cynthia Walk, Associate Professor Emerita, Literature
Eric Watkins, Professor, Philosophy

Program Description

German Studies is an interdisciplinary program that offers both a major and a minor for students with broad academic interests in the German-speaking world.

In consultation with a faculty advisor in the program, students design individual plans of study from the many core courses offered in the Departments of History, Literature, Music, Philosophy, Political Science, Sociology, and Theatre and Dance. Further courses, including some offered by other departments, may be incorporated into the student’s program, if they bear directly on German studies. Students considering a major or minor should consult a member of the German Studies faculty as early as possible.

Students need to attain competence in German (two years of university-level language courses or the equivalent) before they can take certain required upper-division courses. It is recommended that students attain this level of competence early in the program.

Study Abroad

All German Studies students are strongly encouraged to make overseas study an integral part of their program. The UC Education Abroad Program (EAP) conducts formal programs of study in Berlin, Göttingen, and Bayreuth ranging from one-quarter, intensive beginning language programs to a full year of study at a German university. Students may petition to use up to five courses completed while studying abroad in their major, and three in their minor.

Senior Honors Thesis

At the beginning of his or her senior year, a student major in German Studies may elect to write a Senior Honor’s Thesis. To be eligible, the student must have a GPA of 3.5 in the German Studies major at the beginning of the senior year.

To begin work, the student forms a committee of three appropriate faculty members, including a committee chair, who is chosen from among the German Studies Core Faculty. The chair supervises the student in a two-quarter program of independent study to research and write an Honor’s Thesis of approximately thirty to fifty pages (GMST 196A/B; the two courses count among the required twelve for the major). The student defends the thesis in a one-hour oral exam with

Freshman Seminar Program

Office of the Senior Vice Chancellor—Academic Affairs
Associate Vice Chancellor—Undergraduate Education
OFFICE: University Center, Room 104
(858) 822-5855
http://academicaffairs.ucsd.edu/r/ugsem.htm

The Freshman Seminar Program debuted in 2003–04 to offer students early intellectual contact with faculty members, spark their interest in a broad range of topics, and enrich the undergraduate experience at UCSD. These seminars create a unique classroom environment by providing new students opportunities to engage in intellectual discussions with faculty and peers in a small supportive class setting, and by fostering the development of critical thinking and analytical skills. Incoming students are highly encouraged to enroll in freshman seminars during their first year at UCSD. Students can select from an interesting and exciting array of seminars each quarter, designated by courses numbered 87, e.g., PHYS 87.

Faculty from all departments offer approximately 150 seminars per academic year. Seminars offer one unit of credit and are graded on a pass/not pass basis. Enrollment is limited to twenty students per seminar, with preference given to entering freshmen, and up to four seminars may be taken for credit.

Please visit the Freshman Seminar Program Web site at http://academicaffairs.ucsd.edu/r/ugsem.htm for a description of seminars currently offered. This site also contains useful information, such as enrollment procedures for freshmen with advanced standing, and additional program details. Questions about a specific freshman seminar should be directed to the department offering the seminar.

German Studies

Office: 3024 Humanities and Social Sciences Building, Muir College (CAESAR Office)
(858) 534-3598
http://germanstudies.ucsd.edu
E-mail: germanstudies@ucsd.edu

Program Director
Lisa Lampert-Weissig, Associate Professor, Literature

Faculty
Frank Biess, Associate Professor, History
Elizabeth Bredeck, Lecturer, Literature
William M. Chandler, Professor, Political Science
Fatima El-Tayeb, Assistant Professor, Literature
Harvey S. Goldman, Professor, Sociology
Michael O. Hardimon, Associate Professor, Philosophy
Deborah Hertz, Professor, History
Todd C. Kontje, Professor, Literature
David S. Luft, Professor, History
William A. O’Brien, Associate Professor, Literature
Carol Plantamura, Professor, Music
John Rouse, Associate Professor, Theatre and Dance
Jane Stevens, Associate Professor, Music
Tracy B. Strong, Professor, Political Science

Cynthia Walk, Associate Professor Emerita, Literature
Eric Watkins, Professor, Philosophy

Program Description

German Studies is an interdisciplinary program that offers both a major and a minor for students with broad academic interests in the German-speaking world.

In consultation with a faculty advisor in the program, students design individual plans of study from the many core courses offered in the Departments of History, Literature, Music, Philosophy, Political Science, Sociology, and Theatre and Dance. Further courses, including some offered by other departments, may be incorporated into the student’s program, if they bear directly on German studies. Students considering a major or minor should consult a member of the German Studies faculty as early as possible.

Students need to attain competence in German (two years of university-level language courses or the equivalent) before they can take certain required upper-division courses. It is recommended that students attain this level of competence early in the program.

Study Abroad

All German Studies students are strongly encouraged to make overseas study an integral part of their program. The UC Education Abroad Program (EAP) conducts formal programs of study in Berlin, Göttingen, and Bayreuth ranging from one-quarter, intensive beginning language programs to a full year of study at a German university. Students may petition to use up to five courses completed while studying abroad in their major, and three in their minor.

Senior Honors Thesis

At the beginning of his or her senior year, a student major in German Studies may elect to write a Senior Honor’s Thesis. To be eligible, the student must have a GPA of 3.5 in the German Studies major at the beginning of the senior year.

To begin work, the student forms a committee of three appropriate faculty members, including a committee chair, who is chosen from among the German Studies Core Faculty. The chair supervises the student in a two-quarter program of independent study to research and write an Honor’s Thesis of approximately thirty to fifty pages (GMST 196A/B; the two courses count among the required twelve for the major). The student defends the thesis in a one-hour oral exam with

Freshman Seminar Program

Office of the Senior Vice Chancellor—Academic Affairs
Associate Vice Chancellor—Undergraduate Education
OFFICE: University Center, Room 104
(858) 822-5855
http://academicaffairs.ucsd.edu/r/ugsem.htm

The Freshman Seminar Program debuted in 2003–04 to offer students early intellectual contact with faculty members, spark their interest in a broad range of topics, and enrich the undergraduate experience at UCSD. These seminars create a unique classroom environment by providing new students opportunities to engage in intellectual discussions with faculty and peers in a small supportive class setting, and by fostering the development of critical thinking and analytical skills. Incoming students are highly encouraged to enroll in freshman seminars during their first year at UCSD. Students can select from an interesting and exciting array of seminars each quarter, designated by courses numbered 87, e.g., PHYS 87.

Faculty from all departments offer approximately 150 seminars per academic year. Seminars offer one unit of credit and are graded on a pass/not pass basis. Enrollment is limited to twenty students per seminar, with preference given to entering freshmen, and up to four seminars may be taken for credit.

Please visit the Freshman Seminar Program Web site at http://academicaffairs.ucsd.edu/r/ugsem.htm for a description of seminars currently offered. This site also contains useful information, such as enrollment procedures for freshmen with advanced standing, and additional program details. Questions about a specific freshman seminar should be directed to the department offering the seminar.

German Studies

OFFICE: 3024 Humanities and Social Sciences Building, Muir College (CAESAR Office)
(858) 534-3598
http://germanstudies.ucsd.edu
E-mail: germanstudies@ucsd.edu

Program Director
Lisa Lampert-Weissig, Associate Professor, Literature

Faculty
Frank Biess, Associate Professor, History
Elizabeth Bredeck, Lecturer, Literature
William M. Chandler, Professor, Political Science
Fatima El-Tayeb, Assistant Professor, Literature
Harvey S. Goldman, Professor, Sociology
Michael O. Hardimon, Associate Professor, Philosophy
Deborah Hertz, Professor, History
Todd C. Kontje, Professor, Literature
David S. Luft, Professor, History
William A. O’Brien, Associate Professor, Literature
Carol Plantamura, Professor, Music
John Rouse, Associate Professor, Theatre and Dance
Jane Stevens, Associate Professor, Music
Tracy B. Strong, Professor, Political Science

Cynthia Walk, Associate Professor Emerita, Literature
Eric Watkins, Professor, Philosophy

Program Description

German Studies is an interdisciplinary program that offers both a major and a minor for students with broad academic interests in the German-speaking world.

In consultation with a faculty advisor in the program, students design individual plans of study from the many core courses offered in the Departments of History, Literature, Music, Philosophy, Political Science, Sociology, and Theatre and Dance. Further courses, including some offered by other departments, may be incorporated into the student’s program, if they bear directly on German studies. Students considering a major or minor should consult a member of the German Studies faculty as early as possible.

Students need to attain competence in German (two years of university-level language courses or the equivalent) before they can take certain required upper-division courses. It is recommended that students attain this level of competence early in the program.

Study Abroad

All German Studies students are strongly encouraged to make overseas study an integral part of their program. The UC Education Abroad Program (EAP) conducts formal programs of study in Berlin, Göttingen, and Bayreuth ranging from one-quarter, intensive beginning language programs to a full year of study at a German university. Students may petition to use up to five courses completed while studying abroad in their major, and three in their minor.

Senior Honors Thesis

At the beginning of his or her senior year, a student major in German Studies may elect to write a Senior Honor’s Thesis. To be eligible, the student must have a GPA of 3.5 in the German Studies major at the beginning of the senior year.

To begin work, the student forms a committee of three appropriate faculty members, including a committee chair, who is chosen from among the German Studies Core Faculty. The chair supervises the student in a two-quarter program of independent study to research and write an Honor’s Thesis of approximately thirty to fifty pages (GMST 196A/B; the two courses count among the required twelve for the major). The student defends the thesis in a one-hour oral exam with
the full committee, which is charged with recommending the degree of honors that will appear on the student's transcript and diploma.

The Major

The major in German Studies requires twelve upper-division courses chosen from the core course list, and includes:

- German Studies I and II (LTGM 100 and 101)
- three courses in German Literature
- two courses in History
- five additional core courses, taken in at least two different departments. At least two of these courses must be taken outside the literature department.

Students plan their major in consultation with their German Studies faculty advisor, and submit it to the program director for approval.

The Minor

The minor in German Studies consists of seven courses, at least five of which must be upper-division, including:

- German Studies I or II (LTGM 100 or 101)
- At least six additional core courses, taken in at least two departments.

Students plan their minor in consultation with their German Studies faculty advisor, and submit it to the program director for approval.

Core Courses

Courses marked with an asterisk (*) frequently cover topics bearing on German Studies. Students should check the departments’ quarterly course descriptions and yearly course spreads or their applicability to the program, and discuss them in advance with their German Studies advisor.

GERMAN STUDIES

GMST 196A/B. Honors Thesis

HISTORY

HIEU 125. Reformation Europe
HIEU 132. German Politics and Culture: 1648–1848
HIEU 142. European Intellectual History: 1780–1870
HIEU 143. European Intellectual History: 1870–1945
HIEU 146. Fascism, Communism, and the Crisis of Liberal Democracy
HIEU 154. Modern German History
HIEU 155. Modern Austria
HIEU 177. Special Topics in Modern German Thought

LITERATURE

LTGM 2A. Readings and Interpretations
LTGM 2B. Advanced Readings and Interpretations
LTGM 2C. Composition and Conversation
LTGM 100. German Studies I: Aesthetic Cultures
LTGM 101. German Studies II: National Identities
LTGM 123. Eighteenth-Century German Literature
LTGM 125. Nineteenth-Century German Literature
LTGM 126. Twentieth-Century German Literature
LTGM 130. German Literary Prose
LTGM 131. German Dramatic Literature
LTGM 132. German Poetry
LTGM 190. Seminars in German Culture
LTEU 110. European Romanticism*
LTEU 130. German Literature in Translation
LTEU 139. Marx, Nietzsche, Freud
LTWL 48. Fiction and Film in Twentieth-Century Societies*
LTWL 160. Women and Literature*
LTWL 170. Specialized Genres in Literature*
LTWL 172. Special Topics in Literature*
LTWL 176. Literature and Ideas*
LTWL 180. Film Studies and Literature: Film History*
LTWL 183. Film Studies and Literature: Director's Work*
LTWL 185. Film Studies and Literature: Interdisciplinary Issues*

MUSIC

MUS 113. Topics in Classic, Romantic, and Modern Music*

PHILOSOPHY

PHIL 106. Kant
PHIL 107. Hegel
PHIL 108. 19th-Century Philosophy*
PHIL 110. Wittgenstein
PHIL 180. Phenomenology
PHIL 181. Existentialism
PHIL 182. Marx and Marxism
PHIL 183. Topics in Continental Philosophy*

POLITICAL SCIENCE

POLI 110C. Revolution and Reaction: Political Thought from Kant to Nietzsche
POLI 114B. Marxist Political Thought
POLI 120B. The German Political System
POLI 120D. Germany: Before, During, and After Division
POLI 120H. European Integration*

SOCIOLOGY

SOCA 101M. Marxism, Culture, and Politics
SOCD 178. The Holocaust

THEATRE AND DANCE

THHS 101. Topics in Dramatic Literature and Theatre History*
THHS 102. Masters of Theatre*

Greek Literature

See Literature.

Health Care–Leadership of Healthcare Organizations

OFFICE: La Jolla Village Professional Center
8950 Villa La Jolla Drive, Suite A124
(858) 964-1017
E-mail: lhco@ucsd.edu
http://lhco.ucsd.edu
Program Directors
Richard Kronick, Ph.D., Associate Professor and Chief, Division of Healthcare Sciences, Family and Preventive Medicine
Charles Mittman, M.D., Professor of Clinical Medicine and Special Assistant for Clinical Affairs

Associated Faculty
Gloria E. Bader, Ed.D., The Bader Group
Theodore Ganiats, M.D., Professor, Chair, Family and Preventive Medicine
Robert H. Kaplan, Ph.D., Torrey Pines Health Group
David Kraus, J.D., MPH, UCSD Healthcare
Robert Resnik, M.D., Professor, Reproductive Medicine
David Sakai, C.P.A., MBA, Chief Financial Officer, UCSD Health Sciences
Maria Savoia, M.D., Professor, Clinical Medicine
Douglas Werner, M.A., Torrey Pines Health Group
Michael Willoughby, Ph.D., Lecturer, Economics

Program Description
The Master of Advanced Studies (MAS) in the Leadership of Healthcare Organizations provides depth and focus on management for health care professionals with an emphasis on clinical process improvement. The goal of the program is to prepare health care professionals to participate more effectively in the business decisions that affect the quality of patient care by teaching participants to deal with error prevention, process quality, and systems of care. Students gain the advanced knowledge and skills that are essential to manage escalating challenges in the competitive business environment of health care. The MAS program crosses many fields and clinical and administrative professions in the health industry, including medicine, nursing, mental health, dentistry, insurance, pharmacy, and other related areas. The program is appropriate for nurses, managers, physicians, allied health professionals, health care executives, and medical students as they assume more active roles in health care leadership and on management teams.

The MAS in the Leadership of Healthcare Organizations is a part-time, self-supporting degree program with a flexible course schedule designed for working professionals. It is the first graduate degree of its kind within the University of California system. The UCSD graduate division confers the MAS degree and the Department of Family and Preventive Medicine in the UCSD School of Medicine is responsible for the academic management of the curriculum. UCSD Extension administers the program and provides student advising and career counseling services.

Admission
New students are admitted in the fall, winter, and spring quarter of each academic year. Prospective candidates should submit and complete the official UCSD online graduate application for admission, the application fee, one set of official transcripts from each institution attended after high school, three letters of professional recommendation, and a current résumé or c.v. The GRE/GMAT is not required; however, it is strongly recommended that candidates have a minimum of five years of professional experience in health care. International applicants must submit official scores from the Test of English as a Foreign Language (TOEFL). The application deadlines are August 1 (fall), October 18 (winter), and January 17 (spring).

Program of Study
The part-time degree program is designed to be completed in one, two, or three years, depending upon a participant’s time to devote to the program. Classes are typically scheduled in the late afternoons, evenings, or weekends to meet the demands of working professionals. Students are required to complete forty units of courses.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

CURRICULUM

LHCO 201A-B. Topics in Healthcare Management and Innovation (2 each)
Weekly discussions with healthcare entrepreneurs and managers will expose students to real-life experiences. How are solutions to healthcare delivery identified and implemented? How are solutions brought to the marketplace?

LHCO 202. Organizational Dynamics and Change Management (4)
This course examines principles and applications of management and organization theory as applied to healthcare organizations. It covers methods for assessing key features of organizational environments and internal structures and identifying, developing, and implementing strategies for improved performance.

LHCO 203. Using and Managing Information and Information Technologies (4)
Designed to familiarize health administrators and professionals with the principles of information systems design and management for healthcare. Provides an understanding of current trends in information technologies for healthcare and management issues unique to it. Includes hands-on computer lab.

LHCO 204. Managing People and Teams (2)
This course studies key management concepts and roles of management and how they apply in successful, dynamic organizations. It also examines competencies of effective managers in developing customer focus, planning, selecting and developing individuals and teams, communicating, managing resources, using technology and being adaptable.

LHCO 205. Modern Healthcare Organizations (4)
Describes and analyzes the dynamics responsible for the change in healthcare delivery and effects on development of modern healthcare organizations. Describes actions taken by employers, insurers, consumers, and government, analyzing the effects on physicians and provider organizations. Note: It is recommended that students take this course in their first winter quarter in the program.

LHCO 206. Topics in Financial Management and Decision Making (2)
This course presents real-life applications in healthcare provider organizations of financial management and decision-making. Topics include budgeting, uses of financial reports, development of long-range financial forecasts, benchmarking, business plan development, and actuarial analysis in projecting healthcare delivery costs.

LHCO 207. Health Law and Medical Liability (4)
This course provides an introduction to the relationships of law to healthcare, including liability, government regulation, financial and ethical issues, contracting and negotiation and dispute resolution.

LHCO 208. Financial Management and Decision Making (4)
This course analyzes the impact of time and risk on investment decisions. Financial accounting will be reviewed to understand financial information within an organization including uses and limitation of such information for management purposes. Discussion of procedural aspects of accounting to explicate basic concepts.

LHCO 209. Patient Outcomes and Quality of Care (4)
This course provides a critical overview of the tools used to measure outcomes and quality of care, development and use of practical guidelines, advantages and disadvantages of various methods, and the use of such analysis in administrative decision-making.

LHCO 210. Assessment of Medical Technology (2)
This course covers assessment methodologies, balancing concerns for economics and impact on care, investment strategy, and relationships with developers, vendors, and suppliers.

LHCO 211. Healthcare Leadership and Political Advocacy (2)
Within the context of healthcare advocacy, the course examines the organizational and individual issues that impact success in promoting and advocating for a healthcare agenda. The course aims to provide clarity to that process and assist students with understanding how to navigate the political landscape. Students learn about the legislative process, lobbying, the impact of political campaigns, the involvement of the media, and how healthcare economics impact politics.
Health Care–Social Issues

OFFICE: Interdisciplinary Programs, EBU 3B, Computer Science and Engineering Building, Room 1108, Warren College
http://warren.ucsd.edu/health

Health Care–Social Issues is an interdisciplinary minor designed to enhance students’ competence in analyzing complex social and ethical implications and ramifications of health care issues, policies, and delivery systems. Students gain an understanding of how the economy, culture, technology, sociological and psychological processes influence modern health care. Although it is administered by Warren College, it is available to all UCSD students with a general interest in health care as well as to students considering health care careers. This minor offers UCSD students the opportunity to examine health care-related issues from the perspectives of a wide range of disciplines that include anthropology, contemporary issues, economics, ethnic studies, philosophy, sociology, urban studies, science and technology. By bringing together course work from these academic departments, this interdisciplinary curriculum offers a breadth of intellectual experience that enhances students’ undergraduate education and their preparation for professional and postgraduate education in health care professions.

Students should consult an academic advisor in their college provost’s office to determine how the health care–social issues minor can best meet their college’s graduation requirements. Declarations must first be reviewed and approved by the coordinator of the Health Care–Social Issues Program and then by the student’s college academic advising office.

Students are strongly urged to supplement the health care–social issues minor with a health-related internship. The Academic Internship Program offers internship placements in clinical settings and with medical research teams that provide valuable experience, career clarification, and an opportunity to apply theories learned in course work. Juniors and seniors with at least a 2.5 overall grade-point average (some placements require a 3.0 GPA) are eligible and can earn from four to sixteen units of academic credit for the internship experience.

Further information on related programs and activities is available at the Warren College Interdisciplinary Programs Office.

Health Care–Social Issues Minor Requirements

The minor consists of seven courses (three required and four electives). At least five courses must be taken at the upper-division level. Upper-division courses must not overlap with courses in the student’s major. No more than three elective courses may be taken in any one discipline. For full descriptions of the following courses, please see departmental listings.

The health care–social issues minor is applicable as a Warren College program of concentration in the social sciences.

Required Courses

- Sociology/L 40—Sociology of Health Care Issues
- Philosophy 163—Bio-Medical Ethics

One course in Urban Studies and Planning chosen from the following:
- ANLD 2—Human Origins
- ANBI 101—Topics in Biomedical Anthropology
- ANBI 141—The Evolution of Human Diet

(Additional urban studies and planning courses may be taken to fulfill elective requirements in the minor.)

Elective Course Options

Anthropology

- ANLD 2—Human Origins
- ANBI 101—Topics in Biomedical Anthropology
- ANBI 141—The Evolution of Human Diet

ANGN 100—Topics in Sociocultural Anthropology (approval required)
ANGN 128—The Anthropology of Medicine

Contemporary Issues

- 22—Human Sexuality
- 40—The AIDS Epidemic
- 136—The Anthropology of Medicine

Economics

- 138A-B—Economics of Health

Ethnic Studies

- 142—Medicine, Race, and the Global Politics of Inequality

Philosophy

- 147—Philosophy of Biology
- 148—Philosophy and the Environment
- 151—Philosophy of Neuroscience
- 162—Contemporary Moral Issues
- 164—Technology and Human Values

Psychology

- 2—General Psychology: Biological Foundations
- 60—Introduction to Statistics
- 104—Introduction to Social Psychology
- 124—Introduction to Clinical Psychology
- 132—Hormones and Behavior
- 134—Eating Disorders
- 153—Clinical Psychology
- 154—Behavior Modification
- 155—Social Psychology and Medicine
- 163—Abnormal Psychology
- 168—Psychological Disorders of Childhood
- 169—Brain Damage and Mental Function
- 171—Psychology of Human Sexuality
- 179—Drugs, Addiction, and Mental Disorders
- 181—Drugs and Behavior
- 188—Impulse Control Disorders

Science, Technology, and Public Affairs

- 181—Elements of International Medicine

Sociology

- Soc/L 60—The Practice of Social Research

Cluster B

- Soc/B 120S—Special Topics in Culture, Language, and Social Interaction (prior approval of topic required)
- Soc/B 143—Suicide

Cluster C

- Soc/C 134A—The Making of Modern Medicine
Soc/C 134B—Medicine in the Twentieth Century
Soc/C 135—Medical Sociology
Soc/C 136A—Sociology of Mental Illness: Historical Approach
Soc/C 136B—Sociology of Mental Illness in Contemporary Society
Soc/C 137—Knowledge and Practice in Biomedicine
Soc/C 138—Genetics and Society
Soc/C 159—Special Topics in Social Organizations and Institutions (prior approval of topic required)

Urban Studies and Planning
143—The U.S. Health Care System
144—Environmental and Preventive Health Issues
145—Aging: Social and Health Policy Issues
147—Case Studies in Health Care Programs: The Poor and Underserved

Students may petition to substitute courses in the minor that have substantial content related to health and society. Petitions should be submitted to the Warren College Interdisciplinary Programs Office.

Recommended Internship Experience
A health care-related internship (AIP 197) is recommended and should be arranged at least one quarter in advance through the Academic Internship Program, Literature Building, Second Floor. Clinical and research placements are available. For each four units of credit, ten hours per week for one quarter plus a ten-page research paper are required.

Hebrew Literature
See Literature.

Assistant Professors
Luis Alvarez, Ph.D.
Weijing Lu, Ph.D.
Everard Meade, Ph.D.
Patrick Patterson, Ph.D.
Rebecca Jo Plant, Ph.D.
Jeremy Prestholdt, Ph.D.
Daniel L. Widener, Ph.D.

Adjunct Faculty
Michal Belknap, Ph.D., Professor, California Western School of Law
Amy Bridges-Kronick, Ph.D., Professor, Political Science
Suzanne Cahill, Ph.D., Associate Adjunct Professor
Paul Drake, Ph.D., Professor, Political Science and Institute of the Americas Chair for Inter-American Affairs
Steve Erie, Ph.D., Professor, Political Science
Peter H. Smith, Ph.D., Professor, Political Science and Simón Bolívar Chair in Latin American Studies

Lecturer with Potential Security of Employment
Jane Kuo, Ph.D.

Emeritus Professors
Guillermo Cespedes, Ph.D.
Stanley A. Chodorow, Ph.D.
Gabriel Jackson, Ph.D.
Thomas A. Metzger, Ph.D.
Allan Mitchell, Ph.D.
Alden A. Mosshammer, Ph.D.
Earl Pomery, Ph.D.
Edward Reynolds, Ph.D.
David R. Ringrose, Ph.D.
Martin J. S. Rudwick, Ph.D.
Ramón Eduardo Ruiz, Ph.D.

Emeritus Lecturer with Security of Employment
Ping C. Hu

The Undergraduate Program

“Whereas other subjects may make us smarter for next time,” said the great historian of the Renaissance, Jakob Burckhardt, “the study of history makes us wiser forever.” This major is, moreover, an excellent preparation for a number of rewarding careers in university and college
teaching and research, law, government, diplomacy, international business, education, and even medicine. At the crossroads of the humanities, the arts, and the social sciences, history is the study of human experience as it has unfolded over the ages. As an academic discipline it presents a unique gateway both to the richness of our cultural heritage and to the immense variety of world civilizations.

Students wishing to declare a major in history should first consult with the director of Undergraduate Studies. After determining the student’s likely field of emphasis, the student should then select an appropriate faculty advisor from among the department’s faculty members. All undergraduate majors are strongly encouraged to consult with the faculty advisor at least once each quarter. Any difficulties in the advising procedure or in registration formalities should be reported to the Director of Undergraduate Studies.

Department fields of emphasis are as follows: Africa (HIAF), East Asia (HIEA), Europe (HEU), Near East (HINE), Latin America (HLA), History of Science (HISC), United States (HIUS); as well as the following three thematic fields: Gender and Sexuality; Race, Ethnicity, and Migration; and War, Revolution, and Social Change. A list of courses approved for the thematic fields is available in the department office or on its Web site, http://historyweb.ucsd.edu.

The department also administers the following special research and instructional units; Chinese Studies; Judaic Studies; and the Committee on Area and Ethnic Studies and Research (CAESAR), which includes African Studies, Classical Studies, German Studies, Italian Studies, Japanese Studies, Middle East Studies, Russian and Soviet Studies.

The department is fortunate in having the research and professional activities of its faculty supported by the Laura and John Galbraith Faculty Development Fund.

Basic requirements for the major are as follows:

1. A three-quarter lower-division sequence.
2. Twelve four-unit upper-division courses, which must include the following distribution of courses:
 a) Seven courses in a field of emphasis. (In certain cases, with approval of the academic advisor, two of these courses may be in a neighboring discipline.)
 b) Five courses in other fields within the department.
 c) Three of the twelve courses must focus on the period before 1800. These courses are indicated by the symbol (+).
 d) At least one of the twelve courses must be a colloquium in which students would be required to write a substantial term paper. Colloquia are those courses with numbers between 160 and 190, or others approved by the undergraduate advisor. Note: The colloquium does not have to be in the major field of emphasis.

*Requirement 2d applies only to students entering UCSD after September 1, 1998.

Students majoring in history will normally take at least eight of their twelve upper-division history courses at UCSD. Exceptions to this rule may be made for transfer students and for students participating in the EAP/OAP program.

In special cases, upon approval of the Director of Undergraduate Studies, students may devise a field of emphasis (e.g., economic, legal, or social history) other than those designated above. Special independent study courses, such as HITO 197, HITO 198, and HITO 199, are available for students. These courses are especially recommended for those students interested in the Honors Program and in Graduate study.

With the exception of 199 courses, all work in the major must be taken for a letter grade. Of the twelve upper-division courses required in the major, no more than two may be History 199 credits. (Exceptions to these rules may be allowed upon petition to the director of Undergraduate Studies.)

Lower-division sequences may be selected from the following:

HILD 2 A-B-C United States History
HILD 7 A-B-C Race and Ethnicity in the U.S.A.
HILD 10-11-12 East Asia

Students may also satisfy the lower-division requirement for the major by completing the Revelle College Humanities Sequence or the Fifth College Sequence, “Making of the Modern World.” Students entering with AP credit in history may waive part of the lower-division requirement. Transfer students, after consulting with the director of Undergraduate Studies, may petition to substitute a two-semester or three-quarter survey from another school for the department’s lower-division requirement.

Established in 1983, the Armin Rappaport Memorial Fund endows an annual prize for the outstanding graduating student in the major. The recipient of the award is announced at every June Commencement.

The Honors Program

The department offers a special program for outstanding students. The Honors Program is especially recommended for those students interested in pursuing graduate study in history or allied fields. It is also a particularly effective preparation for professional careers. Candidates for history honors are chosen during the spring quarter from among juniors in history who have taken at least four upper-division courses in the department. Juniors with a 3.5 GPA in history (3.0 overall) are eligible to apply. Admission to the program is based on the student’s academic work. Interested candidates should complete the application form (available in the Department of History office) by the second Friday of May.

In addition to regular course work in the department, the honors program consists of a colloquium in historiography offered in the fall quarter of the senior year and a program of independent study leading to the completion of an honors essay on a topic of the student’s choice. During the fall quarter of the senior year, candidates select a topic and begin preliminary work on the honors essay in consultation with a major field advisor (HITO 194). During the winter quarter the student pursues a course of independent study devoted to the completion of the honors essay (HITO 195). The award of history honors is based on satisfactory completion of the colloquium in history and the honors essay. Students are expected to maintain an average of 3.5 or better in all work taken within the department. Honors candidates must include at least three colloquia in their regular course work.

Candidates for history honors should organize their work as follows:

1. Six quarter-courses in one of the major fields offered by the department.
2. Three quarter-courses in a field other than the primary one.
3. Three of these nine quarter courses must be colloquia.
4. HITO 196. Colloquium in History;

Minors in History

Effective winter quarter 1998, the minor consists of at least seven courses, five of which must be upper-division. Although there is no specific distribution requirement, the courses should be selected to constitute a coherent curriculum. No more than two upper-division courses applied to a minor may be taken for Pass/No Pass. Prospective minors in history should consult with an undergraduate advisor for approval of their program.

Education Abroad Program

Students are encouraged to participate in the UC Education Abroad Program (EAP) of UCSD’s Opportunities Abroad Program (OAP), while still making progress toward completing their major. Students considering this option should discuss their plans with the departmental Educational Abroad faculty advisor before going abroad, and courses taken abroad must be approved by the department. (For more information on departmental procedures for study abroad see undergraduate program http://historyweb.ucsd.edu.) EAP is detailed in the Educational Abroad Program of the UCSD General Catalog, or visit http://programsabroad.ucsd.edu. Financial aid is applicable to study abroad, and study abroad scholarships are available. Interested students should contact the Programs Abroad Office in the International Center.

The Graduate Program

The Master’s Program

The Department of History offers master’s degrees in the fields of Chinese studies, modern European history (1500 to the present), history of science, Latin American history, and United States history. The department also provides the opportunity for students to design special M.A. programs in areas such as African history, medieval European history, and Judaic studies. In consultation with an appropriate faculty member, students may petition the department for approval for a special M.A.

Admission is based on the applicant’s undergraduate preparation; previous graduate work, if any, three letters of recommendation; one or two papers (preferably written for history courses); and scores from the Graduate Record Examination (GRE). The GRE subject exam in history is not required. The Test of English as a Foreign Language (TOEFL) is required for foreign applicants. A minimum score of 550 for the paper-based test or a score of 213 for the computer-based test is required on the TOEFL.

The minimum grade-point average for admission is 3.0 with a higher average in history and related subjects. While proficiency in a foreign language is an absolute requirement for admission (except in Latin American history, where a reading knowledge of Spanish is required), prospective applicants are strongly urged to begin study of a foreign language appropriate to the proposed area of concentration as early as possible in their academic career. With very few exceptions, students are expected to begin their programs in the fall quarter. Refer to the online application for filing deadline. Master’s students ordinarily do not receive financial aid from the department or the university except when funds are not utilized for support of Ph.D. candidates.

For online application visit: http://www ogs.ucsd.edu/

General Requirements

Candidates for the master’s degree are expected to finish the program in one academic year of full-time study or two years of part-time work. The program requires completion of thirty-six units, of which at least twenty units must be in colloquia, conjoined courses, directed readings, and seminars. In addition to course requirements, students must pass a comprehensive oral examination. Students in European or Latin American history and in certain special areas must demonstrate reading knowledge of at least one foreign language relevant to their course work.

Area of Concentration: History of Science

The master’s program in history of science provides a broad background in preparation for a variety of careers related to science and technology, business, journalism, education, government, or for more advanced degree work. The nine courses (thirty-six units) required are normally distributed as follows:

1. Two courses in science in early modern Europe.
2. Two courses in science since 1750.
3. A two-quarter research seminar.
4. The remaining courses are chosen in consultation with the faculty in history of science. For students whose previous training has been mainly scientific, these will include courses in historical fields other than the history of science. For students who already have historical training, they may include one or more courses related to the sciences.

Area of Concentration: Latin America

This program offers the student a general preparation in the history of Latin America. Students will have the opportunity to specialize in national or colonial periods and can emphasize work in one country. Advanced work in another discipline related to Latin America may also be included in the program. Thirty-six units normally should be distributed as follows:

1. HILA 267, 268, 269.
2. Three graduate courses in Latin American history.
3. Three other courses related to Latin America in history or in other disciplines.

Area of Concentration: United States

This area of concentration offers the M.A. candidate a broad grounding in the literature of American history from the colonial period to the present. In addition to a shared core of courses, students specialize in a topical field of their own choosing. Training in a related discipline outside of history is encouraged. The requirement of nine courses (thirty-six units) is ordinarily distributed as follows:

1. HIGR 265A-B-C. The Literature of American History. These colloquia are required of all entering graduate students in American history.
2. A two-quarter research seminar.
3. Two courses in a single topical field chosen from African-American history, Atlantic history, history of the borderlands and Southwest, Chicano history, economic history, legal and constitutional history, political history, social and cultural history, history of the South, history of the West, or history of women and gender.
4. Two additional courses chosen in consultation with the student’s advisor. These courses may be in a related field outside the department.
5. At least six of the nine courses must be colloquia or graduate-level courses. Students may take conjoined courses, directed readings, research seminars, or the 265 series to meet this requirement.

Ph.D. Program

Admission

The Department of History offers the doctor of philosophy degree in the fields of ancient history, East Asian history, European history, history of science, Latin American history, Middle Eastern history, and United States history. Admission is based on the applicant’s undergraduate preparation; previous graduate work, if any; three letters of recommendation; one or two papers (preferably written for history courses); and scores from the Graduate Record Examination (GRE). **The GRE subject exam in history is not required. The Test of English as a Foreign Language (TOEFL) is required for foreign applicants. A minimum score of 550 for the paper-based test or a score of 213 for the computer-based test is required on the TOEFL.**

The minimum grade-point average for admission is 3.0 with a higher average in history and related subjects. In most areas of concentration, knowledge of at least two foreign languages will be required during a student’s academic career. In general, applicants are expected to have a reading knowledge of the languages most appropriate to their major field at the time of admission. Thus, students in ancient history, East Asian history, European history, history of science, Latin American history, and Middle Eastern history should have a working knowledge of one foreign language at the time of admission. With very few exceptions, students are expected to begin their programs in the fall quarter. Refer to the online application for filing deadline.

For online application visit: http://www.ogs.ucsd.edu/

Fields of Study

During the first year of residence each student, after consulting with a graduate advisor in the area of concentration, selects one major field of study and two minor fields. Within a major field the student should indicate a special interest from which the dissertation may develop. The first minor is ordinarily a supplementary field within the student’s area of concentration, while the second minor is a complementary field outside the area of concentration. The basic programs of study are as follows:

I. ANCIENT HISTORY

Students in ancient history will be expected to demonstrate a broad mastery of the entire field, with special concentration as follows:

A. Major Fields
1. The history of Israel in the biblical period.
2. The history of the Jewish people in antiquity.

B. First Minor
1. One of the fields listed above not chosen as the major field.
2. Greek and Roman history.
3. The Middle East before Islam (western Asia and northeastern Africa from the sixth century B.C.E. to the seventh century C.E.)

C. Second Minor
1. A field of history outside of ancient history.
2. A related discipline, offered through another department.

D. Language Requirements

1. All students will be expected to demonstrate a reading knowledge of two modern foreign languages, usually French and German. This requirement may be satisfied by any of the means recognized by the department.
2. All students will be expected to demonstrate a reading knowledge of at least one and usually two of the three following ancient languages: Greek, Hebrew, and Latin. The languages will be chosen as appropriate to the student’s particular interests and the requirement will be satisfied by departmental examination.
3. The second and sometimes third language not elected under (2) may be required if necessary for the student’s research. Additional languages, such as Akkadian, Aramaic, Egyptian, Ugaritic, Phoenician, and middle and modern Hebrew, may be required as necessary.
II. EAST ASIAN HISTORY

Students in East Asian history will be expected to demonstrate a broad competence in the entire field, with special concentration as follows:

A. Major Fields
1. Modern China
2. Modern Japan

B. Minor Fields
For students majoring in Chinese history, students will be expected to pass three minor fields in order to broaden each student’s perspective on East Asian history:
1. Premodern Chinese history.
2. Modern Chinese history.
3. A history field outside of East Asia, or a discipline outside of history.

For students majoring in Japanese history:
1. A field in history.
2. A related field offered through another department.

Note: One of the minor fields must not focus exclusively on East Asia.

C. Language Requirements
For students majoring in Chinese history: students must demonstrate a reading knowledge of Chinese and a reading knowledge of a second foreign language related to the student’s research interests.

For students majoring in Japanese history: students must demonstrate a reading and speaking knowledge of Japanese. Depending on specialization, reading knowledge of a second foreign language might be necessary.

III. EUROPEAN HISTORY

The graduate program in European history is designed to achieve a dual objective: to encourage a broad mastery of historical methods and literature in various fields, as well as to develop a special focus of research within a single area or epoch. The distribution of offerings is as follows:

A. Major Fields
1. Modern Europe, with a specialty in Britain, France, Germany, Italy, Spain, diplomatic history, economic history, intellectual history, or social history.
2. Early modern Europe, with a specialty in the cultural, economic, or social history of one region.
3. A field in history.
4. A related discipline, offered through another department.

B. First Minor
Any of the following fields may be selected provided that the study concentrates on a chronological period outside the major.
1. Classical Greece and Rome
2. Medieval Europe
3. Early modern Europe
4. Modern Europe
5. A national history

C. Second Minor
1. The history of a geographic area outside of Western Europe
2. History of science
3. Women’s history
4. A related discipline, offered through another department.

D. Language Requirements
The department requires Ph.D. candidates in European history to demonstrate competency in two languages in addition to English before advancement to candidacy.

IV. HISTORY OF SCIENCE

Note: Students should indicate whether they are also applicants for admission to the interdisciplinary program in Science Studies (history, philosophy, and sociology of science).

A. Major Fields
1. Science in early modern Europe.
2. Science in the eighteenth and nineteenth centuries.
4. Another field of comparable breadth, defined in consultation with the major field advisor.

B. First and Second Minor Fields (Any two of the following may be selected, in consultation with the major field advisor.)
2. Any of the other fields offered by the department, provided that it offers general historical understanding of the same period as the major field.
3. A field of history of science not chosen as the major field.
4. A second field of history, provided that it concentrates on a period or region other than that chosen for the first minor field.
5. A related discipline, offered through another department. Note: this field may be in the physical or life sciences.

C. Language Requirements
Competency in one or two languages in addition to English before advancement to candidacy is required. The requirement will vary depending on chosen major field.

V. LATIN AMERICAN HISTORY

Doctoral candidates in Latin American history are expected to gain a broad chronological and geographical mastery of the field as a whole. The oral examination in the major field, while concentrating on the student’s special area of interest, will be a comprehensive examination covering the whole field of Latin American history.

A. Major Fields
1. The national period of Latin America, with a specialty in the Andean Republics, Brazil, the Caribbean, Mexico, or the Southern Cone countries.
2. Colonial Latin America, with an emphasis on one major region.

B. First Minor
The student should select either the national period or the colonial period as a chronological supplement to the major.

C. Second Minor
1. The history of another geographic area outside Latin America and the Caribbean.
2. An area of discipline, offered through another department, related to the student’s dissertation or preparation for university teaching.

D. Language Requirement
Competency in two languages in addition to English before advancement to candidacy is required. Normally the first of these will be Spanish. The second may be Portuguese or another European or non-European language, including an indigenous language of the Americas.
VI. MIDDLE EASTERN HISTORY

The objective of the doctoral program in Middle Eastern history is to achieve broad expertise in the modern history of the Middle East and to develop a special focus in the history of the late Ottoman Empire or its successor states.

A. Major Fields
1. Late Ottoman history (approximately 1780 to 1920).
2. Colonial and national period of the post-Ottoman Middle East with a specialty in the Arab East, Turkey, Egypt, etc.

B. Minor Fields
Any two of the following:
1. The field of Middle Eastern history not chosen as a major field (see above).
2. The modern history of a geographic area outside of the Middle East (ordinarily in European history).
3. A related geographical or topical field (e.g., medieval Middle East, Iran, gender studies) offered through another department.

C. Language Requirements
Students must possess a sound foundation in reading Arabic or Turkish (Ottoman Turkish or modern Turkish) as a requirement for admission to the program. Reading competence in two languages in addition to English is required before advancement to candidacy: the regional language Arabic or Turkish (above) and a modern European language (other than English) related to the major field of specialization.

VII. UNITED STATES HISTORY

A. Major Fields
1. United States History.

B. First Minor
1. One of the following topical fields:
 - African-American history
 - Atlantic history
 - history of the borderlands and Southwest
 - Chicano history
 - economic history
 - legal and constitutional history
 - political history
 - social and cultural history
 - history of the South
 - history of the West
 - or history of women and gender.

C. Second Minor
1. A geographic area outside the United States in either the premodern or modern period.
2. A related discipline offered through another department.

D. Language Requirement
Competency in one language in addition to English before advancement to candidacy is required.

E. Third Year Seminar
U.S. History students in their third year of study will be required to complete HIGR 271, New Research Directions in U.S. History, in both the winter and spring quarters.

VII. DUAL DEGREE PROGRAM

Students who wish to earn both the Ph.D. in history from UCSD and the Juris Doctor from California Western School of Law must apply to and be independently accepted into both programs under each of the campus’ standards and procedures.

Students pursuing the dual degree program will normally alternate years at each institution, in a manner agreed on by the students’ advisors and appropriate committees. Thus, for example, a student may spend his or her first year at Cal Western, his or her second year at UCSD, and so on through the program. At least one year at each institution must be completed by the end of three years.

Each institution will accept a small number of course credits from the other institution to satisfy its degree requirements. Cal Western remains on a semester system, while UCSD continues on a quarter system. With the exception of the historiography and research seminars and subject to approval by a faculty advisor and the graduate committee, the Department of History will accept for credit up to two classes from Cal Western.

Note: The department also offers graduate work in African history. When appropriate, students may select a minor field in this area.

Ph.D. Course Work

A normal full-time program consists of 12 units per quarter. Ph.D. students are expected to complete at least one of the following minimum formal courses of study prior to their qualifying examination: (1) two two-quarter research seminars, three one-quarter historiography courses in their major field and five other courses (which may be a combination of colloquia, conjoined courses, or directed readings); or (2) three two-quarter research seminars (not necessarily in the same field), three one-quarter historiography courses in their major field, and three other courses (which may be a combination of colloquia, conjoined courses, or directed readings).

Students are encouraged to take their first research seminar in their major field during the initial year of graduate study. A maximum of four units per quarter may be taken in teaching assistantships.

Part-time Study

Students who enroll in fewer than twelve graduate or upper-division units per quarter are considered part-time students. Part-time study may be pursued in several master’s programs and a few Ph.D. programs at UCSD. Approval for individual students to enroll on a part-time basis may be given for reasons of occupation, family responsibilities, or health. Individuals who are interested in part-time study and meet the above qualifications should see the department’s graduate coordinator.

Part-time students must satisfy the same admission requirements as full-time students and are eligible, at the discretion of the department, for 25 percent time teaching or research assistantships. Students who are approved by the dean of Graduate Studies for enrollment in a program of half-time study or less (maximum of six units) may be eligible for a reduction in fees. All other students pay the same fees as full-time students.

Ph.D. and M.A.

Language Requirements

Ph.D. candidates in Chinese, European, Middle Eastern, and Latin American history must demonstrate competency in two foreign languages. Ph.D.
candidates in history of science, Japanese, and United States history, as well as M.A. candidates in European and Latin American history, must demonstrate competency in one foreign language. Ph.D. candidates in ancient history require two modern foreign languages as well as the relevant ancient languages. Additional languages appropriate to the special field of study as well as language requirements for a candidate in a field other than those already mentioned may be required by the Graduate Committee in consultation with the student’s major field advisor. Students may satisfy the foreign language requirement in one of the following ways:

A. By completing, with a grade of B– or better in each term, a two-year language sequence from the student’s undergraduate institution. Such a sequence must have been completed within two years of the time the request is made to the Graduate Committee for certification of competency.

B. By completing, with a satisfactory (S) grade in each term, a two-year, lower-division sequence in the language approved by the Graduate Committee.

C. By completing, with a satisfactory (S) grade in each term, a one-year, upper-division sequence in the language approved by the Graduate Committee.

D. By passing a translation examination administered by a departmental faculty member who is proficient in the language. (This is the only option available for Chinese and Japanese.)

Students are urged to complete at least one foreign language examination by the end of the first year of study and must do so by the beginning of their third year. Failure to meet this requirement is grounds for denial of financial support. No student may take the oral qualifying examination before completing all language requirements.

Ph.D. Examinations

A. Minor Fields

Ph.D. candidates are strongly encouraged to take at least one minor field examination by the end of fall quarter of their second year and to complete all examinations by the end of their third year. Generally, the department recognizes two types of minor fields. The most common minor field is a teaching field. That is, passing a minor field in an area certifies, on a student’s record and resume, that the student has mastered the literature and the major issues in a field sufficient to qualify the student to teach in that area. (An example would be a minor field in modern Japanese history for an East Asian history student specializing in modern China; or medieval history for a Europeanist.) A second type of minor field is designed to familiarize a student with a range of theoretical and comparative issues which will be useful in the formulation of a dissertation topic and future research in the student’s major field. (An example might be Latin American history for a student working in United States ethnic history; or sociology for a student in any field.) For a minor field taken outside the department, the minor field advisor (not the student or major field advisor) determines the level of expertise sufficient to warrant certification in that field.

Reading lists are negotiated between students and their minor field advisor, but, as a guideline, they should include about 50 titles with 40–70 titles representing a reasonable range. The reading list is agreed upon, at least three months in advance, by the student and faculty member administering the minor field examination. The list is intended to establish what will be expected of the student and to prevent confusion over the material to be covered. Most minor fields include a written examination; these may be in the form of a three-hour departmental exam or a twenty-four hour take-home exam at the administering professor’s discretion. (Minor field examinations in East Asian history will be oral; those in history of science may be either written or oral.) The professor composes and grades the written examination.

Students who fail a minor field examination may petition the Graduate Committee for permission to sit for the examination again at any time during the following two quarters, as long as pre-candidacy time limits are not exceeded. A second failure results automatically in dismissal from the program.

B. Oral Qualifying Examination and Candidacy

Students are normally expected to take their qualifying examination no later than the spring of their third year of study (except as otherwise specified by the individual fields), and are required to do so in four years. Students must fulfill all course work, minor field, and language requirements before taking their qualifying examination. The qualifying examination is an oral test in the student’s major field of study, conducted by at least five examiners: three of whom must be members of the Department of History and two from a discipline outside the department (at least one examiner must be a tenured faculty member). Or, four examiners from the Department of History (with one member outside the student’s field group), and with at least one tenured faculty member from a discipline outside the department. Students should consult with their advisor about the composition of the examining committee well before their examination. The examination committee also serves as the dissertation committee. The membership of the committee must be approved by the Department Chair and ultimately the Dean of graduate studies. The date of the examination is determined by consultation between the candidate and the examining committee. In addition to the major field book list, it is required that students also submit a dissertation prospectus to the committee before the oral examination. The examination, which will include a discussion of the student’s prospectus, lasts approximately two to three hours. Students in United States history only will defend their dissertation prospectus before the examination committee at a separate meeting no later than two months after passing the major field exam.

Should a candidate fail the examination, the examining committee will consult with the student to clarify weaknesses in preparation for taking the examination a second time. If a second oral examination is warranted, the department requires that it should be taken no later than one quarter after the first examination. If the candidate fails the oral examination a second time, his or her candidacy will be terminated.

An M.A. degree may also be awarded to continuing Ph.D. students upon successfully passing the oral qualifying examination. The M.A. is not automatically awarded; students must apply in advance to receive the degree. Note: Students who wish to receive an M.A. degree as part of the Ph.D. program must apply for
master’s degree candidacy during the first two weeks of the quarter in which they expect to receive the degree. Please see the graduate coordinator regarding this application.

The various requirements noted above apply to students who have not done any previous graduate work in history. If a candidate has completed some graduate work before entering UCSD, there may be appropriate adjustments in course work, as approved by general petition to the Graduate Committee. Nevertheless, all candidates are required to meet language requirements, pass field examinations, as well as complete and defend a dissertation.

Dissertation

After completing all relevant examinations and language requirements, the student is expected to write a dissertation under the supervision of his or her faculty advisor and the doctoral committee. The Department of History has established the following guidelines for dissertation work. The dissertation should:

- represent an original and significant contribution to knowledge.
- be based upon primary research.
- clearly demonstrate the capacity of the student to pursue independent historical research.
- be written in clear and coherent prose.

Decisions concerning the scope of the dissertation and its length will depend upon the nature of the problem and the documentation. The department assumes that most students will have completed their research and writing by the end of their sixth year of study. The scope and length of the dissertation should therefore be such that a complete project can be executed in no more than three years. Whatever the scope or length of the dissertation it should be capable of further development for publication as a series of articles in scholarly journals, or as a book.

Departmental Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed seven years. Total registered time of further development for publication as a series cannot exceed seven years. Total registered time of further development for publication as a series cannot exceed seven years. The scope of the problem and the documentation. The department considers experience in teaching an important part of a graduate student’s professional training. Based upon financial aid forms that graduate students complete during the previous winter quarter, the Graduate Committee assigns History Department teaching assistantships and recommends teaching assistantships outside of the department for the upcoming academic year.

Students must maintain a minimum grade-point average of 3.0 in order to receive academic employment on campus.

Opportunities for Teaching

Undergraduate teaching, for which graduate teaching assistants earn regular academic credit, is an integral part of the graduate program at UCSD. To prepare for an academic career, the Ph.D. candidate is encouraged to assist in courses offered by the department ordinarily as a course reader (grader) or teaching assistant. A maximum of four units per quarter may be taken in undergraduate teaching. When such an opportunity is not available, a student may teach in various programs outside the department.

The department considers experience in teaching an important part of a graduate student’s professional training. Based upon financial aid forms that graduate students complete during the previous winter quarter, the Graduate Committee assigns History Department teaching assistantships and recommends teaching assistantships outside of the department for the upcoming academic year.

Students must maintain a minimum grade-point average of 3.0 in order to receive academic employment on campus.

Financial Support

Upon recommendation of the department, several types of financial aid are available to graduate students: full or partial remission of fees and tuition, fellowships, research assistantships, teaching assistantships, readerships, and travel grants. Graduate students are eligible for one or a combination of the six forms of financial support.

Fellowships and research assistantships are granted by the Office of Graduate Studies (OGS) upon the recommendation of the department. Teaching assistants are appointed by the department upon the recommendation of the Graduate Committee and by the college writing programs. Readers are appointed by the department upon the recommendation of the professor whose course requires such assistance. At the discretion of the department, half-time graduate students are eligible for 25 percent TAships or GSRships.

For a small number of outstanding incoming students, the department will award a four year package of guaranteed funding which would include two years of a fellowship and two years of employment as a teaching assistant.

Departmental policy has been to seek seven years of support for students in the program. In recent years all students needing support have received either fellowships, or teaching assistant, research assistant positions. To the extent that resources are insufficient to meet the need, the department, on the advice of the graduate committee, will rank students using a combined criterion of academic performance and financial need.

Graduate students must maintain a minimum grade-point average of 3.0 to be considered for any type of financial aid. Financial support is not renewed automatically but is approved by the department on a yearly basis.

The Office of Graduate Studies grants partial remission of fees for nine quarters after advancement to candidacy (“normative time”) if the student is advanced to candidacy by the end of the third year. (If the student delays advancement, the amount of normative time is reduced accordingly.) Upon expiration of normative time the student must complete the dissertation or resume full payment of fees.

Job Placement

In recent years, 85 percent of the department’s Ph.D. graduates received positions as tenure-track assistant professors at colleges and universities around the country. The remaining 15 percent are currently administrators, visiting scholars, lecturers, or postdoctoral fellows at various educational institutions. Experience indicates that many from this latter group will eventually get professional appointments.

Courses

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

Lower-Division

HILD 2A-B-C. United States
A year-long lower-division course that will provide students with a background in United States history from colonial times to the present, concentrating on social, economic, and political developments. (Satisfies Muir College humanities requirement and American History and Institutions requirement.)

HILD 7A-B-C. Race and Ethnicity in the United States
Lectures and discussions surveying the topics of race, slavery, demographic patterns, ethnic variety, rural and urban life in the U.S.A., with special focus on European, Asian, and Mexican immigration.
AFRICA

Lecture Courses

HIAF 110. History of Africa to 1880 (4)
A survey of pre-colonial Africa, concentrating on ancient Africa, Islam, state formation, the slave trade and abolition, and European penetration of the interior. Prerequisite: upper-division standing.

HIAF 111. Modern Africa Since 1880 (4)
A survey of African history dealing with the European scramble for territory, primary resistance movements, the rise of nationalism and the response of metropolitan powers, the transfer of power, self-rule and military coups, and the quest for identity and unity. Prerequisite: upper-division standing.

HIAF 112. West Africa Since 1880 (4)
West Africa from the nineteenth century onwards and examines the broad outlines of historical developments in the sub-region through the twentieth century, including such themes as religious, political, and social changes. Prerequisite: upper-division standing.

HIAF 113. Small Wars and the Global Order: Africa and Asia (4)
Examines the traumas, interrelation, and global repercussions of national conflicts ‘small wars’ in the post-colonial world. Focus on Africa and Asia from the Cold War to the present with particular attention to the intersection of foreign interests, insurgency, and geopolitics. Prerequisite: upper-division standing or instructor consent.

HIAF 120. History of South Africa (4)
The origins and the interaction between the peoples of South Africa. Special attention will be devoted to industrial development, urbanization, African and Africaner nationalism, and the origin and development of apartheid and its consequences. Prerequisite: upper-division standing.

HIAF 122. Traditional African Religions (4)
A study of the meaning, structure, and sources of African traditional religion. The course examines the attitudes of mind and belief practices which have evolved in many societies in Africa.

HIAF 123. West Africa from Earliest Times to 1800 (4)
Plant and animal domestication, iron-working and the distribution of ethnic/language groups, urbanization, regional and long-distance commerce, and the rise of medieval kingdoms. Prerequisite: upper-division standing.

HIAF 124. Islam in Contemporary African Societies (4)
The spread of Islam in Africa. The rise of Islamic orthodoxy during the eighteenth and nineteenth centuries, and the social movements in the contemporary period geared towards the establishment of Islamic theocracies. Prerequisite: upper-division standing.

HIAF 130. African Society and the Slave Trade (4)
Topics include trans-Saharan trade, slavery with African societies, Atlantic slave trade, East African slave trade, problems of numbers exported and profitability, impact of slave trade on African society, and the abolition of the slave trade. Prerequisite: upper-division standing.

Colloquia

The following courses are available to both undergraduate and graduate students. Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.

HIAF 161/261. Special Topics in African History (4)
This colloquium is intended for students with sufficient background in African history. Topics, which vary from year to year, will include traditional political, economic, and religious systems, and theory and practice of indirect rule, decolonization, African socialism, and pan-Africanism. Department stamp required.

HIAF 162/262. The African Diaspora in the Atlantic World (4)
Expose students to the competing paradigms adopted by scholars in the search for an appropriate analytical framework for understanding the African diaspora in the Atlantic world, as well as examine the African impact on Atlantic communities. Graduate students are required to submit an additional paper. Prerequisite: upper-division or graduate standing. Department stamp required.

HIAF 199. Independent Study in African History (4)
Directed readings for undergraduates. Prerequisite: consent of instructor and academic advisor required.

EAST ASIA

Lecture Courses

HIEA 111. Japan: Twelfth to Mid-Nineteenth Centuries (4)
Covers important political issues—such as the medieval decentralization of state power, unification in the sixteenth and seventeenth centuries, the Tokugawa system of rule, and conflicts between rulers and ruled—while examining long-term changes in economy, society, and culture.

HIEA 112. Japan: From the Mid-Nineteenth Century through the U.S. Occupation (4)
Topics include the Meiji Restoration, nationalism, industrialization, imperialism, Taisho Democracy, and the Occupation. Special attention will be given to the costs as well as benefits of “modernization” and the relations between dominant and subordinated cultures and groups within Japan.

HIEA 113. The Fifteen-Year War in Asia and the Pacific (4)
Lecture-discussion course approaching the 1931-1945 war through various “local,” rather than simply national, experiences. Perspectives examined include those of marginalized groups within Japan, Japanese Americans, Pacific Islanders, and other elites and nonelites in Asian and Pacific settings.

HIEA 114. Postwar Japan (4)
Examines social, cultural, political, and economic transformations and continuities in Japan since World War II. Emphases will differ by instructor. Prerequisite: upper-division standing.
HIEA 115. Social and Cultural History of Twentieth-Century Japan (4)
Japanese culture and society changed dramatically during the twentieth century. This course will focus on the transformation of cultural codes into what we know as ‘Japanese’; the politics of culture, and the interaction between individuals and society.

HIEA 116. Japan-U.S. Relations (4)
Survey of relations between Japan and the United States in the nineteenth and twentieth centuries. Although the focus will be on these nation-states, the course will be framed within the global transformation of societies. Topics include cultural frameworks, political and economic changes, colonialism and imperialism, and migration.

HIEA 117. Ghosts in Japan (4)
By examining the roles of ghosts in Japanese belief systems in a non-scientific age, this course addresses topics including folk beliefs and ghost stories, religiosity, early science, tools of amelioration and authoritative knowledge, and the relationship between myth and history. Prerequisite: upper-division standing or consent of instructor.

HIEA 119/SOCB 162R. Religion and Popular Culture in East Asia (4)
Historical, social, and cultural relationships between religion and popular culture. Secularization of culture through images, worldviews, and concepts of right and wrong which may either derive from, or pose challenges to, the major East Asian religions. Prerequisite: upper-division standing.

HIEA 120. Classical Chinese Philosophy and Culture (4)
Course covers the period from the second millennium B.C. to second century A.D. This is a formative period in Chinese history, witnessing the flowering of philosophical schools—Confucianism, Daoism, and Realism. It was also during this period that the foundations of Chinese political and social structures were laid down. +

HIEA 121. Medieval Chinese Culture and Society (4)
This course covers the period from the sixth century to thirteenth century, the time of the glorious Tang and Song dynasties. We focus on the “medieval revolution” that changed the political, economic, and social life of the empire. As much as possible we study these changes from the eyes of the people who lived through them—aristocrats, peasants, soldiers, merchants, women. Prerequisite: HIEA 120 recommended but not required. +

HIEA 122. Late Imperial Chinese Culture and Society (4)
This course surveys Chinese culture and society from the fifteenth century to the eighteenth century. We will explore the experiences of a range of political actors—emperors, scholar-officials, merchants, peasants, and women from all classes. Prerequisites: HIEA 120 and EA 121 recommended but not required. +

HIEA 125. Women and Gender in East Asia (4)
The impact of modern transformations on female roles and gender relations in China, Japan, and Korea, focusing on the late imperial/early modern periods through the twentieth century. Prerequisite: upper-division standing or instructor consent.

HIEA 126. The Silk Road in Chinese and Japanese History (4)
This course studies the peoples, cultures, religions, economics, arts, and technologies of the trade routes known collectively as the Silk Road from c. 200 BCE to 1000 CE. We will use an interdisciplinary approach. Primary sources will include written texts and visual materials. We will examine these trade routes as an early example of globalization. Prerequisite: upper-division standing or consent of instructor. +

HIEA 128. History of Material Culture in China (4)
Introduction to material culture in China from a historical perspective. Consider Chinese primary sources (including both historical texts and objects) from the point of view of the new interdisciplinary field of material culture studies. Prerequisite: upper-division standing.+

HIEA 129. Faces of the Chinese Past (4)
Through the biographies and autobiographies of prominent and ordinary men and women from antiquity to today, this course explores the relation of the individual to social structures, class and gender in personal experience, and the production of primary and secondary sources. Prerequisite: upper-division standing or instructor consent.

HIEA 130. History of the Modern Chinese Revolution: 1800–1911 (4)
This course stresses the major social, political, and intellectual problems of China in the period from the Opium War to the Revolution of 1911. Special emphasis is placed on the nature of traditional Chinese society and values, the impact of Western imperialism and popular rebellion on the traditional order, reform movements, and the origins of the early revolutionary movement.

HIEA 131. China in War and Revolution, 1911–1949 (4)
An exploration of the formative period of the twentieth-century Chinese Revolution: the New Culture Movement, modern urban culture, the nature of Nationalist (Guomindang) rule with Japan, revolutionary nationalism, and the Chinese Communist rise to power. Prerequisite: upper-division standing or instructor consent.

HIEA 132. History of the People’s Republic of China (4)
This course analyzes the history of the PRC from 1949 to the present. Special emphasis is placed on the problem of postrevolutionary institutionalization, the role of ideology, the tension between city and countryside, Maoism, the Great Leap Forward, the Cultural Revolution.

HIEA 133. Twentieth Century China: Cultural History (4)
This course looks at how the historical problems of twentieth-century China are treated in the popular and elite cultures of the nationalist and communist eras. Special emphasis is placed on film and fiction. Prerequisite: knowledge of Chinese required.

HIEA 134. History of Thought and Religion in China: Confucianism (4)
Course will take up one of the main traditions of Chinese thought or religion, Confucianism, and trace it from its origins to the present. The course will explain the system of thought and trace it as it changes through history and within human lives and institutions. Prerequisite: upper-division standing or instructor consent. +

HIEA 135. History of Thought and Religion in China: Buddhism (4)
Course will take up one of the main traditions of Chinese thought or religion, Buddhism, and trace it from its origins to the present. The course will explain the system of thought and trace it as it changes through history and within human lives and institutions. Prerequisite: upper-division standing or instructor consent. +

HIEA 136. History of Thought and Religion in China: Daoism (4)
Course will take up one of the main traditions of Chinese thought or religion, Daoism, and trace it from its origins to the present. The course will explain the system of thought and trace it as it changes through history and within human lives and institutions. Prerequisite: upper-division standing or instructor consent. +

HIEA 137. Women and Family in Chinese History (4)
We explore how the Confucian philosophy influenced the way the Chinese look at the family and the role of women in it, as well as the domestic lives that men and women actually led from the classical times to the present day. Prerequisite: upper-division standing.+

Colloquia

The following courses are available to both undergraduate and graduate students. Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.

HIEA 160/260. Seminar in Modern Japanese History (4)
This colloquium examines controversial domestic and international issues in Japanese history from 1850 to recent times. Topics will vary from year to year. Prerequisite: department stamp, consent of instructor.

HIEA 162/262. History of Women in China (4)
This course concerns women in Chinese history in Imperial times. This course will focus on women’s changing roles in the family, society, and culture. Topics will vary from year to year. Requirements will vary for undergraduate, M.A., and Ph.D. students. Prerequisite: upper-division standing.

HIEA 164/264. Seminar in Late Imperial Chinese History (4)
Special topics in late Imperial Chinese history. Topics will vary from year to year. Graduate students may be expected to submit a more substantial piece of work. Prerequisite: upper-division standing or consent of instructor.+

HIEA 165/265. History of Material Culture in China (4)
Introduction to material culture in China from a historical perspective. Consider Chinese primary sources (including both historical texts and objects) from the point of view of the new interdisciplinary field of material culture studies. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students are required to submit an additional paper.

HIEA 167/267. Special Topics in Modern Chinese History (4)
This seminar examines various domestic and international issues in Chinese history from 1800 to recent
times. When topics vary, may be repeated for credit. Graduate students will be required to submit a more substantial piece of work or an additional paper. Prerequisite: upper-division standing or consent of instructor and department stamp.

HIEA 168/268. Topics in Classical and Medieval Chinese History (4)
Chinese society, thought, religion, culture, economy and politics from the Shang through the Song dynasties, through primary and secondary sources. Topics vary; may be repeated for credit. Requirements differ for undergraduate, M.A., and Ph.D. students. Graduate students are required to submit a more substantial piece of work or an additional paper. Prerequisite: upper-division standing or consent of instructor and department stamp. +

HIEA 171/271. Society and Culture in Premodern China (4)
Explores premodern Chinese society and culture through the reading and discussion of classics and masterpieces in history. Examines how values and ideas were represented in the texts and how they differed, developed, or shifted over time. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students are required to submit an additional paper. Prerequisite: upper-division or graduate standing, department stamp. +

HIEA 199. Independent Study in East Asian History (4)
Directed reading for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor required.

EUROPE

See History of Science for more European courses (HISC 101ABC, HISC 106)

Lecture Courses

HIEU 101. Greece in the Classical Age (4)
The social, political, and cultural history of the ancient Greek world from the Persian Wars to the death of Alexander the Great (480–323 B.C.). +

HIEU 102. The Roman Republic (4)
The political, economic, and intellectual history of the Roman world from the foundation of Rome to the time of Julius Caesar. +

HIEU 103. The Roman Empire (4)
The political, economic, and intellectual history of the Roman world from the time of Julius Caesar to the death of Justinian (A.D. 565). +

HIEU 104. Byzantine Empire (4)
A survey course of the history of the Byzantine state from the reign of Constantine to the fall of Constantinople. This course will emphasize the importance of the Byzantine state within a larger European focus, its relationship to the emerging Arab states, its political and cultural contributions to Russia and the late medieval west. +

HIEU 109. European Nationalism from a Historical Perspective (4)
An exploration of the origins, evolution, and role of nationalism in European history, from the French Revolution to the present. Nationalism has been a major force in consolidating nation-states, in creating modern identities, and in mobilizing mass movements in the modern world, and most scholars locate its birthplace in Europe. The course will provide a comparative history of nationalism as idea and political movement in each of the major European countries, as well as a more thematic analysis of scholarly approaches to the construction of nationalism and national identities. +

HIEU 110. The Rise of Europe (4)
The development of European society and culture from the decline of the Roman Empire to 1050. Prerequisite: Humanities sequence or its equivalent. +

HIEU 111. Europe in the Middle Ages (4)
The development of European society and culture from 1050 to 1400. Prerequisite: Humanities sequence or its equivalent. +

HIEU 113. Rule, Conflict, and Dissent in the Middle Ages (4)
This course explores the question of religious and political dissent in Europe from the twelfth through the fifteenth centuries. We will explore the tensions between ideal models of religious and cultural unity, and the realities of community conflict, heretical controversies, and popular uprisings. +

HIEU 113A. Conflict and Settlement in Medieval Europe (4)
The course studies conflict resolution in Europe during the ninth to thirteenth centuries when governments were too weak to enforce norms of peace and order. We will read medieval literature and histories and anthropological accounts of conflict resolution in stateless societies. Prerequisite: upper-division standing or instructor consent. +

HIEU 119. Modern Italy: From Unification to the Present (4)
History of Italy from the 1860s to the present with special focus on the changing relationship between state and society. Topics include the "Southern problem," the Catholic Church, the fascist dictatorship, the Cold War, terrorism, contemporary politics and culture. Prerequisite: upper-division standing or consent of instructor.

HIEU 120. The Renaissance in Italy (4)
The social, political, and cultural transformation of late-medieval Italy from the heyday of mercantile expansion before the plague to the dissolution of the Italian state system with the French invasions of 1494. Special focus upon family, associational life and factionalism in the city, the development of the techniques of capitalist accumulation, and the spread of humanism. Prerequisite: upper-division standing. +

HIEU 122. Politics Italian Renaissance Style (4)
Modern political and historical thought find their roots in the realistic examination of fifteenth- and sixteenth-century Italian political experience. Contemporary Renaissance humanists and thinkers— Machiavelli, Guicciardini, Castiglione, Botero, and Campanella—tested classical, Christian, and legal models against practical necessities. +

HIEU 125. Reformation Europe (4)
The intellectual and social history of the Reformation and Counter-Reformation from the French invasions to the Edict of Nantes. Emphasis is upon reform from below and above, the transformation of grass-roots spirituality into institutional control. Prerequisite: upper-division standing or consent of instructor. +

HIEU 126. Age of Expansion: Europe and the World, 1400–1600 (4)
Course will begin with a survey of the major empires of the fifteenth century, concentrating on the links between them. It will then examine the entrance of Europeans on the global scene in the sixteenth century. This part of the course will examine European/non-European encounters, focusing on perceptions, economic interaction, and institutional adaptation and will emphasize the Hispanic American, Ottoman, and Indian Ocean cases. +

HIEU 127. Sport in the Modern World (4)
This course looks at the phenomenon of sport in all of its social, cultural, political, and economic aspects. The starting point will be the emergence of modern sport in nineteenth-century Britain, but the focus will be global. Since the approach will be topical rather than chronological, students should already have a good knowledge of world history in the nineteenth and twentieth centuries. Prerequisite: upper-division standing.

HIEU 128. Europe Since 1945
An analysis of European history since the end of the Second World War. Focus is on political, social, economic, and cultural developments within European societies as well as on Europe's relationship with the wider world (the Cold War, decolonization).

HIEU 129. Paris, Past and Present (4)
This course surveys the historical and cultural significance of Paris from about 1500 to the present. The focus is on interactions between political, architectural, and urban evolutions, and the changing populations of Paris in times of war, revolutions, and peace. +

HIEU 130. Europe in the Eighteenth Century (4)
A lecture-discussion course focusing on Europe from 1688-1789. Emphasis is on the social, cultural, and intellectual history of France, Germany, and England. Topics considered will include family life, urban and rural production and unrest, the poor, absolutism, and the Enlightenment from Voltaire to Rousseau. Prerequisite: upper-division standing. +

HIEU 131. The French Revolution: 1789–1814 (4)
This course examines the Revolution in France and its impact in Europe and the Caribbean. Special emphasis will be given to the origins of the Revolution, the development of political and popular radicalism and symbolism from 1789 to 1794, the role of political participants (e.g., women, sans-culottes, Robespierre), and the legacy of revolutionary wars and the Napoleonic system on Europe. Prerequisite: upper-division standing. +

HIEU 132. Germany from Luther to Bismarck (4)
How Germany, from being a maze of tiny states rife with religious conflict, became a nation. Did the nations-building process lead to Nazism? Prerequisite: upper-division standing or consent of instructor. +

HIEU 133. Gender in Antiquity and the Early Medieval Mediterranean (4)
This course discusses sex and gender at the end of the classical period and its development into the Middle Ages in both Eastern and Western Mediterranean. Course will examine the ways in which our medieval predecessors assigned gender traits and relationships to members of society. It will approach the topic in part through an examination of the language used about gender and in part through use of modern gender theories. Prerequisite: upper-division standing. +
HIEU 134. The Formation of the Russian Empire, 800–1855 (4)
State-building and imperial expansion among the peoples of the East Slavic lands of Europe and Asia from the origins of the Russian state in ninth-century Kiev, through Peter the Great’s empire up to the middle of the nineteenth century. Prerequisite: upper-division standing or consent of instructor. +

HIEU 136A. European Society and Social Thought, 1688–1870 (4)
A lecture and discussion course on European political and cultural development and social theory from 1688-1870. Important writings will be considered both as responses to and as provocations for political and cultural change. +

HIEU 136B. European Society and Social Thought, 1870–1989 (4)
A lecture and discussion course on European political and cultural development and theory from 1870–1989. Important writings will be considered both as responses to and as provocations for political and cultural change.

HIEU 138. Imperial Spain, 1476–1808 (4)
The rise and decline of Spain’s European empire from Ferdinand and Isabella to 1700. The revival of Spain and her return to European affairs in the eighteenth century. Prerequisite: upper-division standing or graduate standing. +

HIEU 139. The Origins of Constitutions (4)
The course will cover the development of constitutional ideas and institutions from the twelfth century to the U.S. Constitution. Students will read legal texts and commentaries that established the foundations of the ideas of the rule of law, limited government, inalienable rights, and the independent judiciary. Students will study the formation of institutions such as parliament, the court system, and common law. The course will start and finish with an analysis of the U.S. Constitution. Prerequisite: upper-division standing or consent of instructor. +

HIEU 141. European Diplomatic History, 1870–1945 (4)

HIEU 142. European Intellectual History, 1780–1870 (4)
European thought from the late Enlightenment and the French Revolution to Marx and Baudelaire, emphasizing the origins of romanticism, idealism, and positivism in England, Germany, and France. Prerequisite: upper-division standing or consent of instructor.

HIEU 143. European Intellectual History, 1870–1945 (4)
A lecture-discussion course on the crisis of bourgeois culture, the redefinition of Marxist ideology, and the transformation of modern social theory. Readings will include Nietzsche, Sorel, Weber, Freud, and Musil. (This course satisfies the minor in the Humanities Program.) Prerequisite: upper-division standing.

HIEU 146. Fascism, Communism, and the Crisis of Liberal Democracy: Europe 1919–1945 (4)
A consideration of the political, social, and cultural crisis that faced Western liberal democracies in the interwar period, with emphasis on the mass movements that opposed bourgeois liberalism from both the left and the right.

HIEU 147. The History of Women in Europe: Middle Ages to the Early Modern Era (4)
This course explores shifts in the roles and representations of women from the early middle ages, through the Renaissance and Reformation, and up to the seventeenth century. Topics will be examined across the European social order and include gender and sexuality, holy women, religious movements, and production and reproduction. Prerequisite: upper-division standing. +

HIEU 147A. Women in the Middle Ages (4)
This course examines the image and the reality of women in the period from 200-1500. We will focus upon the ambivalent status of women in this period as “internal others” to medieval—simultaneously necessary to the functioning of society, yet viewed as marginal to its interests or even as outsiders. Prerequisite: upper-division standing or instructor consent. +

HIEU 148. European Women: the Enlightenment to the Victorian Era (4)
This course explores shifts in the roles and representations of women from the late seventeenth century to about 1870. Topics are examined across the European social order and include: gender and sexuality, women writers and print culture, women’s participation in the French and industrial revolutions, and the emergence of feminist movements. Prerequisite: upper-division standing or consent of instructor. +

HIEU 149. History of Women in Europe: 1870 to the Present (4)
This course explores the history of women across classes from 1870 to the present, with an emphasis on the variety of women’s experience and the efforts towards and obstacles to empowerment. Topics include: women and the state, science and gender, feminist movements and the evolution of women’s work. Prerequisite: upper-division standing.

HIEU 150. Modern British History (4)
Emphasis on changes in social structure and corresponding shifts in political power. The expansion and the end of empire. Two World Wars and the erosion of economic leadership. Prerequisite: upper-division standing or consent of instructor.

HIEU 151. Spain since 1808 (4)
Social, political, cultural history of Spain since Napoleon. Features second Spanish Republic, the Civil War, Franco era, and transition to democracy. Prerequisite: upper-division standing.

HIEU 153A. Nineteenth-Century France (4)
A study of the social, intellectual, and political currents in French history from the Revolution of 1789 to the eve of the First World War. Lectures, slides, films, readings, and discussions.

HIEU 154. Modern German History: From Bismarck to Hitler (4)
An analysis of the volatile course of German history from unification to the collapse of the Nazi dictatorship. Focus is on domestic developments inside Germany as well as on their impact on European and global politics in the twentieth century.

HIEU 155. Modern Austria (4)
The political, social, and intellectual history of Austria from Maria Theresa to the First Republic with special emphasis on the crisis of liberal culture in the late nineteenth century. Prerequisite: upper-division standing or consent of instructor.

HIEU 156. The Russian Empire and the Soviet Union, 1855–1991 (4)
War, revolution, development, and terror in the multinational empires of the nineteenth and twentieth centuries. Prerequisite: upper-division standing or consent of instructor.

HIEU 158. Why Hitler? How Auschwitz? (4)
Why did Germany in 1919 produce an Adolf Hitler; how did the Nazis take power in 1933; and why did the Third Reich last until 1945? Why did the war against the Jews become industrial and absolute? Prerequisite: upper-division standing or consent of instructor.

HIEU 159. Three Centuries of Zionism, 1648–1948 (4)
For centuries the land of Israel was present in Jewish minds and hearts. Why and how did the return to Zion become a reality? Which were the vicissitudes of Jewish life in Palestine? Prerequisite: upper-division standing or consent of instructor.

Colloquia

The following courses are available to both undergraduate and graduate students. Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.

HIEU 160/260. Topics in the History of Greece (4)
A seminar focusing on selected topics in Greek history from the Bronze Age to the Roman Conquest. Prerequisite: upper-division standing or consent of instructor. +

HIEU 161/261. Topics in Roman History (4)
A seminar focusing on selected topics in Roman history and culture from the period of the Kings to the later Roman Empire. Prerequisite: upper-division or graduate standing or consent of instructor. +

HIEU 163/263. Special Topics in Medieval History (4)
Intensive study of special problems or periods in the history of medieval Europe. Topics vary from year to year, and students may therefore repeat the course for credit. Prerequisites: background in European history and upper-division standing. +

HIEU 164/264. Special Topics in Early Modern Europe (4)
This course looks at the European and non-European in the early modern era. Topics will vary year to year. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students are required to submit a more substantial piece of work. Prerequisite: upper-division standing or consent of instructor. +

HIEU 166/266. Europeans Abroad 1400–1700 (4)
Between 1400 and 1700 Europeans spread around the world. This course looks at the personal, face-to-face ways in which Europeans survived and prospered in early modern Asia, Africa, and Latin America—religious conversion, intermarriage, collaboration, coercion. Graduate students are expected to submit an additional piece of work. Prerequisite: upper-division standing. Department stamp required. +

HIEU 171/271. Special Topics in Twentieth-Century Europe (4)
This course alternates with HIEU 170. Topics will vary from year to year. Prerequisite: background in European history.
HIEU 172/272. War in the Twentieth Century (4) Reckonings by novelists, essayists, and biographers with the phenomenon of contemporary warfare as an unprecedented experience and an abiding threat. Prerequisite: upper-division standing or consent of instructor.

HIEU 174/274. The Holocaust: A Psychological Approach (4) An examination of how traditional moral concerns and human compassion came to be abandoned and how the mass murder of the Jews was organized and carried out. The focus of this course will be on the perpetrators. Requirements will vary for undergraduate M.A. and Ph.D. students. Graduate students are required to submit a more substantial piece of work. Prerequisite: upper-division standing or consent of instructor. Department stamp required.

HIEU 175/275. Selected Topics in the History of Nineteenth- and Twentieth-Century Spain (4) Topics may include economic development, modernization, political change, intellectual history, and the transition to democracy. Prerequisite: upper-division standing or consent of instructor.

HIEU 177/277. Special Topics in Modern German Thought (4) Topics will vary from year to year. (Satisfies the Humanities Program minor.) Prerequisite: background in European history.

HIEU 178/278. Soviet History (4) Topics will vary from year to year. Graduate students are required to submit a more substantial paper. Prerequisite: upper-division standing or consent of instructor.

HIEU 180/280. Topics in European Women’s History (4) The specific content of the course will vary from year to year, but will always analyze in depth a limited number of issues in European women’s history. Prerequisite: upper-division standing or consent of instructor.

HIEU 199. Independent Study in European History (4) Directed readings for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor.

LATIN AMERICA

Lecture Courses

HILA 100. Latin America—Colonial Transformations (4) Lecture-discussion survey of Latin America from the pre-Columbian era to 1825. It addresses such issues as the nature of indigenous cultures, the implanting of colonial institutions, native resistance and adaptations, late colonial growth and the onset of independence.

HILA 101. Latin America: The Construction of Independence 1810–1898 (4) Lecture-discussion survey of Latin America in the nineteenth century. It addresses such issues as the collapse of colonial practices in the society and economy as well as the creation of national governments, political instability, disparities among regions within particular countries, and of economies oriented toward the export of goods to Europe and the United States.

HILA 102. Latin America in the Twentieth Century (4) This course surveys the history of the region by focusing on two interrelated phenomena: the absence of democracy in most nations and the region’s economic dependence on more advanced countries, especially the United States. Among the topics discussed will be the Mexican Revolution, the military in politics, labor movements, the wars in Central America, liberation theology, and the current debt crisis. Prerequisite: upper-division standing or consent of instructor.

HILA 103. Revolution in Modern Latin America A political, economic, and social examination of the causes and consequences of the Mexican, Cuban, and Nicaraguan revolutions. Also examine guerrilla movements that failed to gain power in their respective countries, namely the Shining Path in Peru, FARC in Colombia, and the Zapatistas in Mexico. Prerequisite: upper-division standing.

HILA 104. Modern U.S.-Latin American Relations A survey of inter-American relations during the twentieth century. Emphasis will be placed on U.S. territorial and economic expansion, U.S. national-security and ideological morality, and Latin American efforts to influence U.S. policy in order to strengthen, in most cases, elite domination of society. Prerequisite: upper-division standing.

HILA 108. Economic History: Continuity and Change in Latin America (4) Main economic processes in Latin America, from colonial times to the twenty-first century, to understand what has been called the “colonial heritage” role played by economic actors, including the state and foreign capital, and will read Latin America’s development in a comparative perspective. Main theoretical propositions to understand patterns of development. No training in economics or statistics is required. Prerequisite: upper-division standing.

HILA 112. Economic and Social History of the Andean Region (4) Study of the economic and social problems of the Andean region from the colonial period until the crisis of 1912, with special attention to theoretical models to explain the processes of change. Prerequisite: upper-division standing.

HILA 113. Lord and Peasant in Latin America (4) Examination of the historical roots of population problems, social conflict, and revolution in Latin America, with emphasis on man-land relationships. Special emphasis on modern reform efforts and on Mexico, Cuba, Brazil, and Argentina. Lecture, discussion, reading, and films. Prerequisite: upper-division standing or consent of instructor.

HILA 114. Dictatorships in Latin America (4) How did dictatorships come about? Who were the authoritarian leaders? How did they organize their regimes and what were the consequences? Recent publications on dictators in Latin America allow for comparisons across countries and throughout time to answer those questions. Prerequisite: upper-division standing.

HILA 115. The Latin American City, a History (4) A survey of the development of urban forms of Latin America and of the role that cities played in the region as administrative and economic centers. After a brief survey of pre-Columbian centers, the lectures will trace the development of cities as outposts of the Iberian empires and as “city-states” that formed the nuclei of new nations after 1810. The course concentrates primarily on the cities of South America, but some references will be made to Mexico City. It ends with a discussion of modern social ills and Third World urbanization. Lima, Santiago de Chile, Buenos Aires, Rio de Janeiro, and Sao Paulo are its principal examples. Prerequisite: upper-division standing.

HILA 116. El Salvador and the United States: Human Rights and Revolution (4) From coffee boom through rebellion, militarization, revolution, state terrorism, and migration, the U.S. has loomed large in the history of El Salvador. This course explores this relationship from 1920 to the present through the prisms of revolution and human rights. Prerequisite: upper-division standing.

HILA 120. History of Argentina (4) A survey from the colonial period to the present, with an emphasis on the nineteenth and twentieth centuries. Among the topics covered: the expansion of the frontier; the creation of a cosmopolitan, predominately European culture, and the failure of industrialization to provide an economic basis for democracy. Prerequisite: upper-division standing.

HILA 121. History of Brazil (4) From colonial times to the present, with an emphasis on the nineteenth and twentieth centuries. Among the topics covered: the evolution of a slave-based economy, the key differences among regions, the military in politics, and the creation of the most populous and industrialized country in Latin America. Prerequisite: upper-division standing.

HILA 122. Cuba: From Colony to Socialist Republic A lecture-discussion course on the historical roots of revolutionary Cuba, with special emphasis on the impact of the United States on the island’s development and society. Prerequisite: upper-division standing.

HILA 126. From Columbus to Castro: Caribbean Culture and Society (4) Exploration of the relationships between socioeconomic and cultural development in Caribbean history; slavery and empire; nationalism and migration; vodun and Rastafarianism, and the literary arts. Prerequisite: upper-division standing.

HILA 127. History, Culture, and Power (4) What is the historical evidence on the relationship between culture and power; from the indigenous national revolution (eighteenth century) to ‘indi-genismo’; from indigenous upheavals in Ecuador, Bolivia, Mexico, and Peru, to the intellectual ‘archaic utopia’ (twentieth century). Prerequisite: upper-division standing or instructor consent.

HILA 131. A History of Mexico (4) A century of Mexican history, 1821-1924: the quest for political unity and economic solvency, the forging of a nationality, the Gilded Age and aftermath, the ambivalent Revolution of Zapata and his enemies. Prerequisite: upper-division standing or instructor consent.

HILA 132. A History of Contemporary Mexico (4) The paradox of a conservative state as heir to a legendary social upheaval, with special emphasis on the mural art renaissance, the school crusade, the economic dilemma, and the failure to eradicate poverty and inequality. Lectures and discussion. Prerequisite: upper-division standing or consent of instructor.

Colloquia

The following courses are available to both undergraduate and graduate students.
Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.

HILA 161/261. History of Women in Latin America (4)
A broad historical overview of Hispanic-American women's history focusing on issues of gender, sexuality, and the family as they relate to women, as well as the historiographical issues in Latin American and Chicana women's history. Prerequisites: upper-division standing and consent of instructor.

HILA 162/262. Special Topics in Latin American History (4)
Topics will vary from year to year or quarter to quarter. May be repeated for an infinite number of times due to the nature of the content of the course always changing. Prerequisite: upper-division standing or consent of instructor.

HILA 163/263. The History of Chile 1880–Present (4)
The course surveys Chile's basic developments beginning with the era of nitrate exports. Students will have the opportunity to address a specific issue of his/her own choosing and develop the topic for class presentation and a final paper. Graduate students are expected to submit a more substantial piece of work. Prerequisite: upper-division standing or consent of instructor.

HILA 164/264. Women's Work and Family Life in Latin America (4)
Inside or outside of the household, women have always worked. Where do we find Latin American women, how has the labor market changed, how was and is women's work perceived, what were the consequences of changing work patterns on family life? Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students are required to submit a more substantial piece of work. Prerequisites: upper-division standing or consent of instructor.

HILA 167/267. Scholarship on Latin American History in the Colonial Period (4)
Introduction to the historiography on Latin America for the colonial period from Spanish and Portuguese conquests to the Wars of Independence. Requirements will vary for undergraduate, M.S., and Ph.D. students. Graduate students are required to submit an additional research paper. Prerequisites: upper-division standing or consent of instructor; reading knowledge of Spanish; department stamp.

HILA 168/268. Scholarship on Latin American History in the Nineteenth Century (4)
Introduction to the historiography on Latin America for the nineteenth century: world economy, nation-state building, agrarian processes, incipient industrialization, political and cultural thought, and social structure. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students are required to submit an additional research paper. Prerequisites: upper-division standing or consent of instructor; reading knowledge of Spanish; department stamp.

HILA 169/269. Scholarship on Latin American History in the Twentieth Century (4)
Introduction to the historiography on Latin America for the twentieth century: agrarian reforms, unionization, industrialization by import substitution, the political left, social development, and international relations. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students are required to submit an additional research paper. Prerequisites: upper-division standing or consent of instructor; reading knowledge of Spanish; department stamp.

HILA 270. Topics in Latin American History, 1820–1910 (4)
Topics may vary from year to year. May be repeated for credit. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students must be required to submit a more substantial piece of work. Prerequisites: upper-division or graduate standing.

HILA 199. Independent Study in Latin American History (4)
Directed readings for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor and department stamp.

NEAR EAST

Lecture Courses

HINE 100. The Ancient Near East and Israel (4)
Introduction to the history and literature of ancient Israel, from c. 1200 B.C.E. to c. 500 B.C.E. Reading from the Bible, historical and archaeological surveys, and studies of authorship. Prerequisite: upper-division standing or consent of instructor.

HINE 101A. History of Ancient Mesopotamia (4)
Course will trace the political and cultural history of Mesopotamia (modern Iraq), beginning with rise of cities in the fourth millennium B.C.E., continuing through the Sumerian, Akkadian, Assyrian, and Babylonian periods, and ending with the fall of Babylon (539 B.C.E.). Prerequisite: upper-division or instructor consent.

HINE 102. The Jews in Their Homeland in Antiquity (4)
The Jews in Israel from the sixth century B.C.E. to the seventh century C.E. Statehood, nationalism, and autonomy within the framework of the Persian empire, the Hellenistic kingdoms, and the Roman-Byzantine empire. Cultural and religious developments will be explored. Prerequisite: upper-division standing.

HINE 103. The Jewish Diaspora in Antiquity (4)
The Jews outside their homeland and in pre-Islamic times, concentrating on the Greco-Roman and the Parthian-Sasanian East. Topics include assimilation and survival; anti-Semitism and missionizing; patterns of organization and autonomy; cultural and religious developments. Prerequisite: upper-division standing.

HINE 106. The Bible and the Near East: The Writings (4)
This course covers the books of the Hebrew Bible not covered in HINE 104 and HINE 105. It will include Psalms, Proverbs, Job, the Megillot, Daniel, and the Chronicler’s Work.

HINE 108. The Middle East before Islam (4)
The peoples, politics, and cultures of Southwest Asia and Egypt from the sixth century B.C.E. to the seventh century C.E. The Achemenid Empire, the Ptolemaic and Seleucid kingdoms, the Roman Orient, the Parthian and Sasanian states. Prerequisite: upper-division standing.

HINE 109A. Learning to Read Biblical Hebrew I (4)
The Hebrew Bible in its original tongue and historical context. Emphasis is placed on acquiring a basic vocabulary, mastering fundamentals of grammar, and practice at reading. No previous knowledge of Hebrew is required. Offered during the summer. Prerequisite: upper-division standing.

HINE 109B. Learning to Read Biblical Hebrew II (4)
Continued study of the language of the Bible with emphasis on advanced grammar and vocabulary. Prerequisite: HINE 109A. Offered during the summer.

HINE 111. Anthropology and the Hebrew Bible (4)
This course approaches the Hebrew Bible (Old Testament) from the perspective of cultural anthropology. Institutions studied will include the family, rites of passage, food taboos, warfare, animism, demons, sorcery, and animal sacrifice. Prerequisite: upper-division or instructor consent.

HINE 114. History of the Islamic Middle East (4)
A survey of the Middle East from the rise of Islam to the region’s economic, political, and cultural integration into the West (mid-nineteenth century). Emphasis on socioeconomic and political change in the early Arab empires and the Ottoman state.

HINE 115. Islamic Civilization (4)
An introductory survey of Islamic civilizations. History and society, law, science and philosophy, arts and letters, and architecture. A broad picture of the dynamics and achievements of Islamic societies over time. Prerequisite: upper-division standing or consent of instructor.

HINE 116. The Middle East in the Age of European Empires (1798–1914) (4)
Examines the contacts of the late Ottoman Empire and Qajar Iran with Europe from the Napoleonic invasion of Egypt to World War I, the diverse facets of the relationships with the West, and the reshaping of the institutions of the Islamic states and societies.

HINE 118. The Middle East in the Twentieth Century (4)
An introduction to the history of the Middle East since 1914. Themes such as nationalism, imperialism, the oil revolution, and religious revivalism will be treated within a broad chronological and comparative framework drawing on the experience of selected countries.

HINE 119. Contemporary Middle East Conflicts (4)
An examination of post-WWII Middle East conflicts, including the Israeli-Arab conflicts, the Lebanese Civil War, and the Gulf War of the 1980s. The roles of the superpowers and Middle Eastern states during the period.

HINE 122. Politicization of Religion in the Middle East (4)
Islamic formulations of dissent from the nineteenth century to our day; social, cultural, and political movements inflected by religion; domestic, interregional, and international dimensions with emphasis on the Arab East, Iran, and Turkey. Prerequisite: upper-division standing.

HINE 123. The Emergence of Middle East Nationalisms (4)
A survey of nationalism in the modern Middle East with reference to current theories of identity formation in Europe and South Asia. The course will examine shifting identities in the Ottoman Empire, its Turkish and Arab successor states, and Iran. Prerequisite: upper-division standing or consent of instructor.

HINE 126. Iranian Revolution in Historical Perspective (4)
Iran’s social and political history in the twentieth century with emphasis on the Constitutional movement of the late Qajar period, formation and development of the Pahlavi state, anatomy of the 1978-79 Revolution, and a survey of the Islamic Republic. Prerequisite: upper-division or instructor consent.
HINE 151A/251A. Introduction to Aramaic Language (4)
General introduction to Aramaic dialects, intense study of Targumic Aramaic. Prerequisites: knowledge of Hebrew alphabet; acquaintance with a cognate Semitic language highly desirable. +

HINE 151B/251B. Introduction to Aramaic Dialects (4)
Study of Ancient Inscriptional Persian Imperial and Syriac Aramaic. +

HINE 151C/251C. Introduction to Aramaic Dialects (4)
Study of Qumran and Babylonian Talmudic Aramaic. +

HINE 152A/252A. The Evolution of the Northwest Semitic Dialects (4)
Principles of historical linguistics, application to the languages of the ancient Levant. Prerequisites: knowledge of at least one Semitic language; a course in general linguistics is also desirable. +

HINE 152B/252B. Introduction to Ugaritic (4)
Decipherment of Ugaritic tablets, history, and culture of ancient Ugarit, study of Ugaritic mythic texts. +

HINE 152C/252C. Advanced Ugaritic (4)
Continued study of Ugaritic literature, comparison with Canaanite inscriptions. +

HINE 153A/253A. Introduction to Akkadian Language and Mesopotamian Culture (4)
Students study cuneiform script and elements of Babylonian-Assyrian grammar, as well as the history of Ancient Mesopotamia. +

HINE 153B/253B. Continued Akkadian Language (4)
Student begins to read and analyze ancient Mesopotamian texts from a variety of genres. +

HINE 153C/253C. Advanced Akkadian Language (4)
Continued study of Mesopotamian literature and history. +

Colloquia
The following courses are available to both undergraduate and graduate students. Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduates, M.A., and Ph.D. students.

HINE 161/HINE 261. Seminar in the Hebrew Bible (4)
Systematic reading and rendering of the books of the Hebrew Bible in order. Each time the class is taught, we will look at a different book. Adequate knowledge of Biblical Hebrew is required. Graduate students will have to write an extra paper or exam. Prerequisites: Judic Studies 103, graduate standing, or consent of instructor. +

HINE 166/266. Nationalism in the Middle East (4)
Growth of nationalism in relation to imperialism, religion, and revolution in the nineteenth- and twentieth-century Middle East. Emergence of cultural and political ethnic consciousness in the Ottoman state; comparative study of Arab, Iranian, and Turkish nationalism as well as Zionism. Prerequisite: department stamp or consent of instructor.

HINE 170/270. Special Topics in Jewish History (4)
This course studies a period or theme in Jewish history. Topics will vary from year to year. Prerequisite: department stamp required.

HINE 181/281. Problems in the Study of Hebrew Manuscripts (4)
Detailed study of a portion of biblical text. Focus on text-critical and source-critical problems. Prerequisite: upper-division or graduate standing. +

HINE 186/286. Special Topics in Middle Eastern History (4)
Focused study of historical roots of contemporary problems in the Middle East: Islamic modernism and Islamist movements; contacts with the West; ethnic and religious minorities; role of the military; economic resources and development. Department stamp and permission of instructor.

HINE 199. Independent Study in Near Eastern History (4)
Directed readings for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor.

HISTORY OF SCIENCE
Lecture Courses
HISC 101A. Science in the Greek and Roman World (4)
A survey of the principal features of ancient science: the origins of Greek naturalism, the criticism of magic, notions of quantification. Topics may include astronomy, astrology, geography, geometry, optics, mechanics and physical theory, classification of living beings, and human cognition. Emphasis on primary sources, such as the presocratic natural philosophers; Plato, Aristotle, Euclid, Archimedes, Ptolemy, Pliny Galen, and Proclus. Prerequisite: upper-division standing. +

HISC 101B. Medieval Science in the Latin West, ca. 500–1500 (4)
Styles of the medieval scientific imagination. Reception and assimilation of the learning of the ancient world, especially Aristotle, Plato, Euclid, Galen, and Ptolemy. Struggles to reconcile Greek, Arabic, and Christian ideals of knowledge. Rise of universities, Natural philosophy, logic, geometry, optics, astronomy, astrology, mechanics, geography, and classification of living beings. Prerequisite: upper-division standing. +

HISC 101C. Early Modern Science (4)

HISC 102. Technology in World History (4)
Technology as an agent of change. How have humans harnessed the power of nature? What factors have contributed to successes and failures? How has technology changed human life? How should we evaluate the quality of these changes? Prerequisites: upper-division standing.

HISC 103. Gender and Science in Historical Perspective (4)
History of women’s struggles and strategies for access and equality in professional science. Questions related to gender bias in science—as a social institution and as an epistemological enterprise—will be addressed in light of the historical and biographical readings. Prerequisite: upper-division standing.

HISC 104. History of Popular Science (4)
Historical aspects of the popularization of science. The changing relation between expert science and popular understanding. The reciprocal impact of scientific discoveries and theories, and popular conceptions of the natural world. Prerequisite: upper-division standing.

HISC 105. History of Environmentalism (4)
History of human effects on the natural environment, and with environmentalist interpretations of the history of science.

HISC 106. The Scientific Revolution (4)
A cultural history of the formation of early modern science in the sixteenth and seventeenth centuries: the social forms of scientific life; the construction and meaning of the new cosmologies from Copernicus to Newton; the science of politics and the politics of science; the origins of experimental practice; how Sir Isaac Newton restored law and order to the West. Prerequisite: upper-division standing. +

HISC 107. The Emergence of Modern Science
The development of the modern conception of the sciences, and of the modern social and institutional structure of scientific activity, chiefly in Europe, during the eighteenth and nineteenth centuries. Prerequisite: upper-division standing.

HISC 108. Science in the Twentieth Century (4)
Major intellectual developments in twentieth-century science, including quantum mechanics and relativity, molecular biology and DNA, and plate tectonics. Emphasis on the sources of new ideas and evidence in science, and the forging of consensus in scientific communities. Prerequisite: upper-division standing.

HISC 109. Science in Western Civilization (4)
An introduction to scientific thought as it relates to Western culture. Among the topics considered: Aristotelian, medieval, and Renaissance science; the scientific revolution; the Newtonian universe; science and the Enlightenment; evolution; science and the modern state; technoscience and biotechnology. Prerequisite: upper-division standing or consent of instructor.

HISC 111. Origins of the Atomic Age (4)
The atomic bomb changed the world. We examine the origins and impact of the atomic age: the discovery of radioactivity; the Manhattan project and bombings of Hiroshima and Nagasaki; the H-bomb, nuclear fallout, and the modern environmental movement. Prerequisite: upper-division standing or consent of instructor.

HISC 114. The Darwinian Legacy (4)
The Origin of Species by means of Natural Selection, and its scientific, intellectual, and political legacies. Topics include social Darwinism, eugenics, Nazi racial hygiene, population control, neo-Malthusianism in the modern environmental movement. Prerequisite: upper-division standing.

HISC 120A. Technology in America I (4)
The role of technology in American history through the Civil War. Indigenous and colonial development, transportation infrastructures, and industrialization are explored to understand the connections among
technology, society, and culture. Prerequisite: upper-division standing. +

HISC 120B. Technology in America II (4) The role of technology in the history of the United States since the Civil War. Mass production and consumption, information technologies, and the changing role of inventors and engineers are explored to understand the connections among technology, society, and culture. Prerequisite: upper-division standing.

HISC 121. Listening In: Sound, Music, and Noise in America (4) Explores the cultural meaning of sound by examining the history of the phonograph, radio, movies, Muzak, noise-abatement, and architectural acoustics. What needs did these technologies fulfill? How did they reinforce and challenge the society in which they were developed? Prerequisite: upper-division standing.

HISC 130. Technology in the Twentieth Century (4) Major technological developments in the twentieth century, including the rise and decline of technologies, unexpected hazards and unanticipated consequences, and why some technologies fail. Prerequisite: upper-division standing.

HISC 131. Science, Technology, and Law (4) Science and law are two of the most powerful establishments of modern Western culture. Science organizes our knowledge of the world; law directs our action in it. Will explore the historical roots of the interplay between them. Prerequisite: upper-division standing.

Colloquia

The following courses are available to both undergraduate and graduate students. Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduates, M.A., and Ph.D. students.

HISC 160/260. Historical Approaches to the Study of Science (4) Major recent publications in the history of science will be discussed and analyzed; the topics will range in period from the seventeenth century to the twentieth, and will deal with all major branches of natural science. Special topics. Topics will vary from year to year. Prerequisite: consent of instructor.

HISC 162/262. Problems in the History of Science and Religion (4) Intensive study of specific problems in the relation between science and religion. The problems may range in period from the Renaissance to the twentieth century. Topics vary from year to year, and students may therefore repeat the course for credit. Prerequisite: upper-division standing.

HISC 163/263. History, Science, and Politics of Climate Change (4) The complex historical development of human understanding of global climate change, including key scientific work, and the cultural dimensions of proof and persuasion. Special emphasis on the differential political acceptance of the scientific evidence in the U.S. and the world. Graduate students are required to submit an additional paper. Prerequisite: upper-division or graduate standing. Department stamp required.

HISC 164/264. Topics in the History of the Physical Sciences Intensive study of specific problems in the physical (including chemical and mathematical) sciences, ranging in period from the Renaissance to the twentieth century. Topics vary from year to year, and students may therefore repeat the course for credit.

HISC 165/265. Topics in 20th Century Science and Culture This is a seminar open to advanced undergraduates and graduate students, which explores topics at the interface of science, technology, and culture, from the late nineteenth century to the present. Topics change yearly; may be repeated for credit with instructor's permission. Requirements vary for undergraduates, M.A., and Ph.D. students. Graduate students are required to submit a more substantial piece of work. Prerequisite: upper-division standing or consent of instructor.

HISC 166/266. The Galileo Affair (4) Galileo's condemnation by the Catholic Church in 1633 is a well-known but misunderstood episode. Was Galileo punished for holding dangerous scientific views? Personal arrogance? Disobedience? Religious transgressions? Readings in original sources, recent historical interpretations. Graduate students will be expected to submit a more substantial piece of work. +

HISC 167/267. Gender and Science (4) Why have women been traditionally excluded from science? How has this affected scientific knowledge? How have scientists constructed gendered representations not only of women, but also of science and nature? We will address these questions from perspectives including history, philosophy, and psychoanalytic theory. Prerequisite: upper-division standing or consent of instructor.

HISC 168/268. The Extraterrestrial Life Question (4) The changing fortunes of the belief in the existence of life beyond the Earth (pluralism) from 1750–present as it evolved from a marginal speculation to a central scientific question with wide-ranging consequences for traditional religious belief-systems. Graduate students will be expected to submit a more substantial piece of work. Prerequisite: upper-division or graduate standing or consent of instructor.

HISC 170/270. Topics in the History of Science and Technology (4) This seminar explores topics at the interface of science, technology, and society, ranging from the seventeenth century to the twentieth. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students are required to submit an additional paper. Prerequisite: upper-division standing or consent of instructor.

HISC 172/272. Building America: Technology, Culture, and the Built Environment in the United States (4) The history of the built environment in the United States, from skyscrapers to suburbs, canals and railroads to factories and department stores. The technological history of structures and infrastructures, and the social and cultural values that have been “built into” our material environment. Graduate students are required to submit an additional paper. Prerequisite: upper-division standing or consent of instructor.

HISC 199. Independent Study in the History of Science (4) Directed readings for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor.

UNIVERSITIES

See History of Science for more U.S. courses (HISC 105, HISC 108, HISC 111)

Lecture Courses

HIUS 100. Colonial Period to 1763 (4) Political and social history of the thirteen colonies: European background, settlement and expansion, beginnings of culture, and the imperial context. Prerequisite: upper-division standing. +

HIUS 101. The American Revolution (4) Causes and consequences of the revolution: intellectual and social change, the problems of the new nation, the Constitution, and the origins of political parties. Prerequisite: upper-division standing. +

HIUS 103. The World We Have Lost: Social History of Early America (4) Selected themes in early American social history—including race, gender, faith, economy, and age—from an anthropological perspective. What distinguished it from our own world? Prerequisite: upper-division standing. +

HIUS 104. The Revolutionaries Atlantic (4) The upheavals that transformed the early modern Atlantic emphasizing the United States, Caribbean, and Great Britain. Topics: struggles to define democracy, the reorganization of the Atlantic state system, the Enlightenment, and international responses to the American and French Revolutions. Prerequisite: upper-division standing. +

HIUS 107. The Early Republic (4) This course will examine the transformation of American society and politics between the American Revolution and the Jacksonian period. Topics to be considered include the emergence of domesticity, the development of political parties, the expansion of capitalist relations, the debate over slavery, the early labor movement, and the origins and motivations of middle-class reform. +

HIUS 108A/ETHN 112A. History of Native Americans in the United States I (4) This course examines the history of the Native Americans in the United States with emphasis on the lifeways, mores, warfare, cultural adaptation, and relations with the European colonial powers and the emerging United States until 1870. Prerequisite: upper-division standing or consent of instructor. +

HIUS 108B/ETHN 112B. History of Native Americans in the United States II (4) This course examines the history of the Native Americans in the United States with emphasis on the lifeways, mores, warfare, cultural adaptation, and relations with the United States from 1870 to the present. Prerequisite: upper-division standing or consent of instructor.

HIUS 109. Intellectual History: From Contact to Civil War (4) An exploration of cultural, political, religious, and social thought in early America. Emphasis will be placed on the trans-Atlantic context and on the relationships between intellectuals and authority. Prerequisite: upper-division standing or consent of instructor. +
HIUS 114. California History (4)
This course examines California history from 1800 onward, with an emphasis on social, economic, and political change. The course will explore the effect of national and international events as well as the ways in which California—the ideal and the real—shapes the American experience.

HIUS 115. History of Sexuality in the United States
Constructions of sex and sexuality in the United States from the time of pre-contact Native America to the present, focusing on sexual behaviors, sexual ideologies, and the uses of sexuality for social control.

HIUS 117. History of Los Angeles (4)
This course examines the history of Los Angeles from the early nineteenth century to the present. Particular issues to be addressed include urbanization, ethnicity, politics, technological change, and cultural diversification.

HIUS 122. History and Hollywood: America and the Movies Since the Great Depression (4)
A lecture-discussion course utilizing written texts and films to explore major themes in American politics and culture from the Great Depression through the 1990s. Topics will include the wars of America, McCarthyism, the counter-culture of the 1960s, and the transformation of race and gender relations. Prerequisite: upper-division standing or consent of instructor.

HIUS 124/ETHN 125. Asian American History
Explore how Asian Americans were involved in the political, economic, and cultural formation of United States society. Topics include migration; labor systems; gender, sexuality and social organization; racial ideologies and anti-Asian movements; and nationalism and debates over citizenship.

HIUS 130. Cultural History from 1607 to the Civil War (4)
This course will explore connections between American culture and the transformations of class relations, gender ideology, and political thought. Topics will include the transformations of religious perspectives and practices, republican art and architecture, artisan and working class culture, the changing place of art and artists in American society, antebellum reform movements, anti-slavery and proslavery thought. Prerequisite: upper-division standing or consent of instructor.

HIUS 131. Cultural History from the Civil War to the Present (4)
This course will focus on the transformation of work and leisure and the development of consumer culture. Students will consider connections between culture, class relations, gender ideology, and politics. Topics will include labor radicalism, Taylorism, the development of organized sports, the rise of department stores, the transformation of middle-class sexual morality, the growth of commercial entertainment, and the culture of the cold war.

HIUS 132. Civil War-Reconstruction in Pop Culture (4)
This course considers how cultural processes have shaped histories of the Civil War and Reconstruction. Students will analyze the relationship between popular culture and major themes of the era through the use of literature, texts, film, television, and print. Students may not receive credit for both HIUS 132 and HIUS 1325. Prerequisite: upper-division standing or consent of instructor.

HIUS 134. From Be Bop to Hip Hop: African American Cultural History Since 1945 (4)
Explore the politics of black culture in the postwar period. Topics include: the dynamic interplay of social factors (migration, civil rights, black power, deindustrialization, globalization) and the production of African American culture, including music, film, and literature. Prerequisite: upper-division standing or consent of instructor.

An examination of interactions among the peoples of western Europe, Africa, and the Americas that transformed the Atlantic basin into an interconnected “Atlantic World.” Topics will include maritime technology and the European Age of Discovery, colonization in the Americas, the beginnings of the transatlantic slave trade and the early development of plantation slavery in the New World. Prerequisite: upper-division standing or consent of instructor. +

HIUS 135B/ETHN 170B. Slavery and the Atlantic World (4)
The development of the Atlantic slave trade and the spread of racial slavery in the Americas before 1800. Explores the diversity of slave labor in the Americas and the different slave cultures Africans produced under the constraints of slavery. Prerequisite: upper-division standing or consent of instructor. +

HIUS 138/ETHN 167. African-American History in War and Peace: 1917 to the Present (4)
The social, political, economic, and ideological pressures generated during the international conflicts of the twentieth century have had an enormous impact on American life. The course examines how the pressures of “total war” and “cold war” shaped the African-American experience in both war and peace. Prerequisite: upper-division standing or consent of instructor.

HIUS 139/ETHN 149. African-American History in the Twentieth Century (4)
This course examines the transformation of African America across the expanse of the long twentieth century: imperialism, migration, urbanization, desegregation, and deindustrialization. Special emphasis will be placed on issues of culture, international relations, and urban politics. Prerequisite: upper-division standing.

HIUS 140/ECON 158A. Economic History of the United States I (4)
The United States as a raw materials producer, as an agrarian society, and as an industrial nation. Emphasis on the logic of the growth process, the social and political tensions accompanying expansion, and nineteenth- and early twentieth-century transformations of American capitalism. +

HIUS 141/ECON 158B. Economic History of the United States II (4)
The United States as modern industrial nation. Emphasis on the logic of the growth process, the social and political tensions accompanying expansion, and twentieth-century transformations of American capitalism.

HIUS 142A. United States in the Twentieth Century, 1900–1945 (4)
Examines the political, economic, and social history of the American people from the turn of the twentieth century to the end of World War II. Topics: progressive movement, impact of the Great Depression, and the consequences of two world wars. Prerequisite: upper-division standing or consent of instructor.

HIUS 142B. United States in the Twentieth Century, 1945 to the Present (4)
Examines the political, economic, and social history of the American people from the end of World War II to the present. Topics: origins of the Cold War, struggle for racial justice and the rise of American conservatism since the 1980s. Prerequisite: upper-division standing or consent of instructor.

HIUS 146. Race, Riots, and Violence in the U.S. (4)
Examining the history of urban riots in the U.S. since the late nineteenth century. Exploring how different groups of Americans have constructed competing notions of race, gender, labor, and national belonging by participating in street violence. Prerequisite: upper-division standing or consent of instructor.

HIUS 147/USP 165. History of the American Suburb (4)
This lecture explores the development of suburbs in America, from the early nineteenth century to the contemporary era. Topics include suburban formation, class, ethnic and racial dimensions, government influences, social life, and cultural responses to suburbia. The class will explore competing theories of urbanization as it surveys the major literature.

HIUS 148/USP 103. The American City in the Twentieth Century (4)
This course focuses on the phenomenon of modern American urbanization. Case studies of individual cities will help illustrate the social, political, and environmental consequences of rapid urban expansion, as well as the ways in which urban problems have been dealt with historically.

HIUS 149. The United States in the 1960s (4)
An overview of the social and political developments that polarized American society in the tumultuous decade of the 1960s. Themes include the social impact of the post-war “baby boom,” the domestic and foreign policy implications of the Cold War; the evolution of the civil rights and women’s movements; and the transformation of American popular culture.

HIUS 150. American Legal History to 1865 (4)
The history of American law and legal institutions. This quarter focuses on crime and punishment in the colonial era, the emergence of theories of popular sovereignty, the forging of the Constitution and American federalism, the relationship between law and economic change, and the crisis of slavery and Union. Prerequisite: upper-division standing.

HIUS 151. American Legal History since 1865 (4)
The history of American law and legal institutions. This course examines race relations and law, the rise of big business, the origins of the modern welfare state during the Great Depression, the crisis of civil liberties produced by two world wars and McCarthyism, and the Constitutional revolution wrought by the Warren Court. HIUS 150 is not a prerequisite for HIUS 151. Prerequisite: upper-division standing.

HIUS 152A. A Constitutional History of the United States to 1865 (4)
The historical development of constitutional thought and practice in the United States from the era of the American Revolution through the Civil War, with special attention to the role of the Supreme Court under Chief Justices Marshall and Taney. Prerequisite: upper-division standing or consent of instructor.
HIUS 152B. A Constitutional History of the United States Since 1865 (4) The historical development of constitutional thought and practice in the United States since 1865, with special attention to the role of the Supreme Court from Chief Justices Chase to Renquist. Prerequisite: upper-division standing.

HIUS 153. American Political Trials (4) Survey of politicized criminal trials and impeachments from Colonial times to the 1880s. Examines politically-motivated prosecutions and trials that became subjects of political controversy, were exploited by defendants for political purposes, or had their outcomes determined by political considerations.

HIUS 154. Western Environmental History (4) This course examines human interaction with the western American environment and explores the distinction between the objective environmental understanding of science and the subjective views of history and historians. The course will also analyze the most compelling environmental issues in the contemporary West.

HIUS 155. From Zoot Suits to Hip Hop: Race and Popular Culture since World War II (4) Tracing popular cultural production and consumption in the U.S. since World War II. It historicizes popular culture as an arena where social relations are negotiated and where race, class, and gender identities are constructed, transformed, and contested. Prerequisite: upper-division standing or consent of instructor.

HIUS 155A. Religion and Law in American History: Foundations to the Civil War (4) Selected problems in the history of the relationship between religious beliefs and practice and legal institutions in the Anglo-American world. Topics include the English background, religion in the age of the American Revolution and the antebellum period. Prerequisite: upper-division standing or consent of instructor.

HIUS 155B. Religion and Law in American History: Civil War to the Present (4) Selected problems in the history of the relationship between religious beliefs and practice and legal institutions in America from the Civil War to the present. Topics include the religion and government aid; sacred duties and the law; and religion and cultural politics. Prerequisite: upper-division standing or consent of instructor.

HIUS 156. American Women, American Womanhood (4) This course explores the emergence of a dominant ideology of womanhood in America in the early nineteenth century and contrasts the ideal with the historically diverse experience of women of different races and classes, from settlement to 1870. Topics include witchcraft, evangelicalism, cult of domesticity, sexuality, rise of industrial capitalism and the transformation of women’s work, Civil War, and the first feminist movement. Prerequisite: upper-division standing.

HIUS 157. American Women, American Womanhood 1870 to Present This course explores the making of the ideology of womanhood in modern America and the diversity of American women’s experience from 1870 to the present. Topics include the suffrage movement, the struggle for reproductive rights and the ERA; immigrant and working-class women, women’s work, and labor organization; education, the modern feminist movement and the contemporary politics of reproduction, including abortion and surrogate motherhood. Prerequisite: upper-division standing.

HIUS 158/ETHN 130. Social and Economic History of the Southwest I (4) This course examines the history of the Spanish and Mexican borderlands (what became the U.S. Southwest) from roughly 1400 to the end of the U.S.-Mexico War in 1848, focusing specifically on the area’s social, cultural, and political development.

HIUS 159/ETHN 131. Social and Economic History of the Southwest II (4) Cross-listed as Ethnic Studies 131.) This course examines the history of the American Southwest from the U.S.-Mexican War in 1846-48 to the present, focusing on immigration, racial and ethnic conflict, and the growth of Chicanx national identity.

Colloquia
The following courses are available to both undergraduate and graduate students. Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.

HIUS 160/260. Colloquium on the American Empire (4) Course explores the concept of an American Empire by examination of the literature on the topic. Particular attention will be on the work since 9/11/01. Students are expected to produce original work concerning the definition and/or existence of an American Empire. Graduate students are expected to submit an additional piece of work. Prerequisite: upper-division standing or consent of instructor. Department stamp required.

HIUS 162/262. The American West (4) This seminar will trace major themes in the history of the American West. Topics will include ethnicity, the environment, urbanization, demographics, and shifting concepts surrounding the significance of the West. Graduate students will be required to submit additional work in order to receive graduate credit for the course. Prerequisite: department stamp required.

HIUS 164/264/ETHN 181. Topics in Comparative History of Modern Slavery (4) Slavery was both a thread of continuity in the history of the Americas and a distinctive institution in specific social settings. The purpose of this course is to examine and discuss readings that explore topics of the Caribbean and the United States. Because topics will vary, the seminar may be taken more than once for credit, with consent of the instructor. Requirements vary for undergraduates, M.A., and Ph.D. students. Graduate students are required to submit a more substantial piece of work. Prerequisite: upper-division standing or consent of instructor.

HIUS 165/ETHN 182. Segregation, Freedom Movements, and the Crisis of the Twentieth Century (4) A reading and discussion seminar that views the origins of segregation and the social movements that challenged it between 1890 and 1970 in comparative framework. Prerequisite: upper-division standing.

HIUS 166/266. Topics in Southern History (4) Specific topics will vary from year to year, including slavery, Civil War and Reconstruction, the Afro-American experience, race relations.

HIUS 167/267/ETHN 180. Topics in Mexican-American History (4) This colloquium studies the racial representation of Mexican Americans in the United States from the nineteenth century to the present, examining critically the theories and methods of the humanities and social sciences. Prerequisite: upper-division standing.

HIUS 168/268. Race, Resistance, and Cultural Politics (4) The course investigates race, resistance, and culture in the U.S. since the late nineteenth century. It interrogates how working-class whites, African Americans, Latinos, Asian Americans, and others have simultaneously challenged, shaped, and assimilated into U.S. society. Graduate students are required to submit an additional paper. Prerequisite: upper-division standing or consent of instructor. Department stamp required.

HIUS 169/269. Topics in American Legal and Constitutional History (4) A reading and discussion course on topics that vary from year to year, including American federalism, the history of civil liberties, and the Supreme Court. Prerequisite: consent of instructor.

HIUS 173/273. Topics in American Women’s History (4) The specific content of the course will vary from year to year but will always analyze in depth a limited number of issues in American women’s history. Special topics. Requirements will vary for undergraduate, M.A., Ph.D. students. Graduate students will be required to submit a more substantial piece of work. Prerequisite: consent of instructor or department stamp.

HIUS 176/276. Race and Sexual Politics This seminar will explore the histories of sexual relations, politics, and cultures that both cross and define racial boundaries in the nineteenth and twentieth centuries. Reading will focus on the United States as well as take up studies sited in Canada and Latin America. Graduate students are expected to submit a more substantial piece of work. Prerequisite: upper-division standing or consent of instructor.

HIUS 180/ETHN 134. Immigration and Ethnicity in Modern American Society (4) Comparative study of immigration and ethnic-group formation in the United States from 1880 to the present. Topics include immigrant adaptation, competing theories about the experiences of different ethnic groups, and the persistence of ethnic attachments in modern American society. Prerequisite: upper-division standing.

HIUS 181/281. Topics in Twentieth Century United States History (4) A colloquium dealing with special topics in U.S. history from 1900 to the present. Themes will vary from year to year. Prerequisite: department stamp or consent of instructor.

HIUS 182/282. Special Topics in Intellectual History: Politics and Culture in the U.S. 1776–1860 (4) Cultural and political construction of the American nation. Topics include: how citizenship and national community were imagined and contested; importance of class, gender, and race in the nation’s public sphere; debates over slavery expansion and democracy in defining national purpose. Requirements will vary for undergraduates, M.A., and Ph.D. students.
Graduate students are required to submit a more substantial paper.

HIUS 183/283/ETHN 159. Topics in African American History (4)
A colloquium dealing with special topics in the history of people of African descent in the United States. Themes will vary from quarter to quarter. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students will be required to submit a more substantial piece of work. Prerequisite: upper-division standing or consent of instructor.

HIUS 187/287. Topics in American Social History (4)
Colloquium on selected topics in American social history. Topics will vary from year to year, and the course may therefore be repeated for credit.

HIUS 189/289. The Social History of Seafaring in Early America (4)
All American colonies were originally maritime colonies. This seminar examines the history of fishing, whaling, shipping, and freebooting during the age of sail and investigates through primary and secondary sources the experience of living in communities that followed the sea. Graduate students are required to submit an additional paper. Prerequisites: upper-division standing or consent of instructor and department stamp required.

HIUS 199. Independent Study in United States History (4)
Directed readings for undergraduates under the supervision of various faculty members. Prerequisite: consent of instructor and department stamp required.

TOPICS
Courses

HITO 87. Special Freshman Seminar (1)
A seminar intended for exposing undergraduate students, especially freshmen, to exciting research programs conducted by department faculty. Enrollment is limited. Topic will vary quarter by quarter.

HITO 102. Religious Traditions: East Asian Religious Traditions (4)
Introduction to the major religious traditions of Asia: Hinduism, Buddhism, Taoism, Shinto, and Confucianism. The course will focus on one religion each year. Since special topics will vary from year to year the course may be repeated for credit three times. Prerequisite: upper-division standing.

HITO 104. The Jews and Judaism in the Ancient and Medieval Worlds (4)
The political and cultural history of the Jews through the early modern period. Life under ancient empires, Christianity and Islam. The post-biblical development of the Jewish religion and its eventual crystallization into the classical, rabbinic model.

HITO 105. The Jews and Judaism in the Modern World (4)
Topics include the political emancipation of the Jews of Europe; the emergence of Reform, Conservative, and Modern Orthodox Judaism; hasidism; modern antisemitism; Jewish socialism; Zionism; the Holo-caust; the American Jewish community; the State of Israel.

HITO 106. Love and Family in the Jewish Past (4)
Jewish women's experiences from the seventeenth century to the present, covering Europe, the United States, and Israel. We examine work, marriage, motherhood, spirituality, education, community, and politics across three centuries and three continents. Prerequisite: upper-division standing.

HITO 111/211. Marxian Theory (4)
A survey and examination of the principal writings of Marx concerning economic theory and analysis. Emphasis on the theory of value, production, technical change, reproduction and accumulation. Some consideration will also be made of certain neo-Marxist contributions and critiques. Prerequisite: introductory economics or consent of instructor.

HITO 117 World History. 1200–1800
This course examines the interaction between sections of the globe after 1200. It emphasizes factors operating on a transcontinental scale (disease, climate, migration) and historical/cultural phenomena that bridge distance (religion, trade, urban systems). This is not narrative history, but a study of developments that operated on a global scale and constituted the first phase of globalization. Prerequisite: upper-division standing or consent of instructor.

HITO 121. Geographic Information Systems for Historians and Social Scientists (4)
This course provides an introduction to the use of geographic information systems (GIS) in the analysis and display of data of interest to historians and social scientists. Topics include cartographic theory and aesthetics, data collection and retrieval, and training in the use of the ArcView GIS program. Prerequisite: upper-division standing.

HITO 126. A History of Childhood (4)
This course will examine the different ways that attitudes toward children have changed throughout history. By focusing on the way that the child was understood, we will examine the changing role of the family, the role of culture in human development, and the impact of industrialization and modern institutions on the child and childhood.

HITO 133. War and Society: The Second World War
An examination of the Second World War in Europe, Asia, and the United States. Focus will be on the domestic and political impact of the war on the belligerent countries as well as on the experiences of ordinary soldiers and civilians. Prerequisite: upper-division standing or consent of instructor.

Colloquia
The following courses are available to both undergraduate and graduate students.

Undergraduates must receive a departmental stamp or permission of the instructor to register for the course. Requirements for each course will differ for undergraduate, M.A., and Ph.D. students.

HITO 172/272. War in the Twentieth Century (4)
Reckonings by novelists, essayists, and biographers with the phenomenon of contemporary warfare as an unprecedented experience and an abiding threat. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students are required to submit a more substantial piece of work. Prerequisite: upper-division standing or department stamp.

HITO 174. The Foundations of Constitutional Law (4)
Medieval and early modern origins of constitutional ideas and institutions. The question of the course is:

Where did the ideas and institutions embodied in the constitutions of the U.S. (1787) and France (1791) come from? Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students are required to submit a more substantial piece of work. Prerequisite: department stamp or consent of instructor.

Course attached to six-unit internship taken by students participating in the UCDC program. Involves weekly seminar meetings with faculty and teaching assistant and a substantial historical research paper. Prerequisites: department stamp required; participating in UCDC program.

HITO 194. History Honors (4)
A program of independent study providing candidates for history honors an opportunity to develop, in consultation with an advisor, a preliminary proposal for the honors essay. An IP grade will be awarded at the end of this quarter. A final grade will be given for both quarters at the end of HIUS 195. Prerequisite: consent of instructor. Department stamp required.

HITO 195. The Honors Essay (4)
Independent study under the supervision of a faculty member leading to the preparation of an honors essay. A letter grade for both HIUS 194 and 195 will be given at the completion of this quarter. Prerequisite: consent of instructor. Department stamp required.

HITO 196. Honors Seminar (4)
The nature and uses of history are explored through the study of the historian's craft based on critical analysis of historical literature relating to selected topics of concern to all historians. Required of all candidates for history honors and open to other interested students with the instructor's consent. Department stamp required.

HITO 198. Directed Group Study (4)
Directed group study on a topic not generally included in the regular curriculum. Students must make arrangements with individual faculty members. (P/NP grades only.) Prerequisite: consent of instructor.

HITO 199. Independent Study for Undergraduates (4)
Independent study on a topic not generally included in the regular curriculum. Students must make arrangements with individual faculty members. (P/NP grades only.) Prerequisites: upper-division standing and consent of instructor.

GRADUATE
Graduate standing is a prerequisite for all graduate-level courses. For more graduate courses (200+), look at history undergraduate colloquia (courses numbered 160–190).

HIGR 200. History and Social Theory (4)
A weekly reading/writing seminar. Themes include historical sociology and large-scale history, interdisciplinary approaches to history (anthropological, psychoanalytic, etc.), and historical method. Students from all fields welcome, though emphasis primarily on early modern period (1500–1800).

HIGR 205. Feminist Historical Studies (4)
An introduction to feminist historical studies, this course is designed for interested graduate students from all history field groups. Graduate students from
other disciplines are also encouraged to participate. The course will provide students a rigorous training in women's history, in the feminist theories that undergird that scholarship, and in the emergent field of gender analysis. The particular content of the course will change from year to year, but each course will include theoretical texts, historical case studies, and primary sources. Readings will be drawn from different times and places. This course is strongly recommended for those preparing minor fields in women's history. The course can be repeated twice for credit.

HIGR 207. Nationalism, Colonialism, and Race (4)
A transdisciplinary and comparative course on the interplay of nationalism, colonialism, and race (as well as class and gender/sexuality) in the nineteenth and twentieth centuries. Texts will include classics by authors such as Franz Fanon, as well as theoretically informed newer works that analyze a variety of national and colonial conditions historically.

HIGR 208. History and Theory (4)
This is a one-quarter colloquium, designed for graduate students in modern history. The readings will emphasize developments in historical thinking over the past two centuries, particularly as these ideas influenced professional work. The course includes some major figures in social theory such as Marx and Weber, and addresses issues raised by postmodernism.

HIGR 210. Historical Scholarship on Modern Chinese History (4)
This course will introduce students to the monographic literature and the main historiographic controversies of modern Chinese history.

HIGR 211. Historical Scholarship on Modern Japanese History (4)
This course will introduce students to the monographic literature and the main historiographic controversies of modern Japanese history.

HIGR 212. Historical Scholarship on Modern East Asian History (4)
This course will introduce students to the monographic literature and the main historiographic controversies of modern East Asian history.

HIGR 213. Sources on Modern Chinese History (4)
An introduction to Chinese documentary sources and collections on Qing and Republican History. This course will introduce students to the language of Qing documents, and to the contents and uses of imperial documents and archives, documentary collections, periodicals, gazetteers, etc.

HIGR 214. Readings in Japanese on Modern Japan (4)
A one-quarter research and writing course based upon readings in Japanese on modern Japan. Emphasis on selection, collection, and critical evaluation of texts for historical research. Topics will vary from year to year and may be repeated with instructor's permission. Prerequisite: graduate standing or permission of instructor.

HIGR 215A-B. Research Seminar in Modern Chinese History (4-4)
A two-quarter research seminar in Chinese history. A paper, based on original research, will be due in the second quarter. Seminar topics will vary. Reading knowledge of Chinese is expected. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter. Prerequisite: 215A is a prerequisite for 215B.

HIGR 216A-B. Research Seminar in Modern Japanese History (4-4)
A two-quarter research seminar in Japanese history. A paper, based on original research, will be due in the second quarter. Seminar topics will vary. Reading knowledge of Japanese is expected. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter. Prerequisite: 216A is a prerequisite for 216B.

HIGR 217A. Historical Scholarship on Pre-Modern Chinese History: Foundations—China Before Buddhism (4)
Ancient society differed dramatically from the imperial, bureaucratic, commercial, Buddhist China of later times. Yet the texts and artifacts of antiquity echoed powerfully through the centuries. We will study foundational texts, practices, and objects in their own contexts and also consider their later uses.

HIGR 217B. Historical Scholarship on Pre-Modern Chinese History: Han Dynasty Through the Song Dynasty (4)
Course introduces history and society during the Chinese Middle Ages (c. 200 BCE–1200 CE), including the Han, Six, Tang, and Song Dynasties. Examination of the birth and development of China's great religions, Buddhism and Daoism, and the international culture of the Silk Road, and political and cultural systems that still resonate in China today.

HIGR 217C. Historical Scholarship on Pre-Modern Chinese History: Late Imperial Chinese History, 1200–1800 (4)
Course introduces major topics in scholarship on the Yuan, Ming, and Qing periods. It is intended to prepare graduate students to teach the history of late imperial China.

HIGR 220. Historical Scholarship on European History, 1500–1715 (4)
Introduction to the historiography of Renaissance, Reformation, and early modern Europe: an overview of methodologies with emphasis on sources and critical approaches. Required for all beginning European history graduate students.

HIGR 221. Historical Scholarship on European History, 1715–1850 (4)
Selected topics in European history from the early modern to the modern era. Readings and discussions focus on issues of methodology and interpretation. Required for all beginning European history graduate students.

HIGR 222. Historical Scholarship on European History, since 1850 (4)
Critical evaluation of selected topics in the period of modern Europe from the mid-nineteenth century to the present. Required for all beginning European history graduate students.

HIGR 225. Readings in Modern Russian History (4)
Students will read major works on Revolutionary Russia and Soviet history. Attention will be paid to both classic and revisionist works.

HIGR 230A-B. Research Seminar in Early Modern Europe (4-4)
Selected topics in the period from the sixteenth century through the early nineteenth, with an emphasis on the theory and practice of socio-economic history. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter. Prerequisite: 230A is a prerequisite for 230B.

HIGR 231A-B. Research Seminar in Modern European Intellectual and Cultural History (4-4)
Selected topics in the period of the nineteenth and twentieth centuries. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter. Prerequisite: 231A is a prerequisite for 231B.

HIGR 232A-B. Research Seminar in Modern European Social and Political History (4-4)
Selected topics in the period of the nineteenth and twentieth centuries. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter. Prerequisite: 232A is a prerequisite for 232B.

HIGR 235. Science, Empire, and Exploration (4)
Examines links between scientific work, particularly expeditions and exploration, and political programs of empire in the seventeenth to twentieth centuries. Topics: collecting expeditions as expressions of empire; role of colonial administrative networks in facilitating field-based investigations; relation between European and non-European knowledge systems.

HIGR 236A-B. Research Seminar in History of Science (4-4)
A two-quarter research seminar comprising intensive study of a specific topic in the history of science. The first quarter will be devoted to readings and discussions; the second chiefley to the writing of individual research papers. Topics vary from year to year, and students may therefore repeat the course for credit. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter.

HIGR 237. Topics in the History of Ocean Sciences (4)
(Cross-listed with SIO 201.) Intensive study of specific problems in the history of the ocean sciences, and of related earth and atmospheric sciences, in the modern period. Topics vary from year to year, and students may therefore repeat the course for credit.

HIGR 238. Introduction to Science Studies (4)
(Cross-listed as Communication 225A, Philosophy 209A, and Sociology 255A.) Study and discussion of classic work in history of science, sociology of science and philosophy of science, and of work that attempts to develop a unified science studies approach. Required for all students in the Science Studies Program. Prerequisite: enrollment in Science Studies Program.

HIGR 239. Seminar in Science Studies (4)
(Cross-listed as Communication 225B, Philosophy 209B, and Sociology 255B.) Study and discussion of selected topics in the science studies field. Required for all students in the Science Studies Program. May be repeated as course content changes annually. Prerequisite: enrollment in Science Studies Program.

HIGR 240. Colloquium in Science Studies (4)
(Cross-listed as Communication 225C, Philosophy 209C, and Sociology 255C.) A forum for the presentation and discussion of research in progress in science studies, by graduate students, faculty, and visitors. Required for all students in the Science Studies Program. May be repeated as course content changes annually. Prerequisite: enrollment in the Science Studies Program.

HIGR 241. Advanced Approaches to Science Studies (4)
(Cross-listed as COGJ 225D, PHIL 209D, SOCG 255D.) Focus on recent literature in the history, philosophy, and sociology of science, technology, and medicine.
Required of all students in the Science Studies Program. Prerequisites: HIGR 238 is a prerequisite for HIGR 241; enrollment in Science Studies Program or instructor's permission.

HIGR 243. Historical Scholarship in Technology (4)
An introduction to the historiography on technology. This reading seminar provides an overview of scholarly approaches to the history of technology by critically examining classic and contemporary works in the field. Prerequisite: graduate-standing or consent of instructor.

HIGR 244. Introduction to Sound Studies (4)
Study and discussion of classic and recent scholarship on sound production and cultures of listening. Emphasizes historical literature but also includes works in literary studies, art history, music, and other fields. Prerequisite: graduate standing or consent of instructor.

HIGR 247A-B. Research Seminar in Colonial Latin America (4-4)
A two-quarter course involving readings and research on sixteenth- to eighteenth-century Latin America. Students are expected to compose a paper based on original research that is due in the second quarter. Reading knowledge of Spanish required. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter.

HIGR 248A-B. Research Seminar in Latin America, National Period (4-4)
A two-quarter course involving readings and research; the first quarter is devoted to the nineteenth and the second quarter to the twentieth century. Students are expected to compose a paper based on original research that is due in the second quarter. An IP grade will be awarded at the end of the first quarter. Final grade will not be given until the end of the second quarter. Reading knowledge of Spanish and/or Portuguese is helpful but not required.

HIGR 252. History, Social Evolution, and Intellectuals in the Andes: Mariátegui, Haya de la Torre, and Argüedas (4)
The course will study three major twentieth-century interpreters of Andean history and society: Mariátegui, Haya de la Torre, and Argüedas. The course will use three major twentieth-century interpreters of Andean history and society: Mariátegui, Haya de la Torre, and Argüedas. The course will focus on issues of growth, development, and intellectual history together with readings and discussion on selected topics within the field. May be repeated for credit; topic will vary year to year.

HIGR 255. The Literature of Ancient History (4)
An introduction to the bibliography, methodology, and ancillary disciplines for the study of ancient history together with readings and discussion on selected topics within the field. May be repeated for credit; topic will vary year to year.

HIGR 260A-B-C. Historical Scholarship on Judaic Studies (4-4-4)
Weekly graduate seminar. Faculty and students present results of research. Student research may be towards course work on thesis.

HIGR 265A-B-C. Historical Scholarship on American History (4-4-4)
A three-quarter sequence of readings and discussions on the bibliographical and monographic literature of American history from the colonial period to the present. Taught by different members of the staff each quarter, the course is required of all beginning graduate students in American history.

HIGR 267A-B. Research Seminar in United States History (4-4)
Readings and discussion in selected areas of American history for advanced graduate students. An IP (in progress) grade will be awarded the first quarter. The second quarter will be devoted to the presentation, discussion, and evaluation of work in progress. A final grade will be awarded at the end of the second quarter. Prerequisite: 267A is a prerequisite for 267B.

HIGR 271. New Research Directions in U.S. History (4)
Students will develop skills in presenting and assessing new research and offering feedback to work in progress by senior students and faculty. Course is required to be taken twice by third-year students and highly recommended for audit by all students in U.S. History. (S/U grades only.)

HIGR 273. The Culture of Consumption (4)
(Cross-listed with COGR 240.) This course will explore the development and cultural manifestations of consumerism in the nineteenth and twentieth centuries. Topics will include the rise of museums, the development of mass-market journalism and literature, advertising, and the growth of commercial amusements. Readings will be primarily on the United States. Students will be encouraged to think historically and comparatively.

HIGR 275A. Research Seminar in Middle Eastern History (4)
HIGR 275A is the first quarter of a two-quarter research seminar in Middle Eastern history. Seminar topics will vary. Reading knowledge of Arabic or Turkish is expected. A paper, based on original research, will be due at the end of the second quarter. Final grade will not be given until the end of the second quarter. Prerequisite: graduate standing or consent of instructor.

HIGR 275B. Research Seminar in Middle Eastern History (4)
HIGR 275B is the second quarter of a two-quarter research seminar in Middle Eastern history. Seminar topics will vary. Reading knowledge of Arabic or Turkish is expected. A paper, based on original research, will be due at the end of the quarter. Final grade will be awarded for HIGR 275A and B at the end of the second quarter. Prerequisites: 275A and graduate standing or consent of instructor.

HIGR 295. Thesis Seminar (4)
For students advanced to candidacy to the doctorate. Discussion, criticism, and revision of drafts of chapters of theses and of work to be submitted for publication.

HIGR 298. Directed Reading (1-12)
Guided and supervised reading in the literature of the several fields. This course may be repeated for an indefinite number of times due to the independent nature of the content of the course. (S/U grades permitted.)

HIGR 299. Ph.D. Thesis Direction (1-12)
Independent work by graduate students engaged in research and writing of doctoral theses. This course may be repeated for an indefinite number of times due to the independent nature of thesis writing and research. (S/U grades only.)

HIGR 500. Apprentice Teaching in History (1-4)
A course in which teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty; handling of discussions, preparation and grading of examinations and other written exercises, and student relations. (S/U grades only.)
Linguistics, Literature, Psychology, Sociology, Education Studies Program, and Urban Studies and Planning Program. The curriculum is designed to emphasize the idea of development as an essential perspective from which to understand human behavior. The courses cover a broad spectrum of issues in human development: from brain and perceptual development, to reasoning and problem solving, to social interaction and the evolution of cultural systems. The Human Development Program unifies and coordinates the excellent research and teaching resources currently available on campus in this area and profiles the factors that influence the ways in which humans develop and change.

Human development is a very large field, but there is a set of basic questions which serve to define and integrate it: What underlies the development of human knowledge? To what extent is the capacity to know, indeed the concepts themselves, encoded in the genes? How is the role of learning and environmental influences accounted for? How do we learn? What are the ways in which children become competent participants in their social groups? What is the origin and nature of social interaction and organization?

The study of human development has become increasingly central to a wide range of important issues affecting infants, young children and adolescents, as well as the changing structure of the American family and public policy on children and education. An understanding of the processes that underlie human development is crucial to our evaluation of these issues and to our ability to offer avenues for remediation of the attendant problems. The three major areas of study within the Human Development Program are: Biological Development, Ontogenetic Development, and Socio-Cultural Development. These areas consider issues that pertain to development of specific neural and cognitive processes and development within a larger social and cultural context.

Career Guidance

A degree in human development offers training of special interest to those considering admission to graduate or professional schools and careers in medicine, law, education, counseling, clinical psychology, public health, public policy, public administration, or social work. Students who are interested in these areas are advised to see a Human Development Program advisor for assistance in selecting elective and major courses. A major in human development is designed to impart fundamental skills in critical thinking, comparative analysis, research analysis, and written expression.

A human development major can offer preparation for teaching in elementary schools. However, if you are interested in earning a California teaching credential from UCSD, contact the Education Studies Program (EDS) for information about prerequisite and professional preparation requirements. It is recommended you contact TEP as early as possible in your academic career.

Education Abroad

Students are often able to participate in the UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP) while still making progress towards the major. Students interested in studying abroad should see a Human Development Program advisor to discuss curriculum plans and appropriate courses. It is strongly recommended that students obtain HDP pre-approval for EAP courses that are intended to count toward the major. Information on EAP/OAP is detailed in the Education Abroad Program section of the UCSD General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit the Web site at http://programsabroad.ucsd.edu/pao. Financial aid is applicable and special study abroad scholarships are available.

Prerequisites for Human Development Majors

A bachelor of arts degree in human development will be given to students who satisfactorily complete the general-education and graduation requirements of Marshall, Muir, Revelle, Roosevelt, Sixth, or Warren College in addition to the Human Development Program requirements. In accordance with UCSD academic regulations, upper-division courses used to satisfy major requirements cannot be applied towards minors (please note there is some overlap permitted for double majors). See college advisor and major advisor for questions and restrictions.

Applying for the HDP Major

Students who wish to declare the Human Development Program major must meet premajor requirements and apply for entrance into the major. All lower-division requirements must be fulfilled before applying for the major. All lower-division courses must be completed with a grade of C or better. The cumulative GPA for the eight lower-division courses must equal or exceed 2.75. Students must meet with an HDP advisor and obtain approval to declare the human development major, no later than the second quarter of the student’s junior year.

Grade Requirements for the Major

A minimum grade-point average of 2.0 is required in the major. Students must receive a grade of C- or better in any course counted toward fulfillment of the major requirements. All courses taken to satisfy the program’s lower- and upper-division requirements must be taken for a letter grade. HDP 1, HDP 150, HDP 181, and HDP 191 must be taken in residence. No substitutions will be approved.

Lower-Division Requirements

1. Introduction to Human Development: HDP 1
2. One statistics course selected from the approved list: PSYC 60, COGS 14, BIEB 100, ECON 120A, POLI 30, or MATH 11
3. One formal skills course selected from: the approved list: PHIL 10, PHIL 12, LIGN 17, MATH 10 sequence, MATH 20 sequence
4 & 5. Two biological sciences courses selected from the approved list: ANLD 1, ANLD 3, BILD 1, BILD 2, BILD 3, BILD 7, BILD 10, BILD 12, BILD 18, BILD 20, BILD 26, COGS 11, COGS 17, PSYC 2
6 & 7. Two social sciences courses selected from the approved list: ANLD 1, ANLD 3, COGN 20, COGS 1, One course from the HILD 7A, B, or C sequence (only one allowed), LIGN 4, LIGN 7, LIGN 8, LIGN 101, MMW 1, MMW 2, PSYC 1, PSYC 3, PSYC 6, Soc/L 1A, Soc/L 20
8. One computer literacy course selected from the approved list: MAE 5, COGS 3, COGS 8, COGS 18, CSE 3, CSE 5A, CSE 11

Upper-Division Requirements for the HDP Major:

A. Three Methods courses
B. Three Core Series courses
C. Six Development courses
D. HDP 150
(Full information follows)

A. Methods Courses
1. HDP 181 (Students are encouraged to take this course their junior year.)
2. HDP 191 (Students are encouraged to take this course their junior year.)
3. One course selected from the following approved list*

- ANGN 172. Life History Seminar and Practicum
- BICD 131. Embryology Laboratory
- BICD 133. Developmental Biology Laboratory
- HDP 115/COMT 115. Media and Design of Social Learning Contexts
- HDP 131. Fifth Dimension for Elementary Schools
- HDP 125/COMT 116. Practicum in Child Development
- HDP 193. Advanced Research in Human Development**
- PSYC 111A or B. Research Methods I or II
- Soc/A 104. Field Research: Methods of Participant Observation
- Soc/A 110A or B. Qualitative Research In Educational Settings

*Completion of an advanced methods course for the HDP Honors Thesis can be petitioned to replace the third methods course (not HDP 181 or HDP 191).

**HDP 193 must be taken for two quarters to fulfill the methods course requirement.

B. Core Series Courses
(3 courses selected from the approved list required, one from each DOMAIN)

Domain 1: The biological basis of human development
- ANBI 140. The Evolution of the Human Brain
- ANBI 161. Human Evolution
- COGS 115. Neurological Development and Cognitive Change
- HDP 110. Brain and Behavioral Development

Domain 2: The social/cognitive basis of human development
- COGS 156. Language Development
- HDP 120. Language Development
- HDP 121. Developing Mind
- HDP 122. Social Development
- LIGN 171. Child Language Acquisition
- LIGN 179. Second Language Acquisition
- PSYC 187. Development of Social Cognition

Domain 3: The socio-cultural basis of human development
- HDP 133. Socio-cultural Foundations of Human Development
- HITO 126. History of Childhood
- SOC/B 131. Sociology of Youth
- SOC/C 129. The Family

C. Development Courses
(6 courses required; at least 1 from each area of focus)

Biological Development
- ANBI 140. The Evolution of the Human Brain
- ANBI 159. Biological and Cultural Perspectives on Intelligence
- BICD 100. Genetics
- BICD 130. Embryology
- BICD 132. Molecular Basis of Development
- BICD 134. Human Reproduction and Development
- BIPN 144. Developmental Neurobiology
- COGS 115. Neurological Development and Cognitive Change
- COGS 184. Modeling the Evolution of Cognition
- PSYC 168. Psychological Disorders of Childhood

Ontogenetic Development
- COGS 113. Cognitive Development
- COGS 154. Communication Disorders in Children and Adults
- COGS 156. Language Development
- COHI 100. Introduction to Communication and the Individual
- COHI 114. Bilingual Communication
- COHI 119. Learning to Read
- COHI 121. Literacy, Social Organization, and the Individual
- EDS 119. First and Second Language Learning: From Childhood through Adolescence
- LIGN 119. First and Second Language Learning: From Childhood through Adolescence
- LIGN 171. Child Language Acquisition
- LIGN 179. Second Language Acquisition
- LTWL 114. Children’s Literature
- LTWL 116. Adolescent Literature
- PSYC 101. Introduction to Developmental Psychology
- PSYC 136. Cognitive Development
- PSYC 156. Cognitive Development in Infancy
- PSYC 168. Psychological Disorders of Childhood
- PSYC 172. Psychology of Human Sexuality
- PSYC 180. Adolescence
- PSYC 187. Development of Social Cognition
- PSYC 190 Parenting

Socio-Cultural Development
- ANBI 159. Biological and Cultural Perspectives on Intelligence
- COCU 149. Youth, Culture, and Media
- COHI 123. Children and Media
- EDS 115. Cognitive Development and Education
- EDS 117. Language, Culture, and Education
- HILA 117. Indians, Blacks, and Whites: Family Relations in Latin America
- LTWL 114. Children’s Literature
- LTWL 116. Adolescent Literature
- PSYC 167. Social and Emotional Development
- PSYC 180. Adolescence
- Soc/B 117. Language, Culture, and Education
- Soc/B 118A. Gender and Language in Society
- Soc/C 129. The Family
- Soc/B 131. Sociology of Youth
- Soc/C 159. Special Topics in Organizations and Institutions (Only when topic is approved for HDP major)
- Soc/B 161. Sociology of The Life Course
- USP 145. Aging—Social and Health Policy Issues

D. HDP 150. Advanced Human Development
(HDP students should enroll in this course in their senior year.)

Advanced Human Development Requirement HDP 150

Seminar for graduating HDP seniors. Readings and discussion of special topics in human development. Provides advanced-level study on subfields of human development. Topics vary quarterly. Prerequisites: HDP 1, HDP 181, HDP 191, senior standing, and department approval one quarter prior to enrollment.

Field Research Requirement HDP 191

This course provides students with the opportunity to participate jointly in a research project in conjunction with a mentor/collaborator from a local service site. This applied research experience allows students to design and conduct research projects in a variety of settings ranging from laboratory research settings to service oriented placements. In addition to literature research and a final paper at the end of the quarter, students will participate at an off-campus site for a minimum of four hours per week. Research sites are prearranged one academic year in
HDP section: Requests from
Prerequisites: lower-division standing, (HDP 1), and
to request credit for such courses. However,
developmental courses, courses are required
Students planning to study
Prerequisites: 3.0 GPA
Occasionally students identify
Human Development Program______________________
clearly describes the course for which they wish
identified by a student. In all cases, students are
transfer students, requests from students plan-
complete the following additional requirements:
1. An advanced course in statistics or methods
design (see the HDP student affairs office for
more information).
2. HDP 194A-B-C, a year-long independent
research project, which results in an Honors
Thesis.
3. Weekly attendance of the Center for Human
Development Seminar and participation.

Petitioning Courses
There are three circumstances under which
petitions to receive credit for courses not explicit-
ly approved for the major will be considered
(all approved courses are detailed in the UCSD
General Catalog, HDP section): Requests from
transfer students, requests from students plan-
ing to study abroad, and exceptional courses
identified by a student. In all cases, students are
required to submit a petition in writing that
clearly describes the course for which they wish
to receive HDP major credit, and to attach to the
petition as much information as possible about
the content of the course (e.g., syllabus, course
description, etc.). With the exception of courses
petitioned by transfer students, ALL REQUESTS
FOR APPROVAL OF COURSES NOT EXPLICITLY
LISTED IN THE UCSD General Catalog SHOULD
BE SUBMITTED BEFORE THE COURSE IS TAKEN
BY THE STUDENT.

Transfer students. Students transferring from a
community college or other university must peti-
tion for HDP credit for courses taken at their pre-
vious institution. For students transferring from
the California Community College System, articu-
lation agreements for many courses have been
developed that facilitate the petition process.
Transfer students should make an appointment
with an HDP advisor to review courses for which
they will most likely receive credit and fill out a
written petition for each course.

Education Abroad. Students planning to study
abroad may receive credit toward the major for
courses taken in another country. IT IS STRONGLY
RECOMMENDED THAT STUDENTS RECEIVE PRE-
LIMINARY APPROVAL (BEFORE LEAVING THE
COUNTRY) FOR COURSES THEY ARE CONSIDER-
ING TAKING DURING THEIR TIME ABROAD. While
the preliminary approval does not guarantee
that the actual course will be approved, the great
majority of courses for which preliminary
approval has been obtained are approved when
the actual petition is submitted upon the stu-
dent’s return.

Other courses. Occasionally students identify
a UCSD course that has the potential to fulfill an
HDP requirement. Students may petition in writ-
ing to request credit for such courses. However,
it is important to note that very few such petitions
are successful, and students are strongly cau-
tioned to petition and receive approval for such a
course BEFORE ENROLLING IN THE COURSE.

Note: Courses are not officially approved
for credit until the written petition has been
approved by the HDP Executive Committee
and signed by the HDP director.

The Minor Program
(Courses must be discussed with and ap-
proved by a Human Development academic
advisor.) A total of seven courses are required
to complete a minor in human development.
These include Introduction to Human Develop-
ment (HDP 1), and six developmental courses,
one from each major area of study from the
developmental course list.

FINISH-IN-FOUR PLAN
Students interested in a particular career field
should see the student affairs office for more spe-
cific Finish-in-Four plans for their particular college.

COURSES
For course descriptions not found in the
2007–2008 General Catalog, please contact
the department for more information.

LOWER-DIVISION

HDP 1. Introduction to Human Development (4)
This course introduces students to the central issues in
the basic areas in human development. The course will
explain relationships between biological, cognitive,
social, and cultural aspects of development. Offered
once per year. (F)

HDP 87. Freshman Seminar (1)
This seminar is designed to provide new students with
the opportunity to explore an intellectual topic in a
small seminar setting. Topics vary from quarter to
quarter. Enrollment is limited to fifteen to twenty stu-
dents, with preference given to entering freshmen.

HDP 98. Directed Group Study (1-2)
Directed group study, on a topic or in a field not
included in the department curriculum, by arrange-
ment with a faculty member. Topics will vary from
quarter to quarter. Pass/No Pass grades only.
Enrollment requires prior consent of the instructor;
students must have at least thirty units completed and
a minimum 3.0 GPA. Student may enroll for no more
than a total of two units in one quarter. Cannot be
used towards HDP major credit. Prerequisites: 3.0 GPA
and at least thirty units completed.

HDP 99. Independent Study in Human
Development (1-4)
Independent study and research under the direction
of a human development program, or affiliated, faculty
member. Pass/No Pass only. Cannot be used towards
HDP major credit. Prerequisites: lower-division standing,
completion of thirty units of UCSD undergraduate study,
a minimum UCSD GPA of 3.0, and a completed and
approved Special Studies form: UCSD Application for
Enrollment Special Studies Courses 97, 98, 99.

UPPER-DIVISION

HDP 110. Brain and Behavioral Development (4)
The purpose of this course is to familiarize students
with basic mechanisms of brain and behavioral devel-
oped from embryology through aging. Multiple
levels of analysis will be discussed, including the
effects of hormones on behavior, developmental
events at the level of cells, structures, and neural sys-
tems, and the neural basis of cognition, social, percep-
tual, and language development. Prerequisite: HDP 1 or
PSYC 101.

HDP 115. Media and Design of Social Learning
Contexts (6)
(Same as COMT 115.) A combined lecture/lab course
cross-listed in communication and human develop-
ment. Students attend lecture, write field notes, and
spend three hours per week in specially designed
after-school setting working with children and designing new educational media and producing special projects. Prerequisite: HDP 1 or COHI 100.

HDP 120. Language Development (4) Examination of children’s acquisition of language from babbling to the formation of sentences. Topics covered include: pre-linguistic gestures, relationships between babbling and sound systems, speech perception, linking words with objects, rule overgeneralization, bilingualism, nature vs. nurture, individual differences, cultural differences. Prerequisite: HDP 1.

HDP 121. The Developing Mind (4) This course examines changes in thinking and perceiving the physical and social world from birth through childhood. Evidence of significant changes in encoding information, forming mental representations, and solving problems is culled from psychological research, cross-cultural studies, and cognitive science. Prerequisite: HDP 1 and declared human development major.

HDP 122. Social Development (4) This course covers topics in social development research. Content will address general principles such as the mutual influences of caregivers and children upon each other and the interplay of person and context. Discussion areas will include attachment, parenting styles, gender differences, aggression, social cognition, social components of achievement motivation, and development of conscience. Prerequisite: HDP 1 and must be a declared HDP major.

HDP 131. Fifth Dimension for Elementary Schools (6) Students will participate four hours per week in classrooms at Torrey Pines Elementary School integrating the Fifth Dimension model of collaborative exploratory learning. Outside work will include readings and class preparation, as well as responding to children’s written inquiries, writing field notes, and writing a paper. Prerequisite: HDP 1. (F,W,S)

HDP 133. Socio-cultural Foundations of Human Development (4) This course will provide students with an understanding of the social and cultural foundations of human development. The topics will be explored with both national and international comparisons from infancy through adolescence. Prerequisite: HDP 1 or PSYC 1.

HDP 135. Practicum in Child Development (6) (Same as COMT 116.) A combined lecture and laboratory course for students in psychology, communication, and human development. Student backgrounds should include a background in general psychology or communication. Students will be expected to spend four hours a week in a supervised practical after-school setting at one of the community field sites involving children. Additional time will be devoted to readings and class prep, as well as six hours a week transcribing field notes and writing a paper on some aspect of the fieldwork experience as it relates to class lectures and readings. Prerequisite: HDP 1 or COHI 100 or PSYC 101. (F,W,S)

HDP 150. Advanced Human Development (4) Seminar for graduating HDP seniors. Readings and discussion of special topics in human development. Provides advanced-level study on subfields of human development. Topics vary quarterly. Prerequisites: HDP 1, HDP 181, HDP 191, senior standing, and department approval. (F,W,S)

HDP 160. Special Topics Seminar in Human Development (4) Special topics in human development are discussed. (May repeat when topics vary.) Prerequisite: department approval.

HDP 181. Experimental Projects in Human Development Research (6) This laboratory course in human development is designed around a variety of intensive experimental projects. With lectures providing background information on research methods and child development, each assignment will include data collection and/or analysis, and a written laboratory report. Prerequisites: HDP 1, Statistics, and must be a declared HDP major. (F,W,S)

HDP 191. Field Research in Human Development (6) This course combines lectures on research methodology (three hours/week) with an applied field research experience (four hours/week) conducted at a pre-approved study site. Required: Completion of a field notebook, review paper, oral presentation, and final paper. Prerequisites: HDP 1. Students must submit the pre-enrollment questionnaire one academic year prior to enrollment. See HDP Web site for details. (F,W,S)

HDP 193. Advanced Research in Human Development (4) Specialized research project under the direction of a human development affiliated faculty member. May be taken for one or two quarters of credit. Prerequisites: declared HDP major, overall GPA of 3.2, and a 3.5 GPA for courses taken in the human development major; an advanced course in statistics or experimental design, and consent of instructor.

HDP 194A-B-C. Honors Thesis (4-4-4) Students will take part in a weekly research seminar. In addition, they will plan and carry out a three-quarter research project under the guidance of a faculty member. The project will form the basis for their senior honors thesis. Prerequisites: overall GPA of 3.2, and a 3.5 GPA for courses taken in the human development major; an advanced course in statistics or experimental design, and consent of instructor.

HDP 195. Instructional Apprentice in Human Development (4) Introduction to teaching within the discipline of human development. Students will attend lecture, be responsible for assisting the instructor with course preparation, and will lead a discussion section of one of the lower-division courses in the human development program. Limited to upper-division students majoring in human development with consent of instructor. Pass/no pass only. Prerequisites: Declared HDP major, overall GPA of 3.0, 90 units completed, and consent of instructor.

HDP 199. Independent Study in Human Development (4) Independent study and research under the direction of a faculty member. Pass/Not Pass only. Prerequisites: consent of the instructor, completion of at least ninety undergraduate units with a minimum of 2.5 GPA, and a completed and approved Special Studies Form.

The Humanities Program offers interdisciplinary courses in history, philosophy, and literature, with a focus on major aspects of the Western humanistic tradition. In these courses, students examine the development of a wide variety of ideas and forms of expression that exert a major influence on modern America. Through lectures and class discussions, and through the writing of essays, students learn to interpret literary, historical, and philosophical texts and to conduct independent critical assessments of documents and ideas.

The sequence of courses, Humanities 1 through 5, meets the humanities and writing requirement of Revelle College. Instruction in university-level writing is part of all five courses, but students in Humanities 1 and 2 (six units each) receive intensive writing instruction.

Students must have satisfied the university’s Subject A requirement before registering for any part of the humanities sequence. Humanities 1 and 2 must be taken before Humanities 3-4-5.

For detailed description of the Revelle College humanities requirement, see “Revelle College, General-Education Requirements, Humanities.”

COURSES

For course descriptions not found in the 2007-2008 General Catalog, please contact the department for more information.

LOWER-DIVISION

1. The Foundations of Western Civilization: Israel and Greece (6) Texts from the Hebrew Bible and from Greek epic, history, drama, and philosophy in their cultural context. Revelle students must take course for letter grade. Prerequisite: satisfaction of the Subject A requirement. (W)

2. Rome, Christianity, and the Middle Ages (6) The Roman Empire, the Christian transformation of the classical world in late antiquity, and the rise of a European culture during the Middle Ages. Representative texts from Latin authors, early Christian literature, the Germanic tradition, and the high Middle Ages.
Revelle students must take course for letter grade. Prerequisite: satisfaction of the Subject A requirement. (S)

3. Renaissance, Reformation, and Early Modern Europe (4)
The revival of classical culture and values and the reaction against medieval ideas concerning the place of human beings in the world. The Protestant Reformation and its intellectual and political consequences. The philosophical background to the scientific revolution. Revelle students must take course for letter grade. Prerequisite: satisfaction of the Subject A requirement. (F)

4. Enlightenment, Romanticism, Revolution (1660–1848) (4)
The enlightenment’s revisions of traditional thought; the rise of classical liberalism; the era of the first modern political revolutions; romantic ideas of nature and human life. Revelle students must take course for letter grade. Prerequisite: satisfaction of the Subject A requirement. (W)

5. Modern Culture (1848–present) (4)
Challenges to liberalism posed by such movements as socialism, imperialism, and nationalism; the growth of new forms of self-expression and new conceptions of individual psychology. Revelle students must take course for letter grade. Prerequisite: satisfaction of the Subject A requirement. (S)

195. Methods of Teaching Humanities (4)
An introduction to teaching humanities. Students are required to attend weekly discussions on methods of teaching humanities, and will teach discussion sections of one of the humanities courses. Attendance at lecture of the course in which the student is participating is required. (P/NP grades only.) Prerequisite: consent of instructor. (W, S)

199. Special Studies (2-4)
Individually guided readings or projects in area of humanities not normally covered in standard curriculum. Prerequisite: upper-division standing or consent of instructor.

200. Seminar in the Humanities (4)
Selected topics in the history, literature, and thought of Mediterranean antiquity and its successor cultures. Emphasis on identifying both common themes and cultural distinctiveness. Discussion of pedagogical approaches to this material. Required of all graduate instructional assistants in the humanities sequence. Prerequisite: graduate standing. (F)

The Humanities Minor

The humanities minor consists of at least seven courses chosen from the listings of the Departments of History, Philosophy, Literature, Visual Arts, Music, and Theatre. All seven courses may be selected from the upper-division offerings, but at least five upper-division courses must be included. Students for whom Humanities 1-5 fulfill general-education requirements may use two of these courses towards fulfillment of requirements for the humanities minor.

For students who entered UCSD before January 1, 1998, the required number of courses for the minor is six courses, at least three of which must be upper-division.

Courses selected for the minor must be selected from the offerings of more than one department. They must concern themselves with more than one historical, national, or ethnic culture; and they must offer broad treatment of centrally important topics in the humanities. Thus, a course on the history of the United States since the Civil War would be appropriate for the humanities minor, while a course in the history of California would not.

Here are some examples of study lists appropriate for the present humanities minor:

Example 1:
History: HILD 2AB: United States
History: HILD 11: East Asia and the West
Literature: LTEA 110B: Modern Chinese
Fiction in Translation
Philosophy 160: Ethical Theory
Philosophy 153: Philosophy of History

Example 2:
History: HILA 102: Latin America in the Twentieth Century
History: HIAF 110: History of Africa to 1880
Literature: LTAM 110: Latin American Literature in Translation
Literature: LTEA 184: African-American Poetry
Music 114: Music of the Twentieth Century
Visual Arts 126DN: African and Afro-American Art

Example 3:
Literature: LTEA 145: The English Novel in the Twentieth Century
Literature: LTEA 146: Women and English/American Literature
Literature: LTEA 100: The Bible and Western Literature
Philosophy 175: Aesthetics
Philosophy 177: Philosophy and Literature
Theatre: TH/HT 11: History of Theatre I: Classical to Renaissance

Students should review their plans for the minor with the humanities advisor as well as with the advisors in their college. Before undertaking the minor, students must submit a study list for approval to the humanities office.

The Humanities Majors

Normally, students interested in majoring in humanities must choose a specific major in the humanities departments, i.e., history, literature, or philosophy. But students from Revelle and Muir Colleges may request to graduate with an approved individual/special project major in the humanities.

International Migration Studies Minor

The Minor in International Migration Studies is jointly administered by the Center for Comparative Immigration Studies (CCIS) and Eleanor Roosevelt College (ERC). It is designed to provide students with an in-depth understanding of the causes, politics, and social consequences of international migration from a broad comparative perspective. This program of study helps to prepare students for a career in research and teaching, immigrant service-providing organizations, government agencies, or law. The unique research and writing opportunities offered by
this minor also make it an excellent preparation for graduate school.

This interdisciplinary minor covers a wide range of topics, including the economic, cultural, demographic, and political impacts of immigration; laws and government policies for controlling immigration and refugee flows; ethnic, gender, citizenship, and transnational dimensions of immigration; the integration of immigrant minorities in receiving societies; and immigrant history and literature. Students learn about other countries of immigration (especially in Western Europe and East Asia) in order to place the U.S. experience in comparative perspective.

Requirements

The minor consists of a total of seven courses (twenty-eight units). The requirements can be fulfilled by courses at the lower- and upper-division levels or a combination of course work and either field research in immigrant communities or internships with local immigrant service organizations.

For more information about minor requirements, visit http://www.ccis-ucsd.org/Programs/underminor.htm.

(1) All students in the minor are required to take one lower-division U.S. ethnic diversity course from the following list:

- ANLD 23. Debating Multiculturalism: Race, Ethnicity, and Class in American Societies (4)
- ETHN 1A. Introduction to Ethnic Studies: Population Histories of the United States (4)
- ETHN 1B. Introduction to Ethnic Studies: Immigration and Assimilation in American Life (4)
- HILD 7A. Race and Ethnicity in the United States (4)
- HILD 7B. Race and Ethnicity in the United States (4)
- HILD 7C. Race and Ethnicity in the United States (4)
- POLI 40. Introduction to Law and Society (4)

(2) Students must also take one of the following upper-division overview courses on comparative immigration:

- POLI 150A. The Politics of Immigration: The U.S. in Comparative Perspective (4)
- ANGN 100. Special Topics in Sociocultural Anthropology: Migration and Society (4) (Not offered in 2006-07)
- SOC B125. Sociology of Immigration (4)

(3) Students complete the minor (twenty more required units) by pursuing one of two separate tracks:

TRACK A: ADDITIONAL COURSEWORK

Students choosing this track will take five additional courses from the following list, four of which must be upper-division. Students in the course work track may not take more than a total of four courses from any one department for this minor.

COURSES

- ANLD 23. Debating Multiculturalism: Race, Ethnicity, and Class in American Societies (4) (if not taken as a required course above)
- ANGN 100. Special Topics in Sociocultural Anthropology: Migration and Society (4) (if not taken as a required course above) (Not offered in 2006-07)
- COHI 114. Bilingual Communication (4)
- COHI 175. Advanced Topics: Communication and the Borderlands (4)
- COCU 164. Representing Race, Nation, and Violence in Multicultural California (4)
- COCU 175. Advanced Topics in Communication, Culture: A Discussion of Migrant’s Survival Strategies in the Southwest (4)
- CO 175. Special Topics: Transnationalism and Globalization (4) (proposed course)
- ECON 114. Economics of Immigration (4)
- ERC 101. Immigration, Ethnicity, and Identity in Contemporary European Society (4)
- ETHN 1A. Introduction to Ethnic Studies: Population Histories of the United States (4) (if not taken as a required course above)
- ETHN 1B. Introduction to Ethnic Studies: Immigration and Assimilation in American Life (4) (if not taken as a required course above)
- ETHN 116. The United States-Mexico Border in Comparative Perspective (4)
- ETHN 118. Contemporary Immigration Issues (4)
- ETHN 121. Contemporary Asian-American History (4)
- ETHN 122. Asian-American Culture and Identity (4)
- ETHN 123. Asian-American Politics (4)
- ETHN 144. Bilingual Communities in the U.S.A. (4)
- ETHN 151. Ethnic Politics in America (4)
- ETHN 189. Special Topics: Chicana/Latina Identities (4)
- ETHN 189. Special Topics: Comparative Vietnamese and Filipino American Identities and Communities (4)
- ETHN 189. Special Topics: Work and Family in Immigrant Communities (4)
- HILD 7A. Race and Ethnicity in the United States (4) (if not taken as a required course above)
- HILD 7B. Race and Ethnicity in the United States (4) (if not taken as a required course above)
- HILD 7C. Race and Ethnicity in the United States (4) (if not taken as a required course above)
- HIOUS 124. Asian-American History (4)
- HIUS 140. Economic History of the United States I (4)
- HIUS 141. Economic History of the United States II (4)
- HIUS 167. Topics in Mexican-American History (4)
- HIUS 180. Immigration and Ethnicity in Modern American Society (4)
- LTAM 100. Latino/a Cultures in the United States (4)
- LTAM 105. Gender and Sexuality in Latino/a Cultural Production (4)
- LTAM 106. Modern Chicana and Mexican Women Writings (4)
- LTAM 107. Comparative Latino/a and U.S. Ethnic Cultures (4)
- LTAM 109. Cultural Production of the Latino/a Diasporas (4)
- LTSP 150A. Early Latino/a-Chicano/a Cultural Production: 1848 to 1960 (4)
- LTSP 150B. Contemporary Latino/a-Chicano/a Cultural Production: 1960 to Present (4)
- LTSP 151. Topics in Chicano/a-Latino/a Cultures (4)
- LTSP 177. Literary and Historical Migrations (4)
- LTEN 178. Comparative Ethnic Literature (4)
- LTEN 181. Asian-American Literature (4)
- POLI 100H. Race and Ethnicity in American Politics (4)
- POLI 150A: Politics of Immigration (4) (if not taken as a required course above)
- SOC B114. Culture and Ethnicity (4)
- SOC B125. Sociology of Immigration (4) (if not taken as a required course above)
- SOC C139. Social Inequality: Class, Race, and Gender (4)
- SOC C140F. Law and Workplace (4)
- SOC D151. Comparative Race and Ethnic Relations (4)
- THHS 111. Hispanic-American Dramatic Literature (4)
- USP 135. Asian and Latina Immigrant Workers in the Global Economy (4)

TRACK B: FIELD RESEARCH OR INTERNSHIP

Students choosing this track will receive intensive training in field research methods appropriate for studying international migration and then conduct field research in immigrant communities or do an academic internship in a local immigrant/refugee service-providing organization.

(A) Field Research Methods, Practicum, and Data Analysis

Students who choose this option will take the following three-course sequence:

- Political Science 181A. Field Research Methods for Migration Studies (Fall Quarter)
- Political Science 181B. Field Research Practicum (Winter Quarter)
- Political Science 181C. Data Analysis/Write-up (Spring Quarter)

These courses provide students with field research methods training and allow them to go
to Mexico for three weeks to conduct research in a rural community that sends migrant workers to the United States. Students will also analyze and write up the collected data. Participants must be proficient in Spanish.

(B) Independent Field Research

Students who choose this option are required to take one upper-division research-methods course from the following:

ETHN 190. Studying Racial and Ethnic Communities
SOC 104. Field Research–Participant Observation
SOC 108A. Survey Research Design

Students will complete the remaining sixteen units of the research track for this minor through a combination of courses from the list under Track A and by completing one or two "199: Independent Studies" courses (four units each), in order to pursue a field research project with a faculty member. They will be required to conduct field research in a local immigrant community and write a substantial research paper based on this research.

(C) Internship

Students who choose this option are required to take one upper-division research-methods course from the following:

ETHN 190. Studying Racial and Ethnic Communities
SOC 104. Field Research–Participant Observation
SOC 108A. Survey Research Design

Students will then do an academic internship in a nongovernmental organization or government agency that serves immigrants or refugees in the San Diego/Tijuana area. Internships for up to eight units will be arranged by the UCSD Academic Internship Program (AIP). The remaining units needed to complete the minor will consist of courses from the list under Track A.

Professors
Roger E. Bohn, Ph.D.
Marsha A. Chandler, Ph.D.
Peter F. Cowhey, Ph.D., Dean
Richard E. Feinberg, Ph.D.
Peter A. Gourevitch, Ph.D.
Stephan M. Haggard, Ph.D.
Gordon H. Hanson, Ph.D.
Takeo Hoshi, Ph.D.
Miles Kahler, Ph.D.
Alex Kane, Ph.D.
Lawrence B. Krause, Ph.D., Emeritus
Ellis S. Krauss, Ph.D.
Bruce N. Lehmann, Ph.D.
Mathew D. McCubbins, Ph.D.
Barry J. Naughton, Ph.D.
Susan L. Shirk, Ph.D.
Matthew F. Shugart, Ph.D.
Y.-H. Tohsaku, Ph.D.
Jeffrey R. Vincent, Ph.D.

Associate Professors
Ulrike Schaede, Ph.D.
Barbara F. Walter, Ph.D.
Christopher M. Woodruff, Ph.D.

Assistant Professors
Edmund Malesky, Ph.D.
Craig McIntosh, Ph.D.
Krislert Samphantharak, Ph.D.
Jessica Wallack, Ph.D.
Jong-sung You, Ph.D.

Adjunct Professors
Julian R. Betts, Ph.D.
Samuel A. Bozette, M.D., Ph.D.
Lewis M. Branscomb, Ph.D.
Jeffrey S. Davidow, M.A.
Paul W. Drake, Ph.D.
Theodore Groves, Ph.D.
David A. Lake, Ph.D.
David R. Mares, Ph.D.
Michael M. May, Ph.D.
James E. Rauch, Ph.D.
Daniel Rodriguez, J.D.
Dale E. Squires, Ph.D.

Associate Adjunct Professors
Ann T. Brownlee, Ph.D.
Robert A. Hooper, J.D., M.F.A.
Lisa R. Shaffer, Ph.D.
Christena L. Turner, Ph.D.

Assistant Adjunct Professor
Lesley McAllister, Ph.D., J.D.

The Master of Pacific International Affairs (MPIA)

Requirements for Admission

Students interested in pursuing the MPIA degree program at UCSD’s Graduate School of International Relations and Pacific Studies (IR/PS) must have earned a B.A., or its equivalent, from an institution of comparable standing to the University of California. A minimum grade-point average of 3.0 or better in undergraduate course work or prior graduate study is required for admission. Undergraduate preparation that includes one or more of the following is strongly encouraged: the social sciences (specifically economics and political science), quantitative methods (such as calculus and statistics), foreign language, and related area studies courses. The admissions committee looks for students with previous professional employment, a history of meaningful international experience, and demonstrated leadership ability.

Applicants are required to submit the following: an online UCSD application for graduate study (http://graduateapp.ucsd.edu); two official transcripts from each college or university attended; three letters of recommendation; a résumé or curriculum vitae; a personal statement; a Graduate Record Examination (GRE) or Graduate Management Admission Test (GMAT) score report. TOEFL scores are also required of international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English. A minimum score of 550 on the paper/pencil version and a minimum score of 213 on the computer-based version of the Test of English as a Foreign Language (TOEFL) is required. For further details regarding the application process, procedures, and deadlines please visit the IR/PS Web site, http://irps.ucsd.edu, and click on “Admissions.”

Orientation tours are available for all prospective applicants who would like further information about the MPIA program. Tours assist prospective applicants in becoming better acquainted with IR/PS’s MPIA program and in understanding how the program might relate to their long-term career goals. The tour schedule is available on the IR/PS Web site in the Admissions section under “Orientation Tours.”
To sign up for a tour, please contact the IR/PS Office of Admissions at (858) 534-5914 or e-mail irps-apply@ucsd.edu. The MPIA is a two-year, full-time program.

The MPIA Curriculum (ninety-eight units)

The MPIA curriculum (ninety-eight units) is made up of a set of core disciplinary and skill-oriented courses (thirty-eight units), a regional specialization (eight units), the foreign language requirement (up to twenty-four units), a professional Career Track (twenty-four units), and unstructured electives.

CORE CURRICULUM

The Core Curriculum is designed to integrate diverse subject areas such as international management, international relations, applied economics, and comparative public policy. It comprises the following courses:

- Globalization, the World System and the Pacific (IRCO 412)
- Managerial Economics (IRCO 401)
- Policy Making Processes (IRCO 400)
- Quantitative Methods (IRCO 453 and IRCO 454)
- International Politics and Security (IRCO 410)
- International Economics (IRCO 403)
- Finance (IRCO 421)
- Accounting (IRCO 420)
- Capstone Course—choices include
 - Managerial Decision Making (IRCO 460), Business and Government in the Global Economy (IRCO 461)
 - Public Policy Workshop (IRCO 462)
 - Strategy and Negotiation (IRCO 463)
- The Corporation in the Global Economy: The Interaction of Business and Government (IRCO 464)

THE REGIONAL SPECIALIZATION

The regional specialization is made up of two designated courses on the economy and political system of a student’s chosen country or region. All students must complete a regional specialization, and may choose from among the following five options: Latin America, Japan, Korea, China, and Southeast Asia.

THE FOREIGN LANGUAGE REQUIREMENT

IR/PS considers foreign language competency to be an indispensable skill for international relations professionals. The foreign language requirement is designed to ensure that students achieve a level of competency to assist in their global interactions. The foreign language requirement may be satisfied in any one of three ways: (a) native speaker ability; (b) completing six quarters (four semesters) of college-level language instruction from UCSD or a comparable institution, with a grade of B or better in the final course; or (c) passing a special IR/PS-administered language exam, which is the equivalent of the final exam administered in the sixth-quarter course in the selected language. The foreign language requirement may be partially or wholly completed prior to matriculation at IR/PS. Please contact the IR/PS Language Program for additional information.

Students must fulfill the foreign language requirement in a language that corresponds to their elected region of specialization. Students may select either Brazilian Portuguese or Spanish when studying Latin America. Students specializing in China, Japan, or Korea, must study Chinese (Cantonese, Mandarin, or other dialect), Japanese, or Korean, respectively. Students electing to specialize in Southeast Asia may study Bahasa Indonesia, Bahasa Malay, Chinese, Thai, Tagalog, Vietnamese, or other approved language. Please contact the IR/PS Language Program for further information.

Beyond the basic language requirement, IR/PS also offers the option of certification of more advanced language proficiency for students who choose to pursue further language study. Students pursuing advanced language skills are strongly encouraged to undertake significant language study prior to coming to IR/PS.

Students on the Country and Regional Studies track are subject to a different foreign language requirement. These students must pass both the speaking and the reading proficiency examination in their selected language. The writing proficiency examination is optional. The minimum required level of proficiency is equivalent to a Foreign Service Institute (FSI) Scale 2+ for Spanish, 2 for Portuguese, and 2- for most other languages.

The proficiency examination is administered throughout the academic year. Students not following the Country and Regional Studies track may take the exam once free of charge in a language that IR/PS currently provides full-time instructional support. Those students on the Country and Regional Studies track may take the exam twice free of charge, regardless of language selection. Please consult with the IR/PS Language Program Office for additional information.

A variety of language courses are offered by UCSD. IR/PS offers four-unit language courses for international relations professionals in Brazilian Portuguese, Japanese, Mandarin Chinese, and Spanish at the intermediate or advanced levels. In addition, subject to demand, courses in Bahasa Indonesia, Korean, Vietnamese, or other Pacific Rim languages may be offered. Students electing to study a foreign language where IR/PS instructional support is not offered must secure their own language instruction and funding. Course credit for self-supported language learning may be given upon evaluation and approval of the director of the Language Program. Please contact the IR/PS Language Program for additional information.

Students are placed in foreign language courses based on prior preparation and on the results of a placement test administered during orientation.

CAREER TRACKS

Beyond the core curriculum, the regional specialization, and the foreign language requirement, students are offered an array of career tracks from which to choose. The career tracks provide an opportunity to focus on a specialized professional career path and to work closely with other students and faculty who share similar interests. A career track consists of six courses (twenty-four units). Each track combines some designated requirements and a range of relevant electives from which to choose. All students must complete a career track. A student whose interests do not fall within the existing range of tracks may complete the Self-Design track, and create a tailor-made package of courses in consultation with their faculty advisor. Currently, IR/PS offers the following career tracks:

- International Management
- International Politics
- International Environmental Policy
- Public Policy
- International Economics
- International Development and Non-Profit Management
- Country and Regional Studies
- Self-Design (approval of faculty advisor and associate dean required)

ELECTIVES

Students may use remaining units to take electives across the range of IR/PS courses in
management, political science, economics, regional studies, and language, as well as (with approval) courses offered elsewhere on campus. The number of elective units available to a student will vary, depending on factors such as prior language study. Prospective students are advised to consult the IR/PS Office of Admissions for a full list of elective courses currently offered.

Internships

Students are strongly encouraged to participate in various internship programs that are available in business and industry, federal and state government, and through various nonprofit foundations and institutions. The Career Services team works closely with students, alumni, donors, and the public to support student internship programs with organizations in the nonprofit, public, and private sectors. To enhance students’ professional goals, IR/PS strongly recommends that each student participate in an internship the summer following his or her first year. Internships offer opportunities to apply theoretical knowledge to real work situations and investigate global career options through hands-on experience.

Education Abroad Program

Students are encouraged to participate in the Education Abroad Programs (EAP) in their second year of study. Though this will necessitate a third year of study to meet MPIA requirements, the opportunity provides unparalleled experience in the selected regional study area and language. By petition, certain credits earned through EAP may be applied to the MPIA degree requirements.

Career Services

The IR/PS Career services team provides students with expertise, guidance, and resources to successfully manage their careers. This individualized process begins in career management orientation before the student’s first quarter and continues throughout the two-year program.

Career Services include individual career consulting appointments, workshops, employer/alumni panels, internship/job listings, and on-campus interviews. Specialized workshops include résumé writing/cover letters, effective job search strategies, interviewing skills (including videotaped mock interviews), labor market trends, job offer evaluation, and negotiation of total compensation packages.

The Ph.D. in Economics and International Affairs

Requirements for Admission

Applicants who seek admission to the highly competitive joint Ph.D. program must have earned a B.A., or its equivalent, from an institution of comparable standing to the University of California. Preference will be given to students with prior academic records of distinction and to those who have a background in one of the fields of emphasis and/or geographical areas covered by the program.

Applicants are required to submit the following: an online UCSD application for graduate study (http://graduateapp.ucsd.edu); two official transcripts from each college or university attended; three letters of recommendation; a résumé or curriculum vitae; a personal statement; a writing sample; a Graduate Record Examination (GRE) score report. TOEFL scores are also required of all international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English. A minimum score of 550 on the paper/pencil version and a minimum score of 213 on the computer-based version of the Test of English as a Foreign Language (TOEFL) is required.

The minimum criteria required for admission to the extremely selective joint Ph.D. program can be found on the following Web site: http://irps.ucsd.edu/academics/phd-program.htm. Admission is offered to a very small number of applicants.

The Ph.D. Curriculum Program of Study

The Ph.D. in economics and international affairs prepares students for research careers in economics, with an emphasis on international affairs and the Pacific region. The program combines the analytical skills of economics with political economy, institutional analysis, and region/empirical knowledge.

Program Advisory Committee

Each student is assigned a Program Advisory Committee of four economics and IR/PS faculty, at least one must be from economics, one from IR/PS and one outside member from another UCSD department. With this committee, the student works out a plan of study that the commit-

tee must approve. The student must make satisfactory progress in a coherent program of course work and reading courses, which meet the approval of the Program Advisory Committee.

Course Requirements

The Ph.D. curriculum in economics and international affairs is designed to provide students with basic training in the techniques of modern economics, as well as empirical and institutional knowledge of the Pacific region. The first year will consist of the three sequences of microeconomics, macroeconomics, and econometrics, taught in the Department of Economics. The second year will consist of continuation of the three series plus seven electives. Two of these electives will be an IR/PS sequence in political economy. In subsequent years, courses will consist of the regional sequence, an empirical project, and two third-year papers.

Regional Requirement

Students must take at least three courses, one of which may be a reading course on policy processes and issues in the Pacific region. These courses may consider the Pacific region as a whole, as a sub-region, or examine individual countries. The courses may be in both IR/PS and, with prior permission, related departments. Some students may choose to take more than the minimum three courses to deepen their knowledge of a particular country or area. Comprehensive examination on regional areas is not required.

Language Requirement

Students are expected to achieve a level appropriate to the student’s dissertation topic of reading proficiency in at least one foreign language. Proficiency may be verified by examination or by certification by thesis supervisor.

Comprehensive Examinations

Students must pass written comprehensive exams in microeconomics, macroeconomics, and econometrics, which will be administered and graded by the economics department.

Dissertation

Candidates must present a dissertation prospectus no later than March of their third year in the doctoral program. They will be examined on their prospectus by their dissertation committee and must complete a dissertation, which makes a substantial and original contribution to knowledge commensurate with the stan-
dards of the University of California in order to receive the Ph.D. degree.

Oral Defense

Students will defend their dissertation at a final oral examination, which will be open to the public.

Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of five years. Total university support cannot exceed six years. Total registered time at UCSD cannot exceed seven years.

The Ph.D. in Political Science and International Affairs

Requirements for Admission

Applicants who seek admission to the highly competitive joint Ph.D. program must have earned a B.A., or its equivalent, from an institution of comparable standing to the University of California. Preference will be given to students with prior academic records of distinction and those who have a background in one of the fields of emphasis and/or geographical areas covered by the program.

Applicants are required to submit the following: an online UCSD application for graduate study (http://graduateapp.ucsd.edu); two official transcripts from each college or university attended; three letters of recommendation; a résumé or curriculum vitae; a personal statement; a writing sample; a Graduate Record Examination (GRE) score report. A minimum score of 550 on the paper/pencil version and 213 on the computer-based version of the Test of English as a Foreign Language (TOEFL) is required of all international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English.

The minimum criteria required for admission to the extremely selective joint Ph.D. program can be found on the following Web site: http://irps.ucsd.edu/academics/phd-program.htm. Admission is offered to a very small number of applicants.

The Ph.D. Curriculum

Program of Study

The Ph.D. in political science and international affairs prepares students for research careers in political science, with an emphasis in either international policy analysis or comparative policy analysis. The program combines the analytical skills of political science with political economy, institutional analysis, policy analysis (especially economic policy) and regional training, with special attention to East Asia and/or Latin America.

Course Requirements

The Ph.D. curriculum in political science and international affairs is designed to provide students with basic training in the techniques of modern political science, as well as applications to specific policy areas and countries or regions. Seventeen courses are required prior to advancement to candidacy. There is a common core sequence, consisting of comparative public policy, two courses in comparative politics, two courses in international relations and research design. Each student must declare a primary field of either international policy analysis (IPA) or comparative policy analysis (CPA), consisting of three specialized courses. There is also a regional focus of five courses. Three additional courses must be taken from a set of electives.

Regional Requirement

The regional focus consists of international relations of Asia Pacific or international relations of the Americas (depending on which region is the student’s primary region), three additional courses in the student’s primary region, and one course in another region offered by either IR/PS or the Department of Political Science are required. By petition, students may count a region other than one of the IR/PS offerings (currently China, East Asia, Japan, Latin America, or South-east Asia) as their primary region.

Language Requirement

All students in the program are required to meet a high standard of proficiency in a foreign language before being advanced to candidacy. The language must be linked to the student’s region.

Seminar Papers

Each student must submit two seminar papers, one in each field. The penultimate draft of each seminar paper must be completed prior to taking the appropriate field exam, and the final draft must be completed by the end of the quarter in which the exam is taken. Both papers must demonstrate knowledge of the student’s regional focus, as well as knowledge of relevant theory in the field. At least one of the papers must also demonstrate knowledge of a substantive policy area, related to the student’s primary focus field.

Comprehensive Examinations

Each student must pass two comprehensive examinations, one in international relations and one in comparative politics. Each exam will be graded by a joint committee consisting of three permanent faculty members, with at least one from political science and at least one from IR/PS.

The primary field exam contains a focus field, which may be either a substantive field of policy analysis (e.g., trade, environment, international finance) or the student’s chosen primary region. Regardless of focus field, that part of the exam will test the student’s knowledge of theoretical literature and ability to apply it to a policy issue of relevance to the region.

Dissertation

Candidates must present a dissertation prospectus to be examined by their dissertation committee, and must complete a dissertation which makes a substantial and original contribution to knowledge commensurate with the standards of the University of California in order to receive the Ph.D. degree. The dissertation committee shall consist of four faculty members chosen from the Department of Political Science and IR/PS, with at least one from each unit. A fifth member must be from outside the department and IR/PS.

Oral Defense

Students will defend their dissertation at a final oral examination, which will be open to the public.

Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of the fourth year. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

The Ph.D. in International Affairs

Pending final approval of the joint Ph.D. degree programs in economics and international affairs, and political science and international affairs, no future admissions will be made to the Ph.D. in International Affairs Program.
Global Leadership Institute Program

The Global Leadership Institute (GLI) is a graduate-level, executive education program. Since 1989, GLI has served as an executive training program for mid-career professionals seeking to expand their knowledge and experience in various aspects of international affairs including politics, public policy, management, and economics. Participants also have the opportunity to learn English or other languages of countries located in the Pacific region. Professional tours are offered throughout the quarter, thereby allowing GLI Fellows the opportunity to see industry-related operations firsthand in a cross-section of public and private sector organizations. The duration of each participant’s program may range from one quarter (eleven weeks) up to two years. For international applicants, in addition to participating under the Exchange Visitor (J) Visa program as a short-term Fellow enrolled in courses, GLI also hosts research scholars exclusively interested in gaining access to UCSD’s extensive resources. Both working professionals and graduate students in study abroad programs may opt for either Exchange Visitor (J) Visa category. GLI also offers customized courses in a variety of disciplines for organizations sending a group of professionals in a specialized field; these courses can be integrated with regularly scheduled course work during the academic quarter. Custom group programs ranging in duration from one day to two months are also available. A certificate of study is presented upon completion of a GLI program.

For more information, please contact the Global Leadership Institute via e-mail at irps-gli@ucsd.edu or the GLI Program Coordinators at (858) 822-3875 or (858) 534-7420.

The Korea-Pacific Program

The Korea-Pacific Program was formed in September 1989 in recognition of the growing importance of Korea in the world, of Korean-U.S. relationships, and of the Korean model of social and economic development.

Directed by IR/PS Professor Stephan Haggard, the program promotes the understanding of Korea in an international context and encourages the study of Korea by offering courses on the country’s economics and politics. Research is supported on contemporary Korean political economy. Outreach to the community is offered through seminars, lectures, courses, and cultural events.

In comparison with other Korean studies programs in the United States, the IR/PS Korea-Pacific Program is distinctive in several respects: it concentrates on contemporary Korea, focuses on policy questions, stresses the foundations of Korean economic growth, explores Korea’s international relations, and seeks to understand Korea in a broad regional context.

The ASEAN-Pacific Project

The ASEAN-Pacific Project is one of several major regional and theme-based nodes of activity within the Graduate School of International Relations and Pacific Studies. Its mandate is to support students and to serve as a catalyst for the development of Southeast Asia-related teaching and research activities within the school.

The ASEAN-Pacific Project extends the success of the school’s original Vietnam-Pacific Project, with scope being broadened to embrace the other countries of Southeast Asia.

The project is built upon private donations to the school, with this resource being supplemented by resources obtained from external grant agencies and the university. The project supports the activities of students at IR/PS with an interest in Southeast Asia through fellowships (for summer travel and internships) and visiting guests speakers.

The project also serves as a catalyst and facilitator for research projects within the school relating to Southeast Asia. It seeks to promote disciplinary-driven work on political and economic topics pertaining to Southeast Asia, as distinct from more traditional area studies scholarship. Examples of this include recent work on national political institutions and policy-making, the dynamics of regional cooperation, food and agricultural policies, and the relocation of the global magnetic disk-drive industry to Southeast Asia. Other recent research-related initiatives include a major international workshop for Ph.D. students in political science working on Southeast Asia, and a workshop for the U.S. Agency for International Development on political conflict in Indonesia.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.
IRCO 453. Quantitative Methods I (2)
This course is designed to provide proficiency in quantitative methods that are used for optimization and decision making. The use of spreadsheets is applied to data analysis and problem solving. Statistical theory and regression analysis are introduced.

IRCO 454. Quantitative Methods II (4)
This course covers elements from statistics that are central to business decision-making under uncertainty. In particular, regression analysis and estimation will be applied to problems of forecasting and optimization.

IRCO 460. Managerial Decision Making (4)
This course develops practical decision-making skills useful in a management setting. It stresses identifying relevant information and presenting it effectively. Skills include strategic analysis, negotiation, and application of quantitative methods. Prerequisites: IRCO 400, 401, 410, 412, 420, 421, 453 and 454, or consent of instructor.

IRCO 461. Business and Government in the Global Economy (4)
Business and government interaction in the world economy are examined from both public policy and private sector management perspectives. Topics include competitive advantage, the challenging boundaries of private and public, and the influence of private interests on public sector regulation. Prerequisites: IRCO 400, 401, 410, 412, 420, 421, 453, and 454, or consent of instructor.

IRCO 462. Public Policy Workshop (4)
Presents tools for analysis of public policies. Students collaborate on term-long projects analyzing public policy formation, implementation, and outcomes. Prerequisites: IRCO 400, 401, 410, 412, 420, 421, 453, and 454, or consent of instructor.

IRCO 463. Strategy and Negotiation (4)
This course introduces the fundamentals of corporate strategy, based on case studies requiring corporate analysis; and the principles of negotiation, based on exercises and class learning. Both sections of this class are highly applied, and require intensive out-of-class preparation and teamwork that help students acquire skills in analytical thinking, strategic action planning, and hands-on negotiations. Prerequisites: IRCO 400, 401, 410, 412, 420, 421, 453, and 454.

IRCO 464. The Corporation in the Global Economy: The Interaction of Business and Government (4)
What can countries, firms, and individuals do to position themselves effectively in the world economy? This course uses case studies to explore the global division of labor in the production value chain, government policy and the micro-organization of the firm. Prerequisites: IRCO 400, 401, 410, 412, 420, 421, 453, and 454, or consent of instructor.

GENERAL COURSES
Not all general courses are offered each year.

IRGN 400. International Relations of Asia-Pacific (4)
International relations and developing international political economies of nations bordering the Pacific. Topics include the "Pacific Basin" concept; the U.S. and "hegemonic-stability" theory; legacies of the Korean War and Sino-Soviet dispute; immigration patterns and their consequences; and Japan's foreign policy.

IRGN 401. Ethnic Conflict (4)
Explanations for why ethnic conflicts break out, why they are difficult to resolve, and what effect outside intervention has on them. Introduce students to the major theories of ethnic and internal conflict. Policy debates regarding how the international community can best respond to these conflicts.

IRGN 402. International Political Economy: Money and Finance (4)
Examination of effects of national policies and international collaboration on public and private international financial institutions, in particular the management of international debt crises, economic policy coordination, and the role of international lender of last resort.

IRGN 403. International Political Economy: Trade (4)
The course examines the evolution of the international trading system, emphasizing issues of politics and policy. Topics include developments in the GATT, the emergence of regional trading blocks, protectionism, industrial policy, and the relationship between trade and direct investment. Students choose a particular sector to develop expertise. Prerequisite: IRCO 412 or consent of instructor.

IRGN 404. Chinese Politics (4)
This course will analyze post-1949 Chinese politics, including political institutions, the policy-making process, and citizen political behavior. Special attention will be paid to the prospects for political reform in China.

IRGN 405. U.S.–China Relations (4)
Can the United States and China manage to develop a constructive relationship or are they headed toward a hostile relationship? This course addresses this question by examining the domestic and international influences on the foreign policies of both countries and key issues in the bilateral relationship. Students also do policy projects.

IRGN 406. Financial Institutions (4)
This course analyzes the roles of money and financial institutions in the economy. The first part of the course focuses on microeconomics and the financial system. The topics include money, financial markets, financial intermediaries, banking regulations, and bank runs. The second part of the course focuses on the microeconomics of financial institutions. The topics include financial development, financial liberalization, and their effects on the economy, especially economic growth and development. Prerequisite: graduate level or consent of instructor.

IRGN 407. Policy Implementation Process (4)
Course builds on Policy-Making Processes class by focusing on nonelected officials' role in setting and implementing policy. Ideally, elected officials make policies that unbiased, technically proficient bureaucrats carry out. Course provides insight into why the real world departs from this. Prerequisite: IRCO 400.

IRGN 409. Economic Policy in Latin America (4)
This course seeks to enhance the students' understanding of the main policy alternatives open to the largest Latin American countries. Development and stabilization policies are analyzed, emphasizing the current debate between conventional and heterodox policy packages and their impact on decisionmaking. Prerequisites: IRCO 401, IRCO 403.

IRGN 410. Corporate Governance (4)
Why do corporate governance systems—the way firms are run, the relationships among managers, stockholders, and workers—differ widely around the world? This course examines the various explanations for these striking differences and the consequences. Prerequisite: graduate level or consent of instructor.

IRGN 411. Business and Management in Japan (4)
This course introduces the main aspects of Japanese business and industrial organization (keiretsu), Japanese management practices, and the representation and influence of business interests in the Japanese political economy.

IRGN 412. International Competitiveness and the Globalized Value Chain (4)
This course explores the strategies countries pursue in the highly competitive world economy. It examines the global value chain and public policy toward education, labor, corporate social responsibility, free markets and global trade, finance and shareholding, and the political process.

IRGN 413. Corporate Strategy and the Environment (4)
This seminar examines the ability of firms to increase shareholder value through improved environmental performance. Topics include product differentiation, strategic use of regulations, the "Porter hypothesis," and environmental management systems. Readings include case studies and research articles. Prerequisites: IRCO 401, 453, and 454.

IRGN 416. Post War Politics in Japan (4)
Overview of postwar politics in Japan, including American Occupation reforms, political institutions, major political factors, mass and elite, and political behavior. Special attention will be paid to the issue of Japan's changing democracy.

IRGN 417. Microfinance (4)
This course will begin by examining financial markets in poor countries. Investigates how microfinance contracts overcome problems which had previously barred the extension of business credit in many environments.

IRGN 419. Risk Management (4)
This course provides an introduction to derivative assets such as options, futures, and swap contracts. The main emphasis is on their valuation, use in hedging, and role as components of liabilities that mitigate risk and agency problems in business firms. Prerequisite: IRCO 421.

IRGN 420. Strategic Marketing Planning (4)
This course develops the microeconomics foundations of market exchange by explicitly examining the marketing details of transactions: demand and product differentiation, incomplete and incorrect information, search costs and promotion costs. It is argued that within this theoretical framework (i.e., model) most observed marketing behavior can be reconciled. The primary objective of this course is to learn to deduce firm and consumer motives from observed behavior. Prerequisites: IRCO 401 and 403, or consent of instructor.

IRGN 422. Investments (4)
An analysis of the risk/return characteristics of different assets as perceived by different investors and their implications for security price behavior, emphasizing real world capital market behavior. International aspects include the role of exchange rate risk and international diversification. Prerequisites: IRCO 421, 453, and 454, or consent of instructor.

IRGN 424. Corporate Finance (4)
The topics covered are dividend policy and capital structure, options, debt financing, and short and long-term in financial planning. Course format will be mostly lectures, with occasional cases. Some international aspects of corporate finance will also be discussed. Prerequisites: IRCO 401, 403, 420, 421, 453, and 454, or consent of instructor.
IRGN 425. Managing Service Operations (4)
The course covers (1) strategic issues such as service vision, market positioning, growth, and globalization; (2) process design, facility design, and capacity planning; (3) system control and performance measurement; and (4) human resources, information technology, and other service media. Prerequisite: IRGN 438 or consent of instructor.

IRGN 426. Management of Technology (4)
How companies choose and develop new technology. Case studies, lectures by executives. National technology policy, including the roles of intellectual property. This course emphasizes technology strategy at corporate/national level; the Product Development course emphasizes tactics for development teams.

IRGN 427. Competition and Regulation in the Global Communications Market (4)
This course explores the global market for telecommunications, internet, and information services. It analyzes how regulation and international trade rules influence market structure and conduct. It examines the politics underlying government rules. And it probes the strategies of corporations in the global market.

IRGN 429. The Globalization of Production (4)
This course examines how trade policy, information technology, and other factors shape the production strategies of multinational enterprises. Topics include foreign direct investment and the mode of entry into foreign markets, global outsourcing and the globalization of work, and the impact of trade and investment policy on the world location of production. Prerequisites: IRCO 401 and 403, or consent of instructor.

IRGN 430. Fiscal and Monetary Policy (4)
Effects of fiscal and monetary policies on aggregate variables such as output, nominal and real interest rates, price level, and employment. Additional topics include the inflation/unemployment trade-off, budget deficit, and economic growth.

IRGN 431. International Finance (4)
The international financial system will be addressed including the perspectives of individual investors, borrowers, and financial intermediaries. Public policy issues including the exchange rate mechanism, financial linkages among countries, optimum currency areas and macro-policy coordination will be discussed. Prerequisite: IRCO 401 or consent of instructor.

IRGN 432. Immigration and Immigration Policy (4)
This course examines the role of immigration in the globalization of Pacific Rim economies. Topics include the economic forces behind immigration, the impact of immigration on wages, employment, and industry structure in sending and receiving countries; and the nature, scope, and political economy of immigration policy. Prerequisite: IRCO 401 or consent of instructor.

IRGN 433. International Trade (4)
The course develops new analytical models of international trade and examines their relevance for trade policy. Topics include setting trade policy where firms have global market power; the interaction between international trade, innovation, and economic growth; regional economic policy, dynamic industry clusters, and information technology; and new trade theory and the world distribution of income. Prerequisites: IRCO 401 and 403, or consent of instructor.

IRGN 436. Information and Management (4)
This is a seminar course on the use of information by organizations in strategic and tactical decision-making. Actual content varies, and currently includes doing business on the Internet and supply chain management. Prerequisite: IRGN 438 or consent of instructor.

IRGN 437. Policy Design (4)
Course teaches how to make strong, reasoned cases for new policy initiatives. Covers cost-benefit analysis, cost-effectiveness evaluation, multi-goal analysis, and how these are used in policymaking. Covers tools to predict policy impact, like drawing on “best practice” and related experiences.

IRGN 438. Operations Management: Analysis and Control (4)
This course provides a comprehensive introduction to the fundamental decisions and trade-offs associated with the control of a firm’s operations function. It analyzes production processes, quality control, inventory and materials planning, kanban and just-in-time principles. Prerequisites: IRCO 453 and 454, or consent of instructor.

IRGN 439. Policy Evaluation (4)
Research-design class focusing on strategies for evaluating policies’ effectiveness with data in small quantities. Skills taught: understanding limits of what data say, and using information optimally. The emphasis is on qualitative analysis. The concepts taught are similar to those presented in QM3. Prerequisites: IRGO 453 and IRGO 454.

IRGN 440. Managerial Accounting and Control (4)
Focus on planning, managing, controlling and evaluating costs for competitive advantage in global markets. Key topics will include cost structure, cost-based managerial decision making, strategic cost management, JIT/TQC cost management, and accounting control systems. Prerequisite: IRCO 420 or consent of instructor.

IRGN 441. WTO and the Law (4)
Survey of twenty-one WTO Agreements and major WTO cases. Students present hypothetical WTO cases to the class. Cases involve issues like genetically modified foods, trade restrictions on oil, developing countries’ grant of compulsory patent licenses, and import bans on rainforest products.

IRGN 443. Economics of Telecommunications (4)
This course will focus on the underlying economics of the telecommunications and public policy rationale of regulations applied to this industry. Both theoretical models and case studies will be used to provide better understanding of the telecommunication marketplace and the nature of competition between service providers in the industry. Prerequisite: IRGO 401 or consent of instructor.

IRGN 444. Product Development (4)
This course examines how high-tech companies develop successful products. Emphasizes interplay between business and technology issues, including marketing, finance, manufacturing, prototyping, testing, and design. Student teams develop novel products, from concept to working prototype, including a business plan for launching the product. Discussion of concurrent engineering, rapid prototyping, industrial design, and other design methodologies.

IRGN 445. Legal Aspects of International Business (4)
Course develops decision-making skills for corporate managers working with legal counsel. Course focuses on the international legal arena emphasizing transnational modalities like international sales, foreign agency and distributorship agreements, intellectual property licensing, offshore corporate establishment, and international mergers and acquisitions. Prerequisites: IRCO 403, 420, 421, 453, and 454.

IRGN 446. Applied Data Analysis and Statistical Decision Making (4)
The goal of the course is to teach how to evaluate quantitative information in business and economics contexts, and to make sound managerial decisions in complex situations. Much of the problems and the course work will involve statistical software and spreadsheet analysis of data. The course covers various applied multivariate statistical methods beyond basics. Prerequisites: IRCO 453 and 454, or consent of instructor.

IRGN 447. Organizations (4)
A seminar course based on the modern economics of organization. Covers an eclectic set of readings on a diverse range of organizations, looking at how incentives for collective action are structured. Prerequisites: IRCO 401 and 403 or consent of instructor.

IRGN 448. Civil Society and Development (4)
To explore the roles that civil society/NGOs/the third sector can play in advancing political, social, and economic progress in developing countries. To consider the strengths and weaknesses, capacities, and limitations of NGOs in developing countries. To provide students with experience in evaluating NGOs and in making professional recommendations to enhance their ability to make a difference. To prepare students to take leadership roles—whether in government, the private sector, or NGOs—in promoting civil-society participation in development.

IRGN 449. Making U.S. Foreign Policy (4)
Analysis of the interests, structure and procedures of the main executive branch agencies involved in the formulation of foreign policy, and of the roles of Congress, the media, public opinion, and non-governmental actors. Case studies and “daily briefings” to prepare students to perform professionally in the foreign policy arena. Prerequisite: IRGO 410 or consent of instructor.

IRGN 451. Economic Development (4)
This course examines comparative patterns of industrialization and agricultural modernization with a focus on certain common features of the modernization process and widely varying endowments, policies, and experiences, of different countries. Prerequisites: IRCO 401 and 403, or consent of instructor.

IRGN 452. Quantitative Methods for Advanced Analysts (4)
This course caters to the needs of those who routinely face a variety of advanced data-analysis challenges, such as international marketing and sales managers, consulting analysts, or international business development and intelligence specialists. Knowledge of introductory statistics and data, such as linear regression, is assumed. The course is entirely practical in that it is organized around in-depth case studies, requiring students to work extensively with data. Methods covered include cluster, factor, and discriminant analysis, and modeling and simulation.

IRGN 454. Current Issues in U.S.-Latin American Relations (4)
Issues to be actively debated include the collective defense of democracy, coping with revolutionary
change, counter-narcotics, anti-corruption, international finance, trade, and U.S.-Mexican and U.S.-Brazilian relations. In each case, students analyze the strengths and weaknesses of current U.S. policy and advocate alternative options. Prerequisite: IRCO 410 or consent of instructor.

IRGN 455. Economic Theories of Regional Integration (4)
The first part of the course covers the basic economics of trading blocs and proceeds to more complicated topics in the theory of preferential trading arrangements, customs unions, and currency unions. In the second part we use the formal theory to compare economic integration in different parts of the world. Prerequisites: IRCO 401 and 403 or consent of instructor.

IRGN 456. Program Design and Evaluation (4)
Introduction to elements of program design and evaluation. Examines principles and guidelines used in creating a program and evaluating its success or failure. International case studies are explored. Students have the opportunity to develop their own program and evaluate projects.

IRGN 457. Cost Benefit Analysis (4)
Examination of public policy analysis, such as cost-benefit analysis and project evaluation, for use in policy formation. Sustainable development will receive particular attention. Case studies emphasizing the environment, agriculture and food, and economic development will be included.

IRGN 458. International Environmental Policy and Politics (4)
This course analyzes multilateral environmental agreements and negotiating positions of key countries on climate change, biodiversity conservation, sustainable development, and other subjects. It explores the challenges countries face to balance economic development objectives with global environmental concerns.

IRGN 459. Conflict Resolution of Environmental Issues (4)
Use of bilateral negotiations (U.S.-Canada), regional organizations (ECE and acid rain in Europe), and United Nations’ specialized agencies (UNEP and WMO on ozone depletion and climate change) to mediate environmental disputes. Consideration of nontraditional approaches resolving international environmental problems.

IRGN 460. The Politics of U.S.-Japan Economic Relations (4)
This course will analyze how the domestic politics of each country, their international negotiations, and their interaction concerning economic issues have affected the U.S.-Japan relationship. Both the politics of cooperation and integration, and trade friction and conflict will be addressed in part through study of specific cases.

IRGN 461. Doing Business in China (4)
This course describes the Chinese commercial, organizational, and cultural environment. Case studies of foreign businesses in China are examined, and the opportunities and pitfalls of operation in China are considered. Negotiation with Chinese counterparts is covered through a negotiation exercise. The focus is on mainland China, but some attention is given to business in Hong Kong and Taiwan as well. Students are required to prepare business plans for proposed Chinese ventures.

IRGN 462. Economies in Southeast Asia (4)
This course focuses on the long-run and current economic issues of Southeast Asia. The topics are economic growth, human capital, inequality and poverty, social institutions, the business sector, the financial sector, government, the external sector, and regional and interregional economic relations. For each topic, we will discuss the issues from selected countries in the region in more detail.

IRGN 463. Politics of Southeast Asia (4)
This course provides an introduction to five Southeast Asian countries: Indonesia, Thailand, Malaysia, the Philippines, and Vietnam. The focus will be on national level of political and economic issues in these countries. In addition, a number of region-wide issues will also be examined such as: Chinese business groups and networks; clientelism and corruption; regional trade and investment linkages; democratization; and the implications of political change for future economic development. Prerequisite: graduate standing or consent of instructor.

IRGN 464. Strategies and Skills for Effective Consulting (4)
This course will provide an introduction to the field of consulting. It will focus both on effective consulting strategies and on skills and tools that are helpful in the process. Technical, cultural, economic, and political issues will be considered, as the various aspects of consultant work are examined.

IRGN 465. Management of Non-profit Organizations (4)
Analyzes the particular environment in which non-profit organizations function and achieve their objectives. Management tools are applied to existing non-profits and to student projects.

IRGN 466. Public Finance (4)
Study of principles of taxation and expenditure analysis; public budgeting; and assessment of budget priorities.

IRGN 468. Government and Business in Japan (4)
This course aims to identify and analyze the basic features of the Japanese political economy and government-business relationships in postwar Japan. Following an introduction to the constituents of Japanese political and industrial organization, specific aspects of financial and industrial policy (MOF/MITI) as well as regulation and corporate governance are discussed.

IRGN 469. The Japanese Financial System (4)
This course studies the financial system in Japan and analyzes its role in the development of the Japanese economy. Topics will include keiretsu and the main bank system, internationalization and deregulation of finance, the Bank of Japan and monetary policy. Prerequisites: IRCO 401 and 403.

IRGN 470. International Business Strategy (4)
This course analyzes corporate strategies and management issues in their international dimensions. Based on numerous case studies, the class examines the strategic opportunities and problems that emerge when companies transfer corporate skills and competence to other countries.

IRGN 471. Japanese Economy (4)
A broad survey of the Japanese economy, together with an in-depth examination of some distinctively Japanese phenomena such as savings behavior, financial structure, industrial organization, and labor markets. Prerequisites: IRCO 401 and 403, or consent of instructor.

IRGN 475. International Negotiation (4)
This course attempts to reach a broad audience of students who seek in-depth understanding of how states and other international actors attempt to achieve specific objectives through give-and-take of the negotiation process. Cases include Northern Ireland and Middle East peace processes, negotiations leading to Dayton accords, and negotiations over Anti-Ballistic Missile Treaty.

IRGN 476. Doing Business in Latin America (4)
Explores the realities of conducting business in Latin America. Focus will be on discussing a variety of cases, mainly in four countries—Mexico, Brazil, Argentina and Chile—covering strategic, operational, organizational, and cultural issues. Course format consists of case studies and includes the development and presentation of a business plan.

IRGN 477. Latin American Politics (4)
Introductory reading seminar on Latin American politics to acquaint students with leading schools of thought, provide critical perspective on premises and methodology and identify themes for further inquiry. Themes include authoritarianism, revolution, democratization, regional conflict, and emergence of middle-level powers.

IRGN 478. Japanese Foreign Policy (4)
Examines the domestic and strategic sources of Japan’s foreign policy in the postwar era. Unlike IRGN 460, this course emphasizes Japan’s foreign economic policy in regional and global multilateral organizations, and the major security issues it confronts with its Asian neighbors.

IRGN 479. Politics and Institutions in Latin America (4)
Overview of Latin American politics and the “rules of the game,” both formal and informal. Key topics include military rule, presidentialism, and clientelism in the region as a whole, with special emphasis on Argentina, Brazil, Chile, and Mexico. Prerequisite: IRCO 400 or consent of instructor.

IRGN 481. Managing Country Risk in the Modern Multinational Corporation (4)
Examines ways to analyze, assess, and reduce country risk.

IRGN 483. Business and Policy in Southeast Asia (4)
Surveys various dimensions of business in Southeast Asia, with particular attention to the policy context. Special focus on technological capabilities of business organizations in Southeast Asia. Prerequisite: IRGN 264/462 or consent of instructor.

IRGN 484. Korean Politics (4)
This course will examine characteristics and distinctive aspects of contemporary Korean society and politics. Emphasis will be placed on continuity and change in social values, political culture and leadership, economic growth and its impact, and democratization and its future prospects.

IRGN 485. The Korean Economy (4)
Analytical review of South Korea’s economic performance. Examination of major policy changes (e.g., shifts toward export promotion, heavy and chemical industries, etc.); Korea’s industrial structure including the role of large enterprises (chaebol); role of government; links between Korea and other countries.

IRGN 486. Economic and Social Development of China (4)
This course examines China’s development experience from a generally economic standpoint. Contents include: patterns of traditional Chinese society and economy; geography and resource constraints, impact
of the West and Japan; development since 1949; and contemporary problems and options.

IRGN 487. Applied Environmental Economics (4)
This course teaches students how to analyze environmental and natural resource policy issues in developing countries using economic concepts and methods. Weekly spreadsheet exercises based on real-world data provide hands-on practice. Prerequisites: IRCO 401, 453, 454, or consent of instructor.

IRGN 490. Special Topics in Pacific International Affairs (4)
A seminar course at an advanced level on a special topic in Pacific international affairs. May be repeated for credit.

IRGN 497. Internship (2)
Independent research that draws on an internship with an organization relevant to career track and/or intended specialization. Nature of the required product to be determined by professor supervising the course. May be repeated for credit.

IRGN 498. Directed Group Study (2)
Directed reading in selected area. The content of each course is to be decided by the professor directing the course with the approval of the student's faculty advisor. May be repeated for credit.

IRGN 499. Independent Research (2-12)
Independent research under the guidance of a faculty member of IR/PS. May be repeated for credit.

LANGUAGE COURSES

IRLA 400A-B-C. Chinese Language for Professional Proficiency (4-4-4)
This course is designed to enable students at a low-intermediate level of proficiency to maintain and improve their Japanese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only, or by consent of instructor.

IRLA 401A-B-C. Japanese Language for Professional Proficiency (4-4-4)
This course is designed to enable students at an intermediate level of proficiency to maintain and improve their Japanese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only or by consent of instructor.

IRLA 411A-B-C. Japanese Language for Professional Proficiency (4-4-4)
This course is designed to enable students at an intermediate level of proficiency to maintain and improve their Japanese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only or by consent of instructor.

IRLA 412A-B-C. Japanese Language for Professional Proficiency (4-4-4)
This course is designed to enable students at an advanced level of proficiency to maintain and improve their Japanese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only or by consent of instructor.

IRLA 413A-B-C. Japanese Language for Professional Proficiency (4-4-4)
This course is designed to enable students at an advanced level of proficiency to maintain and improve their Japanese language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only or by consent of instructor.

IRLA 417. Introduction to Kanji (2)
Introduction to the characteristics and usage of Chinese characters (Kanji) used in Japanese language: history, structure, cognitive aspects, their relationship with hiragana and katakana, policy issues, learning strategies, and technology. Prerequisite: basic knowledge of Japanese grammar and consent of instructor; IR/PS majors.

IRLA 418. Strategies for Reading Japanese (2)
This course introduces effective and efficient strategies for reading advanced-level professional texts in Japanese; analysis of extended sentence structure and multiple predicate sentences and development of strategies for skimming, scanning, and intensive reading of Japanese texts. Prerequisite: basic knowledge of Japanese grammar and writing system and consent of instructor; IR/PS majors.

IRGA 410A-B-C. Portuguese Language for Professional Proficiency (4-4-4)
This course is designed to enable Spanish-speaking students to acquire proficiency in the Portuguese language through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only or by consent of instructor.

IRLA 421A-B-C. Second Year Portuguese Language for Spanish Speakers (4-4-4)
A continuation of first-year Portuguese for Spanish speakers. This course is designed to enable Spanish speaking students to be introduced to an intermediate level of Portuguese language through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only or by consent of instructor.

IRGA 440A-B-C. Spanish Language for Professional Proficiency (4-4-4)
This course is designed to enable students at a low-intermediate level of proficiency to maintain and improve their Spanish language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only or by consent of instructor.

IRGA 441A-B-C. Spanish Language for Professional Proficiency (4-4-4)
This course is designed to enable students at an intermediate level of proficiency to maintain and improve their Spanish language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only or by consent of instructor.

IRGA 442A-B-C. Spanish Language for Professional Proficiency (4-4-4)
This course is designed to enable students at an advanced level of proficiency to maintain and improve their Spanish language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only or by consent of instructor.

IRGA 443A-B-C. Spanish Language for Professional Proficiency (4-4-4)
This course is designed to enable students at an advanced level of proficiency to maintain and improve their Spanish language skills through a combination of classes, language laboratories, exercises, and other language experiences. Prerequisite: IR/PS majors only or by consent of instructor.

IRGA 460A-B-C. Bahasa Indonesia for Professional Proficiency (4-4-4)
This course is designed to enable students with basic knowledge and skills of Bahasa Indonesia to further develop communicative skills through a combination of classes, exercises, and other language experiences. Prerequisite: IR/PS majors only or consent of instructor.

IRGA 490. Special Topics in Language (2-12)
A seminar course at an advanced level on core linguistic functions and topics related to international management and policy work in the Pacific Rim area. Prerequisite: proficiency examination must be passed.

IRGA 500. Apprentice Teaching of Language (1-4)
This course, designed for graduate students serving as teaching assistants, includes discussion of teaching techniques, theories, and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. Prerequisite: graduate standing.

PH.D. LEVEL COURSES

IRGN 201. Ethnic Conflict (4)
Explains for why ethnic conflicts break out, why they are difficult to resolve, and what effect outside intervention has on them. Introduce students to the major theories of ethnic and internal conflict. Policy debates regarding how the international community can best respond to these conflicts.
Examination of effects of national policies and international collaboration on public and private international financial institutions, in particular the management of international debt crises, economic policy coordination, and the role of international lender of last resort.

IRGN 203. International Political Economy: Trade (4)
The course examines the evolution of the international trading system, emphasizing issues of politics and policy. Topics include developments in the GATT, the emergence of regional trading blocks, protectionism, industrial policy, and the relationship between trade and direct investment. Students choose a particular sector to develop expertise. Prerequisite: IRCO 412 or consent of instructor.

IRGN 204. International Relations of the Pacific (4)
International relations and developing international political economies of nations bordering the Pacific. Topics include: the "Pacific Basin" concept; the U.S. and "hegemonic-stability" theory; legacies of the Korean War and Sino-Soviet dispute; immigration patterns and their consequences; and Japan's foreign policy.

IRGN 205. U.S.–China Relations (4)
Can the United States and China manage to develop a constructive relationship or are they headed toward a hostile relationship? This course addresses this question by examining the domestic and international influences on the foreign policies of both countries and key issues in the bilateral relationship. Students also do policy projects.

IRGN 206. Corporate Strategy and the Environment (4)
This course explores the global market for telecommunication services, strategic use of regulations, the "Porter hypothesis," and environmental management systems. Readings include case studies and research articles. Prerequisites: IRCO 401, 421, 453, 454, or consent of instructor.

IRGN 207. Policy Implementation Process (4)
This course builds on the core Policy-Making Processes class by focusing on nonelected officials' role in setting and implementing policy both within nations and internationally. In an ideal world, policies would be made by elected officials who respond to the will of the people, and these policies would be carried out by unbiased, technically proficient bureaucrats. This course provides some insights into why the real world departs from this picture. Prerequisite: IRCO 400.

IRGN 209. Strategic Marketing Planning (4)
This course develops the microeconomics foundations of market exchange by explicitly examining the marketing details of transactions: demand and product differentiation, incomplete and incorrect information, search costs and promotion costs. It is argued that within this theoretical framework (i.e., model) most observed marketing behavior can be reconciled. The primary objective of this course is to learn to deduce firm and consumer motives from observed behavior. Prerequisites: IRGN 221 and/or consent of instructor.

IRGN 210. International Politics and Security (4)
Development of analytic tools for understanding international relations with applications to contemporary problems such as the environment, nuclear proliferation, human rights, humanitarian interventions, and the roots of conflict and cooperation among countries.

IRGN 211. Financial Institutions (4)
This course analyzes the roles of money and financial institutions in the economy. The first part of the course focuses on microeconomics and the financial system. The topics include money, financial markets, financial intermediaries, banking regulations, and bank runs. The second part of the course focuses on the microeconomics aspects of financial institutions. The topics include financial development and financial liberalization, and their effects on the economy, especially economic growth and development. Prerequisite: graduate level or consent of instructor.

IRGN 212. International Competitiveness and the Globalized Value Chain (4)
This course explores the strategies countries pursue in the highly competitive world economy. It examines the global value chain and public policy toward education, labor, corporate social responsibility, free markets and global trade, finance and shareholding, and the political process.

IRGN 213. Risk Management (4)
This course provides an introduction to derivative assets such as options, futures, and swap contracts. The main emphasis is on their valuation, use in the hedging, and role as components of liabilities that mitigate risk and agency problems in business firms. Prerequisite: IRCO 421.

IRGN 214. Corporate Governance (4)
Why do corporate governance systems—the way firms are run, the relationship among managers, stockholders, and workers—differ widely around the world? This course examines the various explanations for these striking differences and the consequences. Prerequisite: graduate level or consent of instructor.

IRGN 215. Competition and Regulation in the Global Communications Market (4)
This course explores the global market for telecommunications, internet, and information services. It analyzes how regulation and international trade rules influence market structure and conduct. It examines the politics underlying government rules. And it probes the strategies of corporation in the global market.

IRGN 216. Post War Politics in Japan (4)
Overview of postwar politics in Japan, including American Occupation reforms, political institutions, major political factors, mass and elite, and political behavior. Special attention will be paid to the issue of Japan's changing democracy.

IRGN 217. Microfinance (4)
This course will begin by examining financial markets in poor countries. Investigates how microfinance contracts overcome problems that had previously banned the extension of business credit in many environments.

IRGN 218. Globalization, the World System, and the Pacific (4)
This course examines globalization and other economic and political factors that shape the international relations of the Pacific Rim. Specific topics include financial market integration, state cooperation and intervention, and case studies of individual countries.

IRGN 221. Managerial Economics (4)
Survey of basic tools in economics. Examination of how commodity demand is determined, what affects supply of the commodity, how price is determined, when optimal market allocation of resources and failure occur, and basic topics concerning the aggregate economy.

IRGN 222. Investments (4)
An analysis of the risk/return characteristics of different assets as perceived by different investors and their implications for security price behavior, emphasizing real world capital market behavior. International aspects include the role of exchange risk and international diversification. Prerequisites: IRCO 421, 453, and 454.

IRGN 223. The Globalization of Production (4)
This course examines how trade policy, information technology, and other factors shape the production strategies of multinational enterprises. Topics include foreign direct investment and the mode of entry into foreign markets, global outsourcing and the globalization of work, and the impact of trade and investment policy on the world location of production. Prerequisites: IRGN 221 and IRGN 243, or consent of instructor.

IRGN 224. Corporate Finance (4)
The topics covered are dividend policy and capital structure, options, debt financing, and short and long-term in financial planning. Course format will be mostly lectures with occasional cases. Some international aspects of corporate finance will also be discussed. Prerequisites: IRGN 221, 243, IRCO 420, 421, 453 and 454, or consent of instructor.

IRGN 225. Managing Service Operations (4)
This course covers (1) strategic issues such as service vision, market positioning, growth, and globalization; (2) process design, facility design, and capacity planning; (3) system control and performance measurement; and (4) human resources, information technology, and other service media. Prerequisites: IRCO 400 and either IRGN 438 or consent of instructor.

IRGN 226. Management of Technology (4)
How companies choose and develop new technology. Case studies, lectures by executives. National technology policy, including the roles of intellectual property. This course emphasizes technology strategy at corporate/national level; the Product Development course emphasizes tactics for development teams.

IRGN 227. Organizations (4)
A seminar course based on the modern economics of organization. Covers an eclectic set of readings on a diverse range of organizations, looking at how incentives for collective action are structured. Prerequisites: IRGN 221 and 243 or consent of instructor.

IRGN 228. Government and Business in Japan (4)
This course aims to identify and analyze the basic features of the Japanese political economy and government-business relationships in postwar Japan. Following an introduction to the constituents of Japanese political and industrial organization, specific aspects of financial and industrial policy (MOF/MITI) as well as regulation and corporate governance are discussed. Additional paper and/or examination will be required at the doctoral level.

IRGN 229. Business and Management in Japan (4)
This course introduces the main aspects of Japanese business and industrial organization (keiretsu), Japanese management practices, and the representation and influence of business interests in the Japanese political economy.

IRGN 231. Fiscal and Monetary Policy (4)
Effects of fiscal and monetary policies on aggregate variables such as output, nominal and real interest rates, price level, and employment. Additional topics include the inflation/unemployment trade-off, budget deficit, and economic growth.
IRGN 232. Immigration and Immigration Policy (4)
This course examines the role of immigration in the globalization of Pacific Rim economics. Topics include the economic forces behind immigration; the impact of immigration on wages, employment, and industry structure in sending and receiving countries; and the nature, scope, and political economy of immigration policy. Prerequisites: IRGN 221 or consent of instructor.

IRGN 233. International Finance (4)
The international financial system will be addressed including the perspectives of individual investors, borrowers, and financial intermediaries. Public policy issues including the exchange rate mechanism, financial linkages among countries, optimum currency areas, and macro-policy coordination will be discussed. Prerequisites: IRGN 243 and IRCO 421, or consent of instructor.

IRGN 234. Strategic Analysis (4)
This course analyzes competitive interactions, surveying the modern economic analysis of relationships between and within organizations. The foundations of the course are game theory and the economics of information. Topics include bargaining and contracting, principal agent models, and bidding models. Prerequisite: graduate standing or consent of instructor.

IRGN 235. Topics in International Trade (4)
This course develops new analytical models of international trade and examines their relevance for trade policy. Topics include setting trade policy where firms have global market power; the interaction between international trade, innovation, and economic growth; regional economic policy, dynamic industry clusters, and information technology; and new trade theory and the world distribution of income.

IRGN 236. Information and Management (4)
This is a seminar course on the use of information by organizations in strategic and tactical decision-making. Actual content varies, and currently includes doing business on the Internet and supply chain management. Prerequisite: IRGN 238 or consent of instructor.

IRGN 237. Policy Design (4)
Course teaches how to make strong, reasoned cases for new policy initiatives. Covers cost-benefit analysis, cost-effectiveness evaluation, multiglobal analysis, and how these are used in policymaking. Covers tools to predict policy impact, like drawing on “best practice” and related experiences.

IRGN 238. Production and Operations Management: Analysis and Control (4)
This course provides a comprehensive introduction to the fundamental decisions and trade-offs associated with the control of a firm’s operations function. It analyzes production processes, quality control, inventory and materials planning, kanban, and just-in-time principles. Prerequisites: IRCO 433 and 454.

IRGN 239. Policy Evaluation (4)
Research-design class focusing on strategies for evaluating policies’ effectiveness with data in small quantities. Skills taught: understanding limits of what data say, and using information optimally. The emphasis is on qualitative analysis. The concepts taught are similar to those presented in QM3. Prerequisites: IRCO 453 and 454.

IRGN 240. Applied Data Analysis and Statistical Decision Making (4)
The goal of the course is to teach how to evaluate quantitative information in business and economics contexts, and to make sound managerial decisions in complex situations. Much of the problems and the course work will involve statistical software and spreadsheet analysis of data. The course covers various applied multivariate statistical methods beyond basics. Prerequisites: IRCO 453 and 454.

IRGN 241. WTO and the Law (4)
Survey of twenty-one WTO Agreements and major WTO cases. Students present hypothetical WTO cases to the class. Cases involve issues like genetically modified foods, trade restrictions on oil, developing countries’ granting of compulsory patent licenses, and import bans on forest products.

IRGN 242. Economics of Telecommunications (4)
This course will focus on the underlying economics of the telecommunications and public policy rationale of regulations applied to this industry. Both theoretical models and case studies will be used to provide better understanding of the telecommunication marketplace and the nature of competition between service providers in the industry. Prerequisite: IRGN 221 or consent of instructor.

IRGN 243. International Economics (4)
The theory and mechanisms of international economics. Included will be such topics as real trade theory, international movements of capital, the effects of trade and capital flows on domestic economies, and policies toward trade and foreign investment.

IRGN 244. Product Development (4)
This course examines how high-tech companies develop successful products. Emphasizes the interplay between business and technology issues, including marketing, finance, manufacturing, prototyping, testing, and design. Student teams develop novel products, from concept to working prototype, including a business plan for launching the product. Discussion of concurrent engineering, rapid prototyping, industrial design, and other design methodologies.

IRGN 245. Legal Aspects of International Business (4)
Course develops decision-making skills for corporate managers working with legal counsel. Course focuses on the international legal arena emphasizing transactions and modalities like international sales, foreign agency and distributorship agreements, intellectual property licensing, offshore corporate establishment, and international mergers and acquisitions. Prerequisites: IRCO 403, 420, 421, 453, and 454.

IRGN 248. Civil Society and Development (4)
To explore the roles that civil society/NGOs/the third sector can play in advancing political, social, and economic progress in developing countries. To consider the strengths and weaknesses, capacities, and limitations of NGOs in developing countries. To provide students with experience in evaluating NGOs and in making professional recommendations to enhance their ability to make a difference. To prepare students to take leadership roles—whether in government, the private sector, or NGOs—in promoting civil-society participation in development.

IRGN 249. Making U.S. Foreign Policy (4)
Analysis of the interests, structure, and procedures of the main executive branch and agricultural agencies involved in the formulation of foreign policy, and of the roles of Congress, the media, public opinion, and non-governmental actors. Case studies and “daily briefings” to prepare students to perform professionally in the foreign policy arena. Prerequisite: IRGN 210 or consent of instructor. Suggested: IRGN 218.

IRGN 250. The Politics of U.S.-Japan Economic Relations (4)
This course will analyze how the domestic politics of each country, their international negotiations, and their interaction concerning economic issues have affected the U.S.-Japan relationship. Both the politics of cooperation and integration, and trade friction and conflict will be addressed in part through study of specific cases.

IRGN 251. Economic Development (4)
This course examines comparative patterns of industrialization and agricultural modernization with a focus on certain common features of the modernization process and widely varying endowments, policies, and experiences of different countries. Prerequisites: IRGN 221 and 243, or consent of instructor.

IRGN 252. Quantitative Methods for Advanced Analysts (4)
This course caters to the needs of those who routinely face a variety of advanced data-analysis challenges, such as international marketing and sales managers, consulting analysts, or international business development and intelligence specialists. Knowledge of introductory optimization and statistics, including linear regression, is assumed. The course is entirely practical in that it is organized around in-depth case studies, requiring students to work extensively with data. Methods covered include cluster, factor, and discriminant analysis, and modeling and simulation.

IRGN 256. Program Design and Evaluation (4)
Introduction to elements of program design and evaluation. Examines principles and guidelines used in creating a program and evaluating its success or failure. International case studies are explored. Students have the opportunity to develop their own program and evaluate projects.

IRGN 257. Cost Benefit Analysis (4)
Examination of public policy analysis, such as cost-benefit analysis and project evaluation, for use in policy formation. Sustainable development will receive particular attention. Case studies emphasizing the environment, agriculture and food, and economic development will be included.

IRGN 258. International Environmental Policy and Politics (4)
This course analyzes multilateral environmental agreements and negotiating positions of key countries on climate change, biodiversity conservation, sustainable development, and other subjects. It explores the challenges countries face to balance economic development objectives with global environmental concerns.

IRGN 259. Conflict Resolution of Environmental Issues (4)
Use of bilateral negotiations (U.S.-Canada), regional organizations (ECE and acid rain in Europe), and United Nations’ specialized agencies (UNEP and WMO on ozone depletion and climate change) to mediate environmental disputes. Consideration of nontraditional approaches resolving international environmental problems.

IRGN 260. Economic and Social Development of China (4)
This course examines China’s development experience from a generally economic standpoint. Contents include: patterns of traditional Chinese society and economy; geography and resource constraints, impact of the West and Japan; development since 1949, and contemporary problems and options.
IRGN 261. Chinese Politics (4)
This course will analyze post-1949 Chinese politics, including political institutions, the policy-making process, and citizen political behavior. Special attention will be paid to the prospects for political reform in China.

IRGN 263. Politics of Southeast Asia (4)
This course provides an introduction to five Southeast Asian countries: Indonesia, Thailand, Malaysia, the Philippines, and Vietnam. The focus will be on national level political and economic issues in these countries. In addition, we will also examine a number of region-wide issues: Chinese business groups and networks; clientelism and corruption; regional trade and investment linkages; democratization; and the implications of political change for future economic development. Prerequisite: graduate standing or consent of instructor.

IRGN 264. Economies in Southeast Asia (4)
This course focuses on the long-run and current economic issues of Southeast Asia. The topics are economic growth, human capital, inequality and poverty, social institutions, the business sector, the financial sector, government, the external sector, and regional and interregional economic relations. For each topic, we will discuss the issues from selected countries in the region in more detail.

IRGN 265. Management of Non-profit Organizations (4)
Analyzes the particular environment in which non-profit organizations define and achieve their objectives. Management tools are applied to existing non-profits and to student projects.

IRGN 266. Public Finance (4)
Describes principles of taxation and expenditure analysis; public budgeting; and assessment of budget priorities.

IRGN 269. The Japanese Financial System (4)
This course studies the financial system in Japan and analyzes its role in the development of the Japanese economy. Topics will include keiretsu and the main bank system, internationalization and deregulation of finance, the Bank of Japan and monetary policy. Prerequisites: IRGN 221 and 243.

IRGN 270. International Business Strategy (4)
This course analyzes corporate strategies and management issues in their international dimensions. Based on numerous case studies, the class examines the strategic opportunities and problems that emerge when companies transfer corporate skills and competence to other countries.

IRGN 271. Japanese Economy (4)
A broad survey of the Japanese Economy, together with an in-depth examination of some distinctively Japanese phenomena such as savings behavior, financial structure, industrial organization, and labor markets. Prerequisites: IRGN 221 and 243, or consent of instructor.

IRGN 273. Current Issues in U.S.-Latin American Relations (4)
Issues to be actively debated include the collective defense of democracy, coping with revolutionary change, counter-narcotics, anti-corruption, international finance, trade, and U.S.-Mexican and U.S.-Brazilian relations. In each case, students analyze the strengths and weaknesses of current U.S. policy and advocate alternative options. Prerequisite: IRCO 210 or consent of instructor.

IRGN 274. Economic Policy in Latin America (4)
This course seeks to enhance the students' understanding of the main policy alternatives open to the largest Latin American countries. Development and stabilization policies are analyzed, emphasizing the current debate between conventional and heterodox policy packages and their impact on decision making. Prerequisites: IRGN 221 and 243.

IRGN 276. International Negotiation (4)
This course attempts to reach a broad audience of students who seek in-depth understanding of how states and other international actors attempt to achieve specific objectives through give-and-take of the negotiation process. Cases include Northern Ireland and Middle East peace processes, negotiations leading to Dayton accords, and negotiations over Anti-ballistic Missile Treaty.

IRGN 277. Latin American Politics (4)
Introductory reading seminar on Latin American politics to acquaint students with leading schools of thought, provide critical perspective on premises and methodology, and identify themes for further inquiry. Themes include authoritarianism, revolution, democratization, regional conflict, and emergence of middle-level powers. Conjoined with political science 235A.

IRGN 278. Japanese Foreign Policy (4)
Examines the domestic and strategic sources of Japan’s foreign policy in the postwar era. Unlike IRGN 460, this course emphasizes Japan’s foreign economic policy in regional and global multilateral organizations, and the major security issues it confronts with its Asian neighbors.

IRGN 279. Doing Business in Latin America (4)
Explores the realities of conducting business in Latin America. Focus will be on discussing a variety of cases, mainly in four countries—Mexico, Brazil, Argentina and Chile—covering strategic, operational, organizational, and cross-cultural issues. Course format consists of case studies and includes the development and presentation of a business plan.

IRGN 281. Managing Country Risk in the Modern Multinational Corporation (4)
Examines ways to analyze, assess, and reduce country risk.

IRGN 284. Korean Politics (4)
This course will examine characteristics and distinctive aspects of contemporary Korean society and politics. Emphasis will be placed on continuity and change in social values, political culture and leadership, economic growth and its impact, and democratization and its future prospects.

IRGN 285. The Korean Economy (4)
Analytical review of South Korea’s economic performance. Examination of major policy changes (e.g., shifts toward export-promotion, heavy and chemical industrial promotion), Korea’s industrial structure including the role of large enterprise (chaebol); role of government; links between Korea and other countries.

IRGN 286. Business and Policy in Southeast Asia (4)
Surveys various dimensions of business in Southeast Asia, with particular attention to the policy context. Special focus on technological capabilities of business organizations in Southeast Asia. Prerequisites: IRGN 264/462 or consent of instructor.

IRGN 287. Politics and Institutions in Latin America (4)
Overview of Latin American politics and the “rules of the game,” both formal and informal. Key topics include military rule, presidentialism, and clientelism in the region as a whole, with special emphasis on Argentina, Brazil, Chile, and Mexico.

IRGN 289. Applied Environmental Economics (4)
This course teaches students how to analyze environmental and natural resource policy issues in developing countries using economic concepts and methods. Weekly spreadsheet exercises based on real-world data provide hands-on practice. Prerequisites: IRCO 453, 454, IRGN 221, or consent of instructor.

IRGN 290. Special Topics in Pacific International Affairs (4)
A seminar course at an advanced level on a special topic in Pacific international affairs. May be repeated for credit.

IRGN 298. Directed Group Study (2-12)
Directed reading in selected area. The content of each course is to be decided by the professor directing the course with the approval of the student’s faculty advisor. May be repeated for credit.

IRGN 299. Independent Research (2-12)
Independent research under the guidance of a faculty member in IR/PS. May be repeated for credit.

International Studies

OFFICE: Suite 100, ERC Administration Building
http://isp.ucsd.edu

Program Faculty
Suzanne A. Brenner, Ph.D., Associate Professor, Anthropology
J. Lawrence Broz, Ph.D., Associate Professor, Political Science
Robert Cancel, Ph.D., Associate Professor, Literature
Marsha A. Chandler, Ph.D., Professor, International Relations and Pacific Studies
William M. Chandler, Ph.D., Professor, Political Science
Ellen Comisso, Ph.D., Professor, Political Science
Ann L. Craig, Ph.D., Associate Professor, Political Science: Provost, Eleanor Roosevelt College
Joseph W. Escherick, Ph.D., Professor, History
Clark Gibson, Ph.D., Professor, Political Science; Director, International Studies Program
Peter Gourevitch, Ph.D., Professor, International Relations and Pacific Studies
Stephen Haggard, Ph.D., Professor, International Relations and Pacific Studies
Gordon H. Hanson, Ph.D., Professor, International Relations and Pacific Studies
Takeo Hoshi, Ph.D., Professor, International Relations and Pacific Studies
Christine Hunefeld-Frode, Ph.D., Professor, History
Stephanie Jed, Ph.D., Associate Professor, Literature
Bennetta Jules-Rosette, Ph.D., Professor, Sociology
Miles Kahler, Ph.D., Professor, International Relations and Pacific Studies
Hasan Kayali, Ph.D., Associate Professor, History
Todd Kontje, Ph.D., Professor, Literature
David A. Lake, Ph.D., Professor, Political Science
Lisa M. Lowe, Ph.D., Professor, Literature
Victor Magagna, Ph.D., Associate Professor, Political Science
Timothy McDaniel, Ph.D., Professor, Sociology
Maria Polinsky, Ph.D., Professor, Linguistics
Nancy G. Postero, Ph.D., Assistant Professor, Anthropology
Pamela B. Radcliffe, Ph.D., Associate Professor, History
James E. Rauch, Ph.D., Professor, Economics
Joel Robbins, Ph.D., Associate Professor, Anthropology
Akos Rona-Tas, Ph.D., Associate Professor, Sociology
Lisa R. Shaffer, Ph.D., Associate Adjunct Professor/Director/International Relations, International Relations and Pacific Studies/Scripps Institution of Oceanography/DO
Peter N. Smith, Ph.D., Professor, Political Science
Stefan A. Tanaka, Ph.D., Professor, History
Christena L. Turner, Ph.D., Associate Professor, Sociology
Donald Tuzin, Ph.D., Professor, Anthropology
Carlos H. Waisman, Ph.D., Professor, Sociology
Lisa Yoneyama, Ph.D., Associate Professor, Literature
Leon Zamosc, Ph.D., Associate Professor, Sociology

The International Studies Program

Technology and the forces of cultural and economic integration appear to reduce the distances between societies, which now impinge on one another on many dimensions. At the same time, ethnic, religious, and economic conflicts erupt within and between societies, often in violent form. Both the proximity of other societies and the remaining divides within and between them demand a better understanding of their cultures and institutions. Societies cannot be understood in isolation or at a single point in time, however; they are shaped by global and regional environments—political, military, economic, cultural—and their pasts. Individuals and societies in turn shape those environments as they reinterpret their histories.

Using different disciplinary lenses, the international studies major explores the interaction between international and national, global and local, contemporary and historical. The program builds on the strengths of existing international specializations at UCSD. International relations and comparative politics are established and distinguished fields of political science. The comparative study of societies and cultures lies at the core of sociology and anthropology. Literature and linguistics offer a rich array of courses dealing with languages and traditions outside the English-speaking societies. Area studies programs provide comprehensive understanding of particular countries and regions.

The international studies major provides students with both a firm grounding in a discipline and the flexibility to permit exploration from alternative perspectives. The primary and secondary tracks chosen by each student contain the disciplinary foundations of the major. International studies majors also complete two core courses that serve as gateways to disciplinary approaches and to central international and comparative issues that cut across disciplines. Among these subjects are cultural boundaries and identities, economic and social development, international and regional integration and their effects, the evolution of political and social institutions, and forms of communication and language. A required capstone seminar permits the completion of a research paper in close association with a faculty member. International studies majors benefit throughout from the activities and programs of the Institute for International, Comparative, and Area Studies (IICAS), the home for international studies at UCSD.

Education Abroad

Candidates for honors in any of the International Studies degrees must meet the following requirements:

• A GPA of 3.5 in courses in the International Studies Major (INTL 101, 102, primary track, and secondary track courses)
• Completion of INTL 190H: Senior Honors Seminar in International Studies.
• Completion of a senior honors thesis (INTL 196H). On the recommendation of the student’s advisor, an approved international studies program advisor to discuss appropriate courses and programs for their plan of study.

International studies attracts students who are interested in a variety of careers, including government and international organizations, international business, non-governmental organizations, journalism, the arts, and the media. Because of its strong disciplinary core, the major also prepares students who wish to pursue graduate degree programs in international affairs or in one of the participating disciplines.

HONORS

The Honors Program in International Studies recognizes academic excellence in the major. The Honors Program allows qualified students to complete an honors thesis on a topic of their choice in close collaboration with a member of the faculty. Students who wish to participate in the Honors Program in International Studies should indicate their interest in the spring quarter of their junior year. Honors program applications are available on the ISP Web site. Applications are due by the end of the semester before you enroll in 190H.

For information on study abroad in the ISP, visit http://isp.ucsd.edu, and http://programsabroad.ucsd.edu/acadint/PDFs/intlstudabroad.pdf

CAREERS

The Honors Program in International Studies recognizes academic excellence in the major. The Honors Program allows qualified students to complete an honors thesis on a topic of their choice in close collaboration with a member of the faculty. Students who wish to participate in the Honors Program in International Studies should indicate their interest in the spring quarter of their junior year. Honors program applications are available on the ISP Web site. Applications are due by the end of the semester before you enroll in 190H.

For information on study abroad in the ISP, visit http://isp.ucsd.edu, and http://programsabroad.ucsd.edu/acadint/PDFs/intlstudabroad.pdf

The Honors Program in International Studies requires students to complete an honors thesis on a topic of their choice in close collaboration with a faculty member. Students who wish to participate in the Honors Program in International Studies should indicate their interest in the spring quarter of their junior year. Honors program applications are available on the ISP Web site. Applications are due by the end of the semester before you enroll in 190H.

For information on study abroad in the ISP, visit http://isp.ucsd.edu, and http://programsabroad.ucsd.edu/acadint/PDFs/intlstudabroad.pdf

Requirements for the Honors Program

Candidates for honors in any of the International Studies degrees must meet the following requirements:

• A GPA of 3.5 in courses in the International Studies Major (INTL 101, 102, primary track, and secondary track courses)
• Completion of INTL 190H: Senior Honors Seminar in International Studies.
• Completion of a senior honors thesis (INTL 196H). On the recommendation of the student’s advisor, an approved international studies program advisor to discuss appropriate courses and programs for their plan of study.
Students are required to take a senior honors thesis in the direction of a member of the International Studies faculty. The thesis must reflect a research project that is substantially broader in scope than the research paper required of all International Studies students in INTL 190.

Criteria for “distinction,” “high distinction,” and “highest distinction”

- Students must maintain a 3.5 GPA in the major to graduate with distinction.
- Each student whose honor thesis also earns a grade of A− shall be entitled to the designation “with distinction.”
- Each student whose honor thesis earns a grade of A shall be entitled to the designation “with high distinction.”
- Each student whose honors thesis earns a grade of A+ shall be entitled to the designation “with highest distinction.”

Please refer to the International Studies Program Web site for additional requirements.

The International Studies Major

A student who satisfactorily completes the general-education requirements of Muir, Revelle, Marshall, Warren, Roosevelt, or Sixth College in addition to the international studies requirements described below will be awarded one of the following bachelor of arts degrees based upon selection of the primary track:

- International Studies-Anthropology
- International Studies-Economics
- International Studies-History
- International Studies-Linguistics
- International Studies-Literature
- International Studies-Political Science
- International Studies-Sociology

All upper-division courses applied to the requirements of the major must be taken for a letter grade. A 2.0 grade-point average is required in the major, and students must earn at least C– in each course counted for the major. Transfer students should consult with the international studies advisor for assistance in determining whether courses taken elsewhere satisfy the major's program requirements.

Lower-Division Requirements

Foreign language (four quarters of college-level language or equivalent proficiency)

Students majoring in international studies are required to demonstrate basic proficiency in a modern foreign language by completing four quarters of foreign language instruction (or equivalent) with a passing grade. Students may also complete this requirement by demonstrating advanced language ability on a proficiency exam. College-level language study is a prerequisite for study abroad in most non-English-speaking countries and enhances understanding of those societies. Students who plan to study abroad in non-English speaking countries may need to take additional language classes, and they will need to take all language courses for letter grades.

Students should make substantial progress toward fulfilling college general-education requirements and the foreign language requirement of the international studies major before beginning the core sequence of the international studies major.

Upper-Division Requirements

The upper-division requirements for a major in international studies are:

1. Two core courses (INTL 101 and INTL 102)
2. A capstone seminar (INTL 190)
3. Eight 4-unit, upper-division, non-language courses in a primary track
4. Five 4-unit, upper-division, non-language courses in a secondary track (different from the primary track)

Core Courses

Two core courses (INTL 101 and INTL 102) provide an intellectual gateway to central issues and disciplinary approaches in international studies. Students may begin the sequence with either course. Sophomore status is a prerequisite for both courses.

- INTL 101. Culture and Society in International Perspective (4)
- INTL 102. Economics, Politics, and International Change (4)

Capstone Seminar

All majors will complete the capstone seminar during their senior year. Students are required to complete a research paper for this course.

- INTL 190. Seminar in International Studies (4)

Regional Requirement

Of the thirteen track courses (eight primary and five secondary), three courses must concentrate on one country or region to complete the International Studies Program regional requirement.

Departments Offering Both Primary and Secondary Tracks

Anthropology:

- **Primary Track:** Students are required to take at least one course from the core sequence, Anthropology: Program Courses (ANPR):
 - ANPR 105. Social Anthropology
 - ANPR 106. Cultural Anthropology
 - ANPR 107. Psychological Anthropology

The remaining upper-division courses should be selected from the Anthropology: General (ANGN) and Anthropology: Regional (ANRG) listings. Up to two approved courses from Anthropology: Biological Anthropology (ANBI) can also be counted toward the major with the approval of the international studies program advisor.

- **Secondary Track:** Students are encouraged to take ANPR 105 and 106; all other courses should be from the ANPR, ANGN, or ANRG series; one course from the ANBI series will be accepted for credit by petition.

Economics:

- **Primary and Secondary Tracks:** Both primary and secondary track IS majors must satisfy the following lower-division department requirements with a C− or better:
 - Calculus. Mathematics 10A-B-C or Mathematics 20A-B and 20C and
 - Economics 1, 2, 3

Upper-division courses may be selected from:

- Economics 100A-B-C Microeconomics
- Economics 110A-B. Macroeconomics
- Economics 120A-B-C. Econometrics
- Economics 101. International Trade
- Economics 103. International Monetary Relations
- Economics 114. Economics of Immigration
- Economics 116. Economic Development
- Economics 117. Economic Growth
- Economics 125. Demographic Analysis and Forecasting
- Economics 131. Economics of the Environment
- Economics 132. Energy Economics
- Economics 133. International Environmental Agreements
- Economics 145. Economics of Ocean Resources
Economics 161. Global Integration of Latin America
Economics 162. Economics of Mexico
Economics 163. Japanese Economy
Economics 165. Middle East Economics

Both primary and secondary track majors must take at least two of the following courses:
- Economics 101. International Trade
- Economics 103. International Monetary Relations
- Economics 114. Economics of Immigration
- Economics 116. Economic Development
- Economics 117. Economic Growth
- Economics 125. Demographic Analysis and Forecasting
- Economics 131. Economics of the Environment
- Economics 132. Energy Economics
- Economics 133. International Environmental Agreements
- Economics 145. Economics of Ocean Resources
- Economics 161. Global Integration of Latin America
- Economics 162. Economics of Mexico
- Economics 163. Japanese Economy
- Economics 165. Middle East Economics

At least one of the above must be Economics 101, 103, or 116.

History:

Primary Track: At least 6 of 8 courses must be taken in any of the following categories:
- History of Africa (HIAF)
- History of Europe (HIEU)
- History of East Asia (HIEA)
- History of the Near East (HINE)
- History of Latin America (HILA)
- History of Science (HISC)
- History of Religion (HIRE) and/or History Topics (HITO), except HITO 194-199

Up to two courses may be taken in History of the United States (HIUS).

Secondary Track: All courses must be taken in non-U.S. history.

Linguistics:

Primary Track: Eight upper-division courses in linguistics, which must include LIGN 101 (Introduction to the Study of Language) and at least three courses from the following list:
- LIGN 105. Law and Language
- LIGN 108. Languages of Africa
- LIGN 141. Language Structures
- LIGN 142. Language of Typology
- LIGN 143. Structure of Spanish
- LIGN 145. Pidgins and Creoles
- LIGN 174. Gender and Language in Society

LIGN 175. Sociolinguistics
LIGN 176. Language of Politics and Advertising
LIGN 177. Multilingualism

At most, one of the eight courses can be LIGN 199 (Independent Study in Linguistics).

Secondary Track: Five upper-division courses in linguistics, which must include LIGN 101 (Introduction to the Study of Language) and at least two courses from the list above. At most, one of the five courses can be LIGN 199 (Independent Study in Linguistics).

Literature:

Primary Track: Eight upper-division courses may be selected from the following:
- Literatures in English (LTEN):
 - LTEN 188. Contemporary Caribbean Literature
 - LTEN 189. Twentieth-Century Postcolonial Literatures
 - LTWL 140. Novel and History in the Third World
 - LTWL 141. Islam and Modernity
 - LTWL 149. The Last Turn of the Century in the West
 - LTWL 150. Modernity and Literature

Literature/Cultural Studies (LTCS):
- LTCS 133. Globalization and Culture
- LTCS 140. Subaltern Studies in Context
- LTCS 141. Race and Empire
- LTCS 145. National Cultures in Colonial and Postcolonial Contexts

And all courses listed under:
- African Literatures (LTAF)
- Literatures in Chinese (LTCN)
- East Asian Literatures (LTEA)
- European and Eurasian Literature (LTEU) with exception of LTEU 100, 102, 105
- Literatures in French (LTFR) with exception of LTFR 160
- Literatures in German (LTMG)
- Literatures in Italian (LTI) with exception of LTI 161
- Korean Literature (LTKO)
- Literatures in Portuguese (LTPR)

Russian Literature (LTRU) with exception of LTRU 104 A, B, C
- Literatures in Spanish (LTS) with exception of LTS 150, 151, 152, 153, 162

With approval of the undergraduate advisor, students may take up to two theory or methods courses selected from Literature/Theory (LTTH) courses LTTH 110, LTTH 115, or LTTH 150, and from among the Literature/Cultural Studies (LTCS) courses LTCS 100, LTCS 102, or LTCS 120.

Secondary Track: Five courses selected from the above.

Political Science:

Primary Track: Eight courses selected from the following: all courses numbered POLI 120 through POLI 159:
- Comparative Politics: POLI 120A through POLI 139A
- International Relations: POLI 140A through POLI 159

Up to three courses may be from the following subfields:
- American Politics: POLI 100A through POLI 108
- Political Theory: POLI 110A through 119A
- Policy Analysis: POLI 160AA through 168
- Research Methods: POLI 170A and POLI 181

Secondary Track: Five upper-division courses selected from courses numbered POLI 120 through POLI 159 (see above); 1 of the 5 courses may be selected from the following subfields:
- American Politics: POLI 100A through POLI 108
- Political Theory: POLI 110A through 119A
- Policy Analysis: POLI 160AA through 168
- Research Methods: POLI 170A and POLI 181

Sociology:

Primary Track: Eight upper-division courses selected from the following list:

Cluster B: Culture, Language, and Social Interaction (Soc/B)
- Soc/B 111A. Human Rights–Principles and Problems
- Soc/B 111B. Human Rights–Practices and Cases
- Soc/B 162R. Religion and Popular Culture in East Asia

Cluster C: Social Organization and Institutions (Soc/C)
- Soc/C 134A. The Making of Modern Medicine
- Soc/C 134B. Medicine in the Twentieth Century
- Soc/C 136A. Sociology of Mental Illness: An Historical Approach
- Soc/C 136B. Sociology of Mental Illness in Contemporary Society
- Soc/C 139. Social Inequality: Class, Race, and Gender
- Soc/C 148. Political Sociology
- Soc/C 156. Sociology of Religion
- Soc/C 157. Religion in Contemporary Society
- Soc/C 180. Social Movements and Social Protest

Cluster D: Comparative and Historical Sociology (Soc/D)
- Soc/D 151. Comparative Race and Ethnic Relations
- Soc/D 158. Islam in the Modern World
- Soc/D 169. Citizenship, Community, and Culture
- Soc/D 177. International Terrorism
- Soc/D 178. The Holocaust
Soc/D 179. Social Change
SOC 181. Modern Western Society
SOC 182. Ethnicity and Indigenous Peoples in Latin America
SOC 183. Minorities and Nations
SOC 185. Globalization and Social Development
SOC 187. African Societies through Films
SOC 188A. Community and Social Change in Africa
SOC 188B. Chinese Society
SOC 188D. Latin America: Society and Politics
SOC 188F. Modern Jewish Societies and Israeli Society
SOC 188J. Change in Modern South Africa
SOC 189. Special Topics in Comparative-Historical Sociology

Note: Soc/D 189 must be preapproved by program advisor.

Secondary Track: Five upper-division courses selected from the above lists.

DEPARTMENTS AND PROGRAMS OFFERING ONLY SECONDARY TRACKS

Communication:

Course Prerequisites: Must take COGN 20 to enroll in upper-division courses.

Secondary Track: Five courses selected from the following lists:

Communication as a Social Force (COSF)

COSF 100. Introduction to Communication as a Social Force
COSF 120. The Transformation of Global Communication
COSF 140A. Comparative Media Systems: Asia
COSF 140B. Comparative Media Systems: Europe
COSF 140C. Comparative Media Systems: Latin America and the Caribbean
COSF 145. Communication and Development in China
COSF 159. Work and Industry in the New Information Economy
COSF 160. Political Economy/Global Consumer Culture
COSF 167. Emerging Global High-Tech Regions: Labor and National Development
COSF 181. Political Economy of International Communications
COSF 184. The Mass Media and Politics in Africa
COSF 185. Gender, Labor, and Culture in the Global Economy

Communication and Culture (COCU)

COCU 110. Cinema in Latin America
COCU 126. African Cinema
COCU 130. Tourism: Global Industry and Cultural Form
COCU 162. Popular Culture
COCU 179. Colonialism and Culture
COCU 180. Cultures and Markets

Communication and Human Information Processing (COHI)

COHI 114. Bilingual Communication
COHI 115. Education and Global Citizenship
COHI 121. Literacy, Social Organization, and the Individual

Area Studies Secondary Tracks

Five upper-division courses in a single area studies program selected from the following list of programs:

African Studies
Chinese Studies
German Studies
Italian Studies
Japanese Studies
Latin American Studies
Middle East Studies
Russian and Soviet Studies
Third World Studies

Course lists can be found in the UCSD General Catalog. All courses must be four-unit, upper-division, non-language courses, taken for a letter grade C– or better. Please contact ISP academic advisor with questions.

Students seeking a broader regional focus (e.g., European or East Asian Studies) may elect to combine courses from area studies programs dealing with that region. Courses must be preapproved prior to enrolling.

The International Studies Minor

The International Studies minor is designed to offer students an introduction to the interdisciplinary investigation of other societies and the forces of global integration and conflict. To receive a minor in international studies, a student must complete seven four-unit courses (twenty-eight units).

(A) Language Requirement

All minors must demonstrate basic proficiency in a modern foreign language by completing four quarters of foreign language instruction (or equivalent). Students may also complete this requirement by demonstrating advanced language ability on a proficiency exam. Students completing the language requirement through waiver (700 or better on SAT II language or language taken in high school outside the U.S.) or proficiency will fulfill the language component of the minor by completing one of these requirements but no course credit will be applied toward the (seven) courses required for the minor.

Up to TWO courses in foreign language can be included in the seven courses required for the minor. These may be lower-division courses. The remaining five courses must be upper-division courses in the humanities and social sciences. (See below.)

(B) Additional course requirements

1. All minors must take INTL 101 and INTL 102. INTL 101 and 102 may be taken in any order and are offered during different quarters throughout the academic year. You can enroll in INTL 101 and INTL 102 on WebReg if you have sophomore standing and are declared in the IS major or minor program. If you do not meet these requirements and wish to add INTL 101 or 102, contact the International Studies Advising Office. INTL 101 and 102 are gateway courses and should be taken in the sophomore or junior year.

2. The remaining three to five courses (depending on the number of language courses applied to the minor) must be distributed in two broad areas (tracks). Specifically, students must take at least one course in each of two tracks:

a. Culture and Society in International Perspective
b. Economics, Politics, and International Change

(See course listings for each track.)

3. The minor must include courses from at least two departments.

4. All courses applied to the minor (including applicable language courses) must receive a letter grade of C- or better.

5. Minors in international studies are encouraged to participate in the UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP). Subject to approval by the IS faculty director, up to three courses taken through EAP/OAP at another university will be accepted for credit toward the minor.
TRACKS IN THE INTERNATIONAL STUDIES MINOR

*Track 1: Economics, Politics, and International Change

Communication

COSF 159. Work and Industry in the New Information Economy
COSF 160. Political Economy/Global Consumer Culture
COSF 167. Emerging Global High-Tech Regions: Labor and National Development
COSF 181. Political Economy of International Communications
COSF 184. The Mass Media and Politics in Africa
COSF 185. Gender, Labor, and Culture in the Global Economy

Economics

Econ 101. International Trade
Econ 103. International Monetary Relations
Econ 114. Economics of Immigration
Econ 116. Economic Development
Econ 117. Economic Growth
Econ 125. Demographic Analysis and Forecasting
Econ 131. Economics of the Environment
Econ 132. Energy Economics
Econ 133. International Environmental Agreements
Econ 145. Economics of Resource Oceans
Econ 161. Global Integration of Latin America
Econ 162. Economics of Mexico
Econ 163. Japanese Economy
Econ 165. Middle East Economics

History

HIAF 110. History of Africa to 1880
HIAF 111. Modern Africa Since 1880
HIAF 120. History of South Africa
HIAF 111. Japan: Twelfth- to Mid-Nineteenth Centuries
HIAF 112. Japan: From the Mid-Nineteenth Century through the U.S. Occupation
HIAF 113. The Fifteen-Year War in Asia and the Pacific
HIAF 116. Japan-U.S. Relations
HIAF 130. History of the Modern Chinese Revolution: 1800–1911
HIAF 132. History of the People's Republic of China
HIAF 165/265. Material Culture in China (requires approval of ISP advisor to apply toward minor)
HIAF 167/267 Special Topics in Modern Chinese History (requires approval of ISP advisor to apply toward minor)
HIEU 101. Greece in the Classical Age
HIEU 102. The Roman Republic
HIEU 104. Byzantine Empire
HIEU 109. European Nationalism from a Historical Perspective
HIEU 121. Early Modern Italy
HIEU 122. Politics Italian Renaissance Style
HIEU 123. Renaissance Europe
HIEU 126. Age of Expansion: Europe and the World, 1400–1600
HIEU 128. Europe Since 1945
HIEU 131. The French Revolution: 1789–1814
HIEU 132. German Politics and Culture: 1648–1848
HIEU 134. The Formation of the Russian Empire, 800–1855
HIEU 135. European Economy and Society: 1000–1750
HIEU 136. European Society and Social Thought, 1870–1989
HIEU 138. Imperial Spain, 1476–1808
HIEU 139. The Origins of Constitutions
HIEU 141. European Diplomatic History, 1870–1945
HIEU 146. Fascism, Communism, and the Crisis of Liberal Democracy: Europe 1919–1945
HIEU 150. Modern British History
HIEU 151. Spain Since 1808
HIEU 153A. Nineteenth-Century France
HIEU 153B. Twentieth-Century France
HIEU 154. Modern German History: From Bismarck to Hitler
HIEU 155. Modern Austria
HIEU 156. The Russian Empire and the Soviet Union, 1855–1991
HIEU 159. Three Centuries of Zionism from 1855–1991
HIEU 160. Political Economy/Global Consumer Culture

Anthropology

All ANRG (Regional) courses

Communication

COSF 100. Introduction to Communication as a Social Force
COSF 120. The Transformation of Global Communication
COSF 140A. Comparative Media Systems: Asia
COSF 140B. Comparative Media Systems: Europe
COSF 140C. Comparative Media Systems: Latin America and the Caribbean
COSF 145. Communication and Development in China
COCU 110. Cinema in Latin America
COCU 126. African Cinema
COCU 130. Tourism: Global Industry and Cultural Form
COCU 162. Popular Culture
COCU 179. Colonialism and Culture
COCU 180. Cultures and Markets
COHI 114. Bilingual Communication
COHI 115. Education and Global Citizenship
COHI 121. Literacy, Social Organization, and the Individual

History

HIAF 122. Traditional African Religions
HIEA 115. Social and Cultural History of Twentieth-Century Japan
HIEA 120. Classical Chinese Philosophy and Culture
HIEA 121. Medieval Chinese Culture and Society
HIEA 122. Late Imperial Chinese Culture and Society
HIEA 123. Food in Chinese History
HIEA 124. Science in China and the West from Ancient Times to the Seventeenth Century
HIEA 125. Women and Gender in East Asia
HIEA 133. Twentieth Century China: Cultural History
HIEA 135. Thought and Religion in China: Buddhism
HIEA 137. Women and Family in Chinese History
HIEU 165/265. Material Culture in China (requires approval of ISP advisor to apply toward minor)

Linguistics

LIGN 105. Law and Language
LIGN 108. Languages of Africa

Political Science

Comparative Politics: POLI 120A through POLI 139A
International Relations: POLI 140A through POLI 159

*TRACK 2: CULTURE AND SOCIETY IN INTERNATIONAL PERSPECTIVE

Anthropology

All ANRG (Regional) courses

Communication

COSF 100. Introduction to Communication as a Social Force
COSF 120. The Transformation of Global Communication
COSF 140A. Comparative Media Systems: Asia
COSF 140B. Comparative Media Systems: Europe
COSF 140C. Comparative Media Systems: Latin America and the Caribbean
COSF 145. Communication and Development in China
COCU 110. Cinema in Latin America
COCU 126. African Cinema
COCU 130. Tourism: Global Industry and Cultural Form
COCU 162. Popular Culture
COCU 179. Colonialism and Culture
COCU 180. Cultures and Markets
COHI 114. Bilingual Communication
COHI 115. Education and Global Citizenship
COHI 121. Literacy, Social Organization, and the Individual

History

HIAF 122. Traditional African Religions
HIEA 115. Social and Cultural History of Twentieth-Century Japan
HIEA 120. Classical Chinese Philosophy and Culture
HIEA 121. Medieval Chinese Culture and Society
HIEA 122. Late Imperial Chinese Culture and Society
HIEA 123. Food in Chinese History
HIEA 124. Science in China and the West from Ancient Times to the Seventeenth Century
HIEA 125. Women and Gender in East Asia
HIEA 133. Twentieth Century China: Cultural History
HIEA 135. Thought and Religion in China: Buddhism
HIEA 137. Women and Family in Chinese History
HIEU 165/265. Material Culture in China (requires approval of ISP advisor to apply toward minor)

Linguistics

LIGN 105. Law and Language
LIGN 108. Languages of Africa

Political Science

Comparative Politics: POLI 120A through POLI 139A
International Relations: POLI 140A through POLI 159
Soc/D 189 must be preapproved by Prerequisites: International

Medieval Worlds

HITO 104. The Jews and Judaism in the Ancient and Traditions

Religions

HISC 110. Science in China and the West from Century

HISC 106. The Scientific Revolution

HISC 104. History of Popular Science

HISC 105. History of Environmentalism

HISC 106. The Scientific Revolution

HISC 107. The Emergence of Modern Science

HISC 108. Science and Technology in the Twentieth Century

HISC 110. Science in China and the West from Ancient Times to the Seventeenth Century

HISC 111. Origins of the Atomic Age

HITO 100. Religious Traditions: Ancient Near Eastern Religions

HITO 102. Religious Traditions: East Asian Religious Traditions

HITO 104. The Jews and Judaism in the Ancient and Medieval Worlds

HITO 105. The Jews and Judaism in the Modern World

HITO 126. A History of Childhood

Linguistics

LIGN 141. Language Structures

LIGN 142. Language of Typology

LIGN 143. Structure of Spanish

LIGN 145. Pidgins and Creoles

LIGN 175. Sociolinguistics

LIGN 176. Language of Politics and Advertising

Literature

Literatures in English (LTEN):

LTEN 188. Contemporary Caribbean Literature

LTEN 189. Twentieth-Century Postcolonial Literatures

Literatures of the World (LTWL):

LTWL 140. Novel and History in the Third World

LTWL 141. Islam and Modernity

LTWL 149. The Last Turn of the Century in the West

LTWL 150. Modernity and Literature

Literature/Cultural Studies (LTCs):

LTCs 133. Globalization and Culture

LTCs 140. Subaltern Studies in Context

LTCs 141. Race and Empire

LTCs 145. National Cultures in Colonial and Postcolonial Contexts

And all courses listed under:

African Literatures (LTAF)

Literatures in Chinese (LTCH)

East Asian Literatures (LTEA)

European and Eurasian Literature (LTEU) with exception of LTEU 100, 102, 105

Literatures in French (LFR) with exception of LFR 160

Literatures in German (LGGM)

Literatures in Italian (LTIT) with exception of LTIT 161

Korean Literature (LTKO)

Literatures in Portuguese (LTPR)

Russian Literature (LTRU) with exception of LTRU 104 A, B, C

Literatures in Spanish (LTPS) with exception of LTPS 150, 151, 152, 153, 162

With approval of the undergraduate advisor, students may take up to two theory or methods courses selected from Literature/Theory (LTH) courses LTTH 110, LTTH 115, or LTTH 150, and from among the Literature/Cultural Studies (LTCs) courses LTCs 100, LTCs 102, or LTCs 120.

Sociology

Soc/B 111A. Human Rights—Principles and Problems

Soc/B 111B. Human Rights—Practices and Case

Soc/B 162R. Religion and Popular Culture in East Asia

Soc/C 134A. The Making of Modern Medicine

Soc/C 134B. Medicine in the Twentieth Century

Soc/C 136A. Sociology of Mental Illness: An Historical Approach

Soc/C 139. Social Inequality: Class, Race, and Gender

Soc/C 148. Political Sociology

Soc/D 151. Comparative Race and Ethnic Relations

Soc/D 158. Islam in the Modern World

Soc/D 169. Citizenship, Community, and Culture

Soc/177. International Terrorism

Soc/D 178. The Holocaust

Soc/D 179. Social Change

Soc/D 181. Modern Western Society

Soc/D 182. Ethnicity and Indigenous Peoples of Latin America

Soc/D 183. Minorities and Nations

Soc/D 185. Globalization and Social Development

Soc/D 188A. Community and Social Change in Africa

Soc/D 188B. Chinese Society

Soc/D 188D. Latin America: Society and Politics

Soc/D 188F. Modern Jewish Societies and Israeli Society

Soc/D 188H. Change in Modern South Africa

Soc/D 189. Special Topics in Comparative-Historical Sociology

Note: Soc/D 189 must be preapproved by program advisor.

COURSES

UPPER-DIVISION

INTL 101. Culture and Society in International Perspective (4)
Analysis of the cultural and social developments of the modern era from the perspective of interaction among societies. Particular attention is paid to the definition, representation, and negotiation of social and cultural boundaries over time. Prerequisites: International Studies major or minor with sophomore, junior, or senior standing.

INTL 102. Economics, Politics, and International Change (4)
Examination of the domestic and international sources of economic and political change. Topics include the rise of the nation-state, comparative economic development, authoritarian and democratic regimes, international and civil conflict, globalization and its domestic and international implications. Prerequisites: International Studies major or minor with sophomore, junior, or senior standing.

INTL 190. Seminar in International Studies (4)
Required seminar for International Studies seniors. Readings and discussion of topics in international and comparative studies from an interdisciplinary perspective. Emphasis on independent work and completion of a research paper. Prerequisites: International Studies major; successful completion of INTL 101 and 102; senior standing.
ITALIAN STUDIES

ITALIAN STUDIES COURSES

The Major Program

A major in Italian studies consists of a choice of twelve upper-division courses in literature, history, music, theatre, and visual arts approved for the program and listed below. Courses in other areas of Italian studies taken abroad or on our campus may also apply. At least three areas must be represented in the student’s program of study. The particular courses making up each student’s major will be selected in consultation with the program advisor. The study of Dante (LTIT 115) is considered central for all Italian studies majors.

The Minor Program

A minor in Italian studies consists of seven upper-division courses from among those listed below (at least three areas must be represented). Credit from the EAP program may be applied toward the minor.

Upper-Division/Italian Studies Courses

For description of courses listed below, see appropriate departmental listing.

Literature

LTIT 1A-B-C. The Language of Italian Culture
LTIT 100. Introduction to Italian Literature
LTIT 110. Selected Topics in Italian Literature (may be repeated for credit as topics vary)
LTIT 115. Medieval Studies
LTIT 116. Sixteenth-Century Prose
LTIT 118. Italian Romanticism
LTIT 122. Studies in Modern Italian Culture
LTIT 136. Studies in Modern Italian Poetry
LTIT 137. Studies in Modern Italian Prose
LTIT 138. Contemporary Italian Thought
LTIT 140. Women in Italy
LTIT 143. Major Italian Authors
LTIT 150. Italian North American Culture
LTIT 161. Advanced Stylistics and Conversation
LTIT 190. Seminar
LTIT 196. Honors Thesis

Visual Arts

122BN. Italian Art of the Early Renaissance
122CN. High Renaissance Art
122D. Michelangelo
122E. The City in Italy
128BN. Topics in Early Modern Art History (when on Italian topic)
129BN. Special Problems in Early Modern Art History (when on Italian topic)

Japanese Studies

OFFICE: 3024 Humanities and Social Sciences Building, Muir College
http://japan.ucsd.edu

Faculty

Yumiko Blanford, Lecturer, History (Japanese Language)
Takashi Fujitani, Associate Professor, History
Hisae Fujiwara, Lecturer, History (Japanese Language)
Takeo Hoshi, Professor, International Relations and Pacific Studies
Germain A. Hoston, Professor, Political Science
Hifumi Ito, Lecturer, History (Japanese Language)
Noriko Kameda, Lecturer, History (Japanese Language)
Elis Krauss, Professor, International Relations and Pacific Studies
Sige-Yuki Kuroda, Professor Emeritus, Linguistics
Mayumi McKee, Lecturer, History (Japanese Language)
Masao Miyoshi, Professor Emeritus, Literature
Megumi Naoi, Assistant Professor, Political Science
Masato Nishimura, Lecturer, History (Japanese Language)
Kyoko Sato, Lecturer, History (Japanese Language)
Ulrike Schaede, Associate Professor, International Relations and Pacific Studies
Stefan Tanaka, Professor, History
Yasu-Hiko Tohsaku, Professor, International Relations and Pacific Studies
Christina Turner, Associate Professor, Sociology
Lisa Yoneyama, Associate Professor, Literature
Joji Yuasa, Professor Emeritus, Music

The Program in Japanese Studies coordinates a variety of campus offerings dealing with the language, history, culture, and political economy of Japan. The program is especially strong in the area of modern and contemporary Japan. In addition to courses available in the Departments of Anthropology, Economics, History, Linguistics, Literature, Music, Political Science and Sociology, qualified undergraduates also may enroll in Japan-related courses in the Graduate School of International Relations and Pacific Studies with consent of instructors.

The Major

A. LOWER-DIVISION REQUIREMENT (9 COURSES)

1. Japanese language: two years lower-division or the transferred equivalent:
 Japanese Studies 10A-B-C
 Japanese Studies 20A-B-C

2. The remaining three courses may be chosen from among the following:
 a. East Asian History: HILD 10-11-12
 b. Eleanor Roosevelt College students may petition to use MMW Courses 2 and 5.
 c. Thurgood Marshall College students may petition to use DOC course 1.

3. The language requirement may be waived by demonstrating the equivalent proficiency through exam.

B. UPPER-DIVISION REQUIREMENT (12 COURSES)

1. Japanese language: six upper-division language courses or the transferred equivalent from:
 Japanese Studies 100A-B-C
 Japanese Studies 130A-B-C
 Japanese Studies 140A-B-C
 Japanese Studies 150A-B-C

2. Japanese Studies 190 (JAPN 190): Selected Topics in Contemporary Japanese Studies. This is a seminar-style course focusing on selected topics in contemporary interdisciplinary studies of Japan. This course will be offered once a year.

3. The remaining five courses must be taken from two or more different disciplines.
 a. Students may petition to include two non-language upper-division courses taken abroad under EAP or OAP.
 b. Students may include one 199.
 c. Students may include one course on China or Korea.

4. All upper-division courses must be taken for a letter grade.

5. The language requirement can be waived by demonstrating the equivalent proficiency through exam. The required number of courses must be fulfilled by taking other non-language upper-division courses.

C. HONORS PROGRAM

1. Junior standing.
2. A GPA of 3.5 or better in the major.
3. Overall GPA of 3.2 or better.
4. Completion of at least four upper-division non-language courses approved by the Program in Japanese Studies.
5. Recommendation of a faculty sponsor familiar with the student's work.

Students who qualify for honors take a two-quarter sequence Japanese Studies 196A-B (fall and winter quarters preferred) of directed study during which they define a research project, carry out the research, and complete an honors thesis.

The completed honors thesis will be evaluated by a committee consisting of the student’s thesis advisor and one other faculty member appointed by the Program in Japanese Studies director.

The Minor

A minor in Japanese studies consists of at least fifteen units of Japanese language (lower- or upper-division) and at least sixteen units of upper-division non-language coursework taken from two or more departments. Students may use one non-language course taken abroad. All courses to be used for the minor must be approved by the Program in Japanese Studies and must be taken for a letter grade. Students who are already beyond first- and second-year language levels will be placed in one of our upper-division Japanese language courses, Written Japanese (100A-B-C), Third-Year Japanese (130A-B-C), Fourth-Year Japanese (140A-B-C), or Advanced Japanese (150A-B-C), and will be required to take four upper-division language courses and three upper-division non-language courses. The language requirement can be waived by demonstrating the equivalent proficiency through exam. The required number of courses must be fulfilled by taking other non-language, upper-division courses.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

All graduate-level courses require permission of the instructor for undergraduate students. Course titles may vary from year to year.

HISTORY

HIEA 111. Japan: Twelfth through Mid-Nineteenth Century
HIEA 112. Japan: from Mid-Nineteenth Century through U.S. Occupation
HIEA 113. The Fifteen-Year War in Asia and the Pacific
HIEA 114. Postwar Japan
HIEA 115. Social and Cultural History of Twentieth-Century Japan
HIEA 116. Japan-U.S. Relations
HIEA 160. Colloquium on Modern Japanese History
HIEA 161. Representing Japan

JAPANESE STUDIES

JAPN 190. Selected Topics in Contemporary Japanese Studies

LANGUAGE

(Students who have prior preparation of Japanese language are placed in language courses based on the results of a placement exam or an oral interview with an instructor. Students who have lived in Japan, or use Japanese at home are required to take a
placement exam administered prior to the beginning of the fall quarter. Contact the Japanese Studies office for more information.)

10A-B-C. First-Year Japanese
(No prior study of Japanese language is required for 10A.) Prerequisites for 'B' and 'C': previous course or consent of instructor.

20A-B-C. Second-Year Japanese
Prerequisites: previous course or consent of instructor.

100A-B-C. Japanese for Bilingual Speakers I
(These courses are for those students who have a high level of speaking proficiency in Japanese but no or little reading and writing abilities.) Prerequisite for 'A': consent of instructor. Prerequisites for 'B' and 'C': previous course or consent of instructor.

130A-B-C. Third-Year Japanese
Prerequisites: previous course or consent of instructor.

140A-B-C. Fourth-Year Japanese
Prerequisites: previous course or consent of instructor.

150A-B-C. Advanced Japanese
Prerequisites: previous course or consent of instructor.

ECONOMICS
ECON 163. Japanese Economy

LITERATURE
LTEA 130. Earlier Japanese Literature in Translation
(Quarter offerings will vary among A. General Literature; B. Poetry; C. Prose Fiction; D. Drama; and E. Essays, travelogues, diaries, etc.)

LTEA 132. Later Japanese Literature in Translation
(Quarter offerings will vary among A. General Literature; B. Poetry; C. Prose Fiction; D. Drama and Film; and E. Essays, criticism, etc.)

LTEA 134. A Single Japanese Author (in translation)

LTEA 136. Special Topics in Japanese Literature

LTWL 155. Gender Studies

LTCS 120. Historical Perspectives on Culture

LTCS 130. Gender, Race, Ethnicity/Class, and Culture

LTCS 150. Topics in Cultural Studies

Lit/Th 240. Forms and Genres (when on Japan)

MUSIC
(Check with program office as to whether these courses may be used toward a Japanese studies minor.)

MUS 111. World Music

MUS 211. Seminar in World Music

POLITICAL SCIENCE
POLI 132B. Modernity and Identity in East Asia

POLI 133A. Introduction to Japanese Politics

POLI 133B. Chinese and Japanese Political Thought (I)

POLI 133C. Chinese and Japanese Political Thought (II)

POLI 133D. Japanese Foreign Policy

POLI 133E. Public Policy in Japan

POLI 233. Politics and Political Economy in Contemporary Japan

SOCIOLOGY
SOC/D 158J. Religion and Ethics in China and Japan

SOC/B 162R. Religion and Popular Culture in East Asia

GRADUATE SCHOOL OF INTERNATIONAL RELATIONS AND PACIFIC STUDIES
IRGN 400. International Relations of Asia—Pacific

IRGN 416. Postwar Politics in Japan

IRGN 471/271. Japanese Economy

Judaic Studies

OFFICE: 4008 Humanities and Social Sciences Building, Muir College
http://historyweb.ucsd.edu/JudaicStud.html
(858) 534-4551
Fax: (858) 534-7283

Faculty

David Noel Freedman, Ph.D., Professor, History;
Endowed Chair, Hebrew Biblical Studies

David M. Goodblatt, Ph.D., Professor, History;
Endowed Chair in Judaic Studies

Deborah Hertz, Ph.D., Professor, History;
Herman Wouk Chair in Modern Jewish Studies

Thomas E. Levy, Ph.D., Professor, Anthropology;
Director, Judaic Studies

William H.C. Propp, Ph.D., Professor, History

Other Faculty Offering Courses in Judaic Studies

Robert McC. Adams, Adjunct Professor,
Anthropology

Guillermo Algaze, Professor, Literature

Steven Cassedy, Ph.D., Professor, Literature

Adriana De Marchi Gherini, Ph.D., Lecturer, Literature

Tal Golan, Ph.D., Associate Professor, History

Sanford Lakoff, Ph.D., Professor Emeritus,
Political Science

Lisa Lampert, Ph.D., Associate Professor, Literature

Jonathan Saville, Ph.D., Associate Professor Emeritus,
Theatre and Dance

Gershon Shafir, Ph.D., Professor, Sociology

Melford E. Spiro, Ph.D., Professor Emeritus,
Anthropology

Alana Shuster, Lecturer, Hebrew

Judaic Studies is an interdisciplinary program offering courses, majors, minors, concentrations, and masters degrees that draw upon a variety of perspectives. For doctoral programs see below—the Ph.D. in ancient history and the Ph.D. in anthropology. Courses are offered in the Departments of Anthropology, Communication, History, Literature, Music, Political Science, Philosophy, and Sociology.

Students also have the option within the Literatures of the World major, in the Department of Literature, of concentrating on Judaic literature; or on a combined program of the Literatures of the World major (concentration in Judaic literature) and classical studies.

In addition, Revelle and Muir Colleges have noncontiguous minors in Judaic studies and in Hebrew language and literature; Warren College has Judaic studies and Hebrew literature concentrations; and various general requirements in all colleges can be met by courses in the Judaic area. For details students should inquire at their provost’s office or at the Judaic Studies Program office.

The Judaic Studies Program offers scholarships and fellowships for study abroad. Students are encouraged to participate in the UC Education Abroad Program (EAP) in Jerusalem or Beersheva, and to investigate other options through the Opportunities Abroad Program (OAP). By petition, credits earned through EAP/OAP can fulfill UCSD degree, major, and minor requirements. Interested students should contact the Programs Abroad Office in the International Center for more information. Please visit the Web site at http://orpfus.ucsd.edu/center/pao.

In addition, the Judaic Studies Program and UCSD Department of Anthropology offer credit and hands-on experience in Near Eastern archaeology at their archaeological field school in Israel or Jordan. Up to twelve units of academic credit may be earned through the UCSD Summer Session Program. Some scholarships are available through Judaic Studies. For more information call the UCSD Summer Session Office, or visit our Web site at: http://anthro.ucsd.edu/~levy for our archaeological field schools in Israel and Jordan. For a general overview of the Judaic Studies Program see: http://historyweb.ucsd.edu/JudaicStud.html.
Major

Requirements for the major in Judaic studies are:
1. Judaic Studies 100 or equivalent; HITO 104, HITO 105.
2. Twelve upper-division courses in Judaic Studies, to be selected in consultation with a faculty advisor.
3. Upper-division competence in Hebrew, normally to be fulfilled by completion of first- and second-year Hebrew language courses, or the equivalent.

Minors

A. Requirements for the minor in Judaic studies:
1. Judaic Studies 100, HITO 104, HITO 105.
2. Four upper-division courses in Judaic studies, to be selected in consultation with a faculty advisor.

B. Requirements for the minor in Hebrew language and literature:
 Seven quarter courses in Hebrew language and literature, ordinarily Judaic Studies 1, 2, 3, 101, 102, and 103 plus one elective course.

Note: Other course combinations for the major and minor may be approved by the student’s faculty advisor.

Note: A majority of the courses for the major or minor must be taken at UCSD.

THE PH.D. IN ANCIENT HISTORY

The Department of History offers a Ph.D. program in ancient history. Relevant major fields are the history of Israel in the biblical period and the history of the Jewish people in antiquity. One of the two minor fields may be outside the history department. Students must acquire competence in the relevant ancient and modern languages.

THE PH.D. IN ANTHROPOLOGY (ARCHAEOLOGY)

The Department of Anthropology offers graduate training in social, cultural, and psychological anthropology, as well as in anthropological archaeology and biological anthropology. In conjunction with the Judaic Studies Program, students may concentrate in Near Eastern archaeology with a focus on Israel and Jordan. Students pursuing anthropological archaeology are expected to take required courses in anthropology and engage in field research.

Archaeology

Since 1993, the Judaic Studies Program has sponsored major archaeological excavations in Israel’s northern Negev desert. Shortly after the peace treaty was formalized between Israel and Jordan, the program began a long-term archaeological field program in the Jabal Hamrat Fidan Region (JHF) of southern Jordan. The project aims at studying the influence of early ore procurement and metallurgy on social change from the Neolithic period through the Iron Age. UCSD graduate students play an active role in the fieldwork and laboratory studies of material from these excavations. Qualified students are encouraged to use these data as part of their doctoral studies. In 2006, the UCSD Judaic Studies Program will join in several excavations along the Wadi al-Guwayb and Wadi al-Jariyeh in southern Jordan. This is part of the UCSD Fall Session Middle East Field School.

The Judaic Studies Program supports a state-of-the-art archaeological laboratory in the Social Sciences Building. A wide range of digital-based technologies is used for archaeological data and image processing that are linked through the Internet. Labs for processing pottery, stone tools, and other materials are available for student use.

THE M.A. IN JUDAIC STUDIES

The M.A. in Judaic Studies, offered under the auspices of the Department of History, is an interdisciplinary program permitting the student to select courses primarily in history and literature, but also in anthropology, political science, sociology, and philosophy.

FELLOWSHIPS

Four fellowships are available for Ph.D. students. These include:
- The Dita and Erwin Gumpel Judaic Studies Endowed Fellowship
- The University Fellowship
- The Wexler Family Judaic Studies Fellowship Fund in honor of David Noel Freedman
- Judaic Studies Fellowships

Teaching assistantships are available in the Revelle College Humanities/Writing Program and in other writing programs and departments. Dissertation fellowships may be awarded to doctoral students at the dissertation stage of their studies. Funds are also available for support of travel to archaeological excavations. Students are also eligible for research-travel funds to other campus libraries of the University of California, as well as for grants that permit research in archives and libraries elsewhere. Students who deliver papers at scholarly conferences may also receive financial support for their participation.

Publications

The program produces a series of volumes: Biblical and Judaic Studies from the University of California, San Diego (published by Eisenbrauns Winona Lake, USA). The Anchor Bible (Commentary, Reference Library, and Dictionary) is edited by David Noel Freedman at UCSD. The series Approaches to Anthropological Archaeology is edited by Thomas E. Levy for Equinox Publishing Ltd. (London) at UCSD.

Lectures and Conferences

The program regularly hosts international conferences and an annual series of lectures and seminars by distinguished scholars in Hebrew Bible, Archaeology, and Judaica. The Yigal Shiloh Memorial Lecture in Archaeology is given by an archaeologist each year in memory of Professor Yigal Shiloh.

Application Procedures

The deadline for applications is January 9.

For further information contact:
University of California, San Diego
GRADUATE PROGRAM, JUDAIC STUDIES 0104
9500 Gilman Drive
La Jolla, California 92093-0104
e-mail: dwagoner@ucsd.edu

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

Following are course offerings in this area.

For descriptions of the courses listed below, refer to the appropriate department’s section of the catalog.

Judaic Studies

1. Beginning Hebrew (4)

Acquisition of basic vocabulary, fundamentals of Hebrew grammar, conversation, and reading.
Judaic Studies 2. Intermediate Hebrew (4)
Continued study of vocabulary and grammar, emphasis on fluency in conversation, and reading.

Judaic Studies 3. Intermediate Hebrew, Continued (4)
Vocabulary, grammar, conversation, introduction to literary and nonliterary texts.

Judaic Studies 100. Introduction to Hebrew Bible (4)
An introduction to the Hebrew Bible focusing on the first five books, the Torah.

Judaic Studies 101. Introduction to Hebrew Texts (4)
Reading and analysis of texts from Biblical through modern authors, study of advanced vocabulary and grammar. Course taught in Hebrew and in English.

Judaic Studies 102. Intermediate Hebrew Texts (4)
Further reading and analysis of Hebrew literature from a range of periods. Advanced grammar and vocabulary. Course taught in Hebrew and in English.

Judaic Studies 103. Advanced Hebrew Texts (4)
Synthesis of fluency, reading, and grammatical skills. Reading of texts from a range of periods.

Judaic Studies 110. Introduction to Judaism (4)
An introductory survey of Jewish history, literature, and culture from antiquity to contemporary times. Topics include sacred texts, the variety of groups and views of Judaism, the historical and geographical movements of the Jewish people, and the intersection of religion, ethnicity, and culture.

Judaic Studies 111. Topics in Judaic Studies (4)
Study of a particular period, theme, or literature in Jewish civilization.

Judaic Studies 120. Topics in Zionism: Israelis and Palestinians: Two Cultures in Conflict (4)
This course examines Israel culture, Palestinian culture, and the conflict between them. We will discuss what is distinct about each culture, how they are different, how they are similar, their histories, and what influences the relationship/conflict between them. Prerequisites: upper-division standing or consent of instructor.

Judaic Studies 196A. Judaic Studies Honors Course (4)
First quarter of honors thesis research for students accepted into honors program. Research is conducted under the supervision of a faculty member selected with the approval of the director of the Judaic Studies Program. Prerequisites: admission to Judaic Studies Honors Program; JUDA 100, JUDA 103, HITO 104, HITO 105; upper-division electives in Judaic Studies; at least junior standing; overall 3.3 GPA; 3.5 in Judaic Studies.

Judaic Studies 196B. Judaic Studies Honors Course (4)
Second quarter of honors thesis research for students accepted into honors program. Research is conducted under the supervision of a faculty member selected with the approval of the director of the Judaic Studies Program. Prerequisites: admission to Judaic Studies Honors Program; previous enrollment in JUDA 196A; JUDA 100, JUDA 103, HITO 104, HITO 105; upper-division electives in Judaic Studies; at least junior standing; overall 3.3 GPA; 3.5 in Judaic Studies.

Judaic Studies 198. Directed Group Study in Judaic Studies (1-4)
Directed group study on a topic not generally included in the regular curriculum. Student must make arrangements with individual faculty members. (P/NP only)

Judaic Studies 199. Independent Study in Judaic Studies (1-4)
Independent study on a topic not generally included in the regular curriculum. Student must make arrangements with individual faculty members. (P/NP only)

ANLD 3. World Prehistory (4)

ANGN 100. Special Topics in Socio-Cultural Anthropology: Law, Religion, and Politics in Israel (4)

ANGN 142. Pastoralism in Archaeological Ethnographic Perspective (4)

ANGN 181. Foundations of Archaeology (4)

ANGN 183. Chiefdoms, States, and the Emergence of Civilizations (4)

ANPR 194. Archaeological Field School (4)

ANRG 116. Archaeology of the Holy Land: Prehistory (4)

ANRG 150. The Rise and Fall of Ancient Israel (4)

ANRG 162. Peoples of the Middle East (4)

ANRG 286. Archaeology, Anthropology, and the Bible—Foundations, Data, and Debate (4)

HIGR 260A-B-C Seminar in the Judaic Studies (4-4-4)

HIGR 264. Topics in Pre-Islamic Jewish History (4)

HIGR 295. Thesis Seminar (4)

HIGR 296. Apprentice Teaching (1-40)

HIGR 299. Directed Reading (1-12)

HIGR 299. Ph.D. Thesis Direction (1-12)

HIGR 500. Apprentice Teaching (1-40)

HINE 100. The Ancient Near East and Israel (4)

HINE 102. The Jews in Their Homeland in Antiquity (4)

HINE 103. The Jewish Diaspora in Antiquity (4)

HINE 104. The Bible and the Ancient Near East: The Primary History (4)

HINE 105. The Bible and the Near East: The Prophets (4)

HINE 106. The Bible and the Near East: The Writings (4)

HINE 108. The Middle East before Islam (4)

HINE 109. Learning to Read Biblical Hebrew (4)

HINE 114. History of the Islamic Middle East (4)

HINE 116. The Middle East in the Age of European Empires (1798 to 1914) (4)

HINE 118. The Middle East in the Twentieth Century (4)

HINE 151A/251A. Introduction to Aramaic Language (4)

HINE 151B/251B. Introduction to Aramaic Dialects (4)

HINE 151C/251C. Introduction to Aramaic Dialects (4)

HINE 152A/252A. The Evolution of the Northwest Semitic Dialects (4)

HINE 152B/252B. Introduction to Ugaritic (4)

HINE 152C/252C. Advanced Ugaritic (4)

HINE 153A/253A. Introduction to Akkadian Language and Mesopotamian Culture (4)

HINE 153B/253B. Continued Akkadian Language and Mesopotamian Culture (4)

HINE 153C/253C. Advanced Akkadian Language and Mesopotamian Culture (4)

HINE 160/260. Special Topics in the Bible and Ancient Near East (4)

HINE 161/261. Seminar in the Hebrew Bible (4)

HINE 166/266. Nationalism in the Middle East (4)

HINE 170/270. Special Topics in Jewish History (4)

HINE 181/281. Problems in Hebrew Manuscripts (4)

HINE 186/286. Topics in Middle Eastern History (4)

HINE 199. Independent Study in Near Eastern History (4)

HITO 104. The Jews and Judaism in the Ancient and Medieval Worlds (4)

HITO 105. The Jews and Judaism in the Modern World (4)

HITO 106. How Jewish Women Lived in Modern Times (4)

Humans 1. The Foundations of Western Civilization: Israel and Greece (6)

LTCO 212. Studies in the Hebrew Bible (4)

LTEU 105. Medieval Studies: Crusade, Conquest, Conversion in Medieval Literature (4)

LTNE 101. Bible: The Narrative Books (4)

LTNE 102. Bible: The Prophetic Books (4)

LTNE 103. Bible: The Poetic Books (4)

LTWL 115. Contemporary Literature/Italy and Holocaust: Jewish Experience in Literature (4)

LTWL 134. A Cultural History of American Jewry (4)

LTWL 138. Critical Religion Studies (4)

LTWL 148. Yiddish Literature in Translation (4)

LTWL 198. Directed Group Study (4)

LTWL 199. Special Studies (4)

Courses cross-listed as LTNE and LTWL may be taken as Hebrew literature by students proficient in the language or as general literature by students without knowledge of Hebrew.

Music II. Folk Music: Klezmer Music (4)

Philosophy 185. Philosophy of Religion (4-4)

Political Science 121. Government and Politics of the Middle East (4)

Political Science 121B. Politics in Israel (4)

Political Science 138D. The Arab-Israeli Conflict (4)

Sociology/C 136. Sociology of Religion (4)

Sociology/C 157. Religion in Contemporary Society (4)

Sociology/D 178. The Holocaust (4)

Sociology/D 188F. Modern Jewish Societies and Israeli Society (4)
Language

See particular languages under linguistics (beginning and intermediate) or literature (advanced).

Language and Communicative Disorders

OFFICE: Cognitive Science Building, Room 266
Mail Code: 0526
(619) 594-6775
http://crl.ucsd.edu
http://slhs.sdsu.edu/phdmain.php

Professors
Farrell Ackerman, Ph.D., Linguistics
Ursula Bellugi, Ed.D., Adjunct/Psychology
Jeff Elman, Ph.D., Cognitive Science
Mark Krickevsky, M.D., Clinical Neurosciences
Marta Kutas, Ph.D., Cognitive Science
John Moore, Ph.D., Linguistics
Carol Padden, Ph.D., Communication
Doris Trauner, M.D., Neurosciences/Pediatrics

Associate Professors
Gedeon Deak, Ph.D., Cognitive Science
Victor Ferreira, Ph.D., Psychology
Rachel Mayberry, Ph.D., Linguistics

Assistant Professor
Leslie Carver, Ph.D., Psychology

Associate Research Scientist
Jeanne Townsend, Ph.D., Neurosciences

Research Scientist
Nina Dronkers, Ph.D. (Adjunct/Neurology UC Davis)

The Joint Doctoral Program

San Diego State University (SDSU) and the University of California, San Diego (UCSD), offer jointly a doctoral program in Language and Communicative Disorders. The program's focus is the interdisciplinary study of language and communicative disorders. A major emphasis of the program is to apply techniques developed in cognitive science and neuroscience to the study of language and language disorders. The program involves study and research in normal language (including sign languages of the deaf and language impairments), and in the neural bases of language use and language loss. Participating faculty have research interests in a wide range of issues in processes of language development, language and aging, multilingualism, language disorders, assessment, and intervention.

Graduates of the program will be qualified to serve as faculty in university programs in a variety of disciplines, and to provide leadership in research and health services. The doctoral program faculty at UCSD are an interdisciplinary group from the Departments of Cognitive Science, Communication, Linguistics, Neurosciences, and Psychology. The doctoral program faculty at SDSU are members of the School of Speech, Language and Hearing Sciences and the Departments of Linguistics and Psychology. The program is coordinated by the doctoral program coordinators at each campus, in conjunction with an Executive Committee comprising three faculty from each campus appointed by the Graduate Deans from each campus.

The program is innovative in that many of the requirements are designed to function as a model of professional preparation specifically incorporating activities in which a successful teacher and researcher must engage after obtaining the Ph.D.: students will be required to participate in interdisciplinary research throughout the program, learn about the nature and ethics of research, prepare grant proposals, write manuscripts, and will gain experience in oral presentations and teaching. Graduates from the program will be well prepared for the rigors of an academic/research career. The doctoral program in Language and Communicative Disorders, being interdisciplinary, draws from a variety of undergraduate disciplines including communicative disorders, psychology, cognitive science, linguistics, engineering, and other related sciences. Students should have adequate preparation in mathematics, statistics, and biological sciences. Background in neurosciences and/or language sciences, or language disorders is helpful, but not required for admission.

By the end of the first year, all students will select a major field of emphasis by choosing one of three concentrations. The Adult Language concentration is intended to provide intensive education in communicative disorders in adults. Students in this concentration will also develop expertise in the study of language processing in normal adults. The Child Language concentration is intended to provide specialized education in childhood (birth to adolescence) communicative disorders. Students in this concentration will also achieve competence in developmental psycholinguistics emphasizing language acquisition in normally developing children. The Multilingual concentration is intended to provide education in cross-linguistic, ethnographic, and other comparative studies of communicative disorders in children and/or adults, including those associated with bilingualism and second-language acquisition (including acquisition of sign language in deaf individuals). All students will be required to take some courses in each of the three concentrations. In addition, each student will elect a methods minor, applying one of the new technologies of cognitive neuroscience to research on language and communicative disorders. These may include computer-controlled studies of language processing in real-time functional brain imaging (including event-related brain potentials and/or functional magnetic resonance imaging), or neural network simulations of communicative disorders.

The program is designed as a five-year curriculum, based on a twelve-month academic year. Students will be admitted to the doctoral program only in the fall semester/quarter. Information regarding admission is found in the current edition of the Bulletin of the Graduate Division of San Diego State University. To receive an application for admission, contact: SDSU/UCSD Joint Doctoral Program in Language and Communicative Disorders, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1518, (619) 594-6775, or http://slhs.sdsu.edu/phdmain.php.

Required courses include the Tools requirement (two courses in statistics/research design, a course in neuroanatomy and physiology, a course in language structure and theory and a professional survival skills course), the Foundations requirement (three courses on normal language and three courses on disorders of language) and the Electives requirement (at least five courses, with a minimum of three courses related to the chosen concentration, chosen from a broad list of approved options from Anthropology, Cognitive Science, Communicative Disorders, Computer Science, Linguistics,
Neurosciences, and Psychology). Consult with advisor for approved list of elective courses. The five required electives must be approved by the student's advisor and the Doctoral Program Coordinators. In addition to their course requirements, students are required to complete three laboratory rotations in different research methodologies (each lasting a minimum of one quarter), two research projects (first year and second year), a qualifying examination for advancement to candidacy, and a dissertation proposal in the form of grant proposal to one of the public agencies that funds research in communicative disorders.

Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

COURSES

(See individual departments for details; for courses available at SDSU, see SDSU Graduate Catalogue.)

Tools Requirement:

Quantitative Methods in Psychology 201A-B-C
Ethics and Survival Skills in Academia Cognitive Science 241
Systems Neuroscience Cognitive Science 201 or Basic Neurology SOMC 205
Foundations: Theories and Methods in the Study of Cognitive Phenomena Cognitive Science 203 or Introduction to Grammatical Theory (Linguistics 221A) and Introductory Phonology (Linguistics 211A)

Foundations Requirement:

Special Topics in Psycholinguistics Psychology 244
Aphasia Cognitive Science 251 or Psychology 245
Language Acquisition Psychology 215 or Cognitive Science 256

Electives:

Cognitive Science

200: Cognitive Science Seminar
202: Foundations: Computational Modeling of Cognition
211A-B-C: Research Methods in Cognitive Science
213: Issues in Cognitive Development
260: Seminar on Special Topics
272: Topics in Theoretical Neurobiology
273: Biological Basis of Attention

Communication

200A: Communication as Social Force
200B: Communication and Culture
200C: Communication and the Individual
201B: Ethnographic Methods for Communication Research
201C: Discourse Analysis
222: Childhood and Culture

Linguistics

211A: Introductory Phonology
212A: Applied Phonetics
225: Topics in Syntax
249: Topics in Sign Languages of the Deaf
270: Psycholinguistics
272: Topics in Neurolinguistics
278: Research in Second Language Acquisition

Psychology

218A-B: Cognitive Psychology
227: Biological Psychology
236: Gender and Development
238: Substance Abuse
244: Special Topics in Psycholinguistics
252: Seminar on Cognitive Neuroscience
254: Functional Brain Imaging

Computer Science and Engineering

250A-B: Artificial Intelligence
253: Neural Networks
256: Statistical Natural Language Processing
258A: Connectionist Natural Language Processing

Neurosciences:

243: Physiological Basis of Human Information
263: Developmental Neurobiology
264: Behavioral Neuroscience

Philosophy:

234: Philosophy of Language

1 Students who use this course to fulfill the Tools requirement may not use this as an elective.

Latin American Studies

OFFICE: Room 1, Gildred Latin American Studies Building, Institute of the Americas Complex http://ilas.ucsd.edu

Professors

Guillermo D. Algaze, Ph.D., Anthropology
Robert R. Alvarez, Ph.D., Ethnic Studies
Jaime Concha, Ph.D., Literature
Wayne A. Cornelius, Ph.D., Political Science
Peter Cowhey, Ph.D., International Relations and Pacific Studies
Thomas Cserdas, Ph.D., Anthropology
Paul W. Drake, Ph.D., Political Science
Richard Feinberg, Ph.D., International Relations and Pacific Studies
Grant Goodall, Ph.D., Linguistics
David Gutierrez, Ph.D., History
Ramón Gutiérrez, Ph.D., Linguistics
Stephan Hagard, Ph.D., Ethnic Studies
Daniel Hallin, Ph.D., Communication
Gordon Hanson, Ph.D., International Relations and Pacific Studies
John Haviland, Ph.D., Anthropology
Louis Hock, M.F.A., Visual Arts
Jorge Huerta, Ph.D., Theatre and Dance
Christine Hunefeldt, Ph.D., History, Director
David Mares, Ph.D., Political Science
Jorge Mariscal, Ph.D., Literature
Hugh Mehan, Ph.D., Sociology
Miguel Molina, Ph.D., Chemistry and Biochemistry
Michael Monteón, Ph.D., History
John C. Moore, Ph.D., Linguistics
Ruben Ortiz-Torres, M.F.A., Visual Arts
James E. Rauch, Ph.D., Economics
Vivian Reznik, M.D., Pediatrics
David Ringrose, Ph.D., Emeritus, History
Rosaura Sánchez, Ph.D., Literature
Matthew Shugart, Ph.D., International Relations and Pacific Studies
Harold Simon, M.D., Family and Preventive Medicine, Emeritus
Peter H. Smith, Ph.D., Political Science
Steffanie Strathdee, Ph.D., Family and Preventive Medicine
Eric Van Young, Ph.D., History
Carlos Waisman, Ph.D., Sociology
Kathryn Woolard, Ph.D., Anthropology
Ana Celia Zentella, Ph.D., Ethnic Studies

Graduate Program Coordinators:

Ana Celia Zentella, Ph.D.
Kathryn Woolard, Ph.D.
Carlos Waisman, Ph.D.
Eric Van Young, Ph.D.
Steffanie Strathdee, Ph.D.
Peter H. Smith, Ph.D.
Harold Simon, M.D.
Matthew Shugart, Ph.D.
Steffanie Strathdee, Ph.D.
Eric Van Young, Ph.D.
Carlos Waisman, Ph.D.
Kathryn Woolard, Ph.D.
The Latin American Studies Program

UCSD’s program in Latin American studies has attained national and international distinction for its excellence in teaching, research, and public service. Each year its faculty offers approximately 100 Latin America-related courses in fourteen academic departments, and the Latin American Studies Program offers three interdisciplinary degrees:

- Bachelor of Arts in Latin American Studies
- Minor in Latin American Studies
- Master of Arts in Latin American Studies

Latin American Studies at UCSD offers distinct advantages:

- At the undergraduate level, students may take elective courses on Latin American topics or pursue a minor or a B.A. degree in Latin American studies. At the graduate level, students can obtain a master’s in Latin American studies. In addition, various doctoral programs in academic departments across the social sciences and humanities offer a regional focus on Latin America.

- Latin American studies integrates teaching, research, and policy analysis, encouraging students to develop interdisciplinary perspectives and to work actively with faculty on research projects and conferences.

- Students participate in the activities of an outstanding array of research and teaching organizations, including the Center for Iberian and Latin American Studies, the Center for U.S.-Mexican Studies, the Graduate School of International Relations and Pacific Studies, the Center for Comparative Immigration Studies, and the Institute of the Americas. The Center for Iberian and Latin American Studies (CILAS) sponsors multidisciplinary colloquia, conferences, projects, and publications. CILAS also awards fellowships and grants each year to promising graduate students.

- Students are encouraged to interact with visiting Latin American scholars and to participate in Latin America-related internships, seminars, clubs, foreign exchange programs, and other extracurricular activities.

- Students at UCSD have access to one of the largest and fastest-growing library collections on Latin America in the United States.

Degree programs in Latin American studies are supervised by an interdisciplinary faculty group under the direction of the director and program director of the Center for Iberian and Latin American Studies.

The Curricular Program

Undergraduate Major in Latin American Studies

The bachelor of arts in Latin American studies blends coverage of methodological and theoretical approaches to the study of Latin America with a broad foundation in the humanities and social sciences. Students receiving this degree will be prepared for private and government employment or for graduate training; the major also provides a valuable supplement for those who subsequently pursue professional degrees in business, law, engineering, medicine, or other fields.

To satisfactorily complete the B.A. degree, students must take a broad range of courses from at least three of UCSD’s humanities and social science departments. The collection of courses should be structured so as to provide both depth in a special area of study and breadth across the broader field. Students must also demonstrate proficiency in Spanish.

All students entering the major must enroll in LATI 50 “Introduction to Latin America,” an interdisciplinary course that prepares majors to build a coherent curriculum on Latin America. During the senior year, all B.A. candidates are required to successfully complete LATI 190, a writing seminar. This course will culminate in the preparation of an interpretive paper based on the secondary analysis of existing scholarly research (approximately twenty to forty pages in length). As part of the
overall requirements, students are strongly encouraged to enroll in four credits of Individual Study (LATI 199) with a member of the Latin Americanist faculty, who will serve as the student’s principal advisor.

All upper-division courses applied to the requirements of the major must be taken for a letter grade (with the sole exception of LATI 199). A 2.0 grade-point average is required in the major, and students must earn at least a C– in each course counted for the major.

Students majoring in Latin American studies are also urged to minor in a core discipline such as anthropology, economics, history, literature, political science, or sociology. In summary, the requirements for the bachelor of arts in Latin American studies are:

LOWER-DIVISION REQUIREMENTS
1. The equivalent of at least two years of college-level language instruction in Spanish, comparable to satisfactory completion of Literature/Spanish 2C; students who satisfy this requirement are strongly encouraged to study Portuguese.
2. LATI 50: Introduction to Latin America

UPPER-DIVISION REQUIREMENTS
1. Eleven upper-division courses selected from the approved interdisciplinary course list for Latin American studies as follows:
 a. Course work must be in at least three departments.
 b. At least three courses must be from one department.
 c. No more than five courses from one department will count for credit.
 d. At least two courses must concentrate exclusively on periods earlier than the twentieth century.
2. Enrollment in the four-credit Senior Seminar (LATI 190), usually to be taken in the winter quarter of the senior year; satisfactory completion of a substantial paper is required of all graduating majors.
3. Maintain a 2.0 grade-point average, earning at least a C– in each course counting for the major. With the sole exception of LATI 199, all courses must be taken for a letter grade.

Honors in Latin American Studies
The Latin American Studies Program offers an Honors Program for students who demonstrate excellence in the major. In order to receive Honors in Latin American Studies a student must:
1. Satisfy all lower-division requirements of the major program;
2. Complete nine upper-division courses selected from the Approved Interdisciplinary Course List for Latin American Studies as follows:
 a. Course work must be in at least three departments.
 b. At least three courses must be from one department.
 c. No more than five courses from one department will count for credit.
 d. At least two courses must concentrate exclusively on periods earlier than the twentieth century.
3. Complete a three-course sequence in the senior year consisting of Individual Study, the Senior Seminar, and the Honors Seminar (LATI 199, 190, and 191, respectively);
4. Produce an original thesis based on primary research under the direction of a mentor selected from the Latin Americanist faculty, and defend this thesis during the spring quarter before an interdisciplinary faculty committee; and
5. Maintain a minimum GPA of 3.5 in the major.

Undergraduate Minor in Latin American Studies
The Latin American studies minor allows students to explore interdisciplinary approaches to a significant world region while pursuing a major in an academic discipline. To complete the program, students take at least seven classes (twenty-eight units) in Latin American studies, five (twenty units) of which must be upper-division. These courses need to be approved Latin American studies classes from the humanities and social sciences. All classes need to be taken for a letter grade and satisfactorily completed.

- Five courses (twenty units) need to be upper-division.
- One course needs to be LATI 50, which is offered once per year.
- One course needs to fulfill the language requirement, which should be the culmination of at least two years of college-level language instruction in Spanish or Portuguese. This course can be fulfilled in the following ways:
 - LTSP 2C for non-native speakers
 - LTSP 2D for native speakers
 - LTSP 50 or above
 - A UCSD-approved Spanish/Portuguese education-abroad course

Education Abroad
Students in Latin American studies are encouraged to participate in the Education Abroad Program (EAP) in Brazil, Chile, Costa Rica, or Mexico, or in other study abroad programs offered by the Opportunities Abroad Program (OAP). Subject to approval by petition after courses have been completed (based on syllabi and coursework), courses taken through EAP/OAP will be accepted for credit toward the major or minor. The equivalent of six UCSD upper-division courses can be petitioned for credit toward the major, and a maximum of two UCSD upper-division courses can be petitioned for credit toward the minor.

Students interested in studying abroad should see the Latin American studies student affairs coordinator to discuss appropriate courses and programs for their plan of study before they leave. They should also visit the following Web site: http://pao.ucsd.edu/acadint/CILASabroad.htm. Information on EAP/OAP is given in the “Education Abroad Program” section of the UCSD General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit its Web site at http://progsabroad.ucsd.edu. Financial aid can be used for EAP/OAP study, and special study-abroad scholarships are also available.

Master of Arts in Latin American Studies
The master of arts in Latin American studies is designed for students who seek to integrate a broad range of disciplinary approaches to a world region of growing international significance. Upon graduation, most students pursue additional advanced degrees in academic or professional fields; others proceed to careers in the private sector, in international organizations, or in government.
To qualify for admission, students must have a B.A. with a grade-point average of at least 3.5 on a 4.0 scale for the final two years of undergraduate study plus satisfactory scores on the Graduate Record Examination.

To receive the master of arts in Latin American studies, a student must:

1. Demonstrate foreign language competence in Spanish or Portuguese;
2. Maintain a 3.0 GPA in 40 units of coursework (about ten courses) to be completed as follows:
 a. Complete the Latin American Studies Basic Seminar Sequence: 12 units must be taken in the required Core Seminar in Latin American Studies (LATI 200, 4 units), 4 units in approved theory seminar, 4 units in approved methodology seminar.
 b. Courses must be completed in at least three fields, with no more than 16 units in any one department. Students are encouraged to include four units of independent research (LATI 299) for work on the master’s thesis.
 c. At least 16 units must be taken in graduate-level courses, and up to 16 units may be taken in upper division, undergraduate-level courses.
3. Successfully complete either a comprehensive exam or master’s thesis.

M.A. students have the option to upgrade upper-division, undergraduate-level courses to graduate-level courses (contact the Latin American studies student affairs coordinator for information on requirements and procedures). To convert an undergraduate-level course (100 level) into a 298 graduate-level course, a student must attend all of the course meetings and incorporate a component of additional, graduate-level research work, upon arrangement with the faculty member teaching the course (a special form describing the supplementary work must be filled by the student and approved by the instructor and CILAS’ academic coordinator). In all such cases, the supplementary work should:
 a. Increase the amount of reading to match the regular reading expectations of a graduate seminar;
 b. Include additional meeting time with the professor for a graduate-level discussion of the material; and
 c. Require the student to write a research paper (which would generally be on the order of fifteen to twenty pages).

Disciplinary and Thematic Concentrations

M.A. students in Latin American studies who are interested in specific disciplines or research topics may apply for a disciplinary or thematic concentration. Currently students may choose from concentrations in gender studies, international migration, history, and sociology.

In addition to the general requirements for all candidates applying for admission to the master of arts in Latin American studies, applicants to a concentration must submit a statement explaining their intellectual and career interests in that specific area of study. Applications from new students will be considered for the fall quarter. Current students in the Latin American studies master's program may apply in the spring quarter of their first year.

M.A. students who were previously enrolled as undergraduates at UCSD will not be allowed to repeat courses for credit toward the concentration. In all cases there are alternatives, and those students will be expected to take other classes to fulfill the requirements.

General Concentration Requirements

To receive the master of arts in Latin American studies with a concentration, a student must:

1. Demonstrate foreign language competence in Spanish or Portuguese.
2. Maintain a 3.0 GPA in 40 units of coursework (about ten courses) to be completed as follows:
 a. Complete the Latin American Studies Basic Seminar Sequence: 12 units must be taken in the required Core Seminar in Latin American Studies (LATI 200, 4 units), 4 units in approved theory seminar, 4 units in approved methodology seminar.
 b. Complete 16 units within the specifications of the concentration (as specified below). All of the concentration units must be taken at the graduate level (200 level), and a maximum of two undergraduate-level courses (100 level) may be upgraded to graduate-level 298 courses.
 c. Complete 12 units of general electives within the specification of the concentration (as specified below). At least 50 percent of the general elective units must be taken at the graduate level (200 level).
3. Successfully complete a master’s thesis on a topic relevant to the area of concentration.

Concentration in Gender Studies

To receive the master of arts degree in Latin American studies (gender studies), a student must complete the following units as concentration course work and general electives:

1. One general theoretical course in gender studies (4 units in any of the following: ANGR 244, CGS 100, CGS 101, CGS 104, CGS 112, COCU 132, COCU 139, ETHN 256, LTCS 250, SOCB 118, SOCC 132, SOCC 267).
2. One course in feminist theory (4 units in any of the following: CGS 103, COCU 138, HIGR 205, POLI 116A, POLI 217).
3. One course focused on gender studies in Latin America (4 units in any of the following: ETHN 129, ETHN 148, HILA 261, LTAM 105, LTAM 106, LTPS 175, POLI 134P, USP 135).
4. One course of directed reading (298, 4 units), taken with a faculty member affiliated with the CGS Program, focused on a topic relevant to Latin American gender studies.
5. General Electives: The remaining 12 units must be taken as follows: one course from the approved list of courses on Latin America (4 units), 4 units of directed reading (298), and 4 units of independent research (299).

Concentration in History

To receive the master of arts degree in Latin American studies (history), a student must complete the following units as concentration course work and general electives:

1. A required research seminar sequence in Latin American history (8 units in any of the following: HIGR 245A-B-C, HIGR 247A-B, or HIGR 248A-B).
3. General Electives: The remaining 12 units must be taken in departments other than the Department of History as follows: one course from the approved list of courses on Latin America (4 units), 4 units of directed reading (298), and 4 units of independent research (299).

Concentration in International Migration
To receive the master of arts degree in Latin American studies (international migration), a student must complete the following units as concentration course work and general electives:

1. One course focused on economic and social factors in international migration (4 units in any of the following: ECON 114, ETHN 118, ETHN 131, ETHN 134, HIUS 159, IRGN 490, POLI 248, SOCG 282).

2. One course focused on immigration policy (4 units in any of the following: POLI 150, POLI 236, IRGN 490).

3. One course focused on Latin American international migration (4 units in any of the following: COHI 175, ETHN 189, HIUS 180, HIUS 186, IRGN 490, LATM 109, LTSP 177).

4. One course of directed reading (4 units in a 298 course, focused on a topic relevant to Latin American migratory movements).

5. General Electives: The remaining 12 units must be taken as follows: one course from the approved list of courses on Latin America (4 units), 4 units of directed reading (298), and 4 units of independent research (299).

Concentration in Sociology
To receive the master of arts degree in Latin American studies (sociology), a student must complete the following units as concentration course work and general electives:

1. One seminar in classical sociological theory (4 units in SOC 201A or SOC 201B).

2. One seminar in sociological research methods (4 units in any of the following: SOC 203, SOC 204, SOC 205, SOC 206, SOC 207, SOC 227).

3. One core sociological field seminar (4 units in any of the following: SOC 212, SOC 216, SOC 222, SOC 226, SOC 234, SOC 244, SOC 264, SOC 267).

4. One sociology course or seminar focused on Latin America (4 units in any of the following: SOCD 182, SOCD 188D, SOCG 258).

5. General Electives: The remaining 12 units must be taken in departments other than the Department of Sociology as follows: one course from the approved list of courses on Latin America (4 units), 4 units of directed reading (298), and 4 units of independent research (299).

COURSES
For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

LATI 1A. Zapotec Conversation and Analysis I (4)
Presentation and practice of the grammatical structures of Valley Zapotec, an indigenous language from Mexico. Course focuses on listening, speaking, and writing. Students gain basic knowledge of grammatical principles in order to understand the structure and rules of the language.

LATI 1B. Zapotec Conversation and Analysis II (4)
Presentation and practice of the grammatical structures of Valley Zapotec, an indigenous language from Mexico. Course teaches comprehensive vocabulary through listening, speaking, reading, and writing activities. Course also focuses on oral proficiency/grammar, including verb conjugation and other grammatical structures. Prerequisite: LATI 1A.

LATI 1C. Zapotec Conversation and Analysis III (4)
Presentation and practice of the grammatical structures of Valley Zapotec, an indigenous language from Mexico. Course teaches comprehensive vocabulary through listening, speaking, reading, and writing activities. Course also focuses on oral proficiency/grammar, including verb conjugation and other grammatical structures. Prerequisite: LATI 1B.

LATI 50. Introduction to Latin America (4)
Interdisciplinary overview of society and culture in Latin America—including Mexico, the Caribbean, and South America: legacies of conquest, patterns of economic development, changing roles of women, expressions of popular culture, cycles of political change, and U.S.-Latin American relations.

LATI 50XL. Foreign Language Discussion—Introduction to Latin America (1)
Students will exercise advanced foreign language skills to discuss materials and the correspondingly numbered Latin American Studies foreign area course. This section is taught by the course instructor, has no final exam, and does not affect the grade in the core course, LATI 50.

LATI 87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to 15 to 20 students, with preference given to entering freshmen.

LATI 120/220. Special Topics in Latin American Studies (1-4)
A course designed to cover various aspects and various disciplines of Latin American Studies.
COURSES THAT SATISFY UNDERGRADUATE/GRADUATE DEGREE REQUIREMENTS IN LATIN AMERICAN STUDIES

Approved Interdisciplinary Courses: The following is a list of courses available in UCSD departments that are approved to satisfy the requirements of the major, minor, and master’s in Latin American studies. Please note that these courses may not be offered every quarter or year and new courses may be added. Check the current schedule of classes or the Latin American studies Web site (http://orpheus.ucsd.edu/ias) for updated information.

The Departments of Linguistics and Literature and the Graduate School of International Relations and Pacific Studies offer language courses in Spanish and Portuguese. **Language courses do not count toward the course requirements** for Latin American studies degrees.

Anthropology
- ANGN 100 Special Topics (when Latin American content)
- ANRG 100 Special Topics (when Latin American content)
- ANRG 113 The Mysterious Maya
- ANRG 114 Urban Cultures in Latin America
- ANRG 121 The Archaeology of South America
- ANRG 125 Modernity in Brazil
- ANRG 143 Indigenous Peoples of Latin America
- ANGR 269 Current Readings on Latin America
- ANGR 291 Archaeology of Southern Mexico

Communication
- COCU 110 Cinema in Latin America: Visions of a Continent in Transition
- COCU 168 Latino Space, Place, and Culture
- COHI 114 Bilingual Communication
- COSF 140C Comparative Media Systems: Latin America and the Caribbean

Economics
- ECON 114 Economics of Immigration
- ECON 161 Latin American Economic Development
- ECON 162 Economics of Mexico

Ethnic Studies
- ETHN 116 The United States-Mexico Border in Comparative Perspective
- ETHN 117 Organic Social Movements
- ETHN 118 Contemporary Immigration Issues
- ETHN 128 Asian and Latina Immigrant Workers in the Global Economy
- ETHN 130 Social and Economic History of the Southwest I
- ETHN 131 Social and Economic History of the Southwest II
- ETHN 132 Chicano Dramatic Literature
- ETHN 133 Hispanic American Dramatic Literature
- ETHN 135A Early Latino/a-Chicano/a Cultural Production, 1848–1960
- ETHN 135B Early Latino/a-Chicano/a Cultural Production, 1960–Present
- ETHN 136 Topics in Chicano/a-Latino/a Cultures
- ETHN 138 Chicano/a and Latino/a Poetry
- ETHN 139 Chicano Literature in English
- ETHN 144 Bilingual Communities in the U.S.A.
- ETHN 145 Spanish Language in the United States
- ETHN 146 Latino/a and Chicano/a Literature
- ETHN 180 Special Topics in Mexican-American History
- ETHN 189 Special Topics in Ethnic Studies
- HIUS 117 History of Los Angeles
- HIUS 158 Social and Economic History of the Southwest I
- HIUS 159 Social and Economic History of the Southwest II

History
- HIEU 138 Imperial Spain, 1476–1808
- HILA 100 Latin American Colonial Transformation
- HILA 101 Latin American Independence 1810–1898
- HILA 102 Latin America in the Twentieth Century
- HILA 103 Revolution in Modern Latin America
- HILA 104 Modern U.S.-Latin America Relations
- HILA 111 Economic and Social History of the Andean Region
- HILA 112 Economic and Social History of the Andean Region
- HILA 113 Lord and Peasant in Latin America
- HILA 114 Dictatorship in Latin America
- HILA 115 Latin American City, A History
- HILA 118 U.S. Aggression/Latin America 1898–Present
- HILA 120 History of Argentina
- HILA 121 History of Brazil
- HILA 122 Cuba: From Colony to Socialist Republic
- HILA 131 History of Mexico
- HILA 132 History of Contemporary Mexico
- HILA 161/261 History of Women in Latin America
- HILA 162/262 Special Topics in Latin American History
- HILA 163/263 History of Chile 1880–Present
- HILA 164/264 Women’s Work and Family Life in Latin America
- HILA 167/267 Historical Scholarship on Latin American History
- HILA 168/268 Historical Scholarship on Latin American History
- HILA 169/269 Historical Scholarship on Latin American History
- HILA 170/270 Topics in Latin American History, 1820–1910
- HILA 171/271 Special Topics in Latin American History since 1910
- HIUS 116 The United States-Mexico Border in Ethnic Studies
- HIUS 135A Early Latino/a-Chicano/a Cultural Production
- HIUS 135B Early Latino/a-Chicano/a Cultural Production

International Relations and Pacific Studies
- IRGN 409 Economic Policy in Latin America
- IRGN 454 Current Issue/U.S.-Latin American Relations
- IRGN 476 Doing Business in Latin America
- IRGN 477 Latin American Politics
- IRGN 479 Politics and Institutions in Latin America
- IRGN 490 Special Topics (with Latin American content)
- IRGN 491 Latin American Studies
- IRGN 492 Latin American Studies
- IRGN 493 Latin American Studies

Latin American Studies
- LATI 50 Introduction to Latin America
- LATI 50XL Foreign Language Discussion—Introduction to Latin America
- LATI 87 Freshman Seminar
- LATI 120 Special Topics in Latin America
- LATI 190 Senior Seminar
- LATI 191 Honors Thesis Seminar
- LATI 199 Independent Study
- LATI 200 Core Seminar in Latin American Studies
- LATI 210AB Latin American Library Resources
- LATI 220 Special Topics in Latin America
- LATI 298 Directed Reading
- LATI 299 Independent Research
- LATI 500 Teaching Apprenticeship

Literature
- LTAM 100 Latino/a Cultures in the United States
- LTAM 101 Early Latino/a-Chicano/a Cultures: 1848–1960
- LTAM 102 Contemporary Chicano/a-Latino/a Cultural Production: 1960 to Present
- LTAM 104 Cultures of the U.S./Mexico Border Region
- LTAM 105 Gender and Sexuality in Latino/a Cultural Production
Law and Society

Law and Society is an interdisciplinary minor that emphasizes the complexity and interrelationship of legal, social, and ethical issues in their historical context. Although it is administered by Warren College, it is available to all UCSD students.

Office: Interdisciplinary Programs, EBU 3B, Computer Science and Engineering Building, Room 1108, Warren College
http://warren.ucsd.edu/law

Law and society is an interdisciplinary minor that emphasizes the complexity and interrelationship of legal, social, and ethical issues in their historical context. Although it is administered by Warren College, it is available to all UCSD students.
considering law-related careers or those with a general interest in law as a social institution. The purpose of the program is to enhance students' critical analysis of social and ethical issues related to law and of the legal implications and ramifications of policy and decision-making in their major fields of study. Students examine the role of the legal system and specific legal issues from the perspectives of the social sciences and humanities. Social forces, historical questions, and issues of values will be considered in the context of the legal system. The focus of the minor is on the process of law—how the law both reflects and defines basic social values—and its relation to the political, economic, and social conflicts within society.

The interdisciplinary content of the law and society minor offers UCSD students the opportunity to examine law-related issues from the perspectives of a broad range of disciplines including: communication, anthropology, economics, environmental studies, ethnic studies, history, linguistics, philosophy, political science, psychology, sociology, urban studies and planning, and critical gender studies.

Students should consult an academic advisor in their college's provost's office to determine how the law and society minor can best meet their college's graduation requirements. Declarations must first be reviewed and approved by the coordinator of the Warren College Interdisciplinary Programs and then by the students' college academic advising office.

Students are strongly urged to supplement the law and society minor with a law-related internship. Both local and out-of-town internships are available to juniors and seniors with at least a 2.5 grade-point average (some placements require a 3.0 GPA) through the Academic Internship Program. The Academic Internship Program offers local placements with lawyers, judges, elected officials, government offices, and public interest groups. In addition, placements are available in Washington, D.C. with senators, representatives, legislative committees, and political action committees. Students may earn from four to sixteen units of academic credit for the internship experience. To apply AIP197 and courses in the UC/DC Program toward minor requirements, contact the Law and Society Interdisciplinary Programs coordinator.

A number of extracurricular events and programs are also available to students interested in law. Information on these programs and activities is available in the Warren College Interdisciplinary Programs Office, EBU 3B, Computer Science and Engineering Building, Room 1108, Warren College, or call (858) 534-1704. Web site: http://warren.ucsd.edu/law.

Law and Society Minor Requirements

The minor consists of seven courses, five of which must be upper-division, chosen from the courses listed below. To assure an interdisciplinary learning experience, students must include at least one course from each of the following academic departments: history, philosophy, political science, and sociology. Law and Society 101, Contemporary Legal Issues, may be counted as either political science or sociology, and may be repeated for credit once, for a maximum total of eight units.

Required Courses

1. Political Science 40 or Sociology 50—Introduction to Law and Society
2. Law and Society 101—Contemporary Legal Issues
3. One of the following four courses:
 - History US 150—American Legal History to 1865
 - History US 151—American Legal History Since 1865
 - Political Science 104A—The Supreme Court and the Constitution
 - Political Science 104B—Civil Liberties—Fundamental Rights
4. One of the following two courses:
 - Philosophy 168—Philosophy of Law Sociology/C-140—Sociology of Law

ELECTIVES CHOOSEN FROM THE FOLLOWING:

Anthropology: General

100—Topics in Sociocultural Anthropology (approval required)

Communication/SF

139A–B—Law, Communication, and Freedom of Expression

Critical Gender Studies

106—Gender, Equality, and the Law
107—Gender and Reproductive Rights

Dimensions of Culture

2–Justice (open to Thurgood Marshall College students)

Economics

118—Law and Economics: Torts, Property, Crime
119—Law and Economics: Contracts, Credit, Bankruptcy

Ethnic Studies

152—Law and Civil Rights

Environmental Studies

110—Environmental Law

History of Science

131—Science, Technology, and Law

History U.S.

150—American Legal History to 1865
151—American Legal History Since 1865
152A—A Constitutional History of the U.S. to 1865
152B—A Constitutional History of the U.S. since 1865
153—American Political Trials
155A—Religion and Law in American History: Foundations to the Civil War
155B—Religion and Law in American History: Civil War to the Present
169—American Legal and Constitutional History

History Topics

134– (formerly ERC 102) International Law: War Crimes and Genocide

Law and Society

101—Contemporary Legal Issues (may be repeated for credit one time; separate topic required)
102S—Crimes, Civil Wrongs, and Constitution

Linguistics/General

105—Law and Language
176—Language of Politics and Advertising

Philosophy

10—Introduction to Logic
12—Logic and Decision Making
162—Contemporary Moral Issues
163—Bio-Medical Ethics
167—Contemporary Political Philosophy
168—Philosophy of Law
Political Science
13–Power and Justice
40–Introduction to Law and Society
104A–The Supreme Court and the Constitution
104B–Civil Liberties—Fundamental Rights
104C–Civil Liberties—The Rights of Criminals and Minorities
104D–Judicial Politics
104F–Seminar in Constitutional Law
104I–Law and Politics—Courts and Political Controversy
104L–Positive Political Theory of Law
104M–Law and Sex
117–Violence and Social Order
140A–International Law and Organizations
140B–Civil Liberties—Fundamental Rights
140C–Civil Liberties—The Rights of Criminals
140D–Judicial Politics
140F–Seminar in Constitutional Law
140I–Law and Politics—Courts and Political Controversy
141–Crime and Society
142–Psychology and the Law
145–Violence and Society
146–Law Enforcement in America
147–Violence and Social Order
160L–Law and Culture
173–Elite Crime
Soc/B 120S–Special Topics in Culture, Language, and Social Interaction (prior approval of topic required)
Soc/B 142–Social Deviance
Soc/B 145–Violence and Society
Soc/B 146–Law Enforcement in America
Soc/B 160L–Law and Culture
Soc/B 173–Elite Crime
Soc/C 140–Sociology and the Law
Soc/C 140F–Law and the Workplace
Soc/C 141–Crime and Society
Soc/C 144–Forms of Social Control
Soc/C 152–Social Inequality and Public Policy
Soc/C 159–Topics in Social Organizations and Institutions (prior approval of topic required)
Soc/C 163–Migration and the Law

Psychology
162–Psychology and the Law

Sociology
Soc/L 50–Introduction to Law and Society
Soc/B 120S–Special Topics in Culture, Language, and Social Interaction (prior approval of topic required)
Soc/B 142–Social Deviance
Soc/B 145–Violence and Society
Soc/B 146–Law Enforcement in America
Soc/B 160L–Law and Culture
Soc/B 173–Elite Crime
Soc/C 140–Sociology and the Law
Soc/C 140F–Law and the Workplace
Soc/C 141–Crime and Society
Soc/C 144–Forms of Social Control
Soc/C 152–Social Inequality and Public Policy
Soc/C 159–Topics in Social Organizations and Institutions (prior approval of topic required)
Soc/C 163–Migration and the Law

Urban Studies and Planning
124–Land Use Planning

Students may petition to substitute courses in the minor that have substantial legal content. Petitions should be submitted to the Warren College Interdisciplinary Programs Office.

Recommended Internship Experience
A law-related internship (AIP 197) is recommended and should be arranged at least one quarter in advance through the Academic Internship Program, Literature Building, Second Floor, Room 3210. For each four units of credit, ten hours a week for one quarter and a ten-page research paper are required.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

As indicated above, most course work for the Law and Society minor is listed under the academic department providing instruction. Law and Society 101, described below, is an interdisciplinary course. It may be counted toward minor requirements as either political science or sociology. Further information on Law and Society 101 is available in the Interdisciplinary Programs Office.

UPPER-DIVISION

101. Contemporary Legal Issues (4)
This course will deal in depth each year with a different legal issue of contemporary significance, viewed from the perspectives of political science, history, sociology, and philosophy. Required for students completing the law and society minor. May be repeated for credit once, for a maximum total of eight units.

102S. Crimes, Civil Wrongs, and Constitution (4)
Through lectures and discussions on several controversial topics, students are introduced to the subjects taught in the first year of law school. They learn briefing, case analysis, and the Socratic method of instruction, engage in role-playing exercises, and take law-school examinations. Prerequisite: upper-division standing or consent of instructor.

Linguistics

OFFICE: 3016 Applied Physics and Mathematics Building
http://ling.ucsd.edu

Professors
Farrell Ackerman, Ph.D.
Grant Goodall, Ph.D.
John C. Moore, Ph.D., Chair
Maria Polinsky, Ph.D.

Associate Professors
Amalia Arvaniti, Ph.D.
Eric J. Bakovic, Ph.D.
Andrew S. Kehler, Ph.D.
Robert E. Kluender, Ph.D.
Rachel Mayberry, Ph.D.
Sharon Rose, Ph.D.

Assistant Professors
Ivano Caponigro, Ph.D.
Roger Levy, Ph.D.

Professors Emeritus
Matthew Y. C. Chen, Ph.D.
Edward S. Klima, Ph.D.
S.-Y. Kuroda, Ph.D.
Ronald W. Langacker, Ph.D.
Leonard D. Newmark, Ph.D.
David M. Perlmutter, Ph.D.
Sanford A. Schane, Ph.D.

In what ways do languages differ, and in what ways are all human languages alike? These are the basic questions that the science of linguistics seeks to answer.

In formulating hypotheses about language it has been found that languages have intricate structure at a number of different levels. Phonetics studies the sounds of speech and how they are produced and perceived. Phonology studies the principles by which the sounds of a language are organized into a system and combined into syllables and larger units. Morphology studies the principles by which smaller units of meaning are combined into words. Syntax is the study of the principles by which words are combined into larger units such as phrases and sentences. Semantics studies meaning—the meanings of words and the ways the meanings of words are related to the meanings of larger units such as the phrase, the sentence, and the discourse. Linguists attempt to discover to what extent the principles at each level vary across languages, and to what extent they are universal.

Because language provides a window into the human mind, linguistics plays a central role in the study of human cognition and figures prominently in the field of cognitive science. We know, for example, that all normal children succeed in learning language relatively quickly at a time when their other cognitive abilities are still developing. The universal properties of human language that linguists discover can be used to provide models of this process, to explain why it occurs so rapidly, and to make specific predictions about the way it unfolds. The results of linguistic research can also be tested directly in
experimental studies of how language is represented and processed in the mind (psycholinguistics) and brain (neurolinguistics). Language can also be studied in terms of its function as a cognitive system shared by an entire society; sociolinguistics investigate the ways in which the language we use is affected by our social environment.

The Department of Linguistics offers a series of lower-division courses designed to introduce non-majors to the scientific study of language in the broader perspective of a liberal arts education. These are LIGN 3 (Language as a Social and Cultural Phenomenon), LIGN 4 (Language as a Cognitive System), LIGN 7 (Sign Language and Its Culture), LIGN 8 (Languages and Cultures in America), and LIGN 17 (Making and Breaking Codes). These courses may be used to satisfy the Marshall College disciplinary breadth requirement. Lower-division linguistics courses may be used to satisfy the social sciences requirement at Muir College and Revelle College, and they partially fulfill the requirements for a program of concentration in Warren College. In addition, certain linguistics courses satisfy the American Cultures requirement in Muir College and the cultural diversity requirement in Muir College and Warren College. LIGN 17 (Making and Breaking Codes) satisfies the Thurgood Marshall Computational Skills requirement in addition to the formal skills requirement in Warren College and in the Human Development Program. This course also satisfies the Structured Reasoning requirement in Sixth College. Students should consult their college advising offices to determine which linguistics courses satisfy these other requirements.

Linguistics courses are relevant to a wide range of fields of study at UCSD, including anthropology, cognitive science, communication, computer science, human development, law and society, psychology, and sociology, as well as areas such as African studies, Chinese studies, ethnic studies, Judaic studies, Latin American studies, and others. In some cases certain linguistics courses count toward a major or minor in one of these departments or programs. Students should consult with a faculty advisor in linguistics and the other department or program when deciding on their course of study.

Students are often able to participate in the UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP) while still making progress toward the major. Students considering this option should discuss their plans with the department undergraduate advisor before going abroad. Detailed information on EAP/OAP is found in this catalog under the heading “Education Abroad Program.”

The Department of Linguistics oversees the Linguistics Language Program, which offers basic language instruction in Arabic, ASL, French, German, Italian, Portuguese, and Spanish. Courses from the Language Program satisfy general-education requirements, as well as the Department of Linguistics language requirement. Graduate students who require a reading knowledge of French or German may enroll in LIFR 11 or LIGM 11, respectively.

The department also offers language instruction for individuals who grew up in an English-speaking environment while speaking a different language at home (Arabic, Armenian, Cantonese, Hindi, Korean, Persian, Tagalog, and Vietnamese; other languages may be added to this list if student demand is sufficient). Instruction in these languages is designed to raise students’ linguistic and cultural competence to professional levels. Finally, directed self-instruction is available for a wide variety of languages through LIDS 19.

Note: Please check with the department office for updates concerning programs and course offerings.

The Major Program

General Requirements

Every linguistics major (except the language studies major) must satisfy the undergraduate language requirement and must successfully complete a minimum of twelve upper-division courses, including six required courses and at least five upper-division linguistics electives. (One elective pertaining to the study of language may be taken outside the department, subject to faculty approval.) In addition to the general major, the department offers a set of enriched major programs in various specializations.

Exception for LIGN 199, no course taken on a Pass/Not Pass basis may be counted toward a linguistics major. No more than one quarter of LIGN 199 may be counted toward a linguistics major. At least six of the required upper-division linguistics courses counted toward the major must be taken in residence at UCSD. A letter grade of C– or better is required for every course counted toward a linguistics major, including courses taken to satisfy the department’s undergraduate language requirement.

Required Linguistics Courses

Linguistics 101 is required as an introduction to the field and serves as the prerequisite to certain other courses. Students who choose a linguistics major should enroll in it as early as possible.

Every major program in linguistics (except the language studies major) must include the following required courses covering basic areas of the field:

LIGN 101: Introduction to the Study of Language
LIGN 110: Phonetics
LIGN 111: Phonology I
LIGN 120: Morphology
LIGN 121: Syntax I
LIGN 130: Semantics

Students are advised to take these required courses as early as possible, since the background they provide may be needed for other upper-division linguistics courses. Check individual course listings for prerequisite information. If possible they should be taken in this order.

Linguistics Electives

LIGN 105: Law and Language
LIGN 108: Languages of Africa
LIGN 119: First and Second Language Learning: From Childhood Through Adolescence
LIGN 140: The Structure of American Sign Language
LIGN 141: Language Structures
LIGN 142: Language Typology
LIGN 143: The Structure of Spanish
LIGN 144: Discourse Analysis: American Sign Language and Performing Arts
LIGN 145: Pidgins and Creoles
LIGN 146: Sociolinguistics in Deaf Communities
LIGN 150: Historical Linguistics
LIGN 165: Computational Linguistics
LIGN 169: Principles of Discourse and Dialog
LIGN 170: Psycholinguistics
LIGN 171: Child Language Acquisition
LIGN 172: Language and the Brain
LIGN 173: Heritage Languages
LIGN 174: Gender and Language in Society
LIGN 175: Sociolinguistics
LIGN 176: Language of Politics and Advertising
LIGN 177: Multilingualism
LIGN 178: Second Language Teaching Methodology
LIGN 179: Second Language Acquisition Research

Restricted Courses
LIGN 87: Freshman Seminar
(does not count as a linguistics elective)
LIGN 192: Senior Seminar in Linguistics
(does not count as a linguistics elective)
LIGN 195: Apprentice Teaching
(does not count as a linguistics elective)
LIGN 197: Linguistics Internship
LIGN 199: Independent Study in Linguistics
LIGN 199H: Honors Independent Study in Linguistics

Notes to Revelle and Warren students.
Revelle: For Revelle College only, the classification of the linguistics major as humanities, natural science, or social science must be determined on the basis of each student's specific program. The classification of the major program will in turn determine what areas will be acceptable for the noncontiguous minor.

Warren: For Warren College only, any courses taken in departments other than linguistics may not overlap with the student's outside area(s) of concentration.

Undergraduate Language Requirement
Linguistics majors must demonstrate proficiency in one foreign language. Proficiency in a foreign language may be demonstrated in three ways:
1. By passing the reading proficiency examination and the oral interview administered by the Department of Linguistics in French, German, Italian, or Spanish; or
2. By successfully completing a course given at UCSD representing the fourth quarter (or beyond) of instruction in any single foreign language with a grade of C– or better; or
3. By scoring 4 or greater on the Advanced Placement (AP) exam.

Students are encouraged to satisfy this requirement as early as possible in order to be able to use the language for reference in linguistics courses. Students with native language competence in a language other than English may petition to have English count as satisfying the proficiency requirement.

General Major (12 courses)
The general major in linguistics requires satisfaction of the undergraduate language requirement and successful completion of twelve upper-division courses:

6 required linguistics courses:
LIGN 101
LIGN 110
LIGN 111
LIGN 120
LIGN 121
LIGN 130

5 linguistics electives

1 additional linguistics elective or upper-division course in another department pertaining to the study of language.

Courses currently approved to satisfy the requirement include the electives for the cognition and language major (except PSYC 105) and the electives for the language and society major (note: some of these courses may have prerequisites) or a Heritage Language course offered in the Linguistics Language Program (for example, LIHL 112/LIHL 112X).

Specialized Majors
Every student with a specialized major must consult the faculty advisor in the Department of Linguistics to have approved an individual curricular plan to satisfy the major requirements for the option chosen. Each specialized major requires satisfaction of the undergraduate language requirement and successful completion of upper-division requirements as specified below. The specialization will be reflected in the wording of a degree, e.g., "B.A. in Linguistics (with Specialization in Language and Society)."

COGNITION AND LANGUAGE (12 COURSES)

6 required linguistics courses:
LIGN 101
LIGN 110
LIGN 111
LIGN 120
LIGN 121
LIGN 130

4 linguistics electives chosen from:
LIGN 145
LIGN 165
LIGN 170
LIGN 171
LIGN 172
LIGN 176
LIGN 179

2 additional courses from linguistics or other departments subject to advisor approval.

Courses currently approved to satisfy this requirement include the following (Note: some of these courses may have prerequisites):

Linguistics:
Any upper-division courses (except those used to fulfill requirements A and B).

Anthropology:
ANBI 140: The Evolution of the Human Brain
ANBI 159: Biological and Cultural Perspectives on Intelligence
ANBI 161: Human Evolution
ANBI 173: Cognition in Animals and Humans

Cognitive Science:
COGS 101C: Language
COGS 102A: Distributed Cognition
COGS 102B: Everyday Cognition
COGS 107C: Cognitive Neuroscience
COGS 108D: Programming Methods for Cognitive Science
COGS 108E: Neural Network Models of Cognition I
COGS 151: Analogy and Conceptual Systems
COGS 153: Language Comprehension
COGS 154: Communication Disorders in Children and Adults
COGS 156: Language Development
COGS 170: Natural and Artificial Symbolic Representational Systems
COGS 181: Neural Network Models of Cognition II
COGS 184: Modeling the Evolution of Cognition
COGS 191: Laboratory Research

Computer Science and Engineering:
CSE 133: Information Retrieval

Note to Revelle and Warren students.
Revelle: For Revelle College only, the classification of the linguistics major as humanities, natural science, or social science must be determined on the basis of each student's specific program. The classification of the major program will in turn determine what areas will be acceptable for the noncontiguous minor.

Warren: For Warren College only, any courses taken in departments other than linguistics may not overlap with the student's outside area(s) of concentration.

Undergraduate Language Requirement
Linguistics majors must demonstrate proficiency in one foreign language. Proficiency in a foreign language may be demonstrated in three ways:
1. By passing the reading proficiency examination and the oral interview administered by the Department of Linguistics in French, German, Italian, or Spanish; or
2. By successfully completing a course given at UCSD representing the fourth quarter (or beyond) of instruction in any single foreign language with a grade of C– or better; or
3. By scoring 4 or greater on the Advanced Placement (AP) exam.

Students are encouraged to satisfy this requirement as early as possible in order to be able to use the language for reference in linguistics courses. Students with native language competence in a language other than English may petition to have English count as satisfying the proficiency requirement.

General Major (12 courses)
The general major in linguistics requires satisfaction of the undergraduate language requirement and successful completion of twelve upper-division courses:

6 required linguistics courses:
LIGN 101
LIGN 110
LIGN 111
LIGN 120
LIGN 121
LIGN 130

5 linguistics electives

1 additional linguistics elective or upper-division course in another department pertaining to the study of language.

Courses currently approved to satisfy the requirement include the electives for the cognition and language major (except PSYC 105) and the electives for the language and society major (note: some of these courses may have prerequisites) or a Heritage Language course offered in the Linguistics Language Program (for example, LIHL 112/LIHL 112X).

Specialized Majors
Every student with a specialized major must consult the faculty advisor in the Department of Linguistics to have approved an individual curricular plan to satisfy the major requirements for the option chosen. Each specialized major requires satisfaction of the undergraduate language requirement and successful completion of upper-division requirements as specified below. The specialization will be reflected in the wording of a degree, e.g., "B.A. in Linguistics (with Specialization in Language and Society)."

COGNITION AND LANGUAGE (12 COURSES)

6 required linguistics courses:
LIGN 101
LIGN 110
LIGN 111
LIGN 120
LIGN 121
LIGN 130

4 linguistics electives chosen from:
LIGN 145
LIGN 165
LIGN 170
LIGN 171
LIGN 172
LIGN 176
LIGN 179

2 additional courses from linguistics or other departments subject to advisor approval.

Courses currently approved to satisfy this requirement include the following (Note: some of these courses may have prerequisites):

Linguistics:
Any upper-division courses (except those used to fulfill requirements A and B).

Anthropology:
ANBI 140: The Evolution of the Human Brain
ANBI 159: Biological and Cultural Perspectives on Intelligence
ANBI 161: Human Evolution
ANBI 173: Cognition in Animals and Humans

Cognitive Science:
COGS 101C: Language
COGS 102A: Distributed Cognition
COGS 102B: Everyday Cognition
COGS 107C: Cognitive Neuroscience
COGS 108D: Programming Methods for Cognitive Science
COGS 108E: Neural Network Models of Cognition I
COGS 151: Analogy and Conceptual Systems
COGS 153: Language Comprehension
COGS 154: Communication Disorders in Children and Adults
COGS 156: Language Development
COGS 170: Natural and Artificial Symbolic Representational Systems
COGS 181: Neural Network Models of Cognition II
COGS 184: Modeling the Evolution of Cognition
COGS 191: Laboratory Research

Computer Science and Engineering:
CSE 133: Information Retrieval
At least two of the upper-division courses in the literature of the language of concentration. Students whose language of concentration is American Sign Language will need to consult the faculty advisor for individualized requirements; these students may also consider an exchange year at Gallaudet University.

Requirements:

Lower-division preparation:

- Two years of language instruction in the language of concentration, or equivalent proficiency
- Lower-division prerequisites for upper-division courses in the literature of the language of concentration

Upper-division requirements:

Note: At least two of the upper-division courses must be conducted in the language of concentration. Students are encouraged to increase their academic exposure to their language of concentration by taking one-unit seminars in the language and by participating in the EAP program.

A. 6 upper-division linguistics courses, as follows:
 - LIGN 101: Introduction to Linguistics
 - 3 courses chosen from:
 - LIGN 110: Phonetics
 - LIGN 111: Phonology I
 - LIGN 120: Morphology
 - LIGN 121: Syntax I
 - LIGN 130: Semantics
 - LIGN 145: Pidgins and Creoles
 - LIGN 150: Historical Linguistics
 - “Structure of” language of concentration course (e.g., LIGN 143 Structure of Spanish). If no such course is available, the student must consult with the undergraduate advisor regarding a possible substitution.

 One additional upper-division LIGN course.

B. 2 upper-division courses in the literature of the language of concentration

C. 4 additional upper-division courses that deal with general linguistics, the language of concentration (e.g., literature), or the corresponding culture/area studies (e.g., anthropology, economics, history, political science, sociology), subject to approval of the faculty advisor.

Language Studies Major

Students majoring in language studies must consult with the language studies faculty advisor to approve an individual curricular plan.

The language studies major is designed for students who wish to pursue the study of a particular language from a variety of perspectives. To this end, students will take courses in linguistics and literature, as well as electives in linguistics, literature, culture, and area studies. This major provides preparation for a variety of careers that make use of second language skills. Depending on the elective emphasis, these include international business/law, teaching, translation, interpreting, linguistics, and foreign service. Each language studies major will specialize in one language of concentration. In principle, this could be any language other than English. However, some languages may require that some coursework be completed outside UCSD. Hence, it is recommended that language studies majors consider a year abroad. Students whose language of concentration is

Philosophy:

- PHIL 110: Wittgenstein
- PHIL 120: Symbolic Logic I
- PHIL 121: Symbolic Logic II
- PHIL 134: Philosophy of Language
- PHIL 135: Meaning and Communication
- PHIL 136: Philosophy of Mind
- PHIL 150: Philosophy of the Cognitive Sciences

Psychology:

- PSYC 105: Introduction to Cognitive Psychology
- PSYC 118A: Real-Time Examination of Language Processing
- PSYC 118B: Real-Time Examination of Language Processing
- PSYC 119: Psycholinguistics/Cognition Laboratory
- PSYC 145: Psychology of Language

LANGUAGE AND SOCIETY (12 COURSES)

- 6 required linguistics courses
- 2 appropriate upper-division courses in other departments (especially the Departments of Anthropology, Communication, Cognitive Science, or Sociology), selected in consultation with the faculty advisor for language and society. Courses currently approved to satisfy this requirement include the following (note: some of these courses may have prerequisites):
 - ANGN 112: Language, Identity, and Community
 - ANGN 149: Language in Society
 - COCU 100: Introduction to Communication and Culture
 - COHI 114: Bilingual Communication
 - COHI 117: Language, Thought, and the Media
 - COHI 124: Voice: Deaf People in America
 - COHI 134: Language and Human Communication
 - COHI 135: Language and Globalization
 - ETHN 140: Language and American Ethnicity
 - ETHN 141: Language, Culture, and Inequality
 - ETHN 144: Bilingual Communities in the USA
 - SOCB 117/TEP 117: Language, Culture, and Education
 - SOCB 118L: Sociology of Language
 - SOCB 120S: Special Topics in Culture, Language, and Social Interaction
 - EDS 125: History, Politics, and Theory of Bilingual Education
 - 1 course in sociolinguistics (by approval of the faculty advisor, may be taken in another department). Courses currently approved to satisfy this requirement include the following (note: some of these courses may have prerequisites):
 - LIGN 174: Gender and Language in Society
 - LIGN 175: Sociolinguistics
 - LIGN 176: Language of Politics and Advertising
 - LIGN 177: Multilingualism
 - 3 linguistics electives. Courses particularly relevant to this specialization are:
 - LIGN 105: Law and Language
 - LIGN 174: Gender and Language in Society
 - LIGN 175: Sociolinguistics
 - LIGN 176: Language of Politics and Advertising
 - LIGN 177: Multilingualism
Approved courses for this requirement include the following (Note: some of these courses may have prerequisites):

Linguistics: Any upper-division courses (except those used to fulfill requirement A).

Literature: Any upper-division courses related to the language of concentration (except those used to fulfill requirement B).

Area Studies: Approved courses are listed by language of concentration; other languages of concentration are possible in principle, but probably require coursework outside of UCSD.

ASL
COM/HIP 124: Voice: Deaf People in America

Chinese
ANRG 170: Traditional Chinese Society
ANRG 173: Chinese Popular Religion
HIEA 120: Classical Chinese Philosophy and Culture
HIEA 121: Medieval Chinese Culture and Society
HIEA 122: Late Imperial Chinese Culture and Society
HIEA 130: History of the Modern Chinese Revolution: 1800–1911
HIEA 131: History of the Modern Chinese Revolution: 1911–1949
HIEA 132: History of the People's Republic of China
HIEA 133: Twentieth Century China: Cultural History
HIEA 137: Women and Family in Chinese History
HIEA 167: Special Topics in Modern Chinese History
POLI 130B: Politics in the People's Republic of China
POLI 131C: The Chinese Revolution
POLI 132B: Politics and Revolution in China and Japan
SOCD 158J: Religion and Ethics in China and Japan
SOCD 188G: Policemen, Businessmen, and Students: Japanese Organizational Cultures

German
HIEU 132: German Politics and Culture: 1648–1848
HIEU 154: Modern German History
HIEU 155: Modern Austria
HIEU 177: Special Topics in Modern German Thought
HIEU 177A: The Two Germanies Since 1945
PHIL 106: Kent
PHIL 107: Hegel
PHIL 110: Wittgenstein
PHIL 182: Marx and Marxism
POLI 120B: The German Political System
POLI 120D: Germany: Before, During, and After Division

Hebrew
ANRG 150: The Rise and Fall of Ancient Israel
ANRG 162: Peoples of the Middle East
HINE 100: The Ancient Near East and Israel
HINE 102: The Jews in Their Homeland in Antiquity
HINE 103: The Jewish Diaspora in Antiquity
HINE 170: Special Topics in Jewish History
HINE 186: Special Topics in Middle Eastern History
POLI 121: Middle East Politics
SOCD 1880: Dilemmas of Israeli Society

Italian
HIEU 119: Modern Italy: From Unification to the Present
HIEU 120: The Renaissance in Italy
HIEU 121: Early Modern Italy
HIEU 122: Politics Italian Renaissance Style
HIEU 124: The City in Italy
POLI 120I: Politics in Italy

Japanese
ECON 163: Japanese Economy
HIEA 110: Japan Through the Twelfth Century
HIEA 111: Japan: Twelfth to Mid-Nineteenth Centuries
HIEA 112: Japan: From the Mid-Nineteenth Century through the U.S. Occupation
HIEA 113: The Fifteen-Year War in Asia and the Pacific
HIEA 114: Postwar Japan
HIEA 115: Social and Cultural History of Twentieth-Century Japan
HIEA 116: Japan-U.S. Relations

Russian
HIEU 134: Russia: Ninth Century to 1855
HIEU 156: Russia: 1855 to the Present
HIEU 178: Special Topics in Modern Russian History
POLI 126AB: Politics and Economics in Eastern Europe
POLI 130A: The Soviet Successor States
POLI 130AC: Seminar: Post-Soviet Politics
POLI 130AD: The Politics of the Russian Revolution
POLI 147A: Soviet Foreign Policy
SOCD 188E: Soviet Society

Spanish
ANRG 133: Politics and Modernity: Urban Cultures in Latin America
ANRG 134: The Cultures of Mexico
COM/SF 140C: Comparative Media Systems: Latin America and the Caribbean
COM/CUL 110: Cinema in Latin America
ECON 161: Latin American Economic Development
ECON 162: Economics of Mexico
ETHN 129/USP 135: Asian and Latina Immigrant Workers in the Global Economy
ETHN 132: Chicano Dramatic Literature
ETHN 133: Hispanic-American Dramatic Literature
ETHN 135A: Early Latino/a-Chicano/a Cultural Production: 1848–1960
ETHN 135B: Contemporary Latino/a-Chicano/a Cultural Production: 1960 to Present
ETHN 136: Topics in Chicano/a-Latino/a Cultures
ETHN 138: Chicano/a and Latino/a Poetry
ETHN 139: Chicano Literature in English
ETHN 145: Spanish Language in the United States
ETHN 180: Topics in Mexican American History
HIEU 138: Imperial Spain, 1476–1808
HIEU 151: Spain since 1808
HIEU 165: Special Topics in Early Modern Spain
HIEU 175: Selected Topics in the History of Nineteenth- and Twentieth-Century Spain
HILA 100: Latin America-Colonial Transformations
HILA 101: Latin America: The Construction of Independence 1810–1898
HILA 102: Latin America in the Twentieth Century
HILA 103: Revolution in Modern Latin America
HILA 107: State and Society in Nineteenth- and Twentieth-Century Latin America
HILA 108: Economic History: Continuity and Change in Latin America
HILA 112: Economic and Social History of the Andean Region
HILA 113: Lord and Peasant in Latin America
HILA 114: Dictatorship in Latin America
HILA 115: The Latin American City, A History
HILA 116: Encounter of Two Worlds: Early Colonial Latin America
HILA 117: Indians, Blacks, and Whites: Family Relations in Latin America
HILA 120: History of Argentina
HILA 121: History of Brazil
HILA 122: Cuba: From Colony to Socialist Republic
HILA 126: From Columbus to Castro: Caribbean Culture and Society
HILA 131: A History of Mexico
HILA 132: A History of Contemporary Mexico
HILA 161: History of Women in Latin America
HILA 162: Special Topics in Latin American History
HILA 163/263: The History of Chile, 1880–Present
HILA 164/264: Women’s Work and Family Life in Latin America
HILA 166: Cuba: From Colony to Socialist Republic
HILA 170/270: Topics in Latin American History, 1820–1910
HILA 171/271: Topics in Latin America History, 1910
LATI 120: Special Topics in Latin American Studies
THHS 110: Chicano Dramatic Literature
THHS 111: Hispanic-American Dramatic Literature
POLI 134B: Politics in Mexico
POLI 134C: Politics in Mexico
POLI 134D: Selected Topics in Latin American Politics
POLI 134E: Politics in the Andes
POLI 134F: Politics in the Southern Cone of Latin America
POLI 134R: Political Parties in Latin America
POLI 146A: The U.S. and Latin America: Political and Economic Relations
POLI 146E: U.S.-Latin American Relations: Security Issues
SOC 151M: Chicanos in American Society
SOC 188D: Latin America: Society and Politics

Honors Program

The department offers an honors program for outstanding students. Those students who have a 3.75 GPA in linguistics (3.25 overall) at the end of their junior year are eligible to participate. Students interested in participating in the honors program should consult with their department advisor: admission to the program requires nomination by the advisor and approval of the department faculty.

The honors program requires that two graduate linguistics courses be taken as part of the twelve required courses for the major, and further requires one quarter of LIGN 199. During one of the two graduate courses, the student, in consultation with the instructor and a faculty advisor, will begin a substantial research project which will be continued during the quarter of 199H and will culminate in an honors paper. Responsibility for proposing possible projects and completing necessary paperwork rests with the student. Upon successful completion of the requirements the designation “with distinction,” “with high distinction,” or “with highest distinction” will appear on the student’s diploma.

Independent Study and Directed Group Study in Linguistics for Majors

Upon presentation of a written study proposal or project, and with the consent of the instructor and the advisor, linguistics majors with at least a 3.5 GPA in the major courses may request permission to undertake independent study in linguistics (LIGN 199). No more than one such course (to be taken Pass/Not Pass) may count toward the major.

The Minor Program

The Linguistics minor consists of LIGN 101, plus six additional courses in linguistics, at least four of which must be upper-division.

For all courses counted toward the linguistics minor, the student must receive letter grades of C– or better. Courses counted toward the minor may not be taken on a Pass/Not Pass basis, except LIGN 199. Only one quarter of LIGN 199 may be counted toward the minor.

The Language Studies minor consists of seven courses, at least five of which must be upper-division:

Literature: One upper-division literature course is required in the language of concentration. This will require proficiency as well as lower-division prerequisites. Therefore, the lower-division courses of the minor may consist of prerequisites for the upper-division literature requirement. American Sign Language students may substitute a non-literature upper-division elective with approval of the faculty advisor.

Linguistics: LIGN 101 is required. In addition students must take a “Structure of” language of concentration course (e.g., LIGN 143 Structure of Spanish). If no such course is available, the student must consult with the undergraduate advisor regarding a possible substitution.

Other: Two additional courses that deal with general linguistics, the language of concentration (e.g., literature), or the corresponding culture, subject to approval of the faculty advisor are required.
The Ph.D. Program

The UCSD Ph.D. program in linguistics offers rigorous training in multiple areas of theoretical linguistics, including syntax, semantics, phonetics, phonology, and morphology. The department is particularly strong in the study of interface areas, including syntax/semantics, phonetics/phonology, and phonology/syntax. Research conducted in a variety of theoretical frameworks is integrated into the graduate curriculum. Students receive a firm foundation in both formal and cognitive/functionalist approaches to syntax and semantics. In phonology, basic training includes segmental and autosegmental phonology, constraint-based phonology, syllable theory, metrical theory, and theories of the phonology-morphology interface. The first two years of graduate study are devoted primarily to gaining a strong background in these core theoretical areas.

This theoretical strength of the department is matched by strength in both language study and experimental science. The range of languages represented in faculty research encompasses American Sign Language (ASL), Caucasian, Chinese, Finno-Ugric, Germanic, Greek, Persian, Romance, Semitic, Slavic, and Uto-Aztecan. The departmental concern with the empirical facts of language is reflected in a field methods requirement for graduate students as well as in the graduate student language requirement (conversational ability in one language other than English and reading ability in one language other than English). The department has a tradition of working with native speakers of a wide variety of languages. The department’s language laboratory maintains a library of written and recorded materials permitting independent study of dozens of languages; it also includes computers for self-instruction in French, German, Italian, and Spanish. The Linguistics Language Program (LLP) provides basic foreign language instruction for the entire campus, and many linguistics graduate students are employed as TAs in the program. Aside from providing a source of funding, the LLP provides graduate students with valuable teaching experience.

The department houses laboratories devoted to experimental studies of language with emphasis on phonetics, event-related brain potentials (ERPs), computational linguistics, and signed languages. The focus of experimental research in the department is the mutual dependence between mechanisms of language processing and theories of phonology and syntax. Linguistics graduate students may supplement their theoretical studies with experimental research; in addition to departmental laboratories, graduate students have access to experimental laboratories concerned with language issues in other departments.

The department has a strong commitment to, and is an active and integral part of, the cognitive science and neuroscience communities at UCSD. Most linguistics faculty have joint appointments in the Department of Linguistics and the Cognitive Science Interdisciplinary Ph.D. Program, and participate in the Department of Cognitive Science graduate core course in language (Cognitive Science 201D) as well as in the all-campus Interdisciplinary Program seminar (Cognitive Science 200) on a regular basis. Graduate students in the Cognitive Science Department frequently participate in Linguistics graduate courses, and Linguistics graduate students regularly attend courses in the Cognitive Science Department on neuroscience, child language acquisition, aphasia, neural networks, and semantics and cognition. Linguistics graduate students are eligible to pursue a joint degree in Cognitive Science and Linguistics within the Interdisciplinary Program. Areas of secondary specialization that are especially well represented in the cognitive science community at UCSD and related institutes include child development, connectionist modelling, distributed cognition, language disorders, neuroscience, philosophy, and psycholinguistics.

The department has access to rich informational resources; in addition to the extensive linguistics holdings in the main library, the department maintains a collection of research reports, dissertations, and unpublished papers. Access to the libraries of other universities exists through interlibrary loan.

Preparation

Since linguistics is a highly technical and analytic field, linguistics students will find their undergraduate training in mathematics and the natural sciences especially valuable. Undergraduate work in certain of the social sciences and humanities, particularly psychology, anthropology, philosophy and literature, is also good preparation for linguistics. The ideal candidate for admission will have both experience with foreign languages and some knowledge of the fundamentals of contemporary linguistic theory. Students who, upon admission, are deficient either in their formal linguistics preparation or languages will be advised by the department on how to make up the deficiency. New graduate students will be admitted only in the fall of any academic year.

Language Requirements

A candidate for the Ph.D. degree must demonstrate: (1) Conversational ability in one language other than English. (2) A reading knowledge of any one language other than his or her native language, subject to faculty approval.

Required Courses

Candidates for the Ph.D. must pass certain linguistics graduate courses prior to taking the qualifying examination. All graduate students must take a common core of ten courses. These are:

- Three courses in Syntax and Semantics: 221A, 221B, 230
- Three courses in Phonology and Phonetics: 210, 211A, 211B
- Three courses in Research Methods: 240, 241, 245
- One course in Research Paper Writing: 293

All required courses (except 293) must be taken for a letter grade.

Evaluations

A graduate student is formally evaluated by the entire faculty at particular stages during the first three years of graduate study. The first evaluation (at the end of the third quarter of graduate study) pertains chiefly to performance in courses. The second (or comprehensive) evaluation (at the end of the sixth quarter) determines the student’s fitness to continue in the Ph.D. program. It takes into account performance in course work and ability to engage in original research in one area of linguistics as demonstrated in a research paper. The third evaluation (at the end of the ninth quarter) focuses primarily on a second research paper (which must be in a different area of linguistics from the first).

Qualifying Examination

Candidates for the Ph.D. degree must pass an oral qualifying examination which tests the stu-
dent’s knowledge in the area of specialization. Prior to taking this examination, the student must pass the comprehensive evaluation, satisfy all language requirements, successfully complete all required courses, and demonstrate—through research papers—the ability to carry out independent, dissertation-level research. Students must take the qualifying examination by the end of the fourth year of graduate work.

Colloquium Presentation

Sometime prior to the thesis defense, a student must present a paper orally at a professional gathering. The colloquium requirement is intended to enable a student to develop the skills necessary for organizing research results for oral presentation. The requirement is generally met by presenting a department colloquium or by presenting a paper at a professional meeting. In either case, a faculty member must certify the acceptability of the presentation.

Dissertation

The candidate for the Ph.D. will write a substantial dissertation incorporating the results of original and independent research carried out under the supervision of the doctoral committee. The candidate will be recommended for the doctor of philosophy degree after having made a successful oral defense of the dissertation before the doctoral committee in a public meeting and after having the final version of the dissertation accepted by Geisel Library.

Apprentice Teaching

As part of their preparation for a future academic career, graduate students in linguistics at UCSD are given special opportunities to participate in teaching programs under the supervision of a professor. Depending on qualifications, students may conduct conversation or analysis classes in lower-division language courses (LLP and HLP), or may assist a professor in the teaching of an undergraduate linguistics course.

Other Degrees

Candidates for the Ph.D., who have not previously earned a master’s degree, may be granted the M.A. in linguistics after: 1) satisfactorily completing twelve required courses; all but LIGN 293 must be taken for a letter grade; 2) passing the comprehensive evaluation at the end of the sixth quarter; and 3) demonstrating a reading knowledge of any language except English, subject to faculty approval.

Candidates for the Ph.D. may also be granted the C.Phil. upon completion of all degree requirements other than the dissertation.

Departmental Ph.D. Time Limit Policies

The time a student takes to complete the Ph.D. depends on a number of factors, including previous preparation and the amount of time spent in teaching or other job commitments. Several policies set an upper limit to the length of the program. All degree requirements other than the dissertation must be completed by the end of the fourth year of graduate work. Total instructional support (TAships, etc.) cannot exceed six years; total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

Courses

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

NOTE: Not all courses are offered every year. It is essential that students consult the linguistics advisor when planning their degree programs.

LINGUISTICS

LOWER DIVISION

3. Language as a Social and Cultural Phenomenon (4)
 The role of language in thought, myth, ritual, advertising, politics, and the law. Language variation, change, and loss; multilingualism, pidginization, and creolization; language planning, standardization, and prescriptivism; writing systems. **Prerequisite:** none.

4. Language as a Cognitive System (4)
 Fundamental issues in language and cognition. Differences between animal communication, sign systems, and human language; origins and evolution of language; neural basis of language; language acquisition in children and adults. **Prerequisite:** none.

5. The Linguistics of Invented Languages (4)
 Introduction to the study of language through the investigation of invented languages, whether conscious (Elvish, Klingon, Esperanto) or unconscious (creoles, twin/sibling languages). Students will participate in the invention of a language fragment. Topics discussed include language structure, history, culture, and writing systems.

7. Sign Language and Its Culture (4)
 Deaf history since the eighteenth century. The structure of American Sign Language and comparison with oral languages. ASL poetry and narrative and Deaf people’s system of cultural knowledge. Basic questions concerning the nature of language and its relation to culture.

8. Languages and Cultures in America (4)
 Language in American culture and society. Standard and non-standard English in school, media, pop-culture, politics; bilingualism and education; cultural perception of language issues over time; languages and cultures in the ‘melting pot’; including Native American, Hispanic, African-American, Deaf.

17. Making and Breaking Codes (4)
 A rigorous analysis of symbolic systems and their interpretations. Students will learn to encode and decode information using progressively more sophisticated methods; topics covered include ancient and modern phonetic writing systems, hieroglyphics, computer languages, and ciphers (secret codes).

87. Freshman Seminar (1)
 The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

90. Undergraduate Seminar (1)
 A seminar intended for exposing undergraduate students, especially freshman and sophomores, to exciting research programs and conducted by the faculty.

UPPER DIVISION

101. Introduction to the Study of Language (4)
 Language is what makes us human, but how does it work? This course focuses on speech sounds and sound patterns, how words are formed, organized into sentences, and understood, how language changes, and how it is learned.

105. Law and Language (4)
 The interpretation of language in understanding the law: 1) the language of courtroom interaction (hearsay, jury instructions); 2) written legal language (contracts, ambiguity, legal fictions); 3) language-based issues in the law (First Amendment, libel, and slander).

108. Languages of Africa (4)
 Africa is home to an astonishing variety of languages. This course investigates the characteristics of the major language families as well as population movements and language contact, and how governments attempt to regulate language use.

110. Phonetics (4)
 The study of the sounds which make up human language. How sounds are physically produced; acoustics of speech perception; practical training in translating speech signals into written form and in interpreting computerized speech signals. **Prerequisite:** LIGN 101, concurrent enrollment in LIGN 101, or consent of instructor.

111. Phonology I (4)
 Why does one language sound different from another? This course analyzes how languages organize sounds into different patterns, how those sounds interact, and how they fit into larger units, such as
syllables. Focus on a wide variety of languages and problem-solving. Prerequisite: LIGN 110.

119. First and Second Language Learning: From Childhood through Adolescence (4)
(Same as EDS 119.) An examination of how human language learning ability develops and changes over the first two decades of life, including discussion of factors that may affect this ability. Prerequisite: upper-division standing or consent of instructor.

120. Morphology (4)
How do some languages express with one word complex meanings that English needs several words to express? Discovery of underlying principles of word formation through problem-solving and analysis of data from a wide variety of languages. Prerequisite: LIGN 101 or consent of instructor.

121. Syntax I (4)
What universal principles determine how words combine into phrases and sentences? Introduction to research methods and results. Emphasis on how argumentation in problem-solving can be used in the development of theories of language. Prerequisite: LIGN 101 or consent of instructor.

130. Semantics (4)
Introduction to the formal study of meaning. The meanings of words and phrases have an intricate internal structure that is both logical and intuitive. How, precisely, do words mean what they do in isolation and in context? Prerequisite: LIGN 101 or consent of instructor.

140. The Structure of American Sign Language (4)
Examination of ASL phonetics, phonology, morphology, syntax, semantics. Including linguistic facial expressions and uses of physical space in verb agreement, aspectual morphology, and classifier constructions. Discussion of discourse, acquisition, psycholinguistics, and historical change. Prerequisite: LIGN 101; in its absence LSSL 1CX or consent of instructor.

141. Language Structures (4)
Detailed investigation of the structure of one or more languages. May be repeated for credit as topics vary. Prerequisite: LIGN 101 or consent of instructor.

142. Language Typology (4)
The systematic ways languages differ. Cross-linguistics studies of specified topics (e.g., word order, agreement, tense, switch reference, phonological systems, and rule types, etc.) in an effort to develop models of language variation. Prerequisite: LIGN 101 or consent of instructor.

143. The Structure of Spanish (4)
Surveys aspects of Spanish phonetics, phonology, morphology, and syntax. Topics include dialect differences between Latin American and Peninsular Spanish (both from a historical and contemporary viewpoint), gender classes, verbal morphology, and clause structure. Prerequisite: LIGN 101 or consent of instructor.

144. Discourse Analysis: American Sign Language and Performing Arts (4)
A discourse-centered examination of ASL verbal arts: rhyme, meter, rhythm, handedness, non-manual signals, and spatial mapping; creation of scene and mood; properties of character, dialogue, narration, and voice; cultural tropes; poetic constructions in everyday genres; transcription, body memory and performance. Prerequisites: LSSL 1C/1CX or consent of instructor.

145. Sociolinguistics in Deaf Communities (4)
An examination of sociolinguistic research on Deaf communities throughout the world, including sociohistorical contexts for phonological, lexical and syntactic variation, contact between languages, multilingualism, language policies and planning, second language learning, language attitudes, and discourse analysis of specific social contexts. Course will be conducted in ASL. Prerequisite: LSSL 1C/1CX or consent of instructor.

150. Historical Linguistics (4)
Language is constantly changing. This course investigates the nature of language change, how to determine a language’s history, its relationship to other languages, and the search for common ancestors or ‘proto-language’. Prerequisite: LIGN 101 or consent of instructor.

156. Computational Linguistics (4)
An introduction to the fundamental concepts of computational linguistics, in which we study natural language syntax and semantics from an interpretation perspective, describe methods for programming computer systems to perform such interpretation, and survey applications of computational linguistics technology.

169. Principles of Discourse and Dialog (4)

170. Psycholinguistics (4)
The study of how humans learn, represent, comprehend, and produce language. Topics include visual and auditory recognition of words, sentence comprehension, reading, sentence production, language acquisition, bilingualism, and language disorders. Prerequisite: upper-division standing or department stamp.

171. Child Language Acquisition (4)
A central cognitive, developmental mystery is how children learn their first language. Overview of research in the learning of sound systems, word forms and word meanings, and word combinations. Exploration of the relation between cognitive and language development. Prerequisite: LIGN 101 or consent of instructor.

172. Language and the Brain (4)
The mind/body problem, basic neuroanatomy and neurophysiology, cerebral lateralization, origins and evolution of language, aphasia, magnetic resonance imaging (MRI), and event-related potentials (ERPs). Prerequisite: LIGN 101 or consent of instructor.

173. Heritage Languages (4)
A heritage language (HL) is a language that an individual has some knowledge of due to childhood exposure. Topics: HL imperfect language competence, bilinguals vs. HL speakers, language loss, re-learning of HLS, parallels across HLS, teaching of HLS, language planning. Prerequisite: upper-division standing or consent of instructor.

174. Gender and Language in Society (4)
(Same as SOC/B 118A) This course examines how language contributes to the social construction of gender identities, and how gender impacts language use and ideologies. Topics include the ways language and gender interact across the life span (especially childhood and adolescence); within ethnolinguistic minority communities; and across cultures. Prerequisite: upper-division standing.

175. Sociolinguistics (4)
The study of language in its social context, with emphasis on the different types of linguistic variation and the principles underlying them. Dialects; registers; sex-based linguistic differences; factors influencing linguistic choice; formal models of variation; variation and change. Prerequisite: LIGN 101 or consent of instructor.

176. Language of Politics and Advertising (4)
How can we explain the difference between what is literally said versus what is actually conveyed in the language of law, politics, and advertising? How people’s ordinary command of language and their reasoning skills are used to manipulate them.

177. Multilingualism (4)
Official and minority languages, pidgins and Creoles, language planning, bilingual education and literacy, code switching, and language attrition. Prerequisite: LIGN 101 or consent of instructor.

179. Second Language Acquisition Research (4)
Topics in second language acquisition including the critical period, the processing and neural representation of language in bilinguals, theories of second language acquisition and creolization, exceptional language learners, and parallels with first language acquisition. Prerequisite: LIGN 101 or consent of instructor.

192. Senior Seminar in Linguistics (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in linguistics (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: department stamp and/or consent of instructor.

195. Apprentice Teaching (0-4)
Students teach a class section of a lower-division linguistics course. They also attend a weekly meeting on teaching methods. (This course does not count toward minor or major.) May be repeated for credit, up to a maximum of four units. (P/NP grades only.) Prerequisites: consent of instructor, advanced standing.

197. Linguistics Internship (2 or 4)
The student will undertake a program of practical research in a supervised work environment. Topics to be researched may vary, but in each case the course will provide skills for carrying out these studies. Prerequisite: consent of instructor.

199. Independent Study in Linguistics (2 or 4)
The student undertakes a program of research or advanced reading in linguistics under the supervision of a faculty member of the Department of Linguistics. (P/NP grades only.) Prerequisite: consent of instructor. May be repeated for credit.

199H. Honors Independent Study in Linguistics (4)
The student undertakes a program of research and advanced reading in linguistics under the supervision of a faculty member in the Department of Linguistics. (P/NP grades only.) Prerequisite: admission to Honors Program.
200. Research Forum (2)
A forum for discussion of current issues. (S/U grades only.) May be repeated for credit.

210. Phonetics (4)
Readings and laboratory work in acoustic and articulatory phonetics and speech perception. Experimental design and methodology. Phonetic explanation in phonology. Students will gain hands-on experience with laboratory equipment. Prerequisite: LIGN 110 or equivalent.

211A. Introductory Phonology (4)
Introduction to the study of the sound patterns of language. Rules and representations, lexical phonology, segmental processes, autosegmental phonology. Prerequisite: LIGN 110 or consent of instructor.

211B. Nonlinear Phonology (4)
This course will introduce topics in prosodic phonology and morphology, including syllable structure, stress, and reduplication. These topics will be investigated within constraint-based phonology. Prerequisite: LIGN 211A or equivalent.

215. Topics in Phonology (4)
Descriptive and theoretical problems in phonology. Discussion of work in progress and/or theoretical consequences of alternative analyses. May be repeated for credit when topics vary.

221A. Introduction to Grammatical Theory (4)
This course introduces basic syntactic phenomena and argumentation via the Government and Binding Theory of the 1980s. The phenomena, including VP-Movement, Binding, and WH-Movement, have been important in the development of Generative Grammar and remain central to current generative frameworks.

221B. Introduction to Grammatical Theory (4)
This course continues to develop Principles and Parameters Theory, as introduced in 221A. It concentrates on A-bar dependencies and the Binding Theory. Focus will be on testing theoretical proposals and understanding the role of theoretical alternatives, underlying assumptions, and the empirical results upon which these theoretical proposals are based.

223. Current Issues in Principles and Parameters Theory (4)
This course examines recent developments in Principles and Parameters Theory. Topics include fundamental work that led to the Minimalist Program and more recent developments in this tradition. May be repeated for credit when topics vary.

224. Lexicalist Theories of Grammar (4)
Introduction to conceptual issues and representational apparatus of lexicalist theories of grammar. Focus on empirical argumentation from numerous languages for lexicalist assumptions. Particular attention to lexical semantics, morphology, and syntax.

225. Topics in Syntax (4)
Descriptive and theoretical problems in syntactic analysis. Theoretical consequences of alternative analyses. May be repeated for credit when topics vary.

230. Semantics (4)
Theories of semantic structure. The relation of meaning to grammar, and how it is to be accommodated in an overall model of linguistic organization. The application of formal semantics to the description of natural language.

235. Topics in Semantics (4)
Advanced material in special areas of the study of meaning and its relation to formal aspects of human language. As subject matter varies, the course may be repeated for credit.

236. Language Universals and Linguistic Typology (4)
Introduction to the typological study of language, contrasting alternative approaches to research in language universals. Main topics covered: cross-linguistic approach to language study (sampling: universal generalizations, hierarchies); explanations for language universals; the role of cross-linguistic analyses in linguistic theory.

238. Topics in Cognitive Linguistics (0–4)
(Same as Cognitive Science 238) Basic concepts, empirical findings, and recent developments in cognitive and functional linguistics. Language viewed dynamically in relation to conceptualization, discourse, meaning construction, and cognitive processing. As topics vary, may be repeated for credit.

240. Field Methods (4)
Techniques of discovering the structure of a language through elicitation of data from native speaker consultants. Phonemic, morphemic, and syntactic analysis. Prerequisite: LIGN 110 or equivalent.

241. Fieldwork (4)
Fieldwork continuing the research of the previous quarter; student-directed elicitations on topics of interest. Prerequisite: LIGN 240.

242. Discourse Interpretation (4)
A graduate course examining discourse interpretation from a computational perspective. Theoretically principled algorithms for resolving pronominal and other types of reference. The interpretation of ellipsis. Methods for recovering the structure of a discourse and determining its coherence.

245. Computational Corpus Linguistics (4)
Introduction to computational corpus tools for performing empirically-grounded linguistic investigations. Annotated and unannotated corpora; annotation schemes. Searching using regular expressions. UNIX tools. The PERL programming language. Publicly-available language processing systems.

247. Topics in Pragmatics (4)
Advance material covering particular topics relating to the theoretical analysis of the pragmatics of natural languages. May be repeated for credit when topics vary. Prerequisite: consent of instructor.

248. Morphology (4)
Theories of word structure are examined and confronted with data from a variety of languages. Topics may include: the distinction between derivational and inflectional morphology, the morphology/syntax interface, and the morphology/syntax interface. May be repeated for credit as topics vary.

251. Probabilistic Methods in Linguistics (4)
Probabilistic approaches to language knowledge, acquisition, and use. Quantitative analysis of linguistic data. Quantitative models in linguistic theory. Covers basic probability theory and tools of statistical analysis for language, including linear regression, ANOVA, generalized linear models (e.g., logistic regression), data visualization. Familiarity with probability theory highly encouraged.

255. Statistics for Linguists (4)
Overview of specific statistical procedures for linguistic analyses of experimental and non-experimental data. Topics covered include variance, standard deviation, probability, z-scores, t-tests, ANOVA, chi-square, correlation, regression, trend analysis, magnitude estimation, nonparametric tests, post-hoc tests, transformations of data, and displaying data.

265. Topics in Computational Linguistics
Advanced topics in computational linguistics of current interest. Subjects will vary, and may include computational morphology, syntax, semantics, discourse, psycholinguistics, or language change. May be repeated for credit. Prerequisite: none.

270. Psycholinguistics (4)
Issues of natural language processing in relation to one or more of the following levels of linguistic analysis: phonetics, phonology, the lexicon, morphology, syntax, semantics, information structure, or discourse. May be repeated for credit when topics vary.

272. Topics in Neurolinguistics (4)
Issues of language representation and neural instantiation that arise in studies of neural imaging, language disorders, multilingualism and second language acquisition, animal communication, and the origins and evolution of language. May be repeated for credit when topics vary.

274. Computational Psycholinguistics (4)
Investigation of problems in psycholinguistics—the study of how humans learn, represent, comprehend, and produce language—from a computational perspective. Research article readings covering word-level, sentence-level, and discourse-level processing. Prior background in psycholinguistics and/or computational linguistics highly recommended.

278. Research in Second Language Acquisition (4)
This course will investigate topics in second language acquisition including the critical period, the processing and neural representation of language in bilinguals, theories of second language acquisition and creolization, exceptional language learners, and parallels with first language acquisition.

279. Topics in Language Acquisition (4)
Language acquisition is central to theories about human development, cognition, brain organization, and language origins and change. Topics include the role of input and critical periods on language outcome and processing, neural organization, and sign language creation. Prerequisite: none.

293. Research Practicum (0–4)
Gathering and interpreting data, formulating research questions and hypotheses, making the predictions of hypotheses explicit, finding relevant evidence, and organizing research results into suitable form for presentation in abstracts, talks, and research papers. (S/U grades only.) May be repeated for credit.

296. Directed Research (1–8)
Individual research. May be repeated for credit.

299. Doctoral Research (1–12)
Directed research on dissertation topic for students who have been admitted to candidacy for the Ph.D. degree. May be repeated for credit. Prerequisite: admission to candidacy.
501. Culture, Art, and Technology Apprentice Teaching (4)
Consideration and development of pedagogical methods appropriate to undergraduate teaching in the interdisciplinary sixth college core sequence, Culture, Art, and Technology under supervision of Core Program faculty, with assistance of the Core Program director, associate director for the Writing Program, and the associate director of the Thematic Program.

502. Apprentice Teaching of Linguistics (1-4)
The course, designed for graduate students serving as teaching assistants in the department’s linguistics courses, includes discussion of teaching theories, techniques, and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. The student must be serving as a teaching assistant in a LIGN course to receive credit.

503. Apprentice Teaching of American Sign Language (1-4)
The course, designed for graduate students serving as teaching assistants in American Sign Language, includes discussion of teaching theories, techniques and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. (S/U grades only.) May be repeated for credit.

504. Apprentice Teaching of French (1-4)
The course, designed for graduate students serving as teaching assistants in French, includes discussion of teaching theories, techniques and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. (S/U grades only.) May be repeated for credit.

505. Apprentice Teaching of German (1-4)
The course, designed for graduate students serving as teaching assistants in German, includes discussion of teaching theories, techniques and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. (S/U grades only.) May be repeated for credit.

506. Apprentice Teaching of Italian (1-4)
The course, designed for graduate students serving as teaching assistants in Italian, includes discussion of teaching theories, techniques and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. (S/U grades only.) May be repeated for credit.

507. Apprentice Teaching of Spanish (1-4)
The course, designed for graduate students serving as teaching assistants in Spanish, includes discussion of teaching theories, techniques and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. (S/U grades only.) May be repeated for credit.

508. Apprentice Teaching of Language/Directed Study (1-4)
The course, designed for graduate students serving as teaching assistants in language directed study, includes discussion of teaching theories, techniques and materials, directing study of various uncommonly taught languages, sessions, and participation in examinations, under the supervision of the instructor in charge of the course. (S/U grades only.) May be repeated for credit.

509. Apprentice Teaching, Head Teaching Assistant (1-4)
This course, designed for a graduate student serving as Head Teaching Assistant in the Linguistics Language Program, includes discussion of teaching methods and materials, and classroom observation, directing study of various uncommonly taught languages, sessions, and participation in examinations, under the supervision of the instructor in charge of the course.

COURSES
For course descriptions not found in the 2007-2008 General Catalog, please contact the department for more information.

LANGUAGE
OFFICE: Linguistics Language Program Office, 3016 Applied Physics and Mathematics Building, Muir College

Students are placed in foreign language courses based on prior preparation and, for French, German, Italian, and Spanish, on the results of a placement test administered prior to or during orientation. Students who miss the placement exam should contact the Linguistics Language Program Office (3016 Applied Physics and Mathematics Building) for instructions.

Conversation sections (Linguistics 1A-1B-1C-1D) consist of small tutorial meetings, plus reading and assigned laboratory work. Analysis sections (Linguistics 1AX-1BX-1CX-1DX) consist of presentation and practice of grammatical structures, discussion sections, assigned laboratory work, and outside reading. Each course in the 1A-1B-1C-1D series must be taken concurrently with the corresponding course in the 1AX-1BX-1CX-1DX series.

Heritage Language courses are offered in Arabic, Armenian, Cantonese, Hindi, Korean, Persian, Tagalog, and Vietnamese. These courses are designed for students with a background in the language who want to improve their oral and written expression.

Linguistics 11 courses are self-instructional: intended for reading the language for scholarly purposes. They are particularly aimed at graduate students preparing to fulfill French or German reading requirements.

Linguistics 19 courses, offered in more than sixty languages, are designed for self-instructional study at an introductory level. Students may enroll for two or four units of credit. For some languages, depending on the availability of suitable materials, the course may be repeated for credit.

AMERICAN SIGN LANGUAGE
Linguistics/American Sign Language (LISL) 1A.
American Sign Language Conversation (2.5)
Small tutorial meetings with a signer of American Sign Language (ASL). Conversational practice organized around common everyday communicative situations. Must be taken with LISL 1AX. Prerequisite: no prior study of ASL.

Linguistics/American Sign Language (LISL) 1AX.
Analysis of American Sign Language (2.5)
Study of American Sign Language (ASL) and analysis of its syntactic, morphological, and phonological features. Readings and discussions of cultural information. The course is taught entirely in ASL. Must be taken with LISL 1A. Prerequisite: no prior study of ASL.

Linguistics/American Sign Language (LISL) 1B.
American Sign Language Conversation (2.5)
Small tutorial meetings with a signer of American Sign Language (ASL). Conversational practice organized around common everyday communicative situations. Must be taken with LISL 1B. Prerequisites: LISL 1A with a grade of C– or better, or equivalent and LISL 1AX with a grade of D or better, or equivalent.

Linguistics/American Sign Language (LISL) 1BX.
Analysis of American Sign Language (2.5)
Study of American Sign Language (ASL) and analysis of its syntactic, morphological, and phonological features. Readings and discussions of cultural information. The course is taught entirely in ASL. Must be taken with LISL 1B. Prerequisites: LISL 1A with a grade of C– or better, or equivalent and LISL 1AX with a grade of D or better, or equivalent.

Linguistics/American Sign Language (LISL) 1CX.
Analysis of American Sign Language (2.5)
Study of American Sign Language (ASL) and analysis of its syntactic, morphological, and phonological features. Readings and discussions of cultural information. The course is taught entirely in ASL. Must be taken with LISL 1CX. Prerequisites: LISL 1B with a grade of C– or better, or equivalent and LISL 1BX with a grade of D or better, or equivalent.

Linguistics/American Sign Language (LISL) 1DX.
Analysis of American Sign Language (2.5)
Practice of the grammatical functions indispensable for comprehensible communication in the language. The course is taught entirely in American Sign Language.
Successful Linguistics Directed Study (Offered)

Prerequisites: none for 5A; for 5B two or more years Successful completion of LIFR 1D and Arabic. Must be taken in conjunction with LIAB 1B.

Linguistics/American Sign Language (LISL) 1E

Intermediate American Sign Language Conversation (4)

Course aims to improve language skills through discussion of topics relevant to the Deaf community. Central topics will include education and American Sign Language (ASL) literature. Conducted entirely in American Sign Language. Prerequisites: LISL 1D and LISL 1DX with a grade of C– or better, or equivalent.

Linguistics/American Sign Language (LISL) 10

French Sign Language for ASL Signers (4.0)

Small tutorial meetings with a signer of French Sign Language (Langue des signes française), the historical antecedent and a close relative of American Sign Language. Prerequisites: LISL 1C/1CK.

Linguistics/American Sign Language (LISL) 5A, 5B, 5C.

Fundamentals of American Sign Language (5)

This course concentrates on those language skills essential for communication: signing, comprehension, grammar analysis, and deaf culture. UCSD students: LISL 5A is equivalent to LISL 1A/1AX, LISL 5B to LISL 1B/1BX, and LISL 5C to LISL 1C/1CX. Enrollment is limited. Prerequisites: none for 5A; for 5B two or more years of ASL in high school or the first semester of college-level ASL. (Offered in Summer Session only.)

ARABIC

See also: Linguistics/Heritage Language Program

Linguistics/Arabic (LIAB) 1A. Arabic Conversation (2.5)

Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIAB 1AX. Prerequisite: no prior study of Arabic.

Linguistics/Arabic (LIAB) 1AX. Analysis of Arabic (2.5)

Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. This course is taught in Arabic. Must be taken in conjunction with LIAB 1D. Prerequisite: LIAB 1B with a grade of C– or better, or equivalent and LIAB 1CX with a grade of D or better, or equivalent.

Linguistics/Arabic (LIAB) 1B. Arabic Conversation (2.5)

Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIAB 1A. Prerequisite: LIAB 1A with a grade of C– or better, or equivalent and LIAB 1AX with a grade of D or better, or equivalent.

Linguistics/Arabic (LIAB) 1BX. Analysis of Esperanto (5)

A course to increase the proficiency level of students with no prior exposure, with attention to listening comprehension, conversation, reading, writing, and grammar analysis. (Offered in Summer Session only.)

Prerequisites: LIAB 1B with a grade of C– or better, or equivalent and LIAB 1BX with a grade of D or better, or equivalent.

Linguistics/Arabic (LIAB) 1C. Arabic Conversation (2.5)

Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIAB 1D. Prerequisite: LIAB 1B with a grade of C– or better, or equivalent and LIAB 1BX with a grade of D or better, or equivalent.

Linguistics/Arabic (LIAB) 1CX. Analysis of Arabic (2.5)

Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. This course is taught entirely in Arabic. Must be taken in conjunction with LIAB 1C. Prerequisite: LIAB 1B with a grade of C– or better, or equivalent and LIAB 1BX with a grade of D or better, or equivalent.

Linguistics/Arabic (LIAB) 1D. Arabic Conversation (2.5)

Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIAB 1D. Prerequisite: LIAB 1C with a grade of C– or better, or equivalent and LIAB 1CX with a grade of D or better, or equivalent.

Linguistics/Arabic (LIAB) 1DX. Analysis of Arabic (2.5)

Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. This course is taught entirely in Arabic. Must be taken in conjunction with LIAB 1DX. Prerequisite: LIAB 1C with a grade of C– or better, or equivalent and LIAB 1CX with a grade of D or better, or equivalent.

LINGUISTICS

See: Chinese Studies

See also: Linguistics Directed Study

See also: Linguistics/Cantonese

ESPERANTO

See also: Linguistics Directed Study

Linguistics/Espersono (LIEO) 5AS. Fundamentals of Esperanto I (5)

A communicative introduction to Esperanto for students with no prior exposure, with attention to listening comprehension, conversation, reading, writing, and grammar analysis. (Offered in Summer Session only.)

Prerequisites: LIEO 5AS or consent of instructor.

Linguistics/Espersono (LIEO) 5BS. Fundamentals of Esperanto II (5)

A course to increase the proficiency level of students who have completed LIEO 5AS or who are at an equivalent level. Attention to listening comprehension, conversation, reading, writing, and grammar analysis. Prerequisite: LIEO 5AS or consent of instructor. (Offered in Summer Session only.)

Linguistics/Espersono (LIEO) 5CS. Fundamentals of Esperanto III (5)

A course to increase the proficiency level of students who have completed LIEO 5BS or who are at an equivalent level. Attention to listening comprehension, conversation, reading, writing, and grammar analysis. Prerequisite: LIEO 5BS or consent of instructor. (Offered in Summer Session only.)

Linguistics/Espersono (LIEO) 5DS. Fundamentals of Esperanto IV (5)

A course to increase the proficiency level of students who have completed LIEO 5CS or who are at an equivalent level. Attention to listening comprehension, conversational, reading, writing, and grammar analysis. Prerequisite: LIEO 5CS or consent of instructor. (Offered in Summer Session only.)

FRENCH

Linguistics/French (LIFR) 1A. French Conversation (2.5)

Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIFR 1AX. Prerequisite: no prior study of French.

Linguistics/French (LIFR) 1AX. Analysis of French (2.5)

Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in French. Must be taken in conjunction with LIFR 1A. Prerequisite: no prior study of French.

Linguistics/French (LIFR) 1B. French Conversation (2.5)

Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIFR 1B. Prerequisites: LIFR 1A with a grade of C– or better, or equivalent and LIFR 1AX with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 1BX. Analysis of French (2.5)

Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIFR 1B. Prerequisites: LIFR 1A with a grade of C– or better, or equivalent and LIFR 1AX with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 1C. French Conversation (2.5)

Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIFR 1C. Prerequisites: LIFR 1B with a grade of C– or better, or equivalent and LIFR 1BX with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 1CX. Analysis of French (2.5)

Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in French. Must be taken in conjunction with LIFR 1C. Prerequisites: LIFR 1B with a grade of C– or better, or equivalent and LIFR 1BX with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 1D. French Conversation (2.5)

Small conversation sections taught entirely in French. Emphasis on speaking, reading, writing, and culture. Practice of the language functions needed for successful communication. Must be taken in conjunction with LIFR 1DX. Successful completion of LIFR 1D and LIFR 1DX satisfies the requirement for language proficiency in Eleanor Roosevelt and Revelle Colleges. Prerequisites: LIFR 1C with a grade of C– or better, or equivalent and LIFR 1CX with a grade of D or better, or equivalent.
Successful completion of Prerequisites: LIFR 1C with a grade of C– or better, or equivalent and LIFR 1CX with a grade of D or better, or equivalent.

Linguistics/French (LIFR) 11. Elementary French Reading (2-4) A self-instructional program designed to prepare graduate students to meet reading requirements in French. After a one-week introduction to French orthography/sound correspondence, students work with a self-instructional textbook. Mid-term and final examinations. (F,W,S)

Linguistics/French (LIFR) 5A, 5B, 5C, 5D. Fundamentals of French (5) This course concentrates on those language skills essential for communication: listening comprehension, conversation, reading, writing, and grammar analysis. UCSD students: LIFR 5A is equivalent to LIFR 1A/1AX, LIFR 5B to LIFR 1B/1BX, LIFR 5C to LIFR 1C/1CX, and LIFR 5D to LIFR 1D/1DX. Enrollment is limited. Prerequisites: None for 5A; for 5B, two or more years of French in high school or the first semester of college-level French. (Offered in Summer Session only.)

See also: Department of Literature

GERMAN

Linguistics/German (LIGM) 1A. German Conversation (2.5) Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIGM 1AX. Prerequisite: no prior study of German.

Linguistics/German (LIGM) 1AX. Analysis of German (2.5) Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in German. Must be taken with LIGM 1A. Prerequisite: no prior study of German.

Linguistics/German (LIGM) 1B. German Conversation (2.5) Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIGM 1B. Prerequisites: LIGM 1A with a grade of C– or better, or equivalent and LIGM 1AX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 1BX. Analysis of German (2.5) Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in German. Must be taken with LIGM 1B. Prerequisites: LIGM 1A with a grade of C– or better, or equivalent and LIGM 1AX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 1D. German Conversation (2.5) Small conversation sections taught entirely in German. Emphasis on speaking, reading, writing, and culture. Practice of the language functions needed for successful communication. Must be taken in conjunction with LIGM 1DX. Successful completion of LIGM 1D and LIGM 1DX satisfies the requirement for language proficiency in German. Must be taken in conjunction with LIGM 1C. Prerequisites: LIGM 1B with a grade of C– or better, or equivalent and LIGM 1BX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 1CX. Analysis of German (2.5) Practice of the grammatical functions indispensable for comprehensible communication in the language. The course is taught entirely in German. Must be taken in conjunction with LIGM 1CX. Successful completion of LIGM 1D and LIGM 1DX satisfies the requirement for language proficiency in German. Must be taken in conjunction with LIGM 1C. Prerequisites: LIGM 1B with a grade of C– or better, or equivalent and LIGM 1BX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 1DX. Analysis of German (2.5) Practice of the grammatical functions indispensable for comprehensible communication in the language. The course is taught entirely in German. Must be taken in conjunction with LIGM 1DX. Successful completion of LIGM 1D and LIGM 1DX satisfies the requirement for language proficiency in German. Must be taken in conjunction with LIGM 1C. Prerequisites: LIGM 1B with a grade of C– or better, or equivalent and LIGM 1BX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 1DAX. Analysis of German (2.5) Practice of the grammatical functions indispensable for comprehensible communication in the language. The course is taught entirely in German. Must be taken in conjunction with LIGM 1DX. Successful completion of LIGM 1D and LIGM 1DX satisfies the requirement for language proficiency in German. Must be taken in conjunction with LIGM 1C. Prerequisites: LIGM 1B with a grade of C– or better, or equivalent and LIGM 1BX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 1DX. Analysis of German (2.5) Practice of the grammatical functions indispensable for comprehensible communication in the language. The course is taught entirely in German. Must be taken in conjunction with LIGM 1DX. Successful completion of LIGM 1D and LIGM 1DX satisfies the requirement for language proficiency in German. Must be taken in conjunction with LIGM 1C. Prerequisites: LIGM 1B with a grade of C– or better, or equivalent and LIGM 1BX with a grade of D or better, or equivalent.

Linguistics/German (LIGM) 5A, 5B, 5C. Fundamentals of German (5) This course concentrates on those language skills essential for communication: listening comprehension, reading, writing, and grammar analysis. UCSD students: LIGM 5A is equivalent to LIGM 1A/1AX, LIGM 5B to LIGM 1B/1BX, LIGM 5C to LIGM 1C/1CX, and LIFR 5D to LIFR 1D/1DX. Enrollment is limited. Prerequisites: None for 5A; for 5B, two or more years of French in high school or the first semester of college-level French. (Offered in Summer Session only.)

See also: Department of Literature

GREEK

Linguistics/Tagalog: Linguistic Analysis (LIBL) 11X. (2.5) For students who already comprehend informal spoken Tagalog but wish to improve their communicative and sociocultural competence in Tagalog. Language functions for oral communication, reading, writing, and cultural understanding; vocabulary of sociocultural topics; different language styles (registers) and text types. The "linguistic analysis" section, designated by an "X" after the course number, is devoted to improving students’ awareness of the structure of the language. This section also emphasizes the history of the language, reading and writing on a wide variety of topics, and dialect and language style (register) differences.

Linguistics/Tagalog: Linguistic Analysis (LIBL) 112X. (2.5) For students who already comprehend informal spoken Tagalog but wish to improve their communicative and sociocultural competence in Tagalog. Language functions for oral communication, reading, writing, and cultural understanding; vocabulary of sociocultural topics; different language styles (registers) and text types. Must be taken in conjunction with LIHL 112X. Prerequisite: consent of instructor.

Linguistics/Tagalog: Linguistic Analysis (LIBL) 112X. (2.5) For students who already comprehend informal spoken Tagalog but wish to improve their communicative and sociocultural competence in Tagalog. Language functions for oral communication, reading, writing, and cultural understanding; vocabulary of sociocultural topics; different language styles (registers) and text types. Must be taken in conjunction with LIHL 112. Prerequisite: consent of instructor.

Linguistics/Tagalog: Advanced Communication and Culture (LIHL) 112. (2.5) Instruction stresses language functions required for advanced oral communication, reading, writing, and
Prerequisite: consent of instructor.

Linguistics/Tagalog: Advanced Linguistic Analysis (LIHL) 132X. (2.5)
Advanced structural analysis and history of Tagalog; advanced reading and writing on a variety of topics; dialect differences and formal language styles (registers). Must be taken in conjunction with LIHL 132. Prerequisite: consent of instructor.

Linguistics/Armenian: Communication and Culture (LIHL) 113. (2.5)
For students who already comprehend informal spoken Armenian but wish to improve their communicative and sociocultural competence in Armenian. Language functions for oral communication, reading, writing and cultural understanding; vocabulary of sociocultural topics; different language styles (registers) and text types. Must be taken in conjunction with LM 113X. Prerequisite: consent of instructor.

Linguistics/Armenian: Linguistic Analysis (LIHL) 113X. (2.5)
For students who already comprehend informal spoken Armenian but wish to improve their analytic understanding of Armenian. Linguistic aspects of Armenian; structure and history of Armenian; reading and writing; dialect and language style (register) differences. Must be taken in conjunction with LIHL 113. Prerequisite: consent of instructor.

Linguistics/Armenian: Advanced Communication and Culture (LIHL) 133. (2.5)
Instruction stresses language functions required for advanced oral communication, reading, writing, and cultural understanding in professional contexts. High-level vocabulary and texts; formal language styles (registers). Must be taken in conjunction with LIHL 133X. Prerequisite: consent of instructor.

Linguistics/Armenian: Advanced Linguistic Analysis (LIHL) 133X. (2.5)
Advanced structural analysis and history of Armenian; advanced reading and writing on a variety of topics; dialect differences and formal language styles (registers). Must be taken in conjunction with LIHL 133. Prerequisite: consent of instructor.

Linguistics/Vietnamese: Communication and Culture (LIHL) 114. (2.5)
For students who already comprehend informal spoken Vietnamese but wish to improve their communicative and sociocultural competence in Vietnamese. Language functions for oral communication, reading, writing and cultural understanding; vocabulary of sociocultural topics; different language styles (registers) and text types. Must be taken in conjunction with LIHL 114X. Prerequisite: consent of instructor.

Linguistics/Vietnamese: Linguistic Analysis (LIHL) 114X. (2.5)
For students who already comprehend informal spoken Vietnamese but wish to improve their analytic understanding of Vietnamese. Linguistic aspects of Vietnamese; structure and history of Vietnamese; reading and writing; dialect and language style (register) differences. Must be taken in conjunction with LIHL 114. Prerequisite: consent of instructor.

Linguistics/Vietnamese: Advanced Communication and Culture (LIHL) 134. (2.5)
Instruction stresses language functions required for advanced oral communication, reading, writing, and cultural understanding in professional contexts. High-level vocabulary and texts; formal language styles (registers). Must be taken in conjunction with LIHL 134X. Prerequisite: consent of instructor.

Linguistics Vietnamese: Advanced Linguistic Analysis (LIHL) 134X. (2.5)
Advanced structural analysis and history of Vietnamese; advanced reading and writing on a variety of topics; dialect differences and formal language styles (registers). Must be taken in conjunction with LIHL 134. Prerequisite: consent of instructor.

Linguistics/Korean: Communication and Culture (LIHL) 115. (2.5)
For students who already comprehend informal spoken Korean but wish to improve their communicative and sociocultural competence in Korean. Language functions for oral communication, reading, writing and cultural understanding; vocabulary of sociocultural topics; different language styles (registers) and text types. Must be taken in conjunction with LIHL 115X. Prerequisite: consent of instructor.

Linguistics/Korean: Linguistic Analysis (LIHL) 115X. (2.5)
For students who already comprehend informal spoken Korean but wish to improve their analytic understanding of Korean. Linguistic aspects of Korean; structure and history of Korean; reading and writing; dialect and language style (register) differences. Must be taken in conjunction with LIHL 115. Prerequisite: consent of instructor.

Linguistics/Korean: Advanced Communication and Culture (LIHL) 135. (2.5)
Instruction stresses language functions required for advanced oral communication, reading, writing, and cultural understanding in professional contexts. High-level vocabulary and texts; formal language styles (registers). Must be taken in conjunction with LIHL 135X. Prerequisite: consent of instructor.

Linguistics/Korean: Advanced Linguistic Analysis (LIHL) 135X. (2.5)
Advanced structural analysis and history of Korean; advanced reading and writing on a variety of topics; dialect differences and formal language styles (registers). Must be taken in conjunction with LIHL 135. Prerequisite: consent of instructor.

Linguistics/Arabic: Communication and Culture (LIHL) 116. (2.5)
For students who already comprehend informal spoken Arabic but wish to improve their communicative and sociocultural competence in Arabic. Language functions for oral communication, reading, writing, and cultural understanding; vocabulary of sociocultural topics; different language styles (registers) and text types. Must be taken in conjunction with LIHL 116X. Prerequisite: consent of instructor.

Linguistics/Arabic: Linguistic Analysis (LIHL) 116X. (2.5)
For students who already comprehend informal spoken Arabic but wish to improve their analytic understanding of Arabic. Linguistic aspects of Arabic; structure and history of Arabic; reading and writing; dialect and language style (register) differences. Must be taken in conjunction with LIHL 116. Prerequisite: consent of instructor.

Linguistics/Arabic: Advanced Communication and Culture (LIHL) 136. (2.5)
Instruction stresses language functions required for advanced oral communication, reading, writing, and cultural understanding in professional contexts. High-level vocabulary and texts; formal language styles (registers). Must be taken in conjunction with LIHL 136X. Prerequisite: consent of instructor.

Linguistics/Arabic: Advanced Linguistic Analysis (LIHL) 136X. (2.5)
Advanced structural analysis and history of Arabic; advanced reading and writing on a variety of topics; dialect differences and formal language styles (registers). Must be taken in conjunction with LIHL 136. Prerequisite: consent of instructor.

Linguistics/Persian: Communication and Culture (LIHL) 117. (2.5)
For students who already comprehend informal spoken Persian but wish to improve their communicative and sociocultural competence in Persian. Language functions for oral communication, reading, writing, and cultural understanding; vocabulary of sociocultural topics; different language styles (registers) and text types. Must be taken in conjunction with LIHL 117X. Prerequisite: consent of instructor.

Linguistics/Persian: Linguistic Analysis (LIHL) 117X. (2.5)
For students who already comprehend informal spoken Persian but wish to improve their analytic understanding of Persian. Linguistic aspects of Persian; structure and history of Persian; reading and writing; dialect and language style (register) differences. Must be taken in conjunction with LIHL 117. Prerequisite: consent of instructor.

Linguistics/Persian: Advanced Communication and Culture (LIHL) 137. (2.5)
Instruction stresses language functions required for advanced oral communication, reading, writing, and cultural understanding in professional contexts. High-level vocabulary and texts; formal language styles (registers). Must be taken in conjunction with LIHL 137X. Prerequisite: consent of instructor.

Linguistics/Persian: Advanced Linguistic Analysis (LIHL) 137X. (2.5)
Advanced structural analysis and history of Persian; advanced reading and writing on a variety of topics; dialect differences and formal language styles (registers). Must be taken in conjunction with LIHL 137. Prerequisite: consent of instructor.

Linguistics/Cantonese: Communication and Culture (LIHL) 118. (2.5)
For students who already comprehend informal spoken Cantonese but wish to improve their communicative and sociocultural competence in Cantonese. Language functions for oral communication, reading, writing and cultural understanding; vocabulary of sociocultural topics; different language styles (registers) and text types. Must be taken in conjunction with LIHL 118X. Prerequisite: consent of instructor.

Linguistics/Cantonese: Linguistic Analysis (LIHL) 118X. (2.5)
For students who already comprehend informal spoken Cantonese but wish to improve their analytic understanding of Cantonese. Linguistic aspects of Cantonese; structure and history of Cantonese; reading and writing; dialect and language style (register) differences. Must be taken in conjunction with LIHL 118. Prerequisite: consent of instructor.
Prerequisite: consent of instructor.

Prerequisites: LIIT 1B

Linguistics/Cantonese: Advanced Communication and Culture (LIHL) 138. (2.5)
Instruction stresses language functions required for advanced oral communication, reading, writing, and cultural understanding in professional contexts. High-level vocabulary and texts; formal language styles (registers). Must be taken in conjunction with LIHL 138X. Prerequisite: consent of instructor.

Linguistics/Cantonese: Advanced Linguistic Analysis (LIHL) 138X. (2.5)
Advanced structural analysis and history of Cantonese; advanced reading and writing on a variety of topics; dialect differences and formal language styles (registers). Must be taken in conjunction with LIHL 138. Prerequisite: consent of instructor.

Linguistics/Hindi: Communication and Culture (LIHL) 119. (2.5)
For students who already comprehend informal spoken Hindi but wish to improve their communicative and sociocultural competence in Hindi. Language functions for oral communication, reading, writing and cultural understanding; vocabulary of sociocultural topics; different language styles (registers) and text types. Must be taken in conjunction with LIHL 119X. Prerequisite: consent of instructor.

Linguistics/Hindi: Linguistic Analysis (LIHL) 119X. (2.5)
For students who already comprehend informal spoken Hindi but wish to improve their analytic understanding of Hindi. Linguistic aspects of Hindi; structure and history of Hindi; reading and writing; dialect and language style (register) differences. Must be taken in conjunction with LIHL 119. Prerequisite: consent of instructor.

Linguistics/Hindi: Advanced Communication and Culture (LIHL) 139. (2.5)
Instruction stresses language functions required for advanced oral communication, reading, writing, and cultural understanding in professional contexts. High-level vocabulary and texts; formal language styles (registers). Must be taken in conjunction with LIHL 139X. Prerequisite: consent of instructor.

Linguistics/Hindi: Advanced Linguistic Analysis (LIHL) 139X. (2.5)
Advanced structural analysis and history of Hindi; advanced reading and writing on a variety of topics; dialect differences and formal language styles (registers). Must be taken in conjunction with LIHL 139. Prerequisite: consent of instructor.

HINDI
See also: Linguistics/Heritage Language Program

Linguistics/Hindi (LIHI) 1A. Hindi Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIHI 1AX. Prerequisite: no prior study of Hindi.

Linguistics/Hindi (LIHI) 1AX. Analysis of Hindi (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. This course is taught entirely in Hindi. Must be taken in conjunction with LIHI 1B. Prerequisite: LIHI 1A with a grade of C– or better, or equivalent and LIHI 1AX with a grade of D or better, or equivalent.

Linguistics/Hindi (LIHI) 1B. Hindi Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIHI 1BX. Prerequisite: LIHI 1A with a grade of C– or better, or equivalent and LIHI 1AX with a grade of D or better, or equivalent.

Linguistics/Hindi (LIHI) 1BX. Analysis of Hindi (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. This course is taught entirely in Hindi. Must be taken in conjunction with LIHI 1B. Prerequisite: LIHI 1A with a grade of C– or better, or equivalent and LIHI 1AX with a grade of D or better, or equivalent.

Linguistics/Hindi (LIHI) 1C. Hindi Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIHI 1C. Prerequisite: LIHI 1B with a grade of C– or better, or equivalent and LIHI 1AX with a grade of D or better, or equivalent.

Linguistics/Hindi (LIHI) 1CX. Analysis of Hindi (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. This course is taught entirely in Hindi. Must be taken in conjunction with LIHI 1CX. Prerequisite: LIHI 1B with a grade of C– or better, or equivalent and LIHI 1AX with a grade of D or better, or equivalent.

Linguistics/Hindi (LIHI) 1D. Hindi Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIHI 1C. Prerequisite: LIHI 1D with a grade of C– or better, or equivalent and LIHI 1CX with a grade of D or better, or equivalent.

Linguistics/Hindi (LIHI) 1CX. Analysis of Hindi (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. This course is taught entirely in Hindi. Must be taken in conjunction with LIHI 1CX. Prerequisite: LIHI 1D with a grade of C– or better, or equivalent and LIHI 1AX with a grade of D or better, or equivalent.

Linguistics/Hindi (LIHI) 1D. Hindi Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIHI 1D. Prerequisite: LIHI 1C with a grade of C– or better, or equivalent and LIHI 1AX with a grade of D or better, or equivalent.

Linguistics/Hindi (LIHI) 1AX. Analysis of Hindi (2.5)
Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. This course is taught entirely in Hindi. Must be taken in conjunction with LIHI 1AX. Prerequisite: LIHI 1C with a grade of C– or better, or equivalent and LIHI 1CX with a grade of D or better, or equivalent.

ITALIAN
See also: Japanese Studies

Linguistics/Italian (LIIT) 1A. Italian Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary-building, reading, and culture. Emphasis on the language and culture of Brazil. Must be taken in conjunction with LIPO 1AX. Prerequisite: no prior study of Portuguese.

Linguistics/Italian (LIIT) 1AX. Analysis of Portuguese (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary-building, reading, and culture. Emphasis on the language and culture of Brazilian. Must be taken in conjunction with LIPO 1AX. Prerequisite: no prior study of Portuguese.

Linguistics/Italian (LIIT) 1B. Portuguese Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary-building, reading, and culture. Emphasis on the language and culture of Brazil. Must be taken in conjunction with LIPO 1B. Prerequisite: no prior study of Portuguese.

Linguistics/Italian (LIIT) 1BX. Analysis of Portuguese (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary-building, reading, and culture. Emphasis on the language and culture of Brazilian. Must be taken in conjunction with LIPO 1BX. Prerequisite: no prior study of Portuguese.

JAPANESE
See also: Linguistics Directed Study

LATIN
See also: Department of Literature

PORTUGUESE

Linguistics/Portuguese (LIPO) 1A. Portuguese Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Emphasis on the language and culture of Brazil. Must be taken in conjunction with LIPO 1AX. Prerequisite: no prior study of Portuguese.

Linguistics/Portuguese (LIPO) 1AX. Analysis of Portuguese (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary-building, reading, and culture. Emphasis on the language and culture of Brazil. Must be taken in conjunction with LIPO 1AX. Prerequisite: no prior study of Portuguese.

Linguistics/Portuguese (LIPO) 1AX. Analysis of Portuguese (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary-building, reading, and culture. Emphasis on the language and culture of Brazil. Must be taken in conjunction with LIPO 1AX. Prerequisite: no prior study of Portuguese.

Linguistics/Portuguese (LIPO) 1B. Portuguese Conversation (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary-building, reading, and culture. Emphasis on the language and culture of Brazil. Must be taken in conjunction with LIPO 1B. Prerequisite: no prior study of Portuguese.

Linguistics/Portuguese (LIPO) 1BX. Analysis of Portuguese (2.5)
Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary-building, reading, and culture. Emphasis on the language and culture of Brazil. Must be taken in conjunction with LIPO 1BX. Prerequisite: no prior study of Portuguese.
Emphasis on the language and culture of Brazil. Must be taken in conjunction with LIPO 1CX. Prerequisites: LIPO 1B with a grade of C– or better or equivalent and LIPO 1BX with a grade of D or better, or equivalent.

Linguistics/Portuguese (LIPO) 1CX. Analysis of Portuguese (2.5)

Presentation and practice of the basic grammatical structures needed for oral and written communication and reading. The course is taught entirely in Portuguese. Must be taken in conjunction with LIPO 1C. Prerequisites: LIPO 1B with a grade of C– or better or equivalent and LIPO 1BX with a grade of D or better, or equivalent.

Linguistics/Portuguese (LIPO) 1D. Portuguese Conversation (2.5)

Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LIPO 1DX. Successful completion of LIPO 1D and LIPO 1DX satisfies the requirement for language proficiency in Revelle and Eleanor Roosevelt Colleges. Prerequisites: LIPO 1C with a grade of C– or better, or equivalent and LIPO 1CX with a grade of D or better, or equivalent.

Linguistics/Portuguese (LIPO) 1DX. Analysis of Portuguese (2.5)

Practice of the grammatical functions indispensable for comprehensible communication in the language. The course is taught entirely in Portuguese. Must be taken in conjunction with LIPO 1D. Successful completion of LIPO 1D and LIPO 1DX satisfies the requirement for language proficiency in Revelle and Eleanor Roosevelt Colleges. Prerequisites: LIPO 1C with a grade of C– or better or equivalent and LIPO 1CX with a grade of D or better, or equivalent.

RUSSIAN

See also: Department of Literature

See also: Linguistics Directed Study

SPANISH

Linguistics/Spanish (LISP) 1A. Spanish Conversation (2.5)

Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LISP 1AX. Prerequisite: no prior study of Spanish.

Linguistics/Spanish (LISP) 1AX. Analysis of Spanish (2.5)

Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in Spanish. Must be taken in conjunction with LISP 1A. Prerequisite: no prior study of Spanish.

Linguistics/Spanish (LISP) 1B. Spanish Conversation (2.5)

Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LISP 1BX. Prerequisites: LISP 1A with a grade of C– or better, or equivalent and LISP 1AX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 1B. Spanish Conversation (2.5)

Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LISP 1BX. Prerequisites: LISP 1A with a grade of C– or better, or equivalent and LISP 1AX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 1BX. Analysis of Spanish (2.5)

Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in Spanish. Must be taken with LISP 1B. Prerequisites: LISP 1A with a grade of C– or better, or equivalent and LISP 1AX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 1C. Spanish Conversation (2.5)

Small conversation sections taught entirely in the target language. Emphasis on listening comprehension, speaking, vocabulary building, reading, and culture. Must be taken in conjunction with LISP 1CX. Prerequisites: LISP 1B with a grade of C– or better, or equivalent and LISP 1BX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 1CX. Analysis of Spanish (2.5)

Presentation and practice of the basic grammatical structures needed for oral and written communication and for reading. The course is taught entirely in Spanish. Must be taken with LISP 1C. Prerequisites: LISP 1B with a grade of C– or better, or equivalent and LISP 1AX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 1D. Spanish Conversation (2.5)

Small conversation sections taught entirely in Spanish. Emphasis on speaking, reading, writing, and culture. Practice of the language functions needed for successful communication. Must be taken in conjunction with LISP 1DX. Successful completion of LISP 1D and LISP 1DX satisfies the requirement for language proficiency in Revelle and Eleanor Roosevelt Colleges. Prerequisites: LISP 1C with a grade of C– or better, or equivalent and LISP 1CX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 1DX. Analysis of Spanish (2.5)

Small conversation sections taught entirely in Spanish. Emphasis on speaking, reading, writing, and culture. Practice of the language functions needed for successful communication. Must be taken in conjunction with LISP 1DX. Successful completion of LISP 1D and LISP 1DX satisfies the requirement for language proficiency in Revelle and Eleanor Roosevelt Colleges. Prerequisites: LISP 1C with a grade of C– or better, or equivalent and LISP 1CX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 1E. Spanish Literature (2)

Literary works from a selected period or author. Emphasis on analysis and appreciation of the language and culture. Must be taken in conjunction with LISP 1C. Prerequisites: LISP 1B and LISP 1CX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 1F. Advanced Spanish (2)

Advanced topics in the language and culture. May be repeated for a maximum of two units. Must be taken in conjunction with LISP 1C. Prerequisites: LISP 1B and LISP 1CX with a grade of D or better, or equivalent.

Linguistics/Spanish (LISP) 2A. Intermediate Spanish for the Social Sciences (2)

Conducted entirely in Spanish. Course aims to improve oral language skills through discussions of social science topics, with emphasis on political events and current affairs. Course materials encompass televised news broadcasts, newspapers and periodicals. LISP 15 is offered fall quarter only, LISP 16 is offered winter quarter only, and LISP 17 is offered spring quarter only. Each course may be taken one time and need not be taken in sequence. Prerequisites: LISP 1D/1DX or at least three semesters/four quarters of college Spanish or by permission of the instructor.

Linguistics/Spanish (LISP) 5A, 5B, 5C, 5D. Fundamentals of Spanish (5)

This course concentrates on those language skills essential for communication: listening comprehension, conversation, reading, writing, and grammar analysis. UCSD students: LISP 5A is equivalent to LISP 1A/1AX, LISP 5B to LISP 1B/1BX, LISP 5C to LISP 1C/1CX, and LISP 5D to LISP 1D/1DX. Enrollment is limited. Prerequisites: none for 5A; for 5B, two or more years of Spanish in high school or the first semester or the first quarter of college-level Spanish. (Offered in Summer Session only.)

See also: Department of Literature

DIRECTED STUDY

Linguistics (LIDS) 19. Directed Study—Language (2-4)

Introductory-level study of a language in the language laboratory on a self-instructional basis. Depending on the availability of appropriate study materials, the course may be taken in blocks of two or four units of credit and may be repeated up to the total number of units available for that language.

Literature

ADMINISTRATIVE OFFICE:

134 Literature Building
(858) 534-3214

GRADUATE OFFICE:

139/140 Literature Building
(858) 534-3217

UNDERGRADUATE OFFICE:

110 Literature Building
(858) 534-3210
Professors
Rae Armantrout, M.A., Poetry and Contemporary Poetics
Ronald S. Berman, Ph.D., English and American Literature
Linda Brodkey, Ph.D., Writing; Director, Warren College Writing Program
Steven Cassedy, Ph.D., Slavic and Comparative Literature
Alain J.-J. Cohen, Ph.D., Comparative Literature and Film Studies
Jaime Concha, Ph.D., Spanish and Latin American Literature
Stephen D. Cox, Ph.D., English Literature; Director, Revelle Humanities Writing Program; Academic Senate Distinguished Teaching Award
R. Michael Davidson, Ph.D., American Literature, Writing
Page duBois, Ph.D., Classics and Comparative Literature
Anthony Edwards, Ph.D., Classics and Comparative Literature
Marcel Hénaff, Ph.D., French Literature
Todd C. Kontje, Ph.D., German and Comparative Literature
Lisa M. Lowe, Ph.D., Comparative Literature
George Mariscal, Ph.D., Spanish Literature
Louis Adrian Montrose, Ph.D., English and American Literature
Eileen Myles, B.A., Fiction Writing and Literature
Roddey Reid, Ph.D., French Literature
Rosaura A. Sánchez, Ph.D., Spanish, Latin American, and Chicano Literature
Wai-liim Yip, Ph.D., Chinese and Comparative Literature
Yingjin Zhang, Ph.D., Chinese and Comparative Literature and Film Studies
Oumelbanine Zhiri, Ph.D., French Literature

Associate Professors
Sarah S. Bynum, M.F.A., Fiction Writing and Literature
Robert Cancel, Ph.D., African and Comparative Literature
Richard S. Cohen, Ph.D., South Asian Literature
Rosemary M. George, Ph.D., English Literature
Stephanie H. Jed, Ph.D., Italian and Comparative Literature
Milos Kokotovic, Ph.D., Latin American Literature
Lisa Lampert-Weissig, Ph.D., English and Comparative Medieval Studies
William A. O’Brien, Ph.D., German and Comparative Literature
Max Parra, Ph.D., Mexican and Latin American Literature
Kathryn Shevelow, Ph.D., English Literature
Shelley Streeby, Ph.D., American Literature
Nicole Tonkovich, Ph.D., American Literature
Pasquale Verdicchio, Ph.D., Italian and Comparative Literature
Don Edward Wayne, Ph.D., English Literature
Winifred Woodhull, Ph.D., French Literature
Lisa Yoneyama, Ph.D., Japanese Studies and Cultural Studies

Assistant Professors
John D. Blanco, Ph.D., Literatures of the Americas
Fatima El-Tayeb, Ph.D., African Diaspora and Transnational Studies, Film, Gender Studies
Camille Forbes, Ph.D., Nineteenth-Century African American Literature and Culture
Amelia Glaser, Ph.D., Slavic and Comparative Literature
Sara E. Johnson, Ph.D., Comparative Literature
Dayna Kalleres, Ph.D., Early Christian Literature and Religious Studies
Jin-Kyung Lee, Ph.D., Comparative Asian Literature and Culture
Margaret Loose, Ph.D., English Victorian Literature and Culture
Luis Martin-Cabrera, Ph.D., Spanish Peninsular and Latin American Literature
Babak Rahimi, Ph.D., Islamic and Religious Studies
Anna Joy Springer, M.F.A., Creative Writing and Literary Arts
Megan E. Wesling, Ph.D., U.S. Literatures

Professors Emeriti
Carlos Blanco-Aguinaga, Ph.D.
Diego Catalán, Ph.D.
Charles R. Cooper, Ph.D.
Abraham J. Dijkstra, Ph.D.
Margit Frenk, Ph.D.
Richard Elliot Friedman, Th.D.
Fanny Q. Howe
Susan Kirkpatrick, Ph.D.
James K. Lyon, Ph.D.
Masao Miyoshi, Ph.D.
Roy Harvey Pearce, Ph.D.
Jerome D. Rothenberg, M.A.
John L. Stewart, Ph.D.
William S. Tay, Ph.D.
Quincy Troupe
Donald T. Wesling, Ph.D.
Andrew Wright, Ph.D., F.R.S.L.

Associate Professors Emeriti
Jack Behar, Ph.D.
David K. Crowne, Ph.D.
Thomas K. Dunseath, Ph.D.
Fred V. Randel, Ph.D.
Marta E. Sánchez, Ph.D.
Cynthia Walk, Ph.D.

Lecturers
Charles Chamberlain, Ph.D., Classical Languages and Literature, Writing
Adriana deMarchi-Gherini, Ph.D., Italian Language and Literature
Leslie Collins Edwards, Ph.D., Classical Languages and Literature
Melyvn Freilicher, C.Phil., Writing
John Granger, Ph.D., Writing
Jeyseon Lee, Ph.D., Korean Language
Beatrice Pita, Ph.D., Spanish Language and Latin American Literature
Catherine Ploye, Ph.D., French Language and Literature
Stephen Potts, Ph.D., American and Popular Literature
Rebecca Wells, C.Phil., Russian Language and Literature
Eliot Wirshbo, Ph.D., Classical Languages and Literature

All literature courses at UCSD are offered by a single Department of Literature. The department brings together writers, teachers, scholars, and students of several different languages and literatures. Here, they are united by the nature of the studies they pursue. This lends a comparative aspect to both undergraduate and graduate programs, which lead to the bachelor of arts, master of arts, the candidate in philosophy, and doctor of philosophy degrees. All students must show knowledge of a foreign literature by doing upper-division or graduate work in that literature in the original language. Courses are offered not only in the literatures themselves but in the theoretical aspects of literature and—often in cooperation with other departments—in the relationship of literary study to other disciplines such as philosophy, visual arts, music, sociology, history, psychology, linguistics, and communication. With special permission, undergraduates may take graduate courses for credit, and graduate students may also take undergraduate courses for credit.
The UCSD Library’s Mandeville Department of Special Collections offers the undergraduate and graduate literature student an excellent range of resources, including single-author collections, rare and out-of-print books, tapes, maps, and historical archives. Of special interest are the Southworth Collection of Spanish Civil War materials, the Hill Collection of South Pacific Voyages, the Don Cameron Allen Renaissance collection, and the Archive for New Poetry. Within the latter collection are an extensive series of single-author archives, including the papers of Paul Blackburn, Donald Allen, Lew Welch, Charles Reznikoff, Joanne Kyger, Jerome Rothenberg, and others. The Archive for New Poetry is one of the largest collections of contemporary poetry in the United States. Graduate students also have access, facilitated by travel grants, to all other University of California research collections.

Careers for Literature Majors

A major in literature opens many career possibilities. Education is a primary option, but specializations in literature (English, Spanish, etc.) and writing also serve as excellent preparation for graduate and professional programs. A degree in literature provides a strong background for the LSAT and law school. Medical schools seek out students who are prepared not only in the sciences, but also in the humanities and writing. The business world seeks college-trained English majors, and international corporations actively recruit students with a specialty in French, German, Italian, Russian, or Spanish. Literature majors find careers in advertising, book editing and publishing, journalism, communications, mass media, and other professions where writers and editors are in demand. The knowledge of a second language and culture provides literature majors with a decided career advantage.

Secondary School English Teaching

The literature department offers an excellent preparation for teaching English/ESL in secondary schools. Suggested majors include Literatures of the World, Literatures in English, and Literature/Writing. If you are interested in receiving a California teaching credential from UCSD, contact Education Studies (EDS) for information about prerequisites and professional preparation requirements. Please consult EDS and the literature department early in your academic career to plan an appropriate literature curriculum.

The Undergraduate Program

Lower-Division Preparation

Lower-division requirements vary, depending on the literature major in which the student elects to concentrate. However, the department strongly recommends that, as part of the freshman/sophomore course work, students who have chosen or are considering a major in literature begin an appropriate lower-division language sequence in the Departments of Linguistics or Literature as preparation for upper-division course work in a foreign language and literature. All literature majors require knowledge of a second language.

Writing Component in Literature Courses

It is the departmental expectation that students in lower-division courses should write a minimum of 2,500 words per course. In upper-division courses the minimum requirement is 4,000 words per course.

The Major in Literature

There are ten majors available to students within the Department of Literature: Literatures in Cultural Studies, English, French, German, Italian, Russian, Spanish, Literatures of the World, Writing, and the Composite major in two literatures. Requirements vary from major to major as described below. Once a student has decided upon a major in literature, he or she is required to meet regularly with an advisor in the Department of Literature. Worksheets defining major requirements are available in the literature undergraduate office to help students organize their course work.

All students majoring in literature must study a secondary literature, that is, a literature in a language different from that of their primary literature. The range of secondary literatures includes ASL, Classical Greek, Hebrew, and Latin, as well as the previously mentioned French, German, Italian, Russian, Spanish, and for those concentrating in a foreign literature, English. Students will satisfy this requirement by taking three courses in the secondary literature, given substantially in the native language. At least one of these courses must be upper-division. Students should see an advisor to confirm the selection of the specific courses that will be taken to satisfy both the lower-division and the upper-division components of the secondary literature requirement.

The lower-division component within the secondary literatures may be satisfied by: American Sign Language 1D/1DX and 1E; French 2B and either 2C or 50; German 28B and 2C; Hebrew 2 and 3 (see “Judaeic Studies”); Italian 2B and 50; Greek 2 and 3; Latin 2 and 3; Russian 2B and 2C; two courses from Spanish 50A-50B-50C. For majors other than literatures in English, two courses from English 27-28-29 and 60, 21-22-23-25-26 are applicable. (Literatures of the World and writing courses may not be applied toward the English secondary literature requirement.) Note: World Literature courses taught in English do not apply unless there is a foreign-language discussion section and materials are available in the foreign language. World Literature (LTWL) courses whose primary focus is U.S. literature may apply toward requirements in Literatures in English.

Upper-division courses in the secondary literature are counted as part of the total number of upper-division courses required for the major. Students are free to choose from any of the upper-division offerings in their secondary foreign literature. Special studies courses (198s and 199s) cannot be used to satisfy upper-division secondary literature requirements.

All departmental courses taken to satisfy the requirements of the literature major, including courses in the secondary literature, must be taken for a letter grade. No grade below C– is acceptable for a course taken in the major.

At least six of the upper-division courses for the major, including a minimum of four in the primary literature, must be taken at UCSD.

Composite Major in Literature

The Composite major in literature permits a student to develop a solid foundation in two literatures while remaining within one department. Because the UCSD Department of Literature houses literatures that are divided among different departments at most universities, our Composite major allows students to coordinate their studies with a single, closely-knit group of faculty, and to arrange their program without repeating two different sets of
major requirements. (For example, since a Composite major necessarily combines literatures written in two different languages, it automatically fulfills the foreign-language requirement for the literature major.)

Students pursuing a Composite major work closely with an advisor to plan a program of study that meets the following requirements:

1. Students will select two literatures of concentration (Literature 1 and Literature 2)
 a. one of the literatures must be in a language other than English;
 b. both concentrations, however, can be in non-English literatures; thus a student can choose English and French, for example, or Russian and Spanish, French and Italian, German and Latin, Spanish and English, etc., but not Literatures of the World or Literature/Writing.

2. Students will meet all lower-division major requirements for each of the two literatures of concentration. See specific “Primary Concentration” listings above; English, Spanish, and Russian, for example, all have lower-division requirements for the major.

3. Students will take eight upper-division courses in each of the two selected literatures of concentration for a total of sixteen upper-division courses.
 a. These must satisfy the upper-division course requirements for each of the two majors. Thus, for example, if one of the concentrations is English, the student must include courses from each of the four stipulated categories; if one of the concentrations is Spanish, upper-division courses must include LTSP 130A and 130B.
 b. Beyond the upper-division requirements for each literature of concentration (Literature 1 and Literature 2), students will take a sufficient number of elective courses in each of the two literatures of concentration to make a total of eight upper-division courses in each chosen concentration.

Honors Program

The department offers a special program of advanced study for outstanding undergraduates majoring in literature. Admission to this program ordinarily requires an overall GPA of 3.5 and a literature major GPA of 3.7 at the beginning of the senior year. Students meeting these requirements will be sent, during the latter part of fall quarter, an invitation to participate in the program. Interested students who anticipate that they will not meet the established criteria may petition to participate in the program by submitting a personal statement and a five-page example of their writing by the end of the third week of fall quarter. During the winter quarter of their senior year, all honors students enroll in the honors seminar (LTWL 191), which aims to deepen their understanding of the issues of theory and method implied in the study of literature. This seminar lays the groundwork for an honors thesis, written in spring quarter (LT__ 196), each under the supervision of a faculty member who specializes in the literature of the student’s primary concentration. The Honors Program concludes with an oral examination of each honors candidate by a faculty committee, which is charged with recommending whether departmental honors are warranted and, if so, which degree of honors will appear on the student’s transcript and diploma. Students from this program will also be recommended for the Burckhardt and Williams Prizes, which are awarded at graduation for outstanding achievement in the literature major. The honors seminar and thesis course may be applied toward the primary concentration in the literature major. For Literature/Writing majors, the honors seminar is considered to be equivalent to a writing workshop.

Special Studies

These upper-division independent studies opportunities are intended for advanced students, able to work on their own, and interested in a topic not normally covered by departmental offerings.

Students with upper-division standing, a departmental GPA of at least 3.0, an overall GPA of at least 2.5, and completion of lower-division prerequisites in the subject, are eligible to take special studies courses (198s and 199s). Those not satisfying these criteria may, with justification supported by the proposed special studies instructor, petition for an exception to the regulation. 198s and 199s require at least 4,000 words of writing or an equivalent project as determined by the instructor. Information and Special Studies Enrollment forms are available in the literature undergraduate office. Enrollment requires departmental approval. These courses may not be used to satisfy upper-division secondary literature requirements for majors or minors.

Study Abroad

Study abroad can significantly enhance a student’s major, particularly in ways in which it relates to international issues. Literature students are encouraged to study abroad before their senior year. Students who take Education Abroad Program or Opportunities Abroad Program (EAP/OAP) courses in a country appropriate to their major may use up to five upper-division courses to satisfy major requirements and up to three toward a minor. For Composite majors in literature, six courses from abroad may apply, with no more than four toward either one of the two concentrations. These must be approved by the department after they have been entered on the student’s official record at UCSD. The approval process is described in a hand-out on receiving transfer credit, available in the Literature Undergraduate Office. Before leaving to study abroad, students should meet with an advisor to identify which EAP courses are appropriate to fulfill the major or minor requirements.

Information on EAP/OAP is given in the “Education Abroad Program” section of the UCSD General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit its Web site at http://programsabroad.ucsd.edu/. Financial aid can be used for EAP/OAP study, and special study-abroad scholarships are also available.

Individual Programs

<table>
<thead>
<tr>
<th>Literature/Cultural Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatures in English</td>
</tr>
<tr>
<td>Literatures in French</td>
</tr>
<tr>
<td>Literatures in German</td>
</tr>
<tr>
<td>Literatures in Italian</td>
</tr>
<tr>
<td>Literatures in Russian</td>
</tr>
<tr>
<td>Literatures in Spanish</td>
</tr>
<tr>
<td>Literatures of the World</td>
</tr>
<tr>
<td>Literature/Writing</td>
</tr>
</tbody>
</table>
Individual Program Requirements

Primary Concentration in Cultural Studies

The Literature/Cultural Studies major aims to provide students with broad cultural literacy and critical thinking skills—in language, visual media, social practices, and theories of interpretation—which are basic, necessary cornerstones of a humanities education. With four focus areas—visual culture, popular cultures, culture and globalization, and social identities—the undergraduate major in Literature/Cultural Studies, on the one hand, offers literacy in a range of traditional and modern cultural forms (from literature and texts, to film, art, and visual culture) and methods for interpreting these cultural forms, and on the other hand, prepares students to engage with a society whose “culture” is, and will become increasingly, diverse, international, and multilingual.

1. Three lower-division courses:
 a. LTCS 50 and 52
 b. Third course may be selected from: LTEN 25, 26, 27, 28, 29, 60; LTWL 4A-B-C-D-F-M; TWS 21-22-23-24-25-26; or LTWL 19A-B-C.

2. Six upper-division LTCS courses (one of each from the four a–d focus areas):
 a. Reading Visual Culture: LTCS 170, 171, 172, 173
 b. Popular Cultures: LTCS 110, 111, 114, 118
 c. Culture and Globalization: LTCS 125, 133, 140, 141, 145
 d. Social Identities: LTCS 130, 131, 132, 135
 e. The following upper-division LTCS methods courses will also fulfill the upper-division requirement: LTCS 100, 102, 120, 155

3. Three courses in a secondary literature, that is, a literature taught in a language other than English. At least one of these courses must be upper-division. Upper-division courses taken in Foreign Literatures taught in translation do not apply to the secondary literature requirement. See “The Major in Literature,” above, for applicable lower-division courses.

4. The remaining upper-division electives, to total twelve upper-division courses, can be drawn from these existing Department of Literature courses:
 a. Literatures in English: LTEN 150, 160, 178, 180, 181, 183, 184,185,186,187,188,189
 b. Literatures in French: LTFR 145, 164, 170
 c. Literatures in Italian: LTIT 122, 140, 150
 d. Literatures in Korean: LTKO 100
 e. Literatures in Spanish: LTSP 123, 137, 150A, 150B, 154, 170, 174, 175, 176, 177
 f. Literature/Theory: LTTH 110, 115, 150
 h. Literature/Writing: LTWR 110, 113, 115, 119, 121

Primary Concentration in Literatures in English

1. Six lower-division courses:
 a. LTEN 21, 22, 23, 25, and 26
 b. One of the following: LTEN 27, 28, or 29
 If some or all of these courses are used toward meeting a college’s humanities or general-education requirements, they will still count toward satisfying the requirements for the major in literatures in English.
 2. Nine upper-division courses from literatures in English offerings, including a course from each of the following four a–d categories:
 a. British Literature before 1660
 b. British Literature after 1660
 c. U.S. Literature before 1860
 d. U.S. Literature after 1860
 3. One course in world Anglophone literature(s) with focus other than British or U.S. literatures.
 4. One upper-division course in the history of criticism or in literary/cultural theory and methods from among the following: LTTH 110; LTTH 115; or LTCS 100.
 5. Three courses in a secondary literature, at least one of which must be upper-division. (See "The Major in Literature," above.)
 6. Upper-division elective chosen from Department of Literature offerings to make a total of twelve upper-division courses.

Primary Concentration in a Foreign Literature

Literatures in French

1. Nine upper-division courses as follows:
 a. LTFR 115-116, Themes in French Intellectual and Literary History
 b. Seven additional upper-division courses in French literature, including at least one course in each of the following periods: seventeenth or eighteenth century; nineteenth century; and twentieth century.

2. Three courses in a secondary literature, that is, a literature taught in a language other than French. At least one of these courses must be upper-division. Special studies courses (198s and 199s) and courses in foreign literatures which are taught in French do not apply to the secondary literature requirement.

3. Upper-division electives chosen from Department of Literature offerings to make a total of twelve upper-division courses.

Literatures in German

1. Nine upper-division courses in German literature. Two of these should be in literature written before the year 1850.

2. Three courses in a secondary literature, that is, a literature taught in a language other than German. At least one of these courses must be upper-division. Special studies courses (198s and 199s) and courses in foreign literatures taught in German do not apply to the secondary literature requirement. See “The Major in Literature,” above, for applicable lower-division courses.

3. Upper-division electives chosen from Department of Literature offerings to make a total of twelve upper-division courses.

Literatures in Italian

1. Nine upper-division courses in Italian literature as follows:
 a. LTIT 100, Introduction to Italian Literature
 b. LTIT 115, Medieval Studies
 c. LTIT 161, Advanced Stylistics and Conversation
Literature

One course in Italian North American Culture
e. Five additional upper-division courses in Italian literature taught in Italian

2. Three courses in a secondary literature, that is, a literature taught in a language other than Italian. At least one of these courses must be upper-division. Special studies courses (198s and 199s) and courses in foreign literatures taught in Italian do not apply to the secondary literature requirement. See “The Major in Literature,” above, for applicable lower-division courses.

3. Upper-division electives chosen from Department of Literature offerings to make a total of twelve upper-division courses.

Literatures in Russian

1. Russian 1A-B-C and 2A-B-C or their equivalent
2. Twelve upper-division courses in Russian:
 a. LTRU 104A-B-C
 b. LTRU 110A-B-C
 c. Six additional upper-division courses in Russian literature
3. Three courses in a secondary literature, that is, a literature taught in a language other than Russian. At least one of these courses must be upper-division. Special studies courses (198s and 199s) and courses in foreign literatures taught in Russian do not apply to the secondary literature requirement. See “The Major in Literature,” above, for applicable lower-division courses.

Students in the Russian literature major are encouraged to participate in the Education Abroad Program (EAP) in Moscow and to investigate other options for foreign study through the Opportunities Abroad Program (OAP). By petition, credits earned through EAP/OAP can fulfill UCSD degree and major requirements.

Literatures in Spanish

1. Two lower-division Spanish literature courses, as indicated:
 a. LTSP 50A, Peninsular Literature
 b. Either LTSP 50B or LTSP 50C, Latin American Literature
2. Nine upper-division courses as follows:
 a. LTSP 130A, Development of Spanish Literature
 b. LTSP 130B, Development of Latin American Literature
 c. Seven additional upper-division courses in Spanish, Latin American, and/or Chicano literature (taught in Spanish)
3. Three courses in a secondary literature, that is, a literature taught in a language other than Spanish. At least one of these courses must be upper-division. Special studies courses (198s and 199s) and courses in foreign literatures taught in Spanish do not apply to the secondary literature requirement. See “The Major in Literature,” above, for applicable lower-division courses.

4. Upper-division electives from Department of Literature offerings, whether in Spanish or in another literature, to make a total of twelve upper-division courses.

Students majoring in Spanish can choose to concentrate on either Spanish or Latin American literature. All students, however, are encouraged to take courses in the various national literatures as well as in Chicano literature for a broad background in Spanish language literatures.

Students not having a solid linguistic base in Spanish are advised to take intermediate language courses from the LTSP 2 and 50 sequences for additional review of Spanish grammar, development of writing skills, and introduction to literary analysis. Only 50A and either 50B or 50C, however, can count towards the major.

It is strongly recommended that students take LTSP 130A before any other upper-division Spanish (peninsular) literature course and LTSP 130B before any other upper-division Latin American literature course.

Primary Concentration in Literatures of the World

The major in literatures of the world allows students to expand the focus of their work beyond a single-language literature. They plan an individual program with options in regional studies (for example, Europe, the Americas, East Asia, Africa, Near East) and topical studies (for example, genre, period, gender, ethnic literature, literature and the visual arts, cultural studies, writing, Third World studies) as well as the single-language literatures.

1. Lower-division (three courses):
 A three-course sequence in literature chosen from any section in literature.
 Students can combine courses in an original national language/literature with courses in translation to satisfy this requirement, such as LTFR 2A and 2B plus LTWL 4A (Film and Fiction in Twentieth-Century Societies: French). Students may use either the Revelle College Humanities sequence (HUM 1–5) or Eleanor Roosevelt College’s Making of the Modern World (MMW 1–6) to satisfy the lower-division sequence for the LTWL major or minor.

2. Upper-division (twelve courses):
 a. six courses in a regional or single-language literature, to be taken in the original language(s) or in translation
 b. four courses focused on a topic or another regional or single-language literature
 c. two courses in non-European and non-U.S. literature; if satisfied under group (a) or group (b), any other two literature courses may be substituted.

3. Three courses in a secondary literature, that is, a literature taught in a language different from that of the primary literature. At least one of these courses must be upper-division. Upper-division courses taken to satisfy the secondary literature requirement may be counted as part of the twelve upper-division courses for the major and may, where appropriate, be applied to requirements in Group B or C. Students should see an advisor when selecting specific courses that will be taken to satisfy this requirement. Special studies courses (198s and 199s) and courses in foreign literatures taught in translation do not apply to the secondary literature requirement. See “The Major in Literature,” above, for applicable lower-division courses.

At least two of the required twelve upper-division courses must be in literature written before 1850. No more than four courses in Lit/Writing may be taken as part of the world literatures major, and these will generally apply to Group 2.b.

The Pre-Writing Major

Until they are admitted to the writing major, students may indicate their interest in writing
by declaring a pre-writing major using the pre-writing major code (LT01). Admission to the writing major will be determined by evaluation of each student's performance in the LTWR 8A/8B/8C sequence.

Normally, students are expected to achieve a grade of B or better in each of these courses to ensure their eligibility for declaring the major.

Primary Concentration in Writing

The writing major is designed to provide direct experience in writing fiction, nonfiction, and poetry as well as engage the student writer in both the world of "writing culture"—public readings, publication, and the media—and literary theory and practical critique. An indispensable feature of this program is that it engages students with one another's work, both critically and communally. Writing majors will move through a sequence of courses within (and between) genres in order to develop their own style and confidence in the work of writing and critique. Students who are interested in teaching writing will find this major an opportunity both for writing extensively and dealing critically with the act of written composition. Students must complete the sequence LTWR 8A-8B-8C prior to declaring a major in Literature/Writing. The major requirements are as follows:

1. Any of the following literature sequences:

a. LTWL 4A-B-C-D-F-M---any three courses in the sequence (Film and Fiction in Twentieth-Century Societies)

b. LTWL 19A-B-C (Introduction to the Ancient Greeks and Romans)

c. LTEN 21 and 22, plus one course chosen from LTEN 23, 25, 26, 27, 28, and 29.

d. TWS 21, 22, 23, 24, 25, 26---any three courses (Third World Literatures)

2. Twelve upper-division courses:

a. Six upper-division courses in Literature/Writing from the writing workshop sequence (LTWR 100--129). These workshops may be repeated for credit (see course listing for number of times workshops may be repeated), but the requirement should show a range of writing experience in at least two major writing types. No other courses may be substituted for this basic requirement of six upper-division workshops.

b. One course from the group numbered LTWR 140-148.

c. Five upper-division electives chosen from Department of Literature offerings.

3. Three courses in a secondary literature, that is, a literature taught in a language other than English. At least one of these courses must be upper-division. Students should see an advisor when selecting specific courses that will be taken to satisfy this requirement. Special studies courses (198s and 199s) and courses in foreign literatures which are taught in English translation do not apply to the secondary literature requirement. See "The Major in Literature," above, for applicable lower-division courses.

Double Major in Literature/Writing and a Subject outside Literature

Students who wish to major both in Literature/Writing and in a department other than the Department of Literature must fulfill all requirements for the writing major as described above. Students must submit a double major petition for approval by the participating departments and the student's provost office.

Double Major within the Department of Literature in Literature/Writing and Another Literature

Students who wish to major both in Literature/Writing and in literature (any section) should see the department for information regarding appropriate double major requirements. Generally, all requirements for each major must be completed, though the secondary literature and two upper-division courses, where appropriate, may overlap from one major to the other.

Students must submit a double major petition for approval by the department and the student's provost office.

The Minor in Literature

The department offers a wide range of possibilities for noncontiguous minors. The options include courses in a single regional or national literature, courses in more than one literature, and a combination of language and literature courses. The minors require seven courses. All courses taken to complete a literature minor must be taken for a letter grade. No grade below C– is acceptable.

Please see the department undergraduate office for specific minor requirements.

A minor in literature will consist of seven courses as described below.

French, German, Greek, Italian, Latin, Russian, or Spanish literature: seven courses, at least four of which must be upper-division in the same literature.

Literatures in English, Literatures of the World, and Literature/Writing: seven courses, at least five of which must be upper-division.

Lower-division courses applicable toward minors:

- English—LTEN 21, 22, 23, 25, 26, 27, 28, 29, 60
- French—LTFR 2A-B-C, 50
- German—LTGM 2A-B-C
- Greek—LTGK 1, 2, 3
- Hebrew—JUDA 1, 2, 3 (see Judaic Studies)
- Italian—LTIT 2A-B, 50
- Latin—LTLA 1, 2, 3
- Russian—LTRU 2A-B-C
- Spanish—LTPS 2A-B-C-D, 50A-B-C
- Writing—LTWR 8A-B-C

Literatures of the World—seven literature courses, at least five of which must be upper-division—usually 1) a two- or three-course lower-division sequence and 2) five upper-division courses with a single unifying theme. As of fall 2003, students may use either the Revelle College Humanities sequence (HUM 1–5) or Eleanor Roosevelt College’s Making of the Modern World (MMW 1–6) to satisfy the lower-division sequence for the LTWL major or minor.

Writing minor—seven courses, at least five of which must be upper-division. The minimum of five upper-division courses must cover at least two major writing genres, with course work chosen from writing courses numbered 100 through 148.

Please see the department for further information and specifics regarding minors in literature.

The Graduate Program

Doctoral Degree Program

The department offers a single Ph.D. in literature with concentrations in any of the fields in
which members of the department do research (see below). The C.Phil. (candidate in philosophy) is conferred upon all students who pass the qualifying examination and are advanced to candidacy. Ph.D. students in the doctoral program may also qualify for the M.A. upon completion of their qualifying examinations.

Preparation

The following are requirements for admission to graduate study in literature:

1. A baccalaureate or a master's degree with a major in one of the literatures offered by the department, or in another field approved by the departmental committee on graduate studies.

2. Satisfactory scores on the Graduate Record Examination achieved within the past three calendar years. The Subject Test is not required.

3. Competence in reading, understanding, and interpreting both literary and critical texts in a second language, and—when appropriate—ability to follow seminar discussions or lectures in a second or third language.

Completed applications and supporting materials must be received by the deadline posted on our Web site: http://literature.ucsd.edu, for admission to the following fall quarter. Those planning to apply should take ucsd.edu for specific guidelines.

Course of Study

Formal study begins with a first-year, three-quarter introductory sequence (Literature/Theory 200A-B-C) having an interdisciplinary and theoretical emphasis. During the first three years, the course of study will include at least four seminars in one literature and two in another (students in comparative literature must take at least one seminar or upper-division undergraduate course in a third literature); at least four seminars drawn from offerings in literary theory, the second or a third literature, cultural studies, comparative literature, or composition studies; and five additional seminars open entirely to the student's choice (four for students in comparative literature). Such "open" seminars should generally be related to the intended dissertation field. At most, two seminars in other disciplines may be substituted for any of the latter group, with the advisor's permission. Students must also fulfill a historical breadth requirement by completing two seminars dealing with texts or cultural practices prior to 1800. For students with approved M.A. degrees the initial three-year sequence may be reduced somewhat, depending on the department's criteria for transferring credits and on the students' plans for doctoral study.

Students in comparative literature must take four of the above-described seminars in comparative literature or in other sections, provided that they be clearly comparative in nature. Comparative literature seminars taken for Literature 1, 2, or 3 must be substantially focused upon the relevant language and deal with materials in the original. Students who wish to take these courses in a literature for which seminars are not regularly offered in the Department of Literature may substitute 298S or undergraduate courses enhanced by additional assignments. To do so, however, students must demonstrate through prior course work that they have already attained graduate-level competency in the literature and language in question and they must obtain approval from the comparative literature graduate advisor and the director of Graduate Studies.

In the sixth quarter, students may register for one four-unit independent study course to prepare reading lists for the subject-area qualifying examinations. The third year is spent in taking seminars and in preparing for the qualifying examinations. During this year, students may register for one four-unit independent study course in which they work on the long paper required for the qualifying examinations.

The qualifying examination is usually taken during the ninth quarter of enrollment. It must be completed by the end of the tenth quarter. The fourth and fifth years will be devoted to preparation of the dissertation.

Students may write dissertations in any of the fields in which members of the department do research. These fields include English, American, French, German, biblical Hebrew, Italian, Greek, Latin, Spanish, Chinese, Japanese, Russian, Chicano, Asian-American, and African-American literature, comparative literature, literary theory, women's studies, cultural studies, early modern studies, and composition studies.

Specialty in Composition Theory, Research, and Practice

The Department of Literature offers special studies to graduate students who wish to concentrate on composition theory, research, and practice. The composition subspecialty is an interdisciplinary course of study that requires students to work with faculty both in the department and across the university. The department regularly offers graduate seminars taught by faculty in composition, along with a variety of seminars on history, theory, cultural studies, and literatures in English of special interest to students in composition. Students in special studies in composition take two research methods courses outside the department on topics such as field work, historiography, or research design in the human sciences to qualify them to conduct the research for their dissertations. Students are also encouraged to apply to teach in one of the five college undergraduate writing programs on campus, to see for themselves how classroom and administrative practice intersect with theory and research.

Language Requirements

Graduate students in literature are required to develop the ability to read literary and secondary texts and to follow seminar discussions or lectures in a second language, a language other than the one in which the literature of their intended specialization is written. To satisfy this requirement students must demonstrate language proficiency and completion of two seminars in the literature of the second language. With the approval of the director of Graduate Studies, students may satisfy the language requirement by substituting for a seminar an upper-division undergraduate course enhanced by additional assignments, and which must be completed with the grade of A. This is normally done only when there is no seminar offered in the chosen language. Students must pass an examination in reading, interpretation, and translation in each of the two courses taken to satisfy the second language requirement. The language requirements must be satisfied by the end of the third year of study.

Doctoral students specializing in comparative literature require knowledge in depth of two foreign languages. "Knowledge in depth" means the ability to attend graduate seminars given in the original language (or seminars where the texts
are read in the original language). Students must demonstrate this ability by enrolling in such seminars or, where this is not possible, by taking enhanced upper-division courses. If upper-division courses are not available, students may take guided independent study in the language in question.

The M.A. program in comparative literature requires knowledge in depth of one foreign language.

Advancement to Candidacy

No later than the first quarter of the third year, the student should choose a Ph.D. advisor, who will, in consultation with the student, form a qualifying examination committee. The student and the qualifying examination committee will jointly determine the nature of the long research paper, (approximately thirty pages) and the two areas of specialization upon which the student will be examined in writing. After satisfactory completion of the paper and the written examinations, the student will take a two-hour oral doctoral examination. On passing the oral examination, the student is declared eligible for advancement to candidacy for the Ph.D. The C. Phil. degree is conferred on those so advanced. Thereupon, a doctoral dissertation is written. This work is defended in a traditional final examination.

Teaching

The department requires that each Ph.D. student do some apprentice teaching before the completion of the degree; the minimum amount required is equivalent to the duties expected of a half-time teaching assistant for three academic quarters. This teaching involves conducting, with the guidance and support of a supervising professor, discussion sections and related activities in a variety of freshman and sophomore courses. Academic credit is granted for the training given under the apprentice teaching program.

Grading

The only grading option for literature graduate courses is Satisfactory/Unsatisfactory (S/U). Students receive written evaluations of their performance in seminars. Upper-division undergraduate courses must be taken for a letter grade. Students must receive a grade of A to maintain acceptable graduate status and continuation of funding.

Departmental Ph.D. Time Limit Policies

Students must be advanced to candidacy by the tenth quarter of study. Departmental normative time is five years. Total registered time at UCSD cannot exceed eight years.

Financial Support

Ph.D. students entering the program with a B.A. may be supported (either by employment or fellowships) for five years. Students who have an M.A. and have been given transfer credit may be supported for four years. Such support depends upon the funds available, the number of students eligible, and the rate of progress.

Master’s Degree Program

The master’s degree program is intended to meet the needs of several groups: (1) persons interested in possibly applying later, at UCSD or elsewhere, for admission to a Ph.D. program and wishing to strengthen their preparation for such a program; (2) persons seeking a master’s degree only, for reasons of professional development or cultural enrichment; and (3) graduate students who have been admitted to the Ph.D. program and who decide to qualify also for a master’s degree. The M.A. degree is currently available in several fields: literatures in English, French, German, Spanish, and comparative literature. Note: The department does not offer financial support for M.A. candidates. It is possible, in cases of exceptional circumstances, for students to complete this requirement if no graduate seminars are available in the language in question. For the M.A. in comparative literature students will be required to complete a combination of twelve units of course work in one literature of concentration. Comparative literature seminars are recommended when their focus is substantially upon the literature in question and they deal with materials in the original language.

4. Language Requirement: Four units of literature in a language other than that of the student’s principal concentration. For students in French, German, Spanish and literatures in English, this course may be taken either in the original language or in translation, and it may be used toward fulfilling the requirements listed under items 1 and 2 above. A graduate seminar in English or American literature may be used to fulfill this requirement by students working toward an M.A. degree in French, German, or Spanish. An enhanced upper-division course in literature of the world may be taken to satisfy this requirement as long as its principal readings were originally written in a language other than that of their principal concentration. For the M.A. in comparative literature students must take either eight units of seminar work in the second literature (other than the literature of concentration) or four units of seminar work in a second literature and four units of seminar or enhanced upper-division course in a third literature. Texts or other materials must be dealt with in the original languages. Comparative literature seminars are
recommended when their focus is substantially upon the literature in question and they deal with materials in the original language.

5. For the M.A. in comparative literature students must take at least one seminar in comparative literature or in another section, if the seminar is clearly comparative in nature. This requirement can be satisfied by a course taken for item 3 or item 4 above. Students wishing to take courses for requirements 3 or 4 above in a literature for which seminars are not regularly offered in the Department of Literature may substitute upper-division undergraduate courses enhanced by additional assignments or, in exceptional cases, may take 298s. To do so, however, students must demonstrate through prior course work that they have already attained graduate-level competency in the literature and language in question and they must obtain approval from the comparative literature graduate advisor. Such 298s and upper-division courses should not exceed a total of two courses within a student’s program unless demonstrably necessary.

6. Eight units of guided research 295, culminating in an acceptable master’s thesis or master’s examination.

The only grading option for literature graduate courses is Satisfactory/Unsatisfactory (S/U). Students receive written evaluations of their performance. Upper-division undergraduate courses must be taken for a letter grade. Students must receive a grade of A to maintain acceptable graduate status and continuation of funding.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

Note: A list of specific undergraduate and graduate course offerings (with names of instructors for the following academic year) is available on the Department of Literature Web site at http://literature.ucsd.edu/3qplans.html.

Undergraduate students may enroll in graduate seminars with the consent of instructor and will receive a P/NP grade unless they petition for a letter-grade option within the first four weeks of the quarter in which the course is taken.

CHINESE LITERATURE

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTCH 101. Readings in Contemporary Chinese Literature (4)

Intended for students who have the competence to read contemporary Chinese texts, poetry, short stories, and criticism in vernacular Chinese. May be repeated for credit as topics vary.

COMPARATIVE LITERATURE

GRADUATE

Prerequisite: graduate standing or consent of instructor.

LTCO 202C. History of European Criticism and Aesthetics (4)

A core course for comparative literature, strongly recommended for all graduate students in the comparative literature program. A historical survey of criticism and aesthetics divided as follows: 202C, Romanticism to late nineteenth century.

LTCO 210. Classical Studies (4)

Analysis of significant works of the Greek and Roman traditions, with attention to their interest for later European literature. May be repeated for credit as topics vary.

LTCO 252. Modernism (4)

A sample investigation into the concept of period. Will deal with the question of the existence of modernism, the description of the phenomenon, and the causes to which it is to be attributed. May be repeated for credit as topics vary.

LTCO 264. Oral Literature (4)

An introduction, through the study of recordings of actual oral performance as well as of the written record, to research in oral literature and the theoretical and methodological problems entailed. (Not offered 2002–03.)

LTCO 274. Genre Studies (4)

A consideration of a representative selection of works relating to a theme, form, or literary genre. May be repeated for credit as topics vary.

LTCO 281. Literature and Film (4)

A study of literature and film in relation to one another, to critical and aesthetic theories, and to historical context. May be repeated for credit when topics vary. *Prerequisite: graduate standing or consent of instructor.*

LTCO 282. Literature and Philosophy (4)

Questions and problems from the history of philosophy or from the various fields of philosophy (e.g., epistemology, ethics, logic) in their interaction with intellectual issues and questions addressed by literary criticism and theory. Repeatable for credit when topics vary.

LTCO 283. Literature and Political Philosophy (4)

An inquiry into philosophical texts viewed as influential in comparative literature and political science (Plato, Aristotle, Augustine, Aquinas, Machiavelli, More, Hobbes, Locke, Hume, Kant, Herder, Hegel, Nietzsche, Kojève, Foucault, Rawls, et al.). May be repeated for credit as topics vary. *Prerequisite: graduate standing or consent of instructor.*

LTCO 284. Literature and Ethics (4)

The longstanding relationship of literary studies and ethics or the arts of life. From Plato, Aristotle, Renaissance treatises, Kant to Foucault and others. May be repeated for credit as topics vary. *Prerequisite: graduate standing or consent of instructor.*

LTCO 285. Literature and Aesthetics (4)

Research in literary theory and aesthetic philosophies. Single and multiple authors and topics; Plato and Aristotle, Renaissance treatises, Winckelmann, Kant and Hegel in the Enlightenment, Warburg, Heidegger and Panofsky, contemporary art theory, et al. May be repeated for credit as topics vary. *Prerequisite: graduate standing or consent of instructor.*

LTCO 289. History of the Book (4)

Questions and problems from the history of the book, the history of libraries, materialist bibliography, epistemology, as they relate to literary scholarship and theory. May be repeated for credit as topics vary. *Prerequisite: graduate standing or consent of instructor.*

LTCO 295. M.A. Thesis (1–8)

Research for the master’s thesis. Opened for repeated registration up to eight units. (Satisfactory/Unsatisfactory grades only.) *Prerequisite: enrolled in M.A. program.*

LTCO 296. Research Practicum (1–12)

Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous graduate seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit.

LTCO 297. Directed Studies: Reading Course (1–12)

This course may be designed according to an individual student’s needs when seminar offerings do not cover subjects, genres, or authors of interest. No paper required. The 297 courses do not count toward the seminar requirement. Repeatable for credit.

LTCO 298. Special Projects: Writing Course (1–12)

Similar to a 297, but a paper is required. Papers are usually on subjects not covered by seminar offerings. Up to two 298s may be applied toward the twelve-seminar requirement of the doctoral program. Repeatable for credit.

LTCO 299. Dissertation (1–12)

Research for the dissertation. Offered for repeated registration. Open only to Ph.D. students who have advanced to candidacy.

LITERATURE/CULTURAL STUDIES

LOWER-DIVISION

LTCS 50. Introduction to Cultural Studies (4)

An introduction to cultural studies with a focus on the following areas: literary and historical studies, popular culture, women’s studies, ethnic studies, science studies, and gay/lesbian studies. Particular emphasis on the question of “cultural practices” and their social and political conditions and effects.

LTCS 52. Topics in Cultural Studies (4)

This course is designed to complement LTCS 50 – Introduction to Cultural Studies. In this course, cultural
UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTCS 100. Theories and Methods in Cultural Studies (4)
Reading in some of the major theoretical texts that have framed work in cultural studies, with particular emphasis on those drawn from critical theory, studies in colonialism, cultural anthropology, feminism, semiotics, gay/lesbian studies, historism, and psychoanalytic theory. Prerequisite: upper-division standing.

LTCS 102. Practicing Cultural Studies (4)
Survey and application of methods central to cultural studies as a critical social practice, examining the relationship between cultural studies and social transformation. Students will study varieties of material culture, and experiment with techniques of reading, interpretation, and intervention.

LTCS 110. Popular Culture (4)
A reading of recent theory on popular culture and a study of particular texts dealing with popular cultural practices, both contemporary and noncontemporary, as sites of conflict and struggle. Repeatable for credit when topics vary.

LTCS 111. Special Topics in Popular Culture in Historical Context (4)
Exploration of forms of popular culture in different historical and geographical contexts. Topics may include: folklore, dime novels and other types of popular literature, racial performances, popular religions, theatrical melodrama, photojournalism, and early film. Repeatable for credit when readings and focus vary.

LTCS 115. Performance Culture (4)
An investigation of different types of performances such as theatrical genres ranging from melodrama and minstrelsy to various cultural rituals and speech acts. From the perspective of literary studies, performance studies, postcolonial theory, ethnography and theatre history, the course explores race, gender, sexuality, and nation through performance. Prerequisite: upper-division standing or consent of instructor.

LTCS 118. Comedy (4)
Comedy in fiction and film from ancient times to contemporary, including the Bible, Aristophanes, Shakespeare, and modern writers and film makers. Prerequisite: upper-division standing or consent of instructor.

LTCS 120. Historical Perspectives on Culture (4)
The course will explore the relations among cultural production, institutions, history, and ideology during selected historical periods. In considering different kinds of texts, relations of power and knowledge at different historical moments will be discussed. Repeatable for credit when topics vary.

LTCS 125. Cultural Perspectives on Immigration and Citizenship (4)
Introduction to the studies of cultural dimensions of immigration and citizenship. Examines the diverse cultural texts—literature, law, film, music, the television images, etc., that both shape and are shaped by immigration and the idea of citizenship in different national and historical contexts. Prerequisite: upper-division standing or consent of instructor.

LTCS 130. Gender, Race/Ethnicity, Class, and Culture (4)
The course will focus on the representation of gender, ethnicity, and class in cultural production in view of various contemporary theories of race, sex, and class. Repeatable for credit when topics vary.

LTCS 131. Topics in Queer Cultures/Queer Subcultures (4)
This course examines the intersection of sex, sexuality, and popular culture by looking at the history of popular representations of queer sexuality and their relation to political movements for gay and lesbian rights. Repeatable for credit when readings and focus vary.

LTCS 132. Special Topics in Social Identities and the Media (4)
A study of media representation and various aspects of identity, such as gender, sexuality, race, ethnicity, social class, culture, and geopolitical location. Students will consider the various media of film, television, alternative video, advertising, music, and the Internet. Repeatable for credit when readings and focus vary.

LTCS 133. Globalization and Culture (4)
Studies of cultural dimensions of immigration and citizenship. This course examines the diverse cultural texts—literature, law, film, music, the television images, etc., that both shaped and are shaped by immigration and the idea of citizenship in different national and historical contexts. Prerequisite: upper-division standing or consent of instructor.

LTCS 135. Interdisciplinary Approaches to Lesbian, Gay, Bisexual, and Transgender Studies (4)
Introduction to interdisciplinary examination of human sexuality and, especially, lesbian, gay, bisexual, and transgender identities and desires. Juxtaposes perspectives from humanities, social sciences, and natural sciences. Introduces queer theory to understand sexuality in relation to phenomena such as government, family, culture, medicine, race, gender, and class.

LTCS 141. Special Topics in Race and Empire (4)
The role of race and culture within the history of empires; may select a single empire for consideration, such as France, Britain, U.S., or Japan, or choose to examine the role of race and culture in comparative histories of colonialism. Repeatable for credit when readings and focus vary.

LTCS 145. National Cultures in Colonial and Postcolonial Contexts (4)
Studies of emergence of national cultures under colonial rule and their transformations in the process of decolonization. Investigation of ideological constructions of such cultural institutions as modern national language, national history and historiography, national literary canon, and folk literature and culture. Prerequisite: upper-division standing or consent of instructor.

LTCS 150. Topics in Cultural Studies (4)
The course will examine one or more forms of cultural production or cultural practice from a variety of theoretical and historical perspectives. Topics may include: contemporary debates on culture, genres of popular music/fiction/film, AIDS and culture, the history of sexuality, subcultural styles, etc. Repeatable for credit when topics vary.

LTCS 160. Cultural Studies Approaches to Popular Music (4)
An investigation of different types of popular music genres, cultures, and practices such as hip hop, punk rock, R&B, jazz, country, and dance music cultures. From the perspective of ethnography and cultural and performance studies, the course explores race, gender, sexuality, and the negotiations of local, as well as national communities and subcultures via popular music. Prerequisite: upper-division standing or consent of instructor.

LTCS 170. Visual Culture (4)
The course will focus on visual practices and discourse in their intersection and overlap, from traditional media, print, and photography to film, video, TV, computers, medical scanners, and the Internet.

LTCS 171. Topics in Television and Popular Media (4)
Examining the relationship between television and national culture, students will study the emergence of TV as a domestic technology, the history of race and gender in television programming, and the global politics of television distribution. Repeatable for credit when readings and focus vary.

LTCS 172. Special Topics in Screening Race/Ethnicity, Gender and Sexuality (4)
Exploring both Hollywood and international filmmaking, an exploration of screen representations with attention to race/ethnicity, gender, and sexuality in different historical and linguistic contexts. Historical periods may extend from silent, through wartime and cold war, to contemporary era of globalization. Repeatable for credit when readings and focus vary.

LTCS 173. Topics in Violence and Visual Culture (4)
This course focuses on the critical study of representations of violence, such as war, genocide, sexual violence, and crime, across a range of media, including literature, film, photography, and other forms of visual culture. Repeatable for credit when readings and focus vary.

LTCS 192. Senior Seminar in Literatures in Cultural Studies (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisite: department stamp and/or consent of instructor.

LTCS 198. Directed Group Study (4)
Directed group research, under the guidance of a member of the faculty, in an area not covered in courses currently offered by the department. (P/NP only.) Prerequisite: permission of the department.

LTCS 199. Special Studies (2 or 4)
Individual reading in an area not covered in courses currently offered by the department. (P/NP only.) Prerequisite: permission of the department.
Graduate

Prerequisite: graduate standing or consent of instructor.

LTCS 201. Theories and Methods of Analysis in Cultural Studies (4)
Contemporary theories of cultural studies. The seminar will concentrate on major interpretive approaches drawn from several areas of cultural and political analysis, including historicism, Marxist theory, feminism, structuralism, psychoanalytic theory, semiotics, postmodernist studies, gay and lesbian studies, and others. The particular focus and approach may vary. Repeatable for credit. Prerequisite: graduate standing or consent of instructor.

LTCS 210. History and Culture (4)
This seminar will focus on the cultural practices of a particular historical period as a means of analyzing the relation between culture/ideology and economic and political modes of production and domination. Topic, historical period, and theoretical approach may vary. Repeatable for credit. Prerequisite: graduate standing or consent of instructor.

LTCS 220. Film/TV/Video Studies (4)
The seminar will concentrate on genres or subgenres within film/TV/video studies or on a stand of film/TV/video theory. Possible topics may include: horror film, melodrama, sitcoms/soaps/talk shows, music videos, black or queer cinema, etc. Repeatable for credit.

LTCS 222. Topics in Theory and History of Film (4)
This course will consider various theoretical approaches to film texts (historical-materialist, feminist, psychoanalytic, semiotic) as well as the history of film, the political economy of film production and distribution, exhibition practices, and spectatorship in national and transnational contexts. Repeatable for credit when topics vary. Prerequisite: graduate standing.

LTCS 225. Interdisciplinary and Historical Analysis of Cultural Texts (4)
The seminar will focus on a particular historical period and examine a variety of cultural texts vis-a-vis related historical, economic, political, and sociological courses. The conjunction and disjunction of approaches will be explored in relation to specific texts. Repeatable for credit.

LTCS 250. Topics in Cultural Studies (4)
This seminar will be organized around any of various topic areas relating to cultural studies. These might include studies in colonialism, historicism, gender, sexuality, social institutions, popular culture, subaltern practices, etc. May be repeated for credit as topics vary. Prerequisite: graduate standing or consent of instructor.

LTCS 255. Cultural Studies, Colonialism, and Decolonialism (4)
This course considers different approaches to the study of colonialism in a variety of national contexts. Educational, legal, religious, military, and cultural apparatuses of colonialism, theories of decolonization, the “postcolonial” and feminist critiques of “modernity”/modernization will also be studied. May be repeated for credit when topics vary. Prerequisite: graduate standing or consent of instructor.

LTCS 256. Cultural Studies of Technoscience (4)
The course will explore work in cultural studies, feminist studies, and queer theory of scientific practices altering social relations, cultural identities, and conceptions of “nature.” Issues may include the AIDS pandemic, genetic research, electronic communities, reproductive technologies, and other topics. May be repeated for credit when topics vary. Prerequisite: graduate standing or consent of instructor.

LTCS 260. National Cultures (4)
Selected topics on the construction of national cultural identities. Investigation of the dynamics of canon formation and nation building in specific historical contexts. May be repeated for credit when topics vary. Prerequisite: graduate standing.

LTCS 269. The Humanities and the Environment (4)
A survey of the relationships between culture and environment. The seminar will examine the environmental movements, the impact of environmentalism on contemporary culture, and the role of culture in defining environmental values. May be repeated for credit when topics vary. Prerequisite: graduate standing.

LITERATURES IN ENGLISH

Lower-Division

LTEN 21. Introduction to the Literature of the British Isles: Pre-1660 (4)
An introduction to the literatures written in English in Britain before 1660, with a focus on the interaction of text and history.

LTEN 22. Introduction to the Literature of the British Isles: 1660–1832 (4)
An introduction to the literatures written in English in Britain and Ireland between 1660 and 1832, with a focus on the interaction of text and history.

LTEN 23. Introduction to the Literature of the British Isles: 1832–Present (4)
An introduction to the literatures written in English in Britain, Ireland, and the British Empire (and the former British Empire) from 1832 to the present, with a focus on the interaction of text and history.

LTEN 25. Introduction to the Literature of the United States, Beginnings to 1865 (4)
An introduction to the literatures written in English in the United States from the beginnings to 1865, with a focus on the interaction of text and history.

LTEN 26. Introduction to the Literature of the United States, 1865 to the Present (4)
An introduction to the literatures written in English in the United States from 1865 to the present, with a focus on the interaction of text and history.

Upper-Division

Prerequisite: upper-division standing or consent of instructor. Additional prerequiites may be specified below.

LTEN 104. Literatures of Medieval England (4)
Lecture/discussion course focusing on literature written in England before 1500. Topics may include themes (e.g., gender, social critique) or focus on specific genre (drama, romance, religious literature). May be repeated for credit when topics vary. Prerequisite: upper-division standing.

LTEN 107. Chaucer (4)
A study of Chaucer’s poetic development, beginning with The Book of the Duchess and The Parliament of Fowls, including Troilus and Criseyde, and concluding with substantial selections from The Canterbury Tales.

LTEN 110. The Renaissance: Themes and Issues (4)
Major literary works of the Renaissance, an exciting period of social and cultural transformation in England as elsewhere in Europe. Topics may include a central theme (e.g., humanism, reformation, revolution), a genre (e.g., pastoral), or comparison with other arts and sciences.

LTEN 112. Shakespeare I: The Elizabethan Period (4)
A lecture/discussion course exploring the development of Shakespeare’s dramatic powers in comedy,
history, and tragedy, from the early plays to the middle of his career. Dramatic forms, themes, characters, and styles will be studied in the contexts of Shakespeare's theatre and his society. Enrollment limited to upper-division students.

LTEN 113. Shakespeare II: The Jacobean Period (4)
A lecture/discussion course exploring the rich and varied achievements of Shakespeare's later plays, including the major tragedies and late romances. Dramatic forms, themes, characters, and styles will be studied in the contexts of Shakespeare's theatre and his society. Enrollment limited to upper-division students.

LTEN 114. Shakespeare III: Stage, Film, and Television (4)
A lecture/discussion/laboratory course involving the close study of six to eight plays representative of Shakespeare's artistic career with particular emphasis upon the interrelationship of Elizabethan plays and the stage and the critical implications of transposing plays to film and television. (Generally offered in summer session only.)

LTEN 115A. The Sixteenth Century: Themes and Issues (4)
Selected topics concerned with sixteenth-century English literature as a whole.

LTEN 117A. The Seventeenth Century: Themes and Issues (4)
Selected topics in English literature during a period of social change, religious controversy, emergence of the “New Science”, and the English Civil War. Readings chosen from writers including Jonson, Donne, Bacon, Milton, Marvell, and Dryden, among others. Repeatable for credit. Prerequisite: upper-division standing or consent of instructor.

LTEN 118. Milton (4)
A critical examination of the major works, including Paradise Lost, by an author who was both a central figure in English political life in a revolutionary age and, in the view of most critics, the greatest non-dramatic poet in the English language. The course will study his poetic development in a variety of historical contexts.

LTEN 119. Restoration Literature (4)
The literature of a period following twenty years of civil war and revolution which saw the reopening of theatres and the rise of the professional writer. Topics may include Restoration comedy and tragedy; satire; neoclassical literary theory.

LTEN 120A. The Eighteenth Century: Themes and Issues (4)
Selected topics in English literature during an age of satiric writing, the shift from neoclassicism to romanticism, the emergence of the novel, and the expansion of the reading and writing public among the middle class and women. Writers such as Defoe, Pope, Swift, Richardson, Johnson, Burney, Wollstonecraft. May be repeated for credit when topics vary.

LTEN 120E. Women in the Eighteenth Century (4)
Selected topics concerning British women writers and readers in an age of increasing female participation in print culture. Topics include women writers; representations of women, domesticity, and the family in the novel, in drama, in satire; early feminist writing; literary constructions of gender. May be repeated for credit when topics vary.

LTEN 124. The Nineteenth Century: Themes and Issues (4)
Selected topics in nineteenth-century British literature and culture, drawing on both romantic and Victorian periods: e.g., relationships between literature and imperialism, social and political debate, gender issues, religion, or science; or continuities between romantic and Victorian authors.

LTEN 125A. Romanticism: Themes and Issues (4)
Selected topics concerned with the romantic period as a whole.

LTEN 125B. First Generation Romantic Poets (4)
The poets who came of age during the French Revolution and who inaugurated literary modes that continue in our own time: Wordsworth, Coleridge, Blake, and their contemporaries.

LTEN 125C. Second Generation Romantic Poets (4)
Byron, Keats, Shelley, and their contemporaries.

LTEN 125F. Byron and Byronicism (4)
Lord Byron’s life, works, and cultural impact, including an examination of some later authors, such as Carlyle and the Brontës, who responded to Byron through their own writings.

LTEN 125G. Keats and His Poetical Heirs (4)
The major poetry of John Keats considered together with selected works influenced by him, including poems by such authors as Tennyson, Christina Rossetti, Hopkins, Hardy, Yeats, and Stevens.

LTEN 127A. The Victorian Period: Themes and Issues (4)
Selected topics concerned with Victorian literature as a whole.

LTEN 127B. Victorian Poetry (4)
Tennyson, Browning, Arnold, Clough, Hopkins, and their contemporaries.

LTEN 130. Modern British Literature (4)
Selected topics concerned with modern British literature; study of various authors, issues, and trends in literatures of the British Isles from the mid-1850s through the end of the twentieth century. Repeatable for credit when topics vary. (Replaces the former LTEN 130A and 130B)

LTEN 132. Modern Irish Literature (4)
The Irish Revival and its aftermath: Yeats, Synge, O’Casey, Joyce, Beckett, and their contemporaries. Repeatable for credit when topics vary.

LTEN 133. Modern Scottish Literature (4)
This course takes Scottish writing from the Kailyard School of the late nineteenth century through the 1920s’ revival of Scottish nationalism, to the 1980s’ emergence of Glasgow as a literary center.

LTEN 134. Twentieth-Century British Poetry (4)
Survey of many poets of the United Kingdom including Scotland and Ireland. Included: War poems (1914-18, 1940-45), 30s poems of social commitment, the Movement (1950s), recent postmodern figures (Hughes, Prynne). Prerequisite: upper-division standing.

LTEN 140. The Early Nineteenth-Century British Novel (4)
Includes the work of Jane Austen, Charlotte Bronte, Emily Bronte, Mary Shelly, and Charles Dickens.

LTEN 141. The High Victorian Novel (4)
Dickens, Thackeray, Trollope, Charlotte Bronte, Emily Bronte.

LTEN 142. The End of Victorianism (4)
The work of Robert Louis Stevenson, H.G. Wells, Thomas Hardy, Rudyard Kipling, and Joseph Conrad.

LTEN 143. The English Novel in the Eighteenth Century (4)
This course studies the writing of the novel in the eighteenth century. The focus of the course may be an introduction to selected major writers and texts, or a particular issue or problem in the literary and social history of the novel. May be repeated for credit when topics vary.

LTEN 144. The English Novel in the Nineteenth Century (4)
This course studies the writing of the novel in English during the nineteenth century. The focus of the course may be a survey of the nineteenth century (an introduction to selected major writers and texts), or a particular issue or problem in the literary and social history of the novel. May be repeated for credit when topics vary.

LTEN 145. The English Novel in the Twentieth Century (4)
This course studies the writing of the novel in English during the twentieth century. The focus of the course may be an introduction to selected major writers and texts, or a particular issue or problem in the literary and social history of the novel. May be repeated for credit when topics vary.

LTEN 146. Women and English/American Literature (4)
Selected topics concerning women and anglophone literature. Topics include women writers, the literary representation of women, and women as readers. May be repeated for credit when topics vary.

LTEN 147. Metamorphoses of the Symbol (4)
An investigation of a single symbol—such as the cave or the mountain—as it functions within the literature and other expressions of widely different historical moments, with an emphasis upon English and American literature. May be repeated for credit as topics vary.

LTEN 148. Genres in English and American Literature (4)
An examination of one or more genres in English and/or American literature, for example, satire, utopian fiction, autobiography, landscape poetry, the familiar essay. May be repeated for credit as topics vary.

LTEN 149. Themes in English and American Literature (4)
A consideration of one of the themes that recur in many periods of English or American literature, for instance, love, politics, the role of women in society. May be repeated for credit as topics vary.

LTEN 150. Gender, Text, and Culture (4)
This course studies representations of the sexes and of their interrelationship in various forms of writing produced during different phases of English history. Emphasis will be placed upon connections of gender and of literature to other modes of social belief, experience, and practice. Repeatable for credit when topics vary.

LTEN 152. The Origins of American Literature (4)
Studies in American writing from the Puritans to the early national period (1620–1830), with emphasis on the thrust and continuity of American culture, social
and intellectual, through the beginnings of major American writing in the first quarter of the nineteenth century.

LTEN 153. The Revolutionary War and the Early National Period in U.S. Literature (4)
A critical examination of how writing of various kinds—political, philosophical, and literary—functioned in the construction of the political body of the new American republic and the self-conception of its citizens.

LTEN 154. The American Renaissance (4)
A study of some of the chief works, and the linguistic, philosophical, and historical attitudes informing them, produced by such authors as Emerson, Hawthorne, Melville, Dickinson, and Whitman during the period 1836–1865, when the role of American writing in the national culture becomes an overriding concern.

LTEN 155. Interactions Between American Literature and the Visual Arts (4)
An exploration of the parallels between the work of individual writers, or movements, in American literature and the style and content of the work of certain visual artists. The writers studied are always American; the artists or art movements may represent non-American influences on these American writers. May be repeated for credit as topics vary.

LTEN 156. American Literature from the Civil War to World War I (4)
A critical examination of works by such authors as Mark Twain, Henry James, Kate Chopin and Edith Wharton, who were writing in an age when the frontier was conquered and American society began to experience massive industrialization and urbanization.

LTEN 158. Modern American Literature (4)
A critical examination of American literature in several genres produced between the turn of the century and World War II. Attention will be given to historical and cultural contexts for defining American modernism. Prerequisite: upper-division standing. Repeatable for credit when topics vary.

LTEN 159. Contemporary American Literature (4)
A critical examination of American literature in several genres produced since World War II. Attention will be given to historical and cultural contexts for defining American postmodernism. Prerequisite: upper-division standing. Repeatable for credit when topics vary.

LTEN 160. Ideas and Photographic Images in American Culture (4)
Relate the history of photography in America to the history of ideas in American culture. It assumes that photographers think in images and through their images participate in cultural discourse. Repeatable for credit when topics vary.

LTEN 172. American Poetry II—Whitman through the Modernists (4)
Reading and interpretation of American poets from Whitman through the principal modernists—Pound, H.D., Eliot, Moore, Stevens, and others. Lectures will set the appropriate context in sociocultural and literary history.

LTEN 174. American Fiction II—Since Middle James (4)
Reading and interpretation of American fiction from Henry James through the principal modernists—Fitzgerald, Stein, Welty, Faulkner, and others. Lectures will set the appropriate context.

LTEN 175A. New American Fiction—Post-World War II to the Present (4)
Reading and interpretation of American fiction from the mid-1940s to the present. Lectures will set the appropriate context in sociocultural and literary history. May be repeated for credit when topics vary.

LTEN 175B. New American Poetry—Post-World War II to the Present (4)
Reading and interpretation of American poets whose work has made its major impact since the last war, for instance Charles Olson, Robert Creeley, Denise Levertov, Adrienne Rich, Allen Ginsberg, Frank O’Hara, and John Ashbery. Lectures will set the appropriate context in sociocultural and literary history. May be repeated for credit as topics vary.

LTEN 176. Major American Writers (4)
A study in depth of the works of major American writers. May be repeated for credit as topics vary.

LTEN 177. California Literature (4)
Reading and interpretation of such novelists as London, Norris, Steinbeck, West, and Didion and such poets as Jeffers, Rexroth, Everson, Duncan, and Snyder. May be repeated for credit as topics vary.

LTEN 178. Comparative Ethnic Literature (4)
A lecture-discussion course that juxtaposes the experience of two or more U.S. ethnic groups and examines their relationship with the dominant culture. Students will analyze a variety of texts representing the history of ethnicity in this country. Topics will vary.

LTEN 180. Chicano Literature in English (4)
Introduction to the literature in English by the Chicano population, the men and women of Mexican descent who live and write in the United States. Primary focus on the contemporary period.

LTEN 181. Asian American Literature (4)
Selected topics in the literature by men and women of Asian descent who live and write in the United States. Repeatable for credit when topics vary.

LTEN 183. African American Prose (4)
Analysis and discussion of the novel, the personal narrative, and other prose genres, with particular emphasis on the developing characteristics of African American narrative and the cultural and social circumstances that influence their development.

LTEN 184. African American Poetry (4)
Close reading and analysis of selected works of African American poetry as they reflect styles and themes that recur in the literature.

LTEN 185. Themes in African American Literature (4)
An intensive examination of a characteristic theme, special issue, or period in African American literature. May be repeated for credit when topics vary.

LTEN 186. Literature of the Harlem Renaissance (4)
The Harlem Renaissance (1917–39) focuses on the emergence of the “New Negro” and the impact of this concept on black literature, art, and music. Writers studied include Claude McKay, Zora N. Hurston, and Langston Hughes. Special emphasis on new themes and forms.

LTEN 187. Black Music/Black Texts: Communication and Cultural Expression (4)
Explores roles of music as a traditional form of communication among Africans, Afro-Americans, and West-Indians. Special attention given to poetry of black music, including blues and other forms of vocal music expressive of countercultural political attitudes. Prerequisite: upper-division standing.

LTEN 188. Contemporary Caribbean Literature (4)
This course will focus on contemporary literature of the English-speaking Caribbean. The parallels and contrasts of this Third World literature with those of the Spanish- and French-speaking Caribbean will also be explored.

LTEN 189. Twentieth-Century Postcolonial Literatures (4)
The impact of British colonialism, national independence movements, postcolonial cultural trends, and women’s movements on the global production of literary texts in English. Course is organized by topic or geographical/historical location. May be repeated for credit when topics vary. Prerequisite: upper-division standing or consent of instructor.

LTEN 190. Seminars (4)
These seminars are devoted to a variety of special topics, including the works of single authors, genre studies, problems in literary history, relations between literature and the history of ideas, literary criticism, literature and society, and the like. The student may enroll in more than one section in a single quarter.

LTEN 192. Senior Seminar in Literatures in English (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper division level). Senior seminar may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisite: department stamp and/or consent of instructor.

LTEN 196. Honors Thesis (4)
Senior thesis research and writing for students who have been accepted for the Literature Honors Program and who have completed LTWL 191. Oral exam. Prerequisites: departmental approval and upper-division standing.

LTEN 198. Directed Group Study (4)
Research seminars and research, under the direction of a member of the staff. May be repeated for credit three times. (P/NP grades only.) Prerequisite: permission of department.

LTEN 199. Special Studies (2 or 4)
Tutorial; individual guided reading in an area not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisite: permission of department.

GRADUATE
Prerequisite: graduate standing or consent of instructor.

LTEN 214. Topics in Middle English Literature (4)
Consideration of one or more major figures, texts, or trends in Middle English literature. May be repeated for credit as topics vary.

LTEN 222. Elizabethan Studies (4)
Selected topics in the study of literary, dramatic, and other Elizabethan cultural texts. Emphasis will be
upon articulations among a range of discourses, practices, and institutions. May be repeated for credit when topics vary.

LTEN 224. Seventeenth-Century English Literature (4)
Consideration of one or more figures, texts, or trends in seventeenth-century English literature, including the metaphysical poets and Jacobean drama. May be repeated for credit as topics vary.

LTEN 226. Shakespeare (4)
Shakespeare’s plays in relation to the Elizabethan background; selected major texts. May be repeated for credit as topics vary.

LTEN 231. Restoration and Eighteenth-Century English Literature (4)
Consideration of one or more figures, texts, or trends in Restoration and eighteenth-century English literature, including Dryden, Pope, Swift, the early novel, satire. May be repeated for credit as topics vary.

LTEN 241. English Literature of the Romantic Period (4)
A study of the major poetry and related prose of early nineteenth-century literature. May be repeated for credit as topics vary.

LTEN 243. Early American Literature and Culture (4)
Consideration of one or more major figures, texts, or trends in Colonial and/or Revolutionary period American Literature, in particular, the relationship between literature and culture. Prerequisite: graduate standing.

LTEN 245. Nineteenth-Century American Studies (4)
Consideration of some of the principal writers and movements in nineteenth-century American literature. May be repeated for credit as topics vary.

LTEN 246. Victorian Literature (4)
Consideration of one or more major figures, texts, or trends in the Victorian period. May be repeated for credit as topics vary.

LTEN 252. Studies in Modern American Literature and Culture (4)
Consideration of one or more major figures, texts, or trends in American literature, in particular the relationship between literature and culture. May be repeated for credit as topics vary.

LTEN 254. Topics in U.S. Minority Literatures and Cultures (4)
Consideration of one or more “minority” traditions of cultural production in the United States, with an emphasis on the relationship among history, politics, and culture. May be repeated for credit as topics vary.

LTEN 255. Studies in Anglo-American Modernism (4)
A seminar on general topics relating to the study of modernism, utilizing cross-cultural, transnational approaches. Although individual literary texts may provide the focus, this seminar will investigate theoretical and methodological issues relating to modernist cultural studies in general.

LTEN 256. Postcolonial Discourses (4)
A survey of selected responses to imperialism and colonialism as presented in cultural texts produced by colonized or once-colonized peoples. Related issues to be examined: gender dynamics, class, representing others, mimicry, language, cultural theory, and the politics of literary genres. May be repeated for credit when topics vary.

LTEN 258. Studies in Anglophone African and/or African Diaspora Literature and Culture (4)
Consideration of one or more major figures, texts, performance or trends in literature and culture of Africa and/or the African Diaspora. Various theories and methodologies may be applied to the representations being studied. Repeatable for credit as topics vary. Prerequisite: graduate standing or consent of instructor.

LTEN 271. Genres in English (4)
Consideration of one or more genres present in English and/or American literature; for instance, the ballad, landscape poetry, comedy, satire, the familiar essay. May be repeated for credit when topics vary. Prerequisites: graduate standing or consent of instructor.

LTEN 272. Cultural Traditions in English (4)
The study of writing produced over an extended period of time by members of an identifiable cultural formation as defined, e.g., by political/social ideology, class, religion, ethnicity, or sexual preference. May be repeated for credit when topics vary.

LTEN 281. Practicum in Literary Research and Criticism (4)
This course will focus on strategies for framing, organizing, and drafting projects in literary research. Students will study and apply various forms of literary methodology and will learn about recent developments in bibliography, textual editing, and research. May be repeated twice for credit as topics vary.

LTEN 295. M.A. Thesis (1-8)
Research for the master’s thesis. Opened for repeated registration.

LTEN 296. Research Practicum (1-12)
Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous graduate seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit.

LTEN 297. Directed Studies: Reading Course (1-12)
This course may be designed according to an individual student’s needs when seminar offerings do not cover subjects, genres, or authors of interest. No paper required. The 297 courses do not count toward the seminar requirement. Repeatable for credit.

LTEN 298. Special Projects: Writing Course (1-12)
Similar to a 297, but a paper is required. Papers are usually on subject not covered by seminar offerings. Up to two 298s may be applied toward the twelve-seminar requirement of the doctoral program. Repeatable for credit.

LTEN 299. Dissertation (1-12)
Research for the dissertation. Offered for repeated registration. Open only to Ph.D. students who have advanced to candidacy.

LITERATURES IN FRENCH

LOWER-DIVISION

Language and Literature Courses

Ordinarily, students entering the French literature program elect one of the following sequences: LTFR 2A, 2B, and 2C; or 2A, 2B, and 50.

LTFR 2A. Intermediate French I (5)
First course in a three-quarter sequence designed to prepare students for upper-division French courses. The course is taught entirely in French and emphasizes the development of reading ability, listening comprehension, and conversational and writing skills. Basic techniques of literary analysis. This course may not be repeated for credit. Prerequisites: LTFR 1C/X or its equivalent, score of 3 on French language AP exam or consent of instructor.

LTFR 2B. Intermediate French II (5)
Second course in a three-quarter sequence designed to prepare students for upper-division French courses. The course is taught entirely in French and emphasizes the development of reading ability, listening comprehension, and conversational and writing skills. Basic techniques of literary analysis. This course may not be repeated for credit. Prerequisites: LTFR 2A or its equivalent, score of 4 on French language or 3 French literature AP exams or consent of instructor.

LTFR 2C. Intermediate French III: Composition and Cultural Topics (4)
Designed to improve writing and conversational skills. Develop written expression in terms of organization of ideas, structure, vocabulary. Grammar review. Discussions of a contemporary novel and film. May be taken in lieu of LTFR 50 as a prerequisite for upper-division courses. Prerequisites: LTFR 2B or its equivalent, score of 5 on French language or 4 French literature AP exams or consent of instructor.

LTFR 21. Conversation Workshop I (1)
Designed to allow students to practice and develop their oral skills by expanding the vocabulary necessary to discuss abstract ideas and by building up the confidence necessary to participate in literature classes. Prerequisite: LTFR 1C/X or 1D/1DX or LTFR 2A or LTFR 2B or LTFR 2C or LTFR 50 or consent of instructor.

LTFR 31. Conversation Workshop II (1)
A one-credit, one-class-a-week course to develop and maintain oral skills at an advanced level by discussing current cultural issues of the Francophone world. Prerequisite: LTFR 2B or consent of instructor.

LTFR 50. Intermediate French III: Textual Analysis (4)
Third course in a three-quarter sequence designed to prepare students for upper-division French courses. The course is taught entirely in French and emphasizes the development of reading ability, listening comprehension, and conversational and writing skills. It also introduces the student to basic techniques of literary analysis. This course may not be repeated for credit. Prerequisites: LTFR 2B or its equivalent, score of 5 on French language AP exam or consent of instructor.

LTFR 60A. French for Reading Knowledge I (2)
A course designed for undergraduate and graduate students interested in developing reading skills only. No previous knowledge of French required. Texts are taken primarily from the humanities and social sciences.

LTFR 60B. French for Reading Knowledge II (2)
A continuation of the course for undergraduate and graduate students interested in developing reading skills only. No previous course work in French required, though recommended. Texts are taken primarily from the humanities and social sciences.
LITERATURES IN GERMAN

LOWER-DIVISION

Language and Literature Courses

LTGM 1A. Introductory German I (5)
A course for students new to the German language. The course includes grammar review and class discussion of reading and oral skills. Offered for credit or P/NP.

Prerequisites: upper-division standing or consent of instructor.

LTGM 1B. Introductory German II (5)
A course for students new to the German language. The course includes grammar review and class discussion of reading and oral skills. Offered for credit or P/NP.

Prerequisites: upper-division standing or consent of instructor.

LTGM 1C. Introductory German III (5)
A course for students new to the German language. The course includes grammar review and class discussion of reading and oral skills. Offered for credit or P/NP.

Prerequisites: upper-division standing or consent of instructor.

LTGM 2A. Intermediate German I (5)
A course designed for students who wish to improve their ability to speak and write German. Students will read and discuss a variety of texts and films, and complete the grammar review begun in 1A. 2C emphasizes speaking, writing, and critical thinking, and prepares students for upper-division course work in German.

Prerequisites: LTGM 2B or equivalent or score of 3 on AP German language exam or consent of instructor.

LTGM 2B. Intermediate German II (5)
A course designed for students who wish to improve their ability to speak and write German. Students will read and discuss a variety of texts and films, and complete the grammar review begun in 1A. 2C emphasizes speaking, writing, and critical thinking, and prepares students for upper-division course work in German.

Prerequisites: LTGM 2A or equivalent or score of 3 on AP German language exam or consent of instructor.

LTGM 2C. Intermediate German III (4)
A course designed for students who wish to improve their ability to speak and write German. Students will read and discuss a variety of texts and films, and complete the grammar review begun in 1A. 2C emphasizes speaking, writing, and critical thinking, and prepares students for upper-division course work in German.

Prerequisites: LTGM 2B or equivalent or score of 3 on AP German language exam or consent of instructor.

LTGM 60A. German for Reading Knowledge I (2)
A program for graduate and undergraduate students interested in developing reading skills only. No previous knowledge of German required. Texts are taken primarily from the humanities and social sciences, and include selections from publishers' catalogs, scholarly articles, and books.
LTGM 60B. German for Reading Knowledge II (2)
A continuation of the program for graduate and undergraduate students interested in developing reading skills only. No previous knowledge of German required, though recommended. Texts are taken primarily from the humanities and social sciences and include selections from publishers’ catalogs, scholarly articles, and books.

UPPER-DIVISION
Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTGM 100. German Studies I: Aesthetic Cultures (4)
This course offers an overview of German aesthetic culture in its various forms (literature, film, art, music, and architecture) and methods of analysis. Materials will explore the diversity of aesthetic production from the eighteenth century to the present.

LTGM 101. German Studies II: National Identities (4)
This course offers an overview of issues in contemporary and historical German cultures. How has national identity been constructed in the past? What does it mean to be a German in the new Europe? Materials include fiction, historical documents, films, and the Internet.

LTGM 123. Eighteenth-Century German Literature (4)
Major literary works as seen against the historical and intellectual background of the period. May be repeated for credit when topics vary. Prerequisite: upper division standing or consent of instructor.

LTGM 125. Nineteenth-Century German Literature (4)
Major literary works, authors, or movements of the nineteenth century. May be repeated for credit as topics vary.

LTGM 126. Twentieth-Century German Literature (4)
Major literary works, authors, or movements of the twentieth century. May be repeated for credit as topics vary.

LTGM 130. German Literary Prose (4)
The development of major forms and modes of German literary prose. May be repeated for credit as topics vary.

LTGM 131. German Poetry (4)
The development of the drama in Germany. May be repeated for credit as topics vary.

LTGM 132. German Dramatic Literature (4)
The development of the drama in Germany. May be repeated for credit as topics vary.

LTGM 133. Prose (4)
This course offers an overview of German aesthetic culture in its various forms (literature, film, art, music, and architecture) and methods of analysis. Materials will explore the diversity of aesthetic production from the eighteenth century to the present.

LTGM 134. Poetry (4)
The development of the drama in Germany. May be repeated for credit as topics vary.

LTGM 135. Drama (4)
The development of the drama in Germany. May be repeated for credit as topics vary.

LTGM 136. Essays and Letters (4)
The development of the drama in Germany. May be repeated for credit as topics vary.

Lower-Division
Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTGM 272. Genres, Trends, and Forms (4)
Seminars on literary genres, trends, movements, schools, and on aspects of literary forms and structures in any given era or over a certain period of time. May be repeated for credit as topics vary.

LTGM 295. M.A. Thesis (1)
Research for the master’s thesis. Opened for repeated registration up to eight units.

LTGM 296. Research Practicum (1-12)
Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous graduate seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit.

LTGM 297. Directed Studies: Reading Course (1-12)
This course may be designed according to an individual student’s needs when seminar offerings do not cover subjects, genres, or authors of interest. No paper required. The 297 courses do not count toward the seminar requirement. Repeatable for credit.

LTGM 298. Special Projects: Writing Course (1-12)
Similar to a 297, but a paper is required. Papers are usually on subjects not covered by seminar offerings. Up to two 298s may be applied toward the twelve-semester requirement of the doctoral program. Repeatable for credit.

LTGM 299. Dissertation (1-12)
Research for the dissertation. Offered for repeated registration. Open only to Ph.D. students who have advanced to candidacy.

GREEK LITERATURE
(See also listings under Classical Studies)
LTIT 135. Lyric Poetry (4)
Readings, in Greek, of the works of the ancient lyric poets. May be repeated for credit as topics vary. Prerequisites: LTIT 1,2,3, or equivalent.

LTIT 192. Senior Seminar in Literatures in Greek (1)
The Senior Seminar Program is designed to allow seniors to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisite: department stamp and/or consent of instructor.

LTIT 198. Directed Group Study (4)
Directed group study in areas of Greek literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and permission of department.

LTIT 199. Special Studies (2 or 4)
Tutorial; individual guided reading in areas of Greek literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and permission of department.

GRADUATE

Prerequisite: graduate standing or consent of instructor.

LTIT 297. Directed Studies (1-12)
Guided and supervised reading in a broad area of Greek literature. Offered for repeated registration.

GRADUATE

Prerequisite: upper-division standing and permission of department.

HEBREW LITERATURE

Please see Near Eastern Literatures under Literatures of the World.

LITERATURES IN ITALIAN

LOWER-DIVISION

(See Department of Linguistics for other course offerings in first-year Italian.)

LTIT 1A. The Language of Italian Culture I (4)
An introduction to the study of the Italian language. Exercises in grammar, syntax, conversation, and writing are generated from the texts of Italian plays (Goldoni, Pirandello, Campanile, Fo). No prior study of Italian required.

LTIT 1B. The Language of Italian Culture II (4)
A continued study of the elements of Italian conversation and grammar based on cultural texts: an opera libretto, a short mystery, short movies. Prerequisite: LTIT 1A or consent of instructor.

LTIT 1C. The Language of Italian Culture III (4)
Further study of Italian conversation and grammar based on cultural texts: a short novel, folk music lyrics. Preparation for the second-year Italian literature/language sequence. Prerequisite: LTIT 1B or consent of instructor.

LTIT 2A. Intermediate Italian I (5)
A second-year course in Italian literature and language. Conversation, composition, grammar review, and an introduction to literary and nonliterary texts. Prerequisite: LTIT 1C or LTIT 1C/1CX or its equivalent or consent of instructor.

LTIT 2B. Intermediate Italian II (5)
Continuation of second-year Italian language and literature. Reading, writing, conversation, grammar review, and an introduction to literary genres and contemporary Italian culture and society. Prerequisite: LTIT 2A or its equivalent or consent of instructor.

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTIT 100. Introduction to Literatures in Italian (4)
Reading and discussion of selections from representative authors. Review of grammar as needed. Prerequisite: LTIT 50 or equivalent or consent of instructor.

LTIT 110. Italian Literature (4)
Topics in Italian literature: regional, historic, thematic. Texts will be read in Italian. May be repeated for credit when topics vary. Prerequisite: LTIT 100.

LTIT 113. Love, War, and Conquest in the Italian Renaissance (4)
A critical reading of Italian Renaissance texts with special attention to those themes, forms, and ideological conflicts still operative in today's culture. May be repeated for credit when topics vary.

LTIT 115. Medieval Studies (4)
Studies in medieval culture and thought with focus on one of the "three crowns" of Italian literature: Dante, Boccaccio, or Petrarcha. May be repeated for credit when course content varies. Prerequisite: upper-division standing or consent of instructor.

LTIT 122. Studies in Modern Italian Culture (4)
Politics, literature, and cultural issues of twentieth-century Italy. May be repeated for credit when topics vary. Prerequisite: LTIT 50.

LTIT 137. Studies in Modern Italian Prose (4)
A study of the chief modern Italian prosatori, including D'Annunzio, Calvino, Pavese, Pasolini, etc.

LTIT 143. Major Italian Authors (4)
A study in depth of the works of a major Italian author. May be repeated for credit when topics vary. Prerequisite: LTIT 100 or permission of instructor.

LTIT 161. Advanced Stylistics and Conversation (4)
Analysis of Italian essays, journalism, literature. Intensive practice in writing and Italian conversation. Prerequisite: LTIT 100 or consent of instructor.

LTIT 192. Senior Seminar in Literatures in Italian (1)
The Senior Seminar Program is designed to allow seniors to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisite: department stamp and/or consent of instructor.

LTIT 196. Honors Thesis (4)
Senior thesis research and writing for students who have been accepted for the literature honors program and who have completed LTWL 191. Oral examination. Prerequisite: departmental approval.

LTIT 198. Directed Group Study (4)
Directed group study in areas of Italian literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and permission of department.

LTIT 199. Special Studies (2 or 4)
Tutorial; individual guided reading in areas of Italian literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and permission of department.

GRADUATE

Prerequisite: graduate standing or consent of instructor.

LTIT 297. Directed Studies (1-12)
Guided and supervised reading in a broad area of Italian literature. Offered for repeated registration.

KOREAN LITERATURE

LOWER-DIVISION

LTKO 1A. Beginning Korean: First Year I (5)
Students develop beginning-level skills in the Korean language, beginning with an introduction to the writing and sound system. The remainder of the course will focus on basic sentence structures and expressions. Prerequisite: placement test required.

LTKO 1B. Beginning Korean: First Year II (5)
Students develop beginning-level skills in the Korean language, beginning with an introduction to the writing and sound system. The remainder of the course will focus on basic sentence structures and expressions. Prerequisite: LTKO 1A.

LTKO 1C. Beginning Korean: First Year III (5)
Students develop beginning-level skills in the Korean language, beginning with an introduction to the writing and sound system. The remainder of the course will focus on basic sentence structures and expressions. Prerequisite: LTKO 1B.

Prerequisites: L TKO 1C or placement test for

Prerequisite: L TLA 1,2,3, or equivalent.

Prerequisite: department stamp and/or consent of instructor. Additional prerequisites may be specified below.

Many Russian literature courses are cross-listed below.

LOWER-DIVISION

LTLA 1. Beginning Latin (4)
Study of Latin, including grammar and reading.

LTLA 2. Intermediate Latin I (I) (4)
Study of Latin, including grammar and reading. Prerequisite: LTLA 1 or equivalent.

LTLA 3. Intermediate Latin II (II) (4)
Study of Latin, including grammar and reading. Prerequisite: LTLA 2 or equivalent.

LTLA 4. Intensive Elementary Latin (12)
Equivalent of LTLA 1, 2, and 3. Given in summer session only.

UPPER-DIVISION

LTLA 100. Introduction to Latin Literature (4)
Reading and discussion of selections from representative authors of the Augustan age. Review of grammar as needed. Prerequisite: LTLA 3 or equivalent.

LTLA 111. Pre-Augustan (4)
Readings in Latin, in the works of Roman writers of the pre-Augustan period. May be repeated for credit as topics vary. Prerequisites: LTLA 1,2,3, or equivalent.

LTLA 114. Vergil (4)
Readings from the works of Vergil. Prerequisites: LTLA 1,2,3, or equivalent.

LTLA 116. Silver Latin (4)
Readings in Latin, in the works of Roman writers of the Silver Age. May be repeated for credit as topics vary. Prerequisites: LTLA 1,2,3, or equivalent.

LTLA 131. Prose (4)
Readings, in Latin, of the work of Roman prose writers. May be repeated for credit as topics vary. Prerequisites: LTLA 1,2,3, or equivalent.

LTLA 132. Lyric and Elegiac Poetry (4)
Readings, in Latin, in the works of lyric and elegiac poets. May be repeated for credit as topics vary. Prerequisites: LTLA 1,2,3, or equivalent.

LTLA 133. Epic (4)
Readings in Latin, in the works of the Roman epic poets. May be repeated for credit as topics vary. Prerequisites: LTLA 1,2,3, or equivalent.

LTLA 134. History (4)
Readings in Latin, in the works of Roman historians. May be repeated for credit as topics vary. Prerequisites: LTLA 1,2,3, or equivalent.

LTLA 135. Drama (4)
Readings, in Latin, in the works of Roman dramatists. Prerequisite: LTLA 3 or equivalent; LTLA 100 recommended. Repeatable for credit when topics vary.

LTLA 192. Senior Seminar in Literatures in Latin (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisite: department stamp and/or consent of instructor.

LTLA 199. Special Studies (2 or 4)
Treatment of a special topic in Latin literature. Offered for repeated registration.

RUSSIAN LITERATURE

LOWER-DIVISION

LTRU 1A-B-C. First-Year Russian (5-5-5)
First-year Russian, with attention to reading, writing, and speaking.

LTRU 2A-B-C. Second-Year Russian (5-5-5)
Second-year Russian grammar, with attention to reading, writing, and speaking. Prerequisite: LTRU 33/53, LTRU 1A-B-C or equivalent.

UPPER-DIVISION

LTRU 104A-B-C. Advanced Practicum in Russian (4-4-4)
Developement of advanced skills in reading, writing, and conversation. Course based on written and oral texts of various genres and styles. Individualized program to meet specific student needs. Prerequisite for 104A: LTRU 2C or equivalent.

LTRU 110A-B-C. Survey of Russian and Soviet Literature in Translation, 1800–Present (4-4-4)
A study of literary works from Pushkin to the present. LTRU 110A is not a prerequisite for LTRU 110B, and LTRU 110B is not a prerequisite for LTRU 110C.

110A. 1800–1860
110B. 1860–1917
110C. 1917–present
LTRU 123, Single Author in Russian Literature (4)
Study of the works of a single Russian author. May be repeated for credit two times. Prerequisite: LTRU 101C, its equivalent, or permission of instructor.

LTRU 150, Russian Culture (4)
An introduction to Russia's past and present through the cross-disciplinary study of literature, the visual and performing arts, social and political thought, civic rituals, popular entertainments, values and practices from 1825 to the present. Prerequisite: upper-division standing.

LTRU 150XL, Russian Culture: The Modern Period—
Foreign Language Discussion Section (1)
Students will exercise advanced Russian language skills to read and discuss materials in LTRU 150. This section is taught by the course professor, has no final examination, and does not affect the student's grade in the parent course. Prerequisites: co-registration in LTRU 150; four quarters of Russian language study or the equivalent.

LTRU 192, Senior Seminar in Literatures in Russian (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: department stamp and/or consent of instructor.

LTRU 198, Directed Group Study (4)
Directed group study in areas of Russian literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only). Prerequisites: upper-division standing and permission of department.

LTRU 199, Special Studies (2 or 4)
Tutorial; individual guided reading in areas of Russian literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only). Prerequisites: upper-division standing and permission of department.

LITERATURES IN SPANISH

LOWER-DIVISION

Language and Literature Courses

Students entering the Spanish language/literature program must have completed one year of college-level Spanish (Linguistics/Spanish 1C/1CX) or its equivalent at another institution or have the consent of the instructor. Ordinarily, students take LTSP 2A, 2B, 2C, and one or more courses from the 50 sequence. Native speakers are encouraged to take LTSP 2D.

LTSP 2A, Intermediate Spanish I: Foundations (5)
Course is taught in Spanish, emphasizing the development of reading ability, listening comprehension, and writing skills. It includes grammar review, weekly compositions, and class discussions. Successful completion of LTSP 2A satisfies the requirement for language proficiency in Revelle College. Prerequisites: completion of LTSP 1C/1CX, 1D/DX, or the equivalent score of 3 on AP Spanish language exam, or instructor consent.

LTSP 2B, Intermediate Spanish II: Readings and Composition (5)
Review of major points of grammar with emphasis on critical reading and interpretation of Spanish texts through class discussions, vocabulary development, and written compositions. It is a continuation of LTSP 2A. Prerequisites: LTSP 2A or score of 4 on AP Spanish language or 3 on AP Spanish literature exams or consent of instructor.

LTSP 2C, Intermediate Spanish III: Cultural Topics and Composition (4)
Continuation of LTSP 2B, with special emphasis in writing and translation. It includes discussion of cultural topics as well as grammar review and composition, further developing the ability to read articles, essays, and longer pieces of fiction/nonfictional texts. Prerequisites: LTSP 2B or equivalent or score of 5 on AP Spanish language or 4 on AP Spanish literature exams or consent of instructor.

LTSP 2D, Intermediate/Advanced Spanish: Spanish for Bilingual Speakers (4)
Spanish for native speakers. Designed for bilingual students seeking to become biliterate. Reading and writing skills stressed with special emphasis on improvement of written expression and problems of grammar and orthography. Prepares native speakers with little or no formal training in Spanish for more advanced courses. Prerequisite: native speaking ability and/or recommendation of instructor.

LTSP 2E, Advanced Readings and Composition for Bilingual Speakers (4)
Second course in a sequence designed for bilingual students seeking to become bi-literate. Special emphasis given to improvement of written expression, grammar, and orthography. Prepares bilingual students with little or no formal training in Spanish for more advanced course work. Prerequisites: LTSP 2D native Spanish speaking ability and/or recommendation of instructor.

LTSP 21, Conversation Workshop I (1)
Allows students with a basic grounding in Spanish to discuss a variety of topics related to literary and cultural issues. Vocabulary development, use of idiomatic expression, and advancement of oral proficiency in Spanish. May be taken as an adjunct to lower-division LTSP courses. Recommended for students planning to study abroad. Prerequisites: LISP 1C/1CX or LTSP 1D/DX or LTSP 2A or 2B or 2C or 2D or 2E or 50A or 50B or 50C.

LTSP 31, Conversation Workshop II (1)
Enhances intermediate/advanced students' command of spoken Spanish through debates on literary and cultural issues and the formulation and expression of thoughts in Spanish. May be taken as an adjunct to lower- and upper-division LTSP courses. Recommended for students planning to study abroad. Prerequisites: LISP 1C/1CX or LTSP 1D/DX or LTSP 2A or 2B or 2C or 2D or 2E or 50A or 50B or 50C.

LTSP 41, Conversation and Orthography Workshop (1)
The workshop format of this course allows students to attain a stronger command of skills in matters of Spanish orthography, spelling, punctuation, and accent rules. May be taken as an adjunct to lower- or upper-division LTSP courses. Recommended for students planning to study abroad. Prerequisites: LISP 1C/1CX or LTSP 1D/DX or LTSP 2A or 2B or 2C or 2D or 2E or 50A or 50B or 50C.

UPPER-DIVISION

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

Note: As of fall 1992, students must have taken at least one (but preferably two) course(s) in the LTSP 50A-B-C sequence with a grade of C– or better before enrolling in upper-division courses. Without fulfillment of this prerequisite, students must obtain the consent of the instructor of the requested course.

LTSP 100, Major Works of the Middle Ages (4)
Major Spanish literary works of the Middle Ages and Renaissance as seen against the historical and intellectual background of this period. Prerequisites: upper-division standing, LTSP 50A, 50B, or 50C, or consent of instructor.

LTSP 107, Literature of the Fifteenth Century (4)
Survey of cultural texts including courtly romances, political poetry, Columbus's letters, and the tragicomedies La Celestina. Issues of gender, blood purity, social estates, and colonialism will be discussed. Repeatable for credit when topics vary.

LTSP 115, Early Modern Spanish Cultural Production (4)
Study of writing and/or spectacle in Spain in the sixteenth and seventeenth centuries. Close reading of texts and analysis of ideological and historical context. Topics may include the comedia (public theatre), religious drama, poetry, or early narrative forms such as the picaresque novel. Repeatable for credit as topics vary. Prerequisite: LTSP 50A.

LTSP 50A, Readings in Peninsular Literature (4)
An introduction to Peninsular literature, this course offers a selection of authors and genres, introducing students to literary analysis through reading extensive texts in Spanish. Two or more quarters of LTSP 50 are suggested before proceeding to upper-division courses. Prerequisite: LTSP 2C or 2D or 2E or the equivalent.

LTSP 50B, Readings in Latin American Literature (4)
An introduction to Latin American literature, this course offers a selection of authors and genres, introducing students to literary analysis through reading extensive texts in Spanish. Two or more quarters of LTSP 50 are suggested before proceeding to upper-division courses. Prerequisite: LTSP 2C or 2D or 2E or the equivalent.

LTSP 50C, Readings in Latin American Topics (4)
An introduction to major topics in Latin American literature, this course focuses on the literature of a particular region, period, or movement. Introduces students to literary analysis through reading extensive texts in Spanish. Prerequisite: LTSP 2C or 2D or 2E or consent of instructor.

LTSP 87, Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

Note: As of fall 1992, students must have taken at least one (but preferably two) course(s) in the LTSP 50A-B-C sequence with a grade of C– or better before enrolling in upper-division courses. Without fulfillment of this prerequisite, students must obtain the consent of the instructor of the requested course.

LTSP 100, Major Works of the Middle Ages (4)
Major Spanish literary works of the Middle Ages and Renaissance as seen against the historical and intellectual background of this period. Prerequisites: upper-division standing, LTSP 50A, 50B, or 50C, or consent of instructor.

LTSP 107, Literature of the Fifteenth Century (4)
Survey of cultural texts including courtly romances, political poetry, Columbus's letters, and the tragicomedia La Celestina. Issues of gender, blood purity, social estates, and colonialism will be discussed. Repeatable for credit when topics vary.

LTSP 115, Early Modern Spanish Cultural Production (4)
Study of writing and/or spectacle in Spain in the sixteenth and seventeenth centuries. Close reading of texts and analysis of ideological and historical context. Topics may include the comedia (public theatre), religious drama, poetry, or early narrative forms such as the picaresque novel. Repeatable for credit as topics vary. Prerequisite: LTSP 50A.
Prerequisites: L TSP 50A and either 50B or 50C.

Prerequisite: completion of L TSP 50B or 50C.

Prerequisite: upper-division standing or consent of instructor.

Prerequisite: L TSP 50A and either 50B or 50C.

Prerequisite: L TSP 50A and either 50B or 50C.

Prerequisite: upper-division standing or consent of instructor.

Prerequisite: L TSP 50B or 50C.

Prerequisite: L TSP 50A or lower-division standing.

Prerequisite: L TSP 50A or L TSP 50B or 50C.

Prerequisite: upper-division standing, L TSP 50A or 50B or 50C.

Prerequisite: L TSP 50B or 50C.
LITSP 170. Contemporary Theories of Cultural Production (4)
Selected readings in recent cultural and literary theory. Students will be exposed to a variety of methodologies drawn from the Latin American, European, and U.S. traditions. Final project consists of a practical "application" of a method or methods to a specific cultural object. This course is recommended for students who plan to pursue graduate work in literature. Prerequisite: LITSP 50A or 50B or 50C.

LITSP 171. Studies in Literature and Society (4)
Focus on the interaction between literary expression and the study of society, covering issues such as the sociology of literature, the historical novel, literature and social change, the writer as the intellectual. May be repeated for credit as topics vary.

LITSP 172. Indigenista Themes in Latin American Literature (4)
Study of the literary modes by which nineteenth and twentieth century authors have interpreted the themes of indigenous survival and resistance in Latin America, primarily in Mexico and the Andean region. Repeatable for credit as topics vary. Prerequisite: LITSP 50A or 50B or 50C.

LITSP 173. Problems in Spanish and Latin American Literary History (4)
Study of the issues involved in understanding the development process of literary expression; the problem of genre; the relation of literature to social institutions; the function of literary influence and tradition; the relation of popular and print cultures. May be repeated for credit as topics vary. Prerequisite: LITSP 50A or 50B or 50C.

LITSP 174. Topics in Culture and Politics (4)
Study of the relationships between cultural production (literature, film, popular cultures), social change, and political conflict, covering topics such as colonialism, imperialism, modernization, social movements, dictatorship, revolution. Repeatable for credit as topics vary. Prerequisite: LITSP 50A or 50B or 50C.

LITSP 175. Gender, Sexuality, and Culture (4)
This course will examine issues of gender, sexuality, and culture in Spanish, Latin American, and/or Chicana/o literatures. Repeatable for credit as topics, texts, and historical periods vary. Prerequisite: LITSP 50A or 50B or 50C.

LITSP 176. Literature and Nation (4)
Study of literature as a means through which the nation has been imagined and as a site of debates over national identity and citizenship. Course materials may focus on Spain and/or Latin America. Repeatable for credit as topics vary. Prerequisite: LITSP 50A or 50B or 50C.

LITSP 177. Literary and Historical Migrations (4)
This course will focus on a variety of Latin American and/or Spanish intra- and inter-national migrations throughout the world and on the literature produced by these exiles or immigrants. Repeatable for credit as topics, texts, and historical periods vary. Prerequisite: LITSP 50A or 50B or 50C.

LITSP 178. Latin American Social Movements (4)
Course will examine the historical context and cultural production associated with social movements in Latin America. Repeatable for credit as regions, constituencies, and historical periods vary. Prerequisites: upper-division standing, LITSP 50A or 50B or 50C, or consent of instructor.

LITSP 192. Senior Seminar in Literatures in Spanish (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisite: department stamp and/or consent of instructor.

LITSP 196. Honors Thesis (4)
Senior thesis research and writing for students who have been accepted for the Literature Honors Program and who have completed LTWL 191. Oral Exam. Prerequisite: departmental approval.

LITSP 198. Directed Group Study in Spanish Literature (4)
Research seminars and research, under the direction of a member of the staff. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and permission of department.

LITSP 199. Special Studies (2 or 4)
Tutorial: individual guided reading in areas of Spanish literature not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and permission of department.

GRADUATE
Prerequisite: graduate standing or consent of instructor.

LITSP 224. Golden Age Studies (4)
Consideration of one or more major figures, texts, trends, or problems in Spanish Golden Age studies. May be repeated for credit as topics vary. Prerequisite: LITSP 50A or 50B or 50C.

LITSP 252. Topics in Modern Spanish Literature and Culture (4)
Major trends and figures considered in the context of late nineteenth- and twentieth-century Spanish culture. May be repeated for credit as topics vary.

LITSP 258. Spanish American Prose (4)
Consideration of one or more major figures, texts, trends, or problems in Spanish American prose. May be repeated for credit as topics vary.

LITSP 272. Literature and Society Studies (4)
Special topics in critical praxis involving social and economic historical perspectives. May be repeated for credit as topics vary. Prerequisite: upper-division standing and permission of department.

LITSP 275. Latin American(ist) Literary and Cultural Theories Since the 1960s (4)
A historical survey of late twentieth-century literary and cultural criticism in and about Latin America, focusing on questions of political economy and periodization, cultural heterogeneity and transculturation, gender and sexuality, and the relationships between literary, popular, and mass cultures. Prerequisite: graduate standing.

LITSP 295. M.A. Thesis (1-8)
Research for the master's thesis. Open for repeated registration up to eight units. (S/U grades only.)

LITSP 296. Research Practicum (1-12)
Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous graduate seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit.

LITSP 297. Directed Studies: Reading Course (1-12)
This course may be designed according to an individual student's needs when seminar offerings do not cover subjects, genres, or authors of interest. No paper required. The 297 courses do not count toward the seminar requirement. Repeatable for credit.

LITSP 298. Special Projects: Writing Course (1-12)
Similar to a 297, but a paper is required. Papers are usually on subjects not covered by seminar offerings. Up to two 298s may be applied toward the twelve-semester requirement of the doctoral program. Repeatable for credit.

LITSP 299. Dissertation (1-12)
Research for the dissertation. Offered for repeated registration. Open only to Ph.D. students who have advanced to candidacy.

LITERATURE/THEORY
Courses in theory may apply to various literature majors. Please consult your advisor.

Additional theory courses are offered in the various department sections. See quarterly course descriptions in the Department of Literature office, first floor LIT building.

UPPER-DIVISION

LITTH 110. History of Criticism (4)
A critical and interpretive review of some of the major documents in criticism from the classical period to the present time.

LITTH 115. Introduction to Critical Theory (4)
(Formerly LITTH 100) A critical review of major contemporary theories of the nature of literature, its sociocultural function, and appropriate modes of evaluation.

LITTH 150. Topics in Critical Theory (4)
Selected topics in critical theory such as: a particular mode of literary theory; comparative study of theories of text and image; a problem or theme in the history of theory; issues involved in the relationship between fiction and other discourses (science, law, history, philosophy, music). Repeatable for credit when topics vary. Prerequisite: upper-division standing or consent of instructor.

LITTH 198. Directed Group Study (4)
Directed group study, under the guidance of a member of the faculty, in an area not covered in courses currently offered by the department. (P/NP only)

LITTH 199. Special Studies (2 or 4)
Individual reading in an area not covered in courses currently offered by the department. (P/NP only).
GRADUATE
Prerequisite: graduate standing or consent of instructor.

LTTH 200A. Text/Culture/Critical Practice (4)
An introduction to theories and practices of literary and cultural criticism. Topics may vary, but emphasis will be on terminology, methods of readings, modes of interdisciplinary analysis and argumentation, recent debates on questions of theory, history, textual scholarship, etc. Prerequisite: registered doctoral student in literature.

LTTH 200B. Problems in Contemporary Literary Theory (4)
The focus is feminist literary/cultural theories and their relations with major contemporary theoretical discourses (e.g., psychoanalysis, poststructuralism, and various forms of historicism). Prerequisite: registered doctoral student in literature.

LTTH 200C. Cultural Perspectives and Cultural Criticism (4)
Literary and cultural relations between the First and Third Worlds, colonialism and neo-colonialism, orality and literacy, construction of ethnicity, formation of canon, and popular culture and the market. Prerequisite: registered doctoral student in literature.

LTTH 201. Contemporary Theoretical Debates and Critical Discourses (4)
An introduction to a wide range of theoretical and methodological issues, schools of thought, and interpretative styles in contemporary literary studies. Required of all M.A. students in the Department of Literature, normally in their first quarter in the program. Prerequisites: admission to the M.A. program in the Department of Literature or consent of instructor; graduate standing.

LTTH 202. Theories of Literary Criticism (4)
Close study of any of the several bodies of literary theory currently applied to literary criticism: psychoanalytic, Marxist, historicist, semiotic, feminist, hermeneutic, reader-response, among others. May be repeated for credit when topics vary.

LTTH 296. Research Practicum (1-12)
Research project to be developed by a small group of students under the continued direction of individual faculty members. Primarily a continuation of a previous graduate seminar. The 296 courses do not count toward the seminar requirement. Repeatable for credit.

LTTH 297. Directed Studies: Reading Course (1-12)
This course may be designed according to an individual student’s needs when seminar offerings do not cover subjects, genres, or authors of interest. No paper required. The 297 courses do not count toward the seminar requirement. Repeatable for credit.

LTTH 298. Special Projects: Writing Course (1-12)
Similar to a 297, but a paper is required. Papers are usually on subjects not covered by seminar offerings. Up to two 298s may be applied toward the twelve-semester requirement of the doctoral program. Repeatable for credit.

LTTH 299. Dissertation (1-12)
Research toward the dissertation. Offered for repeated registration. Open only to Ph.D. students who have advanced to candidacy.

LITERATURES OF THE WORLD

AFRICAN LITERATURES
Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTTH 110. African Oral Literature (4)

LTTH 120. Literature and Film of Modern Africa (4)
This course traces the rise of modern literature in traditional African societies disrupted by the colonial and neocolonial experience. Contemporary films by African and Western artists will provide an additional insight into the complex social self-images of the continent.

LITERATURES OF THE AMERICAS
Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

Foreign language discussion sections (XLS) may be offered in conjunction with courses taught in translation. Students enrolled in these joint courses may use them to fulfill major, minor, and secondary literature requirements. Please see the undergraduate office for further information.

LTTH 87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

LTTH 100. Latino/a Cultures in the United States (4)
An introductory historical and cultural overview of the various Latino/a populations in the U.S. with a study of representative cultural texts.

LTTH 101. Early Latino/a-Chicano/a Cultures: 1848–1960 (4)
A cross-disciplinary study of nineteenth- and early twentieth-century Latino/a-Chicano/a literature, the visual and performing arts, and other cultural practices. May be repeated for credit as topics vary.

LTTH 102. Contemporary Chican/o/a-Latino/a Cultural Production: 1960 to Present (4)
A cross-disciplinary study of late twentieth-century Latin/o-Chicano/a literature, the visual and performing arts, and other cultural practices. May be repeated for credit as topics vary.

LTTH 105. Gender and Sexuality in Latino/a Cultural Production (4)
A study of the construction of differences in gender and sexual orientation in Latino/a-Chicano/a literature and other cultural production with an emphasis on examining various theoretical/ideological perspectives on these issues. May be repeated for credit as topics vary.

LTTH 106. Modern Chicana and Mexican Women Writings (4)
A study of themes and issues in the writings of Chicana and Mexican women with a view toward establishing connections while recognizing national and cultural differences between the two. May be repeated for credit as topics vary.

LTTH 107. Comparative Latino/a and U.S. Ethnic Cultures (4)
A comparative and intersecting study of Latino/a and other U.S. ethnic cultures. Literary texts will be viewed as "windows" into real time and spaces where cultures meet and mix. May be repeated for credit as topics vary.

LTTH 108. Chicano/a and Latino/a Cultures: Intellectual and Political Traditions (4)
The course will center on Chicano/a-Latino/a writers and movements of literary, intellectual, cultural, or political significance. Texts may be read in the original language or in English. May be repeated for credit as topics vary.

LTTH 109. Cultural Production of the Latino/a Diasporas (4)
A study of the cultural production of Latino/a immigrant groups with a focus on the literary representation of homeland, national culture, and the forces that led to migration. May be repeated for credit as topics vary.

LTTH 110. Latin American Literature in Translation (4)
Reading of representative works in Latin American literature with a view to literary analysis (form, theme, meaning), the developmental processes of the literature, and the many contexts: historical, social, cultural. Texts may be read in English. May be repeated for credit as topics vary.

LTTH 111. Comparative Caribbean Discourse (4)
Comparative survey of Caribbean literatures from the Spanish, French, English, and Dutch Caribbean. Literary texts trace historical paradigms including the development of plantation slavery, emancipation, the quest for nationhood, migration, and transnational identities. Films and music may complement discussion. Prerequisite: upper-division standing.

LTTH 120. Mexican Literature in Translation (4)
Study of popular novels, movements, traditions, key authors, or major trends in modern Mexican literature. Texts may be read in English. May be repeated for credit as topics vary.

LTTH 130. Reading North by South (4)
An analysis of the readings and appropriations of European and U.S. traditions by Latin American, Caribbean, and Filipino writers. The course addresses philosophies, ideologies, and cultural movements and explores the specific literary strategies used by authors in constructing their particular "cosmovision".

LTTH 132. The Dark Side of Enlightenment in Spain, the Americas, and the Philippines (4)
This course deals with the cultural production of Spain, the Philippines, Latin America, and the U.S. to examine views (both optimistic and pessimistic) on the Enlightenment as a mode of conducting scientific investigation of nature, constituting forms of government, and imagining the future. May be repeated for credit as topics vary.
LTAM 140. Topics in Culture and Politics (4)
Study of the relationships between cultural production (literature, film, popular culture), social change, and political conflict, covering topics such as colonialism, imperialism, modernization, social movements, dictatorship, and revolution. Repeatable for credit when topics vary.

LTAM 192. Senior Seminar in Literatures of the Americas (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisite: department stamp and/or consent of instructor.

EAST ASIAN LITERATURES

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

Foreign language discussion sections (XLS) may be offered in conjunction with courses taught in translation. Students enrolled in these joint courses may use them to fulfill major, minor, and secondary literature requirements. Please see the undergraduate office for further information.

LTEA 100A. Classical Chinese Poetry in Translation (4)
A survey of different genres of traditional Chinese poetry from various periods.

LTEA 100B. Modern Chinese Poetry in Translation (4)
A survey of Chinese poetry written in the vernacular from 1918 to 1949.

LTEA 110A. Classical Chinese Fiction in Translation (4)
The course will focus on a few representative masterpieces of Chinese literature in its classical age, with emphasis on the formal conventions and the social or intellectual presuppositions that are indispensable to their understanding. May be repeated for credit when topics vary.

LTEA 110B. Modern Chinese Fiction in Translation (4)
A survey of representative works of the modern period from 1919 to 1949. May be repeated for credit when topics vary.

LTEA 110C. Contemporary Chinese Fiction in Translation (4)
An introductory survey of representative texts produced after 1949, with particular emphasis on the social, cultural, and political changes. May be repeated for credit when topics vary.

LTEA 120A. Chinese Films (4)
A survey of representative films from different periods of Chinese cinematic development. Priority may be given to Chinese Studies majors and Literature majors. Repeatable for credit when topics vary.

LITEA 120B. Taiwan Films (4)
A survey of "New Taiwan Cinema" of the Eighties and Nineties. Priority may be given to Chinese Studies majors and Literature majors. Repeatable for credit when topics vary.

LITEA 120C. Hong Kong Films (4)
An examination of representative works of different film genres from Hong Kong. Priority may be given to Chinese Studies majors and Literature majors. Repeatable for credit when topics vary.

LITEA 120D. Filming Chinese Literature (4)
An investigation of various adaptations of both traditional and modern literary texts from the three main Chinese communities (China, Taiwan, and Hong Kong). Priority may be given to Chinese Studies majors and Literature majors. Repeatable for credit when topics vary.

LITEA 132. Later Japanese Literature in Translation (4)
An introduction to later Japanese (koko) literature in translation. Will focus on several "modern" works, placing their form in the historical context. No knowledge of Japanese required. Repeatable for credit when topics vary.

LITEA 136. Special Topics in Japanese Literature (4)
The course will focus on important problematics of literary studies as they relate to Japan (e.g., "feminism," "modernity," "literary mode of production," "Orientalism and nativism"). No knowledge of Japanese required. May be repeated for credit as topics vary.

LITEA 138. Japanese Films (4)
An introduction to Japanese films. Attention given to representative Japanese directors (e.g., Ozu), form (e.g., anime), genre (e.g., feminist revenge horror), or historical context in which films are produced. Priority may be given to Japanese studies majors and literature majors.

LITEA 140. Modern Korean Literature in Translation from Colonial Period (4)
A survey of modern Korean prose fiction and poetry from the colonial period. Exploration of major issues such as Japanese colonization, rise of left-wing and right-wing nationalism, construction of national culture, and relations between tradition and modernity.

LITEA 141. Modern Korean Literature from 1945 to the Present (4)
A survey of modern Korean prose fiction and poetry from 1945 to the 1990s. Examination of literary representations of national division, the Korean War, accelerated industrialization, authoritarian rule, and the labor/agrarian movements.

LITEA 142. Korean Film, Literature, and Popular Culture (4)
A study of modern Korean society and its major historical issues as represented in film, literature, and other popular cultural media such as TV and music video. We will explore additional issues such as cinematic adaptations of prose fiction, fluid distinctions between popular literature and "serious" literature, and the role of mass media under authoritarian rule.

LITEA 143. Gender and Sexuality in Korean Literature and Culture (4)
A study of constructions of gender and sexuality in pre-modern and modern Korean societies. We will discuss literary works as well as historical and ethnographic works on gender relations, representations of masculinity and femininity, and changing roles of men and women in work and family.

LITEA 144. Korean American Literature and Other Literatures of Korean Diaspora (4)
An examination of the experiences of the Korean diaspora linked to the historical contexts of modern Korea, Japan, the United States, and other countries. We will focus on literature both about Korea and the Korean immigrant experience written in the United States but will also read from and about other Korean diasporic contexts.

LITEA 145. Literature, History, and Colonial and Postcolonial Modernity in Korea (4)
Comparative examination of historiographical and literary representations of major issues such as nationalism, industrialization, class division, gender, and sexuality. Literary re-writings of modern Korean history and recent revisionist historiographical works and trends. Prerequisite: upper-division standing.

LITEA 151. Readings in Tagalog Literature and Culture (1)
Course will concentrate on selections of literature, history, and cultural texts (painting, drama, religious artifacts) of the 1896 Philippine revolution and the succeeding U.S. takeover of the Philippines. Intermediate fluency in speaking, reading, and writing Tagalog. Repeatable for credit when topics vary.

LITEA 198. Directed Group Study (4)
Research seminars and research, under the direction of a faculty member.

LITEA 199. Special Studies (2 or 4)
Tutorial; individual guided reading in areas not normally covered in courses. (P/NP grades only.)

EUROPEAN AND EURASIAN LITERATURES

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

Foreign language discussion sections (XLS) may be offered in conjunction with courses taught in translation. Students enrolled in these joint courses may use them to fulfill major, minor, and secondary literature requirements. Please see the undergraduate office for further information.

LTEU 87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen. No prerequisites.

LTEU 105. Medieval Studies (4)
Studies in medieval culture and thought with focus on one of the “three crowns” of Italian literature: Dante, Boccaccio, or Petrarcha. May be repeated for credit when course content varies.

LTEU 110. European Romanticism (4)
Attention given to historical and cultural contexts. Topics to be considered include the concept of nature, the reaction to science, the role of the imagination. May be repeated for credit as topics vary.
LTEU 130. German Literature in Translation (4)
One or more aspects of German literature, such as major authors, the contemporary novel, nineteenth-century poetry, German expressionism. Texts may be read in English or the original language. May be repeated for credit as topics vary.

LTEU 137. Seminars in German Culture (4)
These seminars are devoted to a variety of special topics, including the works of single authors, genre studies, problems in literary history, relations between literature and the history of ideas, literary criticism, literature and society, and the like.

LTEU 138. Single Author in German Literature (4)
A study of literary works by a single German author. All readings will be in English, although when appropriate, a separate German language discussion section will be offered for students interested in reading and discussing the texts in German. Prerequisite: upper-division standing.

LTEU 139. Marx/Nietzsche/Freud (4)
Intensive examination of the major ideas of these three writers, with special attention to the literary styles and problematic aspects of their work. Opened offered with an optional LTEU 139XL section, for students who are prepared to work and prefer to work in the original German.

LTEU 140. Italian Literature in Translation (4)
One or more periods and authors in Italian literature. Texts will be read in English. May be repeated for credit as topics vary. Prerequisite: upper-division standing.

LTEU 145. Studies in Modern Italian Poetry (4)
Study of the chief modern Italian poets, including Montale, Ungaretti, and Quasimodo, with attention to long, poetic form and contemporary Italian culture. Prerequisite: upper-division standing.

LTEU 146. Studies in Modern Italian Prose (4)
A study of the chief modern Italian prosatori including D’Annunzio, Calvino, Pavese, Pasolini, etc. Repeatable for credit. (Conjoined with LITIT 137.)

LTEU 147. Women in Italy (4)
A study of historical, political, and literary texts regarding women and feminism in Italian society.

LTEU 150A-B-C. Survey of Russian and Soviet Literature in Translation, 1800 to the Present (4)
A study of literary works from Pushkin to the present.
150A. 1800–1860
150B. 1860–1917
150C. 1917–present

LTEU 154. Russian Culture (4)
An introduction to Russia’s past and present through the cross-disciplinary study of literature, the visual and performing arts, social and political thought, civic rituals, popular entertainments, values and practices from 1825 to the present. Prerequisite: upper-division standing.

LTEU 158. Single Author in Russian Literature in Translation (4)
A study of literary works by a single Russian author. All readings will be in English. May be repeated for credit when authors vary.

LTEU 192. Senior Seminar in European and Eurasian Literatures (4)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisite: department stamp and/or consent of instructor.

NEAR EASTERN LITERATURES
Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

Foreign language discussion sections (XLS) may be offered in conjunction with courses taught in translation. Students enrolled in these joint courses may use them to fulfill major, minor, and secondary literature requirements. Please see the undergraduate office for further information.

LTNE 100. The Bible and Western Literature (4)
Biblical and related texts that influenced the great writers of the Middle Ages and Renaissance, including sections from the Jewish and Christian scriptures. Prerequisite: upper-division standing or consent of instructor.

LTNE 101. The Bible: The Narrative Books (4)
Examination of the Biblical accounts in their ancient Near Eastern context. Emphasis will be placed on literary- and form-criticism and textual analysis. Attention to related literature and to archaeological data; consideration of theological issues. Repeatable for credit as topics vary.

LTNE 102. The Bible: The Prophetic Books (4)
The prophetic books of the Bible in their historical contexts. The relationship between the prophetic and narrative books. Literary/critical analysis, theological issues, reference to archaeological data. Repeatable for credit as topics vary.

LITERATURES OF THE WORLD
In both lower- and upper-division world literature courses, texts may be read in English translation when necessary, and lectures and discussions are conducted in English.

Foreign language discussion sections (XLS) may be offered in conjunction with courses taught in translation. Students enrolled in these joint courses may use them to fulfill major, minor, and secondary literature requirements. Please see the undergraduate office for further information.

LOWER-DIVISION

LTWL 4A-B-C-D-F-M. Film and Fiction in Twentieth-Century Societies (4)
A study of modern culture and of the way it is expressed and understood in novels, stories, and films. The sequence aims at an understanding of the relationship between the narrative arts and society in the twentieth century, with the individual quarters treating fiction and film of the following language groups: 4A French, 4B German, 4C Asian, 4D Italian, 4M multiple national literatures and film, 4F Spanish.

UPPER-DIVISION
Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

LTWL 100. Mythology (4)
A study of various bodies of myth: their content, form, and meaning. May be repeated for credit as topics vary.

LTWL 101. What Socrates Knew (4)
Socratic perspectives on the nature of life and death, virtue and happiness, love and the gods.

LTWL 102. Women in Antiquity (4)
Selected topics in classical culture, including women and myth, women in Greek and Roman society, and the representation of women in classical literature. May be repeated for credit when topics vary.

LTWL 106. The Classical Tradition (4)
Greek and Roman literature in translation. May be repeated for credit as topics vary.

LTWL 107. Prose Fiction (4)
Aspects of prose fiction. Not confined to a single national literature. Texts may be read in English. May be repeated for credit as topics vary.
LTWL 108. Words and Their Vicissitudes (4)
The history of English and its forebears, focusing on the quirky nature of semantic change in order to equip students with a basis for evaluating metaphor, metonymy, and other forms of verbal deviance. Prerequisite: upper-division standing.

LTWL 110B. Folk and Fairy Tales (4)
A study of folk and fairy tales from various cultures, from the point of view of literary form, psychological meaning, and cultural function. May be repeated for credit as topics vary.

LTWL 111. Medieval Studies (4)
A lecture/discussion course designed to explore a variety of topics in medieval literatures and cultures. Topics may include a genre or combination of genres (e.g., drama, romance, lyric, allegory), or a central theme (e.g., the Crusades or courtly love).

LTWL 114. Children’s Literature (4)
A study of literature written for children in various cultures and periods. May be repeated for credit as topics vary.

LTWL 115. Contemporary Literature (4)
A study of novels and authors of the present and recent times. May be repeated for credit as topics vary.

LTWL 116. Adolescent Literature (4)
A study of fiction written for the young adult in various cultures and periods. Consideration will be given to the young adult hero in fiction. May be repeated for credit as topics vary.

LTWL 120. Popular Literature and Culture (4)
A study of various popular forms—such as pop music, cult books, film, fashion, magazines, graphic arts—within a broader cultural context. Focus may be on a particular genre (e.g., best sellers) or era (e.g., the sixties). May be repeated for credit when topics vary.

LTWL 122. Fantasy (4)
Reading and analysis of various works that fall into several categories of the fantastic—e.g., heroic, gothic, irrational, postmodern—with particular attention to the cultural uses of myth, folklore, and fantasy, and to the psychological and structuralist theories of same. May be repeated for credit when topics vary.

LTWL 124. Science Fiction (4)
An exploration of the genre—past and present, in literature and the visual media—as a cultural response to scientific and technological change, as modern mythmaking, and as an enterprise serving a substantial fan subculture. May be repeated for credit when topics vary.

LTWL 128. Introduction to Semiotics and Applications (4)
Semiotics, basically a theory of signification, describes the models and conceptual constructs through which meaning is grasped and produced. Background in the history of semiotics and its dominant models. Prerequisite: upper-division standing.

LTWL 129. Wisdom: The Literature of Authority (4)
What is wisdom? Does wisdom refer to a specific type of discourse; a literary genre; a specific content that holds true transfactually and transtemporally? This class will consider these questions by reading literature from diverse times and places. Prerequisite: upper-division standing.

An introduction to the writings of the New Testament, their creation, collection, and critical study.

LTWL 131B. Topics in Early Christian Literature: Paul and the Invention of Christianity (4)

LTWL 131C. Topics in Early Christian Literature: Reconstructing Jesus (4)
A survey of the “gospels” of the first three centuries for light they may (or may not) shed on the historical figure of Jesus, set within the context of religious biography in late antiquity.

LTWL 131D. Topics in Early Christian Literature: The Fourth Gospel (4)
A solution to the riddle of the Fourth Gospel.

LTWL 131E. Topics in Early Christian Literature: The History of Heresy (4)
Study of “heretical” movements within the first three centuries of Christianity’s history (e.g., gnosticism).

LTWL 131F. Topics in Early Christian Literature: Christianity and the Roman Empire (4)
An exploration of significant attempts (from Edward Gibbon to Peter Brown) to explain the “rise” of Christianity and the “decline and fall” of the Roman Empire.

LTWL 131G. Topics in Early Christian Literature: Against the Christians (4)
From Celsus to Julian the Apostle, the pagan assault on Christianity in the intellectual, political, and religious context of late antiquity.

LTWL 135. The Buddhist Imaginary (4)
An introduction to the imaginative universe of Indian Buddhism, with a focus on the connection between cosmological models and liberative practices. In this class we read Buddhist narrative and doctrinal literatures, supplemented by archaeological and art historical artifacts. Prerequisite: upper-division standing or consent of instructor.

LTWL 137. Sanskrit (4)
Study of classical Sanskrit, including grammar and reading.

LTWL 138. Critical Religion Studies (4)
Selected topics, texts, and problems in the study of religion. May be repeated for credit when content varies.

LTWL 139. Gnosticism: The Religious Underground from Late Antiquity to the New Age (4)
A survey of Gnostic currents in religious thought which influenced the Abrahamic traditions of Judaism, Christianity, and Islam, and which resurfaced periodically as heretical challenges to these mainstream traditions and their doctrinal orthodoxies.

LTWL 140. Novel and History in the Third World (4)
This course seeks to explore the relation between the novel and the “dependent” history of the Third World, contrasting and comparing the uses of history in the European novel as defined in the theoretical analysis of Lukacs with uses of history in the Third World novel. An analysis of major themes and movements common to selected ethnic literature in the United States and national literatures in the Third World.

LTWL 141. Islam and Modernity (4)
A survey of developments in the Islamic world during the period of European colonial domination and its aftermath, with special attention to the works of leading Muslim thinkers (e.g., Sayid Ahmed Khan, Muhammad Abduh, Hasan al Banna, Ruhalilah Khomeini, among others.)

LTWL 142. Islam: The Origins and Spread of a World Religion (4)
An investigation of the historical and textual beginnings of Islam; the development of the religion in the early Middle Ages; and an examination of the formalization of schools of Islamic law and the confrontation between Sunni and Shi versions of praxis. Concludes with the rise of Islamic modernism and the roots of Islamic fundamentalism.

LTWL 145. South Asian Religious Literatures: Selected Topics (4)
One or two topics in the religious literature of South Asia will be examined in depth. Repeatable for credit when topics vary. Prerequisite: upper-division standing or consent of instructor.

LTWL 147. Readings in Mahayana Buddhism (4)
Students read and discuss Mahayana Buddhist literature, including sutra and narrative literatures, confessional works, doctrinal treatises, and tantric verse. Recommended: completion of LTWL 129 or LTWL 135.

LTWL 149. The Last Turn of the Century in the West (4)
A multi-media examination of the momentous cultural and intellectual changes that accompanied the last turn of the century (nineteenth-twentieth) in the West. Areas covered include literature, philosophy, visual arts, music, religion, social movements, and scientific thought.

LTWL 150. Modernity and Literature (4)
Explores the various cross-cultural historical, philosophical, and aesthetic ideas which formed the basis of most twentieth-century literature. Literature from the Americas, Europe, Asia, and Africa will be studied through lectures and the reading of texts in English translation. Repeatable for credit when topics vary.

LTWL 151. Religion and Politics (4)
Course surveys the historical and theoretical relationships between religion and politics in contemporary South West Asia, focusing on the interplay of religious movements and politics by looking at countries such as Egypt, Iraq, Israel, Lebanon, Saudi Arabia, Syria, and Turkey.

LTWL 153. Literature, Religion, and Culture in Iran (4)
This interdisciplinary course will explore the relationship between culture and religion in the Persian literature from the Abbasid to postrevolutionary Iranian history.

LTWL 154. Literature: Public Sphere (4)
Course focuses on the contentious notion of “public sphere,” surveying its historical rise and various theoretical debates in defining the term, ranging from political, social, feminist theories to postcolonial studies.

LTWL 155. Gender Studies (4)
The study of the construction of sexual differences in literature and culture. May be repeated for credit when topics vary.

LTWL 160. Women and Literature (4)
This course will explore the relationship between women and literature, i.e., women as producers of
Literature, as objects of literary discourse, and as readers. Foreign language texts will be read in translation. May be repeated for credit as topics vary.

LTWL 165. Literature and the Environment (4) With primarily American (and a couple of English) readings, the course inquires into the relation of human and nonhuman nature. Topics include wilderness, animals, Native American thought, women in nature, description as a kind of writing, the spirituality of place.

LTWL 166. The Yiddish Novel (4) Yiddish literature is much more than folksongs and jokes. We will read major American and European works by Nobel laureate I.B. Singer, his brother I.J. Singer and sister Esther Kreitman, Sholem Aleichem, Mendele, Chava Rozenfarb, and others. (In English translation.)

LTWL 167. Russia and the Jewish Imagination from the Enlightenment to the Present (4) Course explores Russian Jewish literature, from Hassidic tales to Gary Shteyngart’s Absurdistan. We will read works translated from Hebrew, Yiddish, and Russian. Written before, during, and since the Soviet period, including literature produced in Russia, Israel, and the U.S.

LTWL 168. Death and Desire in India (4) This class investigates the link between desire and death in classical and modern Hindu thought. It considers the stories of Hindu deities, as well as the lives of contemporary South Asian men and women, in literature and film.

LTWL 172. Special Topics in Literature (4) Studies in specialized literary, philosophic, and artistic movements, approaches to literature, literary ideas, historical moments, etc.

LTWL 176. Literature and Ideas (4) The course will center on writers or movements of international literature, cultural, or ideological significance. The texts studied, if foreign, may be read either in the original language or in English. May be repeated for credit as topics vary.

LTWL 180. Film Studies and Literature: Film History (4) The study of film history and its effects upon methods of styles in literary history. Repeatable for credit when topics vary.

LTWL 181. Film Studies and Literature: Film Movement (4) Study of analogies between literary movements and film movements. Repeatable for credit when topics vary.

LTWL 183. Film Studies and Literature: Director’s Work (4) Methods of criticism of author’s work applied to the study and analysis of film director’s style and work. Repeatable for credit when topics vary.

LTWL 184. Film Studies and Literature: Close Analysis of Filmmic Text (4) Methods of literary analysis applied to the study of shots, sequences, poetics, and deep structure in filmic discourse. Repeatable for credit when topics vary.

Seminars/Independent Studies

LTWL 191. Honors Seminar (4) Explorations in critical theory and method. This course, designed to prepare students to write an honors thesis, is open only to literature majors invited into the department’s Honors Program.

LTWL 192. Senior Seminar in Literatures of the World (1) The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisite: department stamp and/or consent of instructor.

LTWL 195. Apprentice Teaching (0 or 4) Undergraduate instructional assistance. Student must (1) prepare reading materials assigned by the professor; (2) lead student discussions; (3) assist professor in grading; and (4) prepare report to professor at conclusion of quarter concerning his/her work.

LTWL 196. Honors Thesis (4) Senior thesis research and writing for students who have been accepted for the Literature Honors Program and who have completed LTWL 191. Oral exam. Prerequisite: permission of department.

LTWL 198. Directed Group Study (4) Research seminars and research, under the direction of faculty member. Prerequisite: permission of department.

LTWL 199. Special Studies (2 or 4) Tutorial; individual guided reading in areas of literature (in translation) not normally covered in courses. May be repeated for credit three times. (P/NP grades only.) Prerequisites: upper-division standing and permission of department.

GRADUATE

LTWL 500. Apprentice Teaching in Literature (2 or 4) Consideration of pedagogical methods appropriate to undergraduate teaching in literature courses under the supervision of instructor of course. Doctoral students in literature are required to participate in undergraduate teaching for a minimum of twelve units (two to four units per quarter) prior to completion of the Ph.D. degree.

LTWL 501. Apprentice Teaching in Humanities (2 or 4) Consideration of pedagogical methods appropriate to undergraduate teaching in humanities sequences under the supervision of instructor of course. Doctoral students in literature are required to participate in undergraduate teaching for a minimum of twelve units (two to four units per quarter) prior to completion of the Ph.D. degree.

LTWL 502. Apprentice Teaching in Muir College (2 or 4) Consideration of pedagogical methods appropriate to undergraduate teaching in Muir College courses under the supervision of instructor of course. Doctoral students in literature are required to participate in undergraduate teaching for a minimum of twelve units (two to four units per quarter) prior to completion of the Ph.D. degree.

LTWL 503. Apprentice Teaching in Marshall College (2 or 4) Consideration of pedagogical methods appropriate to undergraduate teaching in Marshall College courses under the supervision of instructor of course. Doctoral students in literature are required to participate in undergraduate teaching for a minimum of twelve units (two to four units per quarter) prior to completion of the Ph.D. degree.

LTWL 504. Apprentice Teaching in Warren College (2 or 4) Consideration of pedagogical methods appropriate to undergraduate teaching in Warren College courses under the supervision of instructor of course. Doctoral students in literature are required to participate in undergraduate teaching for a minimum of twelve units (two to four units per quarter) prior to completion of the Ph.D. degree.

LTWL 506. Apprentice Teaching in Roosevelt College (2 or 4) Consideration of pedagogical methods appropriate to undergraduate teaching in Eleanor Roosevelt College courses under the supervision of instructor of course. Doctoral students in literature are required to participate in undergraduate teaching for a minimum of twelve units (two to four units per quarter) prior to completion of the Ph.D. degree.

WRITING/LITERATURE

LOWER-DIVISION

LTWR 8A. Writing Fiction (4) Study of fiction in both theory and practice. Narrative technique studied in terms of subjectivity and atmosphere, description, dialogue, and the editing process will be introduced through readings from the history of the novel and short story. Writing exercises accompany reading assignments. Prerequisite: completion of college writing requirement.

LTWR 8B. Writing Poetry (4) Study and practice of poetry as art and communal expression. Techniques of composition (traditional forms, avant garde techniques, dramatic monologue, performance poetry, and new genre) studied through written and spoken examples of poetry. Writing exercises accompany reading assignments. Prerequisite: completion of college writing requirement.

LTWR 8C. Writing Nonfiction (4) Study of nonfictional prose in terms of genre and craft. Techniques of composition (journalism, essay, letters, reviews) will be studied through written examples of the genre. Practical imitations and exercises accompany the reading assignments. Prerequisite to upper-division non-fiction prose workshops. Prerequisite: completion of college writing requirement.

UPPER-DIVISION

Departmental approval is required for enrollment in all upper-division literature/writing courses.

Prerequisite: upper-division standing or consent of instructor. Additional prerequisites may be specified below.

(See Department of Theatre and Dance for course offerings in dramatic writing.)
Prose Fiction, Poetry, Media Workshops

LTWR 100. Short Fiction (4)
A workshop for students with some experience and special interest in writing fiction. This workshop is designed to encourage regular writing in the short forms of prose fiction and to permit students to experiment with various forms. There will be discussion of student work, together with analysis and discussion of representative examples of prose fiction from the present and previous ages. May be taken for credit three times. Prerequisite: LTWR 8A.

LTWR 102. Poetry (4)
A workshop for students with some experience and special interest in writing poetry. This workshop is designed to encourage regular writing of poetry. There will be discussion of student work, together with analysis and discussion of representative examples of poetry from the present and previous ages. May be taken for credit three times. Prerequisite: LTWR 8B.

LTWR 104. The Novella (4)
Workshop for fiction writers ready to tackle longer forms. Each student will produce a novella of at least fifty-pages by the end of the quarter. We’ll look at examples of this form as well as films and comic novels to explore editing techniques that facilitate the writer’s growing force and complexity of vision. Prerequisites: LTWR 100; department approval.

LTWR 106. Science Fiction, Fantasy, Irrealism (4)
In this workshop, students will practice skills of narration, characterization, and style with particular attention to the demands of non-realistic genres, especially the challenge of suspending disbelief in fictional environments that defy conventional logic. Readings and lectures will accompany writing exercises. Prerequisites: LTWR 8A; department approval.

LTWR 107. Writing for Children (4)
A workshop in writing for young children (5–8 years). The stories will be directed towards the act of reading aloud, either at bedtime or in a group situation. There will be many weekly readings assigned in, and about, the genre. Prerequisites: LTWR 8A; department approval.

LTWR 108. Writing for Young Adults (4)
A workshop in writing for 9–12 year-olds. Students will be asked to write one long chapter story or a series of short stories for young adults to read to themselves. The stories will generally involve young teens. Weekly readings will be assigned. Prerequisites: LTWR 8A; department approval.

LTWR 109. Writing and Publishing Children’s Literature (4)
A workshop in writing for children, with the additional focus of exploring successful approaches to publication of children’s stories. There will be regular weekly reading and writing assignments. Prerequisites: LTWR 8A; LTWR 107 recommended; department approval via stamp or pre-authorization.

LTWR 110. Screen Writing (4)
A workshop designed to encourage writing of original screenplays and adaptations. There will be discussion of student work, together with analysis of discussion of representative examples of screen writing. May be taken for credit three times. Prerequisite: department approval.

LTWR 110B. Advanced Screen Writing Workshops (4)
Course for students who have taken one quarter or more of LTWR 110 Screen Writing. Workshop designed to encourage writing of original screenplays and adaptations. Discussion of student work together with analysis and discussion of representative examples of screen writing. Repeatable for credit as topics vary. Prerequisites: LTWR 110 and department approval.

LTWR 111. Prose-Poem (4)
Although prose-poems have been written by writers all over the world, the question of what constitutes a prose-poem has never been adequately answered. Through practice, we will explore the inner dynamics central to this mixed genre.

LTWR 112. Adapting Literature to the Screen (4)
Development of a feature-length screenplay based on poems or works of fiction or non-fiction. This course will provide a basic knowledge of the adaptation process from synopsis, through step outline, to fully developed treatment. Prerequisites: LTWR 8A or 8B or 8C; department approval.

LTWR 113. Intercultural Writing (4)
This course is an introduction to modes of writing from other cultural systems vastly different from the cultural-aesthetic assumptions of Anglo-American writing. While disclosing the limitations of the English language, this course attempts to provide new language strategies for students.

LTWR 114. Workshops in Graphic Texts (4)
From illuminated manuscripts to digital literature, from alphabets to concrete poems, from artist’s books to comics, this course explores the histories and techniques of combinatory image/word literary arts. The course may emphasize specific movements or genres. Repeatable only when materials, assignments, and work vary. Prerequisites: LTWR 8A, 8B, and 8C.

LTWR 115. Experimental Writing (4)
This workshop explores writing for which the traditional generic distinctions of prose/poetry, fiction/documentary, narrative/discourse do not apply. Students taking this course will be asked to challenge the boundaries of literature to discover new forms and modes of expression. May be taken for credit three times. Prerequisite: department approval.

LTWR 117. Landscape Poetry (4)
The differences between landscape poetry written in East Asia and Western counterparts form an exciting subject as well as a challenge to habits of language. We will read from the history of landscape poetry, and produce and critique new poems. Prerequisites: LTWR 8B; department approval.

LTWR 119. Writing for Performance (4)
A workshop designed to encourage regular writing of all forms of performance works in a range of literary genres. Emphasis will be placed on the integration of written texts with non-verbal elements from the visual arts, theater, and music. Prerequisites: LTWR 8A or 8B, to be determined by quarterly offerings of LTWR 119; department approval.

Nonfiction Prose Workshops

LTWR 120. Personal Narrative (4)
A workshop designed to encourage regular writing of all forms of personal experience narrative, including journals, autobiography, firsthand biography, and firsthand chronicle. Instructor and students will discuss student work as well as published personal narratives. Prerequisite: LTWR 8C.

LTWR 121. Media Writing (4)
Workshop focusing on the review, the op-ed piece, the column, the blur, the profile, the interview, and “content-providing” for Web sites. We’ll examine current examples of media writing; students will produce a body of work and critique one another’s productions. Prerequisites: LTWR 8C; department approval.

LTWR 122. Writing for the Sciences (4)
A workshop in writing about science for the public. Students will study and then construct metaphors or analogues which introduce readers to scientific perplexities. May be repeated for credit when topics vary.

LTWR 123. Biographical Writing (4)
Workshop in biographical writing. The class will read published examples, consider what constitutes a suitable subject for biography, and discuss research techniques and sources. Each student will work on a profile-length or book chapter-length biography, submitting installments throughout the quarter. Prerequisites: LTWR 8C and department approval.

LTWR 125. Persuasion (4)
A workshop in the writing of argument or persuasion, with particular attention to strategies of persuasion for different kinds of audiences. Instructor and students will discuss student work as well as published work. May be taken for credit three times. Prerequisites: LTWR 8C and department approval.

LTWR 126. Creative Nonfiction Workshops (4)
A writing, reading, and critical-thinking workshop designed to produce nonfiction pieces that fall outside the limits of the essay form. Included are travel narratives, memoir, and information-based writing that transform their own materials into compelling literature. Repeatable only when materials, assignments, and work vary. Prerequisites: LTWR 8C; department approval.

LTWR 127. General Nonfiction Prose Workshop (4)
A workshop designed to encourage the writing of all forms of nonfiction prose. This workshop is usually limited to advanced students in the writing major. May be taken for credit three times. Prerequisite: LTWR 8C.

LTWR 128. Editing Workshop (4)
A workshop to acquaint students with the fundaments of bringing written works from concept to publication. Genres covered will vary with instructor. Prerequisite: department approval.

LTWR 129. Distributing Literature (4)
Workshop designed to critique and engage the means of distributing literature within culture. Publishing from “zine” through mainstream publication; Web publications; readings and “slams”; publicity and funding; colloquia with writers; politics and literature; and the uses of performance and media. Prerequisites: LTWR 100 or LTWR 102 or LTWR 120 or LTWR 127; department approval through course pre-authorization department stamp.

Writing Process, Written Discourse, and Writing Pedagogy

These courses are not writing workshop courses like those listed above. Rather, they examine various aspects of writing as a field of study and writing pedagogy. Writing majors who plan to teach writing may be particularly interested in these courses. See the department for
applicability of these courses to the writing major requirements.

Note: As of fall 1991, all writing majors are required to take one course chosen from offerings numbered LTWR 140–148 to fulfill one of their upper-division requirements.

LTWR 141. The Process of Writing (4)
A study of writing as a creative process. Review of research on creativity and on the writing process and analysis of writers’ introspective accounts of their work. The stages in writing process and exploration of implications for learning to write.

LTWR 142. Forms of Written Discourse (4)
A review of current rhetorical theory and discourse theory. Some attention to recent developments in text linguistics. Students will write several discourse types and explore differences among the types, with special attention to differences for the writing process and for the structure of the written discourse itself.

LTWR 143. Stylistics and Grammar (4)
A close look at sentence-level features of written discourse—stylistics and sentence grammars. Students will review recent research on these topics and experiment in their own writing with various stylistic and syntactic options.

LTWR 144. The Teaching of Writing (4)
Wide reading in current theory and practice of teaching writing in schools and colleges. Careful attention to various models of classroom writing instruction and to different approaches in the individual conference. Students in this course may observe instruction in the UCSD college writing programs or tutor freshman students in those programs. Prerequisite: department approval.

LTWR 148. Theory for Writers/Writing for Theory (4)
Hybrid workshop offering writing students a working knowledge of literary theory while exposing literature students to practical techniques from poetry, fiction, and nonfiction to refresh their writing of theoretical nonfiction texts. Discussion of student work and published work. Prerequisite: department approval.

Directed Study and Special Study

LTWR 192. Senior Seminar in Literatures in Writing (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in literature (at the upper-division level). Senior seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisite: department stamp and/or consent of instructor.

LTWR 195. Apprentice Teaching (4)
Undergraduate instruction assistance. Students will (1) assist TA in editing students’ writing for LTWR 8A and 8C during class and outside of class; and (2) prepare a paper and report for the professor at the end of the quarter. Prerequisite: LTWR 144, The Teaching of Writing.

LTWR 196. Honors Thesis (4)
Senior thesis research and writing for students who have been accepted for the Literature Honors Program and who have completed LTWL 191. Oral exam. Prerequisite: department approval.

LTWR 198. Directed Group Study (2 or 4)
Directed group study in areas of writing not normally covered in courses. (P/NP grades only.) Repeatable for credit when areas of study vary.

LTWR 199. Special Studies (2 or 4)
Tutorial; individual guidance in areas of writing not normally covered in courses. (P/NP grades only.) Prerequisites: upper-division standing and permission of department. May be taken for credit three times.

GRADUATE

Pre-requisite: graduate standing or consent of instructor.

LTWR 260. Autoethnographies of Literacy (4)
Designed for public school teachers, this writing seminar concerns ethnographic and autoethnographic studies of “literate” and “illiterate” in the United States. Prerequisite: graduate standing or consent of instructor.

LTWR 271. Theory and Practice of College Writing Instruction (4)
In this course we will explore the implications for writing instruction of current discourse theory and of linguistics (sentence-level and text-level). We will also review research on writing instruction and look carefully at several models of classroom instruction and individual conferencing.

LTWR 272. Research in Composing and Writing Discourse (4)
This course will survey current research on composing and written discourse. It will also explore various problems and issues in designing research studies.

LTWR 282. Writing States (4)
This course will be a cross-genre writing workshop where graduate students in literature with some experience in creative writing can work with other writers and broaden their own practices. The seminar will read selected texts in the writing assignments. Students who have already written new ongoing writing projects can workshop that as an alternative to doing assignments. The group will critique one another’s efforts, each participant creating a twenty-page manuscript. Also at the end of the quarter the students will collectively agree on a project—a reading, performance, video, or publishing project that will document the workshop. Prerequisite: graduate standing or consent of instructor.

Making of the Modern World, The

Roosevelt College students. It is designed to encourage them to think historically, comparatively, and in an interdisciplinary manner about world cultures. Disciplinary perspectives include literature, history, philosophy, anthropology, sociology, political science, and fine arts. Students will examine and interpret primary documents and artifacts from diverse eras and cultures, as well as learn about them from secondary sources. All six quarters of the sequence will include lectures, discussions, and writing assignments. Courses in the sequence may be taken for a letter grade only.

Students in the Making of the Modern World 2 and 3 (offered in winter and spring quarters respectively) fulfill their University of California composition requirement by receiving intensive instruction in university-level writing. Subject matter for writing instruction is drawn from or related to course material. Instruction in writing is provided in discussion sessions, which meet twice each week. Each of these two writing-intensive quarters carries six units of credit. Students must have satisfied the university’s Entry Level Writing requirement in English composition before enrolling in the Making of the Modern World 2 or 3.

For further details on Eleanor Roosevelt College requirements, see “Eleanor Roosevelt College, General-Education Requirements.”

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

TRADITIONS

1. Prehistory and the Birth of Civilization (4)
This quarter introduces students to what is known about early humans, including the evolution of the human body and the reconstruction of Paleolithic and Neolithic cultures. It examines contemporary hunting-gathering and tribal societies and illuminates the complexity of such cultures with respect to mythology and oral tradition, interpersonal relations, and ecological practices. The course will conclude with an analysis of the emergence of large agrarian societies and the earliest great settled communities and civilizations. Three hours of lecture, one hour of discussion. Open to Eleanor Roosevelt College students only. (Letter grade only) (F)

2. The Great Classical Traditions (6)
An introduction to five major classical civilizations of the ancient world. Equal attention will be given to the ancient Near East, Greece, India, China and the Roman Republic, all of which have left legacies to the present.
The course covers the great early systems of religious and social thought, using an approach that combines history and social science. This course includes intensive instruction in writing expository prose. Three hours of lecture, two hours of writing and discussion sections. Prerequisite: satisfaction of the UC Entry Level Writing requirement. Open to Eleanor Roosevelt College students only. (Letter grade only.) (W)

3. The Medieval Heritage (6)
A survey of the period from about 29 B.C.E. to 1200 C.E., this quarter concentrates on the development of China from the Han to the Sung Dynasties, the growth and eventual dissolution of the Roman Empire, the development of Christianity, and the rise of Islam. This course includes intensive instruction in university-level writing. Three hours of lecture, two hours of writing and discussion sections. Prerequisite: satisfaction of the UC Entry Level Writing requirement. Open to Eleanor Roosevelt College students only. (Letter grade only.) (S)

TRANSFORMATIONS

4. New Ideas and the Clash of Cultures (4)
An examination of the world from 1200 to 1750, the course focuses on the transition from medieval to modern by addressing philosophical, social, political, economic, and technological changes in Asia, Europe, and Islamic territories. Topics may include the Mongol invasions and their impact; the European Renaissance, Reformation, and Scientific Revolution; Islamic and Chinese empires; exploration and trade; and European expansion into the Americas. Three hours of lecture, one hour of discussion. Prerequisites: satisfaction of the UC Entry Level Writing requirement; successful completion of MMW 2 and/or MMW 3. Open to Eleanor Roosevelt College students only. (Letter grade only.) (F)

5. Revolution, Industry, and Empire (4)
A consideration of the great changes in European society from the late eighteenth century to the Russian Revolution, and their impact on the non-Western world. Topics include industrialization, the rise of nationalism and the nation-state, Western imperialism, and the colonial experience. Developments in non-Western countries during this period will be examined from their own internal perspective. Three hours of lecture, one hour of discussion. Prerequisites: satisfaction of the UC Entry Level Writing requirement; successful completion of MMW 2 and/or MMW 3. Open to Eleanor Roosevelt College students only. (Letter grade only.) (W)

6. Twentieth Century and Beyond (4)
The course begins with a consideration of the causes and consequences of World War I, and then looks at the post-war crisis of liberal values and institutions. It addresses the deepening of crisis in the thirties, especially evident in the emergence of ideological politics and extreme nationalism in the context of world-wide depression. This period of crisis provides the background for understanding World War II. Attention is then devoted to the Cold War, the competition between capitalism and communism, and the process of decolonization. The course ends with a discussion of the collapse of communism and the emerging world order (or disorder). Three hours of lecture, one hour of discussion. Prerequisites: satisfaction of the UC Entry Level Writing requirement; successful completion of MMW 2, MMW 3, MMW 4, and/or MMW 5. Open to Eleanor Roosevelt College students only. (Letter grade only.) (W)

Management, Rady School of

http://rady.ucsd.edu

Professors
Uri Gneezy, Ph.D., Management/Strategy
Vish Krishnan, Ph.D., Innovation, Technology, and Operations Management
Harry M. Markowitz, Ph.D., Finance
Craig R.M. McKenzie, Ph.D., Management/Strategy and Psychology
David A. Schkade, Ph.D., Management/Strategy
Robert S. Sullivan, Ph.D., Dean
Allan Timmermann, Ph.D., Finance

Associate Professors
Jun Liu, Ph.D., Finance
Rossen Valkanov, Ph.D., Finance
Kevin Zhu, Ph.D., Innovation, Technology, and Operations Management

Assistant Professors
On Amir, Ph.D., Marketing
Sanjiv Erat, Ph.D., Innovation, Technology, and Operations Management
Thomas A. Roemer, Ph.D., Innovation, Technology, and Operations Management

The Master of Business Administration (M.B.A.)

REQUIREMENTS FOR ADMISSION

Students interested in pursuing the M.B.A. degree program at UCSD’s Rady School of Management (RSM) must have earned a B.A., or its equivalent, with training comparable to that provided by the University of California. A minimum scholastic average of 3.0 or better is required for course work completed in upper-division or prior graduate study. No specific undergraduate major or coursework is required for admission, though preparation in quantitative methods (such as calculus and statistics) is strongly encouraged. Prior business course work is not necessary. Students who do not have adequate quantitative preparation at the time of admission will need to complete preparatory course work before matriculation.

We are looking for intelligent risk-takers who are determined to make an impact—people who demonstrate passion and understanding, and who focus on working in innovation-driven organizations. The admissions committee assesses professional and organizational experience in terms of scope or level of responsibility, evidence of contribution or success, and evidence of career progression or of growth in responsibility. The full-time M.B.A. does not require professional work experience; however, the school believes that some prior experience in organizations and teams is critical to effective learning in the M.B.A. program. Most students in the full-time M.B.A. class will have some post-undergraduate professional experience. FlexMBA students are working professionals; no specific number of years of work experience is required.

Applicants must submit two letters of recommendation from individuals who can attest to their professional and leadership skills and to their potential for business leadership.

Applicants are required to submit the Graduate Management Admission Test (GMAT) scores (verbal, quantitative, and analytical writing). (Indicate code #4836.) A minimum score of 550 on the paper/pencil version and a minimum score of 213 on the computer-based version of the Test of English as a Foreign Language (TOEFL) is required of all international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English. Students who score below 600 on the paper/pencil or 250 on the computer-based TOEFL examination are strongly encouraged to enroll in an English-as-a-second-language program before beginning graduate work.

Interviews are required for admission to the M.B.A. program. Interviews are by invitation after review of the completed application.

The full-time M.B.A. is a two-year, full-time program. The FlexMBA is a twenty-four-month program, including two summers, scheduled on alternate weekends to accommodate the needs of working professionals. The school’s M.B.A. application is available online at the school’s Web site.

THE M.B.A. CURRICULUM (NINETY-TWO UNITS)

The M.B.A. curriculum (ninety-two units) is made up of a set of core disciplinary and skill-oriented courses with an emphasis on industry sectors, unstructured electives, and the Professional Seminar. The basic curriculum is the same for the full-time and FlexMBA programs.
Core Curriculum

The core curriculum provides a comprehensive education in the fundamentals of business and management and lays a strong foundation for further study.

Industry Sector Emphasis

The Rady School’s M.B.A. is designed to allow students to develop depth in industry sectors of particular interest. Selection of an industry is not required. Currently, emphases are offered in life/health sciences and in IT/telecom. An emphasis may include course modules, projects, and electives. The school anticipates adding emphases in additional industry sectors as the student body grows.

Electives

Students may choose from electives in the full range of business and management disciplines, including accounting, finance, management, marketing, operations and information technology, and strategy. In addition, students may, with approval, take graduate courses offered elsewhere on campus. Prospective students are advised to consult the RSM Office of Admissions for a list of planned elective courses.

Professional Seminar

The Professional Seminar is a one-credit course offered each quarter. The seminar brings business leaders and experts to campus to speak to students and provides workshops focused on professional and leadership development and on personal and career effectiveness. The seminar may be taken multiple times for credit.

Internships

Full-time M.B.A. students are strongly encouraged to participate in internships during the summer between the two years of the academic program. Part-time internships are also available during the academic year. Internships are coordinated through M.B.A. Career Connections, the school’s career center.

Executive Mentor Program

The Rady School’s Executive Mentor program matches small groups of M.B.A. students with senior business executives. Mentors work directly with their groups, offering perspective, guidance, and expertise based on their deep experience in business. Mentors help guide M.B.A. students as they map out areas for personal and professional development, gain understanding of career progression and the skills and abilities required for successful leadership, and seek feedback about opportunities and areas of concern.

Career Services

M.B.A. Career Connections, the Rady School’s career center, provides students with expertise, guidance, and resources to successfully manage their careers. Services and resources of M.B.A. Career Connections are available to all M.B.A. students, with some limitations for those sponsored by their employers. For full-time M.B.A. students, the center’s personalized approach to career management begins before the student’s first quarter and continues throughout the program. M.B.A. Career Connections actively works to identify opportunities for students and to enable students to build strong professional networks.

Career services include career assessment, individual career coaching, career fairs, workshops, employer presentations and panels, internship and career employment listings, and on-campus interviews. Specialized M.B.A. career workshops focus on resume writing, interviewing skills (including videotaped mock interviews), effective job search strategies, and job offer evaluation and negotiation.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

M.B.A. APPROVED COURSE LIST

MGT 201. Marketing Strategy (4)
Addresses formulation and implementation of marketing strategy, based on an integrative view of competitive brand strategy over the product life cycle. Provides a framework for developing marketing strategies yielding sustainable competitive advantage based on customer, competitor, industry, and environmental analysis. Prerequisite: admission to degree program or consent of instructor.

MGT 202. Research for Marketing Decisions (4)
Methods and applications of qualitative and quantitative marketing research to solve substantive marketing problems. Emphasis on integrating problem formulation, research design, questionnaire construction, and sampling to yield the most valuable information, and on the proper use of statistical methods. Prerequisite: admission to degree program or consent of instructor.

MGT 203. Consumer Behavior (4)
The course identifies the factors that influence the selection and usage of products and services. Students will be introduced to problems/decisions that include evaluating behavior; understanding the consumers’ decision process, and strategies to create desirable consumer behavior. Prerequisite: admission to M.B.A. program or consent of faculty.

MGT 204. Marketing Communications (4)
This course differentiates decisions/principles considered when developing an overall communications and promotions strategy. Key decisions include the promotional mix, the design, implementation and evaluation of communications strategies, and the thinking required to develop a creative strategy. Prerequisite: admission to M.B.A. program or consent of faculty.

MGT 209. Topics in Marketing (2 or 4)
Introduces advanced topics of special interest in marketing. May be repeated for a maximum of eight credits if the topics are substantially different. Instructional methods include face-to-face lecture, case presentations, assigned readings, and online group discussions. Prerequisite: admission to the M.B.A. program or consent of faculty.

MGT 210. Regulation and Innovation (4)
Addresses the complex role of regulation in business innovation. Includes legal issues such as how to structure a business, whether to seek intellectual property protection, when and how to raise capital or formulate exit strategies, how to make employment decisions. Prerequisite: core finance course or consent of instructor.

MGT 211. CEO, the Board of Directors and Corporate Governance (4)
Provides an understanding of relationships among shareholders, managers, and boards. Focuses on the office of the chief executive officer and on the board of directors, including the roles and responsibilities of directors, and the legal, economic, managerial, and psychological issues they confront. Prerequisite: admission to M.B.A. program or consent of instructor.

MGT 219. Topics in Corporate Governance (2 or 4)
Introduces advanced topics of special interest in corporate governance. May be repeated for a maximum of eight credits if the topics are substantially different. Instructional methods include face-to-face lecture, case presentations, assigned readings, and online group discussions. Prerequisite: admission to M.B.A. program or consent of faculty.

MGT 220. Opportunity and Business Model Analysis (4)
Builds on core management courses and deals with identifying and assessing new technological and product opportunities. Assessment methods and frameworks will be introduced for technologies and opportunities. Various business models to profitably address market opportunities will also be discussed. Prerequisite: core finance course (MGT 408) or consent of instructor.

MGT 221. Topics in Innovation (2 or 4)
Advanced topics in business innovation, delivered by lecture, case discussion, and online instruction. Prerequisite: admission to M.B.A. program or consent of instructor.

MGT 222. Creativity and Innovation (4)
Focuses on fostering and maintaining creativity in entrepreneurial ventures and, more broadly, in general management. Reading materials, cases, classroom, and home exercises will help students understand and be able to use creativity in their own working lives. Prerequisite: admission to M.B.A. program or consent of instructor.
MGT 229. Topics in International Business (2 or 4)
Introduces advanced topics of special interest in international business (e.g., global supply chain and the rise of Mexican maquiladoras; entrepreneurship in Russia). May be repeated for a maximum of eight credits if the topics are substantially different. Instructional methods include face-to-face lecture, case presentations, assigned readings, and online group discussions. Prerequisite: admission to M.B.A. program or consent of faculty.

MGT 230. Strategic Cost Management (4)
The course details the knowledge and analytical skills necessary to use accounting cost information as a basis for formulating and evaluating corporate strategies. Sessions focus on the principles of strategic positioning, value chain analysis, and cost driver analysis. Prerequisite: admission to M.B.A. program or consent of faculty.

MGT 239. Topics in Accounting (2 or 4)
Introduces advanced topics of special interest in accounting. May be repeated for a maximum of eight credits if the topics are substantially different. Instructional methods include face-to-face lecture, case presentations, assigned readings, and online group discussions. Prerequisite: admission to M.B.A. program or consent of faculty.

MGT 240. Decision Analysis (4)
Provides practical techniques to help structure decision problems and analyze them quantitatively. Techniques help thinking clearly about objectives, alternatives, consequences, and uncertainties, and enable logical judgments with other types of information. Prerequisite: admission to M.B.A. program or consent of faculty.

MGT 249. Topics in Decision Sciences (2 or 4)
Introduces advanced topics of special interest in management and decision sciences. May be repeated for a maximum of eight credits if the topics are substantially different. Instructional methods include face-to-face lecture, case presentations, assigned readings, and online group discussions. Prerequisite: admission to M.B.A. program or consent of faculty.

MGT 250. Biotechnology Industry, Structure, and Strategy (4)
Provides a business overview of the life-scieince industry, its major market segments, financial structure, and financing strategies. Develops an understanding of major industry issues and strategies, including business development, financing, partnering and alliances, emerging trends, ethical and policy issues. Prerequisite: completion of M.B.A. core curriculum or consent of instructor.

MGT 260. Negotiation (4)
Examines methods of conflict resolution needed for effective management in a constantly changing business environment. Applies these tools to the broad spectrum of negotiation problems faced by the manager and professional. Includes simulations, role playing, and cases. Prerequisite: admission to M.B.A. program or consent of instructor.

MGT 269. Topics in Organizational Behavior (2 or 4)
Introduces advanced topics of special interest in management and organizational behavior. May be repeated for a maximum of eight credits if the topics are substantially different. Instructional methods include face-to-face lecture, case presentations, assigned readings, and online group discussions. Prerequisite: admission to M.B.A. program or consent of faculty.

MGT 270. Project Management (4)
Provides management concepts and tools to enable the more effective design, planning, and control of projects. Includes both the qualitative and quantitative aspects of project management. Prerequisite: admission to M.B.A. program or consent of instructor.

MGT 271. Technology Strategy (4)
Outlines tools for formulating and evaluating technology strategy. Includes an introduction to the economics of technical change, models of technological evolution, and models of organizational dynamics and innovation. Provides an understanding of how technology firms gain and sustain competitive advantage. Prerequisite: admission to M.B.A. program or consent of instructor.

MGT 272. New-Product Development (4)
Provides comprehensive analytical coverage of the new-product development process, focusing on the basic tools, methods, and organizational structures used in new-product development and management. Prerequisite: admission to M.B.A. program or consent of instructor.

MGT 273. Supply Chain Management (4)
Describes the systems approach to managing the entire flow of information, materials, and services from raw materials suppliers through factories and warehouses to the end customer, which is the key to productivity and competitiveness of manufacturing and service enterprises. Prerequisite: admission to M.B.A. program or consent of faculty.

MGT 279. Topics in Operations and Technology (2 or 4)
Introduces advanced topics of special interest in management and operations. May be repeated for a maximum of eight credits if the topics are substantially different. Instructional methods include face-to-face lecture, case presentations, assigned readings, and online group discussions. Prerequisite: admission to M.B.A. program or consent of faculty.

MGT 280. New Venture Finance (4)
Focuses on the financing of new ventures and technological innovation. Includes perspectives of both the entrepreneur and the investor, investigating the venture-capital process and methods of financial valuation useful in the venture-capital industry and for other technology investments. Prerequisite: core finance course or consent of instructor.

MGT 281. Investments (4)
Examines financial theory and empirical evidence useful for making investment decisions. Topics include: portfolio theory, equilibrium models of security prices, the empirical behavior of security prices, market efficiency, and fixed-income markets and behavioral finance. Prerequisite: completion of M.B.A. core curriculum or consent of instructor.

MGT 282. Topics in Finance (2 or 4)
Advanced topics in finance. Instructional methods include face-to-face lecture and case discussion, as well as online instruction. Prerequisite: admission to M.B.A. program or consent of instructor.

MGT 283. Financial Risk Management (4)
Explains how to identify, measure, and analyze investment risks associated with interest rates, currency exchange, and equity markets, and acquire techniques to manage and control risk through the use of over-the-counter and exchange-traded derivatives. Prerequisite: admission to M.B.A. program or consent of the faculty.

MGT 291. Essentials for Business Practice (4)
Introduction to the basic functional areas of business—marketing, accounting, finance, operations/supply chain, strategy—and how they overlap and intersect in the business environment. Techniques of business planning and the role of the business manager are also examined. Prerequisite: non-M.B.A. graduate students only; no prerequisite courses.

MGT 292. Business Project Management (4)
Addresses effective practices for management of business projects. Includes both project management—scheduling, milestone setting, resource allocation, budgeting, risk mitigation—and human capital management—communication, teamwork, leadership. Also considers requirements for effectively working across functional and organizational boundaries. Prerequisite: non-M.B.A. graduate students only; no prerequisite courses.

MGT 297. Advanced Management Research Practices (1)
Internship with approved business or governmental agency, allowing student to pursue topics raised in the management core and elective courses. Internship credit may not be applied to fulfill specific course requirements or to credits required for graduation. May be repeated with instructor consent. Prerequisite: consent of instructor and department stamp required.

MGT 299. Individual Directed Study (1-4)
Individual study or research under the direction of a selected faculty member. Prerequisite: admission to M.B.A. program or consent of instructor.

MGT 401. Professional Seminar (1)
The Professional Seminar presents up-to-date research, professional skills development, and experts and business leaders as speakers. Topics may vary by term. Prerequisite: M.B.A. student or departmental stamp.

MGT 403. Quantitative Analysis (4)
Through lecture and online delivery, students will be introduced to key techniques for using data to make informed management decisions. Covers probability, statistics, decision analysis, and optimization techniques. Emphasizes managerial applications in such areas as operations management, marketing, and finance. Prerequisite: M.B.A. student or departmental stamp.

MGT 404. Accounting (4)
Through lecture and online delivery, students will be introduced to the basic concepts and methods used in financial statements. Prerequisite: M.B.A. student or departmental stamp.

MGT 405. Managerial Economics (4)
Through lecture and online delivery, this course will introduce students to the tools and concepts of microeconomics to analyze decision problems within technology driven firms through the coverage of microeconomic concepts relevant to managerial decision-making. Prerequisite: M.B.A. student or departmental stamp.

MGT 406. Leadership Skills, Values, and Teamwork in Technology Firms (4)
Through lecture and online delivery, introduces pricniples of effective teamwork and leadership and of strategic managerial communication. Provides an introduction to case study and to ethical issues confronting managers in technology or science-driven firms. Develops managerial communication skills. Prerequisite: M.B.A. student or departmental stamp.
MGT 407. Marketing (4)
By taking an analytical approach to the study of marketing problems, this course provides an understanding of customers and competitors as a basis for developing, pricing, promoting, and distributing goods and services that satisfy customer and organizational objectives. Prerequisite: M.B.A. student or departmental stamp.

MGT 408. Finance (4)
Through lecture and online delivery, this course will focus on basic business financial concepts with particular attention to challenges of finance in start-up and small- and medium-sized enterprises. Prerequisite: M.B.A. student or departmental stamp.

MGT 409. Organizational Strategy and Human Resource Management (4)
After identifying characteristics common to technology-driven firms, the implications of living in, managing, and leading such an organization are explored. Covers skills such as leadership of project teams and negotiations. Prerequisite: M.B.A. “stamp” or departmental stamp.

MGT 410. Strategy (4)
Through lecture and online delivery, this course explores the strategic management of technology-driven firms focusing on the analytical tools and techniques that support strategy formulation and the related managerial skills and decision processes that foster strategy implementation. Prerequisite: M.B.A. “stamp” or departmental stamp.

MGT 412. Lab to Market: Opportunity and Business Model Analysis (4)
An integrated examination of competencies needed to transform innovations into profitable market opportunities. Focus on processes to generate ideas, assess which are viable business opportunities, and evolve them into products and businesses. Prerequisite: M.B.A. student or departmental stamp.

MGT 413. Operations, Information Systems, and Data Analysis (4)
Through lecture and online delivery, students will be familiarized with the problems and issues confronting operations managers, and to introduce language, conceptual models, and analytical techniques that are broadly applicable in confronting such problems. Prerequisite: M.B.A. student or departmental stamp.

MGT 414A. Technology Workshop I (4)
Through lecture and online delivery, provides broad coverage of leading edge developments in technical and scientific research, with an eye to their potential applicability and value in business. Provides basis for project-based Technology Workshop II. An IP grade will be awarded at the end of the quarter. Final grade will not be given until the completion of MGT 414B. Prerequisite: M.B.A. “stamp” or departmental stamp.

MGT 414B. Technology Workshop II (4)
Project-based course, requiring identification and completion of major project assessing potential business value of emerging or potential technology or science. Students work individually or in teams. Periodic class meetings include presentation of interim and final reports. Prerequisite: M.B.A. “stamp” or departmental stamp.

MGT 490A. Special Topics in Marketing (4)
Through lecture and online delivery, a course at an advanced level on marketing topics. Will fulfill the required elective for students in Communication and Information Technology Services (CITS) Management track. Prerequisite: M.B.A. student or departmental stamp.

MGT 490B. Special Topics in Marketing (4)
Through lecture and online delivery, a course at an advanced level on marketing topics. Will fulfill the required elective for students in Management and the Life Sciences and Health Industries track. Prerequisite: M.B.A. student or departmental stamp.

MGT 490C. Special Topics in Marketing (4)
Through lecture and online delivery, a course at an advanced level on marketing topics. Will fulfill the required elective for students in Global Management and Policy track. Prerequisite: M.B.A. student or departmental stamp.

Marine Biodiversity and Conservation

OFFICE: La Jolla Village Professional Center
8950 Villa La Jolla Drive, Suite A124
(858) 964-1334
E-mail: mbc@ucsd.edu
http://mbc.ucsd.edu

Program Director
Nancy Knowlton, Ph.D., Director CMBC, Marine Biology Research Division, SIO, and Smithsonian Tropical Research Institute. Professor, Marine Biodiversity

Associate Directors
Wolfgang Berger, Ph.D., Professor Emeritus, Oceanography, SIO
Theodore Groves, Ph.D., Professor, Economics
Jeremy Jackson, Ph.D., Professor, Geosciences, SIO
Lisa Shaffer, Ph.D., Director, Policy Programs and International Relations, SIO. Adjunct Professor, IR/PS

The Master of Advanced Studies (MAS) in Marine Biodiversity and Conservation is a unique program of study equipping its graduates with the knowledge they need to improve conservation of marine biodiversity in the world’s most diverse and threatened eco-regions through development of local capacity and science-based management tools. Led by faculty of Scripps Institution of Oceanography (SIO), the program is designed to teach current and future professionals about marine ecosystems from the scientific, economic and policy perspectives, as well as provide important cultural and communications skills. The degree is most appropriate for marine resource managers in all regions of the world, practicing marine science professionals who wish to broaden their understanding and influence in this arena, science policy analysts and advocates, and natural scientists interested in obtaining a more firm grounding in the public policy and economics of marine conservation.

The MAS in Marine Biodiversity and Conservation is a full-time, self-supporting degree program that most students complete in a twelve-month period, mid-June through mid-June each year. The UCSD graduate division confers the MAS degree and the Center for Marine Biodiversity and Conservation at SIO, is responsible for the academic management of the curriculum. UCSD Extension administers the program and provides student advising and career counseling services.

Admission
New students are admitted in the summer (June) of each academic year. Prospective candidates should submit and complete the official UCSD online graduate application for admission, the application fee, one set of official transcripts from each institution attended after high school, three letters of recommendation, and a current résumé or c.v. The GRE/GMAT is not required. Candidates must normally have a minimum of three years of relevant work experience. International applicants must submit official scores from the Test of English as a Foreign Language (TOEFL). The application deadline is January 31 for the summer through spring academic program.

Program of Study
The full-time degree program is designed to be completed in one year. In the summer session, classes are scheduled five days a week, eight hours a day. In the fall, summer, and spring, students take courses that are held during regularly scheduled university class hours. Students are required to complete forty-eight units of courses, comprising thirty-seven core units, including a six- unit capstone project, and eleven elective units.

COURSES
For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.
Materials Science and Engineering Program

Student Affairs: Engineering Building 2, Room 170, Warren College
http://matsci.ucsd.edu

Professors
Sungho Jin, Ph.D., MAE, Program Director
Gustaf Arrhenius, Ph.D., SIO
Robert J. Asaro, Ph.D., SE
David J. Benson, Ph.D., MAE
Ami Berkowitz, Ph.D., Emeritus, Physics
John E. Crowell, Ph.D., Chemistry and Biochemistry
Sadik Esener, Ph.D., ECE
Yeshaiahu Fainman, Ph.D., ECE
Marye Anne Fox, Ph.D., Chemistry and Biochemistry, Chancellor
Yuan-Cheng Fung, Ph.D., Emeritus, Bioengineering
David Gough, Ph.D., Bioengineering
Gilbert A. Hegemier, Ph.D., ESE
Vistasp Karbassi, Ph.D., SE
John B. Kosmatka, Ph.D., SE
Sergi Krasheninnikov, Ph.D., MAE
Clifford Kubiak, Ph.D., Chemistry and Biochemistry
S.S. Lau, Ph.D., ECE
Yu-Hwa Lo, Ph.D., ECE
Huey-Lin Luo, Ph.D., ECE
M. Brian Maple, Ph.D., Physics
Xanthippe Markenscoff, Ph.D., MAE
Joanna McKittrick, Ph.D., Chemistry and Biochemistry
S. Deli Wang, Ph.D., ECE

Associate Professor
Richard K. Herz, Ph.D., MAE

Assistant Professors
Prabhakar Bandaru, Ph.D., MAE
Gabriel A. Silva, M.Sc., Ph.D., Bioengineering and Ophthalmology

Materials Science and Engineering Program is concerned with the study of the structure and properties of materials. The Materials Science and Engineering Program at UCSD aims to provide fundamental knowledge for quantitative understanding of materials with the objective of predicting, modifying, and tailoring the properties of materials to yield, at the technology level, enhanced material performance. The foundations of materials science are the basic sciences of physics, chemistry, and mathematics. The great variety of materials response, at the optical, magnetic, electrical, mechanical, and chemical levels, requires a solid scientific foundation and breadth of basic knowledge from the materials scientists. The interdisciplinary nature of the program at UCSD is ideally suited to address this requirement. The graduate of the Materials Science and Engineering Program benefits from unique research facilities existing at UCSD. These include the resources in the Departments of MAE, SE, ECE, Physics, Chemistry/Biochemistry, Bioengineering, and SIO, as well as in the Center of Excellence for Advanced Materials and the Center for Magnetic Recording Research. Of particular emphasis within the program is the experimental investigation and theoretical modeling of the mechanical response and failure models of advanced materials at ultrahigh strain rates; electronic, superconducting, magnetic, and optical properties of materials for advanced applications; biomaterials; and advanced composite materials for civil structures.

The Graduate Program

The Materials Science and Engineering Program is interdisciplinary, with participation of faculty members from several departments. Faculty from the following departments participate in the Materials Science and Engineering
Graduate Program: the Departments of Mechanical and Aerospace Engineering (MAE), Structural Engineering (SE), Bioengineering, Physics, Scripps Institution of Oceanography (SIO), Electrical and Computer Engineering (ECE), and Chemistry. The governance of the program is carried out by the executive committee of the program. The executive committee coordinates all affairs of the Materials Science and Engineering Program, including student admissions, degree requirements, graduate courses in materials science given by various participating departments, maintenance of laboratory instructional facilities, seminars, special courses, part-time instructors, and related matters.

Undergraduate preparation for the materials science and engineering M.S. and Ph.D. normally would include a degree in materials science and in engineering or physical sciences, such as physics, chemistry, geology, and related disciplines. Students are expected to have an adequate mathematics, physics, chemistry, and related basic sciences background.

Master’s Degree Program

The program offers the M.S. degree in materials science and engineering under both the Thesis Plan I and the Comprehensive Examination Plan II; see “Graduate Studies: Master’s Degree.” The requirements for the M.S. degree are as follows:

1. **All students must complete a total of thirty-six units.**

2. **All students must complete four Mandatory Core Courses and at least two of the six Elective Core Courses:**

 Mandatory Core Courses
 - MS 201A-B-C, MS 227

 Elective Core Courses (required to select at least two to fulfill requirements)
 - MS 205A, MS 251A-B, MS 252, MS 253, PHYS 152A
 - (Physics 211A can replace 152A with advisor’s permission.) See “Courses” for description.

3. **Students may include up to twelve units of undergraduate courses.** These include the one undergraduate core course, Physics 152A.

4. Enroll in MATS200, as required. See “Courses” for descriptions.

5. **Remaining courses to complete the thirty-six unit requirement for the M.S. degree may be selected from an approved list of graduate courses with the consent of a faculty advisor.**

6. **Students either complete a thesis (Plan I) or pass a comprehensive examination (Plan II) as described in the “Graduate Studies” section of this catalog.**

7. **Students must meet all other requirements established by the university.**

 Students who transfer with some graduate credit or an M.S. from another institution will have their records reviewed by a faculty advisor, and an appropriate individual course of study may be approved.

The Ph.D. Program

After completing the M.S. degree (or meeting equivalent requirements) and meeting the minimum standard on the comprehensive examination to be admitted to or continue in the Ph.D. program, a student must:

1. **Meet all the university’s residency and other requirements.**

2. **Successfully complete three advanced graduate courses (in addition to those required for the M.S. degree) which have been approved by the student’s potential dissertation advisor.**

3. Enroll in MATS200, as required. See “Courses” for descriptions.

4. Pass the Literature Review Examination. This requirement must be successfully completed within one year after passing the Comprehensive Examination.

5. Pass the Ph.D. Qualifying Examination (Senate Exam) to be advanced to Ph.D. candidacy.

6. **Successfully complete and defend a dissertation which, in the opinion of the dissertation committee, contains original work that should lead to publication of at least one significant article in an appropriate refereed journal.**

 In principle, it should be possible to finish the M.S. degree in three quarters, and a Ph.D. in an additional three years. Ph.D. time limits are as follows: Pre-candidacy—four years; Support limit—six years; Total time limit—seven years; Normative time limit for a properly prepared B.S. student—five years. (See “Graduate Studies—Ph.D. Time Limits” for further explanation.)

Departmental Examination

THE COMPREHENSIVE EXAMINATION

The examination will consist of twelve questions, two from each of the six core courses. A passing grade is 60 percent for the Master’s degree, and 70 percent for the Ph.D. The examination will not exceed six hours in duration. The examination is usually administered the second week in January, and a week after spring quarter finals week in June. Typically, students take the exam after one year of full-time enrollment. This exam may only be retaken once before the end of the second year of study.

THE LITERATURE REVIEW EXAMINATION

The Literature Review Examination tests the student’s ability to prepare and present a comprehensive overview of a topic based on existing journal literature. It should be a comprehensive discussion of the literature, scientific theory, problems or theoretical deficiencies, and possible areas of research in some area of materials science and engineering. The topic may be in the general area in which the student plans to pursue his or her thesis research, or it may be in an unrelated field. The topic must be approved by the three faculty member committee in advance of the seminar. The Literature Review Examination is not to be a discussion of the student’s research project or their research proposal. A presentation which includes the student’s own work which has not been published will constitute a no pass grade. This exam must occur within one year of the student having passed the Comprehensive Examination.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

GRADUATE

200. Graduate Seminar (0)

Each graduate student in the Materials Science and Engineering Program is expected to attend a weekly seminar in materials science or related areas. M.S. students must enroll for three quarters, Ph.D. students for six quarters, as of fall 1995. (S/U grades only.) (F,W,S)

201A. Thermodynamics of Solids (4)

The thermodynamics and statistical mechanics of solids. Basic concepts; equilibrium properties of alloy systems; thermodynamic information from phase
diagrams, surfaces, and interfaces; crystalline defects. Prerequisite: consent of instructor.

201B. Solid State Diffusion and Reaction Kinetics (4) Thermally activated processes, Boltzmann factor, homogeneous and heterogeneous reactions, solid state diffusion, Fick’s laws, diffusion mechanisms, Kirkendall effect, Boltzmann-Matano analysis, high diffusivity paths. Prerequisite: consent of instructor.

205A. Imperfections in Solids (4) Point, line, and planar defects in crystalline solids, including vacancies, self-interstitials, solute atoms, dislocations, stacking faults, and grain boundaries; effects of imperfections on mechanical properties; interactions of dislocations with point defects; strain hardening by micro-obstacles, precipitation, and alloying elements. Prerequisite: consent of instructor.

211A. Mechanical Properties (4) Review of basic concepts in mechanics of deformation; elasticity, plasticity, viscoelasticity, and creep; effects of temperature and strain-rate on inelastic flow; microstructure and mechanical properties; application of basic concepts to selected advanced materials. Prerequisite: consent of instructor. (Cross-listed with MAE 229.)

213A. Dynamic Behavior of Materials I (4) Elastic waves in continuum; longitudinal and shear waves. Surface waves. Plastic waves; shock waves; Rankine-Hugoniot relations. Method of characteristics, differential and difference form of conservation equations; dynamic plasticity and dynamic fracture. Shock wave reflection and interaction. Prerequisite: consent of instructor. (F) (Cross-listed with MAE 273A.)

225. Materials for Magnetic Recording (4) Properties of magnetic materials utilized as magnetic recording media and heads; magnetic structure of oxides and metals; fine particle magnetism; micromagnetic analysis; hysteresis and reversal mechanisms of hard materials; dynamic processes and domain patterns of soft materials; thermal fluctuations; multilayer phenomena; giant magnetoresistance. Prerequisites: undergraduate electromagnetism and solid state physics or consent of instructor. (Cross-listed with ECE 246A.)

227. Structure and Analysis of Solids (4) Key concepts in the atomic structure and bonding of solids such as metals, ceramics, and semiconductors. Symmetry operations, point groups, lattice types, space groups, simple and complex inorganic compounds, structure/property comparisons, structure determination with X-ray diffraction. Ionic, covalent, metallic bonding compared with physical properties. Atomic and molecular orbitals, bands versus bonds, free electron theory. Prerequisite: graduate student or consent of instructor.

236. Ceramic and Glass Materials (4) Powder synthesis, powder compaction and densification via different processing routes. Phase equilibria and crystallography in ceramic materials. Sintering, liquid and vapor phase processing and single crystal growth. Control of the microstructural development and interfacial properties to optimize properties for structural, thermal, electrical, or magnetic use. Topics in processing and use of advanced ceramic materials. Glass formation and structure, phase separation, viscous flow and relaxation. Prerequisite: consent of instructor.

240A. Scanning Electron Microscopy and X-Ray Microanalysis (4) Electron optics, electron-beam specimen interactions. Image formation in the SEM. The role of specimen and detector in contrast formation. Imaging strategies. X-ray spectral measurements. Qualitative and quantitative X-ray microanalysis. Materials specimen preparation. Prerequisite: consent of instructor. The laboratory section will teach the operation of the microscope to conduct material analysis via SEM.

240B. Transmission Electron Microscopy (4) Operation and calibration of the TEM, lens defects and resolution, formation of images and diffraction patterns, electron diffraction theory (kinematic and dynamical), indexing diffraction patterns, diffraction contrast. Quantitative analysis of crystal defects, phase contrast, and specimen preparation. Prerequisite: MS 240A or consent of instructor. The laboratory section will teach the operation of the microscope to conduct material analysis via TEM.

243. Modern Materials Analysis (4) Analysis of the near surface of materials via ion, electron, and x-ray spectrometers. Topics to be covered include particle solid interactions. Rutherford Backscattering, secondary ion mass spectroscopy, electron energy loss spectroscopy, particle induced x-ray emission, Auger electron spectroscopy, extended x-ray absorption fine structure and channeling. Prerequisite: consent of instructor. (Cross-listed with ECE 237.)

251A. Electronic and Photonic Properties of Materials (4) The electronic and optical properties of metals, semiconductors, and insulators. The concept of the band structure. Electronic and lattice conductivity. Type I and Type II superconductivity. Optical engineering using photonic band gap crystals in one-, two-, and three-dimensions. Current research frontiers. Prerequisites: consent of the instructor. (Cross-listed with MAE 265A.)

251B. Magnetic Materials: Principles and Applications (4) The basis of magnetism: classical and quantum mechanical points of view. Different kinds of magnetic materials. Magnetic phenomena including anisotropy, magnetostriction, domains, and magnetization dynamics. Current frontiers of nano-magnetics research including thin films and particles. Optical, data storage, and biomedical engineering applications of soft and hard magnetic materials. Prerequisites: consent of instructor. (Cross-listed with MAE 256B.)

252. Biomaterials (4) This class will cover biomaterials and biomimetic materials. Metal, ceramic, and polymer biomaterials will be discussed. Emphasis will be on the structure-property relationships, biocompatibility/degradation issues and tissue/material interactions. Synthesis and mechanical testing of biomimetic materials will also be discussed. Prerequisite: consent of instructor. (Cross-listed with MAE 266.)

253. Nanomaterials and Properties (4) This course discusses synthesis techniques, processing, microstructural control, and unique physical properties of materials in nano-dimensions. Topics include nanowires, quantum dots, thin films, electrical transport, electron emission properties, optical behavior, mechanical behavior, and technical applications of nanomaterials. Prerequisite: consent of instructor. (Cross-listed with MAE 267.)

254. Frontier Micro-Electro-Mechanical Systems (MEMS) Materials and Devices (4) Fabrication of Micro-Electro Mechanical Systems (MEMS) by bulk and surface micromachining of single crystal, polycrystal, and amorphous silicon and other materials. Performance issues including electrostatic, magnetic, piezoelectric actuations, residual stresses, deformation. Novel device applications, future trends in smart materials and nano-electro-mechanical (NEMS) systems. Prerequisite: consent of instructor. (Cross-listed with MAE 268.)

255. Presentations, Inventions, and Patents (4) This course covers methodology and skills for oral and written presentations. Topics include preparation of presentation materials, presentation exercise, publication manuscripts, research work proposals, understanding and securing of inventions and intellectual properties, patent applications and licensing. Prerequisite: consent of instructor. (Cross-listed with MAE 269.)

295. Research Conference (2) Group discussion of research activities and progress of group members. Prerequisite: consent of instructor.

296. Independent Study (4) Prerequisite: consent of instructor.

299. Graduate Research (1-12) (S/U grades only.)

Subject to the approval of a faculty advisor, students may also choose from the following courses offered by departments participating in the Materials Science and Engineering Program (see the relevant pages of this catalog for descriptions):
Mathematics

OFFICE: 7018 Applied Physics and Mathematics
Building, Muir College
http://math.ucsd.edu

Professors
Ian S. Abramson, Ph.D., Vice Chair
Jim Agler, Ph.D.
Randolph E. Bank, Ph.D.
M. Salah Baouendi, Ph.D.
Edward A. Bender, Ph.D.
James R. Bunch, Ph.D.
Samuel R. Buss, Ph.D., Chair
Bennett Chow, Ph.D.
Bruce K. Driver, Ph.D.
Peter F. Epstein, Ph.D.
Thomas J. Enright, Ph.D.
John W. Evans, M.D., Ph.D., Emeritus
Ronald J. Evans, Ph.D.
Jay P. Fillmore, Ph.D., Emeritus
Carl H. FitzGerald, Ph.D.
Patrick J. Fitzsimmons, Ph.D.
Theodore T. Frankel, Ph.D., Emeritus
Michael Freedman, Ph.D., Emeritus
Adriano M. Garsia, Ph.D.
Ronald K. Getoor, Ph.D., Emeritus
Philip E. Gill, Ph.D.
Fan Chung Graham, Ph.D.
Mark W. Gross, Ph.D.
Leonard R. Haff, Ph.D., Emeritus
Hubert Halkin, Ph.D., Emeritus
Guershon Harel, Ph.D.
J. William Helton, Ph.D.
Michael J. Holst, Ph.D.
Allen Knutson, Ph.D.
James P. Lin, Ph.D., Vice Chair
Hans Lindblad, Ph.D.
Alfred B. Manaster, Ph.D., Emeritus
David A. Meyer, Ph.D.
Kate Okikiolu, Ph.D.
John O’Quigley, Ph.D., Emeritus
Dimitris Politis, Ph.D.
Jeffrey M. Rabin, Ph.D., Academic Senate
Distinguished Teaching Award
Jeffrey B. Remmel, Ph.D., Associate Dean, Division
of Physical Sciences
Yosef Rinott, Ph.D., Emeritus
Burton Rodin, Ph.D., Emeritus
Helmut Rohrlich, Ph.D., Emeritus
Murray Rosenblatt, Ph.D., Emeritus
Linda Rothschuld, Ph.D.
Michael J. Sharpe, Ph.D., Emeritus
Lance W. Small, Ph.D.
Donald R. Smith, Ph.D., Emeritus
Harold M. Stark, Ph.D.
Audrey A. Terras, Ph.D.
Adrian R. Wadsworth, Ph.D.
Nolan R. Wallach, Ph.D.
Hans G. Wyler, Ph.D.
Ruth J. Williams, Ph.D.
Peter F. Ebenfelt, Ph.D.
Hans Lindblad, Ph.D.
James P. Lin, Ph.D.
Allen Knutson, Ph.D.

Associate Professors
Li-Tien Cheng, Ph.D.
Wee Teck Gan, Ph.D.
Nitya Kitchloo, Ph.D.
Bo Li, Ph.D.
Lei Ni, Ph.D.
Cristian Popescu, Ph.D.
Justin D. Roberts, Ph.D.
John J. Wavrik, Ph.D., Emeritus
Ronghui Xu, Ph.D.

Assistant Professors
Ery Arias-Castro, Ph.D.
Aurore Delaigle, Ph.D.
Daniel S. Rogalski, Ph.D.
Jason Schweinsberg, Ph.D.

Jacob K. Sterbenz, Ph.D.
Glenn Tesler, Ph.D.
Neshan Wickramasekera, Ph.D.

Senior Lecturer with Security of Employment
Frank B. Thiess, Ph.D., Emeritus

Lecturers with Security of Employment
John D. Eggers, Ph.D., Academic Senate
Distinguished Teaching Award
Norman A. Shenk, Ph.D., Emeritus
Laura J. Stevens, Ph.D.

The Undergraduate Program

The mathematics department offers a wide range of courses in pure and applied mathematics for its majors and for students in other disciplines. The department offers six majors leading to the B.A. degree: mathematics, applied mathematics, mathematics–applied science, mathematics–computer science, joint major in mathematics and economics, and mathematics–secondary education, and one leading to the B.S. degree: mathematics–scientific computation. In addition, students can minor in mathematics. The department also has an Honors Program for exceptional students in any of the seven majors. See the sections on major programs and the other areas mentioned above as well as the course descriptions at the end of this section for more specific information about program requirements and the courses that are offered by the department. You may visit our Web site, http://math.ucsd.edu for more information including course Web pages, career advising, and research interests of our faculty.

First-Year Courses

Entering students must take the Mathematics Placement Exam (MPE) prior to registration unless they have an appropriate score on the SAT II Math Level 2C Exam, an appropriate score on the International Baccalaureate Higher Level Mathematics Exam, credit by means of a foreign exam (e.g., GCE), or transferable college credit in calculus. The purpose of the MPE is to recommend placement for entering students in Math. 3C, 4C, 10A, or 20A. For more information about the MPE (test dates, test description, sample exams, online practice tests), see the Mathematics Testing and Placement Web site, http://mathtesting.ucsd.edu.
Mathematics

Prerequisites for Math. 4C, 10A-B-C and 20A-B-C-D-E-F are enforced through TritonLink. Students need to ensure that test scores and transferable college credit are submitted to the Registrar prior to enrollment through WebReg.

Math. 3C is the department's preparatory course for the Math. 10 sequence, providing a review of algebraic skills, facility in graphing, and working with exponential and logarithmic functions.

Math. 4C is the department's preparatory course for the Math. 20 sequence, providing a brief review of college algebra followed by an introduction to trigonometry and a more advanced treatment of graphing and functions.

Math. 10A-B-C is one of two calculus sequences. The students in this sequence have completed a minimum of two years of high school mathematics. This sequence is intended for majors in liberal arts and the social and life sciences. It fulfills the mathematics requirements of Revelle College and the option of the general-education requirements of Muir College. Completion of two quarters fulfills the requirement of Marshall College and the option of Warren College and Eleanor Roosevelt College.

The other first-year calculus sequence, Math. 20A-B-C, is taken mainly by students who have completed four years of high school mathematics or have taken a college level precalculus course such as Math. 4C. This sequence fulfills all college level requirements met by Math. 10A-B-C and is required of many majors, including chemistry and biochemistry, bioengineering, cognitive science, economics, mathematics, molecular biology, psychology, MAE, CSE, ECE, and physics. Students with adequate backgrounds in mathematics are strongly encouraged to take Math. 20 since it provides the foundation for Math. 20D-E-F which is required for some science and engineering majors.

Note: As of summer 2003, Math. 21C and 21D have been renumbered to Math. 20C and 20D.

Certain transfers between the Math. 10 and Math. 20 sequences are possible, but such transfers should be carefully discussed with an advisor. Able students who begin the Math. 10 sequence and who wish to transfer to the Math. 20 sequence, may follow one of three paths:

1. Follow Math. 10A with Math. 20A, with two units of credit given for Math. 20A. This option is not available if the student has credit for Math. 10B or Math. 10C.
2. Follow Math. 10B with Math. 20B, receiving two units of credit for Math. 20B.
3. Follow Math. 10C with Math. 20B, receiving two units of credit for Math. 20B and two units of credit for Math. 20C.

Credit will not be given for courses taken simultaneously from the Math. 10 and the Math. 20 sequence.

Major Programs

The department offers six different majors leading to the Bachelor of Arts degree: (1) mathematics, (2) applied mathematics, (3) mathematics–applied science, (4) mathematics–computer science, (5) joint major in mathematics and economics, (6) mathematics–secondary education; and two leading to a B.S. degree: (1) mathematics–scientific computation, (2) mathematics–probability and statistics. The specific emphases and course requirements for these majors are described in the following sections. All majors must obtain a minimum 2.0 grade-point average in the upper-division courses used to satisfy the major requirements. Further, the student must receive a grade of C– or better in any course to be counted toward fulfillment of the major requirements. Any mathematics course numbered 100–194 may be used as an upper-division elective. (Note: 195, 196, 197, 198, 199, and 199H cannot be used towards any mathematics major.) All courses used to fulfill the major must be taken for a letter grade. No more than three upper-division courses taken externally from UCSD can be counted towards any major. Special exceptions may be considered via petition.

It is strongly recommended that all mathematics majors review their programs at least annually with a departmental advisor, and that they consult with the Advising Office in AP&M 6016 before making any changes to their programs. Current course offering information for the entire academic year is maintained on the department's Web page at http://www.math.ucsd.edu. Special announcements are also e-mailed to all majors.

Students who plan to go on to graduate school in mathematics should be advised that only the best and most motivated students are admitted. Many graduate schools expect that students will have completed a full sequence of abstract algebra (Math. 100A-B-C) as well as a full sequence of analysis (Math. 140A-B-C). The advanced Graduate Record Exam (GRE) often has questions that pertain to material covered in the last quarter of analysis or algebra. In addition, it is advisable that students consider

Summer Research Experiences for Undergraduates. This is a program funded by the National Science Foundation to introduce students to math research while they are still undergraduates. In their senior year or earlier, students should consider taking some graduate courses so that they are exposed to material taught at a higher level. In their junior year, students should begin to think of obtaining letters of recommendation from professors who are familiar with their abilities.

Math. 20D, E, and F do not need to be taken in order. Math majors are strongly advised to take 20F as early as possible after successfully completing 20C.

Education Abroad

Students may be able to participate in the UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP) while still making progress towards the major. Students interested in this option should contact the Programs Abroad Office in the International Center and discuss their plans with the mathematics advising officer before going abroad.

The department must approve courses taken abroad. Information on EAP/OAP can be found in the Education Abroad Program section of the UCSD General Catalog and the Web site http://pao.ucsd.edu.

Major in Mathematics

The upper-division curriculum provides programs for mathematics majors as well as courses for students who will use mathematics as a tool in the biological, physical and behavioral sciences, and the humanities.

REQUIRED COURSES:

Lower-Division

1. Calculus: Math. 20A-B-C-D-E-F

Upper-Division

3. One of the following sequences:
 b. Advanced Calculus: Math. 142A-B and Math. 120A (Math. 140A-B-C recommended for graduate school)

4. One of the following sequences:
 a. Modern Algebra: Math. 100A-B
b. Modern Applied Algebra: Math. 103A-B and Math. 102 (Math. 100A-B-C recommended for graduate school)

5. Upper-division electives to complete thirteen four-unit courses, chosen from any mathematics course numbered between 100 and 194 (including those taken from the requirements listed above.)

As with all departmental requirements, more advanced courses on the same material may be substituted with written approval from the departmental advisor.

To be prepared for a strong major curriculum, students should complete the last three quarters of the 20 sequence and Math. 109 before the end of their sophomore year. Either Math. 140A-B or 100A-B should be taken during the junior year.

Major in Applied Mathematics

A major in applied mathematics is also offered. The program is intended for students planning to work on the interface between mathematics and other fields.

REQUIRED COURSES:

Lower-Division

1. Calculus: Math. 20A-B-C-D-E-F
2. Programming (one of the following)
 a. CSE 8AL-B (Intro to Computer Sci: Java)
 b. CSE 11 (Intro to Computer Sci: Java, Accelerated Pace)
3. MAE 9 (C/C++ Programming)
4. MAE 10 (FORTRAN for Engineers)

Upper-Division

4. Linear Algebra: Math. 102 or Math. 170A
5. Advanced Calculus: Math. 140A-B or Math. 142A-B
6. One of the following sequences:
 a. Math. 180A-B-C-181A
 b. Math. 180A-181A and any two from Math. 181B-C-D-E
 c. (Math. 183 or Math. 180A-181A) and any three from Math. 170A-B-C-172-173
7. One additional sequence which may be chosen from the list (#6) above or the following list: Math. 110-120A-130A, 120A-B, 130A-132A, 155A-B, 171A-B, 193A-B.
8. Upper-division electives to complete at least thirteen four-unit courses, chosen from any mathematics course numbered between 100 and 194 (including those taken from the requirements listed above) except:
 a. Up to twelve units may be taken from outside the department in an approved applied mathematical area. A petition specifying the courses to be used must be approved by an applied mathematics advisor. No such units may also be used for a minor or program of concentration.
 b. MAE 107, Econ. 120A-B-C, cannot be counted toward the thirteen required courses.

To be prepared for a strong major curriculum, students should complete the last three quarters of the 20 sequence and Math. 109 before the end of their sophomore year.

Major in Mathematics—Scientific Computation

This major is designed for students with a substantial interest in scientific computation. The program is a specialized applied mathematics program with a concentration in computer solutions of scientific problems.

REQUIRED COURSES:

Lower-Division

1. Calculus: Math. 20A-B-C-D-E-F
2. Computer Programming:
 a. MAE 9 or MAE 10 and CSE 8AL-B or CSE 11
3. Basic Computation:
 a. Math. 15A (or CSE 20) and Math. 15B (or CSE 21) and CSE 12

Upper-Division

5. Linear Algebra: Math. 102
6. Probability and Statistics: Math. 183 or 180A-181A (Note: No credit for Math. 183 if Math. 180A or 181A taken prior or concurrently.)
7. Analysis:
 a. Math. 140A-B or 142A-B (Note: Students planning to go to grad school should take 140A-B)
11. Additional elective upper-division courses to total 15 chosen from the following:

At least 15 upper-division mathematics courses are required for the major, except:

a. Up to 3 upper-division courses may be taken outside the department in an approved scientific computation area in the sciences or engineering. A petition specifying the courses to be used must be approved by a mathematics-scientific computation advisor. No such units may also be used by a minor or program of concentration.

b. MAE 107, Econ. 120A-B-C, Math. 195, 196, 197, 199, and 199H cannot be counted toward the 13 four-unit upper-division courses.

Major in Mathematics—Probability and Statistics

Effective Winter 2007

This major is designed for students with a substantial interest in probability theory and statistics. It is useful preparation for many fields of employment as well as graduate school.

REQUIRED COURSES:

Lower-Division

1. Calculus: Math. 20A-B-C-D-E-F
2. Programming (one of the following)
 a. CSE 8A-8AL-8B (Java)
 b. CSE 11 (Java)
 c. MAE 9 (C/C++)
 d. MAE 10 (Fortran)

Upper-Division

4. Linear Algebra: Math. 102 or Math. 170A
5. Analysis/Advanced Calculus: Math. 140A-B or Math. 142A-B
6. Probability: Math. 180A-B-C
8. One of the following: Math. 181C, 181E, 193A, 193B, 194
9. Computational Statistics: Math. 185
Mathematics

At least 15 four-unit upper-division mathematics courses, except:

a. Two upper-division electives may be outside the department in an approved applied mathematical area. A petition approved by a math advisor is required. No such units may also be used for a minor or program of concentration.

b. MAE 107, Econ. 120A-B-C, Math. 195-199 cannot be counted toward the upper-division requirements.

To be prepared for a strong major curriculum, students should complete the last three quarters of the 20 sequence and Math. 109 before the end of their sophomore year.

Major in Mathematics–Applied Science

This major is designed for students with a substantial interest in mathematics and its applications to a particular field such as physics, biology, chemistry, biochemistry, cognitive science, computer science, economics, management science, or engineering.

REQUIRED COURSES:

Lower-Division

1. Calculus: Math. 20A-B-C-D-E-F
2. Programming (one of the following is recommended):
 a. CSE 8AL-B (Intro to Computer Sci: Java)
 b. CSE 11 (Intro to Computer Sci: Java, Accelerated Pace)
 c. MAE 9 (C/C++ Programming)
 d. MAE 10 (FORTRAN for Engineers)

Upper-Division Mathematics Requirements:

4. Linear Algebra: Math. 102 or Math. 170A
5. Any two-quarter, upper-division math sequence
6. Upper-division electives to complete at least seven four-unit courses, chosen from any mathematics course numbered between 100 and 194 (including those taken from the requirements listed above.)

Upper-Division Applied Science Requirements:

7. Seven upper-division courses selected from one or two other departments (these cannot be from mathematics). At least three of these seven upper-division courses must require at least Math. 20C as a prerequisite. Students must submit an individual plan for approval in advance by a mathematics department advisor, and all subsequent changes in the plan must be approved by a mathematics department advisor.

Major in Mathematics–Computer Science

The program provides for a major in computer science within the Department of Mathematics. Graduates of this program will be mathematically oriented computer scientists who have specialized in the mathematical aspects and foundations of computer science or in the computer applications of mathematics.

As of fall 2000, a mathematics-computer science major is not allowed to also minor in computer science in the Computer Science and Engineering department.

The detailed curriculum is given in the list below:

Mathematics–Computer Science Pre-Major

In October 2001, the Academic Senate approved a minimum GPA requirement of 2.5 in the lower-division mathematics courses required for the mathematics–computer science major. The 2.5 minimum GPA in the lower-division math courses reflects minimal preparation for the upper-division courses required for the major.

Therefore, students entering UCSD as first-year students for the fall 2002 quarter and later and students entering as transfer students for the fall 2003 quarter and later will be held to this requirement. Applications from students entering UCSD on or after the effective dates above will be held until all lower-division math courses for the major are completed and the minimum GPA in those courses of 2.5 can be verified. Students meeting the 2.5 minimum GPA requirement will be accepted into the mathematics–computer science major.

REQUIRED COURSES:

Lower-Division

1. Calculus: Math. 20A-B-C-D-E-F
2. Intro to Computer Science—CSE 8AL-B
 Introduction to Computer Science: Java, or CSE 11 Introduction to Computer Science: Java (Accelerated)
3. Basic Data Structures and Object-oriented Programming: CSE 12
4. Computer Organization and Systems Programming: CSE 30 (Note: CSE 30 requires CSE 20 or Math. 15A as a prerequisite)

Upper-Division

7. Theory of Computability: Math. 166
 (or CSE 105)
8. Intro to Probability: Math. 180A or 183
9. Mathematical Foundations of Computer Science: Math. 184A
10. Computer Implementations of Data Structures: Math. 176 (or CSE 100)
11. Design & Analysis of Algorithms: Math. 188 (or CSE 101)

In order to graduate by the end of their senior year, students should complete Math. 103A-B by the end of their junior year.

Joint Major in Mathematics and Economics

Majors in mathematics and the natural sciences often feel the need for a more formal introduction to issues involving business applications of science and mathematics. Extending their studies into economics provides this appli-
education and can provide a bridge to successful careers or advanced study. Majors in economics generally recognize the importance of mathematics to their discipline. Undergraduate students who plan to pursue doctoral study in economics or business need the more advanced mathematics training prescribed in this major. This major is considered to be excellent preparation for Ph.D. study in economics and business administration, as well as for graduate studies for professional management degrees, including the MBA. The major provides a formal framework making it easier to combine study in the two fields.

Course requirements of the Joint Major in Mathematics and Economics consist principally of the required courses of the pure mathematics major and the economics/management science major.

REQUIRED COURSES:

Lower-Division

1. Calculus: Math. 20A-B-C-D-F
2. Intro to Economics: Econ. 1 and 3

Upper-Division

Fifteen upper-division courses in mathematics and economics, with a minimum of seven courses in each department, chosen from the courses listed below (prerequisites are strictly enforced):

4. One of the following:
 - Applied Linear Algebra: Math. 102
 - Numerical Linear Algebra: Math. 170A
 - Modern Algebra: Math. 100A-B
5. One of the following:
 - Foundations of Analysis: Math. 140A
 - Advanced Calculus: Math. 142A
6. One of the following:
 - Ordinary Differential Equations: Math. 130A,
 - Foundations of Analysis: Math. 140B
 - Advanced Calculus: Math. 142B
7. Microeconomics: Econ. 100A-B-C
8. Econometrics: Econ. 120A-B-C or Econ. 120B-C or
 - Math. 180A and Econ. 120B-C
 - Probability: Math. 180A, 181A and Econ. 120C
9. One of the following:
 - Mathematical Programming: Numerical
 Optimization: Math. 171A-B
 - Two courses from the following:
 - Decisions Under Uncertainty: Econ. 171
 - Introduction to Operations Research:
 Econ. 172A-B, (Note: 172A is a prerequisite for 172BC)
 - Other courses which are strongly recommended are: Math. 130B, 131, 181B, 193A-B and 194 and Econ. 109, 113, 175, and 178.

Major in Mathematics–Secondary Education

This major offers excellent preparation for teaching mathematics in secondary schools. Students interested in earning a California teaching credential from UCSD should contact the Teacher Education Program (TEP) for information regarding prerequisites and requirements. It is recommended you contact TEP as early as possible.

Lower-Division Requirements

1. Calculus 20A-B-C-D-E-F
2. One of the following:
 - Introduction to Computer Science:
 - Java: CSE 8AL-B,
 - Fortran: MAE 10
 - C/C++ Programming: MAE 9

Upper-Division Requirements:

4. Number Theory: Math 104A
5. History of Mathematics: Math. 163
6. Practicum in Learning: EDS 129A-B-C (can use EDS 136 and EDS 138 instead of EDS 129A)
7. One of the following:
 - Computer Algebra: Math. 107A
 - Computer Graphics: Math. 155A
 - Mathematical Computing: Math. 161
 - Numerical Linear Algebra: Math. 170A
 - Intro. to Cryptography: Math. 187
8. One of the following:
 - Intro. to Probability: Math. 180A
 - Statistical Methods: Math. 183
9. One of the following:
 - Differential Geometry: Math. 150A
 - Topics in Geometry: Math. 151
 - Geometry for Secondary Teachers: Math. 153
 - Intro. to Topology: Math. 190
10. One of the Following:
 - Modern Algebra: Math. 100A
 - Applied Linear Algebra: Math. 102
 - Modern Applied Algebra: Math. 103A
11. One of the following:
 - Foundations of Analysis: Math. 140A
 - Advanced Calculus: Math. 142A
12. Upper-division courses must total thirteen courses. Upper-division courses must include at least one two-quarter sequence from the following list:
 - 100A-B; 103A-B, 103A-102; 104A-B; 110-120A;
 - 110-130A; 110-132A; 110-131; 120A-B;
 - 130A-132A; 132A-B; 140A-B;142A-B; 150A-B;
 - 155A-B; 160A-B; 170A-B; 170A-172; 170A-173;
 - 170A-171A; 171A-B; 180A-B; 180A-181A;
 - 193A-B.

Minor in Mathematics

The minor in mathematics consists of seven or more courses. At least four of these courses must be upper-division courses taken from the UCSD Department of Mathematics. Acceptable lower-division courses are Math. 20D, 20E, and 20F.

Math. 195, 196, 197, 198, 199, and 199H are not acceptable courses for the mathematics minor. A grade of C– or better (or P if the Pass/No Pass option is used) is required for all courses used to satisfy the requirements for a minor. There is no restriction on the number of classes taken with the P/NP option. Upper-division courses cannot overlap between major and minor programs.

Minor in Mathematics Education

The education studies mathematics education minor is intended for students interested in understanding how people learn mathematics, including: students considering K-12 teaching as a career; students interested in teaching at the college level; and students who are interested in becoming better, more reflective learners. All majors are welcome, but the Calculus 10 or 20 sequence is a prerequisite for two of the upper-division courses required for the minor. For more information contact the Department of Education Studies: http://www-tep.ucsd.edu/minormath.shtm

Mathematics Honors Program

The Department of Mathematics offers an honors program for those students who have demonstrated excellence in the major.
Successful completion of the honors program entitles the student to graduate with departmental honors (see Department Honors in the Academic Regulations section). Application to the program should be made the spring quarter before the student is at senior standing.

Requirements for admission to the program are:

1. Junior standing
2. An overall GPA of 3.0 or higher
3. A GPA in the major of 3.5 or higher
4. Completion of Math. 109 (Mathematical Reasoning) and at least one of Math. 100A, 103A, 140A, or 142A. (Completion of additional major courses is strongly recommended.)

Completion of the honors program requires the following:

1. At least one quarter of the student colloquium, Math. 196 (Note: Math. 196 is only offered in the fall quarter.)
2. The minimum 3.5 GPA in the major must be maintained
3. An Honors Thesis. The research and writing of the thesis will be conducted over at least two quarters of the junior/senior years under the supervision of a faculty advisor. This research will be credited as eight to twelve units of Math. 199H. The completed thesis must be approved by the department's Honors Committee, and presented orally at the Undergraduate Research Conference or another appropriate occasion.

The department's Honors Committee will determine the level of honors to be awarded, based on the student's GPA in the major and the quality of the honors work. Applications for the mathematics department's Honors Program can be obtained at the mathematics department Undergraduate Affairs Office (AP&M 7018) or the Mathematics Advising Office (AP&M 6016). Completed applications can be returned to the Mathematics Advising Office.

Duplication of Credit

In the circumstances listed below, a student will not receive full credit for a Department of Mathematics course. The notation "Math. 20A [2 if Math. 10A previously/0 if Math. 10A currently/0 if Math. 10B or 10C]" means that a student already having credit for Math. 10A will receive only two units of credit for Math. 20A, but will receive no units if he or she has credit for Math. 10B or 10C, and no credit will be awarded for Math. 20A if Math. 10A is being taken concurrently.

1. Math. 4C [2 if 3C previously/0 if Math. 10A or Math. 20A previously or concurrently]
2. Math. 10A [0 if Math. 20A previously or concurrently]
3. Math. 10B [0 if Math. 20B previously or concurrently]
4. Math. 10C [0 if Math. 20C previously or concurrently]
5. Math. 15A [0 if CSE20 previously or concurrently]
6. Math. 15B [0 if CSE21 previously or concurrently]
7. Math. 20A [2 if Math. 10A previously/0 if Math. 10A concurrently/0 if Math. 10B or 10C]
8. Math. 20B [2 if Math. 10B or 10C previously/0 if Math. 10B concurrently]
9. Math. 20C [2 if Math. 10C previously/0 if Math. 10C concurrently]
10. Math. 20D [0 if Math. 2DA previously]
11. Math. 20E [0 if Math. 2F previously]
12. Math. 20F [0 if Math. 2EA previously]
13. Both Math. 100 and Math. 103 cannot be taken for credit
14. Math. 140A-B and Math. 142 A-B cannot both be taken for credit
15. Math. 155A [0 if CSE 167]
16. Math. 166 [0 if CSE105]
17. Math. 174 [0 if 170A or B or C previously]
18. Math. 176 [0 if CSE 100 previously or concurrently]
19. Math. 180A [2 if Econ. 120A previously/0 if Econ. 120A concurrently]
20. Math. 181A [2 if Econ. 120B/0 if Econ. 120B concurrently]
21. Math. 183 [0 if Econ. 120A or ECE 109 or Math. 180A or Math. 181A or Math. 186 has been taken previously or concurrently. Full credit for Math. 183 will be given if taken previously to Math. 180A or Math. 181A.]

Advisors

Advisors change yearly. Contact the undergraduate office at (858) 534-3590 for current information.

The Graduate Program

The Department of Mathematics offers graduate programs leading to the M.A. (pure or applied mathematics), M.S. (statistics), and Ph.D. degrees.

The application deadline for fall admission is January 15. Candidates should have a bachelor's or master's degree in mathematics or a related field from an accredited institution of higher education or the equivalent. A minimum scholastic average of B or better is required for course work completed in upper-division or prior graduate study. In addition, the department requires all applicants to submit scores no older than twelve months from both the GRE General Test and Advanced Subject Test in Mathematics. Completed files are judged on the candidate's mathematical background, qualifications, and goals.

Departmental support is typically in the form of teaching assistantships, research assistantships, and fellowships. These are currently only awarded to students in the Ph.D. program.

General Requirements

All student course programs must be approved by a faculty advisor prior to registering for classes each quarter, as well as any changes throughout the quarter.

Full-time students are required to register for a minimum of twelve (12) units every quarter, eight (8) of which must be graduate-level mathematics courses taken for a letter grade only. The remaining four (4) units can be approved upper-division or graduate-level courses in mathematics-related subjects (Math. 500 may not be used to satisfy any part of this requirement). After advancing to candidacy, Ph.D. candidates may take all course work on a Satisfactory/ Unsatisfactory basis. Typically, students should not enroll in Math. 299 until they have satisfactorily passed both qualifying examinations (see Ph.D. in Mathematics) or obtained approval of their faculty advisor.

Master of Arts in Pure Mathematics

[Offered only under the Comprehensive Examination Plan.] The degree may be terminal or obtained on the way to the Ph.D. A total of forty-eight units of credit is required. Twenty-four of these units must be graduate-level mathematics courses approved in consultation with a faculty advisor.

518
In the selection of course work to fulfill the remaining twenty-four units, the following restrictions must be followed:

a. No more than eight units of upper-division mathematics courses.

b. No more than twelve units of graduate courses in a related field outside the department (approved by the Department of Mathematics).

c. No more than four units of Math. 295 (Special Topics) or Math. 500 (Apprentice Teaching).

d. No units of Math. 299 (Reading and Research) may be used.

COMPREHENSIVE EXAMINATIONS

Seven written departmental examinations are offered in three areas (refer to “Ph.D. in Mathematics,” Areas 1, 2, and 3, for list of exams). A student must complete two examinations, one from Area 1 and one from Area 2, both with an M.A. pass or better.

FOREIGN LANGUAGE REQUIREMENT

A reading knowledge of one foreign language (French, German, or Russian) is required. In exceptional cases other languages may be substituted. Testing is administered by faculty in the department who select published mathematical material in one of these languages for a student to translate.

TIME LIMITS

Full-time students are permitted seven quarters in which to complete all degree requirements. While there are no written time limits for part-time students, the department has the right to intervene and set individual deadlines if it becomes necessary.

Ph.D. in Mathematics with Specialization in Computational Science

As of fall 2007, the UC San Diego campus is offering a new comprehensive Ph.D. specialization in computational science that will be available to doctoral candidates in participating science, mathematics, and engineering departments at UC San Diego.

This Ph.D. specialization is designed to allow a student to obtain standard basic training in their chosen field of science, mathematics, or engineering with a specialization in computational science integrated into their graduate studies. Prospective students must apply and be admitted into the Ph.D. program in mathematics described in the previous section. (See Mathematics Department for more information.)

Master of Arts in Applied Mathematics

Offered only under the Comprehensive Examination Plan The degree may be terminal or obtained on the way to the Ph.D. Out of the forty-eight units of required credit, two applied mathematics sequences comprising twenty-four units must be chosen from the following list (not every course is offered each year):

- 202A-B-C. (Applied Algebra)
- 210A-B-C. (Mathematical Methods in Physics and Engineering)
- 261A-B-C. (Combinatorial Algorithms)
- 264A-B-C. (Combinatorics)
- 270A-B-C. (Numerical Mathematics)
- 271A-B-C. (Numerical Optimization)
- 272A-B-C. (Numerical Partial Differential Equations)
- 273A-B-C. (Scientific Computation)

In certain cases, a petition may be approved to substitute one of these requirements from the following list of sequences:

- 220A-B-C. (Complex Analysis)
- 231A-B-C. (Partial Differential Equations)
- 240A-B-C. (Real Analysis)
- 280A-B-C. (Probability Theory)
- 281A-B-C. (Mathematical Statistics)
- 282A-B. (Applied Statistics)

In choosing course work to fulfill the remaining twenty-four units, the following restrictions must be followed:

a. At least eight units must be approved graduate courses in mathematics or other departments (a one-year sequence in a related area outside the department such as computer science, engineering, physics, or economics is strongly recommended);

b. A maximum of eight units can be approved upper-division courses in mathematics; and

c. A maximum of eight units can be approved upper-division courses in other departments.

d. A maximum of four units of Math. 500 (Apprentice Teaching).

e. NO UNITS of Math. 295 (Special Topics) or Math. 299 (Reading and Research) may be used.

Students are strongly encouraged to consult with a faculty advisor in their first quarter to prepare their course of study.

COMPREHENSIVE EXAMINATIONS

Two written comprehensive examinations must be passed at the master’s level in any of the required applied mathematics sequences listed above. The instructors of each course should be contacted for exam details.

FOREIGN LANGUAGE REQUIREMENT

There is no foreign language requirement for the M.A. in applied mathematics.

TIME LIMITS

Full-time M.A. students are permitted seven quarters in which to complete all requirements. While there are no written time limits for part-time students, the department has the right to intervene and set individual deadlines if it becomes necessary.

Master of Science in Statistics

Offered only under the Comprehensive Examination Plan. The M.S. in statistics is designed to provide recipients with a strong mathematical background and experience in statistical computing with various applications. Out of the forty-eight units of credit needed, required core courses comprise twenty-eight units, including:

- Math. 281A-B-C. (Mathematical Statistics)

and any two topics comprising eight units chosen freely from Math. 287A-B-C-D and 289A-B-C (see course descriptions for topics).

The following guidelines should be followed when selecting courses to complete the remaining twenty units:

a. For a theoretical emphasis, Math. 280A-B-C (Probability Theory) is required.

b. For an applied orientation, Math. 270A-B-C (Numerical Mathematics) is recommended.

c. A maximum of eight units of approved upper-division applied mathematics courses (see faculty advisor) and Math. 500 (Apprentice Teaching).
Upon the approval of the faculty advisor, the rule above, limiting graduate units from other departments to eight may be relaxed in making up these twenty non-core units.

COMPREHENSIVE EXAMINATIONS

Two written comprehensive examinations must be passed at the master's level in related course work (approved by a faculty advisor). Instructors of the relevant courses should be consulted for exam dates as they vary on a yearly basis.

FOREIGN LANGUAGE REQUIREMENT

There is no foreign language requirement for the M.S. in statistics.

TIME LIMITS

Full-time M.S. students are permitted seven quarters in which to complete all requirements. While there are no written time limits for part-time students, the department has the right to intervene and set individual deadlines if it becomes necessary.

Ph.D. in Mathematics

WRITTEN QUALIFYING EXAMINATIONS

The department offers written qualifying examinations in seven subjects. These are grouped into three areas as follows:

Area #1
Complex Analysis (Math. 220A-B-C)
Real Analysis (Math. 240A-B-C)

Area #2
Algebra (Math. 200A-B-C)
Applied Algebra (Math. 202A-B-C)
Topology (Math. 290A-B-C)

Area #3
Numerical Analysis (Math. 270A-B-C)
Statistics (Math. 281A-B-C)

i) Three qualifying exams must be passed. At least one must be passed at the Ph.D. level, and a second must be passed at either the Ph.D. or Provisional Ph.D. level. The third exam must be passed at least at the master's level.

ii) Of the three qualifying exams, there must be at least one from each of Areas #1 and #2. Algebra and Applied Algebra do not count as distinct exams in Area #2.

iii) Students must pass a least two exams from distinct areas with a minimum grade of Provisional Ph.D. (For example, a Ph.D. pass in Real Analysis, Provisional Ph.D. pass in Complex Analysis, M.A. pass in Algebra would NOT satisfy this requirement, but a Ph.D. pass in Real Analysis, M.A. pass in Complex Analysis, Provisional Ph.D. pass in Algebra would, as would a Ph.D. pass in Numerical Analysis, Provisional Ph.D. pass in Applied Algebra, and M.A. pass in Real Analysis.)

iv) All exams must be passed by the September exam session prior to the beginning of the third year of graduate studies. (Thus, there would be no limit on the number of attempts, encouraging new students to take exams when they arrive, without penalty.)

Department policy stipulates that at least one of the exams must be completed with a Provisional Ph.D. pass or better by September following the end of the first year. Anyone unable to comply with this schedule will be terminated from the doctoral program and transferred to one of our Master's programs.

Any Master's student can submit for consideration a written request to transfer into the Ph.D. program when the qualifying exam requirements for the Ph.D. program have been met and a dissertation advisor is found. Approval by the Qualifying Exam and Appeals Committee (QEAC) is not automatic, however.

Exams are typically offered twice a year, one scheduled late in the spring quarter and again in early September (prior to the start of fall quarter). Copies of past exams are made available for purchase in the Graduate Office.

In choosing a program with an eye to future employment, students should seek the assistance of a faculty advisor and take a broad selection of courses including applied mathematics, such as those in Area #3.

FOREIGN LANGUAGE REQUIREMENT

A reading knowledge of one foreign language (French, German, or Russian) is required prior to advancing to candidacy. In exceptional cases other languages may be substituted. Testing is administered within the department by faculty who select published mathematical material in one of these languages for a student to translate.

ADVANCEMENT TO CANDIDACY

It is expected that by the end of the third year (nine quarters), students should have a field of research chosen and a faculty member willing to direct and guide them. A student will advance to candidacy after successfully passing the oral qualifying examination, which deals primarily with the area of research proposed but may include the project itself. This examination is conducted by the student’s appointed doctoral committee. Based on their recommendation, a student advances to candidacy and is awarded the C.Phil. degree.

DISSERTATION AND FINAL DEFENSE

Submission of a written dissertation and a final examination in which the thesis is publicly defended are the last steps before the Ph.D. degree is awarded. When the dissertation is substantially completed, copies must be provided to all committee members at least four weeks in advance of the proposed defense date. Two weeks before the scheduled final defense, a copy of the dissertation must be made available in the department for public inspection.

TIME LIMITS

The normative time for the Ph.D. in mathematics is five years. Students must be advanced to candidacy by the end of eleven quarters. Total university support cannot exceed six years. Total registered time at UCSD cannot exceed seven years.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

All prerequisites listed below may be replaced by an equivalent or higher-level course. The listings of quarters in which courses will be offered are only tentative. Please consult the Department of Mathematics to determine the actual course offerings each year.

LOWER-DIVISION

3C. Pre-Calculus (4)
Functions and their graphs. Linear and polynomial functions, zeros, inverse functions, exponential and logarithm, trigonometric functions and their inverses. Emphasis on understanding algebraic, numerical and graphical approaches making use of graphing calculators. (No credit given if taken after Math. 4C, 1A/10A, or 2A/20A.) Prerequisite: two or more years of high school mathematics or equivalent.
4C. Pre-Calculus for Science and Engineering (4) Review of polynomials. Graphing functions and relations: graphing rational functions, effects of linear changes of coordinates. Circular functions and right triangle trigonometry. Reinforcement of function concept: exponential, logarithmic, and trigonometric functions. Vectors. Conic sections. Polar coordinates. Three lectures, one recitation. (No credit given if taken after Math. 1A/10A or 2A/20A. Two units of credit given if taken after Math. 3C.) Prerequisite: Math Placement Exam qualifying score, or Math. 3C with a grade of C– or better.

10A. Calculus (4) Differentiation and integration of algebraic functions. Fundamental theorem of calculus. Applications. (No credit given if taken after Math. 2A/20A. Formerly numbered Math. 1A.) Prerequisites: Math Placement Exam qualifying score, or AP Calculus AB score of 2, or SAT II Math. 2C score of 650 or higher, or Math. 3C with a grade of C or better, or Math. 4C with a grade of C– or better.

10B. Calculus (4) Further applications of the definite integral. Calculus of trigonometric, logarithmic, and exponential functions. Complex numbers. (No credit given if taken after Math. 2B/20B. Formerly numbered Math. 1B.) Prerequisites: AP Calculus AB score of 3, 4, or 5, or Math. 10A with a grade of C– or better, or Math. 20A with a grade of C or better. Three lectures, one recitation.

10C. Calculus (4) Vector geometry, velocity, and acceleration vectors. (No credit given if taken after Math. 2C/20C. Formerly numbered Math. 1C.) Prerequisites: AP Calculus BC score of 3, 4, or 5, or Math. 10B with a grade of C– or better, or Math. 20B with a grade of C– or better.

11L. Elementary Probability and Statistics Laboratory (1) Introduction to the use of software in probabilistic and statistical analysis. Emphasis on understanding connections between the theory of probability and statistics, numerical results of real data, and learning techniques of data analysis and interpretation useful for solving scientific problems. Prerequisites: AP Calculus BC score of 3, 4, or 5, or Math. 10B with a grade of C– or better, or Math. 20B with a grade of C– or better, and concurrent enrollment in Math. 11.

15A. Discrete Mathematics (4) Basic discrete mathematical structures: sets, relations, functions, sequences, equivalence relations, partial orders, number systems, Methods of proof: proof by contradiction, proof by induction, recursion, pigeonhole principle. Infinite sets and diagonalization. Basic counting techniques; permutations and combinations. Applications will be given to digital logic design, elementary number theory, design of programs, and proofs of program correctness. Equivalent to CSE 20. Credit not offered for both Math. 15A and CSE 20. Prerequisites: CSE 8A or CSE 8B or CSE 11. CSE 8B or CSE 11 may be taken concurrently with Math. 15A/CSE 20.

15B. Mathematics for Algorithm and Systems (4) This course introduces mathematical tools for the qualitative and quantitative analysis of algorithms and computer systems. Topics to be covered include basic enumeration and counting techniques; recurrence relations; graph theory; asymptotic notation; elementary applied discrete probability. Equivalent to CSE 21. Prerequisite: Math. 15A or CSE 20 or 160A; CSE 12 is strongly recommended for CSE 21.

18. Computer Animated Statistics (4) Students will acquire the basics of statistical analysis by working with computer-simulated models rather than abstract mathematical language. Topics include hypothesis testing, maximum likelihood estimation, sampling, chi-square tests and construction of confidence intervals. Prerequisite: Math. 1B or 10B or 20B.

20A. Calculus for Science and Engineering (4) Foundations of differential and integral calculus of one variable. Functions, graphs, continuity, limits, derivative, tangent line. Applications with algebraic, exponential, logarithmic, and trigonometric functions. Introduction to the integral. (Two credits given if taken after Math. 1A/10A and no credit given if taken after Math. 18B/108 or Math. 1C/10C. Formerly numbered Math. 2A.) Prerequisite: Math Placement Exam qualifying score, or AP Calculus AB score of 2 or 3, or SAT II Math. 2C score of 650 or higher, or Math. 4C with a grade of C– or better, or Math. 10A with a grade of C– or better.

20B. Calculus for Science and Engineering (4) Integral calculus of one variable and its applications, with exponential, logarithmic, hyperbolic, and trigonometric functions. Methods of integration. Infinite series. Polar coordinates in the plane and complex exponentials. (Two units of credits given if taken after Math. 1B/10B or Math. 1C/10C.) Prerequisite: AP Calculus AB score of 3, 4, or 5, or AP Calculus BC score of 3, or Math. 20A with a grade of C– or better, or Math. 20B with a grade of C– or better.

20C. Calculus and Analytic Geometry for Science and Engineering (4) Vector geometry, vector functions and their derivatives. Partial differentiation. Maxima and minima. Double integration. Two units of credit given if taken after Math. 10C. Formerly numbered Math. 21C. Prerequisite: AP Calculus BC score of 3, 4, or 5, or Math. 20B with a grade of C– or better.

87. Freshman Seminar (1) The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with faculty members in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to 15 to 20 students, with preference given to entering freshman. Prerequisite: none.

95. Introduction to Teaching Math (2) Revisit students' learning difficulties in mathematics in more depth to prepare students to make meaningful observations of how K-12 teachers deal with these difficulties. Explore how instructors can use students' knowledge to pose problems that stimulate students' intellectual curiosity. Prerequisites: Teaching Math and Science: The Challenge. Concurrent enrollment in EDS 39.

UPPER-DIVISION

100A-B. Modern Algebra (4-4-4) An introduction to the methods and basic structures of higher algebra: sets and mappings, the integers, rational, real and complex numbers, groups, rings (especially polynomial rings) and ideals, fields, real and complex vector spaces, linear transformations, inner product spaces, matrices, triangular form, diagonalization. Both 100 and 103 cannot be taken for credit. Three lectures, one recitation. Prerequisites: Math. 20F, and Math. 109 or consent of instructor. (F,W,S)

103A-B. Modern Applied Algebra (4-4) Abstract algebra with applications to computation. Set algebra and graph theory. Finite state machines. Boolean algebras and switching theory. Lattices. Groups, rings and fields; applications to coding theory. Recurrent sequences. Three lectures, one recitation. Both 100 and 103 cannot be taken for credit. Prerequisites: Math. 20F and Math. 109 (may be taken concurrently). (F,W)

104A-B. Number Theory (4-4-4) Topics from number theory with applications and computing. Possible topics are: congruences, reciprocity laws, quadratic forms, prime number theorem, Riemann zeta function, Fermat's conjecture, diophantine equations, Gaussian sums, algebraic integers, unique factorization into prime ideals in algebraic number fields, class number, units, splitting of prime ideals in extensions, quadratic and cyclotomic fields, partitions. Possible applications are Fast Fourier Transform, signal processing, coding, cryptography. Three lectures. Prerequisite: consent of instructor.
107A-B. Computer Algebra (4)
An introduction to algebraic computation. Computational aspects of groups, rings, fields, etc. Data representation and algorithms for symbolic computation. Polynomials and their arithmetic. The use of a computer algebra system as an experimental tool in mathematics. Programming using algebra systems. Prerequisite: prior concurrent enrollment in the Math. 100 or 103 sequence.

109. Mathematical Reasoning (4)
This course uses a variety of topics in mathematics to introduce the students to rigorous mathematical proof, emphasizing quantifiers, induction, negation, proof by contradiction, naive set theory, equivalence relations and epsilon-delta proofs. Required of all departmental majors. Prerequisite: Math. 20F.

110. Introduction to Partial Differential Equations (4)
Fourier series, orthogonal expansions, and eigenvalue problems. Sturm-Liouville theory. Separation of variables for partial differential equations of mathematical physics, including topics on Bessel functions and Legendre polynomials. Prerequisites: Math. 20D (or 21D) and 20F, or consent of instructor. (F, S)

111A-B. Mathematical Modeling (4-4)
An introduction to mathematical modeling in the physical and social sciences, concentrating on one or more topics that vary from year to year. Students work on independent or group projects. May be repeated for credit when topics change. Prerequisites: Math. 20D and Math. 20F, or consent of instructor.

120A. Elements of Complex Analysis (4)
Complex numbers and functions. Analytic functions, harmonic functions, elementary conformal mappings. Complex integration. Power series. Cauchy's theorem. Cauchy's formula. Residue theorem. Three lectures, one recitation. Prerequisite or co-registration: Math. 20E, or consent of instructor. (F, W)

120B. Applied Complex Analysis (4)
Applications of the Residue theorem. Conformal mapping and applications to potential theory, flows, and temperature distributions. Fourier transforms. Laplace transformations, and applications to integral and differential equations. Selected topics such as Poisson's formula. Dirichlet problem. Neumann's problem, or special functions. Three lectures, one recitation. Prerequisite: Math. 120A. (W, S)

121A. Foundations of Teaching and Learning Mathematics I (4)
Develop teachers' knowledge base (knowledge of mathematics content, pedagogy, and student learning) in the context of advanced mathematics. This course builds on the previous courses where these components of knowledge were addressed exclusively in the context of high-school mathematics. Prerequisites: Introduction to Teaching Math (Math. 95), Calculus 10C or 20C.

121B. Foundations of Teaching and Learning Mathematics II (4)
Examine how learning theories can consolidate observations about conceptual development with the individual student as well as the development of knowledge in the history of mathematics. Examine how teaching theories explain the effect of teaching approaches addressed in the previous courses. Prerequisites: Foundations of Teaching and Learning Mathematics I (Math. 121A), Calculus 10C or 20C.

130A. Ordinary Differential Equations (4)
Linear and nonlinear systems of differential equations. Stability theory, perturbation theory. Applications and introduction to numerical solutions. Three lectures. Prerequisites: Math. 20D/21D and 20F. (F)

130B. Ordinary Differential Equations (4)
Existence and uniqueness of solutions to differential equations. Local and global theorems of continuity and differentiability. Three lectures. Prerequisites: Math. 20D/21D and 20F, and Math. 130A. (W)

131. Variational Methods in Optimization (4)
Maximum-minimum problems. Normed vector spaces, functionals, Gateaux variations. Euler-Lagrange multiplier theorem for an extremum with constraints. Calculus of variations via the multiplier theorem. Applications may be taken from a variety of areas such as the following: applied mechanics, elasticity, economics, production planning and resource allocation, astronautics, rocket control, physics, Fermat's principle and Hamilton's principle, geometry, geodesic curves, control theory, elementary bang-bang problems. Three lectures, one recitation. Prerequisites: Math. 20D/21D and 20F or consent of instructor. (S)

132A. Elements of Partial Differential Equations and Integral Equations (4)
Basic concepts and classification of partial differential equations. First order equations, characteristics. Hamilton-Jacobi theory, Laplace's equation, wave equation, heat equation. Separation of variables, eigenfunction expansions, existence and uniqueness of solutions. Three lectures. Prerequisite: Math. 110 or consent of instructor. (W)

132B. Elements of Partial Differential Equations and Integral Equations (4)
Relation between differential and integral equations, some classical integral equations, Volterra integral equations, integral equations of the second kind, degenerate kernels, Fredholm alternative, Neumann-Liouville series, the resolvent kernel. Three lectures. Prerequisite: Math. 132A. (S)

140A-B-C. Foundations of Analysis (4-4-4)
Axioms, the real number system, topology of the real line, metric spaces, continuous functions, sequences of functions, uniform convergence, the Riemann Integral. Transcendental functions. Limits and continuity. Infinite series. Uniform convergence. Power series. Improper integrals. Gamma and Beta functions. Fourier series. Three lectures. Prerequisites: Math. 20F and Math. 109 or consent of instructor. Credit cannot be obtained for both Math. 140A-B and 142A-B. (F, W, S)

142A-B. Advanced Calculus (4-4)

150A. Differential Geometry (4)
Differential geometry of curves and surfaces. Gauss and mean curvatures, geodesics, parallel displacement, Gauss-Bonnet theorem. Three lectures. Prerequisites: Math. 20E with a grade of C- or better and Math. 20F with a grade of C- or better, or consent of instructor. (F)

150B. Calculus on Manifolds (4)
Calculus of functions of several variables, inverse function theorem. Further topics, selected by instructor, such as exterior differential forms, Stokes' theorem, manifolds, Sard's theorem, elements of differential topology, singularities of maps, catastrophes, further topics in differential geometry, topics in geometry of physics. Three lectures. Prerequisite: Math. 150A. (W)

152. Applicable Mathematics and Computing (4)
This course will give students experience in applying theory to real world applications such as Internet and wireless communication problems. The course will incorporate talks by experts from industry and students will be helped to carry out independent projects. Topics include graph visualization, labelling, and embeddings, random graphs and randomized algorithms. May be taken 3 times for credit. Prerequisites: Math. 20D or 21D, and 20F or consent of instructor.

153. Geometry for Secondary Teachers (4)
Two- and three-dimensional Euclidean geometry is developed from one set of axioms. Pedagogical issues will emerge from the mathematics and be addressed using current research in teaching and learning geometry. This course is designed for prospective secondary school mathematics teachers. Prerequisite: Math. 109.

154. Discrete Mathematics and Graph Theory (4)
Basic concepts in graph theory. Combinatorial tools, structures in graphs (Hamiltonian cycles, perfect matching). Properties of graphs and applications in basic algorithmic problems (planarity, k-colorability, traveling salesman problem). Prerequisites: Math. 20F and Math. 109, or consent of instructor.

155A. Computer Graphics (4)
Bezier curves and control lines, de Casteljau construction for subdivision, elevation of degree, control points of Hermite curves, barycentric coordinates, rational curves. Three lectures, one recitation, and approximately eight laboratory hours per week. Prerequisites: Math. 20F and programming experience. [Warning: There are duplicate credit restrictions on this course. See section on Duplication of Credit.] (F)

155B. Topics in Computer Graphics (4)
Spline curves, spline interpolation, affine and affine cross ratio. Differentiable forms (bisplines), the Oslo algorithm for knot insertion, NURBS and geometric continuity. Three lectures, one recitation, and approximately eight laboratory hours per week. Prerequisite: Math. 155A or consent of instructor. (W)

160A-B. Elementary Mathematical Logic (4-4)

162. History of Mathematics (4)
Topics will vary from year to year in areas of mathematics and their development. Topics may include the evolution of mathematics from the Babylonian period to the eighteenth century using original sources, a history of the foundations of mathematics and the development of modern mathematics. Prerequisite: Math. 20B or consent of instructor. (S)

166. Intro to the Theory of Computation (4)
Introduction to formal languages; regular languages; regular expressions, finite automata, minimization, clo-
168. Advanced Data Structures (4) Descriptive and analytical presentation of data structures and algorithms. Lists, tables, priority queues, disjoint subsets, and dictionaries data types. Data structuring techniques include linked lists, arrays, hashing, and trees. Performance evaluation involving worst case, average and expected case, and amortized analysis. Credit not offered for both Math. 176 and CSE 100. Equivalent to CSE 100. Prerequisites: CSE 12, CSE 21, or Math. 15B, and CSE 30, or consent of instructor.

180A. Introduction to Probability (4) Probability spaces, random variables, independence, conditional probability, distribution, expectation, joint distributions, central-limit theorem. Three lectures. Prerequisites: Math. 20D/21D. [Warning: There are duplicate credit restrictions on this course. See section on Duplication of Credit.] (F)

180B. Introduction to Probability (4) Random vectors, multivariate densities, covariance matrix, multivariate normal distribution. Random walk, Poisson process. Other topics if time permits. Three lectures. Prerequisites: Math. 180A and Math. 20E. (W)

180C. Introduction to Probability (4) Markov chains in discrete and continuous time, random walk, recurrent events. If time permits, topics chosen from stationary normal processes, branching processes, queuing theory. Three lectures. Prerequisite: Math. 180B. (S)

181A. Introduction to Mathematical Statistics (4) Random samples, linear regression, least squares, testing hypotheses, and estimation. Neyman-Pearson lemma, likelihood ratios. Three lectures, one recitation. Prerequisites: Math. 180A and 20F; Math 180B. [Warning: There are duplicate credit restrictions on this course. See section on Duplication of Credit.] (W)

181C. Mathematical Statistics (4) Nonparametric Statistics. Topics covered may include the following: Classical rank test, rank correlations, permutation tests, distribution free testing, efficiency, confidence intervals, nonparametric regression and density estimation, resampling techniques (bootstrap, jackknife, etc.) and cross validations. Prerequisites: Math. 181A, 181B previously or concurrently.

183. Statistical Methods (4) Introduction to probability. Discrete and continuous random variables--binomial, Poisson and Gaussian distributions. Central limit theorem. Data analysis and inferential statistics: graphical techniques, confidence intervals, hypothesis tests, curve fitting. (Credit not offered for Math. 183 if Econ. 120A, Math. 180A, or Math. 181A previously or concurrently.) Prerequisite: Math. 20C (21C). (F, S)

185. Introduction to Computational Statistics (4) Statistical analysis of data by means of package programs. Regression, analysis of variance, discriminant analysis, principal components, Monte Carlo simulation, and graphical methods. Emphasis will be on understanding the connections between statistical theory, numerical results, and analysis of real data. Prerequisites: Math. 181B with a grade of C- or better, or concurrent enrollment.

186. Probability Statistics for Bioinformatics (4) This course will cover an introduction to probability and statistics, the use of discrete and random variables, different types of distributions, data analysis and inferential statistics, likelihood estimators and scoring matrices with applications to biological problems. Introduction to probability, Binomial, Poisson, and Gaussian distributions, central limit theorem, applications to sequence and functional analysis of genomes and genetic epidemiology. Prerequisite: Math. 20A, Math. 20B, Math. 20C (21C).

188. Design and Analysis of Algorithms (4) Introduction to the design and analysis of efficient algorithms. Basic techniques for analyzing the time requirements of algorithms. Algorithms for sorting, searching, and pattern matching, algorithms for graphs and networks. NP-complete problems. Equivalent to CSE 101. Prerequisites: CSE 100 or Math. 176A for Math. 188; CSE 12, CSE 21, and CSE 100 for CSE 101.

190. Introduction to Topology (4) Topological spaces, subspaces, products, sums and quotient spaces. Compactness, connectedness, separation axioms. Selected further topics such as fundamental group, classification of surfaces, Morse theory, topological groups. May be repeated for credit once when topics vary, with consent of instructor. Three lectures. Prerequisite: Math. 109 or consent of instructor. (W)

191. Topics in Topology (4) Topics to be chosen by the instructor from the fields of differential algebraic, geometric, and general topology. Three lectures. Prerequisite: Math. 190 or consent of instructor. (S)

192. Senior Seminar in Mathematics (1) The Senior Seminar Program is designed to allow seniors who graduate in the same major to explore a topic in mathematics at the upper-division level. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: department stamp and/or consent of instructor.
193A. Actuarial Mathematics (4)
Probabilistic Foundations of Insurance. Short-term risk models. Survival distributions and life tables. Introduction to life insurance. Prerequisite: Math. 180A or 183, or consent of instructor.

193B. Actuarial Mathematics (4)
Life Insurance and Annuities. Analysis of premiums and premium reserves. Introduction to multiple life functions and decrement models as time permits. Prerequisite: Math. 193A.

194. The Mathematics of Finance (4)
Introduction to the mathematics of financial models. Basic probabilistic models and associated mathematical machinery will be discussed, with emphasis on discrete-time models. Concepts covered will include conditional expectation, martingales, optimal stopping, arbitrage pricing, hedging, European and American options. Prerequisites: Math. 20D (21D), Math. 20F, and Math. 180A or 183.

195. Introduction to Teaching in Mathematics (4)
Students will be responsible for and teach a class section of a lower-division mathematics course. They will also attend a weekly meeting on teaching methods. (Does not count towards a minor or major) Five lectures, one recitation. Prerequisite: consent of instructor. (F, W, S)

196. Student Colloquium (1)
A variety of topics and current research results in mathematics will be presented by guest lecturers and students under faculty direction. Prerequisite: upper-division status.

197. Mathematics Internship (2 or 4)
An enrichment program which provides work experience with public/private sector employers. Subject to the availability of positions, students will work in a local company under the supervision of a faculty member and site supervisor. Units may not be applied towards major graduation requirements. Prerequisites: completion of 90 units, 2 upper-division mathematics courses, an overall 2.5 UCSD GPA, consent of mathematics faculty coordinator, and submission of written contract. Department stamp required.

199. Independent Study for Undergraduates (2 or 4)
Independent reading in advanced mathematics by individual students. Three periods. (P/NP grades only.) Prerequisite: permission of department. (F, W, S)

199H. Honors Thesis Research for Undergraduates (2-4)
Honors thesis research for seniors participating in the Honors Program. Research is conducted under the supervision of a mathematics faculty member. Prerequisites: admission to the Honors Program in mathematics, department stamp.

GRADUATE

200A-B. Algebra (4-4-4)
Group actions, factor groups, polynomial rings, linear algebra, rational and Jordan canonical forms, unitary and Hermitian matrices, Sylow theorems, finitely generated abelian groups, unique factorization, Galois theory, solvability by radicals, Hilbert Basis Theorem, Hilbert Nullstellensatz, Jacobson radical, semisimple Artinian rings. Prerequisite: consent of instructor.

201A. Basic Topics in Algebra (4)
Recommended for all students specializing in algebra. Basic topics include categorical algebra, commutative algebra, group representations, homological algebra, nonassociative algebra, ring theory. Prerequisites: Math. 200A-B or consent of instructor. (F, W, S)

202B. Applied Algebra (4-4)
Algebra from a computational perspective using Maple, Mathematica and Matlab. Groups, rings, linear algebra, rational and Jordan forms, unitary and Hermitian matrices, matrix decompositions, perturbation of eigenvalues, group representations, symmetric functions, fast Fourier transform, commutative algebra, Groebner basis, finite fields. Prerequisite: consent of instructor.

203A-B. Algebraic Geometry (4-4-4)
Places, Hilbert Nullstellensatz, varieties, product of varieties: correspondences, normal varieties. Divisors and linear systems; Riemann-Roch theorem; resolution of singularities of curves. Grothendieck schemes; cohomology, Hilbert schemes; Picard schemes. Prerequisites: Math. 200A-B-C. (F, W, S)

204. Topics in Number Theory (4)
Topics in analytic number theory, such as zeta functions and L-functions and the distribution of prime numbers, zeros of zeta functions and Siegel's theorem, transcendence theory, modular forms, finite and infinite symmetric spaces. Prerequisite: consent of instructor.

205. Topics in Algebraic Number Theory (4)
Topics in algebraic number theory, such as cyclotomic and Kummer extensions, class number, units, splitting of primes in extensions, zeta functions of number fields and the Brauer-Siegel Theorem, class field theory, elliptic curves and curves of higher genus, complex multiplication. Prerequisite: consent of instructor.

207A-B. Topics in Algebra (4-4-4)
In recent years, topics have included number theory, commutative algebra, noncommutative rings, homological algebra, and Lie groups. May be repeated for credit with consent of advisor. Prerequisite: consent of instructor.

208. Seminar in Algebra (1-4)
Prerequisite: consent of instructor. (S/U grades permitted.)

209. Seminar in Number Theory (1 to 4)
Prerequisite: consent of instructor. (S/U grades permitted.)

210A. Mathematical Methods in Physics and Engineering (4)
Complex variables with applications. Analytic functions, Cauchy's theorem, Taylor and Laurent series, residue theorem and contour integration techniques, analytic continuation, argument principle, conformal mapping, potential theory, asymptotic expansions, method of steepest descent. Prerequisites: Math. 200DE, 140A/142A or consent of instructor.

210B. Mathematical Methods in Physics and Engineering (4)
Linear algebra and functional analysis. Vector spaces, orthonormal bases, linear operators and matrices, eigenvalues and diagonalization, least squares approximation, infinite-dimensional spaces, completeness, integral equations, spectral theory, Green's functions, distributions, Fourier transform. Prerequisite: Math. 210A or consent of instructor. (W)

210C. Mathematical Methods in Physics and Engineering (4)
Calculus of variations: Euler-Lagrange equations, Noether’s theorem. Fourier analysis of functions and distributions in several variables. Partial differential equations: Laplace, wave, and heat equations; fundamental solutions (Green’s functions); well-posed problems. Prerequisite: Math. 210B or consent of instructor. (S)

211. Fourier Analysis on Finite Groups (4)
Applied group representations. Emphasis on the integers, mod n, finite matrix groups. Applications may include: the fast Fourier transform, digital signal processing, finite difference equations, spectral graph theory, error-correcting codes, vibrating systems, finite wavelet transforms. Prerequisite: none.

212A. Introduction to the Mathematics of Systems and Control (4)
Linear and nonlinear systems, and their input-output behavior, linear continuous time and discrete-time systems, reachability and controllability for linear systems, feedback and stabilization, eigenvalue placement, nonlinear controllability, feedback linearization, disturbance rejection, nonlinear stabilization, Lyapunov and control-Lyapunov functions, linearization principle for stability. Prerequisites: Math. 102 or equivalent, Math. 120A or equivalent, Math. 142A or equivalent.

212B. Introduction to the Mathematics of Systems and Control (4)

212C. Introduction to the Mathematics of Systems and Control (4)
Topics of current interest on systems theory, control, and estimation to be chosen by instructor. Prerequisite: Math. 212B.

216. Topics in Pure Mathematics (4)
This course brings together graduate students, post-docs, and faculty to examine a current research topic of broad interest. Previously covered topics include: noncommutative geometry, Loop groups, geometric quantization. Prerequisite: consent of instructor.

217A. Topics in Applied Mathematics (4)
In recent years, topics have included applied complex analysis, special functions, and asymptotic methods. May be repeated for credit with consent of advisor. Prerequisite: consent of instructor.

220A-B. Complex Analysis (4-4-4)
Complex numbers and functions. Cauchy theorem and its applications, calculus of residues, expansions of analytic functions, analytic continuation, conformal mapping and Riemann mapping theorem, harmonic functions. Dirichlet principle, Riemann surfaces. Prerequisites: Math. 140A-B or consent of instructor. (F, W, S)

221A-B. Topics in Several Complex Variables (4-4)
Formal and convergent power series, Weierstrass preparation theorem; Cartan-Ruckert theorem, analytic sets; mapping theorems; domains of holomorphy; proper holomorphic mappings; complex manifolds; modifications. Prerequisites: Math. 200A and 220A-B-C or consent of instructor.

229. Computing Technology for Mathematics (2)
Preparation for making effective use of computer technology in research and teaching of mathematics. UNIX basics, document preparation using TEX, Internet
resources, HTML, computer technology in teaching. Prerequisite: graduate status in mathematics.

231A-B-C. Partial Differential Equations (4-4-4)
Existence and uniqueness theorems. Cauchy-Kowalewski theorem, first order systems. Hamilton-Jacobi theory, initial value problems for hyperbolic and parabolic systems, boundary value problems for elliptic systems. Green’s function, eigenvalue problems, perturbation theory. Prerequisites: Math. 210A-B or 240A-B-C or consent of instructor.

233. Singular Perturbation Theory for Differential Equations (4-4-4)
Multivariable techniques, matching techniques and averaging techniques, including various approaches to proofs of asymptotic correctness, for singular perturbation problems including initial value problems with nonuniformities at infinity, initial value problems with initial nonuniformities, two point boundary value problems, and problems for partial differential equations. Applications taken from celestial mechanics, oscillation problems, fluid dynamics, elasticity, and applied mechanics. Prerequisites: Math. 130A-B or 132A-B or consent of instructor. (S/U grades permitted.) (S)

237A-B-C. Topics in Differential Equations (4-4-4)
May be repeated for credit with consent of instructor. Prerequisite: consent of instructor.

240A-B-C. Real Analysis (4-4-4)
Lebesgue integral and Lebesgue measure, Fubini theorems, functions of bounded variations, Stieltjes integral, derivatives and indefinite integrals, the spaces L^p, C^k, equi-continuous families, continuous linear functionals general measures and integrations. Prerequisites: Math. 140A-B-C. (F, W, S)

241A-B. Functional Analysis (4-4-4)
Metric spaces and contraction mapping theorem; closed graph theorem; uniform boundedness principle; Hahn-Banach theorem; representation of continuous linear functionals; conjugate space, weak topologies; Hahn-Banach theorem; weak* topology; Banach algebras. Prerequisites: Math. 240A-B-C or consent of instructor.

247A-B-C. Topics in Real Analysis (4-4-4)
In recent years, topics have included Fourier analysis, distribution theory, martingale theory, operator theory. May be repeated for credit with consent of advisor. Prerequisite: consent of instructor.

248. Seminar in Real Analysis (1 to 4)
Prerequisite: consent of instructor. (S/U grades permitted)

250A-B-C. Differential Geometry (4-4-4)
Differential manifolds, Sard theorem, tensor bundles, Lie derivatives, DeRham theorem, connections, geodesics, Riemannian metrics, curvature tensor and sectional curvature, completeness, characteristic classes. Differential manifolds immersed in Euclidean space. Prerequisite: consent of instructor. (F, W, S)

251A-B-C. Lie Groups (4-4-4)
Lie groups, Lie algebras, exponential map, subgroup subalgebra correspondence, adjoint group, universal enveloping algebra. Structure theory of semi-simple Lie groups, global decompositions, Weyl group, geometry and analysis on symmetric spaces. Prerequisites: Math. 200 and 250 or consent of instructor. (F, W, S)

256. Seminar in Lie Groups and Lie Algebras (2 to 4)
Various topics in Lie groups and Lie algebras, including structure theory, representation theory, and applications. Prerequisite: consent of instructor. (F, W, S)

257A. Topics in Differential Geometry (4-4-4)
In recent years, topics have included Morse theory and general relativity. May be repeated for credit with consent of advisor. Prerequisite: consent of instructor.

257B. Topics in Differential Geometry (4-4-4)
In recent years, topics have included Morse theory and general relativity. May be repeated for credit with consent of advisor. Math. 257A must be taken before Math. 257B. Prerequisite: consent of instructor.

257C. Topics in Differential Geometry (4-4-4)
In recent years, topics have included Morse theory and general relativity. May be repeated for credit with consent of advisor. Math. 257B must be taken before Math. 257C. Prerequisite: consent of instructor.

258. Seminar in Differential Geometry (1 to 4)
Various topics in differential geometry. Prerequisite: consent of instructor.

259A-B-C. Geometrical Physics (4-4-4)
Manifolds, differential forms, homology, deRham’s theorem. Riemannian geometry, harmonic forms. Lie groups and algebras, connections in bundles, homotopy sequence of a bundle, Chern classes. Applications selected from Hamiltonian and continuum mechanics, electromagnetism, thermodynamics, special and general relativity, Yang-Mills fields. Prerequisite: graduate standing in mathematics, physics, or engineering. or consent of instructor.

261A-B. Combinatorial Algorithms (4-4)
Lexicographic order, backtracking, ranking algorithms, isomorph rejection, sorting, orderly algorithms, network flows and related topics, constructive Polya theory, inclusion-exclusion and seiving methods, Mobius inversion, generating functions, algorithmic graph theory, trees, recursion, depth first search and applications, matroids. Prerequisites: CSE 160A-B or Math. 184A-B or consent of instructor. (F, W, S)

262A-B. Topics in Combinatorial Mathematics (4-4-4)
Development of a topic in combinatorial mathematics starting from basic principles. Problems of enumeration, existence, construction, and optimization with regard to finite sets. Some familiarity with computer programming desirable but not required. Prerequisites: Math. 100A-B-C.

263. History of Mathematics (4)
Mathematics in the nineteenth century from the original sources. Foundations of analysis and commutative algebra. For algebra the authors studied will be Lagrange, Ruffini, Gauss, Abel, Galois, Dirichlet, Kronecker, Dedekind, Weber, M. Noether, Hilbert, Steinitz, Artin, E. Noether. For analysis they will be Cauchy, Fourier, Bolzano, Dirichlet, Riemann, Weierstrass, Heine, Cantor, Peano, Hilbert. Prerequisites: Math. 100A-B-C.

264A-B-C. Combinatorics (4-4-4)
Topics from partially ordered sets, Mobius functions, simplicial complexes and shellability. Enumeration, formal power series and formal languages, generating functions, partitions. Lagrange inversion, exponential structures, combinatorial species. Finite operator methods, q-analogues, Polya theory, Ramsey theory. Representation theory of the symmetric group, symmetric functions and operations with Schur functions. (F, W, S)

268. Seminar in Logic (1 to 4)
Prerequisite: consent of instructor. (S/U grades permitted)

269. Seminar in Combinatorics (1 to 4)
Prerequisite: consent of instructor. (S/U grades permitted)

270A-B-C. Numerical Mathematics (4-4-4)
Error analysis of the numerical solution of linear equations and least squares problems for the full rank and rank deficient cases. Error analysis of numerical methods for eigenvalue problems and singular value problems. Error analysis of numerical quadrature and of the numerical solution of ordinary differential equations. Prerequisites: Math. 20F and knowledge of programming.

271A-B-C. Numerical Optimization (4-4-4)
Formulation and analysis of algorithms for constrained optimization. Optimality conditions; linear and quadratic programming; interior methods; penalty and barrier function methods; sequential quadratic programming methods. Prerequisite: consent of instructor. (F, W, S)

272A-B-C. Numerical Partial Differential Equations (4-4-4)
The numerical solution of elliptic, parabolic, and hyperbolic partial differential equations; discretization and solution techniques. Prerequisite: consent of instructor. (F, W, S)

273A-B-C. Scientific Computation (4-4-4)
Continuum mechanics models of physical and biological systems, finite element methods and approximation theory, complexity of iterative methods for linear and nonlinear equations, continuation methods, adaptive methods, parallel computing, and scientific visualization. Project-oriented; theoretical and software development projects designed around problems of current interest in science and engineering. Prerequisite: experience with Matlab and C, some background in numerical analysis, or consent of instructor. (F, W, S)

277A. Topics in Numerical Mathematics (4)
Topics vary from year to year. May be repeated for credit with consent of advisor. Prerequisite: consent of instructor.

278. Seminar in Numerical Mathematics (1 to 4)
Prerequisite: consent of instructor. (S/U grades permitted)

280A-B-C. Probability Theory (4-4-4)
Probability measures, Borel fields; conditional probabilities, sums of independent random variables; limit theorems; zero-one laws; stochastic processes. Prerequisites: advanced calculus and consent of instructor. (F, W, S)

281A. Mathematical Statistics (4)
Statistical models, sufficiency, efficiency, optimal estimation, least squares and maximum likelihood, large sample theory. Prerequisites: advanced calculus and basic probability theory or consent of instructor.

281B. Mathematical Statistics (4)
Hypothesis testing and confidence intervals, one-sample and two-sample problems. Bayes theory, statistical decision theory, linear models and regression. Prerequisites: advanced calculus and basic probability theory or consent of instructor.

281C. Mathematical Statistics (4)
Nonparametrics: tests, regression, density estimation, bootstrap and jackknife. Introduction to statistical computing using S plus. Prerequisites: advanced calculus and basic probability theory or consent of instructor.
282A-B. Applied Statistics (4-4)
Sequence in applied statistics. First quarter: general theory of linear models with applications to regression analysis. Second quarter: analysis of variance and covariance and experimental design. Third quarter: further topics to be selected by instructor. Emphasis throughout is on the analysis of actual data. Prerequisite: Math. 181B or equivalent or consent of instructor. (S/U grades permitted.)

283. Statistical Methods in Bioinformatics (4)
This course will cover material related to the analysis of modern genomic data; sequence analysis, gene expression/function genomic analysis, and gene mapping/applied population genetics. The course will focus on statistical modeling and inference issues and not on database mining techniques. Prerequisites: one year of calculus, one statistics course or consent of instructor.

286. Stochastic Differential Equations (4)

287A. Time Series Analysis (4)
Discussion of finite parameter schemes in the Gaussian and non-Gaussian context. Estimation for finite parameter schemes. Stationary processes and their spectral representation. Spectral estimation. Prerequisite: Math. 181B or equivalent or consent of instructor.

287B. Multivariate Analysis (4)

288. Seminar in Probability and Statistics (1 to 4)
Prerequisite: consent of instructor. (S/U grades permitted.)

289A-B. Topics in Probability and Statistics (4-4)
In recent years, topics have included Markov processes, martingale theory, stochastic processes, stationary and Gaussian processes, ergodic theory. May be repeated for credit with consent of advisor.

290A-B-C. Topology (4-4-4)
Point set topology, including separation axioms, compactness, connectedness. Algebraic topology, including the fundamental group, covering spaces, homology and cohomology. Homotopy or applications to manifolds as time permits. Prerequisites: Math. 100A-B-C and Math. 140A-B-C. (F,W,S)

290A-B-C. Topics in Topology (4)
In recent years, topics have included generalized cohomology theory, spectral sequences, K-theory, homotopy theory. Prerequisites: consent of instructor.

292. Seminar in Topology (1-4)
Various topics in topology. Prerequisites: consent of instructor.

294. The Mathematics of Finance (4)
Introduction to the mathematics of financial models. Hedging, pricing by arbitrage. Discrete and continuous stochastic models. Martingales. Brownian motion, stochastic calculus. Black-Scholes model, adaptations to dividend paying equities, currencies and coupon-paying bonds, interest rate market, foreign exchange models. Prerequisite: Math. 180A (or equivalent probability course) or consent of instructor.

295. Special Topics in Mathematics (1 to 4)
A variety of topics and current research results in mathematics will be presented by staff members and students under faculty direction.

296. Student Colloquium (1 to 2)
A variety of topics and current research in mathematics will be presented by guest lecturers and students under faculty direction. Prerequisites: for one unit—upper-division status or consent of instructor (may only be taken P/NP), or graduate status (may only be taken S/U); for two units—consent of instructor, standard grading option allowed.

297. Mathematics Graduate Research Internship (2-4)
An enrichment program which provides work experience with public/private sector employers and researchers. Under supervision of a faculty advisor, students provide mathematical consultation services. Prerequisites: consent of instructor.

299. Reading and Research (1 to 12)
Independent study and research for the doctoral dissertation. One to three credits will be given for independent study (reading) and one to nine for research. Prerequisite: consent of instructor. (S/U grades permitted.)

Teaching of Mathematics

500. Apprentice Teaching (1 to 4)
Supervised teaching as part of the mathematics instructional program on campus (or, in special cases such as the CTF program, off campus). Prerequisite: consent of advisor. (S/U grades only.)

Mathematics and Science Education

OFFICE: 188 Galbraith Hall
http://www.sci.sdsu.edu/CRMSE/msed/

Professors
Mark I. Appelbaum, Psychology
Paul M. Churchland, Philosophy
Michael Cole, Communication
Guershon Harel, Mathematics
Barbara Jones, Physics
Douglas Magde, Chemistry and Biochemistry
Alfred B. Manaster, Mathematics (Emeritus)
Hugh B. Mehan, Sociology
Jeffrey Rabin, Mathematics
Douglas W. Smith, Biological Sciences (Emeritus)

Senior Lecturers (SOE)
Barbara A. Sawrey, Chemistry and Biochemistry
Randall J. Souvinea, Education Studies Program
Gabriele Wienshausen, Biological Sciences

Associate Professors
John Batali, Cognitive Science
Rafael E. Nunez, Cognitive Science

The Joint Doctoral Program

UCSD and San Diego State University have created this innovative program for students who already have a master’s degree in biology, chemistry, mathematics, or physics. In this program, students will complement their discipline knowledge with studies of how people learn mathematics and science. The UCSD Joint Doctoral Group in Mathematics and Science Education currently consists of faculty from the Division of Biological Sciences and the Departments of Chemistry and Biochemistry, Cognitive Science, Communication, Mathematics, Philosophy, Physics, Psychology, and Sociology. The SDSU Program faculty is drawn from the Departments of Biology, Mathematical Sciences, Natural Sciences, Physics, Psychology, and the School of Education.

The program includes research, practical applications, and formal coursework. Students must commit at least four years to the program, and most students will complete the program in four to five years. An individualized course of study will be designed for each student, depending on the student’s background and interests.

The graduates of this program will be able to contribute to the developing body of knowledge about human cognitive processes in mathematics and science. They will be expected to maintain a strong connection to educational practice through teaching and application of research results on learning to instructional situations.

Information regarding admission is found in the current edition of the Bulletin of the Graduate Division of San Diego State University.

Ph.D. Time Limit Policies

All time limits for this program start when a student first registers in this program. Students must be advanced to candidacy by the end of four years. Total university support to students in this program cannot exceed five years. Total registered time in this program cannot exceed six years. The normative time in this program is five years.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.
MSED 290. Issues in Science Education Research (4)
Survey of recent literature highlighting critical issues in science education research. Specific focus on research in biology education, chemistry education, and physics education. Theoretical perspectives and research methodology (both qualitative and quantitative) used to understand learning will be discussed. Prerequisites: admission to the Joint Doctoral Program in Mathematics and Science Education or a master's degree in biology, chemistry/biochemistry, mathematics, or physics with consent of instructor.

MSED 295. Orientation Practicum (2-6)
This course should be taken the first year. Each practicum lasts five weeks and is designed to inform students about a faculty member's research program. Assignment as a research assistant may be used as one practicum. Prerequisite: admission to the Joint Doctoral Program.

MSED 296A. Theories and Applications of Mathematics and Science Education (4)
The course is designed to cover several major themes in mathematics and science education. It will address theories and applications of cognition, teaching and learning, and curriculum, with particular emphasis on international perspectives. This is a three-quarter sequence. Prerequisites: admission to the Joint Doctoral Program in Mathematics and Science Education or a master's degree in biology, chemistry/biochemistry, mathematics, or physics with consent of instructor. MSED 296A must be taken before MSED 296B.

MSED 296B. Theories and Applications of Mathematics and Science Education (4)
The course is designed to cover several major themes in mathematics and science education. It will address theories and applications of cognition, teaching and learning, and curriculum, with particular emphasis on international perspectives. This is a three-quarter sequence. Prerequisites: admission to the Joint Doctoral Program in Mathematics and Science Education or a master's degree in biology, chemistry/biochemistry, mathematics, or physics with consent of instructor. MSED 296A must be taken before MSED 296B.

MSED 296C. Theories and Applications of Mathematics and Science Education (4)
The course is designed to cover several major themes in mathematics and science education. It will address theories and applications of cognition, teaching and learning, and curriculum, with particular emphasis on international perspectives. This is a three-quarter sequence. Prerequisites: admission to the Joint Doctoral Program in Mathematics and Science Education or a master's degree in biology, chemistry/biochemistry, mathematics, or physics with consent of instructor. MSED 296A must be taken before MSED 296C.

MSED 298. Research Project (2-12)
Students will work on an independent research project under the supervision of MSED faculty.

MSED 299. Reading and Research (1-12)
Students will do independent study and research in preparation of their doctoral dissertation under the supervision of MSED faculty.

Mechanical and Aerospace Engineering (MAE)

See Engineering, School of

Middle East Studies

OFFICE: 3024 Humanities and Social Sciences Building, Muir College
Web site: http://historyweb.ucsd.edu/MiddleEastStud.html

Faculty
Guillermo Algaze, Professor, Anthropology
Eli Berman, Professor, Economics
Suzanne Brenner, Associate Professor, Anthropology
David Noel Freedman, Professor, History
David Goodblatt, Professor, History
Hasan Kayali, Associate Professor, History
Sanford E. Lakoff, Professor, Political Science
Thomas Levy, Professor, Anthropology
Timothy McDaniel, Professor, Sociology
Michael E. Meeker, Professor Emeritus, Anthropology
Esra Özürek, Assistant Professor, Anthropology
William H. Propp, Professor, History
Michael Provence, Assistant Professor, History
Babak Rahimi, Assistant Professor, Literature
Gershon Shafir, Professor, Sociology
Melford E. Spiro, Professor Emeritus, Anthropology
Winifred Woodhull, Associate Professor, Literature
Oumelbanine Zhiri, Professor, Literature

The Minor

The minor in Middle East studies is an interdisciplinary program aimed at a comparative study of the Middle East (including North Africa). The program consists of seven courses, of which at least five must be upper-division courses. Three courses have to deal with the Middle East since the emergence of Islam, as listed here under “Core Courses.” The remaining courses may be chosen from either the Core Courses or the Supporting Courses; and they may be courses dealing with the ancient, medieval, or modern Middle East or a three-quarter sequence of a Middle Eastern language (in which case only four of the seven courses need to be upper-division). Ordinarily, all seven courses must be taken for a letter grade.

The courses which make up the minor must be approved by the student’s college and by the Middle East Studies Program. Approved courses taken at other universities or through participation in the Education Abroad Program can be included as part of the minor by petition.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

CORE COURSES

ANPR 199. Independent Study (Middle East Anthropology)
HINE 108. The Middle East before Islam
HINE 114. History of the Islamic Middle East
HINE 116. The Middle East in the Age of European Empires
HINE 118. The Middle East in the Twentieth Century
HINE 166. Nationalism in the Middle East
HINE 186. Special Topics in Middle Eastern History
HINE 199. Independent Study (Middle East History)
HITO 105. Jews and Judaism in the Modern World
LTWL 141. Islam and Modernity
LTWL 160. Women in Literature: Arabic Women in Literature & Society
POLI. 121. Middle East Politics
POLI. 138D. Special Topics/Comparative Polities: The Arab-Israeli Conflict
Soc./D 122. Jerusalem: Sacred and Profane
Soc./D 158. Islam in the Modern World
Soc./D 188F. Modern Jewish Societies and Israeli Society
Soc./E 199. Independent Study (Middle East Sociology)
TWS 25. Third-World Literatures

SUPPORTING COURSES

ANLD 3. World Prehistory
ANRG 115. Foundations/Social Complex/Near East
ANRG 116. Archaeology of Society in Syro-Palestine
ANRG 182. Ethnography of Island Southeast Asia
JUDA 1. Beginning Hebrew
JUDA 2. Intermediate Hebrew
Molecular Pathology

OFFICE: 1108 Basic Science Building
School of Medicine
http://medicine.ucsd.edu/molpath

Professors
Stephen Baird, M.D., Pathology (Academic Senate Distinguished Teaching Award)
Roland C. Blantz, M.D., Medicine
Nigel Calcutt, Ph.D., Pathology
Dennis Carson, M.D., Medicine
David A. Cheresh, Ph.D., Pathology
Don W. Cleveland, Ph.D., Medicine
Lynette B. Corbeil, D.V.M., Ph.D., Pathology
Jack Dixon, Ph.D., Medicine/Pharmacology
Daniel J. Donoghue, Ph.D., Chemistry and Biochemistry
Sylvia M. Evans, Ph.D., Pharmacology
Marilyn G. Farquhar, M.D., Cellular and Molecular Medicine (Chair)
James Feramisco, Ph.D., Medicine/Pharmacology
Joshua Fierer, M.D., Medicine/Pathology (In-Residence)
Xiang-Dong Fu, Ph.D., Cellular and Molecular Medicine
Frances D. Gillin, Ph.D., Pathology (In-Residence)
Mark Ginsberg, M.D., Medicine
Christopher Glass, M.D., Ph.D., Cellular and Molecular Medicine
Larry S. Goldstein, Ph.D., Cellular and Molecular Medicine
Steven L. Gions, M.D., Ph.D., Pathology
Paul Insel, M.D., Pharmacology
Randall Johnson, Ph.D., Biological Sciences
Martin F. Kagnoff, M.D., Medicine
Mark P. Kamps, Ph.D., Pathology
Michael Karin, Ph.D., Pharmacology
Thomas Kipps, M.D., Ph.D., Medicine
Edward Koo, M.D., Neurosciences
Elielzer Masliah, M.D., Neurosciences/Pathology
Andrew Mizisin, Ph.D., Pathology
Henry C. Powell, M.D., Pathology
C. Ann Rearden, M.D., Pathology
Sharon Reed, M.D., Pathology
Douglas Richman, M.D., Pathology/Medicine (In-Residence)
Michael G. Rosenfeld, Ph.D., Medicine
Sanford Shattil, M.D., Medicine
Deborah H. Spector, Ph.D., Biological Sciences
David Tarin, M.D., Pathology
Robert A. Tarkeltaub, M.D., Medicine (In-Residence)
Ajit P. Varki, M.D., Medicine
Gernot Walter, Ph.D., Pathology
Tony Yaksh, Ph.D., Anesthesiology/Pharmacology

Associate Professors
Ju Chen, Ph.D., Medicine
Richard Gallo, M.D., Ph.D., Medicine (In-Residence)
John Guatelli, M.D., Medicine
Dzung Le, Ph.D., Pathology
Fred Levine, M.D., Ph.D., Pediatrics (In-Residence)
Victor Nizet, M.D., Pediatrics
Joe Vinetz, Ph.D., Medicine

Assistant Professors
Katerina Akassoglou, Ph.D., Pharmacology
Seth J. Field, M.D., Medicine
Bing Ren, Ph.D., Cellular and Molecular Medicine

Adjunct Professors
Eva Engvall, Ph.D., Pathology
Hudson Freeze, Ph.D., Medicine
Minoru Fukuda, Ph.D., Pathology
Fred Gage, Ph.D., Neurosciences
Martin Haas, Ph.D., Cancer Center
Ziwei Huang, Ph.D., Pathology
Michael Kalichman, Ph.D., Pathology
Stuart Lipton, Ph.D., Neurosciences
Mark Mercola, Ph.D., Pathology
Robert Oshima, Ph.D., Pathology
Manuel Perucho, Ph.D., Pathology

James Quigley, Ph.D., Pathology
John C. Reed, M.D., Ph.D., Cancer Center
Diane Shelton, D.V.M., Pathology
Ian Wilson, Ph.D., Pathology

The Graduate Program

The goal of the molecular pathology program is to produce outstanding researchers focused on the molecular basis of human disease who also understand disease at levels of histology and pathology. The molecular pathology graduate program in an interdepartmental and inter-institutional program administered by the UCSD Department of Pathology in affiliation with The Burnham Institute. The program provides a comprehensive knowledge of normal and abnormal biological processes, with a particular emphasis on the molecular mechanisms of human diseases. Faculty research focuses on determining how normal cellular processes are altered in human disease. Research falls within six areas: cancer cell biology; stem cell and developmental biology; neurobiology and neurologic disease; structural biology and signal transduction; microbiology and immunology; and cardiovascular, muscle, and organ development/disease. Most program faculty reside in the Departments of Pathology, Medicine, and Pediatrics at the UCSD School of Medicine, in The Burnham Institute, and in The Scripps Research Institute.

Course Work

The core science curriculum includes classes in Molecular Biology of the Cell, Methods in Cellular and Molecular Pathology, The Molecular Pathology of Cancer, and Neurologic and Muscle Disease. Learning is focused on reading and evaluating current scientific literature, with special attention to identifying the major open ques-
Examinations

First Qualifying Examination (Minor Proposition)

The purpose of this examination is to test the student's ability to choose a research problem in molecular pathology and to propose an experimental approach to its solution. The problem should be unrelated to the student's thesis project. The student is expected to demonstrate knowledge in molecular biology and basic pathology. The first qualifying examination will be taken by the end of the fall quarter of the second year.

Second Qualifying Examination (Major Proposition)

The second qualifying examination, a university requirement, consists of an oral report by the student about research accomplished and the goals to be achieved for completion of the examination, the student will advance to candidacy. The second qualifying examination should be complete by the end of the third year and must be completed by the end of the fourth year.

Departmental Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed six years. Total registered time at UCSD cannot exceed seven years.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

PATH 208G. Human Disease (8)
An integrated consideration of the general principles of pathology and microbiology, epidemiology, and medical therapeutics of the important diseases. An example of their application to a specific organ system will be included. (Not offered in 2006-07.)

PATH 220. Mechanisms of Neurological Disease (4)
This course will explore the molecular pathology associated with various diseases other than cancer. Emphasis will be placed on understanding the aberrant cellular processes, caused by mutation or environmental factors, that are associated with the disease state. Cardiovascular, neurological, immunological, and other diseases will be investigated.

PATH 221. Molecular Pathology of Cancer (4)
The purpose of this course is to present exciting new developments in molecular carcinogenesis, with particular emphasis on oncogene expression and functions of oncopgenic proteins. The relevance of molecular mechanisms for understanding human cancer will be discussed.

PATH 222. Microbial Pathogenesis (4)
Topics covered in this course include molecular and cellular mechanisms of viral, bacterial, and protozoan pathogenesis. Host response and microbial mechanisms of host defense will also be discussed. Sessions will consist of faculty and student presentations of current literature.

PATH 223. Mouse Models of Human Disease (2)
This course provides an overview of the use of mouse models in biomedical research. Sessions will cover general mouse biology, genetics, and technologies for generating mutant mice; and will focus on model selection, methodological approaches, data interpretation, experimental design, and ethics of animal research. Student participation and discussion will be encouraged. Prerequisite: graduate standing or consent of instructor.

PATH 225. Molecular Pathology Research Seminars (2)
This course presents developments in cellular and molecular pathology research. Both faculty and students actively participate in the individual sessions. All students are required to give one to two formal presentations (under faculty supervision) during the year. The relevance of molecular mechanisms for understanding human disease will be discussed. Prerequisite: consent of instructor.

PATH 226. Pathology Conference (2)
Seminars will consist of faculty and student presentations of current literature.

PATH 229. Independent Study or Research (1-12)
Students must be advanced to candidacy by UCSD cannot exceed seven years.

SOM 213. Histology (2)
This course teaches the structural basis of normal and abnormal function at the cellular and tissue levels. Emphasis is based on microscopic study conducted in small laboratory groups under close faculty supervision.
Prerequisite: satisfaction of the UC (Letter grades only.)

Music

which the 199 is to be undertaken. For information on to the major advisor and to the Office of the Provost by students must submit the Muir Special Project 199 form request with a description of the project. (Muir stu-

Students wishing to enroll must submit a written Project proposals approved may enroll in this course.) (Only Muir students who have had Muir Special

ative project to satisfy a Muir graduation requirement.

The Writing Program

OFFICE: 2346 Humanities and Social Sciences Building, Muir College
(858) 534-2522
http://music.ucsd.edu/muir-writing

The Muir College Writing Program is a sequence of courses in critical thinking and writing during which students must advance beyond the basic competency expected at entrance to understand and write discourse acceptable at the university level. Even when faced with challenging topics, students must demonstrate the ability to comprehend textual arguments at more than a superficial level; their writing must exhibit an understanding of academic arguments including focused theses, systematic methods of analysis and argumentation, awareness of audience, strong organization and deve-

ment and analysis. Students engage in close reading of texts, weekly writing and revision, and individual conferences. Course must be taken for a letter grade. Those who need additional work to prepare for MCWP 50 will be given a grade of IP and will be required to take MCWP 41. Prerequisite: satisfaction of the UC Entry Level Writing requirement.

MCWP 41. Special Study in Writing (4)

An individualized writing class including both class discussion and tutorials. Students confer individually with instructors on a regular weekly basis to talk about writing problems. The course is designed for students who have taken MCWP 40 or its equivalent but need additional writing practice to prepare for MCWP 50. MCWP 41 does not satisfy the first part of the Muir Writing requirement. MCWP 41 must be taken for a letter grade and must be taken within two quarters of MCWP 40. Prerequisite: MCWP 40 or its equivalent.

MCWP 50. Critical Writing (4)

Second course of sequence in reading and writing which satisfies the Muir College graduation requirement in writing. Required of all Muir College first-year students and of transfer students. MCWP 50 focuses on advanced skills of argument and analysis. Students engage in close reading of texts, weekly writing and revision, and individual conferences. Course must be taken for a letter grade. Prerequisite: satisfaction of MCWP 40 requirement or completion of TAG or IGETC agreement.

MCWP 125. Argument and Analysis (4)

An advanced course in argumentation and analysis, with particular attention both to constructing arguments and analyzing the logic and rhetoric of others’ arguments. Students will engage in close reading of texts, weekly writing and revision, and individual conferences. A course specially designed for and required of transfer students who enter Muir College under the aegis of TAG or IGETC. Prerequisite: departmental approval.

Music

OFFICE: 111 Mandeville Center for the Arts
http://music.ucsd.edu

Professors
Charles R. Curtis, M.M.
Anthony C. Davis, B.A.
Mark Dresser, M.A.
John W. Fonville, D.M.A.
Aleck Karis, M.M.
Philip C. Larson, M.M.
Cecil W. Lytle, B.A.
Mark Dresser, M.A.
Anthony C. Davis, B.A.
Philip Manoury
F. Richard Moore, Ph.D.
János Négyesy, Dip. Mus.
Jann C. Pasler, Ph.D.
Miller S. Puckette, Ph.D.
Roger L. Reynolds, M.M.

SPPS 215. Human Disease (3)

This introduction to human disease includes etiology and mechanisms of common disease states and integrates pathology with previous core curriculum. The focus will be to understand disease processes and the dynamics of changes related to drug therapy. Our goal is to give the student an overview of the illnesses and disorders of human organs, systems and functions, in other words, human disease, with the hope that this background will lead the students to clinical understanding of patients and future insight into the pathogenesis of disease and new treatments. This course will include general pathology and system based pathology, taught in lecture, case discussion, and lab format.
This department is dedicated to the development of musical intelligence and capacity, centering its quest on the music of our own time. The undergraduate programs intend to enhance the exercise and comprehension of the music-making process. The graduate programs aim to educate practitioners and researchers who can nourish the entire domain of music as well as extend its boundaries.

Resources

Performance/Production Opportunities

Performing in front of an audience is an essential part of the performance program; composers too must hear their works performed. Both performance and non-performance students are encouraged to participate in ensembles, festivals, and collaborative events. Practice facilities include grand pianos, disclaviers and uprights, an electronic keyboard lab, several harpsichords, a wide array of percussion instruments, a percussion studio, and instruments for student checkout.

Each academic year, more than 150 public concerts are presented in well-equipped venues: Mandeville Center Auditorium (792 seats), Mandeville Recital Hall (150 seats), Erickson Hall (150 seats), and Studio A (100 seats). Substantial resources and staffing are dedicated to performances of faculty and student works by new music ensembles, SONOR (faculty), experimental and improvisational ensembles, student performance collectives (New Music Forum, Performers’ Forum, and CS/EP Forum), and at an annual graduate Spring Festival.

Our concert calendar can be viewed at: http://music.ucsd.edu/events.

ENSEMBLES IN RESIDENCE

Chamber Music Advanced
Chamber Singers
Concert Choir
Gospel Choir
Ensemble Realizations of Unconventionally Notated Scores
Improvisation Ensemble
Jazz Ensembles
La Jolla Symphony and Chorus
redfishbluefish
SONOR
Wind Ensemble
World Music (Sitar & Tabla)
Indian classical music

VISITING ARTISTS/ARTISTS IN RESIDENCE

Visiting artists and artists in-residence play an integral part in research and collaborate with faculty and students in focus seminars, concerts, weeklong festivals, and colloquia, bringing an array of new creativity and ideas. Recent special events included Powering Up/Powering Down, an international festival of radical media arts, and the CS/EP Intermedia Festival, featuring sound installation, performance, and critical theory.

MUSIC TECHNOLOGY FACILITIES

The Department of Music maintains highly sophisticated, continuously upgraded facilities for the support of graduate and undergraduate instruction. http://music.ucsd.edu/facilities/

Computer Music Instructional Laboratory (CML)—Established in 1987 to support undergraduate and graduate studies in computer music, CML is a 900-square-foot facility with recessed storage and printing areas, machine isolation, acoustical treatments, a presentation console, ergonomic workstation components, a high-resolution data projection system, CD and DVD authoring, and integrated digital audio equipment for student access to audio processing, duplicating, high-definition digital mixing and high-quality (Dynaudio) multichannel audio monitoring. The facility provides adequate space for instrumental rehearsal and interfacing experimentation, and provides several FireWire interfaces for laptop computing. Mobile desktop systems optimized for live performance applications are also maintained in CML.

Our server has high-speed network and wireless connections, mass storage, and archiving systems. Intel and Macintosh computer workstations run unique music software packages developed at UCSD. Pd is a new, real-time, interactive musical and graphics programming environment written and under continuing development by Professor Miller Puckette. Other audio and graphics editing and processing software packages are also supported, including Pro Tools HD, development compilers, and several standard music-production packages. The facility is configured and optimized to support direct connection of musical instruments to computers for prototyping of real-time interactive performance and compositional projects using MAX/MSP/Jitter and Pd computer music software. The facility is also used for advanced seminars and classes in such topics as sound spatialization, music software programming, computer music techniques, repertoire analysis, and research.

Digital Music Project Studio—This is a 900-square-foot facility, including an isolation booth, absorption and diffusion treatments, data connections, and audio tie-lines to CML and
Erickson Hall. The studio houses Macintosh and Linux systems and many dedicated devices for music production and recording, including a Pro Tools HD digital audio production package with sixteen channels of digital I/O for precise digital recording and editing. Recent upgrades include improved microphone preamps and an array of new software packages, including Waves plugins and convolution reverb. The studio features a Yamaha 02R96 digital mixing console with all upgrades, 5.1 and stereo monitoring, and sound-for-picture capabilities. The studio supports MIDI for synthesis, processing, and control in music composition and performance, and includes hardware and software for CD and DVD mastering.

Open Computing Laboratory (OCL)—This facility occupies 1,950 square feet, with audio and printer connections to CMLL and the Digital Music Project Studio. Most workstations are networked, and several stations are equipped with CD and DVD burning equipment. OCL was established in 1990 to support many facets of the department curriculum, and has been upgraded incrementally every year thereafter. It now comprises seventeen computer workstations (iMacs, desktop G4s and G5s, and several Intels), most with MIDI interfaces and Yamaha SY22/33 synthesizers. Coda Finale, Max/MSP, Soundhack, Metasynth, DVD Studio Pro, Final Cut, Pd, Pro Tools, and IRCAM Forum are some of the packages supported in the lab. Large-format music and text printing are supported. For instructional presentation, the room features a high-quality data projection and surround sound system. The presentation station also features a PC workstation, a G5 Mac with Pro Tools editing, DAT, Bias Peak editor and SpectraFoo, signal display software, and DVD-authoring software burner.

Media Networking—All instructional labs and all of the Department of Music’s performance spaces and classroom spaces have been upgraded for wireless and fast Ethernet and media networking. Media networking allows advanced students and researchers to “stream” digital video and audio among diverse on-campus facilities and onto the Internet. Additionally, there is wireless connectivity at most campus locations. All UCSD music production and research facilities are designed for ease of data portability and as complementary components of a powerful, well-designed, thoroughly integrated continuum of resources serving the needs of entering students through postdoctorate students and faculty researchers.

Music Technology Equipment Checkout—The music department maintains an inventory of technology equipment available to music majors and graduate students for overnight and weekend checkout. Equipment includes laptop computers with music software installed, FireWire audio interfaces, MIDI keyboards and interfaces, microphones, cables, and other recording and production sound equipment. This equipment is provided primarily to support class-related, dissertation, thesis and ICAM senior projects.

Concert Recording and CD Releases—All faculty and most student concerts are recorded by professional staff or their assistants, and qualified students can utilize the department’s extensive high-tech resources for experimental projects resulting in public performance and recordings of new works. Regularly released CDs, under advisement by faculty mentors, feature advanced graduate students who perform, compose, edit, and collaborate to produce a snapshot of musical achievement that predicts distinguished careers and new avenues of musical thought and practice.

Music Center Studios—The Department of Music has a state-of-the-art recording and faculty research complex, completely refurbished in 2004–05, with studios designed to meet the following objectives:

- Serve as an unsurpassed facility for recording and mastering classical and contemporary music.
- Serve as a reference-critical listening space for the evaluation of audio production.
- Support faculty research in psychoacoustics, computer music, and digital signal processing (DSP) for audio.

The facility incorporates two large recording studios (50 x 60 feet) with variable wall and floor surfaces for diverse acoustical configurations, a control room (20 x 30 feet), an isolated machine room, and other support spaces. Music center studios host live performances as well as six-camera video shoots, and are well suited for high-tech presentations and concert recording. A 120-dimmer grid with a digital lighting board supports theatrical lighting for performance, and for television and video production.

The control room features highly refined acoustical qualities and new all-digital mixing and editing systems including Pyramix and Pro Tools HD. ATC monitoring systems have been upgraded for surround sound. An excellent range of microphones supports an unusual array of recording possibilities; a fine selection of pianos, percussion, and electronic instruments is also part of the holdings of the complex. Grad students may apply for staff positions and recording-project support at music center studios, and ICAM majors may apply for engineering and production internship credits. The department’s instructional labs are designed to serve as networked, media-compatible satellites to the music center studios. http://music.ucsd.edu/facilities

Center for Research in Computing and the Arts (CRCA), and California Institute for Telecommunications and Information Technology (Calit2)

The Center for Research in Computing and the Arts (CRCA) is an organized research unit of UCSD. Historically rooted in the Center for Music Experiment (CME), CRCA now exists to foster collaborative working relationships among a wide array of artists, scientists, and technologists by identifying and promoting projects in which common research interests may be advanced through computing.

Music projects at CRCA cover a wide spectrum, from pure research to technically advanced creative endeavors. Current research includes, but is not limited to, interactive multimedia and performance, digital audio and synthesis techniques, video/image processing, spatial audio, computer music languages, virtual environments, robotics, computer composition, installation, artificial intelligence, and Web art.

CRCA offers a broad array of events in its facilities, reflecting the research and artistic expres- sion of faculty, students, associates, and visiting scholars. Research residencies and fellowships are available for undergraduate and graduate students on an annual, competitive basis.

In fall 2005 CRCA moved into its new home in the Media Arts wing of UCSD’s new Calit2 build- ing. This impressive new structure houses offices, labs, and performance spaces on a world-class stage that places CRCA at the crossroads of artistic and technical innovation. CRCA affiliates work alongside leading researchers in the areas of wireless communications, computer imaging, signal processing, bioinformatics, chip design,
immersive media, and a host of new and emerging disciplines.
http://www.crca.ucsd.edu
http://www.calit2.net/

Music Library

The Music Library (located in Geisel Library) maintains extensive collections of materials in all areas of music, and is known internationally for contemporary music holdings. Ethnic music collections are aggressively being expanded. The Music Library’s Services Room has fifty-two stations equipped with audio and video equipment for group presentations. Digital Audio Reserves (DAR) provides students with 24/7 access, including off-campus access, to course listening assignments, via the UCSD network.

http://orpheus.ucsd.edu/music

The Undergraduate Program

Undergraduate courses offered in the Department of Music satisfy a wide range of interests for non-music majors as well as for students majoring in music.

Students wishing to acquire a musical background to support further study should take Music 1A-B-C, which develops skills musicians use in the analysis and performance of music. Students interested in “music appreciation” should choose from the following courses, which introduce aspects of the rich heritage of music: Music 4–15. None of the aforementioned courses have prerequisites. For students with prior musical background who wish to continue in upper-division theory courses, Music 2A-B-C (in lieu of 1A-B-C) is essential.

Music Major Programs

The undergraduate program at UCSD offers a bachelor of arts degree in music and in music humanities. The curriculum emphasizes the development of musical listening and performance skills as applied to both contemporary and traditional music.

The music major is intended for students who may choose to engage in music as a profession. This major thus requires extensive development of musical skills. A student without the appropriate level of those skills upon entrance to UCSD must devote considerable time to attaining them, either in lower-division courses or independent study. Students can concentrate in composition, performance, literature, technology, or jazz and the music of the African diaspora.

The Department of Music is committed to creative music making; thus all music majors are required to enroll in ensemble performance for at least three quarters (see #8 below).

The music/humanities major is intended for students who wish to pursue a broad liberal arts program that includes music as a central element. This program emphasizes music history and literature, and allows the individual student to select an area of interest for the major within the broad field of the humanities.

Music Major Requirements

The lower-division prerequisites for the music major are Music 2A-B-C, and Music 2AK-BK-CK. Jazz emphasis students take Music 2JK in lieu of 2CK. To continue within the major, all students must pass Music 2C or an equivalent proficiency exam. Composition emphasis students must take Music 33. Introduction to Composition, or take a proficiency exam for the course. All required music major courses must be taken for a letter grade, with the exception of Music 143, which is taken on a Pass/No Pass basis. All courses to be counted toward satisfying the major requirements must be passed with a grade of C or better.

To complete the music major the following courses are required. Courses which are specific to each area of emphasis are shown in parentheses.

1. One of the following sequences:
 - Music 101A-B-C (performance, composition, literature, and technology)
 - Music 101A-B and 104 (jazz)

2. One of the following sequences:
 - Music 102A-B-C (performance, composition, literature, and technology)
 - Music 137A-B-C (jazz)

3. Music 120A-B-C

4. One quarter of Music 133 (normally taken in the winter quarter of the junior or senior year)

5. One of the following:
 - Music 107, 110, 116, or 150 (performance, composition, literature, and technology)
 - Music 150 (jazz)

6. One of the following:
 - three quarters of Music 132 or 132V (performance)
 - Music 103A-B-C (composition)
 - three courses from the series Music 107-116, 126, 127A-B, and 150, of which at least one must be 107, 110, 116, or 150 (in addition to #5 above) (literature)
 - Music 170/171/175 (technology)
 - two courses from Music 105, 126, 127A, and 127B; plus one course from Music 107, 110, 111, 114, 115, 116, or 150 (in addition to #5 above) (jazz)

7. One additional course to be selected from:
 - Music 107-116, 126, 127A-B, and 150 (performance, composition, literature, and technology)
 - Music 151-154 (jazz)

8. One of the following sequences:
 - three quarters of Music 95, 130, 131, or 134, including two quarters from 95C, 95D, or 95K (performance, composition, literature, and technology)
 - two quarters of Music 95JC or 131, plus one quarter of Music 95C, 95D, 95G, or 95K (jazz)

9. Music 143 every quarter

Music/Humanities Major Requirements

The prerequisite for the music/humanities major is Music 1A-B-C (or 2A-B-C, if qualified). To complete the major the following courses are required:

1. Music 120A-B-C.

2. Three courses chosen from Music 107-116, 126, 127A-B, and 150, of which at least one must be 107, 110, 116, or 150

3. A coherent set of six upper-division courses selected from the humanities or fine arts (including music) that focuses on a specific topic, chosen in consultation with the music/humanities academic advisor.

4. Three quarters of Music 95, 130, 131, or 134 (two from 95C, 95D, or 95K).

5. Music 143 every quarter

Students interested in this major should confer with the music/humanities faculty advisor.
work out a course of study, which must be submitted at the beginning of the junior year for the advisor’s written approval.

Interdisciplinary Computing and the Arts (ICAM) Major

Major Requirements

Twenty courses are required in the computing and the arts major for the attainment of the Bachelor of Arts degree. A minimum of twelve of these courses must be upper division.

All courses taken to satisfy major requirements must be taken for a letter grade, and only grades of C– or better will be accepted in the major.

The Undergraduate Program

The Interdisciplinary Computing and the Arts program in the Music and Visual Arts departments draws upon, and aims to bring together, ideas and paradigms from computer science, art, and cultural theory. It also takes for granted that the computer has become a metamedium and that artists working with computers are expected to combine different media forms in their works. All of this makes the program unique among other currently existing computer art or design programs which, on the one hand, usually focus on the use of computers for a particular media (for instance, specializing in computer animation, or computer music, or computer design for print) and, on the other hand, does not enter into a serious dialog with the current research in computer science, only teaching the students off-the-shelf software.

The program also recognizes that creating sophisticated artistic works with computers requires a new model of the creative process, one that combines traditional artistic procedures with the experimental research characteristic of the sciences. All in all, it aims to train a new type of cultural producer, who is familiar with music technology, who is equally proficient with computer programming and artistic skills, who is always ready to learn new technologies, and who is comfortable interacting with scientists and computer industry resources.

The goals of the program are:

• to prepare the next generation of artists who will be functioning in a computer-mediated culture
• to give students necessary technical, theoretical, and historical backgrounds so they can contribute to the development of new aesthetics for computer media
• to prepare students to mediate between the worlds of computer science and technology, the arts, and the culture at large by being equally proficient with computing and cultural concepts
• to give students sufficient understanding of the trajectories of development in computing so they can anticipate and work with the emerging trends, rather than being locked in particular software currently available on the market.

Admission to the ICAM Major

Student interest in the Interdisciplinary Computing and the Arts Major (ICAM) has been strong. Because the department has limited resources to accommodate student demand, it is necessary to limit admission to these majors to the most highly qualified students. Any student admitted to UCSD beginning in fall 2002 who wishes to declare an ICAM major will be admitted to the pre-major rather than being directly admitted to the major.

ICAM Pre-Major

Students designated as pre-majors in ICAM must complete the following eight required lower-division courses within six quarters (by the end of their sophomore years):

MUS 4, Introduction to Western Music
VIS 1, Introduction to Art-Making
ICAM 40/VIS 40, Introduction to Computing in the Arts
MATH 20A, Calculus for Science and Engineering*
MATH 20B, Calculus for Science and Engineering*
CSE 11, Introduction to Computer Science: JAVA*
and one from
MUS 1A, Musical Literacy
MUS 2A, Basic Musicianship
MUS 5, Introduction to Music Making
and one from
MUS 6, Electronic Music
MUS 7, Music, Science, and Computers
MUS 14, Contemporary Music

* MATH 20A and MATH 20B is an accelerated calculus course for science and engineering. MATH 10A-B-C covers similar material in a non-accelerated format, and can be substituted. CSE 11 is an accelerated course in the JAVA programming language. CSE 8A and CSE 8B, which cover the same material in a non-accelerated format, may be substituted.

Applying to the Major

Upon completion of all required lower-division courses, pre-majors who seek entrance to the ICAM major must formally apply at the Music Department Undergraduate Program Office. Admission will be based on the following criteria:

1. Performance in the lower-division courses as measured by a GPA of 3.0 or higher, determined by the department on an annual basis.
2. Submission of a portfolio of work demonstrating superior progress as a pre-major. The portfolio will consist of at least two projects that the student has produced in ICAM 40/VIS 40, in another digital arts class, or independently, that in the faculty’s judgment demonstrate that the student possesses the artistic ability and technical skills to perform at a high level in upper-division courses in the majors. Pre-majors should consult the undergraduate advisor in music as to the form in which projects should be submitted (disk, slides, tapes, etc.). For ICAM-music students the portfolio may consist of CDs, DVDs, videotapes, audio tapes, Web sites, performances and performance reviews, ICAM 40 projects, media works created independently or collaboratively with other students, media works created independently or during internships or employment, written personal statements regarding career goals; written recommendations from ICAM faculty, software design, and implementation projects.

Transfer Students

Beginning in fall 2002, transfer students who wish to declare an ICAM major are subject to the major’s admissions policies: that is, they will be admitted initially as pre-majors, apply to the major on the same basis as other students, and be subject to the same requirements with respect to lower-division courses, grade-point average, and portfolio evaluation. Transfers entering with 36 or more quarter units must apply for admission to the major no later than their third quarter of study at UCSD. At the time of admission to the pre-major, transfer students’ transcripts will be evaluated by the departments to determine what courses completed else-
where, if any, may be petitioned as equivalent to required courses. Students should be prepared to provide course descriptions and other materials that may be required to determine the content of such courses.

Continuing Students (Students admitted prior to fall 2002)

Any student admitted to UCSD before fall 2002 may declare an ICAM major by completing a Change of Major form at the undergraduate advisor's office and attending an orientation meeting.

Policies Relating to the ICAM Major

Satisfactory Progress

Any ICAM major whose GPA in courses required for the major drops below 2.0 will be placed on probationary status the following quarter. If, during that probationary quarter, the GPA does not move back up to 2.0 or better, he or she will be dropped from the major.

Prerequisites

Students are required to complete all prerequisites prior to enrolling in any course required for the major. Exceptions must be negotiated with the instructor of the course in question, in consultation with the department undergraduate advisor.

Limitations to Enrollment by Non-Majors

A department stamp is required for all upper-division courses in computing in the arts. Because ICAM is an impacted major, first preference in enrollment in upper-division computing in the arts will be given to ICAM majors and to music majors with a technology concentration. Second preference will be given to other visual arts and music majors. Other students will be admitted to these courses only if space is available.

Lower-Division

(Eight courses required.)

MUS 4, Introduction to Western Music
VIS 1, Introduction to Art-Making
ICAM 40/VIS 40, Introduction to Computing in the Arts
MATH 20A, Calculus for Science and Engineering*
MATH 20B, Calculus for Science and Engineering*
CSE 11, Introduction to Computer Science: JAVA*
and one from
MUS 1A, Musical Literacy
MUS 2A, Basic Musicianship
MUS 5, Introduction to Music Making
and one from
MUS 6, Electronic Music
MUS 7, Music, Science, and Computers
MUS 14, Contemporary Music
* MATH 20A and MATH 20B is an accelerated calculus course for science and engineering. MATH 10A-B-C covers similar material in a non-accelerated format, and can be substituted. CSE 11 is an accelerated course in the JAVA programming language. CSE 8A and CSE 8B, which cover the same material in a non-accelerated format, may be substituted.

Upper-Division

(twelve courses required)

Survey (one course required)

ICAM 110, Computing in the Arts: Current Practice

Foundation (three courses required)

ICAM 101/VIS 140, Digital Imaging: Image and Interactivity
ICAM 102/VIS 145A, Digital Media I: Time, Movement, Sound
ICAM 103/MUS 170, Musical Acoustics

Advanced (four courses required)

One of:
MUS 172, Computer Music II
VIS 141B, Computer Programming for the Arts II
VIS 145B, Digital Media II
VIS 147B, Electronic Technologies for Art II

Three of:
ICAM 120, Virtual Environments
ICAM 130/VIS 149, Seminar in Contemporary Computer Topics
MUS 171, Computer Music I
MUS 173, Audio Production: Mixing and Editing
MUS 174A-B, Audio and MIDI Studio Techniques
MUS 175, Musical Psychoacoustics
MUS 176, Music Technology Seminar
VIS 109, Advanced Projects in Media
VIS 131, Special Projects in Media
VIS 132, Installation Production and Studio
VIS 141A, Computer Programming for the Arts I
VIS 147A, Electronic Technologies for Art I
VIS 174, Media Sketchbook

and one from:
MUS 1A, Musical Literacy
MUS 2A, Basic Musicianship
MUS 5, Introduction to Music Making

and one of:
MUS 111, World Music Traditions
MUS 114, Music of the Twentieth Century
VIS 123CN, Early Print Culture: The First Media Revolution
VIS 125E, History of Performance
VIS 150, History and Art of the Silent Cinema
VIS 151, History of the Experimental Film
VIS 152, Film in Social Context
VIS 153, The Genre Series
VIS 154, Hard Look at the Movies
VIS 155, The Director Series
VIS 157, Video History and Criticism
VIS 158, Histories of Photography

Senior Project (two courses required)

ICAM 160A, Senior Project in Computer Arts I
ICAM 160B, Senior Projects in Computer Arts II

All Computing and the Arts (ICAM) course descriptions are listed at the end of the lower- and upper-division sections under “Courses.” Not all courses are offered each year.

Honors

1. To be admitted into the honors program a student must have the following:

• Excellence in a specific subject matter (performance, composition, literature, technology, jazz and music of the African diaspora, or music/humanities) and faculty support.

• Performers must have previously performed on Performers Forum and enrolled in Chamber Music, Music 130. (Vocalists can seek an exception.) Other students must have completed all Music 95 requirements prior to entering the honors program. Jazz and music of the African diaspora students must have performed, or had their compositions performed, at the undergraduate performers forum.

• A GPA in the Department of Music of 3.6; an overall GPA of 3.0

All of the requirements below must be completed before the last day of instruction in the spring quarter prior to the academic year in which the student proposes to pursue an honors curriculum.
• Performance students must present a piece before the performance faculty that demonstrates their technical and musical abilities. In addition, students must provide a proposed program for an honors recital.

• Composition students must have a composition performed on the New Music Forum series. Either the student’s principal instructor must attend this performance or a tape of this performance must be provided for faculty review. In addition, students must provide a proposed portfolio of original scores for an honors recital.

• Literature students who have (1) presented historically- or musicologically-oriented research papers at campus venues featuring undergraduate research, or (2) been involved in the faculty mentor program, or (3) participated in the presentation of the winter opera with the accompanying symposium, may submit a portfolio of papers to the Critical Studies/Experimental Practices (CSEP) faculty. In addition, students must propose a fifty minute lecture for the Department Seminar (Music 143).

• Music science and technology students must present a portfolio of projects to the music technology faculty and propose a fifty-minute lecture/demonstration for the Department Seminar (Music 143).

• Jazz and music of the African diaspora students must perform a piece before the faculty that demonstrates their compositional and improvisational abilities. In addition, students must provide a portfolio of original scores for their honor’s recital.

2. Once admitted to the honors program:
• Students must be supervised by a faculty advisor throughout the honors program.
• Composition students admitted to the honors program will enroll in twelve units of 137D, 137E, and 137F (Honors Seminar in Jazz Studies I, II, III).
• Literature students who have (1) presented historically- or musicologically-oriented research papers at campus venues featuring undergraduate research, or (2) been involved in the faculty mentor program, or (3) participated in the presentation of the winter opera with the accompanying symposium, may submit a portfolio of papers to the Critical Studies/Experimental Practices (CSEP) faculty. In addition, students must provide a proposed portfolio of original scores for an honors recital.

3. To receive honors:
• A student must publicly demonstrate an appropriate level of excellence, an acceptable GPA, and suitable participation in department presentations and seminars, as determined by the student's honors committee.
• Jazz and music of the African diaspora students will have a recital in the spring quarter of their senior year. The recital will include a program of a minimum of 50 percent of original compositions.

Please Note: Being admitted to the honors curriculum does not guarantee that a student will receive honors.

For further information on the Department of Music Honors Program and to obtain an application form, students should make an appointment with the undergraduate staff advisor.

Transfer Students
Students who plan to transfer into the music major should have strong skills in basic musicianship. For those planning to emphasize performance, solid proficiency on the instrument is required. A general course in the history of music is recommended. All transfer students must pass a proficiency examination in Music 2C (Basic Musicianship) and Music 2CK (Basic Keyboard). To verify the acceptability of transfer music courses, students must make an appointment with the undergraduate staff advisor.

Minor Programs
Please obtain a Department of Music brochure of approved minors from the undergraduate office. Students must seek advice and obtain approval from the undergraduate advisor prior to embarking upon a minor program.

The music minor for students entering UCSD in and after winter quarter 1998 consists of:
• two lower-division music courses except performance ensembles (Music 95A–Music 95W) and lessons (Music 32)
• five upper-division music courses

Students who entered UCSD before winter 1998 may select either the new minor or one of the music minors offered at the time of their entry into the university.

A minor with an emphasis in ICAM consists of seven specific courses, of which at least five must be upper division. Prospective minors should consult with the respective departmental advisor for a complete list of appropriate classes acceptable for the minor.

Advising Office
Undergraduate Staff Advisor
Eileen Voreades, Room 110
Mandeville Center, (858) 534-8226
evoreades@ucsd.edu

The Graduate Program
UCSD offers the master of arts and doctor of philosophy in music as well as a doctor of musical arts. Areas of emphasis for the M.A. include Composition, Computer Music, Critical Studies/Experimental Practices (CS/EP), and Performance. For the Ph.D., areas of emphasis offered are Composition, Computer Music, and Critical Studies/Experimental Practices. The doctor of musical arts has an emphasis in Contemporary Music Performance.

Composition
The Composition Program is committed to nourishing the individual gifts and capacities of student composers in a diverse and active environment, with an emphasis on intensive personal interaction between faculty and student. The faculty mentor considers a student’s particular goals and then attempts to strengthen his or her technical capacity to meet them. The diversity and liveliness of our program itself often challenges students to reevaluate their goals.

An incoming member in the M.A. or Ph.D. program begins with a year-long seminar (taught by a different faculty composer each quarter) and continues with individual studies thereafter. At the close of the first year fall quarter and again after the following spring quarter, the entire composition community gathers for a day-long “jury.” Each seminar member is allotted a block of time during which the composition that has just been completed is performed and recorded in a carefully rehearsed presentation. There is a detailed discussion of each work by the faculty composers, and the student has opportunity to comment, explain, and pose questions. Following the performance and discussions of this day, the composition faculty meets to assess the students’
work collectively and to offer any guidance deemed necessary. This process is at the root of the uniqueness of the UCSD program, and manifests the range, seriousness, and vitality with which compositional issues are explored here.

After completing three quarters of seminar and two juries, students come to know something about the ideas and perspectives of each faculty composer; the faculty, in turn, is aware of each student's objectives and needs. At this point, an individual mentor is agreed upon and this relationship becomes the center of the student's continuing work as the degree is completed. A Third Year Forum presents, under departmental auspices, a work composed by each third-year Ph.D. composer in the four quarters since his or her second jury. As a part of preparation for this forum, each student composer is expected to have a faculty performer on his or her Ph.D. committee (as a regular member, or as an additional sixth member). The faculty performer is the student's performance mentor and guide in interfacing with the performance community. There is also a biweekly Focus on Composition Seminar at which faculty, students and selected visitors present work of interest (compositional, analytical, technological, and even whimsical).

The seminars serve to foster mutual awareness within the student composer group. Collegial relationships develop which lead not only to friendships but also to further creative outlets in cooperative projects, including the student-run Composers' Forums, performance collectives, and recital projects. UCSD performers—faculty and student—are all committed to the playing of new music, and frequent composer/performer collaborations are a vital aspect of life in the Department of Music.

Computer Music

http://music.ucsd.edu/grad/comp_music.html

The Computer Music Program emphasizes research in new techniques for electronic music composition and performance, catalyzed through an active concert program of new works by students, faculty, and visitors. Areas of research include:

- new audio synthesis techniques
- audio signal processing
- psychoacoustics
- live improvisation with and by computers
- integrating audio and video
- electronic spatialization of sounds
- techniques for live electronic music performance
- computer music software and HCL design
- audio analysis and feature detection

The Computer Music Program encourages work which overlaps with the other programs of study: composition, performance, and critical studies/experimental practices. Analyzing and performing electronic music repertoire as well as writing new music involving electronics are encouraged.

The computer music area's first year is centered on a year-long "backbone" course covering the essentials of the computer music field. This material divides naturally into three portions (audio signal processing, compositional algorithms, and musical cognition).

In their second year, students work individually with faculty members to deepen their mastery of their subject areas of concentration. For example, a student wishing to focus on signal processing aspects might study techniques for digital audio analysis and resynthesis, drawing on the current research literature.

Also during these first two years Ph.D. students take seminars on music analysis, composition, and performance practice. After having taken a critical mass of such subjects students enter a qualifying examination preparation period, and, once successful, they start their dissertation research.

UCSD's Center for Research in Computing and the Arts (http://crca.ucsd.edu) offers an ideal research environment for graduate students in this area. The music department also provides extensive laboratory and computing support for computer music.

Critical Studies/Experimental Practices

The Program in Critical Studies/Experimental Practices (CS/EP) explores what music is about over the widest possible range of traditions and possibilities. An exploration of experimental, Western, and non-Western music-making is combined with the critical examination of music and musical ideas within human societies.

This interactive environment encourages a cross-fertilization between diverse musical forms and the theoretical and critical discourses that surround them, often drawing in those who may not fit conventional categories of "composer" or "performer," or those whose work is not constrained by traditional disciplinary boundaries.

Thinking about music requires both analytic engagement with music and the creative investigation of ideas relevant to its nature, creation, production, and reception. Core seminars explore multiple ways of thinking about music, including critical, cognitive, and intercultural approaches.

Recent seminars have included hermeneutics of music, jazz criticism, transnational and postcolonial theory, interdisciplinary and intercultural investigation of improvisation, eco-musicology, fieldwork methods, psychoacoustics, film and popular music, music and video, representations of sexuality and gender in music, ethics, music theater, music history, and theorizing concert life. Students are encouraged to share their scholarly, musical, and intermedia work in quarterly CS/EP forums.

Music-making in CS/EP encompasses both compositional and performance activities. Experimental performance workshops incorporate improvisation and such diverse elements as new technologies, video, dance, visual, and theatrical components to make music in a multiplicity of ways.

Student-generated projects and workshops are also an important component of the UCSD Graduate Program in CS/EP. Individual student interests and initiatives are welcomed by the faculty, who are expert in such diverse fields as cognitive psychology, computer-aided improvisation, ethnomusicology, historical development of Western music, and contemporary critical thought.

Performance

Fostering the creative, intelligent, and passionate performance of contemporary music is the mission of the Performance Program of the Department of Music. As once stated by founding faculty composer Robert Erickson, we at UCSD are a "community of musicians."

The performance of contemporary music is viewed as a creative act which balances expertise and exploration. Within this context, performers act and interact in a communal environment, working with faculty and student composers, collaborating in music technology, researching instrument design, improvising, and experimenting in performance practice, among many other pursuits.
Graduate performance students pursue either a master of arts or a doctor of musical arts degree in contemporary performance. The course of study for both programs involves the completion of required graduate seminars and intensive study with a mentoring faculty member. Students are encouraged to adopt a vigorous, exploratory orientation in their private study. Final degree requirements include a recital, or in the case of the DMA, two recitals and the presentation of personal performance research.

The work of graduate performance students forms an integral component of a rich musical environment which produces an astonishing quantity and variety of performances. Students may perform in SONOR (the university’s contemporary music ensemble) or in SIRIUS, (the graduate student contemporary music group). The Performance Forum, a student-initiated concert series, provides an opportunity for students to present a wide variety of concerts of improvised music, world music, and music with technology. A strong, collaborative spirit between the Performance and Composition programs also yields many new works each year performed on New Music Forum concerts series.

Graduate Admissions

Students are admitted to begin in fall quarter only. The deadline for submission of ALL application materials is January 10. Failure to meet this deadline jeopardizes admission and financial support.

STEP 1 PRELIMINARY APPLICATION

The application process begins at the Department of Music Web site http://music.ucsd.edu with a preliminary online application. We encourage all applicants to apply as early as September.

STEP 2 PORTFOLIO

Music applicants must submit a portfolio consisting of the following by January 10 to UCSD, Department of Music, MC 0326, La Jolla, CA 92039. Please include your most recent works as well as twentieth-century pieces, when possible.

- For all applicants, a repertory list of works (solo and chamber) performed or composed during the past few years and a sample of printed concert programs in which you have participated, either as performer, composer, or collaborator.

- For all applicants, a minimum of two papers illustrating writing ability in any of the following areas: musical analysis, criticism, aesthetics, music theory, or music technology.

- For composition applicants ONLY, a minimum of three scores of instrumental works with taped examples of the works being performed. (These may include, but should not be exclusively, electroacoustic works.)

- For computer music and CS/EP applicants ONLY, representative documentation (e.g., papers, performances, intermedia works, computer programs, etc.) of relevant research and activities.

- For performance applicants ONLY, tapes or CD demonstrating the level of vocal and/or instrumental performance. In person auditions are desirable when possible, but not required.

STEP 3 UCSD APPLICATION FOR GRADUATE ADMISSION

All sections of the official online UCSD Application for Graduate Admission with the $60, or $80 for international students, non-refundable fee must be submitted by January 10. Applications must include all supporting documents:

- statement of purpose
- three letters of recommendation
- official transcripts
- Graduate Record Examination (GRE) required for all applicants.
- TOEFL (Test of English as a Foreign Language) or International English Language Testing System (IELTS) required for all applicants whose country of citizenship does not have English as its primary language. Minimum TOEFL score is 550 for the paper-based test, 213 for the computer-based test, or 80 for the Internet-based test. The minimum IELTS score is 7.

Advisory Examinations

After completion of an advisory examination during Welcome Week, each new student will meet with the departmental M.A. or Ph.D. advisor. Students found to be deficient in any areas covered on the advisory examination (dictation, sight reading, keyboard proficiency, history, and literature) will be advised to remedy deficiencies during their first year.

Core Graduate Curriculum

All graduate students are required to take Music 201 (Projects in New Music Performance) as outlined under each area, Music 210 (Musical Analysis), Music 228 (Conducting)—optional for CS/EP students, and Music 291 (Problems and Methods of Music Research and Performance). Students who completed Music 210, 228, and 291 during their master's degree program at UCSD, do not need to retake those courses for their doctoral curriculum.

To assure that all requirements are being adequately met, all graduate students must make an appointment with the graduate staff advisor for a degree check no later than the winter quarter of the second year.

Master’s Degree Program

The master of arts in music degree includes areas of emphasis in Composition, Computer Music, Critical Studies/Experimental Practices (CS/EP), and Performance. The degree requires completion of at least thirty-six quarter units of graduate courses (courses numbered 201–299), including six units of Music 500 (Apprentice Teaching in Music) and six units of Music 299 (Advanced Research Projects and Independent Study) bearing directly on completion of the master’s thesis. Master’s students are expected to complete all requirements for the degree in six quarters of residence.

Course Requirements

In addition to the core graduate curriculum, all master's degree students are required to complete requirements in their area of emphasis:

COMPOSITION

1. Music 201 (A, B, C, D, E, or F)—must take at least two times.
2. Music 203A-B-C—successful completion of the jury process is necessary to get a passing grade in the corresponding seminar.
3. Music 203D—after successful completion of 203C, students must enroll in Music 203D (with their committee chair) every quarter until graduation.
4. Music 204—every quarter until graduation.
5. Music 206 and/or 207—a combination of any two courses.

Computer Music
1. Music 201 (A, B, C, D, E, or F)—must take at least two times.
2. Music 270A-B-C—must take within the first year of the program.
3. Music 270D—required every quarter of the second year.
4. Music 206, 207, and/or 267—a combination of any two courses.

Critical Studies/Experimental Practices
1. Music 201 (A, B, C, D, E, or F)—must take at least two times.
2. Music 205—every quarter until graduation.
3. Music 206 or 207—a combination of any two courses.
4. Music 208A-B-C—must take within the first year of the program.
5. Music 208D—one time during the second year.

Performance
1. Music 201(A, B, C, D, E, or F)—every quarter until graduation.
2. Music 206 or 207—a combination of any two courses.
3. Music 232—every quarter until graduation.

Master's Degree Completion Requirements
A folio of three research papers in professional format (normally to be written in connection with the courses the student will be taking) must be accepted by the student's committee prior to approval of the thesis.

M.A. candidates will present a thesis consisting of the following under the supervision of the student's committee chair in Music 299:
1. Candidates emphasizing Composition will prepare a folio of three chamber compositions together with tape recordings of at least two of them.
2. Candidates emphasizing Computer Music will write a research paper (thesis) and present a lecture-performance in which the scientific, technological, and musical aspects of an original computer music composition are documented, played, and discussed.
3. Candidates emphasizing Critical Studies/Experimental Practices will write an extended research paper (thesis) on a topic chosen with their committee chair.
4. Candidates emphasizing Performance will present a recital supported by lecture-quality notes. The program must be approved by the student's committee chair.

All of the above master’s requirements must have final approval from the student's individual committee upon completion.

Doctoral Degree Program
Students of superior musical competence may pursue a program with emphasis in Composition, Computer Music, or Critical Studies/Experimental Practices (CS/EP) leading to the Ph.D. or doctor of musical arts (D.M.A.) degree in Contemporary Music Performance.

All doctoral students within the Department of Music must complete the Core Graduate Curriculum (outlined in the section above the Master’s Degree Program) plus additional core requirements for the Ph.D. or D.M.A. program. These additional core requirements are:
1. Successful completion of an M.A. degree, including requirements equivalent to those described above for the M.A. in music. UCSD M.A. students who apply to the Ph.D./D.M.A. program must complete all departmental requirements, obtain OGSR approval, and file the M.A. degree at Geisel Library before enrolling in any Ph.D./D.M.A. level courses.
2. The Department of Music strongly recommends that entering students have acquired a reading ability in at least one of the standard reference foreign languages (French, German, Italian, or Spanish) in addition to their native language.
3. All Ph.D./D.M.A. students are required to complete six units of credit in Music 500 (Apprentice Teaching) unless the student has completed this requirement in UCSD’s master’s degree program.
4. After completing the qualifying examination, all students must remain in residence for at least three quarters, during which time they must enroll in twelve units of Music 299 (Advanced Research Projects and Independent Study) with their committee chair or members every quarter.

Course Requirements
In addition to the core graduate and Ph.D./D.M.A. curriculum, doctoral students (according to their area of emphasis) must complete the following courses prior to the qualifying examination:

Composition
1. Music 201 (A, B, C, D, E, or F)—must take at least two times.
2. Music 203A-B-C—successful completion of the jury process is necessary to get a passing grade in the corresponding seminar. Continuing students from the UCSD Composition Graduate M.A. program may be excused from Music 203B-C by successfully completing Music 203A at the Ph.D. level.
3. Music 203D—after successful completion of 203C, students must enroll in Music 203D (with their committee chair) every quarter in residence.
4. Music 204—every quarter in residence.
5. Music 206 and/or 207—a combination of any three courses.
6. Music 209—must be taken at least three times.
7. Music 298—must complete at least six units.

Computer Music
1. Music 201 (A, B, C, D, E, or F)—must take at least two times.
2. Music 270A-B-C—must be taken within the first year of the program unless previously taken as a UCSD M.A. student.
3. Music 270D—after successful completion of 270C, students must enroll in Music 270D (with their committee chair) every quarter in residence.

Critical Studies/Experimental Practices
1. Music 201 (A, B, C, D, E, or F)—must take at least two times.
3. Music 206 and/or 207—a combination of any three courses.
4. Music 208A-B-C—must take within the first year of the program unless previously taken as a UCSD M.A. student.
5. Music 208D—one time during the second year.
6. Music 209—must be taken at least three times.
7. Music 298—must complete at least six units.

PERFORMANCE

1. Music 201(A, B, C, D, E, or F)—every quarter until completion of qualifying examination.
2. Music 206/207/209—as approved by D.M.A. advisor, a combination of any six seminars related to the primary and secondary area of specialization. Music 296 may be substituted for up to four seminars with permission of D.M.A. advisor.
3. Music 232—every quarter until completion of qualifying examination.
5. Music 250—must be taken at least three times.
6. Music 298—must complete at least six units.

Qualifying Examination/Advancement to Candidacy

Requirements prior to taking the qualifying examination:

1. Completion of all Ph.D./D.M.A. required course work.
2. For Ph.D. students, one research paper judged to be of publishable quality must be completed prior to qualifying examinations. The subject of the publishable paper will be developed during the student's first two years and must be approved by the student's Ph.D. committee chair.
3. For Composition students, in addition to the publishable paper, a folio of not fewer than three compositions (not previously accepted for an M.A. degree) must be completed prior to qualifying examinations. A Third Year Forum presents, under departmental auspices, a work composed by each third-year Ph.D. composer in the four quarters since his or her second jury. As a part of preparation for this forum, each student composer is expected to have a faculty performer on his or her Ph.D. committee (as a regular member, or as an additional sixth member). The faculty performer is the student's performance mentor and guide in interfacing with the performance community.
4. For D.M.A. students, one major recital; plus either (a) an abstract of the thesis or research project which will be given to the Doctoral Committee at the qualifying examination; or (b) a substantial portion of the works from the student's first two "major recitals" will be presented at the qualifying examination.

The qualifying examination for all doctoral students will consist of the following:

- A written and oral defense of three questions provided by the Doctoral Committee pertaining to appropriate areas of specialization.

Ph.D./D.M.A. Degree Completion Requirements

1. For Composition students, completion of a major composition project.
3. For D.M.A. students, completion of a second major recital plus one of the following: (a) a thesis or research project; or (b) a concert that is innovative in design and/or content, and which is supported by a document containing extensive stylistic or analytical discussion of the program; or (c) a lecture/concert pertaining to innovative and/or original material, with appropriate documentation as determined by the committee; or (d) two approved chamber music concerts with appropriate documentation as determined by the committee.

Materials previously submitted for other degrees are not acceptable for submission for the Ph.D./D.M.A. degree.

Time Limit Policy for the Doctoral Degree

NORMATIVE TIME LIMITS

4 years: Students entering the Ph.D./D.M.A. program with a master's degree from another institution.

6 years: Students continuing into the Ph.D./D.M.A. program with a master's degree from UCSD. Time limit is calculated from the beginning of the M.A. program.

Students who have not completed all Ph.D. requirements within the maximum total registered time will no longer be permitted to register for classes.

SUPPORT TIME LIMITS

6 years: Students entering the Ph.D./D.M.A. program with a master's degree from another institution.

7 years: Students continuing into the Ph.D./D.M.A. program with a master's degree from UCSD. Time limit is calculated from the beginning of the M.A. program.

TOTAL REGISTERED TIME LIMITS

6 years: Students entering the Ph.D./D.M.A. program with a master's degree from another institution.

8 years: Students continuing into the Ph.D./D.M.A. program with a master's degree from UCSD. Time limit is calculated from the beginning of the M.A. program.

Advising Office

Graduate Staff Advisor
Diana Platero, Room 109
Mandeville Center, (858) 534-3279
dplatero@ucsd.edu

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

NOTE: The following course offerings outline the general scope of our program. Not all courses are offered every year. It is essential that students work closely with departmental advisors when planning their degree programs.

LOWER-DIVISION

1A. Fundamentals of Music A (4)
This course, first in a three-quarter sequence, is primarily intended for students without previous musical experience. It introduces music notation and basic music theory topics such as intervals, scales, keys, and chords, as well as basic rhythm skills. Prerequisites: none.

1B. Fundamentals of Music B (4)
This course, second in a three-quarter sequence, focuses on understanding music theory and in developing musical ability through rhythm, ear training, and sight singing exercises. Topics include major and minor scales, seventh-chords, transportation, com-
pound meter and rudiments of musical form.
Prerequisite: Music 1A.

1C. Fundamentals of Music C (4)
This course, third in a three-quarter sequence, offers a solid foundation in musical literacy through exercises such as harmonic and melodic dictation, sight singing exercises and rhythm in various meters. Topics include complex rhythm, harmony, and basic keyboard skills.
Prerequisite: Music 1B.

2A-B-C. Basic Musicianship (4-4-4)

2AK-BK-CK. Basic Keyboard (2-2-2)
Scales, chords, harmonic progressions, transposition, and simple pieces. Prerequisites: concurrent enrollment in Music 2A, B, C.

2JK. Jazz Keyboard (2)
This course will introduce basic voicings and voice leading, stylistically appropriate accompaniment, and basic chord substitution. For majors with a Jazz and the Music of the African Diaspora emphasis to be taken concurrently with Music 2C. Prerequisites: Music 2A, 2B, and 2C or passing proficiency exam, or consent of instructor. Concurrent enrollment in Music 2C. Majors only.

4. Introduction to Western Music (4)
A brief survey of the history of Western Music from the Middle Ages to the present. Much attention will be paid to the direct experience of listening to music and attendance of concerts. Class consists of lectures, listening labs, and live performances. Prerequisite: none.

5. Sound in Time (4)
An examination and exploration of the art and science of music making. Topics include acoustics, improvisation, composition, and electronic and popular forms. There will be required listening, reading, and creative assignments. No previous musical background required. Prerequisite: none.

6. Electronic Music (4)
Lectures and listening sessions devoted to the most significant works of music realized through the use of computers and other electronic devices from the middle of this century through the present. Prerequisite: none.

Exploration of the interactions among music, science, and technology, including the history and current development of science and technology from the perspective of music. Prerequisite: none.

8. American Music (4)
A course designed to study the development of music in America. The focus will be on both the vernacular traditions including hymn singing, country music, jazz, big band, rock, etc., as well as the cultivated traditions of various composers from William Billings to John Cage. Prerequisite: none. (Offered in selected years.)

9. Symphony (4)
The symphonic masterworks course will consist of lectures and listening sessions devoted to a detailed discussion of a small number of recognized masterworks (e.g., Mozart, Beethoven, Berlioz, Stravinsky, Ligeti, etc.). Prerequisite: none. (Offered in selected years.)

10. Chamber Music (4)
Chamber Music will consist of lectures and listening sessions devoted to a detailed discussion of recognized chamber masterworks (e.g., Haydn, Mozart, Beethoven, Bartok, etc.). Prerequisite: none. (Offered in selected years.)

11. Folk Music (4)
A course on folk musics of the world, covered through lectures, films, and listening sessions devoted to detailed discussion of music indigenous to various countries/areas of the world. Topics vary from year to year. May be repeated once for credit. Prerequisite: none.

12. Opera (4)
A study of opera masterworks that often coincide with operas presented in the San Diego Opera season. Class consists of lectures, listening labs, live performances, and opera on video. Prerequisite: none.

13A. World Music/Africa (4)
A course that focuses on the music of Africa and on African ways of music making in the Diaspora to the Caribbean and South America. No prior technical knowledge of music is necessary. Prerequisite: none.

13M. World Music/Multicultural America (4)
A study of music cultures in the United States, particularly Native American, Hispanic American, European American, Asian American, and Pacific Islanders from the perspective of ethnicity, origin, interaction, and the contribution of various ethnic groups to American musical life. No prior technical knowledge of music is necessary. Prerequisite: none.

13A5. World Music/Asia and Oceania (4)
Introduction to selected performance traditions of Asia and Oceania with links to local and visiting musicians from these cultures. No prior technical knowledge of music is necessary. Prerequisite: none.

14. Contemporary Music (4)
This course offers opportunities to prepare oneself for experiences with new music (through preview lectures), hear performances (by visiting or faculty artists), to discuss each event informally with a faculty panel: an effort to foster informed listening to the new in music. Prerequisite: none.

15. Popular Music (4)
A course on popular music from different time periods, covered through lectures, films, and listening sessions. Topics vary from year to year. May be repeated once for credit. Prerequisite: none.

32. Instrumental/Vocal Instruction (2)
Individual instruction on intermediate level in instrumental technique and repertory. For declared music majors and minors. Students must be simultaneously enrolled in a performance ensemble or non-performance music course and in Music 32VM. May be taken six times for credit. Prerequisites: audition and department stamp.

32G. Group Instrumental Instruction (2)
Group instruction in instrumental or vocal technique and repertory. Intermediate level. Intended for students who make an important contribution to Department of Music ensembles. Prerequisites: Written recommendation of ensemble director and audition for performance faculty on first day of classes required. Department stamp required. May be taken for credit six times. (Offered in selected years)

32V. Vocal Masterclass (1)
Individual instruction on intermediate level in vocal technique and repertory. For declared music majors and minors. Students must be simultaneously enrolled in a performance ensemble or non-performance music course and in Music 32VM. May be taken six times for credit. Prerequisites: audition and department stamp.

32VM. Vocal Masterclass (1)
All students enrolled in voice lessons (32, 132, or 132C) perform for one another and their instructors. Students critique in-class performances, with emphasis on presentation, diction, dramatic effect, vocal quality, and musicality. Prerequisites: concurrent enrollment in Music 32, 132V or 132C.

33. Introduction to Composition (4)
This course is intended to provide the prerequisite knowledge necessary to pursue an emphasis in composition. Topics covered will include notation, calligraphy, instrumentation, orchestration, and twentieth-century music literature. Prerequisite: Music 2A and 2B or consent of instructor.

87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to 15 to 20 students, with preference given to entering freshmen.

95. Ensemble Performance (2)
Performance in an ensemble appropriate to student abilities and interests. Normally each section requires student participation for the whole academic year, with credit for participation each quarter. Sections of Music 95W have included: African drumming, Korean percussion, Indian sitar and tabla, koto, and Indonesian flute. Not all sections will be offered every year. May be repeated for credit. Grading on participation level, individual testing, comparative papers on repertoire covered, etc. Prerequisites: audition and consent of instructor for each section. Materials fee required.

Note: Students in the Music 95 series courses may enroll with a letter grade option a total of twelve units for registered music majors and a total of six units for all other students; after which students may continue to enroll in Music 95S courses, but only with a P/NP grade option. There is one exception to the above grading policy. Music 95G, Gospel Choir, can only be taken for a P/NP grading option.

Section B. Instrument Choir
Section C. Concert Choir
Section D. Symphonic Chorus
Section E. Chamber Orchestra
Section G. Gospel Choir
Section H. Chamber Opera (Not offered every year.)
Section JC. Jazz Ensemble
Section JH. Large Jazz Ensemble
Section K. Chamber Singers
Section L. Wind Ensemble
Section W. World Music Ensembles
ICAM 40. Introduction to Computing in the Arts (4) (Cross-listed with VIS 40.) Introduction to conceptual uses and historical precedents for use of computers in art making. Introduces students to the program's computer facilities and teaches them basic computer skills. Prerequisite: Visual Arts and ICAM majors and minors only. NOTE: Materials Fee required.

UPPER-DIVISION

101A. Music Theory and Practice I (4) Study of modal counterpart in the style of the sixteenth century. Two-voice species counterpoint studies. Analysis of music of the period. Musician studies: sight-singing, dictation, and keyboard skills. Prerequisite: Music 2C and 2CK.

101B. Music Theory and Practice II (4) Study of tonal harmony and counterpoint. Analysis of Bach chorales and other music from the Baroque period. Musician studies: sight-singing, dictation, and keyboard skills. Prerequisite: Music 101A.

101C. Music Theory and Practice III (4) Tonal harmony and counterpoint. Analysis of larger classical forms: Sonata, Variation, Minuet and Trio, Rondo. Musician studies: sight-singing, dictation, and keyboard skills. Prerequisite: Music 101B.

102A. Music Theory and Practice IV (4) Advanced study of the materials and structures of music (Beethoven to Wagner) emphasizing the evolution of music through chromatic harmony and voice leading. Development of aural discrimination and in-depth analysis. Prerequisite: Music 101C.

102B. Music Theory and Practice V (4) Advanced study of the materials and structures of music (Schoenberg, Stravinski, Webern, etc.—1900–1940) emphasizing the evolution of music through extended harmony post tonality and neoclassicism. Development of aural discrimination and in-depth analysis. Prerequisite: Music 102A.

102C. Music Theory and Practice VI (4) Advanced study of the materials and structures of music (1945-2006) emphasizing the evolution of music through the many compositional trends of the late twentieth century. Development of aural discrimination and in-depth analysis. Prerequisite: Music 102B.

103A-B-C. Seminar in Composition (4-4-4) Individual projects in composition will be critically reviewed in seminar with fellow student and faculty composers. Prerequisites: Music 2A-B-C and 33.

103D-E-F. Honors Seminar in Composition (4-4-4) Advanced individual projects for senior music majors pursuing honors in composition. Projects will be critically reviewed in seminar with fellow students and faculty composers. Prerequisites: Music 103A-B-C and admission into the Department of Music Honors Program in composition. Department stamp required.

104. Jazz Transcription and Analysis (4) An introduction to the practice of transcribing and analyzing improvised music. Discussion of music technique, style, aesthetics, and the ideology of transcription. Prerequisites: Music 101A and 101B.

105. Jazz Composition (4) This course will explore a range of compositional possibilities from song forms to modal and more extended forms. May be repeated once for credit. Prerequisite: Music 104 or consent of instructor.

107. Critical Studies Seminar (4) This seminar explores the history of music in relation to critical issues, such as race, gender, sexuality, the environment, and politics. Readings include recent literature in cultural studies, musicology, and sociology. Topics vary. May be taken three times for credit. Prerequisite: Music 120C.

110. Introduction to Ethnomusicology Seminar (4) This seminar introduces the central theories, methods, and approaches used to study the musics of contemporary cultures, in their local contexts. In addition to surveying key writings, students will document music from their local environment. Prerequisite: upper-division standing or consent of instructor.

111. Topics/World Music Traditions (4) A study of particular regional musics in their repertory, cultural context, and interaction with other traditions. Topics vary. Prerequisite: none.

112. Topics in European Music Before 1750 (4) This course will address topics in medieval, Renaissance, and Baroque music; topics will vary from year to year. May be repeated five times for credit. Prerequisites: knowledge of music notation or consent of instructor; Music 4, 8-10 or 120 recommended.

113. Topics in Classic, Romantic, and Modern Music (4) This course will focus on Western music between 1750 and the early 20th century; topics will vary from year to year. May be repeated five times for credit. Prerequisites: knowledge of music notation or consent of instructor; Music 4, 8-10 or 120 recommended.

114. Music of the Twentieth Century (4) An exploration of materials and methods used in the music of our time. There will be an extra discussion group for music majors. May be repeated once for credit. Prerequisites: none.

115. Women in Music (4) A survey of the biographical, historical, sociological, and political issues affecting women musicians, their creativity, their opportunities, and their perception by others. It compares and contrasts the work of women composers, performers, patrons, teachers, and writers on music from the Middle Ages through the present. Prerequisite: consent of instructor.

116. Popular Music Studies Seminar (4) This course examines special topics in popular music from various sociopolitical, aesthetic, and performance perspectives. Readings include recent literature in cultural studies, musicology, and/or performance practice. Topics vary. May be taken three times for credit. Prerequisite: upper-division standing or consent of instructor.

120A. History of Music in Western Culture I (4) First part of intensive historical, analytical, and cultural-aesthetic examination of music in Western culture from the ninth through the twenty-first centuries. Considers both sacred and secular repertories, from Gregorian chant through early opera, c. 800–1600. Prerequisite: Music 1C or 2C or passing grade on proficiency exam. Music majors should be enrolled concurrently in Music 101A. Department stamp required for non-majors.

120B. History of Music in Western Culture II (4) Second part of intensive historical, analytical, and cultural-aesthetic examination of music in Western culture from the ninth through the twenty-first centuries. Considers both instrumental and vocal repertories, from the Baroque to the Romantic, c. 1600–1830. Prerequisite: Music 120A. Music majors should be enrolled concurrently in Music 101B. Department stamp required for non-majors.

120C. History of Music in Western Culture III (4) Third part of intensive historical, analytical, and cultural-aesthetic examination of music in Western culture from the ninth through the twenty-first centuries. Considers both established traditions and new trends from Romanticism through Modernism and Post-Modernism, c. 1890–present. Prerequisite: Music 120B. Music majors should be enrolled concurrently in Music 101C. Department stamp required for non-majors.

126. Blues: An Oral Tradition (4) This course will examine the development of the Blues from its roots in work-songs and the minstrel show to its flowering in the Mississippi Delta to the development of Urban Blues and the close relationship of the Blues with Jazz, Rhythm and Blues, and Rock and Roll. (Cross-listed with Ethnic Studies 178.) Prerequisite: none.

127A. Jazz Roots and Early Development (1900–1943) (4) This course will trace the early development of Jazz and the diverse traditions which helped create this uniquely American art form. We will witness the emergence of Louis Armstrong in New Orleans and examine the composer's role in Jazz with Jelly Roll Morton and Duke Ellington. (Cross-listed with Ethnic Studies 179A.) Prerequisite: none.

127B. Jazz Since 1946: Freedom and Form (4) This course will examine the evolution of Jazz from 1943 to the present. The course will survey the contrasting and competing styles in Jazz from BEBOP to COOL to the avant garde and fusion. (Cross-listed with Ethnic Studies 179B.) Prerequisite: none.

128. Principles and Practice of Conducting (4) The theory and practice of instrumental and/or choral conducting as they have to do with basic baton techniques, score reading, interpretation, orchestration, program building, and functional analysis. Members of the class will be expected to demonstrate their knowledge in the conducting of a small ensemble performing literature from the eighteenth, nineteenth, and twentieth centuries. Prerequisites: Music 2A-B-C and 101A-B-C. Department stamp required.

129. Orchestration (4) This course will give practical experience in orchestration. Students will study works from various eras of instrumental music and will demonstrate their knowledge by orchestrating works in the styles of these various eras, learning the capabilities, timbre, and articulation of all the instruments in the orchestra. Prerequisite: Music 101B.

130. Chamber Music Performance (2-4/0) Instruction in the preparation of small group performances of representative instrumental and vocal chamber music literature. May be taken for credit six times, after which students must enroll for zero units. Prerequisite: consent of instructor through audition.

131. Advanced Improvisation Performance (4/0) Master class instruction in advanced improvisation performance for declared majors and minors only or consent of instructor. Audition required at first class meeting. May be repeated six times for credit.
Prerequisites: audition and department stamp required.

132. Pro-Seminar in Instrumental Instruction (4)
Individual or master class instruction in advanced instrumental performance. For declared music majors and minors. Students must be simultaneously enrolled in the Vocal Masterclass, Music 32VM. May be taken six times for credit. Prerequisites: audition and department stamp.

132C. Vocal Coaching (3)
Individual instruction in advanced vocal coaching. Emphasis placed on diction and musical issues. For declared music majors and minors. Students must be simultaneously enrolled in the Vocal Masterclass, Music 32VM. May be taken six times for credit. Prerequisites: at least one quarter of Music 132V and consent of instructor. Department stamp required.

132R. Recital Preparation (4)
Advanced instrumental/vocal preparation for senior music majors pursuing honors in performance. Repertoire for a solo recital will be developed under the direction of the appropriate instrumental/vocal faculty member. Special audition required during Welcome Week preceding fall quarter. Prerequisites: by audition only; Music 132. Department stamp required.

132V. Pro-Seminar in Vocal Instruction (3)
Individual instruction in advanced vocal performance. For declared music majors and minors. Students must be simultaneously enrolled in a performance ensemble or non-performance music course and in the Vocal Masterclass, Music 32VM. May be taken six times for credit. Prerequisites: audition and department stamp.

133. Projects in New Music Performance (4)
Performance of new music of the twentieth century. Normally offered winter quarter only. Required a minimum of one time for all music majors. May be taken two times for credit. Prerequisite: consent of instructor through audition.

134. Symphonic Orchestra (4)
Repertoire is drawn from the classic symphonic literature of the eighteenth, nineteenth, and twentieth centuries with a strong emphasis on recently composed and new music. Distinguished soloists, as well as The La Jolla Symphony Chorus, frequently appear with the orchestra. The La Jolla Symphony Orchestra performs two full-length programs each quarter, each program being performed twice. May be repeated six times for credit. Prerequisites: audition and department stamp required.

137A. Jazz Theory and Improvisation (4)
Study of jazz theory and improvisation, focused on fundamental rhythmic, harmonic, melodic, and formal aspects of modern jazz style. Application of theoretical knowledge to instruments and concepts will be reinforced through listening, transcription work, and composition and improvisation exercises. First course of a year-long sequence. Prerequisites: MUS 2A-B-C and 137B, proficiency exam, or consent on instructor.

137C. Jazz Theory and Improvisation (4)
Study of jazz theory and improvisation, focused on fundamental rhythmic, harmonic, melodic, and formal aspects of modern jazz style. Application of theoretical knowledge to instruments and concepts will be reinforced through listening, transcription work, and composition and improvisation exercises. Second course of a year-long sequence; continuation of Music 137A. Prerequisites: MUS 2A-B-C and 137A, proficiency exam, or consent on instructor.

137D. Seminar in Jazz Studies I (4)
Advanced individual projects for senior music majors pursuing honors in jazz and music of the African diaspora. Projects will be critically reviewed in seminar with fellow students and jazz faculty. First course of a year-long sequence. Prerequisites: MUS 137A-B-C and admission into the Music Department Honors Program in Jazz. Department stamp required.

137E. Seminar in Jazz Studies II (4)
Advanced individual projects for senior music majors pursuing honors in jazz and music of the African diaspora. Projects will be critically reviewed in seminar with fellow students and jazz faculty. Second course of a year-long sequence; continuation of 137D. Prerequisites: MUS 137D and department stamp.

137F. Seminar in Jazz Studies III (4)
Advanced individual projects for senior music majors pursuing honors in jazz and music of the African diaspora. Projects will be critically reviewed in seminar with fellow students and jazz faculty. Third course of a year-long sequence; continuation of 137E. Prerequisites: MUS 137E and department stamp.

143. Department Seminar (1)
The department seminar serves both as a general department meeting and as a forum for the presentation of research and performances by visitors, faculty, and students. Required of all undergraduate music majors every quarter.

150. Jazz and the Music of the African Diaspora: Special Topics Seminar (4)
An in-depth writing and listening intensive investigation into a jazz or diaspora-related music history topic; topics vary from year to year. May be repeated once for credit. Prerequisite: Music 126, 127A-B, or consent of instructor.

151. Race, Culture, and Social Change (4)
Aggrieved groups generate distinctive cultural expressions by turning negative ascension into positive affirmation and by transforming segregation into congregation. This course examines the role of cultural expressions in struggles for social change by these communities inside and outside the U.S. (Cross-listed with Ethnic Studies 108.) Prerequisite: upper-division standing or consent of instructor.

152. Hip Hop: The Politics of Culture (4)
Examination of hip-hop’s music, technology, lyrics, and its influence in graffiti, film, music video, fiction, advertising, gender, corporate investment, government and censorship with a critical focus on race, gender, popular culture, and the politics of creative expression. (Cross-listed with Ethnic Studies 128.) Pre-requisite: upper-division standing or consent of instructor.

153. African Americans and the Mass Media (4)
Examination of media representations of African Americans from slavery to the present focusing on emergence and transmission of enduring stereotypes, their relationship to changing social, political, and economic frameworks, and African Americans’ responses to and interpretations of these mediated images. (Cross-listed with Ethnic Studies 164.) Prerequisite: upper-division standing or consent of instructor.

154. Black Music/Black Texts: Communication and Cultural Expression (4)
Explores roles of music as a traditional form of communication among Africans, Afro-Americans, and West Indians; Special attention given to poetry of black music, including blues and other forms of vocal music with expressive of contestatory political attitudes. (Cross-listed with Ethnic Studies 176 and Literature in English 187.) Prerequisite: upper-division standing or consent of instructor.

170. Musical Acoustics (4)
(Formerly Music 160A) An introduction to the acoustics of music with particular emphasis on contemporary digital techniques for understanding and manipulating sound. Prerequisites: Music 1A, 2A, or 4. Cross-listed with ICAM 103.

171. Computer Music I (4)
(Formerly Music 160C) A practical introduction to computer techniques for desktop audio, including audio editing, MIDI control, and real-time music algorithms using the MAX programming environment. Prerequisite: Music 170, music majors, ICAM-music and ICAM-visual arts majors and minors, or consent of instructor.

172. Computer Music II (4)
(Formerly Music 161) Computer synthesis techniques including wavelet and additive synthesis, wave-shaping, and sampling. Transformation of musical sounds using filters, modulation, and delay effects. Fourier analysis of sounds. Prerequisite: Music 171 (formerly Music 160C); music majors, ICAM-music and ICAM-visual arts majors and minors, or consent of instructor.

173. Audio Production: Mixing and Editing (4)
(Formerly Music 162) Theoretical and practical aspects of recording, mixing, and editing sound for both musical and multimedia applications. Covers audio montage, equalization, effects processing, spatialization, mastering, and diffusion. Prerequisite: Music 170 (formerly Music 160A); music majors, ICAM-music and ICAM-visual arts majors and minors, or consent of instructor.

174A. Audio and MIDI Studio Techniques I (2)
First of three-part sequence, detailing digital studio resources and production techniques. Hardware and software techniques explored in project setting. Topics include microphones, digital recording and editing, analog and digital interfaces, workflow, analytical listening. Prerequisites: Music 170, music majors, ICAM-music and ICAM-visual arts majors and minors, or consent of instructor.

174B. Audio and MIDI Studio Techniques II (2)
Second of three-part sequence, detailing digital studio resources and production techniques. Hardware and software techniques explored in project setting. Topics include electronic and acoustic mixing, signal processing, MIDI, synchronization and basic sound-for-picture. Prerequisites: Music 170, Music 174A; music majors, ICAM-music and ICAM-visual arts majors and minors, or consent of instructor.

174C. Audio and MIDI Studio Techniques III (2)
Third of three-part sequence, detailing digital studio resources and production techniques. Hardware and software techniques explored in project setting. Topics include audio quality, compression, mastering, surround sound, large scale production management. Prerequisites: Music 170, Music 174B; music majors.
ICAM-music and ICAM-visual arts majors and minors, or consent of instructor.

176. Music Technology Seminar (4) (Formerly Music 163) Selected topics in music technology and its application to composition and/or performance. Offerings vary according to faculty availability and interest. May be repeated for credit. Prerequisites: Music 172 (formerly Music 161) and consent of instructor.

192. Senior Seminar in Music (1) The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in music (at the upper-division level). Topics will vary from quarter to quarter. Senior Seminars may be taken for credit up to four times, with a change in topic and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: upper-division standing; department stamp and/or consent of instructor required.

195. Instructional Assistance (2) Assisting in the instruction of an undergraduate music class under the direct and constant supervision of a faculty member. May be taken for credit three times. Prerequisites: consent of instructor and departmental approval.

198. Directed Group Study (1-4) Concentrated inquiry into various problems not covered in the usual undergraduate courses. Prerequisites: consent of instructor and department chair approval. Pass/No Pass grade only.

199. Independent Study (1-4) Independent reading, research, or creative work under the direction of a faculty member, provided no course covering the material to be studied already exists, and the study area derives from previous course work. Prerequisites: consent of instructor and department chair approval. Department stamp required. Pass/No Pass grade only. May be taken for credit two times.

ICAM 101. Digital Imaging: Image and Interactivity (4) (Cross-listed with VIS 140). Introduction to digital image involving images, texts, and interactive display and operates both within computer mediated space (i.e., Web site) and in physical space (i.e., artist book). Interactive narrative and computer programming are explored. Materials fee required. Prerequisites: VIS 40 or ICAM 40. Open to media, ICAM, and studio majors; computing and ICAM minors only.

ICAM 102. Digital Media I: Time, Movement, Sound (4) (Cross-listed with VIS 145A). Exploration of time dependent media components. Creation and manipulation of digital sound as well as moving images and their integration in multimedia works. Use of computer programming to control time is emphasized. Materials fee required. Prerequisites: VIS 40 or ICAM 40 and VIS 140 or ICAM 101. Open to media, and ICAM majors; ICAM minors only. Two production course limitation.

ICAM 110. Computing in the Arts: Current Practice (4) Designed around the presentations by visiting artists, critics, and scientists involved with contemporary issues related to computer arts. Lectures by the instructor and contextual readings provide background material for the visitor presentations. Prerequisites: none. NOTE: Materials fee required.

ICAM 120. Virtual Environments (4) Students create virtual reality artworks. Projects may be done individually or in groups. Exploration of theoretical issues involved will underlie acquisition of techniques utilized in the construction of virtual realities. Materials fee required. Prerequisites: VIS 145A or ICAM 102; CSE 11 recommended. Open to ICAM majors and minors only. Two production course limitation.

ICAM 130. Seminar in Contemporary Computer Topics (4) (Cross-listed with VIS 149). Topics relevant to computer-based art- and music-making, such as computer methods for making art/music, design of interactive systems, spatialization of visual/musical elements, critical studies. Topics will vary. May be repeated twice. Materials fee required. Prerequisites: VIS 140 or ICAM 101; VIS 145A or ICAM 102 and MUS 170 or ICAM 103 recommended. Open to media and ICAM majors; ICAM minors only. Two production course limitation.

ICAM 150. History of Art and Technology (4) (Cross-listed with VIS 159). This course aims to provide historical context for computer arts by examining the interaction between the arts, media technologies, and sciences in different historical periods. Topics vary. Examples of topics which may be considered are: Renaissance perspective, the introduction of the printing press, the history of visual illusion in Western art, new physics and the avant-garde in the early twentieth century, futurism and technology, electronic and computer art of the 1950s and 1960s. Prerequisite: none. NOTE: Materials fee required.

ICAM 160A. Senior Projects in Computer Arts I (4) Students pursue projects of their own design over two quarters with support from faculty in a seminar environment. Project proposals are developed, informed by project development guidelines from real world examples. Collaborations are possible. Portfolio required for admisions. Prerequisites: VIS 141B or VIS 145B or VIS 147B ior MUS 172. Open to ICAM majors only. Department stamp required. Two production course limitation.

ICAM 160B. Senior Projects in Computer Arts II (4) Continuation of ICAM 160A. Completion and presenta- tion of independent projects along with documentation. Prerequisite: ICAM 160A. Open to ICAM majors only. Department stamp required. Two production course limitation.

192. Senior Seminar in Music (1) The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in music (at the upper-division level). Topics will vary from quarter-to-quarter. Senior seminars may be taken for credit up to four times, with a change in topics, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: upper-division standing; department stamp and/or consent of instructor.

ICAM 199. Special Studies (2/4) Independent reading, research or creative work under direction of faculty member. Prerequisites: department stamp and upper-division standing required.

GRADUATE

All courses numbered 200 and above are intended for students admitted to the graduate program in music.

202. Advanced Projects in Performance (1-4) Advanced performance of new music with members of the performance faculty (SONOR). Students taking this course do not need to take Music 201 that quarter. Enrollment by consent of instructor/director of SONOR.

203A. Advanced Projects in Composition (6) Meetings and laboratory sessions devoted to the study of composition in small groups. Consent of instructor required.

203B. Advanced Projects in Composition (6) Meetings and laboratory sessions devoted to the study of composition in small groups. Consent of instructor required.

203C. Advanced Projects in Composition (6) Meetings and laboratory sessions devoted to the study of composition in small groups. Consent of instructor required.

203D. Advanced Projects in Composition (1-4) Meetings on group basis with faculty composer in sessions devoted to the study of composition. Prerequisites: 203A-B-C-D and consent of instructor.

204. Focus on Composition (2) The purpose of this seminar is to bring together the entire population of the graduate composition program (all students and faculty) for in-depth discussion of critical issues in music theory and composition. Each meeting will feature a formal presentation by either a student, faculty member, or visitor, followed by lively and challenging debate on relevant issues. Prerequisite: consent of instructor.

205. Focus on Critical Studies/Experimental Issues in Music (2) The purpose of this seminar is to bring together CS/EP students and faculty for in-depth discussion(s) of theoretical, critical, and cultural issues in music. In conjunction with the seminar, each student not yet advanced to candidacy will meet with a faculty advisor to plan and prepare a presentation of his or her own work as part of a one-day CS/EP student symposium during the spring quarter.

206. Experimental Studies Seminar (4) Seminars growing out of current faculty interests. The approach tends to be speculative and includes individual projects or papers as well as assigned readings. In the past, such areas as new instrumental and vocal resources, mixed media, and compositional linguistics have been offered.
207. Theoretical Studies Seminar (4)
Seminars on subject areas relating to the established dimensions of music and in which theoreticians have produced a substantial body of work. These include studies in analysis, timbre, rhythm, notation, and psychoacoustics. Offerings vary depending on faculty availability and interest. Analytical paper required.

208A. Critical Methods and Creative Identities (4)
The goal of this course is to develop critical thinking and self-reflexive inquiry through study of a diverse range of critical and scholarly traditions as they relate to music. Students are encouraged to investigate their own sense of identity and voice, as embodied in their creative work. Prerequisite: consent of instructor.

208B. Experimental Musical Practices (4)
This course examines, from social, cultural, historical and technological perspectives the current state of experimental musical practice. Meetings and laboratory sessions will explore alternative systems of musical organization, such as improvisation, computer-based multimedia, and interdisciplinary performance collaboration. Prerequisite: consent of instructor.

208C. World Musical Perception (4)
This seminar attempts to develop alternative procedures for the analysis of intercultural musicality. Methods and practices to be explored will involve computer technology, musical cognition and perception, and world music practices, as these relate to the elucidation and interrogation of notions of self and other, and tradition and innovation. Prerequisite: consent of instructor.

208D. Advanced Projects in CS/EP (1-4)
On a group or individual basis, this course provides an opportunity for students to create projects under the guidance of different faculty members each term. Enrollment in this course culminates in the development by the student of a portfolio of original work, or in a master's thesis. Prerequisite: consent of instructor.

209. Advanced Music Theory and Practice (4)
Advanced integrated studies in music theory; composition and styles study through analysis and performance. This course is intended primarily for doctoral students and may be taken by M.A. students only with special approval of M.A. advisor and course instructor. A major research or analytical publishable paper required.

210. Musical Analysis (4)
The analysis of complex music. The course will assume that the student has a background in traditional music analysis. The goal of the course is to investigate and develop analytical procedures that yield significant information about specific works of music, old and new. Reading, projects, and analytical papers. Normally offered fall quarter only.

228. Conducting (4)
This course will give practical experience in conducting a variety of works from various eras of instrumental and/or vocal music. Students will study problems of instrumental or vocal techniques, formal and expressive analysis of the music, and manners of rehearsal. Required of all graduate students. Prerequisite: consent of instructor. (Offered in selected years.)

229. Seminar in Orchestration (4)
A seminar to give practical experience in orchestration. Students will study works from various eras of instrumental music and will demonstrate their knowledge by orchestrating works in the styles of these various eras, learning the capabilities, timbre, and articulation of all the instruments in the orchestra. Prerequisite: graduate standing. (Offered in selected years.)

230. Chamber Music Performance (4)
Performance of representative chamber music literature, instrumental and/or vocal, through coached rehearsal and seminar studies. Course may be repeated for credit since the literature varies from quarter to quarter. Prerequisite: consent of instructor.

232. Pro-Seminar in Music Performance (4)
Individual or master class instruction in advanced instrumental/vocal performance. Prerequisite: consent of instructor through audition.

234. Symphonic Orchestra (4)
Repertoire is drawn from the classical symphonic literature of the eighteenth, nineteenth, and twentieth centuries with a strong emphasis on recently composed and new music. Distinguished soloists, as well as The La Jolla Symphony Chorus, frequently appear with the orchestra. The La Jolla Symphony Orchestra performs two full-length programs each quarter, each program being performed twice. May be repeated six times for credit. Prerequisites: audition and department stamp required.

245. Focus on Performance (2)
The purpose of this seminar is to bring together performance students, faculty, and guests for discussion, presentation of student and faculty projects, performances by guest artists, and master classes with different members of the performance faculty. Prerequisite: consent of instructor. (S/U grade option only.)

250. Special Projects (1-12)
An umbrella course offered to music graduate students in lieu of normal seminar offerings. Topics will be generated by faculty and graduate students and submitted in December each year for review by faculty. Students may register for up to four units of a specialized research topic with given faculty. May be taken for up to twelve units a quarter. (S/U grade option only.)

257. Advanced Music Technology Seminar (4)
Advanced topics in music technology and its application to composition and/or performance. Offerings vary according to faculty availability and interest. May be repeated for credit. Prerequisites: Music 173 or equivalent consent of instructor.

270A. Digital Audio Processing (4)
Digital techniques for analysis, synthesis, and processing of musical sounds. Sampling theory, software synthesis techniques, digital filter design. The short-time Fourier transform. Numerical accuracy considerations. Prerequisite: consent of instructor.

270B. Musical Cognitive Science (4)
Theoretical bases for analyzing musical sound. Approaches to perception and cognition, including psychoacoustics and information processing, both ecological and computational. Models of audition including Helmholtz’s consonance/dissonance theory and Bregman’s streaming models. Musical cognition theories of Lerdahl and Narmour. Neural network models of music perception and cognition. Models of rhythm. The problem of timbre and timbre perception. Prerequisite: consent of instructor.

270C. Compositional Algorithms (4)
Transformations in musical composition; series and intervalic structures; serial approaches to rhythm and dynamic. The stochastic music of Xenakis and Cage.
Neurosciences

OFFICE: Building #1, School of Medicine, Mail Code: 0662
http://neurograd.ucsd.edu

Director, Neurosciences Graduate Program
Anirvan Ghosh, Ph.D., Biology

Professors
Henry Arbabian, Ph.D., Physics
Thomas Albright, Ph.D., Adjunct/Psychology and Neurosciences
Ursula Bellugi, Ed.D., Adjunct/Neurosciences
Darwin K. Berg, Ph.D., Biology–Neurobiology Section
Karen Britton, M.D., Ph.D., In-Residence/Psychiatry
Joan Heller Brown, Ph.D., Pharmacology
Theodore H. Bullock, Ph.D., Emeritus/Neurosciences
Nigel Calcutt, Ph.D., Pathology
Edward M. Callaway, Ph.D., Adjunct/Neurosciences and Biology
Gert Cuvelier, Ph.D., Psychology
Seunghyon Choe, Ph.D., Chemistry and Biochemistry/Biological Sciences
Jerold Chun, M.D., Ph.D., Adjunct/Pharmacology
Don Cleveland, Ph.D., Medicine/Neurosciences
Eric Courchesne, Ph.D., Neurosciences
Anders M. Dale, Ph.D., Neurosciences
Karen Dobkins, Ph.D., Psychology
Jeffrey L. Elman, Ph.D., Cognitive Science
Mark H. Ellisman, Ph.D., Neurosciences
Edmund J. Fantino, Ph.D., Psychology
Fred H. Gage, Ph.D., Adjunct/Neurosciences and Biology
Douglas R. Galasko, M.D., In-Residence/Neurosciences
Mark A. Geyer, Ph.D., In-Residence/Psychiatry and Adjunct/Neurosciences
Lawrence S.B. Goldstein, Ph.D., Cellular and Molecular Medicine
Philip M. Groves, Ph.D., Emeritus, Psychiatry and Neurosciences
Richard H. Haas, M.D., Neurosciences and Pediatrics
Eric Halgren, Ph.D., Radiology
Richard L. Hauger, M.D., In-Residence/Psychiatry
Stephen F. Heinemann, Ph.D., Adjunct/Neurosciences
Steven A. Hillyard, Ph.D., Neurosciences and Adjunct/Psychology
Vivian Y.H. Hook, Ph.D., Pharmacology
Paul A. Insel, M.D., Pharmacology and Medicine
Vicente J. Iragui-Madoz, M.D., Ph.D., Clinical Neurosciences
Dilip J. Jeste, M.D., In-Residence and Psychiatry and Adjunct/Neurosciences
Michael W. Kalichman, Ph.D., Adjunct/Pathology
Harvey J. Karten, M.D., Neurosciences and Psychiatry
John Kelsoe, M.D., Psychiatry
David Kleinfeld, Ph.D., Physics
Edward Koo, M.D., Neurosciences
George F. Koob, Ph.D., Adjunct/Neurosciences and Psychiatry
William B. Kristan, Ph.D., Biology and Adjunct/Neurosciences
Ronald Kuczynski, Ph.D., In-Residence/Psychiatry and Adjunct/Neurosciences
Marta Kutas, Ph.D., Cognitive Science and Adjunct/Neurosciences
Greg Lemke, Ph.D., Adjunct/Neurosciences
Stuart A. Lipton, M.D., Ph.D., Adjunct/Neurosciences
John Liu, Ph.D., Adjunct/Ophthalmology
Patrick D. Lyden, M.D., In-Residence/Neurosciences
Edardo Macagni, Ph.D., Biology
Athina Markou, Ph.D., In-Residence/Psychiatry
Maryann Martone, Ph.D., In-Residence/Neurosciences
Elizer Masliah, M.D., Neurosciences and Pathology
Pamela Mellon, Ph.D., Neurosciences and Reproductive Medicine
Arnold L. Miller, Ph.D., Neurosciences–Neurobiology Section
Robert R. Myers, Ph.D., Anesthesiology and Pathology
R. Glenn Northcutt, Ph.D., Neurosciences
Daniel T. O’Connor, M.D., In-Residence/Medicine
Dennis O’Leary, Ph.D., Adjunct/Neurosciences and Biology
Martin Paulus, M.D., Psychiatry
Samuel Pfaff, Ph.D., Adjunct/Neurobiology
John Polich, Ph.D., Adjunct/Neuropharmacology
Henry C. Powell, M.D., D.Sc., Pathology
Morton Printz, Ph.D., Pharmacology
Vilayanur S. Ramachandran, M.D., Psychology
Barbara Ranscht, Ph.D., Adjunct/Neurosciences
David H. Rapaport, Ph.D., Surgery
Michael G. Rosenfeld, M.D., Medicine
Alen F. Ryan, Ph.D., Surgery and Adjunct/Neurosciences
David P. Salmon, Ph.D., In-Residence/Neurosciences
Gary Schulteis, Ph.D., Anesthesiology
Terrence J. Sejnowski, Ph.D., Biology–Neurobiology Section and Adjunct/Neurosciences
Martin I. Sereno, Ph.D., Cognitive Science
Linda Sorkin, Ph.D., Anesthesiology
Nicholas C. Spitzer, Ph.D., Biology–Neurobiology Section
Larry R. Squire, Ph.D., Psychiatry, Psychology, and Neurosciences
Charles Stevens, M.D., Ph.D., Adjunct/Neurosciences
Neal Sved, M.D., Ph.D., Psychiatry
Palmer W. Taylor, Ph.D., Pharmacology
Robert D. Terry, M.D., Emeritus/Neurosciences and Pathology
Doris A. Trauner, M.D., Neurosciences and Pediatrics
Roger Tsien, Ph.D., Pharmacology, Chemistry and Biochemistry
Eric Turner, M.D., Ph.D., In-Residence/Psychiatry
Mark Tuszynski, M.D., Ph.D., Neurosciences
Wylie Vale, Ph.D., Adjunct/Biology and Medicine
Ajit Varri, M.D., Medicine
Mark C. Whitehead, Ph.D., Surgery
David Williams, Ph.D., Adjunct/Pharmacology and Neurosciences
Anthony Wynshaw-Boris, M.D., Ph.D., Pediatrics and Medicine
Tony Yaksh, Ph.D., Anesthesiology and Pharmacology
Justin Zivin, M.D., Ph.D., Neurosciences
Charles Zuker, Ph.D., Biology–Neurobiology Section and Neurosciences

Associate Professors
Andrea Chiba, Ph.D., Cognitive Science
E.J. Chichilnitsky, Ph.D., Adjunct/Neurosciences
Laura L. Dugan, M.D., Ph.D., Medicine
David Feifel, M.D., Ph.D., In-Residence/Psychiatry
Dan Feldman, Ph.D., Biology–Neurobiology
Marla Feller, Ph.D., Biology–Neurobiology Section
Joseph G. Gleeson, M.D., Neurosciences
James Goodson, Ph.D., Psychology
Donna Gruol, Ph.D., Adjunct/Neurosciences
Bruce A. Hamilton, Ph.D., Medicine
Jeffry S. Isaacson, Ph.D., Neurosciences
Christopher Kintner, Ph.D., Adjunct/Biology
Kuo-Fen Lee, Ph.D., Adjunct/Biology
Jaime Pineda, Ph.D., Cognitive Science
Massimo Scanziani, Ph.D., Biology
William R. Schafer, Ph.D., Adjunct/Biological Sciences and Neurobiology
Katerina Semendeferi, Ph.D., Anthropology
Paul A. Slesinger, Ph.D., Adjunct/Neurosciences
The Graduate Program

The Neurosciences Graduate Program accepts candidates for the Ph.D. degree who have undergraduate majors in such disciplines as biology, chemistry, engineering, microbiology, mathematics, physics, psychology, and zoology. A desire and competence to understand how the nervous system functions is more important than previous background and training.

Doctoral Degree Program

Students in this program receive guidance and instruction from a campuswide group of faculty interested in nervous system mechanisms. Each student, in consultation with an advisory committee, selects courses relevant to his or her research interests and goals. The selection will include formal courses listed in this catalog and informal seminars offered by the department. A regular schedule of rotation through the laboratories of faculty members is a feature of the first year; the student is exposed in this way to the various approaches, techniques, and disciplines represented on the campus.

Course Work

By the time of the minor proposition (see below), students are expected to demonstrate competence in the basics of neuroscience by taking five quarters of mandatory course work—three quarters of Basic Neuroscience (Neurosci. 200 A-B-C), and one quarter each of Neuroanatomy Lab (Neurosci. 257) and Statistical Methods and Experimental Design (Neurosci. 225). In addition, students choose among various core elective courses, such as Molecular and Cellular Neuroendocrinology (Neurosci. 222), Neuropsychopharmacology (Neurosci. 277), Molecular and Cellular Neurobiology (Neurosci. 268), Developmental Neuroscience (Neurosci. 263) and approved courses from other graduate departments. Students are also permitted to substitute previous courses that are similar to the Neurosciences core courses. Such a substitution would require approval of the chair of the Curriculum Committee or the director of the Graduate Program.

Minor Proposition

The purpose of this examination is to test the student’s ability to choose a problem in the neurosciences and propose an experimental approach to its solution. The problem should be broad, requiring experimental approaches from more than one discipline. The problem should be outside the area of the student’s anticipated dissertation research. Students will be required to demonstrate a working knowledge of the disciplines involved in the minor proposition. Oral defense of the minor proposition will be required at the end of the winter quarter of the second year of study.

Dissertation

During the second year, students are expected to propose and initiate work on a dissertation problem under the guidance of a faculty preceptor. The neurosciences group at UCSD currently conducts animal research and clinical studies in the fields of neuroanatomy, neurochemistry, neuropharmacology, neurophysiology, comparative neurology, physiology of excitable membranes, synaptic transmission, neuronal integration and coding, nervous system tissue culture, neuroimmunology, brain function, sensory physiology, motor mechanism, and systems analysis as applied to neurological problems.

Qualifying Examination

This examination, a university requirement, focuses on the proposed research that the student will undertake for his or her dissertation. This examination is conducted by the approved doctoral committee.

Dissertation Examination

The required formalities listed in the Instruction for Preparation and Submission of Doctoral Dissertations issued by the Office of Graduate Studies and Research to students should be followed closely. The final examination includes both a public presentation followed by a closed defense of the dissertation with members of the Committee.

Teaching

All students are required to perform as a teaching assistant for at least one quarter during their graduate career. To this end, opportunities to lecture and assist in laboratory exercises and demonstrations are available through a number of departments, including neurosciences, biology, and cognitive science.

Ph.D. Time Limit Policies

Students must advance to candidacy by the end of four years. Total university support cannot exceed six years. Total registered time at UCSD cannot exceed seven years.

Courses

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

Undergraduate

199, Independent Research (2 or 4)
Laboratory research under the supervision of individual members of the faculty of the neurosciences department in one or a combination of neurosciences disciplines, e.g., neuroanatomy, neurophysiology, neurochemistry, neuropharmacology. (P/NP grades only.) Prerequisite: consent of department chair. (F,W,S)

Graduate

200A-B-C, Basic Neuroscience (4-4-4)
These courses are designed for graduate students in the neurosciences and other departments that are part of the interdisciplinary program (i.e., Biology, Cog,
221. Advanced Topics in Neurosciences (2)
Specialized advanced topics in neurosciences will be addressed in an interactive seminar course format. A different specific topic will be covered in each quarter as announced in advance. Students will present and discuss the topics. Prerequisite: graduate student or consent of instructor. (F, W, S)

222. Molecular and Cellular Neuroendocrinology (4)
This course will examine the role of the CNS in controlling reproductive functions, stress, growth and behavior, with emphasis on the cellular and molecular mechanisms of neuroendocrine function. The lectures will be given by experts on each of the topics. Lectures will include a basic introduction on the topic followed by a description of the current research in the area.

223. Neuroendocrinology (4)
This course is designed for graduate students in the neurosciences, but will address issues of statistical methods and experiment design for investigators working in an animal model of biological research. The course will combine lectures, discussion, and practical examples drawn from the experience of the participant. Prerequisite: graduate student in the neuroscience graduate program or consent of the instructor. (F)

224. Neuroendocrinology (4)
This course focuses on disorders affecting the nervous system, emphasizing phenomenological and mechanistic links and common biological themes across these disorders. Clinical presentations, pathology, and basic science of selected diseases will be covered in lecture and discussion format. Prerequisite: enrollment in UCSD graduate courses or clinical fellowship program.

225. A Neural Systems (3)
This course will focus on disorders affecting the nervous system, emphasizing phenomenological and mechanistic links and common biological themes across these disorders. Clinical presentations, pathology, and basic science of selected diseases will be covered in lecture and discussion format. Prerequisite: enrollment in UCSD graduate courses or clinical fellowship program.

226. Mammalian Neuroanatomy Laboratory (4)
Lectures presenting the basic features of the anatomy of the mammalian nervous system. This will include consideration of cellular components, development, topographic anatomy, and a detailed presentation of the organization of functional systems. Prerequisite: graduate student or consent of instructor. (S/U grades only). (F)

227. Mammalian Neuroanatomy Laboratory (4)
Lectures presenting the basic features of the anatomy of the mammalian nervous system. This will include consideration of cellular components, development, topographic anatomy, and a detailed presentation of the organization of functional systems. Prerequisite: graduate student or consent of instructor. (S/U grades only). (F)

228. Mammalian Neuroanatomy Laboratory (4)
This course is designed for graduate students in the neurosciences, but will address issues of statistical methods and experiment design for investigators working in the field of biological research. The course will combine lectures, discussion, and practical examples drawn from the experience of the participant. Prerequisite: graduate student in the neuroscience graduate program or consent of the instructor. (F)

229. Workshop in Electron Microscopy (4)
This course is designed for graduate students in the neurosciences, but will address issues of statistical methods and experiment design for investigators working in the field of biological research. The course will combine lectures, discussion, and practical examples drawn from the experience of the participant. Prerequisite: graduate student in the neuroscience graduate program or consent of the instructor. (F)

230. Comparative Vertebrate Neuroendocrinology (4)
Survey of the organization and evolution of vertebrate nervous systems. Prerequisite: consent of instructor. (S/U grades only). (W)

231. Molecular and Cellular Neurochemistry (4)
Topics include membrane and nerve function in nervous system, structure and function of receptors for neurotransmitters, role of cAMP as a second messenger in the nervous system, synthesis and processing of neuropeptides.

232. Neurobiology of the Chemical Senses (1)
This lecture and seminar course surveys the neuronal anatomy and neurophysiology of the central and peripheral taste and olfactory systems. Plasticity of the mature and developing chemosensory systems will also be covered. Behavioral studies of sensory function will be related to psychophysical studies in humans, including those directed at evaluating clinical chemosensory disorders. Students are expected to discuss readings of journal articles. (S)

233. Developmental Neurobiology (3)
(Same as Biology 258.) Cellular and developmental aspects of the nervous system. Methods of investigation and culture approaches. Basic neuroembryology and selected examples of regional developments. Neuronal cells and neuron-glia interactions. Extrinsic controls of survival growth and maturation of neural cells. Neurite growth and synapse formation. Potential for plasticity and regeneration in the nervous system. Prerequisite: graduate students or consent of instructor. (S)

234. Behavioral Neurobiology (5)
The course is to cover different areas of behavioral biology, such as ethology, behavioral biology, learning and memory, perception psychophysiology. Some outside reading will be required. Prerequisite: medical student, graduate student, or consent of instructor. (W)

235. Scientific Communication (2)
Formal scientific communication, practical exercise in scientific writing and oral communication, and in criticism and editing, preparation of illustrations, preparation of proposals, scientific societies and the history of communication. Examples from any field of science, most commonly biology, marine biology, ecology, and neuroscience. Prerequisite: graduate status in science. (S/U grades only). (S)

236. Statistical Methods and Experimental Design (2)
This course is designed for graduate students in the neurosciences, but will address issues of statistical methods and experiment design for investigators working in an animal model of biological research. The course will combine lectures, discussion, and practical examples drawn from the experience of the participant. Prerequisite: graduate student in the neuroscience graduate program or consent of the instructor. (F)

237. Clinical Neuroanatomy (1)
Prerequisite: graduate student, intern, resident, or consent of instructor. (S/U grades only). (S)

238. Developmental Neurobiology (3)
Prerequisite: graduate student or consent of instructor. (F, W, S)

239. Workshop in Electron Microscopy (4)
This course is designed for graduate students in the neurosciences, but will address issues of statistical methods and experiment design for investigators working in an animal model of biological research. The course will combine lectures, discussion, and practical examples drawn from the experience of the participant. Prerequisite: graduate student in the neuroscience graduate program or consent of the instructor. (F)

240. Neurology General Clinical Selective Clerkship (7)
Prerequisite: second-year medical student. This clerkship will be the responsibility of the instructor. (W, S)

241. Ethics and Survival Skills in Academia (2-4)
This course will cover "ethical" issues in academia, including dishonesty, plagiarism, attribution, sexual misconduct, etc. We will also discuss "survival" issues, including job hunting, grant preparation, journal reviews, writing letters of recommendation, mentoring, etc. (W)

242. Physiological Basis of Human Information (2)
Psychological processes including attention, perception, and memory will be studied in connection with event-related potentials of the human brain. The interrelations among psychological and physiological events will be explored in order to arrive at unified concepts of human information processing. Prerequisite: Neurosci. 238 or Psych. 231, and consent of instructor. (S/U grades only). (F)

243. Scientific Communication (2)
Formal scientific communication, practical exercise in scientific writing and oral communication, and in criticism and editing, preparation of illustrations, preparation of proposals, scientific societies and the history of communication. Examples from any field of science, most commonly biology, marine biology, ecology, and neuroscience. Prerequisite: graduate status in science. (S/U grades only). (S)

244. Statistical Methods and Experimental Design (2)
This course is designed for graduate students in the neurosciences, but will address issues of statistical methods and experiment design for investigators working in an animal model of biological research. The course will combine lectures, discussion, and practical examples drawn from the experience of the participant. Prerequisite: graduate student in the neuroscience graduate program or consent of the instructor. (F)

245. Developmental Neurobiology (3)
(Same as Biology 258.) Cellular and developmental aspects of the nervous system. Methods of investigation and culture approaches. Basic neuroembryology and selected examples of regional developments. Neuronal cells and neuron-glia interactions. Extrinsic controls of survival growth and maturation of neural cells. Neurite growth and synapse formation. Potential for plasticity and regeneration in the nervous system. Prerequisite: graduate students or consent of instructor. (S)

246. Behavioral Neurobiology (5)
The course is to cover different areas of behavioral biology, such as ethology, behavioral biology, learning and memory, perception psychophysiology. Some outside reading will be required. Prerequisite: medical student, graduate student, or consent of instructor. (W)

247. Molecular and Cellular Neurobiology (4)
This course focuses on cellular anatomy of the nervous system at the molecular level. The lectures will communicate current molecular genetic and cell biological approaches used to study the specialized structures and cell types of nervous tissue. Topics will include cell organelles; chromatins structure/function; gene expression/ regulation/cytoskeleton and membrane interactions; signal transduction/receptors, channels and pumps; cellular junctions/synapses; node of Ranvier; and neurolapsis transport. Prerequisite: neurochemistry, neuroanatomy, biochemistry. (F)

248. Electrophysiology and Clinical Neurophysiology (1)
Using the Journal of Electrophysiology and Clinical Neurophysiology as a core text, subjects chosen from the journal will be discussed and critically evaluated by the participants, and the literature pertinent to each topic reviewed. Prerequisite: Neurosci. 238, Basic Neurology (205), neurology resident, or consent of instructor. (F, W, S)

249. Neurosciences Research Rounds (2)
Neurosciences group faculty members and graduate students will present and discuss ongoing research. Attendance will be mandatory for first- and second-year graduate students. Faculty, advanced graduate students, medical students, postdoctoral trainees, and other interested parties are encouraged to attend. (F, W, S)

250. Neuropsychopharmacology (4)
An examination of the molecular and biochemical bases of drug and transmembrane action. The course is devoted to receptor mechanisms, neuropharmacology, and drug action on excitable tissues. (S)

251. Neurosciences Research Rotation (1-12)
Independent study. (S/U grades only). (F, W, S)

252. Neurosciences Research (1-12)
Prerequisite: approved ISP proposal. (F, W, S)

253. Neurosciences Research (1-12)
Independent study. (S/U grades only). (F, W, S)

254. Neurosciences Research (1-12)
Independent study. (S/U grades only). (F, W, S)

255. Neurosciences Research (1-12)
Independent study. (S/U grades only). (F, W, S)

256. Neurosciences Research (1-12)
Independent study. (S/U grades only). (F, W, S)

257. Neurosciences Research (1-12)
Independent study. (S/U grades only). (F, W, S)

258. Neurosciences Research (1-12)
Independent study. (S/U grades only). (F, W, S)

259. Neurosciences Research (1-12)
Independent study. (S/U grades only). (F, W, S)

260. Neurosciences Research (1-12)
Independent study. (S/U grades only). (F, W, S)
Philosophy

OFFICE: 7002 H&S, Muir College
http://philosophy.ucsd.edu

Professors
Georgios H. Anagnostopoulos, Ph.D.
Richard J. Arneson, Ph.D.
William Bechtel, Ph.D.
David O. Brink, Ph.D., Chair
Craig A. Callender, Ph.D., Graduate Advisor
Nancy D. Cartwright, Ph.D.
Patricia Smith Churchland, B.Phil., Presidential Professor of Philosophy
Paul M. Churchland, Ph.D., Valtz Family Professor of Philosophy
Gerald D. Doppelt, Ph.D., Academic Senate Distinguished Teaching Award
Donald P. Rutherford, Ph.D.
Gila Sher, Ph.D.
Eric Watkins, Ph.D.

Associate Professors
Jonathan Cohen, Ph.D.
Rick Grush, Ph.D.
Michael O. Hardimon, Ph.D.
Dana Nelkin, Ph.D., Undergraduate Faculty Advisor
Samuel C. Rickless, Ph.D.

Assistant Professors
Monte Johnson, Ph.D.
Christian Wüthrich, Ph.D.

Professors Emeriti
Henry E. Allison, Ph.D., Research Professor
(not in-residence)
Edward N. Lee, Ph.D., Professor Emeritus
Frederick A. Olafson, Ph.D., Professor Emeritus
Avrum Stroll, Ph.D., Research Professor

Introduction to the Department

Philosophy addresses some of the most basic questions humans ask about the world. Some questions are very broad, such as how can minds know about the external world, themselves, and other minds? How can we arrive at reasonable answers to ethical questions about right and wrong? What distinguishes science from other kinds of knowledge and are there limits to science? What is the role of moral choice and values in human life? Do standards of truth and logic apply in areas such as religion, art, politics, and law?

Philosophy also seeks answers to particular problems in specific areas of science, medicine, law, ethics, and technology. For example, it explores the ways that modern physics impacts our notions of space, time, causation, and nature itself. It considers the ways that neuroscience and genetics impact the traditional ideas about free will and responsibility. It debates the limits of democratic governments in regulating individuals’ conduct. It wrestles with problems about the right to die and the varied responsibilities of medical professionals. It inquires into the relation between science and religion. Related issues concern privacy, the limits of private property, and who should have access to what information.

Career Guidance

Philosophy is a broad field with diverse subfields. Some students may want to pursue a general course of study for the major, sampling courses across several of these distinct subfields. This strategy develops a solid foundation for graduate work in philosophy and for any career that requires breadth of knowledge, intellectual flexibility, as well as communicative and analytic skills.

Other students may wish to pursue a more specialized program of studies. Below are descriptions of several areas of emphasis within philosophy. These illustrate the possibilities of developing your own coherent and focused set of courses that fulfill the requirements for the major in ways that are tailored to your specific intellectual and career interests. Philosophy is preparation for a wide range of careers—including science, law, medicine, teaching, business, and public policy.

Choosing a philosophy major is an excellent way to follow a disciplined and rigorous course of study that joins the breadth of a traditional college education with specialization in a chosen area.

Undergraduate Program—Major

The Department of Philosophy offers the degree of bachelor of arts (B.A.) in philosophy for the undergraduate major. A major in philosophy requires a total of fifteen philosophy courses, at least twelve of which must be upper-division (courses numbered 100 and above). Up to two lower-division courses outside of philosophy can count among the twelve required for the major if they are drawn from a related field and contribute to the major’s philosophical program; such credit must be approved by the undergraduate advisor. Honors and directed study courses (Philosophy 191–199) may not be used to satisfy the major requirement of fifteen philosophy courses. Major requirements may be met by examination.

There is no required introduction to philosophy or the major. The department offers a variety of lower-division courses and sequences (numbered 1–99), any of which could be a suitable introduction to philosophy. The only required lower-division course for majors is Philosophy 10, Introduction to Logic.

At the upper-division level, majors are encouraged to take courses in the central areas of philosophical study:

- Metaphysics and Epistemology
- Law, Ethics, and Politics
- Philosophy of Science and Logic
- History of Philosophy

Though many upper-division courses have no prerequisite, any combination of three lower-division courses would provide a good foundation for taking most upper-division courses.
Core Requirements for the Major

1. History of Philosophy. Majors must complete three courses in the history of philosophy. At least one course must be in ancient philosophy (courses 31, 100–102) and one course must be in modern philosophy (courses 32–33 and 104–107). This requirement can be met by taking the lower-division sequence 31, 32, 33 or by taking any suitable combination of courses from the sequences 31–33 and 100–108.

2. Logic. Philosophy 10 and Philosophy 120 are required of all majors. Because Philosophy 120 is a prerequisite for a variety of upper-division courses, prospective majors are strongly encouraged to take Philosophy 10 and Philosophy 120 as early as possible.

3. Moral and Political Philosophy. Majors must take at least one upper-division course in moral or political philosophy from among Philosophy 160, 161, 166, or 167.

4. Metaphysics and Epistemology. Majors must take at least one upper-division course in traditional areas of analytic philosophy—metaphysics, epistemology, philosophy of language, and philosophy of mind—from among Philosophy 130, 132, 134, or 136.

Optional Areas of Emphasis in the Major

The Department of Philosophy offers four optional areas of emphasis within the major, as described below. Students selecting an optional area of emphasis for the major must take and pass five of the courses listed under that area. Courses taken to complete an area of emphasis are counted toward the fifteen courses required for the major. Particular courses may be applied both to the completion of the area of emphasis and in fulfillment of a core requirement for the major. Students should be aware, as they plan their course of study, that only some of the courses listed for an area of emphasis will be taught in any given year.

The department encourages students considering a philosophy major to consult with the philosophy undergraduate coordinator and the philosophy faculty undergraduate advisor to plan a program of study that is suitable to their particular interests and needs. The department Web site http://philosophy.ucsd.edu provides additional information about courses falling within each area of emphasis. Areas of emphasis are not noted on transcripts or diplomas. The optional areas of emphasis are:

1. Law, Ethics, and Society
 This area targets the nature and source of our moral rights and obligations, the authority of the state and law, the basis of value and goodness. Several courses in this area target ethical issues in medicine, the environment, technological change, economic inequality, and matters concerning race, gender, class, ethnicity, and nationality. In this area, students will learn how moral and legal reasoning can reshape the political debates over abortion, the death penalty, privacy on the Internet, genetic testing, religious tolerance, free speech, affirmative action, and other issues.
 This area is excellent preparation for law school as well as for postgraduate study and careers in public policy.
 125. Games and Decisions
 148. Philosophy and the Environment
 152. Philosophy of Social Science
 160. Ethical Theory
 161. Topics in the History of Ethics
 162. Contemporary Moral Issues
 163. Biomedical Ethics
 164. Technology and Human Values
 166. Classics in Political Philosophy
 167. Contemporary Political Philosophy
 168. Philosophy of Law
 170. Philosophy and Race

2. Science, Technology, and Medicine
 This emphasis focuses on the insights and challenges presented by science. Modern science and technologies affect our view of ourselves and of nature, introducing novel promises and problems. For instance, how do we balance technical, economic, environmental, and ethical values in making decisions concerning which technologies or drugs to develop? Modern science has also changed our understanding of nature. Quantum physics, the genetic revolution, and neuroscience (to name a few) present problems and have important implications for human life. Finally, there are questions about science itself. What are the methods of modern science? Do they vary from one science to another? Can the sciences be value free?
 This area will appeal especially to those students interested in pursuing careers in philosophy, science, clinical medicine, medical research, the social sciences, science journalism, and public policy.
 123. Philosophy of Logic
 145. Philosophy of Science
 146. Philosophy of Physics
 147. Philosophy of Biology
 148. Philosophy and the Environment
 149. Philosophy of Psychology
 150. Philosophy of Cognitive Sciences
 151. Philosophy of Neuroscience
 152. Philosophy of Social Science
 153. Philosophy of History
 163. Biomedical Ethics
 164. Technology and Human Values

3. Mind, Brain, and Cognitive Sciences
 Traditional epistemology (the theory of how and what we know) and philosophy of mind (the theory of that-which-perceives-and-thinks) have recently been joined by several scientific disciplines in a collective search for illuminating theories. Psychology, cognitive neurobiology, computer science, and sociology have all made explosive contributions to a tradition as old as Plato and Aristotle. For example, our growing understanding of the biological brain has given new life to our traditional attempts to understand the nature of the mind. New accounts of the various mechanisms of cognition—both at the cellular and the social levels—have provided entirely new perspectives on the nature of consciousness, the self, knowledge and free will, and on the nature of science itself.
 This area is excellent preparation for careers in cognitive science, neuroscience, artificial intelligence, science journalism, and philosophy.
 132. Epistemology
 134. Philosophy of Language
 136. Philosophy of Mind
 145. Philosophy of Science
 147. Philosophy of Biology
 149. Philosophy of Psychology
 150. Philosophy of Cognitive Sciences
 151. Philosophy of Neuroscience
 180. Phenomenology

4. Historical Perspectives on Philosophy, Science, and Religion
 Throughout its history, philosophy has developed in a complex relationship with the natu-
eral sciences and religion. Philosophical ideas have both contributed to and challenged our understanding of nature and God, and developments in the sciences and religion have posed new challenges for philosophical thinking. The historical perspectives emphasis focuses on the fertile interplay between philosophy, science, and religion in several key periods: ancient Greece, the Scientific Revolution, and Enlightenment and post-Enlightenment Europe. The aim is not simply to document the history of philosophical ideas, but to use this history as a way of better understanding contemporary debates about the basic questions of human life.

This area prepares students for postgraduate work in philosophy, and for any career that requires breadth of knowledge, intellectual flexibility, as well as communicative and analytical skills.

100. Plato
101. Aristotle
102. Hellenistic Philosophy
104. The Rationalists
105. The Empiricists
106. Kant
107. Hegel
108. Nineteenth-Century Philosophy
161. Topics in the History of Ethics
166. Classics in Political Philosophy
180. Phenomenology
181. Existentialism
183. Topics in Continental Philosophy

Grade Rules for Majors/Minors

All courses applied toward the major or minor must be completed with a grade of C– or higher. Further, a GPA of 2.0 must be maintained in courses applied toward the major or minor. It should be noted that courses taken under the Pass/Not-Pass (P/NP) grading option cannot be applied toward the major or minor.

Honors Program

The philosophy department offers an honors program for outstanding students in the major. Majors who have a 3.7 GPA in philosophy (3.25 overall) at the end of their junior year and who have taken at least four upper-division philosophy courses are eligible to apply. Interested students must consult with a faculty sponsor by the last day of classes during the spring term of their junior year. Admission to the honors program requires nomination by a faculty sponsor and approval of the undergraduate advisor. Nominating Petitions can be obtained from the philosophy department.

In addition to the usual major requirements, an honors student is required to complete a senior honors thesis by the end of winter quarter. During the fall and winter quarters, the student will be registered for Philosophy 191A and 191B and will be engaged in thesis research that will be supervised and evaluated by the student’s faculty sponsor. A departmental committee will read and assess the completed thesis and determine if philosophy honors are to be awarded. Honors students are expected to maintain an average of 3.7 or better for all work taken in the program. (Qualifying students wishing to participate in the honors program according to a different timetable than the one described above can apply to do so by petitioning the undergraduate advisor.)

Transfer Credit

Courses taken at other institutions may be applied toward the major by petition only. Petitions should be submitted to the Department of Philosophy main office, and must be accompanied by supporting materials (transcripts, syllabi, course work, etc.). Students are required to submit one petition per transfer course.

For specific regulations regarding transfer credit for Philosophy 10 (Introduction to Logic), please see the information on the department Web site: http://philosophy.ucsd.edu.

It is important to note that seven of the twelve upper-division courses in the major must be taken in the Department of Philosophy at UCSD.

Note: All courses applied toward major must be taken for a letter grade.

Undergraduate Program—Minor

The Department of Philosophy offers a minor in philosophy. As with the major, the minor is an attractive option for a wide range of career paths, including medicine, law, research in the natural and social sciences, journalism, education, and government. A minor requires a total of seven philosophy courses, at least five of which must be upper division. If choosing an area of emphasis, at least four upper-division courses must be from the chosen area of emphasis. All courses must be taken for a letter grade, C– or better.

Advising Office

Students who desire additional information concerning our course offerings or program may contact individual faculty or the assistant director of the undergraduate program through the department main office at 7002 H&SS, (858) 534-3070.

Graduate Program Requirements

The department offers programs leading to the M.A. and Ph.D. It is the intention of the graduate program to enable the student to obtain an understanding of diverse traditions and to develop as a philosopher in his or her own right. To this end, the department offers courses and seminars in the history of philosophy and in traditional and contemporary philosophical issues, from a variety of perspectives.

Master’s Degree Program

To qualify for a master’s degree in philosophy, a student must pass eight of the distribution requirement seminars as described below, under the subheading “Distribution Requirements.” At least one of the seminars must be from the ethics and political philosophy category, and no more than four seminars from any one of the five areas may count toward the master’s degree. The student must also complete a master’s research paper, under the direction of a faculty member or his or her choice, and have it approved by two members of the department faculty.

Although Ph.D. students sometimes elect to complete their studies with a master’s degree, we do not admit students to a master’s degree program.

Doctoral Degree Program

Course Work

During the first two years of residence the student’s work will normally total thirty-six units (nine courses) per year. At least twelve of these units in each year must be graduate philosophy seminars (those numbered 201-285). The balance may be made up from additional graduate courses in philosophy, upper-division courses in philosophy (those numbered 100-199), approved upper-division or graduate courses in related
departments, and, if the student is a teaching assistant, Philosophy 500 (Apprentice Teaching).

After consultation with the graduate advisor, each entering student shall be assigned a faculty advisor. Students are encouraged to meet with their faculty advisor periodically to plan their course of study during their first two years and must meet once a year in the spring to review progress in the program.

Logic Requirement

During the first term of residence, all entering graduate students will take an examination designed to demonstrate their level of proficiency in formal logic. The examination covers the predicate calculus, up to and including functions, relations, and identity. Students who pass the examination with a grade of B+ or better have satisfied the first component of the logic requirement. Students who do not score a B+ or better must take Philosophy 120 (Symbolic Logic) during the first year of study and achieve a grade of B+ or better. By the end of the sixth term of residence, all students must also pass an advanced logic course (Philosophy 121, 122, 221, or another logic class approved by the graduate advisor) with at least a grade of B+.

Proseminar

In fall quarter of their first year of residence, graduate students shall take a proseminar designed to introduce them to philosophical methods and improve their skills at writing and analysis. Enrollment in the proseminar is limited to first-year students. The proseminar is normally team-taught. The topics to be covered will address some central area of areas of philosophy and will vary from year to year. The proseminar is a regular four-unit seminar and as such may be counted toward satisfaction of the distribution requirement.

Core Courses

In the following areas, the department shall offer "core" or advanced introductory seminars: philosophy of mind, philosophy of language, philosophy of science, the history of philosophy, epistemology, metaphysics, and ethics. The department shall offer at least three of these courses in each academic year. Students must take two of these core courses by the end of their sixth quarter of residence. Courses taken to satisfy this requirement may be applied toward the distribution requirement. (A core course provides a point of entry into a field that is suitable for graduate students with no prior work in this area of philosophy as well as students with some background knowledge. A core course need not be and normally should not be a general survey of the field, but will take up some central topic. A core course will normally offer students the option of writing shorter papers rather than one long seminar paper; as an alternative, a final examination may be offered.)

Distribution Requirements

By the end of the seventh quarter of residence, a student must have completed ten graduate seminars in philosophy with a grade of B+ or better. The seminars must be distributed as follows:

1. Four seminars in the history of philosophy. At least one of these courses must be in ancient philosophy; at least one must be in modern philosophy.
2. Six seminars in the four areas listed below. Students must take at least one seminar in every area and two seminars in any two of the areas.
 - A. Philosophy of science and philosophy of logic
 - B. Philosophy of mind and philosophy of language
 - C. Ethics and political philosophy
 - D. Metaphysics and epistemology

Courses used to satisfy a requirement in one category cannot be used to satisfy a requirement in another category. The determination as to what category or categories a particular seminar taught in a given quarter may count toward is normally made by the seminar instructor.

The proseminar and courses used to satisfy the core course requirement may be counted toward fulfillment of the distribution requirement. At the end of the fifth quarter of residence, a student must have completed eight of the required seminars. In order to remain in the program, a student must have attained an average of B+ or better in all philosophy seminars completed by this point.

Philosophy Writing Workshop

In fall term of their third year of study, graduate students shall enroll in the Philosophy Writing Workshop, a one- to three-unit course depending on the expected enrollment. This course is graded on a Satisfactory/Unsatisfactory basis. In this workshop each student shall produce a polished original philosophical essay (this may be based on a paper written for a seminar), criticize the essays produced by other workshop participants, and present the essay as a talk to an audience of workshop participants, the faculty instructor, and other interested graduate students and faculty.

Independent Study Courses

Philosophy 290 (Directed Independent Study) is appropriate for a graduate student still in the process of fulfilling course requirements for the degree.

Philosophy 295 (Research Topics) is an appropriate course for a student in the process of coming up with a dissertation prospectus.

Philosophy 299 (Thesis Research) is appropriate for a student working on his or her dissertation.

Language Requirement

Before advancing to candidacy, all students must demonstrate reading proficiency in one of the following languages:

- German
- French
- Latin
- Classical Greek

If a student's chosen dissertation topic requires competence in a second language from the above list, then the student's dissertation advisor can require a suitable demonstration of competence. In special circumstances students may be permitted to substitute a different language or a special competency (such as advanced work in mathematics or in one of the sciences) if educationally compelling reasons can be given for doing so. These exceptions will be decided on a case-by-case basis. The language requirement must be met before the student can be advanced to candidacy.

Third-Year Advising

At the end of the student's sixth quarter of study, the department appoints a three-member faculty committee for that student. The composition of the committee will reflect the student's preferences and the area of philosophy in which the student is inclined to do dissertation work. The committee's task is to help the student to
Interdisciplinary Degree Programs

The philosophy department at UCSD participates in two interdisciplinary programs, the requirements for which are outlined below.

Interdisciplinary Degree Program in Cognitive Science

The Interdisciplinary Ph.D. Program in Cognitive Science includes faculty from a number of UCSD departments including anthropology, biology and neurobiology, cognitive science, communication, computer science and engineering, linguistics, music, neurosciences, philosophy, psychiatry, psychology, and sociology. This group includes many outstanding figures in contemporary cognitive science.

Students seeking to pursue a Ph.D. in "Philosophy and Cognitive Science" register in the philosophy program in the normal fashion, but pursue a significant portion of their studies with faculty in the several departments participating in the interdisciplinary program. Students may apply for admission to the interdisciplinary program at the same time that they apply to the Department of Philosophy, or at some point after entering UCSD. (All students wishing to transfer into any interdisciplinary program must do so prior to the end of the fifth quarter of residency.)

Students in philosophy/cognitive science are required to do the following:

1. Complete all requirements for the philosophy Ph.D. except that the distribution requirement is amended. By the end of the ninth quarter of residence, a philosophy/cognitive science degree student must have completed ten graduate seminars in philosophy with a grade of B+ or better in each course distributed across the areas of (A) philosophy of science and philosophy of logic, (B) philosophy of mind and philosophy of language, (C) ethics and political philosophy, (D) epistemology and metaphysics, and (E) history of philosophy. Students must take at least one seminar from each of these five areas and at least two seminars form any four of these areas.

2. The equivalent of one year's course work (usually in six courses) in one or more of the other departments affiliated with the Department of Cognitive Science. (It should be noted that a philosophy graduate student who completes this requirement is deemed thereby to have satisfied the philosophy language requirement by gaining an approved special competency.)

3. Six quarters of Cognitive Science 200

A plan detailing the course of study must be approved by the Cognitive Science Program Committee. The dissertation should be interdisciplinary, reflecting the two areas of specialization.

Science Studies Program

The Science Studies Program at UCSD is committed to interdisciplinary investigations. Understanding, interpreting, and explaining the scientific enterprise demand a systematic integration of the perspectives developed within the history, sociology, and philosophy of science. The program offers students an opportunity to work towards such integration, while receiving a thorough training at the professional level in one of the component disciplines.

Students enrolled in the program choose one of the component disciplines for their major field of specialist studies, and are required to complete minor field requirements in the others. The core of the program, however, is a year-long seminar in science studies, led by faculty from all participating departments.

To obtain a Ph.D. in "Philosophy/Science Studies," students must take a total of eighteen courses, including:

1. Nine seminars in philosophy with a grade of B+ or better, distributed across the areas of (A) philosophy of science and philosophy of logic, (B) philosophy of mind and philosophy of language, (C) ethics and political philosophy, (D) epistemology and metaphysics, and (E) history of philosophy. Students must take at least one seminar from each of these five areas and at least two seminars from any three of these areas. This requirement must be completed by the end of the seventh quarter of residence. By the end of the fifth quarter of residence, a student must have taken at least five Philosophy seminars (distributed across at least three areas), and must have achieved an average B+ or better in all philosophy seminars taken up to that point. Failure to take a sufficient number of seminars or to achieve a B+ average means that the student may not continue in the program after the fifth quarter.

2. The Introduction to Science Studies 209A, plus the Seminar in Science Studies 209B, to be
taken twice with changed content, plus Colloquium in Science Studies 209C, to be taken once on a Satisfactory/Unsatisfactory basis and once for a letter grade.

3. Two additional Science Studies courses outside philosophy drawn from a list of approved courses available each year from the Science Studies Program office. (One course in one of the sciences may be substituted for one of these courses as part of an approved program of study.)

The student’s program of study must be approved by the philosophy faculty advisor for Science Studies.

Students may apply for admission to the interdisciplinary program at the same time that they apply to the Department of Philosophy, or at some point after entering UCSD. (All students wishing to transfer into any interdisciplinary program must do so prior to the end of the fifth quarter of residency.)

Ph.D. Time Limit Policies
Students must be advanced to candidacy by the end of four years. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

Financial Aid
Almost all philosophy graduate students are supported by some form of financial aid. Most work as teaching assistants at 50 percent time (approximately $14,143 for nine months). Typically this involves running discussion sections and grading papers for lecture and introductory courses in philosophy, humanities, and writing programs. An assistantship is also regarded as a full-credit course, so teaching assistants usually take two graduate classes each quarter.

In addition, some Regents’ fellowships are available for first-year students, and the department usually awards one or more dissertation fellowships a year for its advanced graduate students. Various fee scholarships, tuition and tuition/fee scholarships are also available, as are San Diego fellowships.

Advanced graduate students who have just completed or nearly completed their dissertations are sometimes hired by the department as teaching associates or visiting lecturers. Under these titles advanced graduate students autonomously plan and teach their own courses.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

LOWER-DIVISION

1. **The Nature of Philosophy** (4)
What is philosophy? A study of major philosophical questions, making use of both classical and contemporary sources. An introduction to the basic methods and strategies of philosophical inquiry.

10. **Introduction to Logic** (4)
Basic concepts and techniques in both informal and formal logic and reasoning, including a discussion of argument, inference, proof, and common fallacies, and an introduction to the syntax, semantics, and proof method in sentential (propositional) logic. (May be used to fulfill general-education requirements for Warren and Eleanor Roosevelt Colleges.)

12. **Logic and Decision Making** (4)
An introduction to the study of probability, inductive logic, scientific reasoning, and rational choice among competing hypotheses and alternative courses of action when the evidence is incomplete or uncertain. (May be used to fulfill general-education requirements for Marshall, Warren, and Eleanor Roosevelt Colleges.)

13. **Introduction to Philosophy: Ethics** (4)
An inquiry into the nature of morality and its role in personal or social life by way of classical and/or contemporary works in ethics. (May be used to fulfill general-education requirements for Muir and Marshall Colleges.)

14. **Introduction to Philosophy: Metaphysics** (4)
A survey of central issues and figures in the Western metaphysical tradition. Topics include the mind-body problem, freedom and determinism, personal identity, appearance and reality, and the existence of God. (May be used to fulfill general-education requirements for Muir and Marshall Colleges.)

15. **Introduction to Philosophy: Theory of Knowledge** (4)
A study of the grounds and scope of human knowledge, both commonsense and scientific, as portrayed in the competing traditions of Continental rationalism, British empiricism, and contemporary cognitive science. (May be used to fulfill general-education requirements for Muir and Marshall Colleges.)

27. **Ethics and Society** (4)
(Same as Poli. Sci. 27.) An examination of ethical principles (e.g., utilitarianism, individual rights, etc.) and their social and political applications to contemporary issues: abortion, environmental protection, and affirmative action. Ethical principles will also be applied to moral dilemmas in government, law, business, and the professions. Satisfies the Warren College ethics and society requirement. Letter grade only. Prerequisites: CAT 2 and 3, DOC 2 and 3, MICWP 40 and 50, Hum. 1 and 2, MW 2 and 3, WCP 10A-B or WCP 11A-B.

31. **History of Philosophy: Ancient Philosophy** (4)
A survey of classical Greek philosophy with an emphasis on Socrates, Plato and Aristotle, though some consideration may be given to Presocratic and/or Hellenistic philosophers. (May be used in fulfilling the Muir College breadth requirement.)

UPPER-DIVISION

32. **History of Philosophy: The Origins of Modern Philosophy** (4)
A survey of early modern philosophy. Beginning with the contrast between medieval and modern thought, the course focuses on modern philosophy and its relation to the scientific revolution of the sixteenth and seventeenth centuries. Philosophers to be studied include Descartes, Hobbes, Spinoza, and Leibniz. (May be used in fulfilling the Muir College breadth requirement.)

87. **Freshman Seminar** (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

100. **Plato** (4)
A study of Socrates and/or Plato through major dialogues of Plato. Possible topics include the virtues and happiness; weakness of the will; political authority and democracy; the theory of Forms and sensible flux; immortality; relativism, skepticism, and knowledge. May be repeated for credit with change of content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.

101. **Aristotle** (4)
A study of major issues in Aristotle’s works, such as the categories; form and matter; substance, essence, and accident; the soul; virtue, happiness, and politics. Prerequisite: upper-division standing or consent of instructor.

102. **Hellenistic Philosophy** (4)
A study of selected texts from the main schools of Hellenistic philosophy—Stoicism, Epicureanism, and Skepticism. Prerequisite: upper-division standing or consent of instructor.

104. **The Rationalists** (4)
The major writings of one or more of the seventeenth century rationalists—Descartes, Spinoza, and Leibniz. Topics include the existence of God, the mind-body problem, free will, the nature of knowledge, belief, and error. May be repeated for credit with change of content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.

105. **The Empiricists** (4)
The major writings of one or more of the British empiricists—Locke, Berkeley, Hume, and Reid. May be repeated for credit with change of content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.

106. **Kant** (4)
A study of selected portions of the Critique of Pure Reason and other theoretical writings and/or his major works in moral theory. Prerequisite: Philosophy 33 or 105 or consent of instructor. May be repeated
for credit with change in content and approval of the instructor.

107. Hegel (4) A study of one or more of Hegel’s major works, in particular, The Phenomenology of Spirit and The Philosophy of Right. Readings and discussion may also include other figures in the Idealist tradition—such as Fichte, Hölderlin, and Schelling—and critics of the Idealist tradition—such as Marx and Kierkegaard. Prerequisite: upper-division standing or consent of instructor.

108. Nineteenth-Century Philosophy (4) A study of one or more figures in nineteenth-century philosophy, such as Schopenhauer, Nietzsche, Kierkegaard, Marx, Emerson, Thoreau, James, and Mill. The focus may be on particular figures or intellectual themes and traditions. May be repeated for credit with change of content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.

111. Contemporary Work in Epistemology and Metaphysics (4) A study of a prominent figure or central issue in contemporary epistemology and/or metaphysics. Examples of figures: Quine, Putnam, Sellars; examples of issues: the problem of universals, the nature of self-knowledge, freedom, ontological relativity. May be repeated for credit with change of content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.

115. Philosophical Methods Seminar (4) This course provides an introduction to the techniques of philosophical inquiry through detailed study of selected philosophical texts and through extensive training in philosophical writing based on those texts. Enrollment limited and restricted to majors; must be taken for letter grade. May not be repeated for credit. Prerequisite: open to philosophy majors only.

120. Symbolic Logic I (4) The syntax, semantics, and proof-theory of first-order predicate logic with identity, emphasizing both conceptual issues and practical skills (e.g., criteria for logical truth, consistency, and validity; the application of logical methods to everyday as well as scientific reasoning). Prerequisite: Philosophy 10 or consent of instructor.

122. Topics in Logic (4) A study of new, extended, or alternative logics and/or special issues in meta-logic. Topics include the nature of logic, modal logic, higher-order logic, generalized logic, free logic, the Löwenheim-Skolem theorem, the incompleteness of arithmetic, undecidability. May be repeated for credit with change in content and approval of instructor. Prerequisite: Philosophy 120 (and for advanced topics: Philosophy 121) or consent of instructor.

123. Philosophy of Logic (4) Philosophical issues underlying standard and non-standard logics, the nature of logical knowledge, the relation between logic and mathematics, the revisability of logic, truth and logic, ontological commitment and ontological relativity, logical consequence, etc. May be repeated for credit with change in content and approval of instructor. Prerequisite: Philosophy 120 or consent of instructor.

124. Philosophy of Mathematics (4) The character of logical and mathematical truth and knowledge; the relations between logic and mathematics; the significance of Gödel’s incompleteness theorem; Platonism, logicism, and more recent approaches. Prerequisite: Philosophy 120 or consent of instructor.

125. Games and Decisions (4) Formal and philosophical issues in the theory of games and the theory of rational decision. Prerequisite: Philosophy 12 or consent of instructor.

126. Topics in the History of Logic (4) Problems and figures in history of logic. Subject matter varies, in some cases a single author or text (e.g., Aristotle, The Port Royal Logic, Leibniz, Kant, Frege, Tarski), in other a particular tradition or problem (e.g., Hilbert’s Program, intuitionism, quantification, logicism and psychology, modality). Prerequisite: Philosophy 120 or consent of instructor.

130. Metaphysics (4) Central problems in metaphysics, such as free will and determinism, the mind-body problem, personal identity, causation, primary and secondary qualities, the nature of universals, necessity, and identity. Prerequisite: upper-division standing or consent of instructor.

131. Topics in Metaphysics (4) An in-depth study of some central problem, figure, or tradition in metaphysics. May be repeated for credit with change of content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.

132. Epistemology (4) Central problems in epistemology as such as skepticism, a priori knowledge; knowledge of other minds; self-knowledge; the problem of induction; foundationalism, coherence, and causal theories of knowledge. Prerequisite: upper-division standing or consent of instructor.

134. Philosophy of Language (4) Examination of contemporary debates about meaning, reference, truth, and thought. Topics include descriptive theories of reference, sense and reference, compositionality, truth, theories of meaning, vagueness, metaphor, and natural and formal languages. Prerequisite: upper-division standing or consent of instructor.

136. Philosophy of Mind (4) Different conceptions of the nature of mind and its relation to the physical world. Topics include identity theories, functionalism, eliminative materialism, internalism and externalism, subjectivity, other minds, consciousness, self-knowledge, perception, memory, and imagination. Prerequisite: upper-division standing or consent of instructor.

137. Philosophy of Action (4) The nature of action and psychological explanation. Topics include action individuation, reasons as causes, psychological laws, freedom and responsibility, weakness of will, self-deception, and the emotions. Prerequisite: upper-division standing or consent of instructor.

145. Philosophy of Science (4) Central problems in philosophy of science, such as the nature of confirmation and explanation, the nature of scientific revolutions and progress, the unity of science, and realism and antirealism. Prerequisite: upper-division standing or consent of instructor.

146. Philosophy of Physics (4) Philosophical problems in the development of modern physics, such as the philosophy of space and time, the epistemology of geometry, the philosophical significance of Einstein’s theory of relativity, the interpretation of quantum mechanics, and the significance of modern cosmology. Prerequisite: upper-division standing or consent of instructor.

147. Philosophy of Biology (4) Philosophical problems in the biological sciences, such as the relation between biology and the physical sciences, the status and structure of evolutionary theory, and the role of biology in the social sciences. Prerequisite: upper-division standing or consent of instructor.

148. Philosophy and the Environment (4) Investigation of ethical and epistemological questions concerning our relationship to the environment. Topics may include the value of nature, biodiversity, policy and science, and responsibility to future generations. Prerequisite: upper-division standing or consent of instructor.

149. Philosophy of Psychology (4) Philosophical issues raised by psychology, including the nature of psychological explanation, the role of nature versus nurture, free will and determinism, and the unity of the persona. Prerequisite: upper-division standing or consent of instructor.

150. Philosophy of the Cognitive Sciences (4) Theoretical, empirical, methodological, and philosophical issues at work in the cognitive sciences (e.g., Psychology, Linguistics, Neuroscience, Artificial Intelligence, and Computer Science), concerning things such as mental representation, consciousness, rationality, explanation, and nativism. Prerequisite: upper-division standing or consent of instructor.

151. Philosophy of Neuroscience (4) An introduction to elementary neuroanatomy and neurophysiology and an examination of theoretical issues in cognitive neuroscience and their implications for traditional philosophical conceptions of the relation between mind and body, perception, consciousness, understanding, emotion, and the self. Prerequisite: upper-division standing or consent of instructor.

152. Philosophy of Social Science (4) Philosophical issues of method and substance in the social sciences, such as causal and interpretive models of explanation, structuralism and methodological individualism, value neutrality, and relativism. Prerequisite: upper-division standing or consent of instructor.

153. Philosophy of History (4) A study of classical and/or contemporary conceptions of history and historical knowledge. Topics may include the structure of historical explanation, historical progress, objectivity in historiography, hermeneutics and the human sciences. Prerequisite: upper-division standing or consent of instructor.

160. Ethical Theory (4) Systematic and/or historical perspectives on central issues in ethical theory such as deontic, contractualism, and consequentialist conceptions of morality; rights and special obligations; the role of happiness and virtue in morality; moral conflict; ethical objectivity and relativism; and the rational authority of morality. Prerequisite: upper-division standing or consent of instructor.

161. Topics in the History of Ethics (4) Central issues and texts in the history of ethics. Subject matter can vary, ranging from one philosopher (e.g., Aristotle, Hobbes, Kant, or Mill) to a historical tradition (e.g., Greek ethics or the British moralists). May be repeated for credit with change in content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.
162. Contemporary Moral Issues (4)
An examination of contemporary moral issues, such as abortion, euthanasia, war, affirmative action, and freedom of speech. Prerequisite: upper-division standing or consent of instructor.

163. Biomedical Ethics (4)
Moral issues in medicine and the biological sciences, such as patient's rights and physician's responsibilities, abortion and euthanasia, the distribution of health care, experimentation, and genetic intervention. Prerequisite: upper-division standing or consent of instructor.

164. Technology and Human Values (4)
Philosophical issues involved in the development of modern science, the growth of technology, and control of the natural environment. The interaction of science and technology with human nature and political and moral ideals. Prerequisite: upper-division standing or consent of instructor.

166. Classics in Political Philosophy (4)
Central issues about the justification, proper functions, and limits of the state through classic texts in the history of political philosophy by figures such as Plato, Aristotle, Hobbes, Locke, Rousseau, Mill, and Marx. Prerequisite: upper-division standing or consent of instructor.

167. Contemporary Political Philosophy (4)
Different perspectives on central issues in contemporary political philosophy, such as the nature of state authority and political obligation, the limits of government and individual liberty, liberalism and its critics, equality and distributive justice. Prerequisite: upper-division standing or consent of instructor.

168. Philosophy of Law (4)
A study of issues in analytical jurisprudence such as the nature of law, the relation between law and morality, and the nature of legal interpretation and issues in normative jurisprudence such as the justification of punishment, paternalism and privacy, freedom of expression, and affirmative action. Prerequisite: upper-division standing or consent of instructor.

170. Philosophy and Race (4)
A philosophical investigation of the topics of race and racism. The role of "race" in ordinary speech. The ethics of racial discourse. Anthropological and biological conceptions of race. The social and political significance of racial categories. Post-racist conceptions of race. Prerequisite: upper-division standing or consent of instructor.

175. Aesthetics (4)
Central issues in philosophical aesthetics such as the nature of art and aesthetic experience, the grounds of artistic interpretation and evaluation, artistic representation, and the role of the arts in education, culture, and politics. Prerequisite: upper-division standing or consent of instructor.

176. Aesthetics: Film (4)
An examination of philosophical issues that arise in relation to the movies. May include questions about mass art, genre, fiction and emotion, and relations to other media, e.g., novels, plays. Prerequisite: upper-division standing.

177. Philosophy and Literature (4)
A study of philosophical themes contained in selected fiction, drama, or poetry, and the philosophical issues that arise in the interpretation, appreciation, and criticism of literature. Prerequisite: upper-division standing or consent of instructor.

180. Phenomenology (4)
An examination of the phenomenological tradition through the works of its major classical and/or contemporary representatives. Authors studied will vary and may include Brentano, Husserl, Heidegger, Merleau-Ponty, Levinas, Baudrillard. Prerequisite: upper-division standing or consent of instructor.

181. Existentialism (4)
Classical texts and issues of existentialism. Authors studied will vary and may include Nietzsche, Kierkegaard, Sartre, and Heidegger. Prerequisite: upper-division standing or consent of instructor.

183. Topics in Continental Philosophy (4)
The focus will be on a leading movement in continental philosophy (e.g., the critical theory of the Frankfurt school, structuralism and deconstruction, post-modernism) or some particular issue that has figured in these traditions (e.g., freedom, subjectivity, historicity, authenticity). May be repeated for credit with change in content and approval of instructor. Prerequisite: upper-division standing or consent of instructor.

185. Philosophy of Religion (4)
A general introduction to the philosophy of religion through the study of classical and/or contemporary texts. Among the issues to be discussed are the existence and nature of God, the problem of evil, the existence of miracles, the relation between reason and revelation, and the nature of religious language. Prerequisite: upper-division standing or consent of instructor.

191A. Philosophy Honors (4)
Independent study by special arrangement with and under the supervision of a faculty member, including a proposal for the honors essay. An IP grade will be awarded at the end of this quarter; a final grade will be given for both quarters at the end of 191B. Prerequisites: department stamp; consent of instructor.

191B. The Honors Essay (4)
Continuation of 191A: independent study by special arrangement with and under the supervision of a faculty member, leading to the completion of the honors essay. A letter grade for both 191A and 191B will be given at the end of this quarter. Prerequisite: consent of instructor.

192. Senior Seminar (1)
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in PHIL (at the upper-division level). Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: upper-division standing; department stamp and/or consent of instructor.

199. Directed Individual Study (4)
Directed individual study by special arrangement with and under the supervision of a faculty member. (P/NP grades only.) Prerequisite: consent of instructor.

200. Proseminar (4)
Introduction to philosophical methods of analysis through study of classic historical or contemporary texts. Writing intensive. Enrollment limited to entering graduate students.

201A. Core Course in History (4)
A study of selected texts or topics in the history of philosophy. Usually the focus will be on a single major text. May be taken for credit nine times with changed content.

202. Core Course in Ethics (4)
An introduction to some central issues in ethical theory with emphasis on classic texts or contemporary authors. May be taken for credit three times with changed content.

203. Core Course in Political Philosophy (4)
A study of central topics concerning the nature, justification, and limits of state authority. The emphasis may be on classic texts or contemporary writings. May be taken for credit three times with changed content.

204A. Core Course in Philosophy of Science (4)
An introduction to one or more central problems in the philosophy of science, or in the philosophy of one of the particular sciences, such as the nature of confirmation and explanation, the nature of scientific knowledge, reductionism, the unity of science, or realism and antirealism. May be taken for credit three times with changed content.

205A. Core Course in Metaphysics (4)
An introduction to central topics in metaphysics with emphasis on classic texts or contemporary authors. May be taken for credit three times with changed content.

206A. Core Course in Epistemology (4)
An introduction to central topics in epistemology with emphasis on classic texts or contemporary authors. May be taken for credit three times with changed content.

209A. Introduction to Science Studies (4)
Study and discussion of classic work in history of science, philosophy of science, and of work that attempts to develop a unified science studies approach. Required of all students in the Science Studies Program.

209B. Seminar in Science Studies (4)
Study and discussion of selected topics in the science studies field. Required of all students in the Science Studies Program. The topic varies from year to year and students may, therefore, repeat the course for credit. May be taken for credit three times with changed content.

209C. Colloquium in Science Studies (4)
A forum for the presentation and discussion of research in progress in science studies, by graduate students, faculty, and visitors. May be taken for credit two times with changed content.

209D. Advanced Approaches to Science Studies (4)
Contemporary themes and problems in science studies. Focus on recent literature in the history, philosophy, and sociology of science, technology, and medicine.

210. Greek Philosophy (4)
A study of selected texts or topics from the history of Greek philosophy. Usually centers on works by Plato or Aristotle. May be taken for credit six times with changed content.

214. Early Modern Philosophy (4)
A study of selected texts or topics from philosophers of the sixteenth and seventeenth centuries, Descartes, Spinoza, Leibniz, or Locke. May be taken for credit six times with changed content.
215. Eighteenth-Century Philosophy (4)
A study of selected texts or topics from philosophers of the eighteenth century: for example, Kant or Hume. May be taken for credit six times with changed content.

216. Nineteenth-Century Philosophy (4)
A selective study of major philosophical texts for the period, with emphasis on such figures as Hegel, Marx, Nietzsche, Mill, and others. May be taken for credit six times with changed content.

217. Twentieth-Century European Philosophy (4)
A study of selected topics in twentieth-century European philosophy as reflected in the major writings of Husserl, Heidegger, Sartre, Merleau-Ponty, and others. May be taken for credit six times with changed content.

218. Contemporary Analytical Philosophy (4)
A study of the historical development of the analytical movement, with emphasis on major texts. May be taken for credit six times with changed content.

221. Advanced Symbolic Logic (4)
Topics in mathematical logic and set theory, metatheory, nonstandard logics, and other contemporary developments in logical theory. May be taken for credit five times with changed content.

222. Philosophy of Logic (4)
A study of selected issues in the philosophy of logic. The focus may be on contemporary texts or historical works or both. May be taken for credit six times with changed content.

230. Metaphysics (4)
Topics may include identity, personal identity, universals and particulars, modality and possible worlds, causation, reduction, supervenience, freedom and determinism, space and time, and realism versus antirealism. May be taken for credit six times with changed content.

232. Epistemology (4)
This seminar will cover issues such as rival accounts of knowledge, justification, and warrant, traditional and contemporary perspectives on empiricism, rationalism, and pragmatism, and skepticism. May be taken for credit six times with changed content.

234. Philosophy of Language (4)
Central issues in contemporary philosophy of language, such as the nature of linguistic meaning, truth, content, reference, the syntax and semantics of various linguistic constructions, presupposition, speech acts, the epistemology of language understanding and language learning, the mental/psychological basis of linguistic understanding and use. May be taken for credit six times with changed content.

236. Philosophy of Mind (4)
Contemporary debates on the nature, function, and operation of the mental. May include questions about the mind-body relation, mental causation, perception, consciousness, and mental representation. May be taken for credit six times with changed content.

245. Philosophy of Science (4)
This seminar will cover current books and theoretical issues in the philosophy of science. May be taken for credit seven times with changed content.

247. Philosophy of Biology (4)
Historical and contemporary perspectives on foundational issues about biology. May include questions about the nature of biological explanation, the relation of biology to chemistry and physics, the status of attributions of function, and the relation of biology to the social sciences. May be taken for credit six times with changed content.

250A. Philosophy of the Cognitive Sciences (4)
Contemporary debates about the study of the mind-brain as studied in one or more of the empirical cognitive sciences. May include questions about the different strategies of explanation invoked, the conceptions of representation employed, the connections between theoretical models developed. May be taken for credit six times with changed content.

260. Ethics (4)
Topics may include metaethics (e.g., the semantics, metaphysics, epistemology, and normativity of ethics), consequentialism and deontology, moral psychology (e.g., freedom, responsibility, and weaknesses of will), or substantive moral problems. The approach may be systematic, historical, or both. May be taken for credit six times with changed content.

267. Political Philosophy (4)
Topics include the nature and limits of state authority, liberty and equality, distributive justice, liberalism and its critics (e.g., feminists, libertarians, and others), or issues in jurisprudence. The focus may be on classic texts or contemporary authors. May be taken for credit six times with changed content.

275. Aesthetics (4)
An exploration of problems in the philosophy of art, aesthetic experience, and aesthetic judgment within the context of a critical survey of some current aesthetic theories, and their illustrative application in various fields of art. May be taken for credit six times with changed content.

276. German Translation Workshop (1)
This course meets biweekly with students reading and translating philosophical German. Students prepare in advance written translations of assigned passages. The course helps train graduate students preparing to take the Departmental German Exam. May be taken nine times for credit with changed content.

277. Phenomenology Reading Group (1-2)
This course meets biweekly with students reading and presenting material from the phenomenological literature. The course is designed both for students doing active research in phenomenology and for those seeking to gain some familiarity with that tradition. Can be taken nine times for credit with changed content.

278. Topics and Methods in Contemporary Philosophy (1-2)
Investigation of central issues in contemporary philosophy. Content varies but typically will center on a recent and important philosophical book. Can be taken nine times for credit with changed content.

279. Experimental Philosophy Laboratory (2)
A weekly forum of presentations, EPL provides a wider range of content than a traditional seminar. Content varies, but the focus is on philosophical problems of mind, representation, language and consciousness through empirical and philosophical methods. Can be taken nine times for credit with changed content.

280. Philosophy of Science Topics and Methods (1-2)
This course meets weekly to discuss recent books or articles in philosophy of science. The reading is designed both for students doing active research in the field and for those seeking to gain some familiarity with it. Can be taken nine times for credit with changed content.

281. History of Philosophy Research and Methods (1-2)
This course meets to discuss work in progress in the history of philosophy. Its aim is to introduce understanding of the methods and standards of research in the field through constructive criticism of each other's work. Can be taken nine times for credit with changed content.

282. Topics and Methods in Ethics (1-2)
Weekly or biweekly meetings to discuss recent literature in ethics, broadly construed so as to include ethical theory, normative ethics, jurisprudence, and historical traditions in these fields. The course is suitable for those specializing in ethics and for those seeking some familiarity with the field.

285. Seminar on Special Topics (4)
Focused examination of specific problems or themes in some area of philosophy. May be taken for credit nine times with changed content.

290. Directed Independent Study (4)
Supervised study of individually selected philosophical topics. S/U grades permitted.

292. Writing Workshop (1-3)
Each enrolled student produces a research essay ready for publication, presents it to students and faculty, and offers critiques of other students' presentations. Units will vary according to enrollment in course. To be taken in fall quarter of third year of philosophy graduate study.

295. Research Topics (1-12)
Advanced individual research studies under the direction of a member of the staff. Hours of outside prep. will vary with number of units taken. May be taken for credit nine times with changed content.

299. Thesis Research (1-12)
S/U grades permitted.

500. Apprentice Teaching (1-4)
A course designed to satisfy the requirement that graduate students should serve as teaching assistants, either in the Department of Philosophy or in one of the writing programs offered by the various colleges. Each Ph.D. candidate must teach the equivalent of quarter time for three academic quarters. Students are permitted to sign up as TAs for a maximum of eighteen quarters.
The Department of Physics was established in 1960 as the first new department of the UCSD campus. Since then it has developed a strong faculty and student body with unusually diversified interests which lie primarily in the following areas:

1. Physics of elementary particles
2. Quantum liquids and superconductivity
3. Solid state and statistical physics
4. Plasma physics
5. Astrophysics and space physics
6. Atomic and molecular collision and structure
7. Biophysics
8. Geophysics
9. Nonlinear dynamics
10. Computational physics

In addition to on-campus research facilities, the high energy program uses accelerators at SLAC, CERN, and Fermi Laboratory. The astrophysics program uses facilities at Keck, Lick, and Kitt Peak Observatories.

The Undergraduate Program

The Department of Physics offers undergraduate programs leading to the following degrees:

B.S., Physics
B.S., Physics with Specialization in Astrophysics
B.S., Physics with Specialization in Biophysics
B.S., Physics with Specialization in Computational Physics
B.S., Physics with Specialization in Earth Sciences
B.S., Physics with Specialization in Materials Physics
B.A., General Physics
B.A., General Physics/Secondary Education

A grade-point average of 2.0 or higher in the upper-division major program is required for graduation. Students must receive a grade of C– or better in any course to be counted toward fulfillment of the major requirements. In exceptional cases, students with a grade-point average in the major of 2.5 or greater may petition to have one grade of D accepted. All courses (lower- and upper-division) required for the major must be taken for a letter grade.

Shang-keng Ma Award

The Department of Physics presents the Shang-keng Ma Memorial Award at commencement each year to a graduating physics student who has shown exceptional ability and promise during the UCSD undergraduate years. The award was established in 1984 to commemorate the contributions of Professor Ma to the UCSD Department of Physics and to the field of theoretical condensed matter physics.

John Holmes Malmberg Prize

The John Holmes Malmberg Prize is presented annually at commencement to a graduating physics student who is recognized for potential for a career in physics and a measure of experimental inquisitiveness. This prize was established in 1993 in memory of Professor Malmberg who pioneered the use of non-neutral plasmas for sophisticated tests of plasma equilibrium, wave, and transport effects. He was an involved teacher of undergraduate and graduate students and was active in departmental and campus affairs.

Physics Major (B.S. Degree)

The physics major provides a core of basic education in several principle areas of physics, with sufficient flexibility to allow students to prepare either for graduate school or a career in industry. Since in preparing for either goal, more than the required core courses are necessary, it is important for students to meet with a physics department advisor in deciding a schedule.

In the junior year, the emphasis is on macroscopic physics; the two principal physics subjects are electromagnetism and mechanics. The mathematics and computer background required for the physics program is completed in this year.

In the senior year, a sequence of courses in quantum physics provides the student the modern view of atomic and some aspects of subatomic physics and the principal analytical methods appropriate in this domain. The relation of the microscopic to the macroscopic world is the subject of courses in thermodynamics and statistical physics, with illustrations drawn from gas dynamics and solid-state physics. Upper-division laboratories teach students the essentials of physical measurement and building advanced equipment, as well as other aspects of experimental science.

The following courses are required for the physics major:

Lower-Division
1. Physics 4A-B-C-D-E or Physics 2A-B-C-D
2. Physics 2CL and 2DL
3. Chemistry 6A or a programming course such as MAE 9 or MAE 10
4. Mathematics 20C-D-E-F

Upper-Division
1. Physics 100A-B, 105A, 110A, 120A, 130A-B, 140A, and an additional laboratory course from the lab group: 120B, 121, 133, 173
2. Two courses from either the theoretical or experimental pre-grad-school sequence
 - Theoretical pre-grad-school sequence: Phys. 100C, 105B, 110B, 130C, 140B
 - Experimental pre-grad-school sequence: Phys. 100C, 110B, 120B, 130C, 140B
3. Restricted electives: Three upper-division (four-unit) or graduate courses in physics or mathematics (only one). Courses in other science disciplines may be substituted by petition.

For students wishing to prepare for graduate school it is important that all courses in either the theorist or experimentalist pre-grad-school sequence be taken. Mathematics 120A is also recommended.

Suggested Schedule (pre-graduate-school)

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 100A</td>
<td>Phys. 100B</td>
<td>Phys. 120A</td>
</tr>
<tr>
<td>Phys. 105A</td>
<td>Phys. elective(^1)</td>
<td>Phys. 130A</td>
</tr>
<tr>
<td>Phys. 110A</td>
<td>Phys. 105B(^2)</td>
<td></td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 140A</td>
<td>Phys. 140B(^2)</td>
<td>Phys. lab(^1)</td>
</tr>
<tr>
<td>Phys. 130B</td>
<td>Phys. elective(^1)</td>
<td>Phys. elective(^1)</td>
</tr>
</tbody>
</table>

\(^1\) Any course from lab group listed above
\(^2\) Any two courses from theoretical or experimental pre-grad-school sequence listed above

Suggested Schedule (career in industry)

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 100A</td>
<td>Phys. 100B</td>
<td>[pre-grad](^4)</td>
</tr>
<tr>
<td>Phys. 105A</td>
<td>Phys. elective(^1)</td>
<td>Phys. 120A</td>
</tr>
<tr>
<td>Phys. 110A</td>
<td>[other](^2)</td>
<td>Phys. 130A</td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 140A</td>
<td>[pre-grad](^4)</td>
<td>Phys. elective(^1)</td>
</tr>
<tr>
<td>Phys. lab(^2)</td>
<td>Phys. elective(^1)</td>
<td>[other](^2)</td>
</tr>
<tr>
<td>Phys. 130B</td>
<td>[other](^2)</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Any course from lab group listed above
\(^2\) Any restricted elective as described above
\(^4\) Any course from either pre-grad-school sequence listed above

Physics Major with Specialization in Astrophysics (B.S. Degree)

The astrophysics specialization is appropriate for students who would like to gain an in-depth understanding of modern astronomy and astrophysics, and/or who wish to prepare for graduate school in astronomy or astrophysics. It is similar to the standard physics major with electives being chosen from astronomically oriented courses. A wide variety of technical, academic, and professional careers are possible for students who choose this specialization.

The following courses are required for the physics major with specialization in astrophysics:

Lower-Division
1. Physics 4A-B-C-D-E or Physics 2A-B-C-D
2. Physics 2CL and 2DL
3. Chemistry 6A or a programming course such as MAE 9 or MAE 10
4. Mathematics 20C-D-E-F

\(^1\) The Physics 4 series is recommended, but the Physics 2 sequence is acceptable, in which case both
\(^2\) Chemistry 6A and a programming course are required.
Upper-Division

1. Physics 100A-B, 105A, 110A, 120A, 130A-B, 140A and an additional laboratory course from the lab group: 120B, 121, 133.
2. Two courses from either the theoretical or experimental pre-grad-school sequence.
3. It is recommended that students take the three quarter astrophysics sequence—Physics 160, 161, 162—but any three courses selected from the following list are acceptable:
 Physics 160. Stellar Astrophysics
 Physics 161. Compact Objects and the Milky Way
 Physics 162. Galaxies and Cosmology
 Physics 163. Solar System
 ECE 120. Solar System Physics
 Chem. 170. Cosmochemistry
 SIO 130. Geodynamics of Terr. Planets
 MAE 180A. Space Science and Engineering
 Suggested Schedule

Example Schedule

FALL

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys 100A</td>
<td>Phys 100B</td>
<td>Phys 120A</td>
</tr>
<tr>
<td>Phys 105A</td>
<td>Phys 105B¹</td>
<td>Phys 130A</td>
</tr>
<tr>
<td>Phys 110A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys 140A</td>
<td></td>
</tr>
<tr>
<td>Phys 160</td>
<td>Physics Lab²</td>
</tr>
<tr>
<td>Phys 130B</td>
<td></td>
</tr>
</tbody>
</table>

¹ Experimentalists may replace 105B with an additional lab.
² Any course from lab group listed above

Physica MAJOR with Specialization in Biophysics (B.S. Degree)

The Department of Physics offers an undergraduate program that prepares students for careers in biophysics. This program leads to a degree in "B.S., Physics with Specialization in Biophysics." As a terminal degree, it is an excellent education for students who wish to work in the biotechnology industry, and provides an ideal background for students who plan to attend graduate or professional school in biological or biomedical fields.

This program is intended for students with a strong interest in bringing the concepts and technical advances from the physical sciences to bear on issues in biology. The curriculum is chosen to prepare students as rigorously trained but broad-minded generalists, so that they may attack problems in the biological, biochemical, and biomedical sciences with the tools and confidence that come from rigorous training in the physical sciences.

The curriculum for Physics Major with Specialization in Biophysics is designed to allow pre-medical students to complete all necessary courses for admission to medical schools.

The lower-division program for physics majors with specialization in biophysics includes basic courses in biology and chemistry as well as physics. Although the sequence Physics 4A through 4E is strongly recommended, students have the choice of petitioning the department to substitute the sequence Physics 2A through 2D.

The following courses are required for the physics major with specialization in biophysics:

Lower-Division

1. Physics 4A-B-C-D-E and 2CL-DL; or Physics 2A-B-C-D and 2CL-DL (Physics 4 sequence is strongly recommended)
2. Chemistry 6A-B-C and 6BL
3. Biology, BILD 1 and BILD 2
4. Mathematics 20A-B-C-D-E-F

The upper-division program includes advanced courses in physics, including two core lecture courses and one core laboratory course in biophysics, as well as advanced mathematics.

Upper-Division

2. Chemistry 140A

Additional electives, to achieve a count of twelve upper-division courses in the major, may be selected from biology, chemistry and physics. Three additional upper-division courses, in any subject, are required in order to satisfy UCSD requirements.

Pre-medical students will need to take two additional quarters of organic chemistry (Chemistry 140B and 140C), one quarter of organic chemistry laboratory (Chemistry 143A), and one quarter of an upper level biology course. In addition, some medical schools also require a quarter of biochemistry (Biology BIBC 100 or Chemistry 114A). The premedical requirements may be used to satisfy elective requirements for upper-division courses.

As a guide to prospective students, we consider a schedule of required classes for a Muir College student.

Suggested Schedule

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math. 20A</td>
<td>Chem. 6A</td>
<td>Chem. 68</td>
</tr>
<tr>
<td>Math. 20B</td>
<td>Math. 20E</td>
<td>Chem. 6BL</td>
</tr>
<tr>
<td>Math. 4A</td>
<td>Math. 20C</td>
<td>Math. 20B</td>
</tr>
<tr>
<td>Math. 4D</td>
<td>Phys. 4C</td>
<td>Phys. 4BL</td>
</tr>
<tr>
<td>Math. 4E</td>
<td>Phys. 4CL</td>
<td></td>
</tr>
<tr>
<td>Phys. 4A</td>
<td>Phys. 2DL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 6C</td>
<td>Math. 20E</td>
<td>Math. 20F</td>
</tr>
<tr>
<td>Math. 20D</td>
<td>Phys. 4D</td>
<td>Phys. 4E</td>
</tr>
<tr>
<td>Phys. 4C</td>
<td>Phys. 2CL</td>
<td>Phys. 2DL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys. 100A</td>
<td>BILD 1</td>
<td>BILD 2</td>
</tr>
<tr>
<td>Phys. 105A</td>
<td>Chem. 140A</td>
<td>Phys. 120A</td>
</tr>
<tr>
<td>Phys. 110A</td>
<td>Phys. 130A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENIOR YEAR</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys. 140A</td>
<td>Phys. 172</td>
<td></td>
</tr>
<tr>
<td>Phys. 160</td>
<td>Elec.</td>
<td>Phys. 173</td>
</tr>
<tr>
<td>Phys. 130B</td>
<td>Elec.</td>
<td></td>
</tr>
</tbody>
</table>

B.S. in Physics with Specialization in Computational Physics

The computational physics specialization is designed to support a broad range of career development tracks, so students may pursue:
1. A terminal B.S. degree for gainful employment in information technology and high-tech industry,
2. Preparation for graduate studies in computational science with an M.S. degree, and
3. Graduate work in physics with strong interest in computational physics

This flexibility is afforded by a wide array of restricted electives which allows students to design much of their own program (subject to advisor’s approval) while simultaneously maintaining the essential physics-based
curriculum. Academic advising will be provided by physics faculty in the Computational Physics Specialization Program to assist students in designing their optimal career development track in the flexible curriculum.

The following courses are required for Physics Major with Specialization in Computational Physics:

Lower-Division
1. Physics 4A-B-C-D-E or Physics 2A-B-C-D, Mathematics 2CL-DL
2. Mathematics 20C-F
3. Chemistry 6A
4. MAE 9, or MAE 10, or CSE 11

1. The 2A-B-C-D sequence is an allowed substitute by petition.
2. Electing CSE 11, student is still required to have C or Fortran based programming skills equivalent to MAE 9, or MAE 10.

Upper-Division
2. Six restricted electives from following groups:
 - Physics 100C, 110B, 120B, 130C, 140B, 173, other upper-division Physics courses,
 - CSE 12, 30, 80
 - Substitute Upper-Division courses

Suggested Schedule (restricted electives not shown)

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 100A</td>
<td>Phys. 100B</td>
<td>Phys. 120A</td>
</tr>
<tr>
<td>Phys. 105A</td>
<td>Phys. 105B</td>
<td>Phys. 130A</td>
</tr>
<tr>
<td>Phys. 110A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 140A</td>
<td>Phys. 141</td>
<td>Phys. 142</td>
</tr>
<tr>
<td>Phys. 130B</td>
<td>Phys. 121</td>
<td></td>
</tr>
</tbody>
</table>

2. Students will choose two required courses from the group Phys. 121, Phys. 141, Phys. 142, and either will drop the third, or take it as one of the six restricted electives
3. Substitute elective courses (upper-division science, mathematics, engineering, or other) require advisor’s approval

Career Track Examples with Restricted Electives

The program of electives is intended to be flexible, and can be tailored to the student’s needs and interests in consultation with the academic advisor.

Grad. School Theorist with Computational Interest Track for student with interest in theoretical physics based computational science:

- Physics 100C, 110B, 130C, 140B
- Mathematics 132A-B

Grad. School Experimentalist with Computational Interest Track for students with interest in experimental physics based computational science:

- Physics 100C, 120B, 142
- Mathematics 183
- CSE 80

Information Technology Track for student with interest in physics based software oriented applications:

- Physics 100C, 140B
- CSE 12, 30, 80
- Mathematics 173

Numerical Science/Engineering Application Developer Track for students with interest in physics and engineering applications of numerical algorithms:

- Physics 100C, 140B
- Mathematics 170A-C, 172

High Tech Instrumentation Track for students with interest in physics based instrumentation:

- Physics 100C, 120B, 140B
- Mathematics 183
- CSE 12, 80

Physics Major with Specialization in Earth Sciences (B.S. Degree)

The upper-division program for physics majors with specialization in earth sciences is essentially the same as the standard physics major augmented by courses in earth sciences offered through the Scripps Institution of Oceanography.

Students may wish to incorporate a small portion of the major program into their lower-division studies, for example, SIO 50.

The following courses are required for the physics major with specialization in earth sciences:

Lower-Division
1. Physics 4A-B-C-D-E and 2CL-DL; or Physics 2A-B-C-D and 2CL-DL (Physics 4 sequence is strongly recommended)
2. Chemistry 6A-B and 6BL
3. Mathematics 20C-F

Upper-Division
1. Physics 100A-B, 110A-B, 120A, 130A, 140A, plus one upper-division lab*
2. SIO 50, 102, 103, 120
3. Restricted Electives: Three earth sciences courses in the SIO department (upper-division or graduate level) to be chosen with the approval of the SIO undergraduate program advisor.
4. Two courses from either the theoretical or experimental pre-grad school sequence.

* Another lab course chosen from Physics 120B, 121, 133, or 173.

Suggested Schedule

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 100A</td>
<td>Phys. 100B</td>
<td>Phys. 120A</td>
</tr>
<tr>
<td>Phys. 105A</td>
<td>Phys. 110B</td>
<td>Phys. 130A</td>
</tr>
<tr>
<td>Phys. 110A</td>
<td>SIO 102</td>
<td></td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 140A</td>
<td>SIO 120</td>
<td>U.D. Lab</td>
</tr>
</tbody>
</table>

Physics Major with Specialization in Materials Physics (B.S. Degree)

The materials physics specialization is designed to support a broad range of options, so students may pursue (1) a terminal B.S. degree, or preparation for (2) graduate work in materials science, or (3) graduate work in physics. This flexibility is afforded by a wide range of restricted electives which allows students to design much of their own program while simultaneously maintaining the essential physics-based curriculum. Academic advising will be provided by the department to assist the student in navigating through the many options. The B.S. program also serves as the entry to the integrated five-year B.S./M.S. program.

Lower-Division
1. Physics 4A-B-C-D-E or Physics 2A-B-C-D, Mathematics 2CL-DL
2. Chemistry 6A-B*
3. Mathematics 20C-F
4. MAE 9 or MAE 10 (or equivalent programming experience)
Upper-Division

2. Four restricted electives, to be chosen from Chemistry 120A-B; Mathematics 120A; ECE 103, 134, 135A-B, 136, 136L; MAE 160, 110A; or any upper-division physics course

* Students who anticipate taking Chemistry 120A-B as an upper-division elective are strongly advised to take Chemistry 6C.

Suggested Schedule
(restricted electives not shown)

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 100A</td>
<td>Phys. 100B</td>
<td>Phys. 120A</td>
</tr>
<tr>
<td>Phys. 105A</td>
<td>Phys. 105B</td>
<td>Phys. 130A</td>
</tr>
<tr>
<td>Phys. 110A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 140A</td>
<td>Phys. 152A</td>
<td>Phys. 152B</td>
</tr>
<tr>
<td>Phys. 120B</td>
<td></td>
<td>Phys. 133</td>
</tr>
<tr>
<td>Phys. 130B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Restricted Electives: Example

As examples of restricted electives, a student opting for a terminal B.S. degree (Option 1) might choose to take MAE 160, ECE 103, 136, and Physics 121. Students preparing for graduate work in materials science (Option 2) might consider MAE 160, ECE 103, 134, and a fourth elective. Students preparing for graduate work in physics (Option 3) might consider Physics 100C, 110B, 140B, and a fourth elective. The program of electives is intended to be flexible, and can be tailored to the student’s needs and interests in consultation with the academic advisor.

See entry for Integrated Bachelor’s/Master’s Degree Program in Materials Physics.

General Physics Major (B.A. Degree)

This program covers the essential topics in physics and provides a broadly based education in the natural sciences. Starting with lower-division courses in mathematics, physics, computing, biology and/or chemistry, students proceed to upper-division mechanics, electricity and magnetism, thermal physics, quantum physics, and a physical measurements laboratory course. In addition, students take sixteen units of upper-division elective courses in the natural sciences or mathematics.

While the B.A. program is suitable for students who pursue a terminal degree in physics or use it as a preparation for other professional careers, it is not intended for those who wish to proceed to the Ph.D. in physics. The latter should enroll in the B.S. program.

The following courses are required for the general physics major:

Lower-Division

1. Physics 2A-B-C-D and 2CL-DL
2. Mathematics 20C-F
3. Three restrictive elective courses in science and engineering (a list of acceptable courses is given below)

Upper-Division

1. Physics 100A-B, 105A, 110A-B, 120A, 130A, 140A or Chemistry 127 or 131
2. Restricted Electives: Sixteen units of upper-division courses in science and engineering (excluding mathematics)

Suggested Schedule

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 100A</td>
<td>Phys. 100B</td>
<td>Phys. 120A</td>
</tr>
<tr>
<td>Phys. 105A</td>
<td>Phys. 110B</td>
<td>Phys. 130A</td>
</tr>
<tr>
<td>Phys. 110A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem. 127 or 131</td>
<td>Restr. Elec.</td>
<td></td>
</tr>
</tbody>
</table>

Approved Lower-Division Elective Courses

One course in computing chosen from the following list:
MAE 10, FORTRAN for Engineers
MAE 03, Introduction to Engineering Graphics and Design
CSE 10, Introduction to Programming Techniques
CSE 30, Introduction to Systems Programming Physics 105B, Mathematical and
Computational Physics

Plus two of the following courses:
BILD 1, The Cell
BILD 2, Multicellular Life
BILD 3, Organismic and Evolutionary Biology
Chem. 6A, General Chemistry
Chem. 6B, General Chemistry
Chem. 6C, General Chemistry

General Physics/Secondary Education Major (B.A. Degree)

This program is intended for students preparing for a career as a physics teacher in secondary schools. It covers the essential topics in physics and provides a broadly based education in the natural sciences. The program includes three courses in general chemistry plus a lab, one course in organic chemistry plus a lab, and a course in earth science as required by the Single Subject Credential Program of the state of California. It also includes three courses in Practicum in Learning offered by the Education Studies Program. This degree is particularly suitable for students pursuing a Single Subject (Physics) credential for high schools. If you are interested in earning a California teaching credential from UCSD, contact the Education Studies Program (EDS) for information about the prerequisite and professional preparation requirements. It is recommended that you contact EDS as early as possible in your academic career.

The following courses are required for the general physics/secondary education major:

Lower-Division

1. Physics 2A-B-C-D and 2CL-DL
2. Chemistry 6A-B-C and 6BL
3. SIO 10, 12, or 30
4. Mathematics 20C-F

Upper-Division

1. Physics 100A-B, 105A, 110A-B, 120A, 130A
2. Chemistry 140A and 143A
3. SIO 50
4. EDS 129A-B-C

Suggested Schedule

<table>
<thead>
<tr>
<th>FALL</th>
<th>WINTER</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 100A</td>
<td>Phys. 100B</td>
<td>Phys. 120A</td>
</tr>
<tr>
<td>Phys. 105A</td>
<td>Phys. 110B</td>
<td>Phys. 130A</td>
</tr>
<tr>
<td>Phys. 110A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIO 50</td>
<td>EDS 129B</td>
<td>EDS 129C</td>
</tr>
</tbody>
</table>

Engineering Physics Program

The engineering physics program is offered jointly by the Departments of Physics, MAE, and ECE, and is administered by the Department of
ECE. (See "ECE, Engineering Physics Program.") Transfer students who have had prior course work in the major at other institutions must consult with the Department of Physics, Student Affairs Office, 1110-115 Urey Hall Addition to make an appointment to see a faculty advisor.

Minor in Physics

Students may arrange minor programs or programs of concentration in physics by consulting with the Department of Physics Student Affairs Office, 1110-115 Urey Hall Addition, and their college for specific requirements. The Department of Physics requires at least twenty-eight units, of which at least twenty units must be upper-division. All courses must be taken for letter grade. Lower-division transfer courses are permitted.

Advising Office

All students are assigned an academic advisor. It is strongly recommended that students see their advisor at least once a quarter.

Additional advising information may be obtained from the Department of Physics Student Affairs Office, 1110-115 Urey Hall Addition (858) 534-3290.

Honors Program

The Department of Physics offers an Honors Program for students who demonstrate excellence in the major. Students interested in the Honors Program should consult the Student Affairs Office. Eligibility for the Honors Program includes completion of all required lower-division physics courses, ten upper-division physics courses, and a GPA of at least 3.50 in the physics major.

The Honors Program consists of a minimum of eight units of Honors Thesis Research (Physics 199H), an Honors Thesis, and the presentation of the research to faculty and peers at UCSD’s Undergraduate Research Conference or an Undergraduate Seminar. Admission to the Honors Program is contingent upon the prior approval of the Honors Thesis "research topic" by the Vice Chair for Education.

Integrated Bachelor’s/Master’s Degree Program in Materials Physics

The program offers a M.S. in physics with specialization in materials physics. It is open only to UCSD undergraduates, and is a Plan I program only (thesis). During the fourth quarter prior to receipt of the B.S. degree, students enrolled in the B.S. degree program with specialization in materials physics (see above) may apply for admission to the M.S. program. To be eligible, students must have completed the first two quarters of their junior year in residence at UCSD and have a GPA of at least 3.0 in both their major and overall undergraduate curriculum. It is strongly recommended that B.S. students who intend to apply to the M.S. program take MAE 160, ECE 103, and ECE 134 as restricted B.S. electives. It is the responsibility of the prospective B.S./M.S. student to select a faculty member (from the Department of Physics or, with physics department approval, from the MAE, ECE, or chemistry departments) who would be willing to serve as the student’s advisor and with whom the student would complete at least twelve units of S/U graded research, which could commence as early as the undergraduate senior year. (Taken during the senior year, the units would count only toward the M.S. degree and not toward the B.S.) The student must confirm that the selected faculty advisor will not be on-off campus sabbatical leave during any quarter of the scheduled B.S./M.S. project.

Students are expected to meet the requirements for the M.S. degree in one year (three consecutive, contiguous academic quarters) from the date of receipt of the B.S. degree. Any deviation from this plan, such as a break in enrollment for one or more quarters, may result in the student being dropped from the program.

The requirements for the M.S. degree are as follows:

1. Completion of at least twelve and no more than twenty-four units of research, which may begin as early as the first quarter of the senior undergraduate year.
2. Completion of three required courses during the fifth (graduate) year (MAT SCI 201A-B-C), and two restricted electives (see below).
3. Completion of restricted elective courses so that the total number of units (research plus required courses plus elective courses) totals no less than 36 units taken as a graduate student. Students accumulate units for their research by enrolling in Physics 295 (M.S. Thesis Research), which may be taken repeatedly.
4. Maintenance of a grade-point average of at least 3.0 for all course work, both cumulatively and for each quarter of enrollment in the B.S./M.S. program.
5. Completion of a thesis, with an oral presentation to, and approval of, a three-member committee from the Department of Physics including the faculty advisor. If the faculty advisor is from outside the physics department, the committee shall consist of the advisor and two members from the physics department faculty.
6. Three complete, separate, and consecutive quarters of full-time residency as a graduate student which will commence the quarter immediately following the quarter in which the B.S. degree is awarded (not counting summer session).
7. Although students may receive research or teaching assistantships if available from their advisor or through the Department of Physics, there is no guarantee of financial support associated with the M.S. program.
8. M.S. candidates will be permitted to serve as teaching assistants, although teaching will not be a requirement for the degree. Students who obtain a teaching assistantship should make sure that it does not interfere with completion of the M.S. degree requirements within the one year time frame allotted.

M.S. Program: Fifth Year Curriculum

1. MAT SCI 201A-B-C
2. Physics 295 (M.S. Thesis Research)
3. Two restricted electives, to be chosen from Physics 201, 211A-B; MAT SCI 227, 240A-B-C; ECE 231, 233: other courses allowed by petition

The Graduate Program

The Department of Physics offers curricula leading to the following degrees:

- M.S., Physics
- C.Phil., Physics
- Ph.D., Physics
- Ph.D., Physics (Biophysics)
- Ph.D., Physics Specialization in Computational Science

Biophysics students will receive their M.S. and C.Phil. degrees in physics. Only their Ph.D. will be in physics (biophysics).

Entering graduate students are required to have a sound knowledge of undergraduate
mechanics, electricity and magnetism; to have had senior courses or their equivalent in atomic and quantum physics, nuclear physics, and thermodynamics; and to have taken upper-division laboratory work. An introductory course in solid-state physics is desirable.

Requirements for the master of science degree can be met according to Plan II (comprehensive examination). (See “Graduate Studies: The Master’s Degree.”) The comprehensive examination is identical to the first-year departmental examination for Ph.D. students. A list of acceptable courses is available in the Department of Physics Graduate Student Affairs office. There is no foreign language requirement.

Doctoral Degree Program

The department has developed a flexible Ph.D. program which provides a broad, advanced education in physics while at the same time giving students opportunity for emphasizing their special interests. This program consists of graduate courses, apprenticeship in research, teaching experience, and thesis research.

Entering students are assigned a faculty advisor to guide them in their program. Many students spend their first year as teaching assistants or fellows and begin apprentice research in their second year. When a student’s association with a research area and research supervisor is well established, a faculty research progress committee is formed with the responsibility of conducting an annual review of progress and, at the appropriate time, initiating the formation of a doctoral committee. After three years of graduate study, or earlier, students complete the departmental examinations and begin thesis research. Students specializing in biophysics make up definite courses is available in the Department of Physics Graduate Student Affairs office. There is no foreign language requirement.

Entrance Testing

An entrance test covering undergraduate physics is given to entering students during the first week of orientation to give better guidance to students in their graduate program. The results are not entered in the student’s file. Entering students are encouraged, but not obliged, to bring the results to the first meeting with their academic advisor. Entering students may elect to take the departmental examination instead of taking the entrance test.

Requirements for the Ph.D.

Students are required to pass a departmental examination, advanced graduate courses, a qualifying examination, teaching requirement and a final defense of the thesis as described below.

1. **DEPARTMENTAL WRITTEN EXAMINATION**

Physics students are required to take the departmental written examination after completing one year of graduate work at UCSD. The examination is on the level of material usually covered in upper-division courses and the graduate courses listed below:

Fall

Physics 200A (Theoretical Mechanics)
Physics 201 (Mathematical Physics)
Physics 212A (Quantum Mechanics)

Winter

Physics 200B (Theoretical Mechanics)
Physics 203A (Adv. Classical Electrodynamics)
Physics 212B (Quantum Mechanics)

Spring

Physics 203B (Adv. Classical Electrodynamics)
Physics 210A (Equilibrium Statistical Mechanics)
Physics 212C (Quantum Mechanics)

The examination is offered twice a year, at the beginning of the fall and spring quarters, and lasts two days, four hours per day. The examination may be repeated once, the next time it is offered.

Biophysics Ph.D. students are required to take the departmental written examination within two years of graduate work at UCSD; not later than the beginning of the third year.

The University requires an annual evaluation of each graduate student’s progress towards Ph.D. candidacy and thesis defense. To this end, a Research Progress Committee (RPC) is formed for every student during the spring quarter of the second year of graduate study. Students must demonstrate proficiency in giving technical talks through an oral presentation to the RPC.

2. **ADVANCED GRADUATE COURSES**

Physics students are required to take five advanced graduate courses (with a grade of C or better) from at least three of the groups listed below no later than the end of the third year of graduate work. A 3.0 in four of the five courses is required. (In lieu of the course requirement, students may petition to take an oral examination covering three areas of physics.)

- **Group 1**: Physics 218A-B-C (Plasma); 235 (Nonlin. Plas. Th.)
- **Group 3**: Physics 214 (Elem. Part.); 215A-B-C (Part. & Fields); 217 (Renorm. Field Th.); 229 (App. Quant. Mech.)
- **Group 4**: Physics 220 (Group Th.); 221A, 221B (Nonlinear Dyn.); Physics 241 and 242 (Comp. Phys); Mathematics 210A-B, 210C (Mathematics Physics); Mathematics 259A-B-C (Geom. Physics)
- **Group 5**: Physics 225A-B (Relativ.); 271 (Bio. Neurons/Net); 272 (Bio. Molecules)
- **Group 6**: Physics 223 (Stel. Str.); 224 (Intrstel. Med.); 226 (Gal. & Gal. Dyn.); 227 (Cosmology), 228 (HE Astro. & Comp. Obj.)

Students enrolled in the Biophysics Ph.D. program select five courses from biology, biochemistry, chemistry, or physics in consultation with their advisor. At least three courses must be graduate courses. For more information, see the Biophysics section, below.

3. **PH.D. CANDIDACY EXAMINATION**

In order to be advanced to candidacy, students must have met the departmental requirements and obtained a faculty research supervisor. At the time of application for advancement to candidacy, a doctoral committee responsible for the remainder of the student’s graduate program is appointed by the Graduate Council. The committee conducts the Ph.D. candidacy examination during which students must demonstrate the ability to engage in thesis research. This involves the presentation of a plan for the thesis research project. The committee may ask questions directly or indirectly related to the project and questions on general physics which it determines to be relevant. Upon successful completion of this examination, students are advanced to candidacy and are awarded the Candidate of Philosophy degree.

4. **INSTRUCTION IN PHYSICS TEACHING**

All graduate students are required to participate in the physics undergraduate teaching pro-
The specialization in biophysics requires that students complete many of the same requirements as for the physics Ph.D. Students must pass a departmental written examination, advanced graduate courses, Ph.D. candidacy examination, teaching requirement, and a final defense of the thesis. However, the requirements for the written examination and advanced courses differ slightly from those of the Ph.D. degree.

Biophysics Ph.D. students are required to take the departmental written examination within two years of beginning graduate studies at UCSD, and no later than the beginning of the third year. Biophysics students are required to pass five courses (with a grade of C or better) from biology, chemistry, biochemistry, or physics no later than the end of the third year of graduate study. The course plan shall be determined in consultation with the advisor. At least three of these courses must be graduate courses. A 3.0 in four of the five courses is required. (In lieu of the course requirement, students may petition to take an oral examination covering three areas of physics.)

Ph.D. in Physics with Specialization in Computational Science

See "Computational Science in Mathematics & Engineering (CSME)" for more information.

The UCSD campus is offering a new comprehensive Ph.D. specialization in computational science that will be available to doctoral candidates in participating academic departments at UCSD.

This Ph.D. specialization is designed to allow students to obtain training in their chosen field of science, mathematics, or engineering with additional training in computational science integrated into their graduate studies. Prospective students must apply and be admitted into the Ph.D. program in physics, and then be admitted to the CSME program.

Areas of research in the Department of Physics will include computational astrophysics and cosmology, studying star formation and the large scale structure of the universe, computational condensed matter physics studying nanodevices, computational quantum field theory studying the four basic forces of nature, computational biological physics of protein folding and other biologically important complex structures, computational nonlinear dynamics, and computational plasma physics. Each faculty member works with graduate students on the listed research topics that will greatly benefit from the new program.

The specialization in computational science requires that students complete all home requirements for the physics Ph.D. degree. Students are required to pass the departmental written examination, advanced course requirements, Ph.D. candidacy examination, teaching requirement, and a final defense of the thesis. The qualifying and elective courses for the CSME program (e.g., Physics 241-244) can be used as part of the advanced course requirement, which is the same as for the physics Ph.D.

REQUIREMENTS FOR THE PH.D. IN PHYSICS WITH SPECIALIZATION IN COMPUTATIONAL SCIENCE:

Qualifying Requirements: In addition to the home department qualifying exam requirements, Ph.D. students must take the final exams in three qualifying exam courses from the list below. Courses taken to satisfy the qualifying requirements will not count toward the elective requirements.

1. Math. 275 or MAE 2908 (Numerical PDEs)
2. Phys. 244 or CSE 260 (Parallel Computing)
3. One course to be selected from List A

List A: CSME Qualifying Exam Courses

1. Phys. 243 (Stochastic Methods)
2. Math. 270A, B, or C (Numerical Analysis)
3. Math. 272A, B, or C (Advanced Numerical PDEs)
4. MAE 223 (Computational Fluid Dynamics)
5. MAE 232A or B (Computational Solid Mechanics)
6. MAE 280A or B (Linear Systems Theory)
7. To be determined by Executive Committee

Elective Requirements: To encourage Ph.D. students to both broaden themselves in an area of science or engineering as well as to obtain more specialized training in specific areas of computational science, students will be required to take and pass three elective courses from the following approved List B (four units per course). The Executive Committee may approve the use of
courses not appearing on the following list on a case-by-case basis. Courses taken to satisfy the elective requirements will not count toward the qualifying requirements.

List B: Relevant Elective Graduate Courses in Mathematics, Science, and Engineering
1. Math. 270ABC (Numerical Analysis; not permitted for mathematics students)
2. Math. 271ABC (Optimization)
3. Math. 272ABC (Advanced Numerical PDEs)
4. Math. 273ABC (Computational Mathematics Project)
5. Phys. 141/241 (Computational Physics I)
6. Phys. 142/242 (Computational Physics II)
7. Phys. 221AB (Nonlinear Dynamics)
8. Chem. 215 (Modeling Biological Macromolecules)
9. BGN 260 (Neuromyology)
10. To be determined by Executive Committee

Program Policies: The following is a list of policies for the Ph.D. specialization with regard to proficiency, qualifying, and elective requirements:
1. Proficiency in computer engineering must be demonstrated by the end of the first year.
2. The qualifying exams must be passed by the end of the second year, or, on petition, by end of the third year.
3. The qualifying exams can be attempted repeatedly but no more than once per quarter per subject.
4. The qualifying exams in the home department and the CSME qualifying exams must all be passed before the student is permitted to take the candidacy (senate) exam.
5. Two electives outside the home department must be taken.
6. The two electives can be taken at any time before defending the thesis.
7. One of the electives may be taken Pass/Fail; the other must be taken for a letter grade.

Recommended schedule for the Ph.D. in physics with specialization in computational science:

YEAR 1: PHYSICS CORE COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys. 200A</td>
<td>1</td>
</tr>
<tr>
<td>Phys. 201A</td>
<td>1</td>
</tr>
<tr>
<td>Phys. 212A</td>
<td>1</td>
</tr>
<tr>
<td>Phys. 208</td>
<td>1</td>
</tr>
<tr>
<td>Phys. 209</td>
<td>1</td>
</tr>
<tr>
<td>Phys. 210A</td>
<td>1</td>
</tr>
<tr>
<td>Phys. 212B</td>
<td>1</td>
</tr>
</tbody>
</table>

YEAR 2: CSME QUALIFYING COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 275</td>
<td>2</td>
</tr>
<tr>
<td>Non-Phys. Elective</td>
<td>2</td>
</tr>
<tr>
<td>Phys. 243</td>
<td>2</td>
</tr>
<tr>
<td>Adv. Phys. Course</td>
<td>2</td>
</tr>
<tr>
<td>Phys. 244</td>
<td>2</td>
</tr>
</tbody>
</table>

YEAR 3: CSME ELECTIVE COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Phys. Elective</td>
<td>1</td>
</tr>
<tr>
<td>Phys. 241</td>
<td>1</td>
</tr>
<tr>
<td>Phys. 242</td>
<td>1</td>
</tr>
</tbody>
</table>

Departmental Colloquium
The department offers a weekly colloquium on topics of current interest in physics and on departmental research programs. Students are expected to register and attend the colloquium.

Supplementary Course Work and Seminars
The department offers regular seminars in several areas of current interest. Students are strongly urged to enroll for credit in seminars related to their research interests and, when appropriate, to enroll in advanced graduate courses beyond the departmental requirement. To help beginning students choose a research area and a research supervisor, the department offers a special seminar (Physics 261) that surveys physics research at UCSD.

Course Credit by Examination
Students have an option of obtaining credit for a physics graduate course by taking the final examination without participating in any class exercises. They must, however, officially register for the course and notify the instructor and the Department of Physics graduate student affairs office of their intention no later than the first week of the course.

Courses
For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

Lower-Division
The Physics 1 sequence is primarily intended for biology.

The Physics 2 sequence is intended for physical science and engineering majors and those biological science majors with strong mathematical aptitude.

The Physics 4 sequence is intended for all physics majors and for students with an interest in physics. This five-quarter sequence covers the same topics as the Physics 2 sequence, but it covers these topics more slowly and in more depth. The Physics 4 sequence provides a solid foundation for the upper-division courses required for the physics major.

Note: Since some of the material is duplicated in the Physics 1, 2 and 4 sequences, credit cannot be obtained for both. Please check with the Physics Student Affairs Office when switching sequences. (Example: Physics 1A followed by Physics 2A, no credit for Physics 2A.)

Physics 5, 6, 7, 8, 9, 10, 11, and 12 are intended for non-science majors. Physics 5, 6, 7, 8, 9, 10, and 12 do not use calculus while Physics 11 uses some calculus.

1A. Mechanics (3)
First quarter of a three-quarter introductory physics course, geared toward life-science majors. Equilibrium and motion of particles in Newtonian mechanics, examples from astronomy, biology and sports, oscillations and waves, vibrating strings and sound. Prerequisites: Mathematics 10A or 20A, prior or concurrent enrollment in Mathematics 10B or 20B, concurrent enrollment in Physics 1AL laboratory. (FWS)

1AL. Mechanics Laboratory (2)
Physics laboratory course to accompany Physics 1A. Experiments in mechanics. Prerequisite: concurrent enrollment in Physics 1A. (FWS)

1B. Electricity and Magnetism (3)
Second quarter of a three-quarter introductory physics course geared toward life-science majors. Electric fields, magnetic fields, DC and AC circuitry. Prerequisites: Physics 1A, 1AL, and prior or concurrent enrollment in Mathematics 10C-D or 20C. Concurrent enrollment in Physics 1BL. (FWS)

1BL. Electricity and Magnetism Laboratory (2)
Physics laboratory course to accompany Physics 1B. Experiments in electricity and magnetism. Course materials fee is required. Prerequisite: concurrent enrollment in Physics 1B. (FWS)

1C. Waves, Optics, and Modern Physics (3)
Third quarter of a three-quarter introductory physics course geared toward life-science majors. Behavior of systems under combined thermal and electric forces, the interaction of light with matter as illustrated through optics and quantum mechanics. Examples from biology and instrumentation. (First offered winter 2005) Prerequisites: Physics 1B, 1BL, Mathematics 10C or 10D or 20C. Concurrent enrollment in Physics 1CL. (FWS)

1CL. Waves, Optics, and Modern Physics Laboratory (2)
Physics laboratory course to accompany Physics 1C. Experiments in waves, optics, and modern physics. Course materials fee is required. First offered in winter 2005. Prerequisite: concurrent enrollment in Physics 1C. (FWS)

2A. Physics—Mechanics (4)
A calculus-based science-engineering general physics course covering vectors, motion in one and two dimensions, Newton’s first and second laws, work and energy, conservation of energy, linear momentum, collisions, rotational kinematics, rotational dynamics, equilibrium of rigid bodies, oscillations, gravitation. Prerequisites: Mathematics 20A, and concurrent enrollment in Mathematics 20B. (FWS)
2B. Physics–Electricity and Magnetism (4)
Continuation of Physics 2A covering charge and matter, the electric field, Gauss’s law, electric potential, capacitors and dielectrics, current and resistance, electromagnetic force and circuits, the magnetic field, Ampère’s law, Faraday’s law, inductance, electromagnetic oscillations, alternating currents and Maxwell’s equations. Prerequisites: Physics 2A, Mathematics 20B, and concurrent enrollment in Mathematics 20C. (F, W, S)

2BL. Physics Laboratory–Mechanics and Electrostatics (2)
One hour lecture and three hours’ laboratory. Experiments include gravitational force, linear and rotational motion, conservation of energy and momentum, collisions, oscillations and springs, gyroscopes. Experiments on electrostatics involve charge, electric field, potential, and capacitance. Data reduction and error analysis are required for written laboratory reports. Prerequisite: concurrent enrollment in Physics 2B or 4C. (F, W, S) Course materials fee is required.

2C. Physics–Fluids, Waves, Thermodynamics, and Optics (4)
Continuation of Physics 2B covering fluid mechanics, waves in elastic media, sound waves, temperature, heat and the first law of thermodynamics, kinetic theory of gases, entropy and the second law of thermodynamics. Maxwell’s equations, electromagnetic waves, geometric optics, interference and diffraction. Prerequisites: Physics 2B, Mathematics 20C, and concurrent enrollment in Mathematics 20D. (F, W, S)

2CL. Physics Laboratory–Electricity and Magnetism, Waves, and Optics (2)
One hour lecture and three hours’ laboratory. Experiments on refraction, interference/diffraction using lasers and microwaves; lenses and the eye; acoustics; oscilloscope and L-R-C circuits; oscillations, resonance and damping, measurement of magnetic fields; and the mechanical equivalence of heat. Prerequisites: prior or concurrent enrollment in Physics 1C, 2C, or 4D. (F, W, S) Course materials fee is required.

2D. Physics–Relativity and Quantum Physics (4)
A modern physics course covering atomic view of matter, electricity and radiation, atomic models of Rutherford and Bohr; relativity; X-rays, wave and particle duality; Schrödinger’s equation and simple applications; spin; structure of atoms and molecules; selected topics from solid state, nuclear, and elementary particle physics. Prerequisites: Physics 4D, Mathematics 20E, and concurrent enrollment in Mathematics 20D. (S)

5. The Universe (4)
Introduction to astronomy. Topics include the earth’s place in the universe; the atom and light; the birth, life, and death of stars; the Milky Way galaxy; normal and active galaxies; and cosmology. Prerequisites: Physics 5 or 7, and SIO 10 and 30 form a three-quarter sequence. Students may not receive credit for both Physics 5 and Physics 7. Restricted to P/NP grading option if taken after Physics 1A, 2A, or 4A. (F, S)

6. Physics of Space Science and Exploration (4)
Descriptive introduction to basic physics concepts relevant to space science and exploration. Topics include gravity; orbits, weightlessness; and Kepler’s laws; the Earth’s physical environment (including its atmosphere, its magnetic field, and radiation from the sun); and light as an electromagnetic wave. These topics form the basis for an introduction to the space program and discussion of the scientific reasons for performing experiments or observations in space. Restricted to P/NP grading option if taken after Physics 1A, 2A, or 4A. (W)

7. Introductory Astronomy (4)
Introduction to astronomy and astrophysics. Topics same as Physics 5. This course uses basic pre-calculus level mathematics (algebra, proportions, logs, similar triangles). Physics 5 or 7 and Earth Sciences 10 and 30 form a three-quarter sequence. Students may not receive credit for both Physics 5 and Physics 7. Restricted to P/NP grading option if taken after Physics 1A, 2A, or 4A. (W)

8. Physics of Everyday Life (4)
Examines phenomena and technology encountered in daily life from a physics perspective. Topics include waves, musical instruments, telecommunication, sports, appliances, transportation, computers, and energy sources. Physics concepts will be introduced and discussed as needed utilizing some algebra. No prior physics knowledge is required. Restricted to P/NP grading option if taken after Physics 1A, 2A, or 4A. (S)

9. The Solar System (4)
A non-mathematical exploration of our Solar System and other planetary systems for non-science majors. The sun, terrestrial and giant planets, satellites, asteroids, comets and meteors. The formation of planetary systems, space exploration, the development and search for life. (F)

10. Concepts in Physics (4)
This is a one-quarter general physics course for non-science majors. Topics covered are motion, energy, heat, waves, electric current, radiation, light, atoms and molecules, nuclear fission and fusion. This course emphasizes concepts with minimal mathematical formulation. Prerequisite: college algebra or equivalent. Restricted to P/NP grading option if taken after Physics 1A, 2A, or 4A. (W)

11. Survey of Physics (4)
Survey of physics for non-science majors with strong mathematical background, including calculus. Physics 11 describes the laws of motion, gravity, energy, momentum, and relativity. A laboratory component consists of two experiments with gravity and conservation principles. Prerequisites: Mathematics 10A or 20A and concurrent enrollment in Math 10B or 20B. (F)

12. Energy and the Environment (4)
A course covering energy fundamentals, energy use in an industrial society and the impact of large-scale energy consumption. It addresses topics on fossil fuel, heat engines, solar energy, nuclear energy, energy conservation, transportation, air pollution and global effects. Concepts and quantitative analysis. (S)

87. Freshman Seminar in Physics and Astrophysics (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

90. Undergraduate Seminar–Physics Today (1)
Undergraduate seminars organized around the research interests of various faculty members. Prerequisite: none. (F, W, S)

91. Undergraduate Seminar on Physics (1)
Undergraduate seminars organized around the research interests of various faculty members. (F, W, S)

99. Independent Study (2)
Independent reading or research on a topic by special arrangement with a faculty member. (P/NP grading only.) Prerequisites: lower-division standing, completion of thirty units at UCSD undergraduate study, a minimum UCSD GPA of 3.0, and a completed and approved "Special Studies" form. Department stamp required.
100A. Electromagnetism (4)
Coulomb's law, electric fields, electrostatics; conductors and dielectrics; steady currents, elements of circuit theory. Four hours lecture. Prerequisites: Physics 2C or 2D, Mathematics 20D, 20E, 20F. (Concurrent enrollment in Math. 20F permitted.) (F)

100B. Electromagnetism (4)
Magnetic fields and magnetostatics, magnetic materials, induction, AC circuits, displacement currents; development of Maxwell's equations. Four hours lecture. Prerequisite: Physics 100A. (W)

100C. Electromagnetism (4)
Electromagnetic waves, radiation theory; application to optics; motion of charged particles in electromagnetic fields; relation of electromagnetism to relativistic concepts. Four hours lecture. Prerequisite: Physics 100B. (S)

105A. Mathematical and Computational Physics (4)
A combined analytic and computational-numerical approach to the solution of common applied mathematics problems in physics and engineering. Topics: Fourier series and integrals, special functions, initial and boundary value problems, Green's functions; heat, Laplace and wave equations. Prerequisites: Mathematics 20E and 20F and Physics 4E or 2D. (F)

105B. Mathematical and Computational Physics (4)
A continuation of Physics 105A covering selected advanced topics in applied mathematical and numerical methods. Topics include statistics, diffusion and Monte-Carlo simulations; Laplace equation and numerical methods for nonseparable geometries; waves in inhomogeneous media, WKBJ analysis; nonlinear systems and chaos. Prerequisite: Physics 105A. (W)

110A. Mechanics (4)
Phase flows, bifurcations, linear oscillators, calculus of variations, Lagrangian dynamics, conservation laws, central forces, systems of particles, collisions, coupled oscillations. Four-hour lecture. Prerequisites: Physics 2C or 4D, Mathematics 200D, 20C, 20F (concurrent enrollment in Mathematics 20F permitted). (F)

110B. Mechanics (4)
Nonlinear reference systems, dynamics of rigid bodies, Hamilton's equations, Liouville's theorem, chaos, continuum mechanics, special relativity. Prerequisites: Physics 110A and Mathematics 20E. (W)

SIO 111/Phys. 111 Introduction to Ocean Waves and Tides (4)
This course will cover a broad range of physical oceanography topics, including linear dynamics of surface gravity waves, dispersion relations, spectral descriptions, group velocity, shoaling waves, ray theory, edge waves, Coriolis force, the tide-generating force, LaPlace's tide equations, Kelvin waves. Prerequisites: Math. 20A-E and Physics 2A-C or equivalent. (W)

120A-8. Physical Measurements (4-4)
A laboratory-lecture course in physical measurements with an emphasis on electronic methods. Topics include circuit theory, special circuits, Fourier analysis, noise, transmission lines, transistor theory, amplifiers, feedback, operational amplifiers, oscillators, pulse circuits, digital electronics. Three hours lecture, four hours laboratory. Prerequisites: Physics 2CL and 2DL, Physics 100A. (S,F) Course materials fee is required.

121. Experimental Techniques (4)
A laboratory-lecture courses providing content and experiences useful in modern physics laboratories. Topics include: mechanical design and machining; mechanics of materials; thermal design/control; vacuum and cryogenic technologies; optical raytracing and design; practical electronics; computer interface to scientific equipment. (W)

129/229. Applied Quantum Mechanics (4)
Fundamental Quantum Theory: Schrödinger equation and probabilistic interpretation, illustrated by electron in quantum box. Rectilinear particle motion: bound states, binding, scattering and tunneling, device dynamics. Harmonic oscillators; phonons and photons in cavity. Perturbation theory. Angular momentum and spin: particle statistics. Graduate students will have longer homework assignments and an additional take-home exam. Prerequisites: (Math. 20D and 20F) or (Math. 102 and 110) or MAE 105 or Physics 105A. (W)

130A. Quantum Physics (4)
Phenomena which led to the development of quantum mechanics. Wave mechanics; the Schrödinger equation, interpretation of the wave function, the uncertainty principle, piece-wise constant potentials, simple harmonic oscillator, central field and the hydrogen atom. Observables and measurements. Four hours lecture. Prerequisites: Physics 2C or 2D, 4E, or equivalent. (S)

130B. Quantum Physics (4)
Matrix mechanics, angular momentum and spin, Stern-Gerlach experiments, dynamics of two-state systems, approximation methods, the complete hydrogen spectrum, identical particles. Four hours lecture. Prerequisite: Physics 130A. (F)

130C. Quantum Physics (4)
Scattering theory, symmetry and conservation laws, systems of interacting particles, interaction of electromagnetic radiation with matter, Fermi golden rule, the relativistic electron. Prerequisites: Physics 100C or equivalent, 130B. (W)

133/219. Condensed Matter/Materials Science Laboratory (4)
A project-oriented laboratory course utilizing state-of-the-art experimental techniques in materials science. The course prepares students for research in a modern condensed matter-materials science laboratory. Under supervision, the students develop their own experimental ideas after investigating current research literature. With the use of sophisticated state-of-the-art instrumentation students conduct research, write a research paper, and make verbal presentations. Prerequisites: Physics 2CL and 2DL for undergraduates; Physics 152A or Physics 211A for graduate students. (S) Course materials fee is required.

137. String Theory (4)
Quantum mechanics and gravity. Electromagnetism from gravity and extra dimensions. Unification of forces. Quantum black holes. Properties of strings and branes. Prerequisites: Physics 100A and 110A or consent of instructor; Physics 130A may be taken concurrently. (S)

140A. Statistical and Thermal Physics (4)
Integrated treatment of thermodynamics and statistical mechanics; statistical treatment of entropy, review of elementary probability theory, canonical distributions, partition function, free energy, phase transitions, introduction to ideal quantum gases. Prerequisites: Physics 130A, or consent of instructor. (F)

140B. Statistical and Thermal Physics (4)
Applications of the theory of ideal quantum gases in condensed matter physics, nuclear physics and astrophysics; advanced thermodynamics, the third law, chemical equilibrium, low temperature physics; kinetic theory and transport in non-equilibrium systems; introduction to critical phenomena including mean field theory. Prerequisites: Physics 140A, or consent of instructor. (W)

141. Computational Physics I: Probabilistic Models and Simulations (4)
Project-based computational physics laboratory course with student's choice of Fortran/90/95, or C/C++. Applications from materials science to the structure of the early universe are chosen from molecular dynamics, classical and quantum Monte Carlo methods, physical Langevin/Fokker-Planck processes, and other modern topics. Prerequisite: upper-division standing or consent of instructor. (W)

142. Computational Physics II: PDE and Matrix Models (4)
Project-based computational physics laboratory course for modern physics and engineering problems with student's choice of Fortran/90/95, or C/C++. Applications of finite element methods or elements chosen from quantum mechanics and nanodevices, fluid dynamics, electromagnetism, materials physics, and other modern topics. Prerequisite: upper-division standing or consent of instructor. (S)

151. Elementary Plasma Physics (4)
Particle motions, plasmas as fluids, waves, diffusion, equilibrium and stability, nonlinear effects, controlled fusion. Three hours lecture. Prerequisites: Math. 20D or consent of instructor. Physics 100B (L,C) or ECE 107 and Physics 110A are suggested. Cross listed with MAE 117A. (S)

152A. Condensed Matter Physics (4)
Physics of the solid state. Binding mechanisms, crystal structures and symmetries, diffraction, reciprocal space, phonons, free and nearly free electron models, energy bands, solid state thermodynamics, kinetic theory and transport, semiconductors. Prerequisites: Physics 130A or Chemistry 133, and Physics 140A. (W)

152B. Electronic Materials (4)

154. Elementary Particle Physics (4)
The constituents of matter (quarks and leptons) and their interactions (strong, electromagnetic, and weak). Symmetries and conservation laws. Fundamental processes involving quarks and leptons. Unification of weak and electromagnetic interactions. Particle-astrophysics and the Big Bang. Prerequisites: Physics 130B.

155. Nonlinear Dynamics (4)
Qualitative aspects of Hamiltonian and dissipative dynamical systems: stability of orbits, integrability of Hamiltonian systems, chaos and nonperiodic motion, transition to chaos. Examples to be drawn from mechanics, fluid mechanics, and related physical systems. Numerical work and graphical display and interpretation will be emphasized. Three hours lecture. Prerequisites: Physics 100B and 110B. (S)
160. Stellar Astrophysics (4)
Introduction to stellar astrophysics: observational properties of stars, solar physics, radiation and energy transport in stars, stellar spectroscopy, nuclear processes in stars, stellar structure and evolution, degenerate matter and compact stellar objects, supernovae and nucleosynthesis. Physics 160, 161, and 162 may be taken as a three-quarter sequence for students interested in pursuing graduate study in astrophysics or individually as topics of interest. Prerequisite: Physics 2A, 2B, 2C, 2D or 4A, 4B, 4C, 4D, 4E. (F)

161. Black Holes and The Milky Way Galaxy (4)
The structure and content of the Milky Way galaxy and the physics of black holes. Topics will be selected from: general relativity, theory and observation of black holes, galactic x-ray sources, galactic structure, physical processes in the interstellar medium, star formation. Physics 160, 161, and 162 may be taken as a three-quarter sequence for students interested in pursuing graduate study in astrophysics or individually as topics of interest. Prerequisite: Physics 2A, 2B, 2C, 2D or 4A, 4B, 4C, 4D, 4E. (W)

162. Galaxies and Cosmology (4)
The structure and properties of galaxies, galaxy dynamics and dark matter, the expanding universe, plus some of the following topics: the big bang, early universe, galaxy formation and evolution, large scale structure, active galaxies and quasars. Physics 160, 161, and 162 may be taken as a three-quarter sequence for students interested in pursuing graduate study in astrophysics or individually as topics of interest. Prerequisite: Physics 2A, 2B, 2C, 2D or 4A, 4B, 4C, 4D, 4E. (S)

163. Exploring the Solar System (4)
Topics will include: the early solar system, and planetary formation; an introduction to the Sun and planets; the solar wind and its interaction with planets; spacecraft instruments and observations; the search for life in the solar system; and the search for planets outside our solar system. Prerequisite: Physics 2A-B or Physics 4A-4C. (F)

171/271. Biophysics of Neurons and Networks (4-4)
Fundamental limits to measurements on nervous systems, the biophysics of excitable membranes and neurons, and the fundamentals of recurrent neuronal networks. The emphasis is on information processing by the nervous system through physical reasoning and mathematical analysis. Three hours lecture. The graduate version, Physics 271, will include a report at the level of a research proposal. Prerequisites: Physics 100A and 110A, BILD 1, Chemistry 6C and Physics 140A, for graduate students, consent of instructor. The graduate version, Physics 271, will include a report at the level of a research proposal. (F)

172/272. Biophysics of Molecules (4-4)
Physical concepts and techniques used to study the structure and function of biological molecules, the thermodynamics and kinetics of biological activity, and physical descriptions of biological processes. Examples from enzyme action, protein folding, photobiology, and molecular motors. Three hours lecture. Prerequisites: Physics 100A and 110A, BILD 1, Chemistry 6C and Physics 130A; and graduate students, consent of instructor. The graduate version, Physics 272, will include a report at the level of a research proposal. (W)

173. Modern Physics Laboratory: Biological and Quantum Physics (4)
A selection of experiments in contemporary physics and biophysics. Students select among pulsed NMR, Mossbauer, Zeeman effect, light scattering, holography, optical trapping, voltage clamp and genetic transcription of ion channels in oocytes, fluorescent imaging, and flight control in flies. Prerequisites: Physics 120A, BILD 1, and Chemistry 6BL. (S)

180/280. Teaching and Learning Physics (4)
How people learn and understand key concepts in physics. Readings in physics, physics education research, and cognitive science. Field work teaching and evaluating pre-college and college students. Useful for students interested in teaching and learning physical sciences. Prerequisites: Physics 1, 2, or 4 series, or consent of instructor.

191. Undergraduate Seminar on Physics (1)
Undergraduate seminars organized around the research interests of various faculty members. Prerequisite: Physics 2A or 4A series. (F)

192. Senior Seminar in Physics
The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in Physics (at the upper-division level). Senior Seminars may be offered in all campus departments. Topics will vary from quarter to quarter. Senior Seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to Seniors.

195. Physics Instruction (2-4)
Students will be responsible for and teach a class section of a lower-division physics course. They will also attend a weekly meeting on teaching methods and materials conducted by the professor who supervises their teaching. (P/NP grades only.) Prerequisite: consent of instructor. (F/W/S)

197. Physics Internship (4)
An enrichment program which provides work experience with industry, government offices, etc., under the supervision of a faculty member and industrial supervisor. Prerequisite: Completion of 90 units with 2.5 GPA and consent of faculty advisor.

198. Directed Group Study (2 or 4)
Directed group study on a topic or in a field not included in the regular departmental curriculum. (P/NP grades only.) Prerequisites: consent of instructor and departmental chair. (F/W/S)

199. Research for Undergraduates (2 or 4)
Independent reading or research on a problem by special arrangement with a faculty member. (P/NP grades only.) Prerequisites: consent of instructor and departmental chair. (F/W/S)

199H. Honors Thesis Research for Undergraduates (2-4)
Honors thesis research for seniors participating in the Honors Program. Research is conducted under the supervision of a physics faculty member. Prerequisite: admission to the Honors Program in physics. (F/W/S)

GRADUATE

200A. Theoretical Mechanics (4)
Lagrange’s equations and Hamilton’s principle; symmetry and constants of the motion. Applications to: charged particle motion; central forces and scattering theory; small oscillations; anharmonic oscillations; rigid body motion; continuum mechanics. Prerequisite: Physics 110B or equivalent. (F)

200B. Theoretical Mechanics (4)
Hamilton’s equations, canonical transformations; Hamilton-Jacobi theory; action-angle variables and adiabatic invariants; introduction to canonical perturbation theory, nonintegrable systems and chaos; Liouville equation; ergodicity and mixing; entropy; statistical ensembles. Prerequisite: Physics 200A. (W)

201. Mathematical Physics (5)
An introduction to mathematical methods used in theoretical physics. Topics include: a review of complex variable theory, applications of the Cauchy residue theorem, asymptotic series, method of steepest descent, Fourier and Laplace transforms, series solutions for ODE’s and related special functions, Sturm Liouville theory, variational principles, boundary value problems, and Green’s function techniques. (F)

203A. Advanced Classical Electrodynamic (5)
Electrostatics, symmetries of Laplace’s equation and methods for solution; boundary value problems, electrostatics in macroscopic media, magnetostatics, Maxwell’s equations, Green functions for Maxwell’s equations, plane wave solutions, plane waves in macroscopic media. Prerequisite: Physics 100C or equivalent. (W)

203B. Advanced Classical Electrodynamic (4)
Special theory of relativity, covariant formulation of electrodynamics, radiation from current distributions and accelerated charges, multipole radiation fields, waveguides and resonant cavities. Prerequisite: Physics 203A. (S)

210A. Equilibrium Statistical Mechanics (4)
Approach to equilibrium: BBGKY hierarchy; Boltzmann equation; H-theorem. Ensemble theory; thermodynamic potentials. Quantum statistics; Bose condensation. Interacting systems: Cluster expansion; phase transition via mean-field theory; the Ginzburg criterion. Prerequisites: Physics 140A-B, 152A, 200A-B, or equivalent; concurrent enrollment in Physics 212C. (S)

210B. Nonequilibrium Statistical Mechanics (4)
Traps in phenomena; kinetic theory and the Chapman-Enskog method; hydrodynamic theory; nonlinear effects and the mode coupling method. Stochastic processes; Langevin and Focker-Planck equation; fluctuation-dissipation relation; multiplicative processes; dynamic field theory; Martin-Siggia-Rose formalism; dynamical scaling theory. Prerequisite: Physics 210A. (F)

210C. Statistical Field Theory (4)
Phase transition and critical phenomena: Landau-Ginzburg model and statistical field theory; Goldstone modes; breakdown of mean-field theory. Universality; scaling theory; the renormalization group. Epsilon expansion; large-N expansion; the nonlinear-sigma model. Topological defects; duality; the Kosterlitz-Thouless transition. Prerequisite: Physics 210A or consent of instructor. (W)

211A. Solid-State Physics (5)
The first of a two-quarter course in solid-state physics. Covers a range of solid-state phenomena that can be understood within an independent particle description. Topics include: chemical versus band-theoretical description of solids, electronic band structure calculation, lattice dynamics, transport phenomena and electrodynamics in metals, optical properties, semiconductor physics. Prerequisite: Physics 152A or equivalent. (F)
211B. Solid-State Physics (4)
Continuation of 211A. Deals with collective effects in solids arising from interactions between constituents. Topics include electron-electron and electron-phonon interactions, screening, band structure effects, Landau Fermi liquid theory. Magnetism in metals and insulators, superconductivity: occurrence, phenomenology, and microscopic theory. Prerequisites: Physics 210A, 211A. (Offered in alternate years) (W)

212A. Quantum Mechanics (4)
Hilbert space formulation of quantum mechanics and application to simple systems: states and observables, uncertainty relations and measurements, time evolution, and mixed states and density matrix. Symmetries: commuting observables and symmetries, rotation group representations, Clebsh-Gordon coefficients, Wigner-Eckhardt theorem, and discrete symmetries (parity, time reversal, etc.). Prerequisites: Physics 130B or equivalent. (F)

212B. Quantum Mechanics (4)
Time independent perturbation theory: non-degenerate and degenerate cases, Zeeman effect, fine structure, exclusion principle, and many-electron atoms. Time dependent perturbation theory: interaction picture and Dyson series, transition rates. Radiative theory: quantization of EM field, calculation of atomic level transition rates, line width, and spontaneous decay. Prerequisite: Physics 212A. (W)

212C. Quantum Mechanics (4)
Scattering theory: Lippman-Schwinger formalism, Born approximation, partial waves, inelastic processes, and spin dependence. Path integrals: introductions and simple examples, rigid rotator, and Bohm-Aharanov effect. Dirac equation: single particle equation, hydrogen atom, and holes. Prerequisites: Physics 212A-B. (S)

214. Physics of Elementary Particles (4)
Classification of particles using symmetries and invariance principles, quarks and leptons, quantum electrodynamics, weak interactions, e-p interactions, deep inelastic lepton-nucleon scattering, pp collisions, introduction to QCD. Prerequisite: Physics 215A. (W)

215A. Particles and Fields (4)
The first quarter of a three-quarter course on field theory and elementary particle physics. Topics covered include the relation between symmetries and conservation laws, the calculation of cross sections and reaction rates, covariant perturbation theory, and quantum electrodynamics. (F)

215B. Particles and Fields (4)
Continuation of 215A. Gauge theory quantization by the Hubble constant and q. The physics of condensed matter and superfluids, superconductivity, and cosmology. Prerequisite: Physics 215A-B. (offered in alternate years) (S)

217. Field Theory and the Renormalization Group (4)
Application of field theory techniques and the renormalization group method to problems in condensed matter or particle physics. Topics will vary and may include: spin-glass and other systems dominated by quenched disorders; polymer statistics and liquid crystals; bosonization and many-body quantum systems in 1+1 dimensions; quantum chromodynamics and the electroweak model. Prerequisites: Physics 210C, 212C, or consent of instructor. (offered in alternate years) (S)

218A. Plasma Physics (4)
The basic physics of plasmas is discussed for the simple case of an unmagnetized plasma. Topics include: thermal equilibrium statistical properties, fluid and Landau theory of electron and ion plasma waves, velocity space instabilities, quasi-linear theory, fluctuations, scattering or radiation, Fokker-Planck equation. (F)

218B. Plasma Physics (4)
This course deals with magnetized plasma. Topics include: Alfvén-Hartree theory of waves in cold plasma, waves in warm plasma (Bernstein waves, cyclotron damping), MHD equations, MHD waves, low frequency modes, and the adiabatic theory of particle orbits. Prerequisite: Physics 218A. (W)

218C. Plasma Physics (4)
This course deals with the physics of confined plasmas with particular relevance to controlled fusion. Topics include: topology of magnetic fields, confined plasma equilibrium, energy principles, ballooning and kink instabilities, resistive MHD modes (tearing, rippling and pressure-driven), gyrokinetic theory, microinstabilities and anomalous transport, and laser-plasma interactions relevant to inertial fusion. Prerequisite: Physics 218B. (S)

133/219. Condensed Matter/Materials Science Laboratory (4)
A project-oriented laboratory course utilizing state-of-the-art experimental techniques in materials science. The course prepares students for research in a modern condensed matter-materials science laboratory. Prerequisites: Physics 212A-B. (S)

220. Group Theoretical Methods in Physics (4)
Study of group theoretical methods with applications to problems in high energy, atomic, and condensed matter physics. Representation theory, tensor methods, Clebsh-Gordan series. Young tableaux. The course will cover discrete groups, Lie groups and Lie algebras, with emphasis on permutation, orthogonal, and unitary groups. Prerequisite: Physics 212C. (S)

221A. Nonlinear and Nonequilibrium Dynamics of Physical Systems (4)
An introduction to the modern theory of dynamical systems and applications thereof. Topics include maps and flows, bifurcation theory and normal form analysis, chaotic attractors in dissipative systems, Hamiltonian dynamics and the KAM theorem, and time series analysis. Examples from real physical systems will be stressed throughout. Prerequisite: Physics 212C. (S)

221B. Nonlinear and Nonequilibrium Dynamics of Physical Systems (4)
Nonlinear dynamics in spatially extended systems. Material to be covered includes fluid mechanical instabilities, the amplitude equation approach to pattern formation, reaction-diffusion dynamics, integrable systems and solitons, and an introduction to coherent structures and spatio-temporal chaos. Prerequisites: Physics 210B and 221A. (Offered in alternate years) (S)

222A. Elementary Particle Physics (4)
Weak interactions; neutrino physics; CP and CP violation; electroweak gauge theory and symmetry breaking. Design of detectors and experiments; searches for new phenomena. Prerequisites: Physics 214. (W)

223. Stellar Structure and Evolution (4)
Energy generation, flow, hydrostatic equilibrium, equation of state. Dependence of stellar parameters (central surface temperature, radius, luminosity, etc.) on stellar mass and relation to physical constants. Relationships of these parameters to the H-R diagram and stellar evolution. Stellar interiors, opacity sources, radiative and convective energy flow. Nuclear reactions, neutrino processes. Polytropic models. White dwarfs and neutron stars. Prerequisites: Physics 130B or equivalent, Physics 140A-B or equivalent. (S/U grades permitted.) (Offered in alternate years.) (F)

224. Physics of the Interstellar Medium (4)
Gaseous nebulae, molecular clouds, ionized regions, and dust. Low energy processes in neutral and ionized gases. Interaction of matter with radiation, emission and absorption processes, formation of atomic lines. Energy balance, steady state temperatures, and the physics and properties of dust. Masers and molecular line emission. Dynamics and shocks in the interstellar medium. Prerequisites: Physics 130A-B or equivalent, Physics 140A-B or equivalent. (S/U grades permitted.) (Offered in alternate years.) (F)

225A-B. General Relativity (4-4)
This is a two-quarter course on gravitation and the general theory of relativity. The first quarter is intended to be offered every year and may be taken independently of the second quarter. The second quarter will be offered in alternate years. Topics covered in the first quarter include special relativity, differential geometry, the equivalence principle, the Einstein field equations, and experimental and observational tests of gravitation theories. The second quarter will focus on more advanced topics, including gravitational collapse, Schwarzschild and Kerr geometries, black holes, gravitational radiation, cosmology, and quantum gravitation. (225A offered in alternate years.) (F, W)

226. Galaxies and Galactic Dynamics (4)
The structure and dynamics of galaxies. Topics include potential theory, the theory of stellar orbits, self-consistent equilibria of stellar systems, stability and dynamics of stellar systems including relaxation and approach to equilibrium. Collisions between galaxies, galactic evolution, dark matter, and galaxy formation. Prerequisite: consent of instructor. (Offered in alternate years.) (F)

227. Cosmology (4)
An advanced survey of topics in physical cosmology. The Friedmann models and the large-scale structure of the universe, including the observational determination of H, the Hubble constant and q. (The deceleration parameter). Galaxy number counts. A systematic exposition of the physics of the early universe, including vacuum phase transitions; inflation; the generation of net baryon number, fluctuations, topological defects and textures. Primordial nucleosynthesis, both standard and nonstandard models. Growth and decay of adiabatic and isocurvature density fluctuations. Discussion of dark matter candidates and constraints from observation and experiment.
Nucleosomo-chronology and the determination of the age of the universe. Prerequisite: consent of instructor. (Offered in alternate years.)

228. High-Energy Astrophysics and Compact Objects (4)
The physics of compact objects, including the equation of state of dense matter and stellar stability theory. Maximum mass of neutron stars, white dwarfs, and super-massive objects. Black holes and accretion disks. Compact x-ray sources and transient phenomena, including x-ray and γ-ray bursts. The fundamental physics of electromagnetic radiation mechanisms: synchrotron radiation, Compton scattering, thermal and nonthermal bremsstrahlung, pair production, pulsars, particle acceleration models, neutrino production and energy loss mechanisms, supernovae, and neutron star production. Prerequisites: Physics 130A-B-C or equivalent. (Offered in alternate years.)

129/229. Applied Quantum Mechanics (4)
Fundamental Quantum Theory: Schrödinger equation and probabilistic interpretation, illustrated by electron in quantum box. Rectilinear particle motion; bound states, bonding, scattering and tunneling, device dynamics. Harmonic oscillators: phonons and phonons in cavity. Perturbation theory. Angular momentum and spin: particle statistics. Graduate students will have longer homework assignments and an additional take-home final. Prerequisites: (Math. 20D and 20F) or (Math. 102 and 110) or MAE 105 or Phys. 105A. (W)

230. Advanced Solid-State Physics (1-4)
Selection of advanced topics in solid-state physics; material covered may vary from year to year. Examples of topics covered: disordered systems, surface physics, strong-coupling superconductivity, quantum Hall effect, low-dimensional solids, heavy fermion systems, high-temperature superconductivity, solid and liquid helium. Prerequisite: Physics 211B. (Offered in alternate years.)

152B/232. Electronic Materials (4)

235. Nonlinear Plasma Theory (4)
This course deals with nonlinear phenomena in plasmas. Topics include: orbit perturbation theory, stochasticity, Arnold diffusion, nonlinear wave-particle and wave- wave interaction, resonance broadening, basics of fluid and plasma turbulence, closure methods, models of coherent structures. Prerequisite: Physics 218C or consent of instructor. (Offered in alternate years.) (W)

239. Special Topics (1–3)
From time to time a member of the regular faculty or a resident visitor will find it possible to give a self- contained short course on an advanced topic in his or her special area of research. This course is not offered on a regular basis, but it is estimated that it will be given once each academic year. (S/U grades permitted.)

141/241. Computational Physics I: Probabilistic Models and Simulations (4–4)
Project-based computational physics laboratory course with student’s choice of Fortran90/95 or C/C++.

Applications from materials science to the structure of the early universe are chosen from molecular dynamics, classical and quantum Monte Carlo methods, physical Langevin/Fokker-Planck processes, and other modern topics. Graduate students will do advanced projects. Prerequisites: upper-division standing or consent of instructor; graduate standing for 241. (W)

142/242. Computational Physics II: PDE and Matrix Models (4–4)
Project-based computational physics laboratory course for modern physics and engineering problems with student’s choice of Fortran90/95 or C/C++. Applications of finite element PDE models are chosen from quantum mechanics and nanodevices, fluid dynamics, electromagnetism, materials physics, and other modern topics. Graduate students will do advanced projects. Prerequisites: upper-division standing; graduate standing for 242. (S)

243. Stochastic Methods (4)
Introduction to methods of stochastic modeling and simulation. Topics include: random variables; stochastic processes; Markov processes; one-step processes; the Fokker-Planck equation and Brownian motion; the Langevin approach; Monte-Carlo methods; fluctuations and the Boltzmann equation; and stochastic differential equations. (F)

244. Parallel Computing in Science and Engineering (4)
Introduction to basic techniques of parallel computing, the design of parallel algorithms, and their scientific and engineering applications. Topics include: parallel computing platforms; message-passing model and software; design and application of parallel software packages; parallel visualization; parallel applications. (S)

250. Condensed Matter Physics Seminar (0–1)
Discussion of current research in physics of the solid state and of other condensed matter. (S/U grades only.) (F,WS)

251. High-Energy Physics Seminar (0–1)
Discussions of current research in nuclear physics, principally in the field of elementary particles. (S/U grades only.) (F,WS)

252. Plasma Physics Seminar (0–1)
Discussions of recent research in plasma physics. (S/U grades only.) (F,WS)

253. Astrophysics and Space Physics Seminar (0–1)
Discussions of recent research in astrophysics and space physics. (S/U grades only.) (F,WS)

257. High-Energy Physics Special Topics Seminar (0–1)
Discussions of current research in high-energy physics. (S/U grades only.) (F,WS)

258. Astrophysics and Space Physics Special Topics Seminar (0–1)
Discussions of current research in astrophysics and space physics. (S/U grades only.) (F,WS)

260. Physics Colloquium (0–1)
Discussions of recent research in physics directed to the entire physics community. (S/U grades only.) (F,WS)

261. Seminar on Physics Research at UCSD (0–1)
Discussions of current research conducted by faculty members in the Department of Physics. (S/U grades only.) (W,WS)

262. Complex Dynamical Systems Seminar (0–1)
Discussions of recent research in nonlinear and non-equilibrium physics. (S/U grades only.) (F,WS)

265. Neuronal Networks Topics Seminar (1)
Discussion of current research on neuronal systems and dynamics. (F,WS)

266. Recent Topics in Condensed Matter Physics (1–3)
The course is dedicated to recent developments in the area of condensed matter physics through lectures given by graduate students and postdocs. The course teaches practical skills, delivering research lectures, and answering questions in front of a research audience. Prerequisite: physics graduate students in good standing. (F,WS)

171/271. Biophysics of Neurons and Networks (4–4)
Fundamental limits to measurements on nervous systems, the biophysics of excitable membranes and neurons, and the fundamentals of recurrent neuronal networks. The emphasis is on information processing by the nervous system through physical reasoning and mathematical analysis. Three hours lecture. The graduate version, Physics 271, will include a report at the level of a research proposal. Prerequisites: Physics 100A and 110A, BILD 1, Chemistry 6C and Physics 140A, for graduate students; consent of instructor. The graduate version, Physics 271, will include a report at the level of a research proposal. (W)

172/272. Biophysics of Molecules (4–4)
Physical concepts and techniques used to study the structure and function of biological molecules, the thermodynamics and kinetics of biological activity, and physical descriptions of biological processes. Examples from enzyme action, protein folding, photo-biology, and molecular motors. Three hours lecture. Prerequisites: Physics 100A and 110A, BILD 1, Chemistry 6C and Physics 130A and graduate students consent of instructor. The graduate version, Physics 272, will include a report at the level of a research proposal. (S)

180/280. Teaching and Learning Physics (4)
How people learn and understand key concepts in physics. Readings in physics, physics education research, and cognitive science. Field work teaching and evaluating pre-college and college students. Useful for students interested in teaching and learning physical sciences. Undergraduate students are required to read and discuss papers in class. Graduate students are expected to read the papers and prepare an annotated bibliography on the background literature, then lead the in-class discussion on the topics covered in the papers. Prerequisites: Physics 1, 2, or 4 series, or consent of instructor.

295. M.S. Thesis Research in Materials Physics (1–12)
Directed research on M.S. dissertation topic. (F,WS)

297. Special Studies in Physics (1–4)
Studies of special topics in physics under the direction of a faculty member. Prerequisites: consent of instructor and departmental vice chair; education. (S/U grades permitted.) (F,WS)

298. Directed Study in Physics (1–12)
Research studies under the direction of a faculty member. (S/U grades permitted.) (F,WS)

299. Thesis Research in Physics (1–12)
Directed research on dissertation topic. (F,WS)
500. Instruction in Physics Teaching (1-4)
This course, designed for graduate students, includes discussion of teaching, techniques and materials necessary to teach physics courses. One meeting per week with course instructors, one meeting per week in an assigned recitation section, problem session, or laboratory section. Students are required to take a total of two units of Physics 500. (F, W, S)

Assistant Professors
Marisa Abrajano, Ph.D.
Jeejang Baum, Ph.D.
Scott Desposato, Ph.D.
Karen E. Ferree, Ph.D.
Fonna Forman-Barzilai, Ph.D.
Zoltan L. Hajnal, Ph.D.
Thaddeus Kousser, Ph.D.
Gerald Mackie, Ph.D.
Megumi Naoi, Ph.D.
Sebastian M. Saiegh, Ph.D.
Darren Schreiber, Ph.D.
Branislav Slantchev, Ph.D.

Adjunct Professors
Peter F. Cowhey, Ph.D.
Harvey Goldman, Ph.D.
Stephan Haggard, Ph.D.
Daniel Hallin, Ph.D.
Ellis Krauss, Ph.D.
Richard Kronick, Ph.D.
Susan L. Shirk, Ph.D.
Matthew Shugart, Ph.D.

The Major Program
Political science addresses some of the fundamental problems facing human society. Questions concerning world peace, government policies aimed at achieving economic stability and growth, the management of environmental quality, control over political competition, the possibility of using law to affect social and political change, and the gap between the rich and poor in the U.S. and abroad are all on the research agenda of contemporary political scientists. The general purpose of the major is to address these and other issues systematically, and, simultaneously, to raise the broad theoretical questions which can help students relate today’s political debates to those debates about politics which have kept a theoretical tradition alive for over 2,000 years.

Students may major in political science as a general program of study, or they may concentrate in one of six areas: (1) American politics, (2) comparative politics, (3) international relations, (4) political theory, (5) public law, and (6) public policy. All majors in political science must satisfy the following sixteen courses: PS 30 (Political Inquiry), three of the following four lower-division courses (Political Science 10, 11, 12 and 13) and twelve upper-division courses. Moreover, as stated below, students concentrating in one of the fields must satisfy that field’s particular lower- and upper-division requirements.

Requirements for Major in Political Science without an Area of Concentration
1. Three of the four lower-division courses
2. Political Science 30
3. Any twelve upper-division political science courses

Requirements for Major in Political Science with an Area of Concentration
Major in Political Science/American Politics
1. Lower-division required: PS 10 (in addition to two other lower-division courses)
2. Political Science 30
3. Five upper-division American courses:
 a. at least two of which must be from the 100 sequence: 100A-B-C, 100DA, 100E, 100H, 100J, 100K, 100L, 100M, 100N
 b. the additional courses for the American concentration must be chosen from: 102C, 102E-F-G, 102J-K-L, 103A-B-C, 104A-B-C-D, 104F, 104I, 104L-M

Major in Political Science/Comparative Politics
1. Lower-division required: PS 11 (in addition to two other lower-division courses)
2. Political Science 30
3. Five upper-division courses including:
 a. at least one from the following thematic courses: 120K, 122A-B, 123, 123A, 124A, 125, 125A, 126AA-AB, 127, 136A-B-C, 137A, 139A, 150A-B
 b. and at least one each from two of the following three regional areas:
 Asia: 121, 121B, 130B, 130H, 131C, 132C, 133A, 133D, 133DD, 133F-G-H
However, these courses cannot also be used to satisfy the upper-division course requirements for a concentration of that field.

Since course offerings may change from year to year, students are strongly advised to consult the department for the latest listing of courses before preregistration.

Agreements signed between UCSD and several community colleges allow students to apply some community college courses toward lower-division course requirements for the major. Transfer students must, however, take at least one of the lower-division courses (10, 11, 12, 13) in residence at UCSD. Courses taken elsewhere may be credited toward the major. Please check with an undergraduate student affairs advisor for more information on credit for courses taken elsewhere.

Students who pass the Advanced Placement (AP) Tests in American or Comparative Politics may petition to be exempted from taking PS 10 or 11 (respectively). Effective fall 2004, students must pass with a score of 5 to be exempted from taking PS 10 or 11.

At least nine courses in political science must be taken in residence at UCSD. A total maximum of six courses may be taken elsewhere and applied toward the major. This applies to transfer students, students who pass the AP exam(s), as well as students who study abroad on the Education Abroad Program (EAP) or the Opportunities Abroad Program (OAP). Students planning to transfer course work completed elsewhere are urged to consult the undergraduate student affairs advisor.

Double majors who include political science as one of their two majors must fulfill the requirements of both programs. Please consult the undergraduate student affairs advisor for more information.

Students must maintain an overall 2.0 GPA in the major. To be counted toward satisfying the requirements for the major, upper- and lower-division courses must be completed with a C– or better grade. Courses taken to satisfy requirements for the major may not be taken Pass/No Pass with the exception of a maximum of two independent study courses (PS 199).

Honors candidates for departmental honors are required to take PS 191A and B in which they write a senior thesis. To be admitted to the Honors Seminar a student must be of senior standing in the first quarter of the seminar, have a minimum GPA of 3.6 in political science, have completed all lower-division requirements including Political Science 30 and five upper-division courses. Also, students must have an advisor prior to enrolling in the Honors Seminar. These courses may be counted toward the upper-division requirement.

Career Guidance

The premise of our educational philosophy is that the best professional preparation for productive careers which we can provide is one which is broad, theoretical, and only indirectly related to the current job market. Our majors graduate into a wide range of career options.

Many political science majors at UCSD will seek admission to a **law school**. Although law schools make no recommendation concerning the usefulness of any undergraduate major, a B.A. in political science should be seen as a useful complement to a law degree. Students who take courses in American government, policy analysis, and law and politics find that they develop a keen understanding of the role of law in the general political process. This helps students understand the limits and possibilities of the legal process in fostering change or in preserving the status quo. This same curriculum provides a solid foundation for a career in **journalism**. Students with any specific questions regarding law are advised to consult with career services.

Increasingly, political science majors are preparing for careers in **business** or as **policy analysts** in both the public and private sectors. Many of these students pursue advanced degrees in public policy or study for a master’s in business administration. Students interested in this option should look into public policy, American, or comparative politics as an area of concentration. Some political science majors are interested in careers in international organization or **diplomacy**. These students should look into international relations as an area of concentration. In addition, a broad array of courses in comparative politics is essential for anyone interested in a career of international service.

A political science major offers excellent preparation for teaching in the elementary schools. If you are interested in earning a California teaching credential from UCSD, contact the Teacher Education Program for information about the prerequisites and professional preparation requirements. It is recommended that you contact TEP as early as possible in your academic career.
Students interested in majoring or minoring in political science should stop by the Department of Political Science Office, SSB 301, or visit our Web site: http://www.polisci.ucsd.edu.

Study Abroad

Political science majors are encouraged to participate in the UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP). Prior to departure, students should read the “Academic Planning Tips for Study Abroad” section of the political science Web page. Information on EAP/OAP is given in the “Education Abroad Program” section of the UCSD General Catalog. Interested students should contact the Programs Abroad Office in the International Center and visit its Web site at http://programsabroad.ucsd.edu. Financial aid can be used for EAP/OAP study, and special study-abroad scholarships are also available.

Minor in Political Science

For students entering UCSD winter 1998 or later the following guidelines for a political science minor will apply: seven political science courses, not including Political Science 27 and 40, with a minimum of five upper-division. Continuing students may follow the guidelines for a minor of a total of six political science courses, with a minimum of three upper-division. All courses taken for a political science minor must be taken for a letter grade.

Interdisciplinary Minors

The Department of Political Science takes part in two interdisciplinary minors offered at UCSD. The law and society minor offers students the opportunity to examine the role of the legal system in society. Students should note that Law and Society 101 (Contemporary Legal Issues) may be used in fulfilling the twelve upper-division course requirement for the political science major. The minor in health care–social issues offers students a variety of perspectives that will enhance their ability to deal with complex social and ethical issues in modern health care. Additional information on these programs is available through the Warren Interdisciplinary Programs Office.

Research

The Department of Political Science is closely affiliated with several research centers/institutes/projects currently on campus. Faculty members directly involved include: Steven Erie, director, Urban Studies Program; J. Lawrence Broz, coordinator, Project in International Affairs; Germaine Hoston, director, Center for TransPacific Studies in Values, Culture, and Politics; Mathew McCubbins, director, Public Policy Research Project; Zoltan Hajnal and Thaddeus Kousser, coordinators, American Political Institutions Project; Wayne Cornelius, director, Center for Comparative Immigration Studies; and Clark Gibson, coordinator, Political Economy of Development Series. For further information please refer to the General Catalog section on “Research at UCSD.”

The Ph.D. Program

The Department of Political Science at the University of California, San Diego offers a program of graduate studies leading to the Ph.D. degree. Instruction is provided in the major fields of the discipline. For purposes of comprehensive examinations, the discipline is broken into four fields: American politics, comparative politics, international relations, and political theory. The department also offers a variety of courses that are of a methodological or epistemological nature, spanning the various fields.

Students take two years of course work in preparation for their comprehensive exams, including the First-Year Core Curriculum (POLI 200A-C and 204A-C). Students also attend regularly scheduled colloquia which feature presentations by faculty, outside speakers, and dissertation students.

A student must complete one seminar paper in one of his or her examination fields. This paper may be written as part of the requirements for a regularly scheduled seminar course or in an independent research course. The paper will involve original research or other creative effort.

By the end of the second year, a student must stand for the General Examination, which consists of written examinations in each of two fields and in a focus-area, and an oral examination.

The comprehensive exams are both written and oral. They test more than just mastery of course work and hence there is no single set of courses required for any field exam. To pass the exams a student is expected not only to master the relevant literature, but also to be able to synthesize and analyze the major issues in the field.

Each comprehensive exam tests both knowledge of the major theoretical approaches in the field and the ability to apply those theories to important questions in the field. For one of the two exam fields, the student also designates a specific area of interest (a “focus area”). The written focus area exam tests the student’s in-depth knowledge and understanding. The focus area exam is taken the same week as the general field exam, and there is one oral covering both exams. Each field publishes a list of focus areas; students may, with approval, craft their own focus area. Each field, in addition, publishes a list of suggested ways to prepare for its exams; each field also determines the research tools required for scholars in that field.

Students are expected to complete their comprehensive exams no later than the end of their second year.

After passing both exams, students are expected to write a dissertation prospectus. This prospectus must be defended before a committee of five faculty, including two members outside the department. This committee also administers the final oral defense of the dissertation.

It is expected that students will complete their dissertations within six years of starting the program.

Students interested in the program should consult the department Web site for more detailed information.

Departmental Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed seven years. Total registered time at UCSD cannot exceed eight years.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

LOWER-DIVISION

10. Introduction to Political Science: American Politics (4)
This course surveys the processes and institutions of American politics. Among the topics discussed are
individual political attitudes and values, political participation, voting, parties, interest groups, Congress, presidency, Supreme Court, the federal bureaucracy, and domestic and foreign policy making.

11. Introduction to Political Science: Comparative Politics (4)
The nature of political authority, the experience of a social revolution, and the achievement of an economic transformation will be explored in the context of politics and government in a number of different countries.

12. Introduction to Political Science: International Relations (4)
The issues of war/peace, nationalism/internationalism, and economic growth/redistribution will be examined in both historical and theoretical perspectives.

13. Power and Justice (4)
An exploration of the relationship between power and justice in modern society. Materials include classic and contemporary texts, films, and literature.

27. Ethics and Society (4)
(Same as Phil. 27) An examination of ethical principles (e.g., utilitarianism, individual rights, etc.) and their social and political applications to contemporary issues such as abortion, environmental protection, and affirmative action. Ethical principles will also be applied to moral dilemmas familiar in government, law, business, and the professions. Satisfies the Warren College ethics and society requirement. Prerequisites: CAT 2 and 3, DOC 2 and 3, MCWP 40 and 50, Hum. 1 and 2, MWW 2 and 3, WCPW 10A-B, or WARR 11A-B.

30. Political Inquiry (4)
Introduction to the logic of inference in social science and to quantitative analysis in political science and public policy including research design, data collection, data description and computer graphics, and the logic of statistical inference (including linear regression).

40. Introduction to Law and Society (4)
This course is designed as a broad introduction to the study of law as a social institution and its relations to other institutions in society. The focus will be less on the substance of law (legal doctrine and judicial opinions) than on the process of law—how legal rules both reflect and shape basic social values and their relation to social, political, and economic conflicts within society.

87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to 15 to 20 students, with preference given to entering freshmen. May not be used to fulfill any major or minor requirements in political science.

90. Undergraduate Seminar (1)
Selected topics to introduce students to current issues and trends in political science. May not be used to fulfill any major or minor requirements in political science.

UPPER-DIVISION

Minimum requirement for all upper-division courses is at least one quarter of lower-division political science, or upper-division standing.

American Politics

100A. The Presidency (4)
The role of the presidency in American politics. Topics will include nomination and election politics, relations with Congress, party leadership, presidential control of the bureaucracy, international political role, and presidential psychology.

100B. The U.S. Congress (4)
This course will examine the nomination and election of Congressmen, constituent relationships, the development of the institution, formal and informal structures, leadership, comparisons of House with Senate, lobbying, and relationship with the executive branch.

100C. American Political Parties (4)
This course examines the development of the two major parties from 1789 to the present. Considers the nature of party coalitions, the role of leaders, activists, organizers, and voters, and the performance of parties in government.

100D. Voting, Campaigning, and Elections (4)
A consideration of the nature of public opinion and voting in American government. Studies of voting behavior are examined from the viewpoints of both citizens and candidates, and attention is devoted to recent efforts to develop models of electoral behavior for the study of campaigns. The role of mass media and money also will be examined.

100E. Interest Group Politics (4)
The theory and practice of interest group politics in the United States. Theories of pluralism and collective action, the behavior and influence of lobbies, the role of political action committees, and other important aspects of group action in politics are examined. Prerequisite: sophomore standing.

100H. Race and Ethnicity in American Politics (4)
This course examines the processes by which racial and ethnic groups have/have not been incorporated into the American political system. The course focuses on the political experiences of European immigrant groups, blacks, Latinos, and Asians.

101J. Race in American Political Development (4)
Readings examine how the multiracial character of the United States has shaped the broad outlines of American politics. Cases include the founding/the Constitution, southern politics, social organization in formerly Mexican regions, the New Deal, consequences of limited suffrage.

100K. Railroads and American Politics (4)
The railroads transformed the economy and politics of the United States in the nineteenth century. The railroads were the first big businesses and their sheer size lead inevitably to conflict with governments at all levels. This conflict shaped modern politics. Prerequisite: upper-division standing.

100M. Political Psychology (4)
We begin with hypotheses about how people develop political attitudes, and methods to test those hypotheses. The second half focuses on emerging cognitive neuroscience insights, including brain imaging, and asks how these inform theories of political cognition, affect, and behavior. Prerequisite: upper-division standing.

100N. Politics in Washington (4)
Examines Washington as a political community, its institutions, culture, and history. In addition to its elected officeholders and senior government officials, it examines Washington’s subcommunities: the national news industry, diplomatic service, the representation of interests. Prerequisite: department approval is required.

102C. American Political Development (4)
Examines selected issues and moments in the political history of the United States, comparing competing explanations and analyses of U.S. politics. Likely topics include the founding, “American exceptionalism,” change in the party system, race in U.S. politics, the “new institutionalism.”

102E. Urban Politics (4)
(Same as USP 107) This course survey focuses upon the following six topics: the evolution of urban politics since the mid-nineteenth century; the urban fiscal crisis; federal/urban relationships; the “new” ethnic politics; urban power structure and leadership; and selected contemporary policy issues such as downtown redevelopment, poverty, and race.

102F. Mass Media and Politics (4)
This course will explore both the role played by mass media in political institutions, processes and behaviors, and reciprocally, the roles played by political systems in guiding communication processes.

102G. Special Topics in American Politics (4)
An undergraduate course designed to cover various aspects of American politics. May be repeated for credit two times, provided each course is a separate topic, for a maximum of twelve units.

102J. Advanced Topics in Urban Politics (4)
(Same as USP 110) Building upon the introductory urban politics course, the advanced topics course explores issues such as community power, minority empowerment, and the politics of growth. A research paper is required. Students wishing to fulfill the paper requirement with field research should enroll in the subsequent PS 102JJ course (offered Summer Session 2). Prerequisite: consent of instructor.

102J. Field Research in Urban Politics (2)
(Same as USP 111) To be taken with the approval of the PS 102J instructor; this course allows students to do original field research on topics in urban politics. This course is offered in Summer Session 2 subsequent to a 102J course. Prerequisite: consent of instructor. May not be used to fulfill any major or minor requirements in Political Science.

102K. The Urban Underclass (4)
The lives of individuals living in ghetto poverty in the United States. Causes and consequences of ghetto poverty. Political debates surrounding the underclass and different possible solutions. Prerequisite: upper-division standing.

103A. California Government and Politics (4)
(Same as USP 109) This survey course explores six topics: 1) the state’s political history; 2) campaigning and the mass media, and elections; 3) actors and institutions in the making of state policy; 4) local government; 5) contemporary policy issues; e.g., Proposition 13, school desegregation, crime, housing and land use, transportation, water; 6) California’s role in national politics.

103B. Politics and Policymaking in Los Angeles (4)
(Same as USP 113) This course examines politics and policymaking in the five-county Los Angeles region. It explores the historical development of the city,
suburbs, and region; politics, power, and governance; and major policy challenges facing the city and metropolitan area. Prerequisite: upper-division standing.

103C. Politics and Policymaking in San Diego (4) (Same as USP 115) This course examines how major policy decisions are made in San Diego. It analyzes the region's power structure (including the roles of non-governmental organizations and the media), governance systems and reform efforts, and the politics of major infrastructure projects. Prerequisite: upper-division standing or consent of instructor.

104A. The Supreme Court and the Constitution (4) An introduction to the study of the Supreme Court and constitutional doctrine. Topics will include the nature of judicial review, federalism, race, and equal protection. The relation of judicial and legislative power will also be examined.

104B. Civil Liberties—Fundamental Rights (4) This course will examine issues of civil liberties from both legal and political perspectives. Topics will include the First Amendment rights of speech, press, assembly, and religion; other "fundamental" rights, such as the right to privacy; and some issues in equal protection. Conflicts between governmental powers and individual rights will be examined.

104C. Civil Liberties—The Rights of Criminals and Minorities (4) Examines the legal issues surrounding the rights of "marginal" groups such as aliens, illegal immigrants, and the mentally ill. Also includes a discussion of the nature of discrimination in American society.

104D. Judicial Politics (4) Introduction to the study of law and courts as political institutions and judges as political actors, including the role of the judiciary in our constitutional system and decision making both within the Supreme Court and within the judicial hierarchy.

104F. Seminar in Constitutional Law (4) This seminar will provide an intensive examination of a major issue in constitutional law, with topics varying from year to year. Recent topics have included equal protection law and the rights of civilians in wartime. Students will be required to do legal research on a topic, write a legal brief, and argue a case to the seminar. Prerequisites: PS 104A/B; department stamp.

104I. Law and Politics—Courts and Political Controversy (4) This course will examine the role of the courts in dealing with issues of great political controversy, with attention to the rights of speech and assembly during wartime, questions of internal security, and the expression of controversial views on race and religion. The conflict between opposing Supreme Court doctrines on these issues will be explored in the context of the case studies drawn from different historical periods.

104L. Positive Political Theory of Law (4) We will discuss modern theories of the origins of law and legal behavior.

104M. Law and Sex (4) How law regulates and impacts sexuality and orientation with focus on constitutional law in areas of privacy, free speech, association, regulation of sexual conduct under criminal law, pornography, procreation, reproductive rights, and regulation of family status. Prerequisite: upper-division standing. Credit will not be allowed for students who have taken Political Science 102G Law and Sex in the following quarters: spring 2002, (section A00); spring 2001 (section A00); fall 1999 (section A00).

105A. Latino Politics in the U.S. (4) This course examines contemporary issues in Latino politics in the U.S.; comparisons of racial and ethnic group experiences in the U.S.; Latino access to the political system through political participation. Prerequisite: upper-division standing.

Political Theory

110A. Citizens and Saints: Political Thought from Plato to Augustine (4) This course focuses on the development of politics and political thought in ancient Greece, its evolution through Rome and the rise of Christianity. Readings from Plato, Aristotle, Augustine, Machiavelli, and others.

110B. Sovereigns, Subjects, and the Modern State: Political Thought from Machiavelli to Rousseau (4) The course deals with the period which marks the rise and triumph of the modern state. Central topics include the gradual emergence of human rights and the belief in individual autonomy. Readings from Machiavelli, Hobbes, Locke, Rousseau, and others.

110C. Revolution and Reaction: Political Thought from Kant to Nietzsche (4) The course deals with the period which marks the triumph and critique of the modern state. Central topics include the development of the idea of class, of the irrational, of the unconscious, and of rationalized authority as they affect politics. Readings drawn from Rousseau, Kant, Hegel, Marx, Nietzsche, and others.

110DA. Freedom and Discipline: Political Thought in the Twentieth Century (4) This course addresses certain problems which are characteristic of the political experience of the twentieth century. Topics considered are revolution, availability of tradition, and the problems of the rationalization of social and political relations. Readings from Nietzsche, Weber, Freud, Lenin, Gramsci, Dewey, Oakeshott, Arendt, Merleau-Ponty.

110EA. American Political Thought from Revolution to Civil War (4) The first quarter examines the origins and development of American political thought from the revolutionary period to the end of the nineteenth century; with special emphasis on the formative role of eighteenth-century liberal theory and the tensions between "progressive" and "conservative" wings of the liberal consensus.

110EB. American Political Thought from Civil War to Civil Rights (4) The second quarter examines some of the major themes of American political thought in the twentieth century, including topics over the meaning of democracy, equality, and distributive justice, the nature of "neoconservatism," and America's role as a world power.

110EC. American Political Thought: Contemporary Debates (4) This course explores contemporary issues in American political thought. Topics may include liberalism and rights, gender and sexuality, race and ethnicity, cultural diversity, and the boundaries of modern citizenship. Readings include political pamphlets, philosophical treatises, court decisions, and works of literature.

110H. Democracy and Its Critics (4) This course will examine the historical development of the ideal of democracy from Periclean Athens to the present in the light of criticism by such thinkers as Plato, Tocqueville, and Mosca and difficulties encountered in efforts to realize the ideal.

110I. Power in American Society (4) This course examines how power has been conceived and contested during the course of American history. The course explores the changes which have occurred in political rhetoric and strategies as America has moved from a relatively isolated agrarian and commercial republic to a military and industrial empire.

110N. Theories of Nationalism (4) Nationalist ideologies. Examination of the rhetoric of nationalist mobilization. Theories about the relationship between nationalist movements and democracy, capitalism, warfare, and the state.

110T. Modern Political Ideologies (4) An examination of some of the ideas and values associated with major social and political movements in Europe and the United States since the French Revolution. Topics will vary and may include liberalism, populism, democracy, communism, nationalism, fascism, and feminism.

112A. Economic Theories of Political Behavior (4) An introduction to theories of political behavior developed with the assumptions and methods of economics. General emphasis will be upon theories linking individual behavior to institutional patterns. Specific topics to be covered will include collective action, leadership, voting, and bargaining.

113A. East Asian Thought in Comparative Perspective (4) This course examines the major traditions of East Asian thought in comparative perspective. Topics include Confucianism, Taoism, Buddhism, and contemporary nationalist and East Asian political thought. Throughout, focused comparisons and contrasts will be made between Western and Eastern thought. Prerequisite: upper-division standing.

113B. Chinese and Japanese Political Thought (4) Examines philosophical traditions of ancient and modern China and Japan, to understand how these have been reflected in Chinese and Japanese development. Course will be in English; however, students with Chinese or Japanese language skills will have opportunity to use these. Graduate students will be required to complete a seminar-length research paper; undergraduate students will write a paper. Prerequisites: upper-division standing for 113B.

114B. Marxist Political Thought (4) An introduction to Marxist thought from its roots in the western tradition through its development in non-Western contexts. Emphasis is placed on how adaptations were made in Marxism to accommodate the specific challenges of each environment.

115A. Gender and Politics (4) Our understanding of politics, power, conflict, and quality continue to be challenged and transformed by considering gender as it intersects with nationality, race, class, and ethnicity. We will consider the importance of gender in each of the subfields of political science.

116A. Feminist Theory (4) Readings in historical and contemporary feminist theory; development of gender as a category of political
analysis; alternative perspectives on core concepts and categories in feminist thought.

116B. Advanced Feminist Theory (4)
Advanced critical analysis of contemporary feminist theory; emphasis on the interrelationships among discourses of gender, race, ethnicity, class, and sexuality in the work of different feminist theorists; alternative perspectives on feminist political strategies and practices. Prerequisite: PS 115B or 116A. Not offered in 2007-08.

118B. The Political Theory of Liberation Theology (4)
A comparative study of liberation theologies, including Continental, Latin American, South African, and East Asian. Prerequisite: PS 118A.

119A. Special Topics in Political Theory (4)
An undergraduate course designed to cover various aspects of political theory. May be repeated for credit two times, provided each course is a separate topic, for a maximum of twelve units.

Comparative Politics

120A. Political Development of Western Europe (4)
An examination of various paths of European political development through consideration of the conflicts which shaped these political systems: the commercialization of agriculture; religion and the role of the church; the army and the state bureaucracy; and industrialization. Stress will be on alternative paradigms and on theorists.

120B. The German Political System (4)
An analysis of the political system of the Federal Republic of Germany with an emphasis on the party system, elections, executive-legislative relations, and federalism. Comparisons will be made with other West European democracies and the Weimar Republic.

120C. Politics in France (4)
This course will examine the consequences of social and economic change in France. Specific topics will include institutional development under a semi-presidential system, parties, and elections.

120D. Germany: Before, During, and After Division (4)
Consideration of political, economic, and security factors that have kept Germany at the center of European developments for more than a century.

120E. Scandinavian Politics (4)
Introduction to the politics and societies of the Scandinavian states (Denmark, Finland, Norway, and Sweden). Focuses on historical development, political culture, constitutional arrangements, political institutions, parties and interest groups, the Scandinavian welfare states, and foreign policy. Prerequisite: upper-division standing.

120H. European Integration (4)
This course reviews the origins and development of the European Community/European Union and its institutions, theories of integration and the challenges inherent in the creation of a supranational political regime.

120L. Politics in Italy (4)
This course will provide a comparative perspective on the development and functioning of the Italian political system. It includes analysis of political institutions, ideological traditions, parties and elections, political elites in the policy process, and the evolving importance of Italy within European integration.

120K. Politics of Developing Countries (4)
This course critically examines central concepts and theories of development, and assesses their utility in understanding political, economic, and social change in three regions of the developing world: Latin American, sub-Saharan Africa, and Southeast Asia.

121. Government and Politics of the Middle East (4)
This course examines general themes affecting the region (social structure and regime type, religion and modernization, bonds and tensions), the character of major states, and efforts to resolve the conflict between Israel and its Arab and Islamic neighbors. Prerequisite: upper-division standing.

121B. Politics in Israel (4)
An interdisciplinary study of Israel as both a unique and yet a common example of a modern democratic nation-state. We will examine Israel's history, its political, economic, and legal systems, social structure and multicultural tensions, the relation between state and religion, national security, and international relations.

122B. The Political Trial: Comparative Perspectives on the Politics of Justice (4)
A study of the political drawing on cases selected from the French and Russian Revolutions, the Nuremberg and Tokyo War Crimes Trials, revolutionary China and Cuba, and the Vietnam War era. The course will examine critically the relationship between politics and the administration of justice across time, culture, and political systems.

123. Politics of Empire in Comparative Perspective (4)
In between "rise" and "declines," empires are political entities with highly heterogeneous populations that must be governed. The course examines the similarities and differences in imperial governance, comparing the internal and external political dynamics of traditional (Roman, Ottoman), modernizing (Habsburg), and modern (British) empires. Prerequisite: upper-division standing.

125. The Politics of Conservation in Developing Countries (4)
Conservation in developing countries concerns resources that are extremely important to policymakers, militaries, environmental organizations, communities, and individuals. This course examines these groups' struggle for control over wildlife and forests—from the capital to the village—on several continents.

125A. Communities and the Environment (4)
A popular new idea in environmental protection is to include local communities in conservation efforts. But what are these communities? What challenges do they face in governing their own resources? This course uses both theory and case studies to explore the political economy of community-based conservations.

126. Politics and Economics in Eastern Europe (4)
This course explores the interrelationship of politics and economics in Eastern Europe, analyzing the historic evolution of the area, the socialist period, and contemporary political and economic change there.

127. Politics of Developing Countries (4)
This course critically examines central concepts and theories of development, and assesses their utility in understanding political, economic, and social change in the developing world. Central case studies are drawn from three regions: Latin America, Sub-Saharan Africa, and Southeast Asia. Prerequisite: upper-division standing.

130AA. The Soviet Successor States (4)
An overview of the historical background and contemporary politics of the fifteen successor states of the Soviet Union.

130AC. Seminar: Post-Soviet Politics (4)
Undergraduate research seminar on the Post-Soviet Union. Issues and research areas will vary each time the course is offered. Prerequisite: consent of instructor.

130AD. The Politics of the Russian Revolution (4)
An examination of the dynamics of the Russian Revolution from 1903 through the Stalinist period and recent years in light of theories of revolutionary change. Emphasis is placed on the significance of political thought, socio-economic stratification, and culture-historical conditions.

130H. Vietnam: The Politics of Intervention (4)
This course will examine the interventions of foreign powers in Vietnam between 1945 and 1975 (including France, the United States, China, and the Soviet Union) and the effects of intervention.

131C. The Chinese Revolution (4)
An analysis of the dynamics of the Chinese Revolution from the fall of the Qing Dynasty (1644–1911) to the present. Emphasis is placed on the relationship between political thought and the dynamics of the revolutionary process.

132C. Political Development and Modern China (4)
Political development has dominated the study of comparative politics among U.S. academicians since the revival of the Cold War in 1947. This course examines critically this paradigm and its Western philosophical roots in the context of the experience of modern China.

133A. Japanese Politics: A Developmental Perspective (4)
This course will analyze the political systems of modern Japan in comparative-historical perspective.

133D. Political Institutions of East Asian Countries (4)
This course discusses the following major topics in three East Asian countries (Japan, South Korea, and Taiwan) from a comparative perspective: (a) economic and political development (b) political institutions (c) public policies.

133DD. Comparative Analysis of East Asian Institutions (4)
This seminar is designed to be advanced follow-up to PS 133D. It examines present-day East Asian government institutions in much greater depth. Prerequisite: PS 133D.

134AA. Comparative Politics of Latin America (4)
Comparative analysis of contemporary political systems and developmental profiles of selected Latin American countries, with special reference to the ways in which revolutionary and counter-revolutionary movements have affected the political, economic, and social structures observable in these countries today.
An undergraduate course designed to cover various aspects of comparative politics. May be repeated for credit.

Prerequisite: upper-division standing.

136B. Comparative Politics and Political Culture (4)
This course is designed to provide undergraduates with a sound introduction to cultural interpretations of power and politics. The course will also attempt to render an explicit account of the process of theory formation in social science. Special attention will be given to Africa and Asia.

136C. Comparative Bureaucracy (4)
Politics of the administrative state in the world’s democracies. How political institutions influence governance across different types of democratic institutional environments.

137A. Comparative Political Parties and Interest Groups (4)
This course serves as an introduction to the comparative study of political parties and interest groups as well as an analytical introduction to parties, interest groups, and their role in democratic representation. Prerequisite: upper-division standing.

138D. Special Topics in Comparative Politics (4)
An undergraduate course designed to cover various aspects of comparative politics. May be repeated for credit two times, provided each course is a separate topic, for a maximum of twelve units.

139A. Politics of the Ancient World Order (4)
An introduction to the domestic and international political orders of the ancient West. Primary focus will be on the strengths and limitations of comparative and international relations theories when applied to the ancient world of city-states, kingdoms, and empires.

International Relations

140A. International Law and Organizations (4)
International law and organizations are central to the efforts to create a world order to limit armed conflict, regulate world economy, and advance programs for economic redistribution among nations, and set minimum standards of human rights. This course explains the theory of international law and organizations that is accepted by diplomats and compares this viewpoint to the analysis of social scientists concerning the past record and likely future of world order concerning conflict, economic redistribution, and human rights.

140C. International Crisis Diplomacy (4)
A survey of international peacekeeping and enforcement in civil conflicts with a simulation of international diplomacy. Prerequisite: upper-division standing.

141B. Scientific Analysis of Conflict and Peace (4)
The use of data to evaluate theories of conflict. Course will examine the relationship between theory and evidence, measurement and research design. Specific issues examined may include the relationship of power, preference, economic relations, and domestic politics to conflict and peace. Prerequisites: POLI 12 and POLI 30.

142A. United States Foreign Policy (4)
United States foreign policy from the colonial period to the present era. Systematic analysis of competing explanations for U.S. policies—strategic interests, economic requirements, or the vicissitudes of domestic politics. Interaction between the U.S., foreign states (particularly allies), and transnational actors are examined. Prerequisite: PS 12 or consent of instructor.

142B. U.S. Economic Policy (4)
Seeks to explain U.S. foreign economic policies. Topics include: globalization—benefits and costs, winners and losers; interest group influence on trade policy; domestic and international institutions; multinational corporations; exchange rates; currency crises; environment and labor standards.

142J. National and International Security (4)
A survey of theories of defense policies and international security.

142K. Politics and Warfare (4)
This course offers an exploration of general theories of conflict and peace. It will examine the relationship between theory and evidence, measurement and research design. Specific issues examined may include the relationship of power, preference, economic relations, and domestic politics to conflict and peace. Prerequisite: upper-division standing.

142L. Insurgency and Terrorism (4)
“Terrorism” uses “illegitimate” violence to achieve political goals. This course uses philosophical, historical, and contemporary material from diverse traditions to understand which actions are defined as “terrorism,” and why, and when, as well as the determinants of their effectiveness.

142M. U.S. Foreign Policy/Regional Security (4)
Lectures and readings examine U.S. foreign policy in Europe, Latin America, and East Asia with attention to current problems with specific nations (e.g., Bosnia) and issues (e.g., terrorism). This course integrates historical, comparative, and foreign perspectives on regional security dynamics. Credit will not be given to students who took PS 154 Special Topic/International Relations with the subtitle U.S. Foreign Policy/Regional Security, in spring 1998, spring 2001, or fall 2002.

142N. American Defense Policy (4)
An introduction to analytic techniques for assessing policy options in the field of national security. Prerequisite: upper-division standing.

142O. International Terrorism (4)
(Same as SOCD 177.) This course covers the definitions, history, and internationalization of terrorism; the interrelation of religion, politics, and terror; and the representation of terrorism in the media. A number of organizations and their activities in Europe and the Middle East are examined. Prerequisite: upper-division standing.

142P. Crisis Areas in World Politics (4)
This course examines the most critical areas in contemporary world politics. While the emphasis will be placed on American involvement in each crisis, an effort will be made to acquaint the student with its historical and political background. Credit will not be allowed for students who have taken POLI 154 “Crisis Areas in World Politics” in the following quarters: SP01; SP02; SP03; SP04; SP05; WI06; SP06; SI06; FA06; WI07. Prerequisite: upper-division standing.

143A. War and Society (4)
How has warfighting evolved over the centuries? Has it varied across cultures? What has war been like for soldiers and civilians? How do societies mobilize for war, and how do they change in the short and long term from fighting? Prerequisite: upper-division standing.

144AB. Selected Topics in International Political Economy (4)
This course will consider major theories purporting to explain and predict the workings of the international order from the point of view of political economy. An extended discussion of one aspect of the economic order (e.g., the multinational corporation) will serve as the test case. PS 144AA and one quarter of economics recommended. Prerequisite: PS 12.

144E. The Politics of International Trade (4)
Examines theories of trade and protectionism, focusing both on relations among advanced industrial nations and on relations between developed and developing countries. Topics include standard and strategic trade theory, nontariff barriers to trade, export-led growth strategies, regional trade agreements, and the future of the WTO.

144F. The Politics of International Trade and Finance (4)
Examines the welfare and distributional aspects of international trade and finance as they relate to the politics of economic policymaking. Topics include: globalization in historical perspective; origins and consequences of trade policy; exchange-rate arrangements; international capital flows; currency crises; economic development.

145A. International Politics and Drugs (4)
This course examines the domestic and international aspects of the drug trade. It will investigate the drug issues from the perspectives of consumers, producers, traffickers, money launderers, and law enforcement. Course material covers the experience of the United States, Mexico, and other nations in the war on drugs.
States, Latin America, Turkey, Southeast Asia, Western Europe, and Japan.

145B. Conflict and Cooperation in International Politics (4)
Course on how countries overcome problems of conflict and cooperation in their dealings with one another. Focuses on theories of emergence of cooperation among states and applies these to various issue-areas. Subjects examined include international monetary relations, military alliances, economic sanctions, human rights, arms control, international trade, and others. Prerequisite: PS 12. (Not offered in 2006-07)

145C. International Relations After the Cold War: Theory and Prospect (4)
The nature of international politics appears to have changed dramatically since 1989. This course applies different theoretical approaches to enhance our understanding of the new international environment, future prospects for peace and war, and current problems of foreign policy. Prerequisite: upper-division standing.

146A. The U.S. and Latin America: Political and Economic Relations (4)
An analytical survey of U.S. relations with Latin America from the 1820s to the present, with particular emphasis on the post-Cold War environment. Topics include free trade and economic integration; drugs and drug trafficking; illegal migration and immigration control. Focus covers U.S. policy, Latin American reactions, dynamics of cooperation, and options for the future.

150A. Politics of Immigration (4)
Comparative analysis of attempts by the United States, western Europe, and Japan to initiate, regulate and reduce immigration from Third World countries. Social and economic factors shaping outcomes of immigration policies, public opinion toward immigrants, anti-immigration movements, and immigration policy reform options in industrialized countries.

152. Foreign Policy Analysis (4)
This upper-division course focuses on the comparative study of foreign policies in contemporary and historical world affairs. Competing theoretical approaches drawn from international, domestic, and individual levels of analyses will be examined. War, security, alliances, and international crises will be used to evaluate the utility of competing approaches. Prerequisite: PS 12.

154. Special Topics in International Relations (4)
An undergraduate course designed to cover various aspects of international relations. May be repeated for credit two times, provided each course is a separate topic, for a maximum of twelve units.

Policy Analysis

160AA. Introduction to Policy Analysis (4)
(Same as USP 101) This course will explore the process by which the preferences of individuals are converted into public policy. Also included will be an examination of the complexity of policy problems, methods for designing better policies, and a review of tools used by analysts and policy makers. Prerequisite: PS 10 or 11.

160AB. Introduction to Policy Analysis (4)
In this course, students will use their knowledge of the political and economic foundations of public policy making to conduct research in a wide variety of public policy problems. Prerequisite: PS 160AA.

162. Environmental Policy (4)
This course will explore contemporary environmental issues such as global warming, endangered species, and land use. Students will be asked to analyze various policy options and to write case analyses. Policies may be debated in class.

163. Analyzing Politics (4)
Politics are understood as the combination of individual preferences and decisions into collective choices. What are the issues involved in aggregating individual preferences, what is the choice of rules—formal and informal—for doing so.

165. Special Topic: Policy Analysis (4)
An undergraduate course designed to cover various aspects of policy analysis. May be repeated for credit two times, provided each course is a separate topic, for a maximum of twelve units.

167A. Seminar: Public Policy Analysis (4)
Students are asked to analyze various policy options related to contemporary American policy issues. Students are also required to do directed research on policy issues, to write case analyses based on their findings, and to debate policy alternatives in class. Prerequisite: PS 10 or 11.

168. Policy Assessment (4)
The use of real data to assess policy alternatives. Introduction to benefit/cost analysis, decision theory, and the valuation of public goods. Applications to health, environmental, and regulatory economic policy making.

170A. Introductory Statistics for Political Science and Public Policy (4)
Introduction to the use of statistics in both political science and public policy concentrating on regression based approaches. Students undertake a series of small quantitative analyses and one project. Prerequisites: upper-division standing.

Research Methods

181A. Field Research Methods for Migration Studies: Seminar (4)
Introductory survey of methods used by social scientists to gather primary research data on international migrant and refugee populations, including sample surveys, unstructured interviewing, ethnographic observation, and archival research. Basic fieldwork practices and problem-solving techniques will also be covered. Students planning to take the continuation of this course, Political Science 181B, should note that conversational fluency Spanish is a requirement for Political Science 181B. Prerequisites: upper-division status, permission of instructor.

181B. Field Research Methods for Migration Studies: Practicum (12)
Continuation of Political Science 181A. Students will apply one or more data collection methods learned in Political Science 181A to collect data from a sample of international migrants, refugees, or returned migrants in a high-migration community. Students participate in team field research, write a detailed individual report on the fieldwork experience and submit a detailed outline of a research paper to be based on data from the fieldwork, required of students who take the continuation of this course, Political Science 181C. Prior to fieldwork, students will read intensively about the research site and write a literature review essay. Prerequisites: upper-division status, Political Science 181A, conversational fluency in Spanish, permission of instructor.

181C. Field Research Methods for Migration Studies: Data Analysis (4)
Continuation of Political Science 181B. Students will analyze primary data that they have helped to collect in a field research site and write a major paper based on these data for publication as a section of a co-authored report on the field research project. Methods for organizing and processing field research data for analysis, techniques of quantitative data analysis, and report preparation conventions will be covered. Prerequisites: upper-division status, Political Science 181B, permission of instructor.

Special Studies

191A-B. Senior Honors Seminar: Frontiers of Political Science (4-4)
This course is open only to seniors interested in qualifying for departmental honors. Admission to the course will be determined by the department. Each student will write an honors essay under the supervision of a member of the faculty.

192. Senior Seminar in Political Science (1)
The senior seminar is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in political science at the upper-division level. Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisite: department stamp and/or consent of instructor.

(Same as Com/Gen 194; USP 194, HIST 193, SocE 194, ERTH 194, COGS 194) Course attached to six-unit internship taken by students participating in the UCDC program. Involves weekly seminar meetings with faculty and teaching assistant and a substantial research paper. Prerequisites: participating in UCDC program.

1971. Political Science Washington Internship (6)
This internship is attached to the UC in DC Program. Students participating in the UC in DC Program are placed in an internship in the Washington, DC, area for twenty-four hours per week. Prerequisites: must be enrolled in the UC in DC Program.

199. Independent Study for Undergraduates (2 or 4)
Independent reading in advanced political science by individual students. (P/NP grades only.) Prerequisite: consent of instructor.

GRADUATE

All graduate courses are categorized as either seminars or independent study.

Seminars

200. Political Science: Scope and Methods (4)
This course examines a variety of approaches to the study of politics, focusing on their intellectual history, canonical works that illustrate their major themes, and methodological critiques and defenses. The course seeks to clarify how interesting and important questions
are discovered and how appropriate research is designed and executed. (Not offered in 2006-07.)

200A. Foundations of Political Science (4) An introduction to the theoretical concepts in the discipline of political science that are commonly used across various sub-fields. Each week will introduce the core concept(s) and discuss applications from several, if not all sub-fields in the department.

200B. Democracy (4) An overview of the normative and positive issues associated with modern democracies. The appeal and the social, political, and economic arrangements of democracies will be explored.

200C. States and Markets (4) An overview of the normative and positive issues associated with decentralized (market) versus centralized (political) mechanics of allocation. The appropriate role of government in the economy will be explored.

203. Math for Political Science (4) Mathematical skills necessary for doing graduate work in political science. Topics include optimization, linear algebra, probability, set theory, and formal logic. (Not offered in 2006-07.)

204A. Research Design (4) This course will study various approaches to knowledge accumulation in social science. A basic outline of scientific method will be used to examine the difference between theories as assumptions and axioms and hypotheses as “if-then” statements derived from theory. Experimental, quasi-experimental, and qualitative designs will be discussed.

204B. Quantitative Methods I (4) The use of quantitative methods (particularly multiple regression and its extensions) in political science. Emphasis on understanding the methods and using them in political science applications.

204C. Game Theory I (4) This course introduces students to the rudiments of decision theory and game theory. Emphasis will be placed on modeling and solving games.

210A. Systems of Political Thought: Thucydides to Augustine (4) This course is a preparation for the field examination in political theory. It will provide an intensive and critical introduction to European political thought from Thucydides to Augustine. Some of the secondary literature on this period will also be explored.

210B. Systems of Political Thought: Machiavelli to Rousseau (4) This course is a preparation for the field examination in political theory. It will provide an intensive and critical introduction to European political thought from Machiavelli to Rousseau. Some of the secondary literature on this period will also be explored.

210C. Systems of Political Thought: Kant to Nietzsche (4) This course is a preparation for the field examination in political theory. It will provide an intensive and critical introduction to European political thought from Kant to Nietzsche. Some of the secondary literature on this period will also be explored.

210D. Systems of Political Thought: Contemporary (4) This course is a preparation for the field examination in political theory. It will provide an intensive and critical introduction to twentieth-century political thought. Some of the secondary literature on this period will also be explored.

211A. American Political Thought (4) This course explores American debates over political ideals, institutions, and identity from the Puritans to the present. Themes will include freedom and slavery, sovereignty and representation, individual and community, diversity and equality. Readings will vary from year to year. Prerequisite: graduate standing or consent of instructor.

214. Marxist and Post-Marxist Political Philosophy (4) An examination of selected texts in Marxist and post-Marxist political philosophy, with a focus on the theme of individual and collective identity including issues concerning alienation, consciousness, and ideology. Prerequisite: graduate standing.

216. Contemporary Liberal and Democratic Theory (4) Normative approaches to liberty, equality, justice, and democracy, mostly Anglo-American and empirical approaches to justice. Thinkers such as Rawls, Habermas, Nozick, Dworkin, Raz, Roemer, Elster, Ostrom, Bowles, and Gintis may be considered. Prerequisite: graduate standing.

219. Special Topics in Political Theory (4) This seminar is an examination of the different approaches to the study of political theory. Issues and research areas will vary each time the course is offered. Prerequisite: graduate standing or consent of instructor.

220A. Comparative Politics: State and Society (4) This course will provide a general literature review in comparative politics to serve as preparation for the field examination. Prerequisite: graduate standing in any discipline in the social sciences or humanities, or consent of instructor.

220B. Comparative Politics: Institutions (4) This is a second course in comparative politics designed as a preparation for the field examination. It will focus on the comparative study of political institutions. Prerequisite: graduate standing in any discipline in the social sciences or humanities, or consent of instructor.

220C. Origins of the State (4) Survey of theories, with empirical cases explaining origins of the modern state. Prerequisite: graduate standing.

222. Measuring Democracy (4) Research seminar that focuses on the problems of measurement, operationalization, and validity in the comparative study of types, causes, and consequences of democracy.

222A. American Politics in Comparative Perspective (4) Research seminar that focuses on the systematic comparison of the American political system with about thirty other contemporary democracies, particularly the other large industrialized countries. A central aim will be to assess the claims about American “exceptionalism.” Prerequisite: graduate standing.

223A. Comparative Parliamentary Studies (4) A survey of the academic literature on parliamentary studies, comparing the research on legislative elections, behavior, and organization in American, European, and Asian democracies. The course will also compare various approaches to studying legislative activity. Prerequisite: graduate standing.

224. The Politics of Democratization (4) A survey of theories explaining the processes of democratization and democratic stability. Prerequisite: graduate standing or consent of instructor.

224A. Elections in Consolidating Democracies (4) Course looks at elections in consolidating democracies with an eye to evaluating existing theories of elections with new data. Also explores new empirical patterns in countries around the world, especially Africa, Latin America, Eastern Europe, and the Soviet successor states. Prerequisite: graduate student standing or consent of instructor.

225. The Politics of Divided Societies (4) Research seminar that surveys the theoretical literature on divided societies in Africa, Asia, Europe, North America, and South America, particularly conflict and peacemaking in multiethnic countries. Cases to be studied in depth will be selected in accordance with students’ area and country interests. Prerequisite: graduate standing or consent of instructor.

226. Authoritarian Politics (4) Research seminar that surveys the theoretical literature on non-democratic political systems. Readings draw from cases in Africa, Asia, Europe, and Latin America. Prerequisite: graduate standing or consent of instructor.

227. Comparative Political Economy (4) An introduction to seminal and current research in comparative political economy. Course explores how various political institutions and processes affect economic outcomes (e.g., growth, inequality, and redistribution) and how the economy influences politics (e.g., democratization, electoral institutions, and welfare states). Prerequisite: POLI 200C or consent of instructor.

228. Comparative Bureaucracy (4) This course examines the politics of the administrative state in the world’s democracies. The course focuses on how political institutions affect the nature of governance in democracies.

229. Special Topics in Comparative Politics (4) This seminar is an examination of the different approaches to the study of comparative politics. Issues and research areas will vary each time the course is offered. Prerequisite: graduate standing or consent of instructor.

230A. The Mexican Political System (4) An interdisciplinary graduate seminar covering selected aspects of Mexican politics, economic development, and social change. Attention to both domestic and international factors affecting Mexico’s transition to a more democratic system. Materials to be drawn from literatures in anthropology, economics, history (twentieth century), political science, sociology, urban studies, and communication. Topics vary from year to year partly reflecting research interests of participating students. Students are expected to write substantial research papers or thesis proposals. Prerequisite: graduate standing or consent of instructor.

231D. Politics of the Soviet Successor States (4) A colloquium surveying major controversies in the analyses of Soviet and post-Soviet politics. Prerequisite: graduate standing or consent of instructor. Cannot also receive credit for PS 231.
231E. Politics of Development (4)
This course provides an overview of previous and current efforts to explain political and economic development in non-western settings. Prerequisite: graduate standing or consent of instructor.

232C. Political Development and Modern China (4)
Political development has dominated the study of comparative politics among U.S. academicians since the revival of the Cold War in 1947. This course examines critically this paradigm and its Western philosophical roots in the context of the experience of modern China. Prerequisite: graduate standing or consent of instructor.

235A. Latin American Politics (4)
Introductory reading seminar on Latin American politics to acquaint students with leading schools of thought, provide critical perspective on premises and methodology, and identify themes for further inquiry. Themes include authoritarianism, revolution, democratization, regional conflict, and emergence of middle-level powers.

236. Immigration Policy and Politics (4)
An interdisciplinary seminar covering origins, consequences, and characteristics of worker migration from Third World countries (especially Mexico, Central America, and the Caribbean basin) to the United States, from the nineteenth century to the present.

238. State and Society in Modern East Asia (4)
An examination of the role of the state in economic development in major East Asian societies and its impact on democratization. Case studies will vary but will include China, Japan, and Korea, as well as at least one other society. Prerequisite: graduate standing.

240. International Relations Theory (4)
A survey of the principal theories and approaches to the study of international relations. Prerequisite: graduate standing or consent of instructor.

243. International Security (4)
A colloquium surveying the major theoretical controversies in the study of international and national security. Prerequisite: graduate standing or consent of instructor.

244A. European Integration (4)
This seminar provides perspectives on the theories and politics of European integration. Analysis will focus on the development of the European Union, the functioning of core institutions, and the challenges of creating a supranational political regime.

245. International Political Economy (4)
A seminar surveying the major theoretical controversies in the study of international political economy. Prerequisite: graduate standing or consent of instructor.

247A. Quantitative International Relations (4)
Explores empirical research in international relations with special emphasis on international conflict. Topics covered include theories on the causes of war, the distribution of power and conflict, formal and informal alignment, interdependence and conflict, linkages between domestic and international processes, and issues of research design. Prerequisite: graduate standing or consent of instructor.

247B. Formal Models in International Relations (4)
Explores formal analytic and primarily game-theoretic research in international relations with emphasis on conflict and bargaining. Topics include: causes of war and peace, conventional and nuclear deterrence, crisis bargaining, arms race, and two-level games.

248. Special Topics in International Relations (4)
(Same as IRGN 290) This seminar is an examination of the different approaches to the study of international relations. Issues and research areas will vary each time the course is offered. Prerequisite: graduate standing or consent of instructor.

250. American Politics (4)
This course will provide a general literature review in American politics to serve as preparation for the field examination. Prerequisite: graduate standing in any discipline in the social sciences or humanities, or consent of the instructor.

251. American Political Institutions (4)
A critical examination of major contributions to the theoretical and empirical literature on the U.S. Congress, presidency, and federal bureaucracy. Prerequisite: graduate standing or consent of instructor.

252. American Politics: Behavior
Theoretical and empirical perspectives on voting and other forms of political participation, parties, interest groups, and public opinion in the United States. Prerequisite: graduate standing or consent of instructor.

253. Research in State Politics (4)
This seminar will survey the existing literature in state politics with an eye toward proposing new research designs. Topics will include the variation across states in electoral systems, campaign finance laws, political culture, legislative institutions, judicial arrangements, and policy outcomes. Prerequisite: graduate standing or consent of instructor.

254. American Political Development (4)
This course examines the historical evolution of the American state with particular attention to theories of political development. Special topics include the development of the party system, electoral and policy realignments, and the evolution of national political institutions. Prerequisite: graduate standing or consent of instructor.

255. Urban Politics (4)
Examines central works on the development of political institutions in U.S. cities, analyses of community power structures, who governs, why, and to what ends; processes and prospects for minority empowerment; the prominence of "growth machines"; the political economy of contemporary cities. Prerequisite: graduate standing or consent of instructor.

256A. Judicial Politics (4)
Judicial politics is the study of law and courts as political institutions and judges as political actors, focusing on decision-making and power relations within courts, within the judicial hierarchy, and within the constitutional system.

257. Voting and Elections (4)
This course is designed to acquaint graduate students with the central themes and issues in the study of voting in national elections. Prerequisite: graduate standing or consent of instructor.

259. Special Topics in American Politics (4)
This seminar is an examination of the different approaches to the study of American politics. Issues and research areas will vary each time the course is offered. Prerequisite: graduate standing or consent of instructor.

264. Mathematics for Social Scientists (4)
Preclude: graduate standing or consent of instructor.

268. Workshop in Scientific Communication (4)
Forms of scientific communication, practical exercise in scientific writing and short oral communication, and in criticism and editing; preparation of illustrations, preparation of proposals; scientific societies, and the history of scientific communication. Examples from any field of science, most commonly political science, economics, and law. Prerequisite: PS 202 or permission of instructor.

278A-B-C. Workshop on State and Society (4-4-4)
Examination of recent research in American politics, comparative politics, and political theory concerning the relationship of politics to society; development and presentation of research projects by graduate students; presentations of research projects by faculty. Second-year students present seminar paper; third-year students present dissertation prospectus; candidates make yearly presentations of dissertation research. Prerequisite: PS 202 or consent of instructor.

278A-B-C Workshop in Political Analysis (4-4-4)
Examination of recent research in international politics; development and presentation of research projects by graduate students; presentations of research projects by faculty. Second-year students present seminar paper; third-year students present dissertation prospectus; candidates make yearly presentation of dissertation research. Prerequisite: PS 202 or permission of instructor.

279. Special Topics in Methodology (4)
This seminar is an examination of the different approaches to the study of methodology. Issues and research areas will vary each time the course is offered. Prerequisite: graduate standing or consent of instructor.

282A-B-C. Workshop on State and Society (4-4-4)
Examination of recent research in American politics, comparative politics, and political theory concerning the relationship of politics to society; development and presentation of research projects by graduate students; presentations of research projects by faculty. Second-year students present seminar paper; third-year students present dissertation prospectus; candidates make yearly presentations of dissertation research. Prerequisite: PS 202 or permission of instructor.

282A-B-C Workshop in Political Analysis (4-4-4)
Examination of recent research in international politics; development and presentation of research projects by graduate students; presentations of research projects by faculty. Second-year students present seminar paper; third-year students present dissertation prospectus; candidates make yearly presentation of dissertation research. Prerequisite: PS 202 or permission of instructor.

284. Workshop on Scientific Communication (4)
Forms of scientific communication, practical exercise in scientific writing and short oral communication, and in criticism and editing; preparation of illustrations, preparation of proposals; scientific societies, and the history of scientific communication. Examples from any field of science, most commonly political science, economics, and law. Prerequisite: PS 202 or consent of instructor.

286A-B-C Workshop in Political Analysis (4-4-4)
Students will read and critique new research articles in political analysis. Students will present these critiques to the workshop. Students will also present their own methodological analyses to the workshop. Prerequisite: graduate standing or consent of instructor.

Independent Study

298. Directed Reading (1-12)
Guided and supervised reading in the literature of the several fields of political science.

299. Dissertation Research (1-12)
Independent work by graduate students engaged in research and writing of second-year paper and doctoral dissertation, under direct supervision of advisor.

500. Apprentice Teaching (1-4)
A course in which teaching assistants are aided in learning proper teaching methods by means of supervision of their work by the faculty: handling of discussions, preparation, and grading of examinations and other written exercises, and student relations. Twenty-four units of teaching apprentice ship meets the department teaching requirement for the Ph.D. degree.

501. Seminar on Teaching Development—American Politics (1-4)
A seminar designed for graduate students serving as teaching assistants in American politics, includes
discussion of teaching theories, techniques, and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. Prerequisite: graduate standing.

502. Seminar on Teaching Development—Comparative Politics (1-4)
A seminar designed for graduate students serving as teaching assistants in comparative politics, includes discussion of teaching theories, techniques, and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. Prerequisite: graduate standing.

503. Seminar on Teaching Development—International Relations (1-4)
A seminar designed for graduate students serving as teaching assistants in international relations, includes discussion of teaching theories, techniques, and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. Prerequisite: graduate standing.

504. Seminar on Teaching Development—Political Theory (1-4)
A seminar designed for graduate students serving as teaching assistants in political theory, includes discussion of teaching theories, techniques, and materials, conduct of discussion sessions, and participation in examinations, under the supervision of the instructor in charge of the course. Prerequisite: graduate standing.

Associate Professors
Victor S. Ferreira, Ph.D.
James L. Goodson, Ph.D.
Christine R. Harris, Ph.D.
Gail D. Heyman, Ph.D.
Timothy C. Rickard, Ph.D.
Piotr Winkielman, Ph.D.

Assistant Professors
Stephan Anagnostaras, Ph.D.
Adam R. Aron, Ph.D.
Leslie J. Carver, Ph.D.
Timothy Q. Gentner, Ph.D.
David Huber, Ph.D.

The Psychology Major Program
The department offers three degree programs: bachelor of arts (B.A.), bachelor of science (B.S.), and the integrated bachelor of science (B.S.)/master of arts (M.A.). We offer courses in all major areas of experimental psychology, with emphasis in behavior analysis, clinical psychology, cognitive psychology and cognitive neuropsychology, human information processing, neuroscience and behavior, psychopathology, sensation and perception, and social psychology. The department emphasizes research in the experimental and theoretical analysis of human and animal behavior, and the study of the mind. Students who major in psychology can expect to develop a knowledge of a broad range of content areas, as well as basic skills in experimental and analytic procedures.

Majors must have departmental approval for electives taken outside the department. Of the required courses in the area of specialization (three regular upper-division courses and two research experiences), no more than two may be taken outside the department. We recommend consulting the department before enrolling in courses offered by other departments.

Prerequisites for the B.A.
Experimental psychology uses the tools and knowledge of science: calculus, probability theory, computer science, chemistry, biology, physics, and statistics. Accordingly, students in upper-division courses must have an adequate background in these topics. Prerequisites for individual courses are specified in the catalog.

A bachelor of arts (B.A.) degree in psychology will be granted if the following requirements have been met:

1. Three lower-division, general-introductory courses will be accepted only if they are approved UCSD courses below or their equivalent. (The three courses can be distributed in any manner.)
 - Biology: 1, 2, 3, 10, 12 (or Cognitive Science 17), 20, 24, 26, 30
 - Chemistry: 4, 6A, 6B, 6C, 11, 12, 13
 - Physics: Any of the 1 and 2 series, 10, 11

2. Three formal skills courses, at least one of which must be calculus. The other two courses may consist of any combination of courses in calculus or logic. Acceptable calculus courses at UCSD include Mathematics 10A-B-C, 20A-B-C. Acceptable logic courses at UCSD include Philosophy 10 and 12.

3. One introduction to computer programming course. Acceptable courses at UCSD are CSE 3, CSE 5A, CSE 5B, CSE 8A, CSE 8B, CSE 11, CSE 12, MAE 5, MAE 9, MAE 10, or CogSci 18. Other courses will be accepted only if they are primarily concerned with programming in a high-level computer language.
Major Requirements for the B.A.

A minimum of twelve upper-division courses in psychology is required. Five must be taken from the core courses (Psychology 101–106), and at least seven from the upper-division elective courses. A minimum of six upper-division psychology courses must be taken at UCSD. These courses must be taken for a letter grade; courses taken on a Pass/No Pass prior to declaring psychology as a major cannot be used to satisfy the major requirement. Excluded from credit toward the major is Psychology 199 (Special Studies); however, Psychology 195 (Instructional Assistant) can be credited once. A grade-point average of at least 2.0 in the upper-division courses of the major is required for graduation.

2XX. Graduate Seminar

We encourage juniors and seniors with an overall 3.0 GPA or better to enroll in graduate seminars. Check the schedule of classes and contact the student affairs office on how to enroll.

Honors Program for the B.A. Program

Students are encouraged to participate in the department’s honors program. It is strongly recommended for all students interested in graduate schools. An overall GPA of 3.3 is a prerequisite. Admission is granted by application in the fall of the junior year (deadline October 31). This program is composed of the following courses.

1. Junior year:
 - Winter: Junior Honors Research Seminar 110. Advanced Statistics and Research Methods 111A
 - Spring: Advanced Statistics and Research Methods 111B

2. Senior Year: A year-long independent research project (Psychology 194-A-B-C) under the sponsorship of a faculty advisor. This research culminates in an honors thesis.

3. At least one laboratory course (Psychology 107, 109, 114, 115, 118A, 118B, 119, 120/121, 120/140, 127) or, upon petitioning, two Psychology 199 Independent Study courses culminating in a research paper accepted by the advisor (199s, however, do not count as upper-division credit toward the major).

 Successful completion of the Honors Program requires a grade of A- in Psychology 194 and a minimum GPA of 3.5 in the upper-division courses taken for the major.

Prerequisites for the B.S.

In general, the prerequisites for the B.S. degree in psychology overlap with the B.A. prerequisites. However, to fulfill the formal skills, we require the mathematics sequence 20A-B-C.

Major Requirements for the B.S.

A minimum of twelve upper-division courses is required. Five of these courses must come from the core courses: Psychology 101–106. The seven elective courses may be chosen from any of the upper-division courses listed for the psychology program at UCSD.

B.S. students must choose an area of specialization (behavior analysis, clinical psychology, cognitive psychology and cognitive neuropsychology, developmental psychology, neuroscience and behavior, sensation and perception, or social psychology), and three courses of the seven electives must be in the chosen area of concentration.

In addition to the twelve upper-division courses, all B.S. degree students must complete two research experience courses in the chosen area. Research experience courses will be comprised of a combination of laboratory courses and Psychology 199 (Independent Study). If two Psychology 199 courses are taken to fulfill this requirement, they must be directed by the faculty within the chosen area of specialization and culminate in a research paper approved by the advisor and submitted to the Undergraduate Student Services Office in due time for graduation.

2XX. Graduate Seminar

We encourage juniors and seniors with an overall 3.0 GPA or better to enroll in graduate seminars. Check the schedule of classes and contact the student affairs office for how to enroll.

Honors Program for the B.S.

The honors program is strongly recommended for all students interested in graduate schools.

In general, the honors program for the B.S. is the same as for the B.A. except that only one 199 rather than two is required. NOTE: The senior thesis, if done with a faculty member affiliated with the chosen area of concentration, will satisfy the laboratory experience requirement.

Successful completion of the honors program requires a grade of A- in Psychology 194 and a minimum GPA 3.5 in the upper-division courses taken for the major.

Upper-Division Course Requirements for the B.S.

Core courses of which five have to be taken for any area of concentration

- Psych 101 Intro to Developmental Psychology
- Psych 102 Intro to Sensation and Perception
- Psych 103 Intro to Principles of Behavior
- Psych 104 Intro to Social Psychology
- Psych 105 Intro to Cognitive Psychology
- Psych 106 Intro to Physiological Psychology

Areas of concentration and their associated courses are listed in alphabetical order below.

(Subject to change—for additional qualifying courses, see the department’s Student Affairs Office, 1533 Mandler Hall).

Concentration in Behavior Analysis

Behavior analysis is based on the principles of Pavlovian and operant conditioning, and other aspects of contemporary associative learning theory. It also includes the application of reinforcement principles and other behavior modification techniques in applied settings (applied behavior analysis).

Courses:

- Psych 109 Lab / Applied Behavior Analysis
- Psych 120* Learning and Motivation
- Psych 121* Lab / Operant Psychology
- Psych 132 Hormones and Behavior
- Psych 134 Eating Disorders
- Psych 135 Evolutionary Principles/Animal Social Behavior
- Psych 140* Lab/Human Behavior
- * to be taken concurrently with Psych 120
Psych 143 Control and Analysis of Human Behavior
Psych 154 Behavior Modification
Psych 168 Psychological Disorders of Childhood
Psych 171 Neurobiology Learning and Memory
Psych 184 Choice and Self Control
Psych 188 Impulse Control Disorders
Psych 199 Independent Study courses in this field, must culminate in a research paper to fulfill lab requirement (but do not count as upper-division psychology courses towards the major).

Concentration in Neuroscience and Behavior

This area studies how the nervous system mediates behavioral effects in the realms of motivation, perception, learning and memory, and attention. It also includes human neurophysiology and aphasia.

Courses:
- Psych 107 Lab / Substance Abuse Research
- Psych 114 Lab / Psychophysiological Perspectives on the Social Mind
- Psych 125 Clinical Neuropsychology and Assessment
- Psych 129 Logic of Perception
- Psych 132 Hormones and Behavior
- Psych 133 Circadian Rhythms—Biological Clocks
- Psych 134 Eating Disorders
- Psych 135 Evolutionary Principles/Animal Social Behavior
- Psych 143 Gender
- Psych 159 Physiological Basis of Perception
- Psych 169 Brain Damage and Mental Function
- Psych 171 Neurobiology Learning and Memory
- Psych 179 Drugs, Addiction, and Mental Disorders
- Psych 181 Drugs and Behavior
- Psych 188 Impulse Control Disorders
- Psych 189 Brain, Behavior, and Evolution
- Psych 190 Parenting
- Psych 199 Independent Study courses in this field, must culminate in a research paper to fulfill lab requirement (but do not count as upper-division psychology courses towards the major).

Concentration in Clinical Psychology

This area studies psychological and physiological causes of and treatments for mental illness in children and adults.

Courses:
- Psych 107 Lab / Substance Abuse Research
- Psych 109 Lab / Applied Behavior Analysis
- Psych 124 Intro to Clinical Psychology
- Psych 125 Clinical Neuropsychology and Assessment
- Psych 131 Personality: Theory and Research
- Psych 132 Hormones and Behavior
- Psych 133 Circadian Rhythms—Biological Clocks
- Psych 134 Eating Disorders
- Psych 151 Tests and Measurement
- Psych 154 Behavior Modification
- Psych 155 Social Psychology and Medicine
- Psych 163 Abnormal Psychology
- Psych 168 Psychological Disorders in Children
- Psych 172 Human Sexuality
- Psych 184 Choice and Self-Control
- Psych 188 Impulse Control Disorders
- Psych 190 Parenting
- Psych 199 Independent Study courses in this field, must culminate in a research paper to fulfill lab requirement (but do not count as upper-division psychology courses towards the major).

Concentration in Cognitive Psychology and Cognitive Neuropsychology

a. The cognitive area studies reasoning, thinking, language, judgment, and decision-making in adults and children (including attention, memory, and visual and auditory information processing).

b. The cognitive neuropsychology area studies cognitive processes and their implementation in the brain. Cognitive neuroscientists use methods drawn from brain damage, neuropsychology, cognitive psychology, functional neuroimaging, and computer modeling.

Courses:
- Psych 114 Lab/Psychophysiological Perspectives on the Social Mind
- Psych 115 Lab / Cognitive Psychology
- Psych 118 Lab 118A-B / Language Processing
- Psych 119 Lab / Psycholinguistics
- Psych 129 Logic of Perception
- Psych 137 Social Cognition
- Psych 141 Evolution and Human Nature
- Psych 142 Psychology of Consciousness
- Psych 144 Memory and Amnesia
- Psych 145 Psychology of Language
- Psych 148 Psychology of Judgment and Decision
- Psych 152 Concepts of Intelligence
- Psych 156 Cognitive Development in Infancy
- Psych 161 Introduction to Engineering Psychology
- Psych 170 Introduction to Cognitive Neuropsychology
- Psych 171 Neurobiology Learning and Memory
- Psych 187 Development of Social Cognition
- Psych 199 Independent Study courses in this field, must culminate in a research paper to fulfill lab requirement (but do not count as upper-division psychology courses towards the major).

Concentration in Developmental Psychology

This area studies all aspects of human development with emphasis on social and personality development, perceptual development, and language acquisition. Also includes the study of developmental psychopathology.

Courses:
- Psych 109 Lab / Applied Behavior Analysis
- Psych 114 Lab / Psychophysiological Perspectives on the Social Mind
- Psych 133 Circadian Rhythms—Biological Clocks
- Psych 135 Evolutionary Principles/Animal Social Behavior
- Psych 141 Evolution and Human Nature
- Psych 145 Psychology of Language
- Psych 147 Gender
- Psych 152 Concepts of Intelligence
- Psych 156 Cognitive Development in Infancy
- Psych 158 Interpersonal Relationships
- Psych 168 Psychological Disorder of Childhood
- Psych 172 Human Sexuality
- Psych 180 Adolescence
- Psych 185 Applied Developmental Psychology
- Psych 187 The Development of Social Cognition
- Psych 190 Parenting
- Psych 199 Independent Study courses in this field, must culminate in a research paper to fulfill lab requirement (but
Courses:

Psych 125 Clinical Neuropsychology and Assessment
Psych 129 Logic of Perception
Psych 138 Sound and Music Perception
Psych 159 Physiological Basis of Perception
Psych 169 Brain Damage and Mental Functions
Psych 182 Allusions and the Brain
Psych 199 Independent Study courses in this field, must culminate in a research paper to fulfill lab requirement (but do not count as upper-division psychology courses towards the major).

Concentration in Social Psychology

This area studies human behavior in social situations, with specialization in such topics as emotion, aggression, social cognition, and aesthetics. It also encompasses applied social psychology, including psychology and the law and behavioral medicine.

Courses:

Psych 114 Lab/Psychophysiological Perspectives on the Social Mind
Psych 127 Applied Social Psychology
Psych 130 Delay of Gratification
Psych 131 Personality: Theory and Research
Psych 135 Evolutionary Principles/Animal Social Behavior
Psych 137 Social Cognition
Psych 139 Social Psychology of Sports
Psych 141 Evolution and Human Nature
Psych 147 Gender
Psych 149 Social Psychology of Theater
Psych 152 Concepts of Intelligence
Psych 153 Psychology of Emotion
Psych 155 Social Psychology and Medicine
Psych 157 Happiness
Psych 158 Interpersonal Relationships
Psych 160 Groups
Psych 162 Psychology and the Law
Psych 172 Human Sexuality
Psych 175 Psychology and the Arts
Psych 178 Industrial Organization Psychology
Psych 186 Psychology and Social Policy
Psych 187 Development of Social Cognition
Psych 190 Parenting
Psych 199 Independent Study courses in this field, must culminate in a research paper to fulfill lab requirement (but do not count as upper-division psychology courses towards the major).

Advising

Students are strongly encouraged to choose an advisor among the faculty. The Undergraduate Student Services Office will assist with the choice, office hours, or appointments. The student then plans her or his major program with the aid of the advisor. Such planning should take place in the student’s sophomore year or as soon as possible thereafter.

Preparation for Graduate School

Regardless of the area of specialization that a student chooses to pursue, it is strongly advised that she or he obtain a strong general background in statistics and experimental methods through research with a faculty member. A recommended program of study to accomplish these goals is the following:

1. At least five courses from the group numbered Psychology 101–106 (Core Courses)
2. At least one laboratory course (Psychology 107, 109, 114, 118A, 118B, 119, 120/121, 120/140, 127)
3. Introduction to Statistics and Advanced Statistics (Psychology 60 and 111A-B)
4. The Senior Independent Research Project, Psychology 194A-B-C, as part of the Honors Program or the Research Project 196A-B-C.

Quarterly, the Associated Students’ U.S. Grants Program awards funds to undergraduate students’ research independent of in-class projects. We encourage students to apply. Also, check the Web at http://orpheus.ucsd.edu/finaid/ Scholarships/ucsdsh.htm, usgrants@ucsd.edu, and http://usgrants.ucsd.edu; or visit the U.S. Grants Office on the third floor of the Price Center room 3.346 for an application.

Preparation for Graduate School in Clinical Psychology

The above program is recommended for all students planning to go on to graduate school, including those interested in a clinical graduate program. Experience in research methodology and a general knowledge of psychology are considered the most important features and are preferred over a large number of courses in one particular area. Students are strongly advised not to take a large number of clinical courses in lieu of the recommended program of study listed above.

The Minors Program

The minor in psychology consists of at least twenty-eight units (seven four-unit courses), of which at least twenty units (five four-unit courses) must be upper-division. At least four courses have to be taken at UCSD.

If Psychology 60 (Statistics) is chosen as one of the lower-division courses, it, too, has to be taken for a letter grade. The application for a minor can be obtained from your college. A grade-point average of at least 2.0 is required for graduation.

Education Abroad

Students are often able to participate in the UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP) while still making progress toward the major. Students considering this option should discuss their plans with the director of Undergraduate Studies before going abroad, and courses taken abroad must be approved by the department. Information on EAP/OAP is detailed in the Education Abroad Program of the UCSD General Catalog. Interested students should contact the Program Abroad Office in the International Center.

Transfer Credit

In general, all introductory courses in experimental psychology are accepted for lower-division credit toward a psychology minor. Lower-division courses covering special topics in psychology (e.g., personal adjustment, human sexuality) will be accepted only if: 1) the student...
had a general introductory course as a prerequisite, and 2) the student had satisfied this prerequisite before taking the special topics course. Advance Placement credit for Statistics is not sufficient for the psychology major. Upper-division psychology courses will be evaluated for transfer credit on a course by course basis.

Elementary School Teaching
Majoring in psychology offers excellent preparation for teaching in the elementary schools. If you are interested in earning a California teaching credential from UCSD, contact the Teacher Education Program (TEP) as early as possible in your academic career for information about the prerequisite and professional preparation requirements.

Major Requirements for the Integrated B.S./M.A.
An integrated program leading to a bachelor of science degree and a master of science degree in psychology is offered to those undergraduate students who are enrolled in any of the major programs offered in the Department of Psychology at UCSD. Qualified students are able to obtain the M.A. degree within one year following receipt of the B.S. degree. Students interested in applying to this program must meet with the B.S./M.A. advisor in the psychology student affairs office fall quarter of their junior year.

The program is open only to UCSD undergraduates. Psychology does not have financial aid available for students enrolled in this program.

Eligibility and Enrollment
To be eligible, students must have completed the first two quarters of their junior year in residence at UCSD and must have an overall UCSD GPA of at least 3.0 and students’ major GPA should be at least 3.3. It is the responsibility of the prospective student to select a faculty member who would be willing to serve as the student’s advisor and in whose laboratory the student would complete at least twenty-four units of research over a two-year period. Twelve of the twenty-four units of research Psychology 194A-B-C or 196A-B-C must be completed during the student’s senior undergraduate year and must be taken IN ADDITION to the requirements for the bachelor of science degree.

There are two applications:

1. In fall of the junior year, students apply to the integrated B.S./M.A. track if they fulfill above requirements.

2. In the spring of their senior year, they apply to the M.A. GRES are not required.

Requirements for the M.A.
For an M.A. in psychology, students must pick a concentration in one of six areas: Behavioral, Cognitive, Developmental, Neuroscience and Behavior, Sensation and Perception, and Social. Students who have been approved (by both the Department of Psychology and UCSD Office of Graduate Studies) for the program must enroll in their graduate year in:

- Psychology 201A-B Quantitative Methods,
- Psychology 270A-B-C Introduction to Laboratory Experimentation,
- Four psychology seminars, two of which are in their area of concentration. In addition, three of the four seminars must be pro-seminars, which include:
 - Psychology 217 Developmental Psychology,
 - Psychology 218 Cognive Psychology,
 - Psychology 219 Behavioral Psychology,
 - Psychology 220 Social Psychology,
 - Psychology 221 Sensation and Perception, and
 - Psychology 222 Behavioral Psychology.
- one Psychology 500 Teaching Instruction

This amounts to forty units of graduate work. All courses must be completed with the grade of B- or better. All course work is to be approved by the advisors (forms available from the Undergraduate Students Affairs Office). Students are expected to meet the graduate requirements for the M.A. in one year (three consecutive, contiguous, academic quarters, beginning in the fall after graduation). Any deviation from this plan, such as a break in enrollment for one or more quarters, will cause the student to be dropped from the program.

All forms required for the program must be submitted and approved by the psychology undergraduate coordinator prior to each quarter of the graduate year. This includes the Application for Candidacy. Students must pay fees and be officially enrolled at UCSD during the quarter that the master’s degree is to be awarded. The thesis draft should be submitted to the Office of Graduate Studies and Research for review before the final copy is officially submitted.

See the Undergraduate Students Affairs Office for further details.

The Graduate Program
The Department of Psychology provides broad training in experimental psychology. Increased specialization and the general burgeoning of knowledge make it impossible to provide training in depth in every aspect of experimental psychology, but most aspects are represented in departmental research.

Preparation
Apart from the general university requirements, the department generally expects adequate undergraduate preparation in psychology. A major in the subject, or at least a strong minor, is normally a prerequisite, but applicants with good backgrounds in such fields as biology and mathematics are also acceptable.

Language Requirements
There is no foreign language requirement.

Graduate Curriculum
All students must fulfill all course requirements (stated below) while registered as graduate students in psychology at UCSD. There may occasionally be exceptions granted to this rule. Requests for exception should be in the form of petitions from students and their advisors to the Committee on Graduate Affairs. It is in the best interest of the student if these petitions are forthcoming at the time of admission to the graduate program. In this way, the committee, the students, and their advisors will all be aware of the course requirements before any of them are taken.

Program of Study
Courses are divided into six areas: behavior analysis (including basic and applied), biopsychology (including neuropsychology and neurophysiology), cognitive (including attention, language, and perception), developmental (including language acquisition), sensation and perception (including vision and audition), and social (including health and law). The Graduate
Affairs Committee provides an approved list of courses from these areas. In the first year of study, each student must fulfill the following four requirements:

1. Each student must fulfill a quantitative methods requirement, either by taking two quantitative methods courses approved by the Graduate Affairs Committee (currently 201A and 201B), or by showing a satisfactory knowledge of these courses through an examination.

2. In addition to the quantitative methods requirement, each student is expected to take four proseminars and four approved courses from the list prepared by the Graduate Affairs Committee. All course work must be completed by the end of the third year.

3. Each first-year graduate student is required to submit a research paper on the research project (Psychology 270ABC). The paper should be comparable in style, length, and quality to papers published in the normal, refereed journals of the student’s research area. (The publication manual of the American Psychological Association, fourth edition, 1995, gives an acceptable format.)

The research paper will be read and evaluated by the student’s research advisor and by at least two other readers appointed by the graduate advisor.

The research paper is presented orally at a research meeting held at the end of the spring quarter. Attendance at this meeting is a requirement for the department’s graduate students and faculty. Typically, each student is allowed ten minutes to present the paper, with a five-minute question period following the presentation.

4. A teaching requirement must be met. (see below)

All students are evaluated by the entire faculty at the end of the academic year. The normal minimum standards for allowing a student to continue beyond the first year are:

a. satisfactory completion of the first-year research project (including oral presentation),

b. at least a B+ in the quantitative methods courses,

c. a B+ average in the courses which fulfill the area requirements, and

d. having a faculty advisor in the psychology department.

Any student whose needs cannot be reasonably met with courses conforming to these guidelines is encouraged to petition the Graduate Affairs Committee. The petition should contain a specific list of courses and a statement of justification and must be approved by the student’s advisor.

Advancing to Candidacy

In order to advance to Ph.D. candidacy a student must:

1. Complete all first year requirements,

2. Complete an additional four elective courses from the list prepared by the Graduate Affairs Committee, and

3. Complete the qualifying examination for the Ph.D.

The qualifying examination is divided into two sections to be taken separately by all students. Part I of the qualifying exam consists of a paper written by the student that is modeled after those published in Psychological Bulletin or Psychological Review. Ideally, the paper would consist of a detailed review and theoretical synthesis of a coherent body of research. The paper should demonstrate independent and original thinking on the part of the student, and should either take a theoretical stance or recommend experiments designed to resolve theoretical ambiguities (i.e., the paper should not merely review published research).

Students form a qualifying committee in much the same way that they form a dissertation committee. The same rules apply, except that members from outside the department need not be included (although up to two may be). Once the committee is formed, the student should prepare a brief (e.g., three pages) proposal defining the area of research and the theoretical issues that will be addressed in the paper. A proposal meeting is then arranged (usually in spring quarter of the student’s second year), and committee members may at that time recommend changes in the scope of the paper and define their expectations.

The paper does not have a prescribed length, although low-end and high-end limits of thirty and fifty pages, respectively, seem reasonable. An oral defense of the paper is required (and should be completed by the end of the student’s third year).

Part II of the qualifying examination is the defense of the dissertation proposal. This will normally follow Part I of the qualifying examination and will be an oral examination including outside examiners.

Teaching

In order to acquire adequate teaching experience, all students are required to participate in the teaching activities of the department for at least four years (one quarter for the first year and two quarters the second through the fourth year).

Residency

Each student must complete the requirements for qualification for candidacy for the Ph.D. degree by the end of the third year of residence. Any student failing to qualify by this time will be placed on probation. A student who fails to qualify by the end of the spring quarter of the fourth year of residence will automatically be terminated from the department.

No students may allow more than eight calendar years to elapse between starting the graduate program and completing the requirements for the Ph.D. degree. Students will automatically be terminated from the program at the end of the spring quarter of their eighth calendar year in the department.

Research

In each year of graduate study all students are enrolled in a research practicum (Psychology 270 in the first year; Psychology 296 in subsequent years). Students are assigned to current research projects in the department and receive the personal supervision of a member of the staff.

Departmental Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of four years. Total university support cannot exceed eight years. Total registered time at UCSD cannot exceed eight years.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.
LOWER-DIVISION

Experimental Requirements

Psychology at UCSD is a laboratory science. We are concerned with the scientific development of knowledge about human and animal behavior and thought. Accordingly, experience with experimental procedures plays an important role in the undergraduate and graduate training of students.

All psychology majors must learn experimental methods, including basic statistical techniques. Students in the Honors Program must take laboratory courses and also do a year-long undergraduate thesis.

ATTENTION lower-division students:
Students enrolled in the lower-division psychology courses must serve as experimental subjects for three hours per course. The requirement is intended to be a positive educational supplement to the course work. Part of each experimental session will be devoted to explanation and discussion of the purpose and nature of the experiment. This usually will be done at the end of the experimental session. Students always have the right to discontinue participation at any point in any study. Students who are unable to participate or who choose not to participate will be provided alternate service assignments which are designed to serve similar educational goals.

1. Psychology (4)
A comprehensive series of lectures covering the basic concepts of modern psychology in the areas of human information processing, learning and memory, motivation, developmental processes, language acquisition, social psychology, and personality.

2. General Psychology: Biological Foundations (4)
A survey of physiological and psychological mechanisms underlying selected areas of human behavior. Emphasis will be upon sensory processes, especially vision, with emphasis also given to the neuropsychology of motivation, memory, and attention.

3. General Psychology: Cognitive Foundations (4)
This course is an introduction to the basic concepts of cognitive psychology. The course surveys areas such as perception, attention, memory, language, and thought. The relation of cognitive psychology to cognitive science and to neuropsychology is also covered.

4. General Psychology: Behavioral Foundations (4)
This course will provide a basic introduction to behavioral psychology, covering such topics as classical conditioning, operant conditioning, animal learning and motivation, and behavior modification.

5. General Psychology: Social Foundations (4)
This course will provide a basic introduction to social psychology, covering such topics as emotion, aesthetics, behavioral medicine, person perception, attitudes and attitude change, and behavior in social organizations.

6. Introduction to Statistics (4)
Introduction to the experimental method in psychology and to mathematical techniques necessary for experimental research. Prerequisite: one year mathematics or consent of instructor.

7. Freshmen Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen. Prerequisites: none.

8. Undergraduate Seminar (1)
This seminar introduces the various subdisciplines in psychology and their research methods, and also explores career and graduate school opportunities. This includes informal presentations by faculty, graduate students, and other professionals.

9. Independent Study (2.4)
Independent study or research under direction of a member of the faculty. Prerequisites: lower-division standing, completion of at least thirty units of undergraduate study at UCSD with a minimum UCSD GPA of 3.0; completed and approved Special Studies form.

UPPER-DIVISION

101. Introduction to Developmental Psychology (4)
A lecture course on a variety of topics in the development of the child, including the development of perception, cognition, language, and sex differences. Prerequisite: upper-division standing; Psychology 60 or BIEB 100 or COGS 14 or Econ. 120A or Math. 11 or Math. 181A or Math. 183 or Soc/L 60.

102. Introduction to Sensation and Perception (4)
An introduction to problems and methods in the study of perception and cognitive processes. Prerequisite: upper-division standing; Psychology 60 or BIEB 100 or COGS 14 or Econ. 120A or Math. 11 or Math. 181A or Math. 183 or Soc/L 60.

103. Introduction to Principles of Behavior (4)
An example of the principles of conditioning and their application to the control and modification of human behavior. Prerequisites: upper-division standing; Psychology 60 or BIEB 100 or COGS 14 or Econ. 120A or Math. 11 or Math. 181A or Math. 183 or Soc/L 60.

104. Introduction to Social Psychology (4)
An intensive introduction and survey of current knowledge in social psychology. Prerequisite: upper-division standing; Psychology 60 or BIEB 100 or COGS 14 or Econ. 120A or Math. 11 or Math. 181A or Math. 183 or Soc/L 60.

105. Introduction to Cognitive Psychology (4)
Introduction to experimental study of higher mental processes. Topics to be covered include pattern recognition, perception, and comprehension of language, memory, and problem solving. Prerequisites: upper-division standing; Psychology 60 or BIEB 100 or COGS 14 or Econ. 120A or Math. 11 or Math. 181A or Math. 183 or Soc/L 60.

106. Introduction to Physiological Psychology (4)
Intensive introduction to current knowledge of physiological factors in learning, motivation, perception, and memory. Prerequisites: upper-division standing; Psychology 60 or BIEB 100 or COGS 14 or Econ. 120A or Math. 11 or Math. 181A or Math. 183 or Soc/L 60.

107. Lab/Substance Abuse Research (4)
This lab course examines theory and research design and methods for substance abuse in adolescent adult populations. This course serves as preparation for individual research topics culminating in a paper.

108. Introduction to Cognitive Neuroscience (4)
This course covers background history, neuroanatomy, methods, and results from neuromaging and neuropsychological studies of behavior. Topics include attention, motor control, executive function, memory, learning, emotion, and language. Prerequisites: upper-division standing; Psychology 60 or BIEB 100 or COGS 14 or Econ. 120A or Math. 11 or Math. 181A or Math. 183 or Soc/L 60.

109. Lab/Applied Behavior Analysis (4)
This course will provide students with hands-on training in the application of behavioral research technology to a clinical population. Students will meet weekly for lecture, discussion, research article reviews, and specific technique training. In addition, students will work on a research project. Prerequisite: Psychology 199 in the Schreibman Autism Laboratory recommended.

110. Juniors Honors Research Seminars (4)
Meetings consist of research seminars by a range of departmental faculty, exposing students to contemporary research problems in all branches of experimental psychology. Class discussions will follow faculty presentations. Evaluation is based on assigned papers. Prerequisites: admission by application with a minimum UCSD GPA of 3.3. Department stamp required.

111A. Research Methods I (6)
Designed to provide training in the applications of advanced statistical methods in the context of initial instruction in experimental design. Emphasis will be placed on the development of statistical problem-solving skills, practical computer applications, and scientific report writing. Prerequisites: minimum grade of B in Psychology 60 or equivalent and junior standing. Open to honors students or consent of instructor. Department stamp required.

111B Research Methods II (6)
Designed to extend the material of Psychology 111A. Focusing on the techniques developed previously. Participate in data collection, data organization, statistical analysis, and graphic displays, emphasis placed on developing scientific report writing, presentations, and critical thinking about experimental methods. Prerequisite: Psychology 111A or consent of instructor.

114. Laboratory in Psychophysiological Perspectives on the Social Mind (4)
Lab course on the use of psychophysiological methods to investigate "the social mind," or the cognitive and emotional processes involved in understanding and reacting to other people. Overview of major research topics and methods applying selected techniques in actual experiments. Students will engage in developing individual research questions to actively participate in designing and conducting the experiments. Prerequisite: upper-division standing.

115. Laboratory in Cognitive Psychology (4)
Lecture and laboratory work in human information processing. Prerequisites: upper-division standing or consent of instructor.
118A. Real-Time Examination of Language Processing (4)
This lab course examines the design and methods for the real-time examination of language processing in normal and disordered (aphasic, dyslexic, child language impaired, etc.) language populations. This course serves as preparation for individual research topics in Psychology 118B. Prerequisite: a course in language or cognition (see professor for exceptions).

118B. Real-Time Examination of Language Processing (4)
This lab is a continuation of Psychology 118A. The introduction to laboratory methods is now applied to individual research projects culminating in a lab presentation and paper. Prerequisite: Psychology 118A or consent of instructor.

119. Psycholinguistics/Cognition Laboratory (4)
Methods and practicum in experimental study of language, reading, and related cognitive processes (reasoning, problem solving) in young adult populations. Prerequisites: Psychology 118A-B or consent of instructor. Department stamp required.

120. Learning and Motivation (4)
Survey of research and theory in learning and motivation. Includes instincts, reinforcement, stimulus control, choice, aversive control, and human application. Prerequisite: upper-division standing. Must be taken concurrently with Psychology 121 or Psychology 140.

121. Laboratory in Operant Psychology (4)
Lectures and laboratory in operant psychology. Prerequisite: upper-division standing. May be taken concurrently with Psychology 120.

124. Introduction to Clinical Psychology (4)
Introduction to major concepts and models used in psychological assessment and psychotherapeutic intervention. Several modalities of psychotherapy (individual, group, and family) will be reviewed along with research on their efficacy. Prerequisite: Psychology 163.

125. Clinical Neuropsychology and Assessment (4)
A fundamental grounding in basic neuropsychological principles. Major topics include functional neuroanatomy and physiology of the human brain, neurobehavioral presentations of common neurologic and psychiatric conditions, and an introduction to diagnostic neuropsychological assessment and methods. Prerequisite: Psychology 60.

Emphasizes learning of experimental and quasi-experimental methodology applicable to social problems. Students carry out field research in areas such as the psychology of law (judicial decision-making), traffic-related behavior (risk taking), environmental psychology, and other areas of student interest. Prerequisites: Psychology 104 and 60.

129. Logic of Perception (4)
Lectures will cover three topics: 1) tradition of experimental work on perception that dates back to Helmholtz; 2) discussion and criticisms of theories of perception; 3) recent physiological work on the visual pathways that may give us insights into neural mechanisms underlying perception. Prerequisite: upper-division standing.

130. Delay of Gratification (4)
This course will review the research on delay of gratification. It will cover what makes it in general so tough, what situations make it possible, who can do it, and what the implications of this ability are. Prerequisite: upper-division standing.

131. Personality: Theory and Research (4)
Introduction to major theoretical approaches to the study of personality constructs and processes. Disturbances in personality development and functioning will be discussed and illustrated. The social learning theory perspective will be emphasized relative to other theoretical frameworks. Prerequisite: upper-division standing.

132. Hormones and Behavior (4)
A survey of the effects of chemical signals (hormones, neurohormones and pheromones) on behavior as well as reciprocal effects of behavior on these chemical systems. Specific topics covered include aggression, sex and sexuality, feeding, learning, memory and mood. Animal studies will be emphasized. Prerequisite: Psychology 106 or consent of instructor.

133. Circadian Rhythms—Biological Clock (4)
Examples and fundamental properties of the daily biological clock in humans, animals and microbes. Experimental approaches employed to understand how organisms keep time and how this applies to human health. Prerequisite: Psychology 106 or BILD 1 or consent of instructor. This course is cross-listed with BMIM 116.

134. Eating Disorders (4)
This course will cover the biology and psychology of eating disorders such as anorexia nervosa, bulimia nervosa, and binge eating disorder. Abnormal, as well as normal eating will be discussed from various perspectives including endocrinological, neurobiological, psychological, sociological, and evolutionary. Prerequisite: upper-division standing.

135. Animal Behavior (4)
Mechanisms that regulate the behavior of animals, including neural, endocrine, genetic, and environmental mechanisms, with a strong emphasis on evolution (natural and sexual selection). Topics include communication, sociality, mating strategies, and parental behavior. Prerequisites: upper-division standing and consent of instructor.

137. Social Cognition (4)
Social cognition blends cognitive and social psychology to show how people make sense of the social world. Social perception, inference, memory, motivation, and affect, understanding of the self, stereotypes, and cultural cognition. Prerequisite: upper-division standing.

138. Sound and Music Perception (4)
Topics include the physiology of the auditory system, perception and pitch, loudness and timbre, localization of sound in space, perception of melodic and temporal patterns, handedness correlates, and musical illusions and paradoxes. There will be a substantial number of sound demonstrations. Prerequisites: upper-division standing and consent of instructor.

139. Social Psychology of Sports (4)
This course focuses on the applications of social psychological principles and finding to the understanding of sports. Topics include the role of motivation, level of aspiration, competition, cooperation, social comparison, and optimal arousal, spectators’ perspective, motivation and perceptions of success, streaks, etc. Prerequisite: upper-division standing or consent of instructor.

140. Lab/Human Behavior (4)
Laboratory on the principles of human behavior, including choice behavior, self-control, and reasoning. Prerequisites: 120 (may be taken concurrently); upper-division standing.

141. Evolution and Human Nature (4)
Can important aspects of human behavior be explained as a result of natural selection? Focus on sex differences, selfishness and altruism, homicide and violence, and context effects in human reasoning. Prerequisites: upper-division standing and consent of instructor.

143. Control and Analysis of Human Behavior (4)
An overview of the behavioral approach including basic principles, self-control, clinical applications, and the design of cultures. Prerequisite: upper-division psychology majors.

144. Memory and Amnesia (4)
This course will review basic research into the nature of memory. It begins with an examination of historical milestones in the study of memory and then considers research concerned with contemporary models of memory and amnesia. Prerequisite: upper-division standing.

145. Psychology of Language (4)
Introduction to research on language comprehension and production. Focus on brain basis of language, language origin and universal structure, language disorders (aphasia, dyslexia), animal language, linguistic community differences, and the mental processes underlying normal language processing. Prerequisite: a course in language, cognition, or philosophy of mind recommended.

147. Gender (4)
This interactive undergraduate seminar will examine biological approaches to gender differences and sexuality. Do the biosciences further our understanding of these issues? How are biological claims embraced or rebuffed by other disciplines? Students will read primary scientific literature and criticism. Prerequisite: department stamp.

148. Psychology of Judgment and Decision (4)
Broadly defined, the field of judgment and decision making examines preferences and subjective probability, and how they are combined to arrive at decisions. The course will cover history and current topics.

149. Social Psychology of Theater (4)
Exploration of the relationship between social psychology and drama, focusing on the use of psychological principles in plays (by playwrights) and their performance (by directors, actors, and choreographers). Prerequisites: upper-division standing, major in psychology or theater, or consent of instructor.

151. Tests and Measurement (4)
This course provides an introduction to psychological testing presented in three components: 1) psychometrics and statistical methods of test construction; 2) application of psychological tests in industry, clinical practice, and other applied settings; and 3) controversies in the application of psychological tests. Prerequisite: Psychology 60.

152. Conceptions of Intelligence (4)
This course will examine the concept of intelligence from several perspectives: its historical development, its measure in terms of IQ test, and its role in practical affairs. Also included will be its role in comparative psychology and attempts to analyze intelligence in terms of more fundamental cognitive processes. Prerequisite: Psychology 60 or consent of instructor.
153. Psychology of Emotion (4)
Past and current findings and theories on emotion. Facial expressions of emotions, psychophysiology, evolutionary perspectives, and specific emotions: anger, fear, and jealousy.
Prerequisite: upper-division standing or consent of instructor.

154. Behavior Modification (4)
Extension of learning principles to human behavior, methods of applied behavior analysis, and applications of behavioral principles to clinical disorders and to normal behavior in various settings.
Prerequisite: upper-division standing.

155. Social Psychology and Medicine (4)
Explores areas of health, illness, treatment, and delivery of treatment; and social psychological perspectives in the medical area.
Prerequisites: Psychology 60 or equivalent and 104.

156. Cognitive Development in Infancy (4)
Examines perception and cognition in the first year of life. Different theories of cognitive change in infancy will be evaluated.
Prerequisite: Psychology 60 and either Psychology 101 or HDP 1.

157. Happiness (4)
This course will address the psychology of happiness. The discussions and readings, consisting largely of original research articles. Will explore such questions as: what is happiness? How do we measure it, and how do we tell who has it? What is the biology of happiness and what is its evolutionary significance? What makes people happy—youth, fortune, marriage, chocolate? Is the pursuit of happiness pointless?
Prerequisite: upper-division standing.

158. Interpersonal Relationships (4)
Seminar-style course to examine theories and empirical work pertaining to interpersonal relationships; attraction, jealousy, attachments, love.
Prerequisite: upper-division standing.

159. Physiological Basis of Perception (4)
A survey of sensory and perceptual phenomena and the physiological mechanisms underlying them.
Prerequisite: Psychology 102 or consent of instructor.

160. Groups (4)
Causes and consequences of gregariousness, stress, validating attitudes, improving efficiency, consolidating power, permitting loafing, rejecting deviates, and insulating group members from unpleasant outside influence.
Prerequisite: upper-division standing.

161. Introduction to Engineering Psychology (4)
Surveys human perceptual and cognitive limitations and abilities important in designing "user-friendly" computers and devices, improving aviation and traffic safety, and other engineering challenges. Topics include human vision as it bears on display design (including virtual-reality), short-term memory limitations, learning and practice, effects of noise and stress, causes of human error and their minimization.
Prerequisites: upper-division standing and consent of instructor.

162. Psychology and the Law (4)
Research dealing with psychological factors in the legal system will be surveyed. Particular emphasis will be placed on applying psychological theory and methods to the criminal justice system in an attempt to understand the behavior of its participants.
Prerequisite: Psychology 60 and 104.

163. Abnormal Psychology (4)
Surveys origins, characteristics and causes of abnormal behavior and the biological and environmental causes of abnormality.
Prerequisite: upper-division standing.

166. History of Psychology (4)
Survey of the major trends and personalities in the development of psychological thought. Emphasis given to such selected topics as mind-body problem, nativism vs. empiricism, and genesis of behaviorism. Open to psychology majors with senior standing only.

168. Psychological Disorders of Childhood (4)
Explores different forms of psychological deviance in children (psychosis, neurosis, mental retardation, language disorders and other behavior problems). Emphasis on symptomatology, assessment, etiological factors, and various treatment modalities.
Prerequisite: upper-division standing.

169. Brain Damage and Mental Functions (4)
Studies neural mechanisms underlying perception, memory, language, and other mental capacities. What happens to these capacities when different parts of the brain are damaged? What can we learn about the normal brain by studying patients?
Prerequisite: upper-division standing.

171. Neurobiology of Learning and Memory (4)
Studies the neurobiology of learning and memory, from cognitive to molecular neuroscience, including human, animal, and cellular; and molecular studies of memory. Topics include amnesia, mental retardation, exceptional intelligence, aging, and Alzheimer's disease.
Prerequisites: Psychology 2 or 106 or 181, upper-division standing or consent of instructor.

172. The Psychology of Human Sexuality (4)
Important issues in human sexuality including sex and gender, sexual orientation, reproductive technology, and sexual dysfunction.
Prerequisite: upper-division standing.

173. Psychology of Food and Behavior (4)
Reviews the psychology of food and behavior. Topics will include biological, psychological, and social influences; taste preferences and aversions and how they are formed and how culture influences the selection and consumption of food; and food-related behaviors across the lifespan.
Prerequisite: upper-division standing or consent of instructor.

175. Psychology and the Arts (4)
An interdisciplinary course focusing on theoretical ideas and empirical research that relate contemporary psychology (social and cognitive, psychophysiology, motivation and emotion) to issues in various aesthetic and artistic domains, as visual arts, music, literature, criticism, and the performance arts.
Prerequisite: upper-division standing; major in Psychology, Music, Visual Arts, Communications, Theatre, or Literature, or permission of instructor.

178. Organizational Psychology (4)
Examines human behavior in industrial, business, and organizational settings; and psychological principles as applied to selection, placement, management, and training. The effectiveness of individuals and groups within organizations, including leadership and control, conflict and cooperation, motivation, and organizational structure and design, is examined.
Prerequisite: upper-division standing.

179. Drugs, Addiction, and Mental Disorders (4)
Considers the use, abuse, liability, and psychotherapeutic effects of drugs in humans. Lectures are supplemented by guest lecturers from clinical experts in psychology and psychiatry.
Prerequisite: one lower-division psychology course (1, 2, 3, or 4) or upper-division standing.

180. Adolescence (4)
This course will adopt a multidisciplinary approach toward understanding the period of human adolescence. A strong focus on the neurobiological aspects of adolescence will be combined with psychological, anthropological, and sociological considerations.
Prerequisite: upper-division standing.

181. Drugs and Behavior (4)
Develops basic principles in psychopharmacology while exploring the behavioral effects of psychoactive drugs and mechanisms of action drugs.
Prerequisite: psychology major or minor, or biology major or minor.

182. Illusions and the Brain (4)
This course explores the bases of illusions in terms of perceptual and cognitive principles, and the underlying brain mechanisms; extensive demonstrations are included.
Prerequisite: upper-division standing.

184. Choice and Self-Control (4)
Experimental analysis of choice behavior, with an emphasis on the types of choice involved in self-control. Focus on conditions under which decision-making is optimal.
Prerequisite: upper-division students in psychology, biology, economics, or consent of instructor.

185. Applied Developmental Psychology (4)
This seminar course deals with how developmental psychologists conduct scientific studies that have direct practical implications for children's well-being. Major issues to be discussed are: child, children, literacy, school violence, impact of media on child development, and developmental psychopathology.
Prerequisite: upper-division standing and Psychology 101.

186. Psychology and Social Policy (4)
This course will examine social policy issues from the psychological point of view. Each social policy issue will be discussed in a descriptive manner and will include (with student input) an array of both pro and con arguments. The psychological (behavioral) assumptions underpinning the pro and con arguments will then be identified and the empirical evidence for these assumptions will be analyzed.
Prerequisite: Psychology 60 and 104.

187. Development of Social Cognition (4)
This course will examine reasoning about people from a developmental perspective. Topics will include emotional understanding, achievement motivation, peer relations, social categories, and culture.
Prerequisite: Psychology 101.

188. Impulse Control Disorders (4)
Problems of impulse control are important features of major psychiatric disorders but also of atypical impulse control disorder such as: pathological gambling, compulsive sex, eating, exercise, shopping. Focus: development, major common features, treatment, and neurobiological basis of impulse control disorders.
Prerequisite: upper-division standing.

189. Brain, Behavior, and Evolution (4)
A survey of natural behaviors, including birdsong, prey capture, localization, electro-reception, and echo-location, and the neural systems that control them, emphasizing broad fundamental relationships between brain and behavior across species.
Prerequisites: Psychology 103 and 106, or permission of instructor.
190. Parenting (4)
This course adopts an interdisciplinary approach to the complex construct of parenting. Parenting is explored with respect to history, culture, development, psychology, biology, etc. Controversial issues such as the influence of the media, family structure, and discipline strategies are analyzed. Prerequisite: upper-division standing.

191. Psychology of Sleep (4)
Topics include basic psychology, evolutionary models of the purpose of sleep, the role of sleep in learning/creativity, dreams, and sleep disorders. Prerequisites: upper-division standing.

193. Topics in Psychology (4)
Selected topics in the field of psychology. May be repeated for credit as topics vary. Prerequisites: upper-division standing and consent of instructor.

194A-B-C. Honors Thesis (4-4-4)
Students will take part in a weekly research seminar. In addition, they will plan and carry out a three-quarter research project under the guidance of a faculty member. The project will form the basis of the senior honors thesis. Prerequisite: acceptance to the Honors Program in the junior year (110A-B) or two 199s which culminate in a research paper (by petition only) and Psychology 110, 111A-B and consent of instructor.

195. Instruction in Psychology (4)
Introduction to teaching a class section in a lower-division psychology course, hold office hours, assist with examinations and grading (P/NP grades only). This course counts only once toward the major. Prerequisite: junior or senior psychology major with GPA of 3.0 or an A in the course and consent of instructor.

196 A-B-C Research Seminar (4-4-4)
Weekly research seminar, three quarter research project under faculty guidance which culminates in a thesis. Prerequisite: one laboratory course, 3.3 GPA, and/or consent of instructor.

199. Independent Study (2 or 4)
Independent study or research under direction of a member of the faculty. Prerequisite: GPA 2.5 and 90 units completed. (P/NP grades only). Not counted for credit towards the major. See Section on 199 information.

2XX. Graduate Seminar
We encourage Juniors and Seniors meeting the suggested criteria of an overall 3.0 GPA to enroll in Graduate Seminars. Check the schedule of classes and contact the Student Affairs Office on how to enroll.

GRADUATE

201A-B-C. Quantitative Methods in Psychology (4-4-4)
An intensive course in statistical methods and the mathematical treatment of data, with special reference to research in psychology. Prerequisite: restricted to graduate students in psychology.

204. Neurobiology of Social Development (4)
The goal of this class is to acquaint students with research on the neurological underpinnings of social and social cognitive development. Students will be expected to become familiar with the existing research in the area, and to understand the neural structures that comprise the limbic system, and their developmental timetable. Students will be expected to form hypotheses about the neural correlates of aspects of social development based upon an understanding of the development of structures involved in social behavior.

206. Mathematical Modeling (4)
This course is designed to teach the basics of mathematical modeling. Topics include when, why, and how to use signal detection theory (an essential theory for anyone interested in attention, perception, memory, or decision making), how to analyze reaction time distributions (instead of simply measuring mean RT), how to engage in the fine art of model comparison, and how to avoid creating models that are more complex than the data they seek to explain.

209. Topics in Judgment and Decision Making (3)
This seminar examines issues in the psychology of judgment and decision making. Topics include the heuristics and biases approach, over confidence, framing effects, intertemporal choice, and rationality.

210. Skill Acquisition and Development of Expertise (4)
The course examines the transition from novice to highly skilled performance and the transfer of that skill to novel problems and contexts. Emphasis will be on information processing accounts of learning and performance for relatively simple cognitive tasks.

211. The Development of Social Cognition (3)
This seminar will cover the development of concepts about people. Topics include emotional understanding, “theory of mind,” trait thinking, social categories, psychological essentialism, achievement motivation, and social and cultural influences on person perception.

212. Current Topics in Visual Science (3)
Each year a different topic in visual science is selected for in-depth review and discussion based on current readings. Prerequisite: consent of instructor.

213. Professional Procedures and Survival in Psychology (3)
This course provides a forum for presentation and discussion of the basic issues associated with surviving in a professional (particularly, academic) psychology environment. It covers such issues as: 1) how to get a job; 2) how to keep a job; 3) general issues in professional survival. The course will include the presence of a number of the psychology faculty in topic specific areas (e.g., journal editors from our faculty; faculty sitting on grant review panels, etc.), The issue of ethics will be examined and discussed relative to each topic raised.

214. Applied Developmental Psychology (4)
This seminar deals with how developmental psychologists conduct scientific studies that have direct practical implications for children’s well-being. Major issues to be discussed are: child witnesses, literacy, school violence, impact of media on child development, and developmental psychopathology.

215. Language Acquisition (4)
Discussion of the acquisition of language by young children, including such topics as its stages, mechanisms, and relation to nonlinguistic development.

217A. Proseminar in Developmental Psychology (3)
The course examines cognitive development through the school-age period. It begins with an examination of early neurological, sensory, motor, and perceptual functions and then focuses on issues in linguistic and cognitive development.

217B. Proseminar in Developmental Psychology II (3)
The course examines social and personality development from infancy through early adolescence. The class will first discuss general developmental theory and methods and then topics such as attachment, temperament, self-concept, aggression, family relations, play, and peers.

218A-B. Cognitive Psychology (3-3)
A two-quarter survey of basic principles and concepts of cognitive psychology. This course is intended to serve as the basic introduction for first-year students. Basic areas include knowledge, memory, thought, perception, and performance. The areas are taught by faculty members who work within the specialty. Prerequisite: graduate status in psychology or consent of instructor.

219. Proseminar in Learning and Motivation (3)
An overview of the experimental and applied analysis of behavior including topics such as the principles of operant and classical conditioning, stimulus control, choice, conditioned reinforcement, aversive control, biological and economic contexts, verbal behavior, and the modification of human behavior in a variety of applied settings.

220. Proseminar in Social Psychology (3)
An introduction to social psychology. Psychology and the law, health psychology, attitudes, emotions, person perception and aggression are some of the topics to be covered.

221. Proseminar in Sensation and Perception (3)
Fundamentals of vision, audition, and other senses. Emphasis will be upon psychophysical approaches to the study of these sensory modalities as well as some essential aspects of their neurophysiological bases.

222. Biological Psychology (3)
A survey of the functional neuroanatomical, neurodevelopmental, neurophysiological, and pharmacological correlates of psychological phenomena.

223. Advanced Topics in Vision (4)
An in-depth analysis of empirical and theoretical issues in a specialized area of vision or visual perception. Emphasis most likely will be on a topic of ongoing vision research at UCSD. Prerequisite: Psychology 212 or special consent of instructor.

225. Topics in Neural Timing (4)
This seminar will introduce fundamentals in chronobiology research and then address specific problems in greater detail. Proposed topics include oscillator coupling, masking, circannual rhythms, photoperiodism, and non-photic influences on circadian rhythms. The seminar will read classic and contemporary literature.

227. Gender and Development (4)
Topics will include methodology, gender differences, culture, the development of knowledge of sex roles, stereotype formation, gender as a social category, and the role of gender in peer relationships, family relationships, and achievement motivation. Gender development will be approached from different perspectives within psychology, including developmental, cognitive, and social. The course will draw from areas outside of psychology, including anthropology and sociology.

228. Conceptions of Intelligence (3)
This course surveys major issues in the study of intelligence. Issues to be considered are the structure of intelligence, its heritability, and significance for real-world behavior. Special emphasis will be given to accounts of intelligence based on elementary processes.
229. Happiness (4)
This course will address the psychology of happiness. The discussions and readings, consisting largely of original research articles, will explore such questions as: What is happiness? How do we measure it, and how do we tell who has it? What is the biology of happiness and what is its evolutionary significance? What makes people happy—youth, fortune, marriage, chocolate? Is the pursuit of happiness pointless?

233A. Topics in Learning and Motivation (3)
Advanced topics in learning and motivation, with special emphasis on current research. Prerequisite: Psychology 210.

236. Substance Abuse (3)
Theory and research on the development, progression, and resolution of substance use and abuse will be reviewed and evaluated. Normal and abnormal patterns of substance involvement will be contrasted across the life span.

237. Human Rationality (4)
The traditional view of rationality is based upon abstract, content-independent rules for behavior. People sometimes violate these rules in a laboratory setting, but the violations are often systematic and appear to reflect adaptation to the environment outside the laboratory. Such findings raise questions about what it means to be rational. Readings will be empirically oriented and cover the areas of deductive reasoning, inductive reasoning, and choice.

239. Psychology of Sport (4)
This seminar will focus on the applications of social psychology principles and findings to the understanding of sports.

241. Groups (4)
This course examines the role of groups in buffering stress, validating attitudes, improving efficiency, consolidating power, permitting loafing, rejecting deviates, and insulating its members from unpleasant outside influence. Prerequisite: consent of instructor.

242A-B-C. Research Topics in Developmental Psychology (4-4-4)
Advanced seminar concentrating on methods of research and current experimental literature. May be taken by undergraduate senior majors concurrently enrolled in Psychology 194. Prerequisite: consent of instructor. (S/U grades permitted.)

243. Sound and Music Perception (3)
This course will deal with anatomy and physiology of the ear, central auditory pathways, and neurological disorders of sound and music perception.

244. Special Topics in Psycholinguistics (4)
Discussion of the psychological reality of grammatical models, competence versus performance, learnability and innateness in theories of language acquisition, and questions of autonomy of “modularity” of grammatical versus semantic processing. Studies of lexical accessing, sentence comprehension, sentence production, and acquisition will all be considered, as well as some recent work in aphasia.

245. Aphasia (4)
Research and theory on language breakdown in brain-damaged adults is surveyed. Topics include an historical overview from linguistics, psycholinguistics, and neuroscience (especially brain imaging techniques). Credit may not be received for both Psychology 245 and Cognitive Science 251.

247. Neuroendocrinology of Social Variation (4)
Students will read and discuss primary literature on the general topic of how steroid and peptide hormones contribute to the production of social variation and diversity. This diversity includes seasonal variation, intersexual variation, and divergence between species in patterns of sociality and space use, pair-bonding and mating tactics, aggression, and use of communication signals.

249A-B-C. Advanced Topics in Applied Behavior Analysis (3-3-3)
Research and discussion on selected topics in applied behavior analysis.

251. Advanced Topics in Learning and Motivation (3)
Weekly meetings for graduate students actively engaged in research on conditioning. Prerequisite: consent of instructor.

252. Seminar on Cognitive Neuroscience (3)
The course is a series of weekly seminars on current trends in neuropsychology. The seminars will deal with the concept of “localization” of function in different parts of the brain and the effects of damage to these parts on cognitive functions such as perception, memory and language. Active student participation will be encouraged in preparing these seminars.

253. Cognitive Psychology and Cognitive Neuroimaging (4)
This seminar in cognitive neuroscience focuses on modern approaches to cognitive psychology as revealed through cognitive neuroimaging. A major goal of the course is to evaluate what (if anything) neuroimaging evidence has added to classic cognitive models/evidence in major areas of cognition (working memory, categorization, executive processes, decision-making, emotion, and memory).

255A-B-C. Advanced Topics in Biological Psychology (3-3-3)
Research and discussion on selected topics in biological psychology.

258. Delay of Gratification (3)
This course will review the research on delay of gratification. We will cover what makes it in general so tough, what situations make it possible, who can do it, and what the implications of this ability are. We will draw from research in social, personality, and animal psychology as well as economics.

259. Social Psychology/Psycho-aesthetics (3)
This course will be an intensive examination of social psychology (legal decision-making, emotion, aggressive behavior) and the psychology of visual art and music (psycho-aesthetics).

261. Proseminar in History of Psychology (3)
This course will consider the intellectual context in the nineteenth century from which psychology developed as an independent discipline. Emphasis will be on early German psychology and evolutionary theory. The second part of the course will consider the histories of different areas of psychology (e.g., behavioral, cognitive).

262. Functional Construction of the Vertebrate Brain’s Social Behavior Network (4)
The vertebrate brain contains a network of strongly interconnected structures that play essential roles in the regulation of social behavior. In this seminar we will read and discuss primary literature that details the structure and behavioral functions of this network.

263. Psychopharmacology (3)
This course will explore the basic psychopharmacological mechanism of action of the major classes of drugs, including neuroleptics, stimulants, anti-depressants, minor and major tranquilizers, and sedative hypnotics. It will focus on the use of behavioral techniques for evaluating the neural mechanisms by which these drugs act.

264A-B-C. Advanced Topics in Language Processes (4-4-4)
Research and discussion on selected topics in language processes.

265. Social Psychology and Medicine (3)
Concentrates on what psychology has to contribute to the understanding of illness, its treatment, and the social context in which these processes occur. Topics include psychological factors in the etiology and treatment of illness, doctor-patient roles, and communication. Open to undergraduates with Psychology 127 and consent of instructor.

267A-B-C. Advanced Topics in Behavior Medicine (3-3-3)
Research and discussion on selected topics in behavioral medicine.

268A-B-C. Advanced Topics in Experimental Psychopathology (3-3-3)
Research and discussion on selected topics in experimental psychopathology.

269A-B-C. Advanced Topics in Sound & Music Perception (3-3-3)
Research and discussion on selected topics in sound and music perception.

270A-B-C. Introduction to Laboratory Experimentation (1-4)
A basic laboratory course, designed to introduce first-year graduate students to experimental methods in psychology. The student will select a research topic, do a thorough literature review of the area, design and carry out new, original studies of problems in the selected area, and prepare a final formal report of the study at the end of the spring quarter. This course is required of all first-year graduate students in the department. Prerequisite: first-year psychology graduate students only.

272. Selected Topics in Cognitive Psychology (3)
An in-depth analysis of selected empirical and theoretical topics in cognitive psychology. The course will focus on areas where notable progress appears to be taking place in contemporary research.

282. Advanced Topics in Auditory Neuroscience (4)
An in-depth analysis of current theoretical and empirical issues in the neurobiological study of auditory perception and cognition. Example topics include auditory stream segregation, localization, natural stimulus coding, pattern recognition and communication in multiple species.

280. Seminar in Communication and Information Processing (1)
(S/U grades only.)

296. Research Practicum (1-12)
Research in psychology under supervision of individual staff members. (S/U grades only.) (F, W, S)

298. Library Research (1-12)
Reports and surveys of the literature on selected topics. Prerequisite: graduate students in psychology. (S/U grades only.) (F, W, S)
299. Independent Research (1-12)
Independent research and thesis research. (S/U grades only.) (F.W.S)

500. Apprentice Teaching (4)
Required teaching practicum for students enrolled in graduate program in psychology. One four-unit course per year for four years. (S/U grades only.)

Public Health—Epidemiology

OFFICE: Stein Clinical Research Building, Room 349
Mail Code: 0607
UCSD—http://www.medicine.ucsd.edu/fpm/epi/teaching.html#phd
SDSU—http://publichealth.sdsu.edu/phdmain.php
UCSD Faculty—http://medicine.ucsd.edu/fpm/epi/faculty.html

The Joint Doctoral Program (JDP)

The doctoral program in public health (epidemiology) was developed as a joint program in 1990 between the Department of Family and Preventive Medicine in the School of Medicine at the University of California, San Diego (UCSD), and the Graduate School of Public Health at San Diego State University (SDSU). Students in the program complete course work and conduct research at both institutions. Faculty from each campus serve on advisory and dissertation committees, providing students with extensive exposure to experts whose research interests represent the interdisciplinary nature of modern public health. Dr. Deborah Wingard (UCSD) and Dr. John Elder (SDSU) codirect the program.

Requirements for the joint doctoral degree include:
1. successful completion of required course work
2. passing written preliminary examinations in epidemiology and biostatistics
3. passing written and oral qualifying examinations
4. demonstrating proficiency in two computer-based statistical software packages
5. demonstrating proficiency in teaching

6. completion and successful formal defense of a dissertation

Typical areas of emphasis include infectious disease epidemiology, chronic disease epidemiology, cancer epidemiology, behavioral epidemiology, community-based trials, physical activity/exercise/nutrition and health. San Diego is ideally located in a large and ethnically diverse metropolitan center bordering Mexico and the Pacific Rim, enabling students to carry out population-based multicultural and multinational studies of health problems.

Time Limits

The goal of this policy is to encourage Ph.D. completion in a timely manner.

Pre-candidacy limit. Maximum registered time to advance to Ph.D. candidacy: 4 years

Support limit. Maximum registered time doctoral student is eligible for support: 6 years

Total time limit. Maximum registered time to complete all Ph.D. requirements: 7 years

Information regarding admission is found in the current edition of the Bulletin of the Graduate Division of San Diego State University. To receive an application for admission, contact SDSU/UCSD Joint Doctoral Program in Public Health, San Diego State University, 5500 Campanile Drive, San Diego 92182-4162, (619) 594-6317, or visit our Web site http://publichealth.sdsu.edu/phdapplication.php.

Public Health—Health Behavior

Office: Moores UCSD Cancer Center, Room 3063
Mail Code: 0901
UCSD—http://www.medicine.ucsd.edu/fpm/jdp
SDSU—http://publichealth.sdsu.edu

The Joint Doctoral Program (JDP)

A Ph.D. in public health with a concentration in health behavior is offered by the joint faculties of the Department of Family and Preventive Medicine in the School of Medicine at UCSD and the Division of Health Promotion, Graduate School of Public Health at San Diego State University (SDSU). Students in the program complete course work and conduct research at both institutions. Faculty from each campus serve on advisory and dissertation committees, providing students with extensive exposure to experts whose research interests represent the interdisciplinary nature of modern public health. Dr. John P. Pierce (UCSD) and Dr. John Elder (SDSU) codirect the program.

Emphasis is on producing graduates with a mastery in the central concepts and analytic processes of health behavior. Graduates of the program are expected to establish advanced skills in applied behavioral analysis for population application; to establish expertise in advanced qualitative and quantitative research methods; to establish advanced skills in the application of interventions and research methods to health behavior in disenfranchised populations; and to establish skills necessary to understand and change health policy. Graduates of the program are competitive for a variety of research, teaching, and community service positions in areas such as academic institutions, local and state health departments, federal and international agencies, and both private and public-sponsored research institutions.

Requirements for the joint doctoral degree include:
1. successful completion of required course work
2. passing written preliminary examinations in behavioral science, epidemiology, and biostatistics
3. passing written and oral qualifying examinations
4. demonstrating proficiency in teaching
5. completion and successful formal defense of a dissertation

Areas of specialization currently include physical activity, tobacco control, skin cancer prevention, nutrition and obesity, HIV/AIDS, and tuberculosis prevention and control. An additional emphasis will be placed on methodologies, such as measurement and related research issues; and ecological approaches to understanding health behavior. San Diego is ideally located in a large and ethnically diverse metropolitan center bordering Mexico and the Pacific Rim, enabling students to
carry out community-based multicultural and multinational studies of health problems.

Time Limits

The goal of this policy is to encourage Ph.D. completion in a timely manner.

Pre-candidacy limit. Maximum registered time to advance to Ph.D. candidacy: 4 years

Support limit. Maximum registered time doctoral student is eligible for support: 6 years

Total time limit. Maximum registered time to complete all Ph.D. requirements: 7 years

Information regarding admission is found in the current edition of the *Bulletin of the Graduate Division of San Diego State University*.

To receive application for admission, contact SDSU/UCSD Joint Doctoral Program in Public Health, San Diego State University, 5500 Campanile Drive, San Diego 92182-4162, (619) 594-2743.

For more information, please contact UCSD Graduate Coordinator, 3855 Health Sciences Drive, Room 3063, La Jolla, CA 92093-0901, (858) 822-2382.

Religion, Study of

OFFICE: Literature Building, Third Floor, Room 323
(858) 534-8849
E-mail: religion@ucsd.edu
http://religion.ucsd.edu/
Program Director: Richard Cohen

The program engages in the academic study of religious phenomena in many regions of the world and within many different religious cultures and traditions; and it studies literature, his-
Major

The major in the Study of Religion consists of twelve upper-division courses; achieving a balance between courses which focus on a single religious tradition or issue and those which explore various traditions and methodologies. These courses should include the following:

- two required courses in the Study of Religion, (1) RELI 110A or B and (2) RELI 112 or 113.
- ten courses from the approved course list to be selected in consultation with the program director. Students should see the program advisor for further details.

Honors in the Study of Religion

The program for the Study of Religion offers an Honors Program for students who demonstrate excellence in the major. The minimum eligibility requirements for the Honors Program are stated below. In most cases students are completing their last two quarters (winter and spring) when they enroll in the honors program.

- Students can complete the RELI 110A or 110B major requirement concurrently with their honors project during their senior year.
- at least junior standing
- Honors students must maintain a GPA of 3.3 overall and a 3.5 in the major to remain in the Honors Program.
- eight units of RELI 196H taken over two quarters (typically winter and spring)
- research paper (at least twenty pages: most students write between thirty and fifty pages.)
- Faculty directors of honors projects must certify by the end of the first term that their honors student is making timely progress toward the completion of their project.

Students interested in the Honors Program should consult with the program coordinator for a detailed list of requirements and an application. Participation in the Honors Program is contingent upon the prior approval of the Honors Thesis research topic by the director. Honors proposals are due at the program office by the tenth week of the quarter (usually fall quarter of the senior year) prior to being enrolled. Final approval must take place before the first day of the quarter in which the student plans to enroll in RELI 196H. The notations “distinction,” “high distinction,” and “highest distinction” will be determined on the following basis: major GPA, the grade for the research paper, and the grade for the public presentation.

Minor

The minor in the Study of Religion consists of seven courses, of which five must be upper-division. These seven courses must include two required courses in the Study of Religion as delineated under the major:

- RELI 110A or 110B
- RELI 112 or 113.

Some students may apply two lower-division college requirements to the minor (e.g., Revelle students may apply HUM 1 and HUM 2, and ERC students may apply MMW 2 and MMW 3).

STUDENT ADVISING

All students are assigned a faculty advisor and are encouraged to meet with their advisor at least once a quarter to develop their course of study. Additional advising information may be obtained from the program coordinator, Literature Building, Third Floor, Room 323.

STUDY ABROAD

Students are encouraged to investigate the University of California Education Abroad Program (EAP) and other options for foreign study through the Opportunities Abroad Program (OAP). By petition, credits earned through EAP/OAP can fulfill major and minor requirements. More information about studying abroad can be obtained in the Education Abroad section of the catalog.

CAREER OPPORTUNITIES AND PREPARATION FOR GRADUATE STUDY

Among its many aims, the major in the Study of Religion is designed to develop fundamental skills in critical thinking, comparative analysis, research, and written expression. As such, the B.A. degree is appropriate for careers in education, government, business, and non-profit agencies. It is also an excellent preparation for graduate study in a variety of fields and disciplines.
Students interested in earning a California teaching credential from UCSD should contact Education Studies for further information.

Students are encouraged to consult the program director for further information about career opportunities and graduate study. Information is also available on the program’s Web site.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

RELI 1. Introduction to Religion (4)
An introduction to key topics in the study of religion through a comparative reading of religious texts and/or artifacts. The intent is to develop basic strategies of interpretation for undertaking a critical, disciplined study of religion.

RELI 110A. The Modern Study of Religion: Religion in Modernity (4)
This class examines the history of the term “religion,” focusing upon the development of religion’s contemporary significance within the Reformation and Enlightenment, and questioning what it means to be “modern.” Topics change yearly. Special attention to contemporary culture and politics.

RELI 110B. The Modern Study of Religion: Social and Cultural Theories of Religion (4)
An introduction to basic strategies of interpretation in the study of religion, including issues of category formation, theory, and method. Special attention paid to prominent voices of the nineteenth and twentieth centuries, including Marx, Freud, Durkheim, Eliade, etc.

RELI 112. Texts and Contexts: The Holy Book in Judaism, Christianity, and Islam (4)
An introduction to the scriptures of Judaism, Christianity, and Islam, with the aim of providing a comparative perspective on the “bibles” of Western civilization.

RELI 113. Texts and Contexts: Textual Communities in South Asia (4)
This class considers important texts belonging to one or more of the following South Asian Traditions: Hinduism, Buddhism, Jainism, or Sikhism. It introduces students to the ways in which religious identities are formed and contested within a pluralistic society.

RELI 130. Religion, Science, and Magic (4)
Religion, science, and magic provide scholars with a set of analytic categories for the comparative study of cultural forms and modes of thinking. What are the ideological underpinnings and political implications of these categories? This class addresses this question using comparative avenues involving literary sources.

RELI 131. Topics in Religion and Sexuality (4)
How does religiosity as a significant cultural component help mold gender and sexuality identities? The class offers topical investigations into this question.

RELI 132. Topics in Orthodoxy and Heterodoxy (4)
Religious dogmas often develop in dialogue with alternative viewpoints that ultimately are rejected by heterodox believers. This class presents case studies in the interpretation of such ideological and sociological pairings using scriptural, literary, and analytic sources.

RELI 134. Topics in American Religion (4)
Topical studies in the history of religion in American society, ranging from the Puritans to the New Age.

RELI 140. Death and Religion (4)
This interdisciplinary course uses literary resources to explore the relationship between death and religion on a historical and global scale; the relationship between political religious rituals and symbolism of rebirth; examination of carnival, death pollution, and symbolism of gender.

RELI 141. Public Sphere and Religion (4)
This interdisciplinary course will explore the historical and theoretical relationship between public sphere and religion, particularly focusing on the manifestation of religious power, public ritual, and sacred theatricality in everyday spaces of life.

RELI 142. Secularization and Religion (4)
Surveys the relationship between religion and modernity, in particular the problematic of the secularization theory; covers cases such as Catholic liberation theology and Islamic fundamentalism, with particular focus on the “deprivatization of modern religion.”

RELI 146. Special Topics in Religion (4)
Students in this lecture will investigate important problems in the study of religion or the history of particular religions. May be repeated for credit up to three times when topics vary.

RELI 147. Directed Advanced Readings (4)
A faculty member will direct a student in advanced readings on a topic not generally included in the Program for the Study of Religion’s curriculum. Students must make arrangements with the program and individual faculty. May be repeated for credit up to three times for credit.

RELI 196H. Honors Thesis Research (4)
Honors thesis research for students accepted into the Honors Program. Research is conducted under the supervision of a program faculty member. Prerequisite: program approval into the Honors Program.

RELI 197. Directed Advanced Readings (4)
A faculty member will direct a student in advanced readings on a topic not generally included in the Program for the Study of Religion’s curriculum. Students must make arrangements with the program and individual faculty. May be repeated for credit up to three times for credit.

RELI 199. Independent Research Study for Undergraduates
Independent research in religion under the supervision of a faculty member affiliated with the Program for the Study of Religion. This course may be repeated three times with program approval. (P/NP grades only.) Prerequisites: upper-division standing, with 2.5 GPA (overall); program stamp.

APPROVED ELECTIVE COURSES

The following lower- and upper-division courses are offered on a regular basis, although not every course is available every year. Please contact the program coordinator for approved courses in any given quarter or visit the program’s Web site, http://religion.ucsd.edu. Students may petition other courses, including independent study and Education Abroad Program courses when appropriate.

LOWER-DIVISION

ANL 1. Introduction to Culture
HUM 1. The Foundations of Western Civilization: Israel and Greece
HUM 2. Rome, Christianity, and the Middle Ages
MMW 2. The Great Classical Traditions
MMW 3. The Medieval Heritage
PHIL 14. Introduction to Philosophy: Metaphysics
PHIL 31. History of Philosophy: Ancient Philosophy
RELI 1. Introduction to Religion
SOC 1A, B. The Study of Society

UPPER-DIVISION

METHODOLOGICAL

ANGN 120. Anthropology of Religion
ANGN 147. Ritual and Symbolism
ANGN 167. Rituals and Celebrations
SOC 100. Classical Sociological Theory
SOC 156. Sociology of Religion

GENERAL COMPARATIVE

ANGN 104. Anthropology of Fantasy
ANGN 135. Bodies and Boundaries: Symbols in Ritual and Everyday Life
ANGN 160. Nature, Culture, and Environmentalism
HISC 162. History of Science and Religion
LTWL 100. Mythology
VIS 126F. Western and Non-Western Rituals and Ceremonies

RELIGION IN HISTORICAL CONTEXT

ANGN 184. Archaeology, Anthropology, and the Bible
ANRG 189. The Anthropology of the End of the World
ANRG 108. Hinduism
ANRG 125. Aztecs and their Ancestor
ANRG 150. The Rise & Fall of Ancient Israel
ANRG 173. Chinese Popular Religion
Prerequisite: Revelle College senior
Professor in History
Professor Emeritus in Theatre
(F, W, S)
Prerequisite: by invitation

Russian and Soviet Studies

about their future course.
impact on modern society and of the social concerns
perquisites are also awarded. Outstanding stu-
ter quarter is offered to those who achieve a 3.7
of 700 or higher. Admission to the program win-
those students entering with a high school GPA
in at least twelve graded units taken at
UCSD during the fall quarter. A variety of other
programs conducted by the faculty.
Prerequisite: none. Pass/Not Pass grades only. (F, W, S)
Revelle 91. Art, Book, and Life (1)
This interdisciplinary seminar will look at some selec-
tive relationships between visual arts and literature
generally building chronologically and culminating
with slide-illustrated visits to the world’s great muse-
ums. Short student presentations. Prerequisite: Hu-
manities or consent of instructor.

Revelle Honors Program

OFFICE: Office of the Provost, Revelle College
http://revelle.ucsd.edu

Humanities/Writing Program

OFFICE: Galbraith Hall 180, Revelle College
See Humanities Program for Revelle Writing.

Revelle Seminars

OFFICE: Office of the Provost, Revelle College
Revelle Seminars 90 (1.0 unit credit) are
sponsored by Revelle College to promote stu-
dent/faculty interaction in a small group setting.

Revelle 90. Undergraduate Seminar (1)
A seminar intended for exposing undergraduate stu-
dents, especially freshmen and sophomores, to exci-
ting research programs conducted by the faculty.
Prerequisite: none. Pass/Not Pass grades only. (F, W, S)

Revelle 10. Senior Honors Seminar: Science and
Civilization (4)
Beginning with the distinction between science and
technology, the course will trace their evolution from
earliest times, culminating in an examination of their
impact on modern society and of the social concerns
about their future course. Prerequisite: senior standing.

3.5 overall GPA, science major, consent of instructor,
Revelle students only. Pass/Not Pass grades only.
Revelle 110. Senior Honors Seminar: Thinking About
Science (4)
A seminar for honors students concerning the nature
of science and its place in our society. The course will
consist of readings and discussions concerning a
range of historical, philosophical, and sociological per-
spectives on science. Prerequisite: Revelle College senior
honors students.

Revelle Seminars

OFFICE: Office of the Provost, Revelle College
Revelle Seminars 90 (1.0 unit credit) are
sponsored by Revelle College to promote stu-
dent/faculty interaction in a small group setting.

Revelle 90. Undergraduate Seminar (1)
A seminar intended for exposing undergraduate stu-
dents, especially freshmen and sophomores, to exci-
ting research programs conducted by the faculty.
Prerequisite: none. Pass/Not Pass grades only. (F, W, S)
Revelle 91. Art, Book, and Life (1)
This interdisciplinary seminar will look at some selec-
tive relationships between visual arts and literature
generally building chronologically and culminating
with slide-illustrated visits to the world’s great muse-
ums. Short student presentations. Prerequisite: Hu-
manities or consent of instructor.

Russian and
Soviet Studies

OFFICE: 3024 Humanities and Social Sciences
Building, Muir College
http://historyweb.ucsd.edu//
RussianSovietStud.html

Faculty
Steven Cassedy, Ph.D., Professor in Literature
Frantisek Deak, Ph.D., Professor Emeritus in Theatre
Robert Edelman, Ph.D., Professor in History
Amelia Glaser, Ph.D., Assistant Professor in
Literature
Timothy McDaniel, Ph.D., Professor in Sociology
Philip Roeder, Ph.D., Associate Professor in
Political Science
Rebecca Wells, Lecturer in Literature

Russian and Soviet Studies is an interdisci-
plinary program that provides a broad range of
courses in the history, language, literature, and
social and political life of Russia (before, during,
and after the Soviet period). It is designed for
students who do not wish to restrict their
Russian studies to literature.

The Minor

The minor consists of seven courses, at least
four of which must be upper-division. In addi-
tion, there must be at least one course each from
two of the three following areas: literature, his-
tory, and social science. No more than three of
the seven courses may be language courses.
Knowledge of the language is not a requirement
for the minor, but it is strongly recommended.

The Major

The major requires a study of Russian lan-
guage. It consists of LTRU 1A-B-C (First-Year
Russian), LTRU 2A-B-C (Second-Year Russian),
or their equivalent, and a minimum of twelve
upper-division courses. All students are required
to take LTRU 104A-B-C (Advanced Practicum
in Russian), HIEU 134 (History of Russia, Ninth
Century to 1855), HIEU 156 (History of Russia,
1855 to the Present), and LTRU 110A-B-C (Survey
of Russian Literature in Translation). In addition,
students will take four electives, of which at least
two must be from the social sciences (sociology
or political science).

Students in the major are encouraged to partic-
ipate in the Education Abroad Program (EAP) in
Russia and to investigate other options for
foreign study through the Opportunities Abroad
Program (OAP). By petition, credits earned through
EAP/OAP can fulfill UCSD degree and major
requirements. Please visit the Web site at http://
historyweb.ucsd.edu//RussianSovietStud.html for
further details.

Courses

Literature

LTRU 1A-B-C First-year Russian (4-4-4)
LTRU 2A-B-C Second-year Russian (4-4-4)
LTRU 101A-B-C Advanced Russian (4-4-4)
LTRU 104A-B-C Advanced Practicum in Russian (4-4-4)
LTRU 110A-B-C Survey of Russian and Soviet Literature in Translation (4-4-4)

110A 1800-1860
110B 1860-1917
110C 1917-present
Science Studies

OFFICE: 3008 Humanities and Social Sciences Building, Muir College
http://sciencesudies.ucsd.edu/

Director, Steven Epstein

Professors
William Bechtel, Ph.D., Philosophy
Michael Bernstein, Ph.D., History
Craig Callender, Ph.D., Philosophy
Lisa Cartwright, Ph.D., Communication
Nancy Cartwright, Ph.D., Philosophy
Paul M. Churchland, Ph.D., Philosophy
Gerald D. Doppelt, Ph.D., Philosophy
Chandra Mukerji, Ph.D., Communication
Naomi Oreskes, Ph.D., History
Andrew Scull, Ph.D., Sociology
Eric Watkins, Ph.D., Philosophy
Robert S. Westman, Ph.D., History

Professor Emeritus
Martin J.S. Rudwick, Ph.D., History

Associate Professors
Steven Epstein, Ph.D., Sociology
Tal Golan, Ph.D., History
Martha Lampland, Ph.D., Sociology
David Serlin, Ph.D., Communication

Assistant Professors
Morana Alac, Ph.D., Communication
Andrew Lakoff, Ph.D., Sociology

Affiliated Faculty/Researchers
Karen Baker, M.S., Scripps Institution of Oceanography
Natalie Jeremijenko, Visual Arts
Roddy Reid, Ph.D., Literature
Linda Strauss, Ph.D., Sixth College

The Science Studies Program at UCSD is an interdisciplinary Ph.D. program committed to working toward a deeper understanding of scientific knowledge and technological change, past and present. The program offers students an opportunity to integrate the perspectives developed in communication studies and the history, sociology, and philosophy of science, while receiving a thorough training at a professional level in one of the component disciplines. Students enrolled in the program choose one of the four disciplines for their major field of specialist studies and are required to complete minor field requirements in the others. Students are also required to take the Introduction to Science Studies, Advanced Approaches to Science Studies, and two interdisciplinary, topical “core” seminars, and to attend the program colloquium. Science studies students are encouraged to select dissertation topics that offer scope for a cross-disciplinary approach. The Ph.D. will be awarded in “Communication (Science Studies),” “History (Science Studies),” “Sociology (Science Studies),” or “Philosophy (Science Studies).” In special circumstances, students may be permitted to work for the M.A. degree.

COURSES

For course descriptions not found in the 2007-2008 General Catalog, please contact the department for more information.

GRADUATE

COGR 225A, HIGR 238, PHIL 209A, SOCG 255A.
Introduction to Science Studies (4)
Study and discussion of classic work in history of science, sociology of science, and philosophy of science, and of work that attempts to develop a unified science studies approach. Required for all students in the Science Studies Program. Prerequisite: enrollment in Science Studies Program.

COGR 225B, HIGR 239, PHIL 209B, SOCG 255B. Seminar in Science Studies (4)
Study and discussion of selected topics in the science studies field. Required for all students in the Science Studies Program. The topic varies from year to year, and students may, therefore, repeat the course for credit. Prerequisite: enrollment in Science Studies Program.

COGR 225C, HIGR 240, PHIL 209C, SOCG 255C.
Colloquium in Science Studies (4)
A forum for the presentation and discussion of research in progress in science studies, by graduate students, faculty, and visitors. Required for all students in the Science Studies Program. Prerequisite: enrollment in the Science Studies Program.

COGR 225D, HIGR 241, PHIL 209D, SOCG 255D.
Advanced Approaches to Science Studies (4)
Contemporary themes and problems in Science Studies. Focus on recent literature in the history, philosophy and sociology of science, technology, and medicine. Required of all students in the Science Studies Program. Prerequisites: completion of COGR 225A, HIGR 238, PHIL 209A, or SOCG 255A; enrollment in Science Studies Program or instructor’s permission.

COGR 201I. Ethnography of Information Systems (4)
This course will survey the rapidly growing body of ethnographic analyses of information systems, to extend the basic principles of ethnographic research and to lead students in the development of projects modifying these principles for the emerging electronic environment. Students may approach the course in one (or both) of two ways—either preparing for and carrying out a pilot ethnographic study or studying the theoretical literature in depth.

HIGR 235. Science, Empire, and Exploration (4)
Examines links between scientific work, particularly expeditions and exploration, and political programs of empire in the seventeenth to twentieth centuries. Topics: collecting expeditions as expressions of empire; role of colonial administrative networks in facilitating field-based investigations; relation between European and non-European knowledge systems. Prerequisite: graduate standing or consent of instructor.

HIGR 236A-B. Seminar in History of Science (4-4)
A two-quarter research seminar, comprising intensive study of a specific topic in the history of science. The first quarter will be devoted to readings and discussions; the second chiefly to the writing of individual research papers. The topic varies from year to year, and students may repeat the course for credit. (IP grade to be awarded the first quarter; final grade will be given at the end of the second quarter.) Prerequisite: graduate standing.

HIGR 242. Topics in the History of Earth and Life Sciences (4)
Intensive study of specific problems in the history of the life sciences and earth sciences, ranging in period from the Renaissance to the twenty-first century. May be repeated for credit as topics will vary annually. Prerequisite: graduate standing.

HIGR 243. Historical Scholarship in Technology (4)
An introduction to the historiography of technology. This reading seminar provides an overview of scholarly approaches to the history of technology by critically
Prerequisites: upper-division standing or graduate standing or consent of instructor.

HIGR 244. Introduction to Sound Studies (4)
Study and discussion of classic and recent scholarship on sound production and cultures of listening. Emphasizes historical literature but also includes works in literary studies, art history, music, and other fields.

HISC 160/260. Historical Approaches to the Study of Science (4)
This colloquium course will introduce students to the rich variety of ways in which the scientific enterprise is currently being studied historically. Major recent publications on specific topics in the history of science selected to illustrate this diversity will be discussed and analyzed; the topics will range in period from the seventeenth century to the late twentieth, and will deal with all major branches of natural science. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students may be expected to submit a more substantial piece of work. Prerequisites: consent of instructor; department stamp required.

HISC 162/262. Problems in the History of Science and Religion (4)
Intensive study of specific problems in the relation between science and religion. The problems may range in period from the Renaissance to the twentieth century. Topics vary from year to year. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students may be expected to submit a more substantial piece of work. Prerequisites: upper-division standing; department stamp required.

HISC 163/263. History, Science, and Politics of Climate Change (4)
The complex historical development of human understanding of global climate change, including key scientific work, and the cultural dimensions of proof and perception. Special emphasis on the differential and political acceptance of the scientific evidence in the U.S. and the world. Graduate students are required to submit an additional paper. Prerequisite: upper-division or graduate standing. Department stamp required.

HISC 164/264. Topics in the History of the Physical Sciences (4)
Intensive study of specific problems in the physical (including chemical and mathematical) sciences, ranging in period from the Renaissance to the twentieth century. Topics vary from year to year, and students may therefore repeat the course for credit. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students may be expected to submit a more substantial piece of work. Prerequisites: consent of instructor; department stamp required.

HISC 165/265. Topics in Twentieth-Century Science and Culture (4)
This is a seminar open to advanced undergraduates and graduate students that explores topics at the interface of science, technology and culture, from the late nineteenth century to the present. Topics change yearly; may be repeated for credit with instructor’s consent. Requirements vary for undergraduates, M.A., and Ph.D. students. Graduate students are required to submit a more substantial piece of work. Prerequisites: upper-division standing or consent of instructor; department stamp required.

HISC 166/266. The Galileo Affair (4)
Galileo’s condemnation by the Catholic Church in 1633 is a well-known but misunderstood episode. Was Galileo punished for holding dangerous scientific views? Personal arrogance? Disobedience? Religious transgressions? Readings in original sources, recent historical interpretations. Graduate students will be expected to submit a more substantial piece of work. Prerequisites: upper-division standing or consent of instructor.

HISC 167/267. Gender and Science (4)
Why have women been traditionally excluded from science? How has this affected scientific knowledge? How have scientists constructed gendered representations not only of women, but also of science and nature? We will address these questions from perspectives including history, philosophy, and psychoanalytic theory. Prerequisite: upper-division standing or consent of instructor.

HISC 168/268. The Extraterrestrial Life Question (4)
The changing fortunes of the belief in the existence of life beyond the Earth (pluralism) from 1750–present as it evolved from a marginal speculation to a central scientific question with wide-ranging consequences for traditional religious belief systems. Prerequisites: upper-division standing or graduate standing or consent of instructor. Graduate students will be expected to submit a more substantial piece of work.

HISC 170/270. Topics in the History of Science and Technology (4)
This seminar explores topics at the interface of science, technology, and society, ranging from the seventeenth century to the twentieth. Requirements will vary for undergraduate, M.A., and Ph.D. students. Graduate students are required to submit an additional paper. Prerequisite: upper-division standing or consent of instructor/departm ent stamp required.

The history of the built environment in the United States, from skyscrapers to suburbs, canals and railroads to factories and department stores. The technological history of structures and infrastructures, and the social and cultural values that have been “built into” our material environment. Graduate students are required to submit an additional paper. Prerequisite: upper-division standing or consent of instructor/departm ent stamp required.

Phil. 204A. Core Course in Philosophy of Science (4)
An introduction to one or more central problems in the philosophy of science, or in the philosophy of one of the particular sciences, such as the nature of confirmation and explanation, the nature of scientific knowledge, reductionism, the unity of science, or realism and antirealism. May be taken for credit three times with changed content.

Phil. 245. Philosophy of Science (4)
This seminar will cover current books and theoretical issues in the philosophy of science. May be taken for credit seven times with changed content.

Phil. 247. Philosophy of Biology (4)
Historical and contemporary perspectives on foundational issues about biology. May include questions about the nature of biological explanation, the relation of biology to chemistry and physics, the status of attributions of function, and the relation of biology to the social sciences. May be taken for credit six times with changed content.

Phil. 250A. Philosophy of the Cognitive Sciences (4)
Contemporary debates about the study of the mind-brain as studied in one or more of the empirical cognitive sciences. May include questions about the different strategies of explanation invoked, the conceptions of representation employed, the connections between theoretical models developed. May be taken for credit six times with changed content.

Phil. 280. Philosophy of Science Topics and Methods (1-2)
This course meets weekly to discuss recent books or articles in philosophy of science. The reading is designed both for students doing active research in the field and for those seeking to gain some familiarity with it. Can be taken nine times for credit with changed content. Prerequisite: graduate standing or consent of instructor.

Soc/G 234. Intellectual Foundation of the Study of Science, Technology, and Medicine (4)
This course focuses on some classic methodological and theoretical resources upon which the sociology of science, technology, and medicine all draw. It gives special attention to relationships between knowledge and social order, and between knowledge and practice, that are common to science, technology, and medicine. Prerequisites: graduate standing.

Soc/G 247. Madness and Society (4)
An examination of the changing Western responses from the age of Bedlam to the age of Prozac. Topics include the rise and decline of the total institution; the emergence of psychiatry; changing cultural meanings of madness; and the therapeutics of mental disorder. Prerequisite: graduate standing.

Soc/G 249. Technology and the Human (4)
This course explores the ethical and political implications of technological interventions into human life. Approaches from science studies, the sociology of the body, and philosophy. Topics include transformations in domains of life such as work, health, childhood, and death. Prerequisite: graduate standing.

Soc/G 283. The Making of Modern Medicine (4)
An examination of the intellectual, social, cultural, and political dimensions of the Transformation of Western medicine from 1750 to 1900, with a primary focus on Anglo-American developments. Prerequisite: graduate standing.

Soc/G 284. Contemporary Biomedicine (4)
Develops central themes in medical sociology in order to understand twentieth- and twenty-first-century medical practice and research. Topics include authority and expertise; health inequalities; managed care; health activism; biomedical knowledge production; and the construction of medical objects and subjects. Prerequisite: graduate standing.
The program offers an opportunity to study the important social policy issues that lie at the intersection of science, technology, and decision making and to develop awareness of the social and political factors that condition technology on the social order. The program will be attractive to students anticipating careers in law, administrative sciences, science, engineering, business, and international affairs. The program will serve as a meeting place for those interested in approaching policy questions from the perspective of the physical and biological sciences and for those in the social sciences having an interest in the scientific and technological component of present social, political, and environment problems.

Courses

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

Lower-Division

35. Society and the Sea
4
Introduction to the oceans and their relationship to humankind. Selected topics include ocean-related science, engineering, research, economics, and international relations (emphasizing countries of the Pacific Rim); living and nonliving resources; coastal zone management; military and social aspects; and the sea in weather and climate. **Prerequisite: none. (F)**

Upper-Division

181. Elements of International Medicine
4
The sociocultural, economic, and geopolitical framework for the study and understanding of medical problems on a worldwide scale, and as basis for international health policy. Global patterns of disease, availability and needs for medical technology, and comparisons between diverse medical education and health care delivery systems abroad with those in the U.S. Students should be able to acquire an understanding of diverse determinants of disease, and of relationships between socioeconomic development and health. **Prerequisite: senior or graduate standing. H. Simon (W)**

199. Special Project
2 or 4
Directed study on topics in science, technology, and public affairs; especially for Warren College students. (P/NP grades only.) **Prerequisite: senior standing.**

Related Courses

Courses in other departments (change somewhat from year to year):

- Economics 130
- MAE 110B, 118A, 118B, 118C
- Political Science 138D
- Political Science 154
- Political Science 160A
- Political Science 160AB
- Political Science 161
- Political Science 167A, B
- Sociology 168E
- Political Science 160AB
- Political Science 161
- Political Science 167A, B
- Sociology 168E

John A. Hildebrand, Ph.D., Geophysics
David R. Hilton, Ph.D., Geochemistry
William S. Hodgkiss, Ph.D., Electrical Engineering
Nicholas D. Holland, Ph.D., Marine Biology
Glenn R. Irley, Ph.D., Geophysics
Jeremy B.C. Jackson, Ph.D., Marine Biology and Geology
Miriam Kastner, Ph.D., Earth Sciences
Ralph F. Keeling, Ph.D., Geochemistry
Charles F. Kennel, Ph.D., Physics
Nancy Knowlton, Ph.D., Marine Biology
William A. Kuperman, Ph.D., Oceanography
Devendra Lal, Ph.D., Nuclear Geophysics
Michael R. Landry, Ph.D., Oceanography
Lisa A. Levin, Ph.D., Oceanography
Peter F. Lonsdale, Ph.D., Oceanography
T. Guy Masters, Ph.D., Geophysics
W. Kendall Melville, Ph.D., Oceanography
Jean-Bernard H. Minster, Ph.D., Geophysics
Mario J. Molina, Ph.D., Atmospheric Chemistry
Bradley S. Moore, Ph.D., Marine Biochemistry
Richard D. Norris, Ph.D., Paleobiology
Mark D. Ohman, Ph.D., Biological Oceanography
John A. Orcutt, Ph.D., Geophysics
Brian Palenik, Ph.D., Marine Biology
Robert L. Parker, Ph.D., Geophysics
Robert Pinkel, Ph.D., Oceanography
Kimberly A. Prather, Ph.D., Atmospheric Chemistry
Veerabhadran Ramanathan, Ph.D., Climate and Atmospheric Sciences
Dean H. Roemmich, Ph.D., Oceanography
Gregory Rouse, Ph.D., Zoology
Daniel L. Rudnick, Ph.D., Oceanography
Lynn M. Russell, Ph.D., Atmospheric Chemistry
Enric Sala, Ph.D., Oceanography
Richard L. Salmon, Ph.D., Oceanography
David T. Sandwell, Ph.D., Geophysics
John G. Sclater, Ph.D., Marine Geophysics
Uwe Send, Ph.D., Oceanography
Jeffrey P. Severinghaus, Ph.D., Geochemistry
Robert E. Shadwick, Ph.D., Marine Biology
Peter M. Shearer, Ph.D., Geophysics
Richard C.J. Somerville, Ph.D., Meteorology
Dariusz Stramski, Ph.D., Oceanography
George Sugihara, Ph.D., Mathematical Ecology
Lynne D. Talley, Ph.D., Oceanography
Lisa Tauxe, Ph.D., Geophysics
Victor D. Vacquier, Ph.D., Marine Biology
Martin Wahlen, Ph.D., Geochemistry
Ray F. Weiss, Ph.D., Geochemistry
Bradley T. Werner, Ph.D., Oceanography
Clinton D. Winant, Ph.D., Oceanography
William R. Young, Ph.D., Oceanography
Scripps Institution of Oceanography

Professors-in-Residence
Steven C. Constable, Ph.D., Geophysics
Andrew G. Dickson, Ph.D., Marine Chemistry
Jeffrey S. Gee, Ph.D., Geophysics

Professors Emeritus
Gustaf Arrhenius, Ph.D., Oceanography
George E. Backus, Ph.D., Geophysics
Andrew A. Benson, Ph.D., Biology
Wolfgang H. Berger, Ph.D., Oceanography
Charles S. Cox, Ph.D., Oceanography
Joseph R. Curray, Ph.D., Geology
Andrew E. Dizon, Ph.D., Marine Biology
Edward A. Frieman, Ph.D., Physics, Director
Joris M. T. M. Gieskes, Ph.D., Oceanography
J. Freeman Gilbert, Ph.D., Geophysics
Richard A. Haubrich, Ph.D., Geophysics
James W. Hawkins, Ph.D., Geology
Francis T. Haxo, Ph.D., Biology
Margo G. Haygood, Ph.D., Marine Biology
Robert R. Hessler, Ph.D., Biological Oceanography
Douglas L. Inman, Ph.D., Oceanography
Gerald L. Kooyman, Ph.D., Biology
Ralph A. Lewin, Ph.D., Sc.D., Biology
J. Douglas Macdougall, Ph.D., Earth Sciences
John A. McGowan, Ph.D., Oceanography
Walter H. Munk, Ph.D., Oceanography
William Newman, Ph.D., Zoology
Pearn P. Niiler, Ph.D., Oceanography
Joseph L. Reid, M.S., Oceanography
Richard H. Rosenblatt, Ph.D., Marine Biology
Robert Shadwick, Ph.D., Zoology/Biomechanics
George G. Shor, Jr., Ph.D., Marine Geophysics
George N. Somero, Ph.D., Biology
Bradley M. Tebo, Ph.D., Marine Biology
Victor Vacquier, M.A., Geophysics
Kenneth M. Watson, Ph.D., Physical Oceanography
Edward L. Winterer, Ph.D., Geology
A. Aristides Yayanos, Ph.D., Biology

Associate Professors
Yuri Fialko, Ph.D., Geophysics
Sarah T. Gille, Ph.D., Oceanography
Catherine L. Johnson, Ph.D., Geophysics

Assistant Professors
Sofia B. Akber, Ph.D., Geophysics
Eric E. Allen, Ph.D., Marine Biology
Lihini I. Aluwihare, Ph.D., Marine Chemistry
Katherine A. Barbeau, Ph.D., Marine Chemistry
James J. Leichter, Ph.D., Oceanography
Joel R. Norris, Ph.D., Climate and Atmospheric Sciences
Paul E. Robbins, Ph.D., Oceanography

Adjunct Professors
Lisa T. Ballance, Ph.D., Biological Oceanography
Jay P. Barlow, Ph.D., Biological Oceanography
Konstantine P. Georgakakos, Sc.D., Hydrology
John R. Hunter, Ph.D., Marine Biology
William F. Perrin, Ph.D., Marine Biology
Paul E. Smith, Ph.D., Biological Oceanography
Detlef Stammer, Ph.D., Oceanography

Senior Lecturers
Donna K. Blackman, Ph.D., Research Geophysicist
Yehuda Bock, Ph.D., Research Geodesist
Daniel R. Cayan, Ph.D., Research Meteorologist
Teresa K. Chereskin, Ph.D., Research Oceanographer
Bruce D. Cornuelle, Ph.D., Research Oceanographer
Grant B. Deane, Ph.D., Research Oceanographer
Peter Gerstoft, Ph.D., Research Scientist
Jeffrey B. Graham, Ph.D., Research Biologist
Alistair J. Harding, Ph.D., Research Geophysicist
Michael A.H. Hedlin, Ph.D., Research Geophysicist
Linda Z. Holland, Ph.D., Research Biologist
Jules S. Jaffe, Ph.D., Research Oceanographer
Adrianus Kalmijn, Ph.D., Research Oceanographer
Graham M. Kent, Ph.D., Research Geophysicist
Robert A. Knox, Ph.D., Research Oceanographer
Michael I. Latz, Ph.D., Research Biologist
Dan Lubin, Ph.D., Research Physicist
Arthur J. Miller Ph.D., Research Oceanographer
B. Gregory Mitchell, Ph.D., Research Oceanographer
Paul J. Ponganis, M.D., Research Marine Physiologist
John O. Roads, Ph.D., Research Meteorologist
Kenneth L. Smith, Jr., Ph.D., Research Biologist
Hubert Staudigel, Ph.D., Research Geologist
James H. Swift, Ph.D., Research Geophysicist
Elizabeth L. Venrick, Ph.D., Research Oceanographer
Frank L. Vernon, Ph.D., Research Geophysicist
Peter F. Worcester, Ph.D., Research Oceanographer
Mark A. Zumberge, Ph.D., Research Geophysicist

Lecturers
Bianca M. Brahamsha, Ph.D., Associate Research Biotechnologist
C. David Chadwell, Ph.D., Associate Research Geophysicist
Joseph R. Curray, Ph.D., Professor Emeritus, MAE
Victor Vacquier, M.A., Associate Professor, MAE

Affiliated Faculty
James R. Arnold, Ph.D., Professor Emeritus, Chemistry and Biochemistry
Hugh Bradner, Ph.D., Professor Emeritus, MAE
Juan C. Lashezas, Ph.D., Professor, MAE
Paul A. Libby, Ph.D., Professor Emeritus, MAE
Paul F. Linden, Ph.D., Professor, MAE
Stefan Llewellyn-Smith, Ph.D., Associate Professor, MAE
John W. Miles, Ph.D., Professor Emeritus, MAE
R. Glenn Northcutt, Ph.D., Neurosciences
Sutanu Sarkar, Ph.D., Professor, MAE

Introduction

Scripps Institution of Oceanography is one of the oldest, largest, and most important centers for marine science research, education, and public service in the world. Its preeminence in the marine sciences is reflective of its excellent programs, distinguished faculty and research scientists, and outstanding facilities. Scripps Institution was founded in 1903 as an independent biological research laboratory, which became an integral part of the University of California in 1912. At that time, the laboratory was given the Scripps name in recognition of donors Ellen Browning Scripps and E.W. Scripps. Research and education at Scripps encompasses physical, chemical, biological, geological, and geophysical studies of the oceans. Among the hundreds of research programs that may be under way at any one time are studies of air-sea interaction, climate prediction, earthquakes, the physiology of marine organisms, the geological history of the ocean basins, and multidisciplinary aspects of global change and the environment.
The Undergraduate Program

The Scripps Institution of Oceanography Department offers over forty-five undergraduate courses covering a wide breadth of earth and marine sciences on several different levels. There are several introductory classes for nonmajors, and upper-division courses intended for a wide range of students in natural science majors. For students interested in careers in earth sciences, the Scripps Institution of Oceanography offers a B.S. degree and a contiguous B.S./M.S. degree in earth sciences. In addition, students may follow a chemistry/earth sciences major, a physics major with a specialization in earth sciences, or an environmental systems/earth sciences major (see the "Chemistry," "Physics," or "Environmental Systems" sections of the catalog for details). The program also offers an academic minor in earth sciences.

For students interested in broadening their understanding of and opportunity in marine science and oceanography, the program offers an academic minor in marine science. The marine science minor is designed to complement the strong disciplinary training of UCSD basic natural science and engineering majors (i.e., chemistry, physics, biological sciences, earth sciences, engineering, mathematics, etc.) by providing a broad interdisciplinary perspective with an applied environmental focus.

Earth Sciences Major

Earth sciences encompass broad scientific study of the origin and evolution of the earth system and its life forms. The earth sciences major embraces a wide range of topics, including the physical and chemical evolution of the planet, the evolution of life, the causes of earthquakes and volcanic eruptions, earth-surface processes, the origin and behavior of oceans and atmosphere, and the impact of humans on the environment. Earth science investigations are increasingly quantitative and experimental, and thus most upper-division courses require a strong foundation in chemistry, physics, and mathematics.

The earth sciences curriculum takes advantage of the unique opportunities offered by Scripps Institution of Oceanography. Classes beyond introductory level are usually small, permitting personalized instruction. Field trips are an important part of the instructional program. Earth sciences students are encouraged to consult with their instructors about incorporating appropriate courses and research opportunities at the Scripps Institution of Oceanography into their undergraduate curriculum.

A degree in earth sciences is an appropriate start for a broad range of career and graduate school opportunities in various areas, including research, government, state and federal survey jobs, environmental management, the petroleum and mining industries, consulting, ocean sciences, industrial institutions, elementary or secondary education, environmental policy, or environmental law. Program advisors and faculty can provide additional information on career and graduate school opportunities.

There are three specializations, each with slightly different course requirements, in the earth sciences major: The Earth Sciences/Geology major, Earth Sciences/Geochemistry major, and Earth Sciences/Geophysics major.

It is strongly recommended that all earth science majors meet regularly with the earth sciences academic advising staff and a faculty advisor to discuss and update curriculum choices. The earth sciences academic staff are located in the Scripps office of Undergraduate Programs in Galbraith Hall, room 188.

Lower-division requirements are designed to provide the foundations in mathematics, physics, chemistry, and biology that are essential in modern quantitative earth science disciplines. In addition, there are four upper-division courses introducing basic concepts, SIO 100, SIO 102, SIO 103, and SIO 104. SIO 100, SIO 102 and SIO 103 should be taken during the sophomore year to provide the appropriate background for other upper-division courses.

A grade-point average of 2.0 or higher in the upper-division major program is required for graduation. Students must receive a grade of C− or better in any course to be counted toward fulfillment of the major requirements. In exceptional cases, students with a grade-point average in the major of 2.5 or greater may petition to have one grade of D accepted. All courses (lower- and upper-division) required for the major must be taken for a letter grade.

The Undergraduate Program

Earth Sciences Upper-Division Core Requirements

- SIO 100. Introduction to Field Methods
- SIO 102. Introduction to Geochemistry
- SIO 103. Introduction to Geophysics
- SIO 104. Paleobiology and History of Life

Earth Sciences Upper-Division Electives, at least four courses from:

- SIO 105. Sedimentology and Stratigraphy
- SIO 120. Mineralogy
- SIO 152. Petrology and Petrography
- SIO 160. Introduction to Tectonics
- SIO 162. Structural Geology
- SIO 182A. Applied Geophysics A
- SIO 182B. Applied Geophysics B

Special Studies Courses

Special studies in the earth sciences are offered as the courses SIO 198 and SIO 199. These courses are subject to consent of the instructor and approval by the earth sciences faculty advisor. They are open to students who have accrued at least ninety quarter-units and have a GPA of at least 3.0. Two quarters of earth sciences special studies may be counted toward any earth sciences major.

Earth Sciences/Geology

The earth sciences/geology major is designed to allow students maximum flexibility in tailoring the curriculum to their interests, within the constraints of obtaining the necessary background in physical, biological, and earth sciences. Compared to the earth sciences/geochemistry and earth sciences/geophysics tracks, it requires more earth science and fewer non-earth science courses.

Lower-Division Requirements

- Math. 20A-B-C (may allow Math. 10A-B-C by petition) and Math. 20D
- Physics 2A-B-C (may allow Physics 1A-B-C by petition)
- Chemistry 6A-B-C
- Biology 3
- SIO 50

Upper-Division Requirements

Earth Sciences Upper-Division Core Requirements

- SIO 100. Introduction to Field Methods
- SIO 102. Introduction to Geochemistry
- SIO 103. Introduction to Geophysics
- SIO 104. Paleobiology and History of Life

Earth Sciences Upper-Division Electives, at least four courses from:

- SIO 105. Sedimentology and Stratigraphy
- SIO 120. Mineralogy
- SIO 152. Petrology and Petrography
- SIO 160. Introduction to Tectonics
- SIO 162. Structural Geology
- SIO 182A. Applied Geophysics A
- SIO 182B. Applied Geophysics B

Special Studies Courses

Special studies in the earth sciences are offered as the courses SIO 198 and SIO 199. These courses are subject to consent of the instructor and approval by the earth sciences faculty advisor. They are open to students who have accrued at least ninety quarter-units and have a GPA of at least 3.0. Two quarters of earth sciences special studies may be counted toward any earth sciences major.
SIO 144. Introduction to Isotope Geochemistry
SIO 148. Evolution of Earth’s Biosphere
SIO 154. Macroevolution
SIO 155. Petrology and Geochemistry of the Solid Earth
SIO 170. Introduction to Volcanology (summer session)
SIO 185. Applied Complexity
SIO 195. Methods of Teaching Earth Sciences
SIO 197. Earth Science Internship
SIO 198. Directed Group Study
SIO 199. Independent Study
SIO 210. Physical Oceanography
SIO 226. Introduction to Marine Geophysics
SIO 240. Marine Geology
SIO 247. Rock Magnetism and Paleomagnetism
SIO 260. Marine Chemistry
SIO 280. Biological Oceanography

An example schedule is outlined below:

FALL	**WINTER**	**SPRING**
Math. 20A | Math. 20B | Math. 20C
Chem. 6A | Chem. 6B | Chem. 6C
SIO 50 | Phys. 2A | Phys 2B

SOPHOMORE YEAR
Math. 20D | SIO 102 | SIO 104
Phys. 2C | SIO 162 | BILD 3
SIO 100 | |

JUNIOR YEAR
SIO 105 | SIO 120 | SIO 152
SIO 103 | SIO 182A | SIO 182B

SENIOR YEAR
SIO Elect. | SIO Elect. | SIO Elect.
SIO Elect. | SIO Elect. | SIO 160

Earth Sciences/Geochemistry Major

This specialization focuses on the Earth as a chemical system and on its evolution. Emphasis is placed on the fundamental observations that allow geoscientists to understand better the past history of the planet, the energetics of its evolution, and the major “cycles” (e.g., water, carbon) that characterize and control planetary-scale changes on a broad range of time scales. The major is appropriate for students interested in modern geochemistry, in “global change” studies, and in global and local environmental problems, including biochemical and anthropogenic effects.

LOWER-DIVISION REQUIREMENTS

Math. 20A-B-C-D
Physics 2A-B-C (2D recommended)
Chemistry 6A-B-C and Chem. 6BL
Biology 3
SIO 50

UPPER-DIVISION REQUIREMENTS

Earth Sciences Upper-Division Core Requirements

SIO 100. Introduction to Field Methods
SIO 102. Introduction to Geochemistry
SIO 103. Introduction to Geophysics
SIO 104. Paleobiology and History of Life

Upper-Division Earth Science Requirements

SIO 120. Mineralogy
SIO 144. Introduction to Isotope Geochemistry
SIO 152. Petrology and Petrography

Upper-Division Chemistry Requirements

Chemistry 120A. Inorganic Chemistry
Chemistry 131. Physical Chemistry or Chemistry 127
Chemistry 140A. Organic Chemistry
Chemistry 127 or 131

Chemistry Restricted Electives, at least two courses from:

Chemistry 149A-B. Environmental Chemistry
Chemistry 173. Atmospheric Chemistry

Upper-Division Restricted Electives, at least three courses from:

SIO 105. Sedimentology and Stratigraphy
SIO 110. Introduction to GIS and GPS for Scientists
SIO 112. Urban Landscapes
SIO 135. Satellite Remote Sensing
SIO 142. Atmospheric Chemistry and Biochemical Cycles
SIO 148. Evolution of Earth’s Biosphere
SIO 155. Petrology and Geochemistry of the Solid Earth
SIO 160. Introduction to Tectonics
SIO 162. Structural Geology
SIO 170. Introduction to Volcanology (summer session)
SIO 182A. Applied Geophysics A
SIO 182B. Applied Geophysics B
SIO 185. Applied Complexity
SIO 195. Methods of Teaching Earth Sciences
SIO 197. Earth Science Internship
SIO 198. Directed Group Study
SIO 199. Independent Study
SIO 226. Introduction to Marine Geophysics
SIO 240. Marine Geology
SIO 247. Rock Magnetism and Paleomagnetism
SIO 260. Marine Chemistry
SIO 263. Aqueous Chemistry

An example schedule is outlined below:

FALL	**WINTER**	**SPRING**
Chem. 6A | Chem. 6B | Chem. 6C
Math. 20A | Chem. 6BL | Math. 20C
SIO 50 | Math 20B |

SOPHOMORE YEAR
Math. 20D | SIO 102 | SIO 104
Phys. 2C | SIO 162 | BILD 3
SIO 100 | |

JUNIOR YEAR
SIO 103 | SIO 120 | SIO 152
SIO 103 | SIO 182A | SIO 182B

SENIOR YEAR
SIO Elect. | SIO Elect. | SIO Elect.
SIO Elect. | SIO Elect. | SIO 160

Earth Sciences/Geophysics Major

This specialization focuses on the mechanical, dynamical, and thermodynamical aspects of the Earth. Emphasis is placed on a solid background of fundamental physics, from mechanics and electromagnetism to continuum- and quantum mechanics, and on the necessary mathematical skills. The major introduces basic techniques used to investigate the internal structure of the Earth, from seismology to the study of potential fields, and space geodesy. Elementary geodynamics, including the physics of simple convective systems, introductory rock mechanics, and plate kinematics are among topics introduced. At the same time, a “hands-on” exposure to field problems and techniques will be accessible through an applied geophysics sequence.
LOWERVERSION REQUIREMENTS
Math 20A-B-C-D-E-F
Physics 4A-B-C-D or Physics 2A-B-C (Physics 4 sequence recommended)
Chemistry 6A-B-C
Biology 3
SIO 50
UPPERDIVISION REQUIREMENTS
Earth Sciences Upper DIVISION Core Requirements
SIO 100. Introduction to Field Methods
SIO 102. Introduction to Geochemistry
SIO 103. Introduction to Geophysics
SIO 104. Paleobiology and History of Life
Upper DIVISION Earth Sciences Requirements
SIO 130. Geodynamics of Terrestrial Planets or SIO 160. Introduction to Tectonics
SIO 182A. Applied Geophysics A
SIO 182B. Applied Geophysics B
Upper DIVISION Physics Requirements
Physics 100A-B-C. Electromagnetism
Physics 110A-B. Mechanics
Physics Restricted Electives, at least one course from:
Physics 105A. Mathematical and Computational Physics
Physics 121. Experimental Techniques
Physics 140A-B. Statistical and Thermal Physics
MAE 131A. Solid Mechanics I
MAE 180A. Space Science and Engineering
Upper DIVISION Restricted Electives, at least two courses from:
SIO 105. Sedimentology and Stratigraphy
SIO 110. Introduction to GIS and GPS for Scientists
SIO 112. Urban Landscapes
SIO 120. Introduction to Mineralogy
SIO 130. Geodynamics of Terrestrial Planets
SIO 135. Satellite Remote Sensing
SIO 142. Atmospheric Chemistry and the Biochemical Cycles of Atmospheric Trace Gases
SIO 144. Introduction to Isotope Chemistry
SIO 148. Evolution of Earth’s Biosphere
SIO 152. Petrology and Petrography
SIO 154. Macroevolution
SIO 155. Petrology and Geochemistry of the Solid Earth
SIO 160. Introduction to Tectonics
SIO 162. Structural Geology
SIO 170. Introduction to Volcanology (summer session)
SIO 185. Applied Complexity
SIO 195. Methods of Teaching Earth Sciences
SIO 197. Earth Science Internship
SIO 198. Directed Group Study
SIO 199. Independent Study
SIO 223. Geophysical Data Analysis
SIO 226. Introduction to Marine Geophysics
SIO 227A. Introduction to Seismology
An example schedule is outlined below.

FALL
SIO 152 Petrology and Petrography
SIO 154 Macroevolution
SIO 155 Petrology and Geochemistry of the Solid Earth
SIO 160 Introduction to Tectonics
SIO 162 Structural Geology
SIO 170 Introduction to Volcanology (summer session)
SIO 185 Applied Complexity
SIO 195 Methods of Teaching Earth Sciences
SIO 197 Earth Science Internship
SIO 198 Directed Group Study
SIO 199 Independent Study
SIO 223 Geophysical Data Analysis
SIO 226 Introduction to Marine Geophysics
SIO 227A Introduction to Seismology

WINTER
SIO 152 Petrology and Petrography
SIO 154 Macroevolution
SIO 155 Petrology and Geochemistry of the Solid Earth
SIO 160 Introduction to Tectonics
SIO 162 Structural Geology
SIO 170 Introduction to Volcanology (summer session)
SIO 185 Applied Complexity
SIO 195 Methods of Teaching Earth Sciences
SIO 197 Earth Science Internship
SIO 198 Directed Group Study
SIO 199 Independent Study
SIO 223 Geophysical Data Analysis
SIO 226 Introduction to Marine Geophysics
SIO 227A Introduction to Seismology

SPRING
SIO 152 Petrology and Petrography
SIO 154 Macroevolution
SIO 155 Petrology and Geochemistry of the Solid Earth
SIO 160 Introduction to Tectonics
SIO 162 Structural Geology
SIO 170 Introduction to Volcanology (summer session)
SIO 185 Applied Complexity
SIO 195 Methods of Teaching Earth Sciences
SIO 197 Earth Science Internship
SIO 198 Directed Group Study
SIO 199 Independent Study
SIO 223 Geophysical Data Analysis
SIO 226 Introduction to Marine Geophysics
SIO 227A Introduction to Seismology

Honors Program
The Honors Program in Earth Sciences is offered for a limited number of students who have demonstrated excellence in the earth sciences major. Students are eligible for admission to the program when they have:
1. Completed ninety units of courses including twelve units of earth sciences courses.
2. Achieved a GPA of 3.3 overall and 3.5 in earth science courses.
3. Submitted to the Earth Sciences Steering Committee, and had approved, an honors thesis research proposal.

Successful completion of the Honors Program requires:
1. Maintenance of a GPA of 3.3 overall and 3.5 in earth sciences courses.
2. Completion, with a B grade or higher, of a minimum of eight units of SIO 196 related to the honors thesis research, distributed over at least two quarters. These units must be in addition to the ordinary major requirements. However, students who subsequently fail to complete the Honors Program may apply up to four of these 196 units to their major.
3. Acceptance of a written honors thesis report by a committee of not fewer than three faculty members.
4. Satisfactory presentation of an oral report on the thesis research, preferably at a public undergraduate research conference on campus, or at an earth sciences conference. Alternatively, the oral report may be given at a seminar involving honors students and at least three faculty members.

Students who successfully complete the Honors Program will graduate with “high distinction.” Students who are interested in the Honors Program should contact the program advisor in Galbraith Hall, room 188, Revelle College.

Contiguous Bachelor’s/Master’s Earth Sciences Degree Program
The integrated program leading to a bachelor of science and a master of science degree in earth sciences is offered to undergraduate students who are enrolled in the earth sciences major, and to qualified students who are completing a specialization or minor in earth sciences. It is open only to UCSD undergraduates, and entails participation in research in an area of the earth sciences to be determined jointly by the student and a committee of earth sciences faculty members from the Scripps Institution of Oceanography Department. Applications will only be accepted during the final quarter of the applicant’s junior year, or the first or second quarter of the senior year. A minimum undergraduate GPA of 3.0 overall and 3.3 in upper-division earth sciences courses is required for admission. Applications must include a written statement of purpose, a summary of the research proposal, and a letter of support from the potential M.S. thesis advisor. Students must complete requirements for the B.S. degree before they are enrolled in the M.S. program, and are expected to meet the requirements for the
M.S. degree within three consecutive academic quarters after obtaining the B.S. Students may be dropped from the program if breaks in enrollment occur. The Scripps Institution of Oceanography Department does not have financial aid available for students enrolled in the contiguous B.S./M.S. program. Please contact the undergraduate education program office in Galbraith Hall, room 188, for information.

Earth Sciences Minor

A minor in earth sciences consists of twenty-eight units of earth sciences courses, at least twenty of which must be upper-division, focused on geology, geochemistry, or geophysics. Courses required by a student’s major may not be applied toward a minor and neither can SIO 198 nor SIO 199. Courses for the minor may be taken on a Pass/Not Pass basis if the student’s college permits. Students interested in the earth sciences minor should meet with the earth sciences academic advising staff to discuss their curriculum choices.

Marine Science Minor

The Scripps Institution of Oceanography offers an undergraduate minor program in marine science. The minor curriculum is designed to complement the strong disciplinary training of UCSD basic science majors by providing a broad interdisciplinary perspective with an environmental focus. Ocean-related science is relevant to many contemporary environmental issues and problems and central to understanding earth-system evolution, dynamics, climate, and sustainability. The minor consists of courses and research opportunities offered primarily through faculty and researchers at Scripps. The mix of these components can be tailored to reflect students’ career interests through an “all courses” track or a “research” track. The “all courses” track offers a very flexible curriculum that serves students with a broad range of educational and career interests including environmental management and regulation, teaching, environmental law, economics and policy and a wide variety of graduate programs. The “research” track is designed for students interested in an undergraduate research experience at Scripps and serves as excellent preparation for graduate research studies.

The minor consists of twenty-eight units of course work, at least twenty of which must be upper-division. Courses required by a student’s major may not be applied toward the minor. Up to two courses for the minor may be taken on a Pass/Not Pass basis (upper- or lower-division). Students must earn at least a letter grade of C– in the remaining five or more courses used for the minor. The marine science minor places a strong emphasis on a rigorous natural science foundation; thus, several of the upper-division courses related to the minor have significant prerequisites. Students planning the minor should check catalog course descriptions carefully and should meet with advising staff in the Scripps Institution of Oceanography Office of Undergraduate Programs, Galbraith Hall, room 188.

LOWER-DIVISION REQUIREMENTS

1. SIO 30. The Oceans
2. Any one of the following lower-division courses may be applied to the minor requirements
 STPA 35. Society and the Sea
 SIO 10. The Earth
 SIO 12. History of the Earth and Evolution
 SIO 20. The Atmosphere
 SIO 35. Water
 SIO 40. The Biosphere
 SIO 50. Introduction to Earth and Environmental Sciences
 Additionally: any math, chemistry, physics, or biology course that is a prerequisite for an upper-division elective for the marine science minor (ex., Math. 20 series; Chem. 6A, 6B, 6C, 6CL; Phys. 2 series; BILD 1, 2, 3) may be applied, by petition, as a lower-division requirement for the minor if not already used as a lower-division requirement for the student’s major.

UPPER-DIVISION REQUIREMENTS

Option 1—All Courses Track:
At least five courses from the list (below) of upper-division electives

Option 2—Research Track:
At least five courses from the list (below) of upper-division electives, at least three of which must be courses satisfying Option #1 and at least two of which must be Independent Study (SIO 199; eight units total) Note: The Independent Study must be designed in mutual agreement and arrangement with an SIO faculty member.

Students interested in the marine science minor “Research Track” must meet with a Scripps Undergraduate Program advisor for information and policies.

Upper-Division Electives

- SIO 101. California Coastal Oceanography
- SIO 102. Introduction to Geochemistry
- SIO 103. Introduction to Geophysics
- SIO 104. Paleobiology and History of Life
- SIO 105. Sedimentology and Stratigraphy
- SIO 110. Introduction to GIS and GPS for Scientists
- SIO 111. Introduction to Ocean Waves and Tides
- SIO 117. The Physical Climate System
- BIMM 126. Marine Microbiology
- BIMM 127. Marine Microbiology Lab
- BIBC 130. Marine Biochemistry
- BIEB 132. Introduction to Marine Biology
- BIEB 134. Introduction to Biological Oceanography
- SIO 135. Satellite Remote Sensing
- SIO 141. Chemical Principles of Marine Systems
- SIO 148. Evolution of Earth’s Biosphere
- SIO 154. Macroevolution
- SIO 160. Introduction to Tectonics
- SIO 198. Directed Group Study
- SIO 199. Independent Study
- ECE 156/MAE 149. Sensor Networks
- SIO 201. Geologic Record of Climate Change
- SIO 210. Physical Oceanography
- SIO 260. Marine Chemistry
- SIO 265. Chemical Ecology of Marine Organisms

Other SIO courses may be submitted by petition.

Study Abroad

Study abroad through the Education Abroad Program (http://programsabroad.ucsd.edu) or Opportunities Abroad Program can enhance a student’s major, particularly as an opportunity for diverse field experiences. However, careful planning is important to meet all major requirements. Please contact the Scripps Office of
Undergraduate Programs as early as possible if you are an earth sciences major and planning to study abroad.

Careers in Education

Students interested in a teaching career should be aware that the earth sciences major, because of its broad course requirements in the sciences, fulfills many of the subject requirements for obtaining a California Teaching Credential through UCSD’s Educational Studies Program. The projected high demand over the next decade for well-trained teachers, particularly in the sciences, makes this an attractive option for many students. Students who wish to take advantage of this opportunity may wish to complete a minor in science education. Please contact the Education Studies office directly for further details.

The Doctoral Program

The graduate department of Scripps Institution of Oceanography offers instruction leading to Ph.D. degrees in oceanography, marine biology, and earth sciences. Although students are not admitted specifically for an M.S. degree, it is possible to obtain an M.S. on the way to completing the Ph.D. program. A graduate student’s work normally will be concentrated in one of the curricular programs within the department: applied ocean science, biological oceanography, climate sciences, geosciences, geophysics, marine biology, marine chemistry and geochemistry, and physical oceanography.

The Curricular Programs

Applied Ocean Science is a multidisciplinary program focused on the application of advanced technology to ocean exploration and observation. AOS students perform research in marine acoustics, optics, electromagnetics, geophysics, ecology, sediment transport, coastal processes, physical oceanography, and air-sea interaction. The emphasis is on the resolution of key scientific issues through novel technological development. The science focus of the Scripps AOS program is complemented by parallel Applied Ocean Science programs in the Mechanical and Aerospace Engineering (MAE), Structural Engineering (SE), and Electrical and Computer Engineering (ECE) departments. Students have access to professors, courses, and research facilities across all three departments.

Biological Oceanography is concerned with the interactions of populations of marine organisms with one another and with their physical and chemical environment. Because these interactions are frequently complex, and because the concepts and techniques used are drawn from many fields, biological oceanography is, of necessity, interdisciplinary. Therefore, studies in physical oceanography, marine chemistry, marine biology, and several biological areas are pertinent.

Research is conducted on space/time scales ranging from short-term interactions between individual organisms (mm., sec.) to interdecadal variation in widely dispersed populations. The techniques used in these investigations are diverse, and can include field observation and manipulations, experimentation in the laboratory, and mathematical modeling.

Research topics include primary and secondary productivity and nutrient regeneration, fishery biology and management, community ecology of benthic and pelagic organisms, population dynamics, habitat changes and disruptions, systematics and biogeography, population genetics and evolution, and behavior as it affects distribution. Development and testing of new tools (molecular, optical, acoustic), design of sampling programs, and statistical/mathematical analyses of data also are significant activities.

Climate Sciences concerns the study of the climate system of the earth with emphasis on the physical, dynamical, and chemical interactions of the atmosphere, ocean, land, ice, and the terrestrial and marine biospheres. The program encompasses changes on seasonal to interannual time scales and those induced by human activities, as well as paleoclimatic changes on time scales from centuries to millions of years. Examples of current research activities include: interannual climate variability; physics and dynamics of El Niño; studies of present and future changes in the chemical composition of the atmosphere in relation to global warming and ozone depletion; effects of cloud and cloud feedbacks in the climate system; paleoclimate reconstructions from ice cores, banded corals, tree-rings, and deep-sea sediments; the origin of ice ages; air-sea interactions; climate theory; terrestrial and marine ecosystem response to global change.

Geosciences emphasizes the application of general principles of geology, geochemistry, and geophysics to problems in the marine and terrestrial environments of the Earth. Graduate students routinely participate in expeditions at sea and on land and many doctoral theses evolve from these experiences.

Research areas in the geological sciences include: the origin and evolution of the ocean-atmosphere system and global climate; geology, geochemistry, and geophysics of oceanic crustal rocks and near-shore environments; tectonic and structural evolution of the oceans, plate margins, and back-arc basins; the role of fluids in the crust; chemistry of rare gases in active volcanoes; the use of natural nuclear processes for understanding physical and chemical processes in the Earth; paleomagnetic applications in geology and geophysics.

Geophysics emphasizes the application of general principles of mathematics and experimental physics to fundamental problems of the oceans, oceanic and continental lithosphere, and crust and deep interior of the Earth. Research interests of the group include: observational and theoretical studies of electric and magnetic fields in the oceans and on the land; paleomagnetism; theoretical seismology with special emphasis on the structure of the Earth from free-oscillation and body wave studies; broadband observational seismology, including ocean bottom and multichannel seismology; earthquake source mechanisms; the measurements of slow crustal deformations using satellite and observatory methods on continents and in the oceans; marine geodynamics and tectonophysics; gravity measurements; geophysical inverse theory; magneto-hydrodynamics of the core of the Earth; geophysical instrumentation for oceanic and continental geophysical measurements; acoustic propagation in the oceans.

Marine Biology is the study of marine organisms. It is concerned with evolutionary, organismic, genetic, physiological, and biochemical processes in these organisms, and the relationship between them and their biotic and physical environment. Marine biology encompasses several major areas of modern biology, and is interpreted by understanding the physical and chemical dynamics of the oceans. Faculty research focuses on microbiology, photobiology, high pressure biology, deep-sea biology, developmental biology, genetics, biomechanisms, comparative biochemistry and physiology, behavior, ecology, biogeography, and evolution of marine prokaryotes and eukaryotes. Processes
ranging from the fertilization of sea urchin eggs to the role of bacteria in marine food web dynamics are under study in over twenty independent research laboratories.

Marine Chemistry and Geochemistry

concerns chemical and geochemical processes operating in a broad range of study areas: the oceans, the solid earth, the atmosphere, marine organisms, polar ice sheets, lakes, meteorites, and the solar system.

Areas of advanced study and research include the physical and inorganic chemistry of seawater; ocean circulation and mixing based on chemical and isotopic tracers; marine organic and natural products chemistry; marine bioinorganic chemistry; geochemical interactions of sediments with seawater and interstitial waters; geochemistries of volcanic and geothermal phenomena; chemical exchanges between the ocean and the atmosphere; geochemical cycles of carbon, oxygen, sulfur, nitrogen, and other elements; isotopic geochemistry of the solid earth and meteorites; atmospheric trace gas chemistry; paleoatmospheric composition recorded in polar ice cores, corals and sediments; and chemistry of lakes and other freshwater systems.

Studies are typically interdisciplinary and involve integration of chemical concepts with information about the physical, biological, or geological processes that influence natural systems. Students in the marine chemistry and geochemistry curricular group are encouraged to explore these links.

Physical Oceanography

is the field of study that deals with mechanisms of energy transfer through the sea and across its boundaries, and with the physical interactions of the sea with its surroundings, especially including the influence of the seas on the climate of the atmosphere. Research activities within this curricular group are both observational and theoretical and include: study of the general circulation of the oceans, including the relations of ocean currents to driving forces and constraints of the ocean basins; fluctuations of currents, and the transport of properties; the mechanisms of transport of energy, momentum, and physical substances within the sea and across its boundaries; properties of wind waves, internal waves, tsunami and planetary waves; the thermodynamic description of the sea as a system not in equilibrium; optical and acoustic properties of the sea; and the influence of surf on near-shore currents and the transport of sediments.

Requirements for Admission

Candidates for admission should have a bachelor's or master's degree in one of the physical, biological, or earth sciences; degrees in mathematics or engineering science are also accepted. A scholastic average of B or better in upper-division courses, or prior graduate study, is required. The student's preparation should include:

1. Mathematics through differential and integral calculus
2. Physics, one year with laboratory (the course should stress the fundamentals of mechanics, electricity, magnetism, optics, and thermodynamics, and should use calculus in its exposition)
3. Chemistry, one year with laboratory
4. An additional year of physics, chemistry, or mathematics
5. All applicants are required to submit scores from the general test of the Graduate Record Examinations (GRE) given by the Educational Testing Service of Princeton, New Jersey. Marine biology applicants must also submit scores of the GRE biology (or biochemistry, cell, and molecular biology) subject test.

All international applicants whose native language is not English and whose undergraduate education was conducted in a language other than English must take the TOEFL and submit their test scores to the UCSD Office of Graduate Admissions.

Specific additional requirements for admission to the various curricular programs are as follows:

Applied Ocean Science—Students are admissible with a strong background in physical science, engineering science, or mathematics. Three years of physics or applicable engineering and three years of mathematics at college level are expected.

Biological Oceanography—Two years of chemistry, including general and organic chemistry, and a year of general biology are required. Physical chemistry requiring calculus may be substituted for physics requiring calculus where a more elementary physics course was taken. Zoology or botany may be substituted for general biology. Preparation should also include a course in general geology and at least one course in each of the following categories: systematics (e.g., invertebrate zoology), population biology (e.g., ecology), functional biology (e.g., physiology). In special cases, other advanced courses in mathematics or natural sciences may be substituted. Biological oceanography applicants are encouraged, but not required, to submit scores of the biology subject test of the GRE.

Climate Sciences—Students are admissible if they satisfy the requirements of the physical oceanography, geophysics, or marine chemistry and geochemistry curricular programs. Biology and geology majors may also be admissible if the Scripps faculty feel that they have a sufficiently strong background in mathematics and physical science.

Geosciences—A major in one of the earth sciences and undergraduate physical chemistry and calculus are required. Preparation beyond the minimum requirements in mathematics, physics, and chemistry is strongly recommended.

Geophysics—A major in physics or mathematics, or equivalent training, is required.

Marine Biology—A major in one of the biological sciences (or equivalent), with basic course work in botany, microbiology, or zoology; two years of chemistry, including organic chemistry, is required. Training in one or more of the following areas is strongly recommended: cellular biology, molecular biology, comparative physiology, genetics, developmental biology, ecology, evolutionary biology, vertebrate and invertebrate zoology, microbiology, and/or botany. Biochemistry and physical chemistry will be expected of students in experimental biology, although the student may, if necessary, enroll in these courses at UCSD after admission.

Marine Chemistry and Geochemistry—A major in chemistry, geology, biochemistry, or related field, is required.

Physical Oceanography—A major in a physical science, including three years of physics and mathematics, is required.

Special consideration occasionally can be given to candidates with outstanding records who do not meet all required preadmission criteria.

Programs of Study

Programs of study vary widely among the curricular groups, but generally first-year students are expected to enroll in core courses that cover physical, geological, chemical, and biological oceanography and in other courses recommended by the student's faculty advisor. Then, by the end of the first year, students usually select a particular area of focus and choose a major professor. As students advance beyond the
first year, they begin to function effectively as research assistants or, in some cases, as teaching assistants. During their third to fifth year they are working toward writing their dissertations.

The interdisciplinary nature of research in marine and earth sciences is emphasized; students are encouraged to take courses in several programs and departments, and to select research problems of interdisciplinary character. The curricular programs of study are as follows:

Applied Ocean Science—The AOS academic program is designed to provide both a broad background and a core technical base to support the diverse interests and activities of the students. Early participation in an ongoing research project is encouraged. However, specialization and focus on a specific thesis topic is not required until the second or third year of the program. Required courses include SIO 214A Introduction to Fluid Mechanics, and the two-quarter Wave Physics sequence SIO 202A–B. Two of the four SIO introductory courses (SIO 210, 240, 260, 280), must be completed during the first year, with the remaining two required prior to passing the doctoral qualifying exam at the end of the third year. In addition, the applied math sequence SIO 203 A–B or MAE 294 A–B is taken in either the first or second year of study. The AOS Seminar (SIO 208) serves as a communications bridge across the program; enrollment in this seminar is required during the student’s entire period of study. Beyond these core classes, the majority of each student’s academic program is tailored to individual interests. The AOS departmental examination, held at the end of the first year, is based on the core technical courses SIO 214A, SIO 202A–B, and two of the four introductory courses (chosen by the student). The exam has both oral and written components.

Biological Oceanography—The student will be expected to be familiar with the material presented in the following courses: SIO 210, 240, 260, 270 or 270A, 275A or 277, 280, and at least one of SIO 271, 282, 284, or 294. Other course work ordinarily will be recommended by the student’s advisory committee, usually including 278 (or equivalent participatory seminar) one quarter of each year, a course in introductory parametric statistics, and at least one advanced-level course in physical, chemical, or geological oceanography. Participation in an oceanographic cruise (minimum of two weeks’ duration) and service as a teaching assistant (one quarter) are required. Individual advisors and/or doctoral committees may require foreign languages or computer programming languages of individual candidates.

Climate Sciences—The emphasis of this curricular group is on education through interdisciplinary research. All students are responsible for the fundamental material in the following “core” courses: SIO 210, 217A-B-C, 260. Students are also expected to supplement their backgrounds with five to seven additional courses, including, for most Climate Sciences students, at least one additional quarter of fluid dynamics. These additional course(s) will be chosen in consultation with the students’ advisors. It is recommended that students participate actively in at least two quarters of seminar courses designed to complement and stimulate individual research. Though the group stresses interactions across disciplines, students will specialize in a particular subdiscipline or track that will be chosen by the student following discussions with a 3-person faculty advisory committee soon after arrival. Examples of current tracks include: (1) atmospheric/ocean/climate dynamics and physics; (2) atmospheric chemistry (emphasizing climatic interactions); and (3) paleoclimate studies. Additional course requirements for these tracks will be tailored to the needs of the individual student.

Geosciences—The geosciences curriculum consists of a series of core courses and a series of research focus courses. All students whether pursuing an earth sciences or an oceanography degree are responsible for material in the core courses: Marine Geology (SIO 240), Marine Chemistry (SIO 260), and Physical Oceanography (SIO 210) during their first year of study. The research courses are selected from three themes: Geochemistry, Paleoclimate and Earth History, and Geology and Geophysics. A total of four research courses are required during the first year of study, with at least one from each theme. Additional courses offered by other curricular programs (e.g., geophysics, marine chemistry, and geochemistry) can be selected and scheduled depending on the student’s background and interests any time during the student’s career at SIO. A three-member faculty advisory committee is assigned to each student to help select the research and additional courses to be taken. Each student is also encouraged to participate in the Special Topics seminars (SIO 249) every quarter during the first two years of graduate study. Students wishing to graduate with an oceanography degree are also responsible for the material in SIO 280 (Biological Oceanography). Normally, students will take a comprehensive oral departmental examination near the end of their third quarter of residence. The qualifying examination will be given before the end of the third year.

Geophysics—There is no single course of study appropriate to the geophysics curriculum; instead, the individual interests of the student will permit, in consultation with the advisor, a choice of course work in seismology, geomagnetism, etc., although the content of certain core courses is usually taken during most of the first year. In the summer or early fall quarter following that year each student will be given written and oral departmental examinations, which are intended to cover the student’s formal training. A brief presentation of possible research interests will also be expected at this exam.

Marine Biology—Entering graduate students will be expected to gain research experience in one or more laboratories during their first year. In the spring term of their first year at SIO, students will take a departmental exam consisting of a presentation of their first-year research in the form of a paper and short talk to the curricular group, followed by a meeting with their first-year advisory committee. In this exam they also will be expected to demonstrate competence in the material covered in the following courses: SIO 210, 260, 280, 290A-B as well as any other course work recommended by the advisory committee. After their first year all students are expected to enroll and actively participate in at least one seminar course (SIO 278, 296, or equivalent) per year to provide in-depth knowledge and reading in selected areas, and to provide practice presenting scientific material. In addition to the seminar requirement discussed above, second-year students will present their research in a special Marine Biology mini-symposium, held in spring quarter; students in the third year and beyond are expected to participate in the research presentation class (SIO 291) each year. The curricular group coordinator, in consultation with the Ph.D. advisory committee, may waive specific course requirements in individual cases.

For the Marine Biodiversity and Conservation MAS program, refer to the separate Catalog listing.

Marine Chemistry and Geochemistry—In their first year at SIO, students in this curricular group are required to take SIO 210, 260, and either SIO 280 or SIO 240, as well as three additional elective courses. In their second year, students are required to take a further three elective courses. Although the exact choice of...
such courses will depend on the student’s research interests, these required electives must be four-unit courses that are offered at the graduate level, and that have been approved by the curricular group as suitable electives. A list of approved courses is on file at the SIO Department office. If a student desires to take (as a required elective) a course that is not already on this list, he or she should consult with one of the curricular group advisors to get approval.

Physical Oceanography—The physical oceanography curriculum combines a comprehensive program of course work with individually tailored specialization to meet student needs. Presently defined “tracks” in the curriculum are (i) Observational Physical Oceanography, (ii) Theoretical Physical Oceanography, and (iii) the Atmospheric/Ocean Climate System. All tracks are similar in the entry-year fall quarter, diverging as students become more familiar with the field and in their interests. A faculty Curriculum Advisory Committee meets with students to tailor tracks to individual needs, or to create new tracks as appropriate. Students in all subdisciplines of physical oceanography are required to take SIO 203A-B, 214A, 212A. In any track, students are required to take six four-unit graduate courses, of which twelve are covered during the first year. As part of the overall requirement, tracks include a breadth component of two or more four-unit courses in other scientific disciplines. These might come from the SIO core courses in other oceanographic disciplines (SIO 240, 260, 280) or from related graduate-level courses taught at UCSD.

Any exception to the policy above requires written approval by the department chair in consultation with the curriculum advisor.

Physical oceanography students are required to take the departmental examination after completing one year of graduate work at UCSD. The examination covers the material in the four required courses and in eight additional first-year graduate courses chosen by the student in consultation with the curriculum advisor.

The SIO department offers regular seminars in several areas of current interest. After the departmental exam, students in residence are strongly encouraged to enroll for credit in at least one one-unit seminar class each quarter.

Language Requirements
The department has no formal language requirements. Within the department, some curricular programs may require demonstration of ability to use certain foreign languages pertinent to a student’s research. All students must be proficient in English.

Departmental and Qualifying Examinations
Doctoral candidates normally will be required to take a departmental examination not later than early in the second year of study. The examination will be oral and/or written depending on the curricular group. The student will be required to demonstrate, in a quantitative and analytical manner, comprehension of required subject material and of the pertinent interactions of physical, chemical, biological, or geological factors.

When the student has passed the departmental examination, and has completed an appropriate period of additional study, the department will recommend appointment of a doctoral committee which will supervise the student’s performance and reporting of his or her research. The doctoral committee must be formed before the student may proceed to the qualifying examination.

The doctoral committee will determine the student’s qualifications for independent research by means of a qualifying examination, which will be administered no later than the end of the third year. The nature of the qualifying examination varies between curricular groups. In biological oceanography, marine biology, geosciences, physical oceanography, applied ocean science, and climate sciences the student will be expected to describe his or her proposed thesis research and satisfy the committee, in an oral examination, as to mastery of this and related topics. In marine chemistry and geochemistry the student, in an oral examination, is required to present and defend a single research proposition in his or her specialized area. The student also is required to provide a written summary of the research proposition, with references, prior to the examination. In geophysics, the student presents an original research problem, in the form of a written proposition, to the doctoral committee. The student’s oral presentation and defense of this proposition completes the examination.

Dissertation
A requirement for the Ph.D. degree is the submission of a dissertation and a final examination in which the thesis is publicly defended. We encourage students to publish appropriate parts of their theses in the scientific literature. Individual chapters may be published as research articles prior to completion of the dissertation.

Departmental Ph.D. Time Limit Policies
Students must complete a qualifying examination by the end of three years, and must be advanced to candidacy for the Ph.D. degree by the end of four years. Total university support may not exceed seven years and total registered time at UCSD may not exceed eight years.

Special Financial Assistance and Fellowships
In addition to teaching assistantships, and graduate student researcher positions, fellowships, traineeships, and other awards available on a campus-wide competitive basis, the department has available a certain number of fellowships and graduate student researcher positions supported from research grants and contracts, or from industrial contributions.

COURSES
For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

LOWER-DIVISION

1. The Planets (4)
Space exploration has revealed an astonishing diversity among the planets and moons in our solar system. The planets and their histories will be compared to gain insight and a new perspective on planet Earth. Prerequisite: none. (S)

10. The Earth (4)
An introduction to structure of the Earth and the processes which form and modify it. Emphasizes material which is useful for understanding geological events as reported in the news and for making intelligent decisions regarding the future of our environment. Prerequisite: none. (W)

12. History of the Earth and Evolution (4)
Evolution of the Earth from its origin in the early solar system to formation of continents and ocean basins, and how the planet became habitable. It examines the geologic record of evolution, extinction, plate tectonics, and climate changes through time. Prerequisite: none. (S)

15. Natural Disasters (4)
Introduction to environmental perils and their impact on everyday life. Geological and meteorological processes, including earthquakes, volcanic activity, large storms, global climate change, mass extinctions throughout Earth’s history, and human activity that causes and prevents natural disasters. Prerequisite: none. (F)
16. Geology of the National Parks (4)
An introduction to fundamental concepts of geology and environmental science through the lens of the national park system. Topics covered include the geological time scale; plate tectonics; igneous, metamorphic, and sedimentary processes; geomorphology; climate change; and environmental degradation. Prerequisite: none. (W)

20. The Atmosphere (4)
Descriptive introduction to meteorology and climate studies. Topics include global and wind and precipitation patterns, weather forecasting, present climate and past climate changes (including droughts, El Niño events), ‘greenhouse’ gas effects, ozone destruction, the ‘little ice age,’ acid rain. Prerequisite: none. (W)

30. The Oceans (4)
Presents modern ideas and descriptions of the physical, chemical, biological, and geological aspects of oceanography, and considers the interactions between these aspects. Intended for students interested in the oceans, but who do not necessarily intend to become professional scientists. Prerequisite: none. (F)

35. Water (4)
This course will examine the properties of water that make it unique and vital to living things. Origin of water on Earth and neighboring planets will be explored. Socially relevant issues concerning water use and contamination will be covered. Prerequisite: none. (S)

40. The Biosphere (4)
Explores life on Earth and its relationship to the environment—past, present, and future. Topics include origins of life, earth history, elemental cycles, global climate variability and human impacts on our environment. Prerequisite: none. (F)

50. Introduction to Earth and Environmental Sciences (5)
This course is an introduction to how our planet works, focusing on the formation and evolution of the solid earth, and the processes affecting both its surface and interior. Laboratories and field trips complement and extend the lecture material. Prerequisite: none. (F)

87. Freshman Seminar (1)
The freshman seminar program is designed to provide the new students with the opportunity to explore and intellectual topic with a faculty member in a small setting. Topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen. (P/NP grades only). (F,WS)

90. Undergraduate Seminar (1)
Provides an introduction to earth sciences. Faculty members from departments in natural sciences, geosciences, and marine sciences will offer perspectives in these areas. Prerequisite: none.

96. Frontiers in the Earth Sciences (2)
An introduction to current research in the earth sciences. Background in science not required, but may be useful for some topics. Areas covered vary from year to year. Prerequisite: none.

99. Independent Study (2 or 4)
Independent reading or research on a problem by special arrangement with a faculty member. Prerequisite: lower-division standing, completion of thirty units of UCSD undergraduate study, a minimum UCSD G.P.A. of 3.0, and a completed and approved Special Studies form. UCSD Application for Enrollment Special Studies Courses 97, 98, 99.

UPPER-DIVISION

100. Introduction to Field Methods (4)
Mapping and interpretation of geologic units. Field work is done locally and the data are analyzed in the laboratory. There will be one mandatory weekend field trip to Anza Borrego State Park. Prerequisite: SIO 50 or consent of instructor. (F)

101. California Coastal Oceanography (4)
This course examines oceanographic connections between physical and climate forcing and marine ecosystem responses in the California coastal environment. Approach is inquiry-based, combining classroom and experiential learning to build critical and quantitative thinking and research insights and abilities. Prerequisite: SIO 30, Chem. 6A, or consent of instructor. (S)

102. Introduction to Geochemistry (4)
An introduction to the chemical composition and evolution of the Earth and solar system. Applications of chemical methods to elucidate the origen and geologic history of the Earth and the planets, evolution of oceans and atmosphere, and human environmental impacts. Prerequisites: SIO 30, Chem. 6A-B-C, or consent of instructor. (W)

103. Introduction to Geophysics (4)
An introduction to the structure and composition of the solid earth. Topics include seismology, the gravity and magnetic fields, high-pressure geophysics, and concepts in geodynamics. Emphasis is on global geophysics; i.e., on the structure and evolution of the planet. Prerequisites: Math. 20A-B-C-D and Phys. 2A,B,C, SIO 50, or consent of instructor. SIO 160 recommended. (F)

104/255. Paleobiology and History of Life (5)
An introduction to the major biological transitions in Earth history from the origins of metabolism and cells to the evolution of complex societies. The nature and limitations of the fossil record, patterns of adaptation and diversity, and the tempo and mode of biological evolution. Prerequisites: undergraduate: BILD 3 or consent of instructor. Graduate: graduate-level standing or consent of instructor. Graduate students, additionally, will give oral presentation or research paper. (S)

105. Sedimentology and Stratigraphy (4)
This course will examine sedimentary environments from mountain tops to the deep sea across a variety of time scales. The focus is to develop the skills to interpret stratigraphy and read the history of the Earth that it records. Prerequisite: SIO 50 or consent of instructor. (F)

110. Introduction to GIS and GPS for Scientists (4)
A hands-on introduction to science applications of geographic information systems and global positioning system. Students acquire data through GPS field surveys, design and construct GIS using ESRI’s ArcGIS software, analyze spatial data, and present the results in a Web-based environment. Prerequisite: upper-division standing or consent of instructor. (S)

111/Phys. 111. Introduction to Ocean Waves and Tides (4)
This course will cover a broad range of physical oceanography topics including: linear dynamics of surface gravity waves, dispersion relations, spectral descriptions, group velocity, shoaling waves, ray theory, edge waves, Coriolis force, the tide generating force, LaPlace’s tide equations, Kelvin waves. Prerequisites: Math 20A-E and Phys. 2A-C or consent of instructor. (W)

112. Urban Landscapes (4)
Introduction to scientific principles, such as conservation of mass and energy and pattern formation, that govern the development of urban centers as complex systems. Contrasts between natural and urban landscapes will be highlighted, with examples including water routing and disease transmission. Prerequisite: upper-division standing or consent of instructor. (S)

117. The Physical Climate System (4)
This course quantitatively examines the physical processes controlling Earth’s climate including radiative transfer and energy balance, atmospheric and ocean circulations, clouds and the hydrological cycle, climate sensitivity and climate feedbacks, and natural and anthropogenic climate change. Prerequisites: Math. 20A-B-C and Phys. 2A-B-C or consent of instructor. (S)

120. Introduction to Mineralogy (4)
Application of mineralogical and x-ray crystallographic techniques in earth sciences. Topics include symmetry, crystal structure, chemical, and physical properties of minerals with special emphasis on the common rock-forming minerals. Laboratory component includes polarizing microscope and x-ray powder diffraction methods. Prerequisites: SIO 50, SIO 102. (W)

130. Geodynamics of Terrestrial Planets (4)
Geodynamical processes fundamentally control the formation and evolution of planets on geological time scales. Study of similarities and differences between Earth, Venus, Mars, and other terrestrial planets and satellite studies help elucidate the processes which shape a planet’s formation and evolution. Prerequisites: Math. 20A-B-C-D and Physics 2 sequence or consent of instructor. (F)

135/236. Satellite Remote Sensing (4)
Satellite remote sensing provides global observations of Earth to monitor environmental changes in land, oceans, and ice. Overview, physical principles of remote sensing including: orbits, electromagnetic radiation, diffraction, electro-optical, and microwave systems. Weekly labs explore remote sensing data sets. Prerequisites: undergraduate: Phys. 2A-B or Phys. 4A-B-C or consent of instructor. graduate: graduate-level standing or consent of instructor. Graduate students will additionally do term paper. (S)

Introduction to the chemistry and distribution of the elements in seawater, emphasizing basic chemical principles such as electron structure, chemical bonding, and group and periodic properties and showing how these affect basic aqueous chemistry in marine systems. Prerequisite: Chem. 6C with a grade of C- or better or equivalent. (F)

142. Atmospheric Chemistry and the Biochemical Cycles of Atmospheric Trace Gases (4)
Evolution and processes of the Earth’s atmosphere. Topics include effects of “greenhouse” gases such as H2O, CO2 and CH4 in climate modification, destruction of the ozone layer, biogeochemical cycles of radiatively important trace gases and atmospheres of other terrestrial planets. Prerequisites: Chem. 6 sequence or consent of instructor. (W)

144/252A. Introduction to Isotope Geochemistry (4)
Radioactive and stable isotope studies in geology and geochemistry, including geochronology, isotopes as tracers of magmatic processes, cosmic-ray produced isotopes as tracers in the crust and weathering cycle, isotopic evolution of the crust and mantle.
Prerequisites: undergraduate: SIO 50, SIO 102, and 120 or consent of instructor. Graduate level requires student presentation. (W)

148/248. Evolution of Earth’s Biosphere (4)
Paleoecological development of marine and terrestrial environments during Earth’s evolution. Ecological and chemical evolution of the oceans, atmosphere, biogeochemical cycles, and environments with particular emphasis on the long-term history and climate of the Earth’s surface. Prerequisites: undergraduate: SIO 104 or consent of instructor. Graduate: graduate-level standing or consent of instructor. Additionally, at graduate level oral presentation or research paper required. (W)

152. Petrology and Petrography (4)
Mineralogic, chemical, textural and structural properties of igneous, metamorphic, and sedimentary rocks; their origin and relations to evolution of the Earth’s crust and mantle. Laboratory emphasizes hand specimens and microscopic studies of rocks in thin sections. Prerequisites: SIO 50, SIO 102, and SIO 120 or consent of instructor. (S)

154/254. Macroevolution (4)
Tempo and mode of evolution with emphasis on the marine fossil record. Large-scale patterns and trends in diversity, speciation, and extinction. Innovation, disparity, and adaptive radiation. Evolutionary turnover and the role of the environment in macroevolution. Prerequisites: undergraduate: SIO 104 or BIEB 150 or consent of instructor. Graduate: graduate-level standing or consent of instructor. Additionally, at graduate level oral presentation or research paper required. (W)

155/251. Petrology and Geochemistry of the Solid Earth (4)
A geochemical and petrogenetic overview of the Earth and planets. Topics include formation and differentiation of the Earth into core, mantle, crust, and atmosphere/hydrosphere, generation of magma, and isotopic and trace element geochemistry of igneous and metamorphic rocks. Prerequisites: undergraduate: SIO 152 or consent of instructor. Graduate: graduate-level standing or consent of instructor. Graduate students, additionally, must submit a term paper in one aspect of work discussed during the quarter to be presented orally in class. (W)

160. Introduction to Tectonics (4)
The theory of plate tectonics attempts to explain how forces within the Earth give rise to continents, ocean basins, mountain ranges, earthquake belts, and most volcanoes. In this course we will learn how plate tectonics works. Prerequisite: SIO 50 or consent of instructor. (S)

162/256L. Structural Geology (4)
Principles of stratigraphy and structural geology applicable to field geologic studies. Discussion and laboratory exercises. Two to three field trips required. Prerequisites: undergraduate: SIO 50 and SIO 100, or consent of instructor. Graduate: graduate-level standing or consent of instructor. Graduate students, additionally, will complete an in-depth literature-based focused study consisting of a written report and a forty-five-minute seminar on topics related to structural geology. (W)

1705. Introduction to Volcanology (4)
This course teaches fundamental aspects of physical and chemical volcanology with a major field study component on an active volcano on Hawaii. Subjects are introduced in lectures and reinforced and expanded in field exercises. Prerequisites: SIO 50, Chem. 6A, upper-division standing, or consent of instructor. Department stamp required. (SU)

182A. Applied Geophysics A (4)
First of two-part sequence on design and execution of simple geophysical field experiments, including seismic, gravimetric, geoelectrical, and geodetic techniques. Focus is on a simple geological problem solving by geophysical experiments. Computer-aided data analysis and interpretation. Prerequisite: SIO 103 or consent of instructor. (W)

182B. Applied Geophysics B (4)
Second of two-part sequence on design and execution of simple geophysical field experiments, including seismic, gravimetric, geoelectrical, and geodetic techniques. Focus is on a simple geological problem solving by geophysical experiments. Computer-aided data analysis and interpretation. Prerequisite: SIO 182A or consent of instructor. (S)

185. Applied Complexity (4)
Techniques from the study of complex systems, including genetic algorithms, neural networks, forecasting, artificial life and agent-based modeling. are introduced and applied to problems in geology, physics, engineering, biology, and economics. Prerequisites: Math. 20A-B-C-D or consent of instructor. Experience with MATLAB recommended. (S)

190. Special Topics in Earth Sciences (2-4)
A seminar course designed to treat emerging or topical subjects in the earth sciences. Involves reading from the literature and student participation in discussion. Topics vary from year to year. Prerequisite: upper-division standing, a minimum UCSD G.P.A. of 3.0 or consent of instructor. (S)

192. Senior Seminar in Scripps Institution of Oceanography (1)
The Senior Seminar Program is designed to allow SIO senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in SIO (at the upper-division level). Topics will vary from quarter to quarter. Senior Seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors.

Course attached to six-unit internship taken by students participating in the UCDC program. Involves weekly seminar meetings with faculty and teaching assistant and a substantial research paper. Research Seminar cross-listed with political science, communication, urban studies and planning, history, sociology, SIO. Prerequisites: department approval. Participating in UCDC program.

195. Methods of Teaching Earth Sciences (4)
Introduction to teaching earth sciences class section in a lower-division class, hold office hours, assist with examinations. This course counts only once towards the major. Prerequisites: junior or senior earth sciences major with GPA of 3.0 or an A in the course and consent of instructor, plus department stamp.

196. Honors Thesis Research (4)
Independent research on a problem in earth sciences by special arrangement with a faculty member (letter grade only). Prerequisites: completed ninety units of courses including twelve units of SIO courses. Achieved a GPA of 3.3 overall and 3.5 in SIO courses. Submitted to SIO Steering committee, and had approved, an honors thesis research proposal.

197. Earth Science Internship (2 or 4)
The earth science internship program is designed to complement the program's academic curriculum with practical field experience. Prerequisites: completion of ninety units with a GPA of 2.5, and a completed and approved Special Studies form, UCSD Application for Enrollment Special Studies Courses 197, 198, 199, and department stamp.

198. Directed Group Study (2-4)
This course covers a variety of directed group studies in areas not covered by formal SIO courses. (P/NP grades only.) Prerequisite: consent of instructor.

199. Independent Study for Undergraduates (4)
Independent reading or research on a problem. By special arrangement with a faculty member. (P/NP grades only.)

BS/MS COURSE

228. Research Seminar (2)
A three-quarter required sequence for B.S./M.S. earth sciences students to prepare students for thesis writing. Prerequisites: current earth sciences B.S./M.S. student. Department stamp required. (F,WS)

GRADUATE

200A. Computational Ocean Acoustics and Signal Processing I (4)
Overview of ocean acoustics. Acoustics Wave Equation with some analytic solution techniques. Ray Methods. Introduction to Spectral and Normal Modes methods. Introduction to beamforming including matched field processing. Computer programs will be constructed on all subjects covered. Prerequisites: basic physics and familiarity with differential equations and some linear algebra. Kuperman (F)

200B. Computational Ocean Acoustics and Signal Processing II (4)
Continuation of 200A. Range dependent propagation models including adiabatic and coupled mode models and parabolic equations. More advanced topics in matched field processing. Prerequisite: SIO 200A. Kuperman (W)

200C. Computational Ocean Acoustics and Signal Processing III (4)
Continuation of SIO 200B. Modeling interference such as ambient noise. Time domain methods. Matched field tomography, nonlinear optimization methods, and geophysical inversion. Prerequisite: SIO 200B, Kuperman (S)

201. Geological Record of Climate Change (4)
Introduction to geological archives; the tools for paleoclimate reconstruction and a sampling of important issues from the geological record, including the development of “greenhouse” and “icehouse” worlds, the origin and evolution of glacial cycles, and the origin of “millennial scale” climate variability. Prerequisite: chemistry and physics required for graduate admission to SIO, SIO101 or equivalent, or consent of instructor. Charles (S)

202 A-B. Fundamentals of Wave Physics (4-4)
This two-quarter sequence is designed to introduce a broad background of students to basic principles of wave physics, including generation, propagation, dispersion, refraction, diffraction, reflection, waveguides, etc. A variety of wave motions of environmental relevance, including acoustic, ocean surface and internal
Prerequisites: calculus and partial differential equations. Buckingham, Kuperman, Stramski, Melville, Hildebrand, Dorman (W,S)

203A. Introduction to Applied Mathematics I (4)
(Cross-listed with MAE 294A) Review of exact methods for ordinary differential equations. Expansions about regular and irregular singular points. Introduction to asymptotic expansions. Approximate methods for non-linear differential equations. Regular and singular perturbation theory. Additional topics depending upon the interests of the instructor. Prerequisite: Math 110, Math. 120A, or consent of instructor.

203B. Introduction to Applied Mathematics II (4)
(Cross-listed with MAE 294B) Asymptotic methods: method of steepest descent (if not covered in I) WKB, method of multiple scales, boundary layer theory. Elements of complex analysis. Prerequisite: MAE 294A or SIO 203A or consent of instructor.

203C. Introduction to Applied Mathematics III (4)
(Cross-listed with MAE 294C) Partial differential equations: characteristics, similarity solutions, Green's functions, images, wave equation, diffusion equation, Laplace's equation. Applications to continuum mechanics, potential fields, and transport phenomena such as diffusion, linear and nonlinear waves, Burger's equation and shocks. Other topics according to the interests of the instructor. Prerequisite: MAE 294B or SIO 203B or consent of instructor.

204B. Advanced Acoustics II (4)
Theory of radiation, transmission and scattering of sound with special application to ocean acoustics. Prerequisites: concurrent registration in ECE 145BL recommended; SIO 204A or consent of instructor. Buckingham (W)

206. Land Surface Hydrology (4)
Advanced introduction to natural processes that govern water occurrence and transport over the land surface. Principles of global hydrologic cycle and land-surface water balance, runoff and fluvial geomorphology, infiltration and subsurface water flow, evaporation, and plant transpiration. Prerequisite: graduate standing or consent of instructor. Staff (S)

207A. Introduction to Digital Signal Processing (4)
Review of discrete-time systems and signals, discrete-time Fourier transform and its properties, the fast Fourier transform, design of finite impulse response (FIR) and infinite impulse response (IIR) filters, implementation of digital filters. Cross-listed with ECE 161A. Prerequisites: ECE 101 and ECE 109 with grades of C- or better. Hodgkiss, Rao (F)

207B. Digital Signal Processing I (4)
Discrete random signals; conventional (FFT based) spectral estimation. Coherence and transfer function estimation; model-based spectral estimation; linear prediction and AR modeling. Levinson-Durbin algorithm and lattice filters, minimum variance spectrum estimation. Cross-listed with ECE 251AN. Prerequisites: ECE 153, 161 or 161A, or consent of instructor. Hodgkiss, Rao (W)

207C. Digital Signal Processing II (4)
Adaptive filter theory, estimation errors for recursive squares and gradient algorithms, convergence and tracking analysis of LMS, RLS, and Kalman filtering algorithms, comparative performance of Weiner and adaptive filters, transversal and lattice filter implementations, performance analysis for equalization, noise canceling, and linear prediction applications. Cross-listed with ECE 251BN. Prerequisite: ECE 251AN. Hodgkiss, Rao (S)

207D. Array Processing (4)
Discrete random signals; conventional (FFT based) spectral estimation. Coherence and transfer function estimation; model-based spectral estimation; linear prediction and AR modeling. Levinson-Durbin algorithm and lattice filters, minimum variance spectrum estimation. Cross-listed with ECE 251DN. Prerequisites: ECE 251AN, 161 or 161A, or consent of instructor. Hodgkiss, Rao (W)

208. Seminar in Applied Ocean Sciences (1)
Topics in applied ocean sciences. One-hour seminar. (S/U grades only). Staff (F,W,S)

209. Special Topics (1-4)
Within the next few years, lectures on various special subjects will be offered by members of the staff. The emphasis will be on topics that reveal the interdependence of the biological, chemical, geological, and physical processes operating in the oceans. (S/U grades permitted.) Staff (F,W,S)

210. Physical Oceanography (4)
Physical description of the sea; physical properties of seawater, methods and measurements, boundary processes, regional oceanography. Prerequisites: the mathematics and physics required for admission to the graduate curriculum in the Scripps Institution of Oceanography (see text), or consent of instructor. Hendershott, Talley (F)

211A-B. Ocean Waves (4-4)
Propagation and dynamics of waves in the ocean including the effects of stratification, rotation, topography, wind, and nonlinearity. Prerequisites: for SIO 211B, SIO 211A and SIO 214A, or consent of instructor. Guza, Hendershott, Melville, Salmon, (W,S)

212A-B. Geophysical Fluid Dynamics (4-4)
The equations of motion for rotating stratified flow and their application to the atmospheric and oceanic dynamics; Ekman layer dynamics, potential vorticity dynamics, the quasigeostrophic approximation, theories of the wind-driven oceanic circulation, theories of the atmospheric Hadley circulation, geostrophic adjustment, and baroclinic instability. Prerequisite: SIO 214A or consent of instructor. Cessi, Young (W,S)

213. Ocean Turbulence and Mixing (4)
Mixing mechanisms, their identification, description, and modeling. Introduction to turbulence, semi-empirical theories, importance of coherent structures, effects of stratification and rotation on turbulent structure, entrainment and mixing. Cross-listed with MAE 214B. (S/U grades permitted.) Armi (S)

214A. Introduction to Fluid Mechanics (4)
A survey of classical problems in fluid mechanics and approximate techniques of analysis. Topics include conservation equations, straight laminar flows, low and high Reynolds number laminar flow, stability of laminar flows, turbulent flow. Prerequisite: partial differential equations. Winant (F)

214B. Environmental Fluid Dynamics (4)
Single-layer flows with a free surface, two-layer flows including exchange flows in harbors, estuaries, seas, and buildings. Continuously stratified flows with meteorological and oceanographic applications. Topographic effects, plumes, jets, and thermals. Cross-listed with MAE 224. Prerequisite: introductory graduate-level course in fluid mechanics. Armi (S)

215. Introduction to Atmospheric Radiative Transfer (4)
Introduces elementary concepts in electromagnetism and quantum mechanics to explain scattering, absorption and emission by gases, aerosols, and clouds. Elegant analytical solutions to the transfer equation will be employed in conjunction with satellite and laboratory measurements to consider phenomena such as the CO$_2$ greenhouse effect, albedo effect of clouds, color of the skies, and atmospheric radiative cooling. Prerequisites: undergraduate courses in physics and differential calculus. Ramanathan (S)

216. Introduction to the Physics of Complex Systems (4)
Emergent complex behavior in nonlinear, dissipative, open dynamical systems will be investigated by studying fundamental properties and their manifestation in examples drawn from the physical and biological sciences. Topics to include fractals, chaos, self-organization, artificial life, and neural networks. Prerequisites: basic solid and fluid mechanics, mathematics through PDEs, and computer programming skills. (S/U grades permitted.) Werner (W)

217A. Atmospheric and Climate Sciences I (4)
Thermodynamics and statics of dry and moist air, atmospheric composition, Earth radiation budget, vertical structure of the atmosphere, global energy balance, thermodynamic feedbacks in the climate system. Prerequisites: undergraduate general physics and mathematics through differential equations. (S/U grades permitted.) (F)

217B. Atmospheric and Climate Sciences II (4)
Structure of midlatitude synoptic systems; equations of motion, scale analysis, elementary applications and wave solutions; baroclinic instability theory; atmospheric general circulation and energetics; tropical dynamics; relationships between atmospheric dynamics, CO$_2$ clouds, precipitation, and other weather and climate phenomena. Prerequisite: SIO 217A. Norris (W)

217C. Atmospheric and Climate Sciences III (4)
Physical and dynamical processes that determine climate; climate change; role of aerosols; water vapor; CO$_2$ and other greenhouse gases; cloud-radiative interactions; atmospheric general circulation; role of convection; tropical climate including El Niño. Prerequisites: SIO 217A and 217B or equivalent background. Ramanathan (S)

219. Special Topics in Physical Oceanography (1-4)
Example topics are case histories and methods in physical oceanography, theories of the ocean circulation, numerical methods in large-scale ocean and atmospheric models, and natural electromagnetic phenomena in the earth and the oceans. (S/U grades permitted.) Staff (F,W,S)

220. Observations of Large-Scale Ocean Circulation (4)
General circulation of the oceans; tropical, subtropical, and high-latitude current systems of the Atlantic, Indian, and Pacific Oceans and marginal seas; ocean heat flux and thermohaline circulations; observational basis of large-scale dynamics. Prerequisite: SIO 210. (S/U grades permitted.) Roemmich (S)

221A. Analysis of Physical Oceanographic Data (A) (4)
Fundamental elements of analysis of geophysical and oceanographic time series, including sampling
problems, least squares techniques, spectral analysis, interpretation of series, design of experiments. Prerequisite: consent of instructor. Pinkel (F)

221B. Analysis of Physical Oceanographic Data (B) (4) Techniques for analysis of physical oceanographic data involving many simultaneous processes including probability densities, sampling errors, spectral analysis, empirical orthogonal functions, correlation, linear estimation, objective mapping. Prerequisite: SIO 221A or consent of instructor. (S/U grades permitted.) Rudnick (W)

221C. Data Analysis Laboratory (4) This course is to give students practical experience with analysis techniques. Students complete three projects. Topics include empirical orthogonal functions, objective mapping, complex demodulation, inference of geostrophic flow, minimization of CTD salinity spiking, isolation of wind-driven currents, wavelets. Prerequisite: SIO 221A-B or equivalent. (S/U grades permitted.) Rudnick, Gille (F)

222. Underwater Bioacoustics (4) Introductory course to familiarize a broad spectrum of participants to underwater sound and its relationship to underwater animals. Basic physics of sound propagation, use of sound to study underwater animals and, the sounds made by the animals themselves for echolocation and communication will be covered. Prerequisite: consent of instructor, (S/U grades permitted) Jaffe (W)

223. Geophysical Data Analysis (4) Design of geophysical experiments and analysis of geophysical measurements, interpretation of geophysical time series; sampling, least squares, spectrum analysis. Staff (W)

224. Internal Constitution of the Earth (4) An examination of current knowledge about the composition and state of the earth's interior revealed by geophysical observations. Seismic velocity and mass density distributions; equations of state; phase changes; energy balance and temperatures; constraints on composition from extraterrestrial samples and exposed rocks; spherical and aspherical variations of properties. Prerequisites: calculus and differential equations, basic chemistry and physics, or consent of instructor. Masters (S)

225. Physics of Earth Materials (4) Mathematics and physics of continuous media, focusing on geophysical problems. Topics include deformation, stress, conservation laws, elasticity, attenuation, viscoelasticity, fracture mechanics, and porous media. Prerequisite: consent of instructor. Agnew, Fialko (W)

226. Introduction to Marine Geophysics (4) Methods of exploration geophysics with emphasis on those useful at sea. Magnetic and gravitational potential field methods, multi-beam echo sounding reflection and refraction seismology will be covered. Recent papers from the literature will also be read and discussed. Prerequisites: differential equations; at least one geology course. (S/U grades permitted.) Dorman, Hildebrand (S)

227A. Introduction to Seismology (4) Introduction to seismometers and seismograms; stress and strain; potentials and the wave equation; geometrical ray theory and travel times in layered media; representation of seismic sources; WKBJ and synthetic seismograms; seismic hazards and other applications of seismology. Prerequisite: consent of instructor. (S/U grades permitted.) Shearer (F)

227B. Advanced Seismology I (4) Introduction to low-frequency digital data; continuum mechanics and the equations of motion; free oscillation solutions; construction of Earth models; excitation of free-oscillations and source mechanism retrieval; array processing of long-period data; modelling aspherical structure; surface waves. Prerequisite: consent of instructor. (S/U grades permitted.) Staff (W)

227C. Advanced Seismology II (4) High-frequency wave propagation; methods for computing synthetic seismograms including WKBJ, reflectivity and finite differences; body-wave spectra; attenuation of body waves; source physics; reflection and refraction seismology; seismic tomography. Prerequisite: consent of instructor. (S/U grades permitted.) Staff (S)

229. Gravity and Geomagnetism (4) Introduction to potential theory, with applications to gravity and geomagnetism. Topics include the geoid, spherical harmonics, Laplace's equation, the Dirichlet problem on a sphere, and Fourier methods. Gravity anomalies and geomagnetic field modeling and sources are discussed; also paleomagnetic observations. Prerequisites: advanced calculus, differential equations, complex variables, and familiarity with Maxwell's equations, or consent of instructor. (S/U grades permitted.) C. Constable, Parker (S)

230. Introduction to Inverse Theory (4) Solution of linear and nonlinear inverse problems in geophysics by optimization techniques such as norm minimization and linear programming. Construction of models by regularization; inference by bounding functionals; Illustrations from gravity, geomagnetism, and seismology. Prerequisite: consent of instructor. (S/U grades permitted.) Parker (W)

231. Introduction to EM Methods in Geophysics (4) Introduction to electromagnetic methods for both global geophysics and applied/exploration methods. Covers history of EM induction, conduction in rocks, binary mixing laws, self potential, induced polarization, DC resistivity, magnetotellurics, electromagnetic depth sounding, elementary inverse methods, global conductivity structure, and marine EM methods. Prerequisite: graduate standing or consent of instructor. (S/U grades permitted.) S. Constable (F)

233. Introduction to Computing at SIO (4) Introduction to the SIO computing environment and common software tools in geophysics and other disciplines. Courses include UNIX, Matlab, Postscript, GMT, LaTeX, HTML, and a scientific programming language such as C or Fortran90. Prerequisite: consent of instructor. (S/U grades permitted.) Shearer (F)

234. Geodynamics (4) A general course on the dynamics and kinematics of the solid earth based on the text of Turcotte and Schubert. Topics include plate tectonics, heat flow, lithospheric cooling, flexure, viscous flow, global gravity, crustal structure, and other related topics. Prerequisite: familiarity with partial differential equations and Fourier transforms. (S/U grades permitted.) Sandwell (W)

236. Satellite Remote Sensing (4) Satellite remote sensing provides global observations of Earth to monitor environmental changes in land, oceans, and ice. Overview physical principles of remote sensing including: orbits, electromagnetic radiation, diffraction, electro-optical, and microwave systems. Graduate students will additionally do term paper. Conjoined with SIO 135. Weekly labs explore remote sensing data sets. Prerequisite: graduate-level standing or consent of instructor. (S)

237A. Introduction to Ocean Optics (4) Overview of ocean optics. Concepts in radiometry, inherent and apparent optical properties. Radiative transfer equation. Light absorption and scattering by seawater constituents. Optics of air-water interface. Light fields within and leaving the ocean. Optics of marine particles. Measurement methods and instrumentation. Prerequisites: basic physics and differential calculus, or consent of instructor. Stramski (F)

237C. Optical-Biological Interactions in the Ocean (4) A discussion class with emphasis on the interaction of light with marine plankton. Topics will include light absorption, fluorescence, and scattering by phytoplankton and effects of growth conditions on phytoplankton optical properties. Classic and contemporary papers dealing with these topics will be discussed. Prerequisites: basic physics and biology, or consent of instructor. (S/U grades only.) Stramski (F)

238. Sensor Networks (4) Characteristics of chemical, biological, seismic, and other physical sensors; signal processing techniques supporting distributed detection of salient events; wireless communication and networking protocols supporting formation of robust sensor fabrics; current experience with low power, low cost sensor deployments. Conjoined with MAE 149 and ECE 156. Prerequisite: upper-division standing and approval of instructor, or graduate student in science or engineering. (S/U grades permitted.) Hodgkiss, Rao (S)

239. Special Topics in Geophysics (1-4) Special course offerings by staff and visiting scientists. Example topics are seismic source theory, geophysical prospecting methods, dislocation theory and seismic mechanisms, tectonic interpretation of geodetic data, and dynamo theory. (S/U grades permitted.) Staff (FW/S)

240. Marine Geology (4) Introduction to the geomorphology, sedimentation, stratigraphy, vulcanism, structural geology, tectonics, and geological history of the oceans. Prerequisites: the physics and chemistry required for admission to the graduate curriculum in SIO, and ES 101 or equivalent, or consent of instructor. Staff (F)

241. Fluids in Active Tectonic Systems (2) Introduction to the role that fluids play in the physical development of active tectonic systems. Discussions will focus on the nature of the processes controlling fluid flow through the Earth’s crust and the dynamic interaction of fluid migration and faulting. Prerequisite: ES 101 or equivalent. (S/U grades permitted.) Brown (S)
242. Marine Biotechnology (4)
The class will contain lectures discussing current topics and new technologies in the marine sciences (biology, chemistry). Faculty that are part of the marine biotechnology training grant will lecture on their own research and techniques that are being used. The students will select and present a paper that is an application of topics discussed. The areas of genomics, proteomics, expression analyses, mutagenesis, microbial diversity, etc., will be presented. Staff (F)

243. Marine Paleocology (4)
Paleoecology of marine plankton, nektom, and benthos. Patterns and changes in marine communities and ecosystems over geological time in relation to changes in the physical, chemical, and geological environment and biotic interactions. The preservation filter and inference of ecological processes from fossils and biogeochemical proxies. Biotic interchanges, incumbency, escalation and trends, mass extinctions, and recovery. Lectures, seminar discussion, laboratory, and field trips. Prerequisites: bachelor's degree in science or consent of instructor; open to undergraduates with completion of SIO 104 and either BIEB 130 or BIEB 140, or equivalent. Jackson, Staff (S)

244. Shape and Structure of the Ocean Floor (4)
Description and explanation of the structural geomorphology of oceanic crust, and of the tectonic and volcanic processes responsible for it. Description and interpretation of deep-sea sedimentary landforms (e.g., deep-sea fans, drifts, bedforms) and of the bottom currents that shape them. Offered in alternate years. Prerequisite: any previous graduate/undergraduate earth science or geology course. Staff (S)

245. Sedimentary Geochemistry for Chemical Paleoceanography (2)
Chemical paleoceanography will be the focus, emphasis, on seawater and/or sediment chemical and isotopic records; discussions will concentrate on some of the following isotopic systems: Li, B, C, O, S, Sr, and Nd, and on the isotopic tracers as C and H. Prerequisites: and on the marine phases that most reliably record seawater chemical and isotope compositions; and on diagenetic processes, how to identify and deal with them. Prerequisites: SIO 260 and consent of instructor. Offered in alternate years. (S/U grades permitted.) Kastner (S)

246. Global Tectonics and Basin Formation (4)
Plate tectonics of the crust and upper mantle, examining a variety of environments from ridge crests to continental margins, including plate interiors, with an emphasis on basin formation in these tectonic settings. Prerequisite: graduate standing. Cande, Driscoll (W)

247. Rock Magnetism and Paleomagnetism (4)
Rock magnetism and acquisition of magnetic remanence in geological materials as well as laboratory procedures and data analysis (isolating remanence components and statistical approaches). The paleomagnetic literature will be used to illustrate applications in geological and geophysical problems. Prerequisites: one year of college-level physics and geology; mathematics through calculus. (S/U grades permitted.) Tauxe (S)

248. Evolution of Earth's Biosphere (4)
Paleoecological development of marine and terrestrial environments during Earth's evolution. Ecological and chemical evolution of the oceans, atmosphere, biogeochemical cycles, and environments with particular emphasis on the long-term history and climate of the Earth's surface. Additionally, at graduate level oral presentation or research paper required. Conjoined with SIO 148. Prerequisite: graduate-level standing or consent of instructor. (S)

249. Special Topics in Marine Geology (1-4)
Special course offerings by staff and visiting scientists. (S/U grades only.) Staff (F,W,S)

250. Earth History (4)
Geologic history of the Earth including evolution of the rocks, atmosphere, and life's diversity. Major developments and current controversies in Earth history and biological evolution covered in a combination of lecture, student-led discussion of key papers, and weekend field trips. Prerequisite: SIO 101 (or equivalent) or consent of instructor. R. Norris (F)

251. Petrology and Geochemistry of the Solid Earth (4)
A geochemical and petrogenetic overview of the Earth and planets. Topics include formation and differentiation of the Earth into core, mantle, crust, and atmosphere/hydrosphere, generation of magma, and the isotopic and trace element geochemistry of igneous and metamorphic rocks. Graduate students, additionally, must submit a term paper in one aspect of work discussed during the quarter to be presented orally in class. Conjoined with SIO 155. Prerequisite: graduate-level standing or consent of instructor. (W)

252A. Introduction to Isotope Geochemistry (4)
Radioactive and stable isotope studies in geology and geochemistry, including geochronology, isotopes as tracers of magmatic processes, cosmic-ray produced isotopes as tracers in the crust and weathering cycle, and the isotopic evolution of the crust and mantle. Graduate level requires student presentation. Conjoined with SIO 144. Prerequisite: graduate-level standing or consent of instructor. (W)

252B. Advanced Isotope Geochemistry I (4)
An advanced treatment of noble gas and stable isotope geochemistry. Offered in alternate years with SIO 252C. Prerequisites: SIO 252A/SIO 144. Bada, Hilton, Wahlen (S)

252C. Advanced Isotope Geochemistry II (4)
An advanced treatment of radiogenic and cosmogenic isotope geochemistry. Offered in alternate years with SIO 252B. Prerequisites: SIO 252A/SIO 144. Lal (S)

254. Macroevolution (4)
Tempo and mode of evolution with emphasis on the marine fossil record. Large-scale patterns and trends in diversity, speciation, and extinction. Innovation, disparity, and adaptive radiation. Evolutionary turnover and the role of the environment in macroevolution. Additionally, oral presentation or research paper required. Conjoined with SIO 154. Prerequisite: graduate-level standing or consent of instructor. (S)

255. Paleobiology and History of Life (5)
An introduction to the major biological transitions in Earth history from origins of metabolism and cells to the evolution of complex societies. The nature and limitations of the fossil record, patterns of adaptation and diversity, and the tempo and mode of biological evolution. Graduate students, additionally, will give oral presentation or research paper. Conjoined with SIO 104. Prerequisite: graduate-level standing or consent of instructor. (S)

256A. Introduction to Field Geology (4)
Principles of stratigraphy and structural geology applicable to field geologic studies. Discussion and laboratory exercises. Prerequisites: consent of instructor. Brown (W)

256L. Structural Geology (4)
Principles of stratigraphy and structural geology applicable to field geologic studies. Discussion and laboratory exercises. Two to three field trips required. Graduate students, additionally, will complete an in-depth literature-based focused study consisting of a written report and a forty-five-minute seminar on topics related to structural geology. Conjoined with SIO 162. Prerequisite: graduate-level standing or consent of instructor. (W)

257. Seminar in Petrology (4)
Discussion of current research in petrology and mineralogy. (S/U grades permitted.) (W)

259. Atmospheric Geochemistry (4)
Topics in this introductory course include: structure and composition of the atmosphere; chemistry and isotopes of natural and man-made carbon-, nitrogen-, and sulfur-bearing trace gases; ozone and hydroxyl radical; halogenated gases; air-sea exchange; aerosols; climatic effects. (S/U grades permitted.) Wahlen, Weiss (S)

260. Marine Chemistry (4)
Chemical description of the sea; the distribution of chemical species in the world oceans, and their relationships to physical, biological, and geological processes. Aluwihare, Barbeau, R. Keeling (W)

261. Energetics and Kinetics in Marine Systems (4)
This course teaches the physical chemical principles that control chemistry in marine systems. After a basic introduction to thermodynamics and its application to an understanding of the marine environment, the emphasis will be on the study of a variety of kinetic processes. Prerequisites: graduate chemistry equivalent to UCSD Chemistry 6 sequence, SIO 260. Dickson (S)

262. Seminar in Marine Natural Products (1)
Students will give seminars on current research topics in marine natural products chemistry. Prerequisite: consent of instructors. (S/U grades only.) Fenical (F,W,S)

263. Aqueous Chemistry (4)
This course emphasizes the chemical principles that control basic aqueous chemistry in marine systems. The focus will be to show that the geochemistry of the various elements in sea water and biological systems can be understood as a consequence of basic general chemical concepts such as electron structure, chemical bonding, and group and periodic properties. Prerequisite: undergraduate chemistry equivalent to UCSD Chemistry 6 sequence. Dickson (F)

264. Special Topics in Marine Natural Products Chemistry (3)
This course provides the foundation for advanced study in the field of marine natural products chemistry. Topics vary from the history of natural products to the organic chemistry of terpenes, alkaloids, acetogenins, and other natural product classes. Varying by topic quarterly, this class is given each quarter and may be repeated. Prerequisite: one year general organic chemistry. (S/U grades only.) Fenical (F,W,S)

265. Chemical Ecology of Marine Organisms (4)
An outline of the organic chemicals from marine organisms with special reference to their function in the marine environment. The differences between terrestrial and marine natural products will be stressed. Prerequisite: basic organic chemistry. Fenical (W)
267. Biogeochemistry (4)
Examines quantitatively the impact of the biota on the chemistry of the atmosphere and ocean. Emphasis given to isotopes as tracers of biogeochemical processes. Attention given to paleoclimatic and paleoatmospheric data from ice cores to reveal mechanisms. Prerequisite: undergraduate inorganic chemistry and calculus and SIO 210 and SIO 260 or consent of instructor. Severinghaus, R. Keeling (S)

268. Seminar in Geochemistry and Marine Chemistry (1)
Student seminars on topics related to geochemistry and the chemistry of the marine environment. (S/U grades only.) Dickson (S)

269. Special Topics in Marine Chemistry (1-4)
Special course offerings by staff and visiting scientists. (S/U grades permitted.) Staff (F,W,S)

270. Pelagic Ecology (4)
An analysis of the concepts and theories used to explain the biological events observed in the water column. Alternate years. Prerequisites: SIO 210, 280, or consent of instructor. Checkley, Ohman (S)

270A. Fisheries Oceanography (4)
Aspects of marine ecology relevant to the reproduction, survival, and distribution of commercially important marine species. Alternate years only. Prerequisites: SIO 210 and 280, or consent of instructor. (S/U grades only.) Checkley (S)

271. Marine Zooplankton (4)
Lectures and laboratories treating the morphological, behavioral, and life history variations of the principal phyla of planktonic invertebrates and heterotrophic protists. Constraints of life at low Reynolds numbers; principles of allometry; growth processes of heterotrophic organisms. Prerequisite: SIO 280 or consent of instructor. Staff (F,W,S)

272. Biogeography (3)
A lecture course concerning the origin, development, and perpetuation of distributional patterns with emphasis on benthic marine organisms. (W)

273A. Professional Ethics in Science (2)
A seminar on the historical and contemporary ethics and ethos of scientific research, based on published documents. Given in alternate years. Dayton (W)

273B. Science and Marine Environmental Policy (2)
Lectures by the instructor, visiting lecturers, and class discussions focusing on how scientists can help policy makers transform scientific understanding into policy. Topics will emphasize conservation, fisheries management, and pollution issues. Given in alternate years. Dayton (W)

275A. Benthic Ecology (4)
Evolution and maintenance of benthic communities from the terrestrial margins to the deep sea. Special emphasis will be placed on physical and biological scaling and processes determining patterns of distribution and abundance; interrelationships between community structure and population phenomena, including trophic relationships, reproductive and recruitment patterns, succession, and life history biology. Offered in alternate years with SIO 275B. Prerequisite: consent of instructor; open to undergraduates. (S/U grades permitted.) Levin, Dayton, Sala (W)

275B. Natural History of Coastal Habitats (4)
Two three-hour laboratories per week, three four-six day field trips to sites from Mexico to Monterey Bay. Several one-day field trips to local habitats including lagoons, sand and rock intertidal habitats, areas of marine fossils, and areas with migrating birds. Format of course variable depending on student interests. Alternate years with 275A. Prerequisites: open to undergraduates with consent of instructor and completion of BIEB 130, Introductory Marine Ecology. (S/U grades permitted.) Dayton (S)

276. Quantitative Theory of Populations and Communities (4)
An introduction to the quantitative tools and conceptual issues underlying the study of the dynamics and structure of ecological systems. Prerequisite: calculus (three quarters) or consent of instructor. (S/U grades permitted.) Sugihara (F)

277. Deep-Sea Biology (4)
The ecology, co-geography, taxonomy, and evolution of deep-sea organisms, with emphasis on the benthos. Offered alternate years. Prerequisite: consent of instructor. (S/U grades only.) Levin, K. Smith (W)

278. Seminar in Ocean Biosciences (2)
Presentations of reports, review of literature, and discussion of current research in the marine biological and oceanographic sciences. (S/U grades permitted.) Staff (F,W,S)

279. Special Topics in Biological Oceanography (1-4)
(S/U grades permitted.) Staff (F,W,S)

280. Biological Oceanography (4)
The biology and ecology of marine plankton, nekton, and benthos. Emphasis will be on processes regulating species, community, and ecosystem patterns and changes, including productivity, trophic relationships and species interactions with the physical, chemical, and geological environment. One or more field trips. Prerequisite: biologist's degree in science or consent of instructor. Franks or Checkley, Levin (F)

281. Environmental Physiology and Biochemistry of Marine Organisms (4)
Biochemical mechanisms of adaptation of organisms to the marine environment. Special emphasis is on the effects of pressure, temperature, salinity, oxygen, and light on the physiology and biochemistry. Conjoined with BIBC 130. Prerequisites: adequate training in biochemistry and biology and consent of instructor. Felbeck (F)

282. Phytoplankton Diversity (4)
Molecular, biochemical, ecological, and evolutionary perspectives on the diversity of eukaryotic and prokaryotic phytoplankton. Prerequisite: consent of instructor. Palenik (W)

284. Invertebrate Zoology (5)
Invertebrate zoology covering all of the major and minor phyla; phylogeny, anatomy, physiology and natural history. Lecture and laboratory demonstrations. Prerequisite: consent of instructors; no audits. Holland (W)

285. Physical-Biological Interactions (4)
Physical and biological processes affecting growth and patchiness of plankton. Concepts and equations from physical oceanography will be presented and explored in a biological context. Ideas will be treated both theoretically and with examples from the literature. Prerequisites: introductory calculus and SIO 210, or consent of instructor. Franks (S)

286. Marine Science, Economics and Policy (4)
This course investigates global issues in marine conservation and potential policy solutions. The approach is interdisciplinary, fast-paced, and discussion oriented. Students will become acquainted with sufficient background in marine biology, ecology, marine and conservation economics, international law, and policy as preparation for participation in discussion on real-world issues in marine conservation. Topics and instructors change each quarter. Prerequisite: graduate standing or consent of instructor. (S/U grades permitted) Knowlton, Sala and Staff (F,W)

287A. Marine Microbial Ecology (4)
Recent developments in the study of marine bacteria. Emphasis will be on biochemical and physiological adaptations of marine bacteria to the ocean environment. Bacterial metabolism, growth, and death will also be discussed in the context of trophic interactions and flows of material and energy in marine ecosystems. Molecular biology techniques used in the study of bacterial ecology will also be discussed. Prerequisite: consent of instructor. (S/U grades permitted.) Azam (W)

287B. Microbial Physiology (4)
Prokaryotic microbial physiology will be discussed primarily from a biochemical standpoint with emphasis on mechanism. Topics will vary from year to year but will include the following themes: Central Metabolism. Bioenergetics, Biosynthesis, Regulation, Differentiation. Prokaryotic Structure-Function Relationships. Conjoined with BIBM 130. Prerequisites: BIBC 100 or BIBC 102 or equivalent. Saier (S).
292. Scientific Communication (2)
Forms of scientific communication, practical exercise in scientific writing and short oral communication and in criticism and editing; preparation of illustrations, preparation of proposals; scientific societies and the history of scientific communication. Examples from any field of science, most commonly biology, marine biology, ecology, and neuroscience. Prerequisite: graduate status in science. (S/U grades only.) Yayanos, Staff (S)

294. Biology of Fishes (5)
The comparative evolution, morphology, physiology, and ecology of fishes. Special emphasis on local and deep-sea and pelagic forms in laboratory. Prerequisite: graduate standing. (S/U grades permitted.) Staff (F,W,S)

295. Introduction to Marine Biodiversity and Conservation—Seminar (8)
Lectures on ecological, economic, social, and legal issues related to marine biodiversity and case studies on socioeconomic and legal issues. Corequisite: SIO 295L for IGERT and MAS students only. Prerequisite: permission of instructor. Knowlton, Jackson (Su)

295L. Introduction to Marine Biodiversity and Conservation—Lab (7)
Laboratory work on major biological taxa, field trips on biodiversity in situ, computer labs for informatic tools. Corequisite: SIO 295 for IGERT and MAS students only. Prerequisite: permission of instructor. Knowlton, Jackson (Su)

296. Special Topics in Marine Biology (1-5)
Example topics are reproduction in marine animals, adaptation to marine environments, larval biology, marine fisheries, macromolecular evolution, physical chemical topics in physiology, philosophy of science. (S/U grades permitted.) Staff (F,W,S)

297. Marine Biology Seminar (1)
Lectures given by visiting scientists and resident staff and students. (S/U grades only.) Staff (F,W,S)

298. Special Studies in Marine Sciences (1-4)
Reading and laboratory study of special topics under the direction of a faculty member. Exact subject matter to be arranged in individual cases. Prerequisite: graduate standing. (S/U grades permitted.) Staff (F,W,S)

299. Research (1-12)
(S/U grades permitted.) Staff (F,W,S)

Senior Seminar Program

Office of the Senior Vice Chancellor—Academic Affairs
Associate Vice Chancellor—Undergraduate Education
OFFICE: University Center, Room 104
(858) 822-5855
http://academicaffairs.ucsd.edu/r/ugsem.htm

The new Senior Seminar Program was launched in fall 2006 as an additional venue to enhance the undergraduate student experience at UCSD. By design, the small informal class setting promotes intellectual discussions with faculty and fosters an ideal learning environment for polishing critical thinking and analytical skills.

Some twenty unique seminars are offered each quarter by faculty representing most UCSD academic departments. Senior seminars are designated by the course number 192 (e.g., POLI 192), are graded on a pass/not pass basis, and carry one unit of credit. A department stamp is required prior to enrollment and is obtained by simply contacting the department or program offering the seminar. Prerequisites vary by seminar. Students are highly encouraged to incorporate senior seminars into their upper division studies at UCSD.

Please visit the Senior Seminar Program Web site at http://academicaffairs.ucsd.edu/r/ugsem.htm for a description of seminars currently offered. This site also contains useful information such as enrollment procedures and additional program details. Questions about a specific senior seminar should be directed to the department offering the seminar.

Sixth College

OFFICE: Provost, Sixth College
Pepper Canyon Hall, 2nd floor
Web site: http://sixth.ucsd.edu

Culture, Art, and Technology

See “Culture, Art, and Technology” core sequence.

Sixth College Honors Program

OFFICE: Academic Advising
Pepper Canyon Hall, 2nd floor

Sixth College Honors Program nurtures academically high achieving students intellectually and socially, increases their awareness about opportunities of academic, social, and cultural engagement, and motivates them to become community leaders in Sixth College, at UCSD, and in communities outside the university.

• Through seminars, research, and social and cultural events, students are introduced to the academic, cultural, artistic, and social richness of the campus, provide information about resources, support students in finding extracurricular activities, and create opportunities to make connections to people, peers, faculty, staff, and campus community leaders.

• Through special advising by Sixth College provost and Sixth College associated faculty, honors students will receive mentoring and guidance.

FRESHMAN HONORS SEQUENCE

Students who have distinguished themselves academically in their high schools are invited to participate in the Freshman Honors Program. The qualifications are outstanding high school grade-point averages (3.8) and College Board Scholastic Aptitude Test scores (SAT math: 700 and above, and SAT verb: 700 and above). In the fall quarter, freshmen are invited to enroll in SXTH 20—Freshmen Honors Seminar, which is noted on the UCSD transcript for zero units. Students who were not originally invited and who completed at least twelve graded units with a 3.7 cumulative GPA, will be invited to join the honors program. Students need to maintain a 3.5 cumulative GPA in order to remain in the honors program.

The weekly Freshman Honors seminars are led by Provost Gabriele Wienhausen. Cultural and social events such as lectures, hikes, dinners, plays, music events, and visits to museums are also an important component of the program.

SOPHOMORE HONORS SEQUENCE

Sixth College students who distinguish themselves academically during their freshman year and maintain a minimum cumulative GPA of 3.5 have two additional academic enrichment opportunities available to them:

• Second-year honors can participate in the Sixth College Honors Apprentice Research Program by enrolling in SXTH 96 (2 units P/NP)—Honors Project. Second-year projects may extend for one to three quarters and may lead to the creation of a Practicum project. Students are encouraged to present their projects at the UCSD Undergraduate Research Conferences held each spring and summer.

• A second option is participation in SXTH 60 (1 unit)—Sophomore Honors Seminar, a series that deals with Technology and Society and the Arts issues.
Sociology

OFFICE: Social Sciences Building, Room 401
http://www.sociology.ucsd.edu

Professors
Maria Charles, Ph.D.
Harvey S. Goldman, Ph.D.
Jeffrey M. Haydu, Ph.D.
Bennetta W. Jules-Rosette, Ph.D.
Rebecca E. Klatch, Ph.D.
Richard P. Madsen, Ph.D., Chair
Timothy L. McDaniel, Ph.D., Academic Senate
Distinguished Teaching Award
Hugh B. Mehan, Ph.D., Academic Senate
Distinguished Teaching Award
David P. Phillips, Ph.D.
Andrew T. Scull, Ph.D.
Gershon Shafir, Ph.D.
John D. Skrentny, Ph.D.
Carlos H. Waisman, Ph.D.

Professors Emeriti
Rae Lesser Blumberg, Ph.D.
Aaron V. Cicourel, Ph.D.
Jack D. Douglas, Ph.D.
Joseph R. Gusfield, Ph.D.
Jacqueline P. Wiseman, Ph.D.

Associate Professors
Richard G. Biernacki, Ph.D.
Amy J. Binder, Ph.D.
Mary F. Blair-Loy, Ph.D.
Steven G. Epstein, Ph.D.
Ivan T. Evans, Ph.D.
John H. Evans, Ph.D.
Martha Lampland, Ph.D.
Akos Rona-Tas, Ph.D.
Christena Turner, Ph.D.
Leon Zamosc, Ph.D.

Assistant Professors
David Fitzgerald, Ph.D.
Tomás Jiménez, Ph.D.
Andrew H. Lakoff, Ph.D.
April Linton, Ph.D.
Isaac Martin, Ph.D.
Kwai Ng, Ph.D.

Adjunct Professors
Yen Espiritu, Ph.D.
Michael S. Schudson, Ph.D.
Mary L. Walshok, Ph.D.

Sociology at UCSD

Sociology studies societies and human groups: their composition, organization, culture, and development. It combines scientific and humanistic methods to investigate a subject that is both relevant and broad—ranging from social interaction in everyday life to social changes taking place on a global scale. The Department of Sociology at UCSD offers an innovative program that covers the breadth of the discipline while giving students opportunities to specialize in areas of their choice, to conduct independent research, and to participate in an Honors Program. The department also encourages majors to study abroad and to take courses in other humanities and social science departments in order to expand their perspective on sociological topics.

Students at UCSD can explore a full range of sociological inquiry through courses in such established fields as Third World development, law, culture, social movements, religion, race and ethnic relations, gender roles, medicine, and mental illness. In addition, students have the opportunity to participate in courses found in few other sociology departments, such as the politics of language, ethnographic film, the Holocaust, comparative sex stratification, mass media, and revolutions. The faculty also teach an exceptional array of courses focusing on specific societies or world regions, including Africa, Japan, China, Latin America, eastern Europe, the former Soviet Union, and the United States.

Thus sociology is a valuable major for students who want to enter law, medicine, architecture, business, or politics. It also provides a solid liberal arts education for students who plan careers in such fields as criminal justice, public health, urban planning, social welfare, counseling, public administration, international relations, or market research. For students who wish to pursue graduate study in the social sciences for careers in teaching or scholarly research, an undergraduate degree from the Department of Sociology will provide a thorough grounding in recent theoretical and methodological advances in the discipline. A sociology major offers excellent preparation for teaching in the elementary schools. If you are interested in earning a California teaching credential from UCSD, contact Education Studies for information about the prerequisite and professional preparation requirements. It is recommended that you contact EDS as early as possible in your academic career. Whatever the career choice, the study of sociology can help the student cultivate a critical awareness of social life.

Students interested in majoring or minoring in sociology should stop by the Department of Sociology office, SSB 401, for a brochure on the program and a student handbook. These clarify specific procedures and guidelines, and provide recommendations for areas of specialization within the major, as well as for graduate studies and careers in sociology.

The Undergraduate Program

The Major

To receive a B.A. with a major in sociology, students must complete four lower-division and twelve upper-division courses in sociology, including the required courses listed below.

A 2.0 GPA is required in the major, and students must earn at least a C– in each course used for the major. No courses taken to apply toward the major may be taken on a Pass/Not Pass basis except Sociology 197, 198 or 199. Only one such special studies course (including internships) may be applied toward the major. These special studies
courses must be applied for and approved by the department before the beginning of the quarter in which the student wishes to enroll, and can only be taken on a Pass/Not Pass basis. See the staff undergraduate coordinator for the necessary application forms and deadlines.

Lower-Division

Sociology 1A, 1B, 20, and 60 are required for the major. We strongly recommend that you take Sociology 1A and Sociology 1B in sequence. It is advisable that students complete these required lower-division courses (which should be taken during the freshman or sophomore year) before continuing with their upper-division work. Sociology 60 is a prerequisite for all upper-division methods courses.

Upper-Division

Twelve upper-division courses are necessary for the major—five are courses in required clusters, and the other seven are upper-division electives. The upper-division sociology curriculum is divided into four areas of concentration (clusters) as follows:

A. Theory and Method
 (courses designated Soc/A)
 Theory
 100, 102
 Methods
 103M, 104, 104Q, 105, 106, 106M, 107, 108A, 109, 109S, 110A

B. Culture, Language, and Social Interaction
 (courses designated Soc/B)

C. Organizations and Institutions
 (courses designated Soc/C)

D. Comparative and Historical
 (courses designated Soc/D)
 151, 158, 158B, 169, 171, 175, 176, 177, 178, 179, 181, 182, 183, 185, 187, 187S, 188A, 188B, 188D, 188F, 188J, 188K, 189

All students must complete Sociology 100 (students are strongly advised to do so by the end of their junior year) and one method course from the list above. (Method courses are numbered Soc/A 103M to 110B; for all of these methods courses, Sociology 60 is a prerequisite.) One course is required in each of the other three areas. Students are encouraged to complete their theory and methods courses early in their program, since theoretical perspectives and skills in methods will enhance their subsequent course work.

Education Abroad Program

Students are encouraged to participate in the UC Education Abroad Program (EAP) or UCSD’s Opportunities Abroad Program (OAP) while still making progress toward completing their major. Students considering this option should discuss their plans with the undergraduate advisor prior to going abroad, and courses taken abroad must be approved by the department. It may be possible to use some related courses outside of the discipline of sociology toward the major. For more information on EAP, see the section of this catalog on the Education Abroad Program. Interested students should contact the Programs Abroad Office in the International Center. To petition particular courses taken abroad, see the undergraduate advisor in the Department of Sociology.

Recommendations for Transfer Students

If students wish to use courses taken at other institutions towards their major, they must first meet with the staff undergraduate coordinator in the department during designated office hours. (College transcripts, college catalogs, and course syllabi should be brought at the time of appointment.) Students are required to fill out one student petition per transfer course as well as an additional “information sheet” available in the Department of Sociology. Once these petitions are turned in, a determination will be made regarding the transferring of courses into the program.

It is important to note that eight of the twelve upper-division courses in the undergraduate program must be taken in the Department of Sociology at UCSD, unless students obtain special acceptance of additional courses from the chair and the faculty undergraduate advisor.

The Minor

The minor consists of seven sociology courses: two lower-division and five upper-division. Unless colleges specify specific courses to be taken, the student may choose any two lower-division sociology courses (Soc/L 1A, 1B, 10, 20, 30, 40 or 60) and any five upper-division courses (Soc. 100 to 190). Courses for the minor must be taken for a letter grade only. Special study courses or internships may not be applied toward the minor.

Science and Society Minor

OFFICE: 401 Social Science Building, (858) 534-4627

Faculty

Steven G. Epstein, Ph.D., Associate Professor of Sociology
Andrew H. Lakoff, Ph.D., Assistant Professor of Sociology
Andrew T. Scull, Ph.D., Professor of Sociology

The Science and Society Minor offers an opportunity for students to examine in a systematic and extended fashion the nature, significance, and development of modern scientific, technological, and medical enterprises. Science, technology, and medicine permeate modern society, and scientific developments often spark heated public debate. Yet undergraduate education rarely offers the chance to engage in systematic reflection upon how science influences society and how society influences science. The Science and Society Minor provides students with an innovative and inter-linked series of courses that permit precisely such a disciplined discussion of these issues.

Students complete the Science and Society Minor by taking two lower-division and five upper-division courses, a sequence that allows them to explore how modern scientific and medical knowledge and their associated technologies developed from the Scientific Revolution to the present; to understand how the roles of the scientist and the physician assumed their modern forms; to grasp how the scientific, technological, and medical communities came to possess their current authority; and to consider the appropriate role of the public in debating scientific and technological issues. A number of the courses offered focus on present-day scientific, technological, and medical topics and controversies: the impact of the Internet, the problems and prospects of molecular medicine, the disputes over the reality and the possible impact of global warming, scientific fraud, the
ethics of medical experimentation, the AIDS epidemic, etc. Others provide students with historical perspectives on the changing meaning and character of science, medicine, and technology as key features of modernity.

The Science and Society Minor is of particular relevance to prospective science and engineering majors interested in developing a broader understanding of the scientific enterprise; to pre-medical students wishing to understand the intellectual and institutional foundations of modern medicine; and to social science and humanities students wanting to obtain a systematic grasp of contemporary scientific and technological society.

Science and Society Minor Requirements

The minor consists of two lower-division courses and five upper-division courses, chosen from the list below. One or more relevant upper-division courses offered in other departments or taken at another university may be petitioned for the minor, with the prior approval of the coordinator of the minor.

LOWER-DIVISION COURSES

Soc/L 30: Science and Society
Soc/L 40: Sociology of Health Care Issues

UPPER-DIVISION COURSES

Soc/C 134A: The Making of Modern Medicine
Soc/C 135: Medical Sociology
Soc/C 136A: Sociology of Mental Illness: An Historical Approach
Soc/C 136B: Sociology of Mental Illness in Contemporary Society
Soc/C 137: Knowledge and Practice in Biomedicine
Soc/C 152: Social Inequality and Public Policy
Soc/C 168E: Sociology of Science
Soc/C 168T: Sociology of Technology
Soc/D 171: Science and the Making of the Modern World

The Honors Program

The Department of Sociology offers an honors program to those students who have demonstrated excellence in the sociology major. Successful completion of the honors program enables the student to graduate "With Highest Distinction," "With High Distinction," or "With Distinction," depending upon performance in the program.

Eligibility

Students may apply to the honors program if they meet the following requirements:
1. junior standing (ninety units completed)
2. GPA of 3.5 or better in the major
3. recommendation of a faculty sponsor familiar with student's work
4. must have completed at least four upper-division sociology courses
5. overall GPA of 3.2 or better
6. must have completed Soc/A 100 and one upper-division methods course prior to the fall quarter when the honors course begins; alternatively, the consent of the honors program director or the undergraduate advisor must be obtained

Interested students may pick up an application from the staff undergraduate coordinator in the Department of Sociology. Completed applications must be in the department office no later than week five of the spring quarter prior to the start of the honors program in the fall.

Students traveling abroad during their junior year should note that the deadline for applications still applies to them and should make arrangements accordingly.

Enrollment in the honors program is limited. Final decisions on acceptance into the program will be made by the presiding faculty member.

Course Requirement

The student must take Sociology 196A, Advanced Studies in Sociology, and Sociology 196B, Supervised Thesis Research, which will count as two of the twelve upper-division courses required for the major. Each student will choose a faculty advisor to help supervise the thesis research and writing with the honors program director.

Students whose GPA in the major falls below 3.5 or who do not earn at least an A– in the honors seminars will not graduate with distinction, but they may count the two honors courses among the twelve upper-division courses required for the major. Students must maintain a 3.5 GPA in the major and a 3.2 overall GPA until final graduation, in order to receive honors in the sociology honors program. To graduate "With Highest Distinction" the student must earn an A++; to graduate "With High Distinction" the student must earn an A+; and to graduate "With Distinction" the grade must be an A–.

The Graduate Program

The graduate program in sociology at the University of California, San Diego is organized on the basis of programs of specialization in comparative and historical sociology, the sociology of culture, social inequalities, and science, technology, and medicine. It is designed to prepare students for two main goals: to contribute to the increase of knowledge about societies and thereby advance the discipline of sociology; and to teach sociology at the graduate and undergraduate levels. The majority of graduates from the program find teaching and research positions in colleges and universities, although some also work in non-academic research and social policy positions. The department offers a course of study leading to the doctor of philosophy degree. While the Master of Arts degree is awarded as a step toward the completion of the Ph.D., applicants seeking only an M.A. degree are not accepted.

Departmental Research and Teaching

Members of the department are engaged in a wide variety of research and teaching activities that fall into four broad areas of concentration that correspond to our programs of specialization. Much of the research carried out by departmental students and faculty is distinguished by unique intersections of these areas:

COMPARATIVE AND HISTORICAL SOCIOLOGY

Many members of our faculty have research interests in the historical and/or comparative analysis of social institutions, structures, and processes, and social change in general. Using methods of comparative historical research and concepts drawn from social theory, individual faculty are engaged in research on, among other things: (1) political sociology, including revolution, social and political movements, and the evolution of the modern state; (2) economic transformation in contemporary societies (industrial countries, “emerging markets,” and agrarian societies), including the labor process, stratification and the organization of work, and the development of market economies; (3) collective identities and social relations, including nationalism, class, gender, race, and ethnicity, and (4) social control and institutionalization. The department is among the most internationally oriented departments of
sociology in the world, with specialists in most regions of the world, including Eastern and Western Europe, the former Soviet Union, Japan, China, southern Africa, Latin America, the Middle East, as well as the United States.

SOCIOMETRY OF CULTURE

A great number of the faculty have research and teaching interests in the sociology of culture broadly conceived. Sociology of culture involves topics such as: (1) the interpretation of the symbol systems that constitute meaningful resources for social action, (2) the analysis of the processes through which patterns of meaning are socially reproduced, and (3) the study of the interaction between culture change and social change. Many faculty have an interest in the comparative study of cultural traditions around the world. Others are interested in the relationship of culture to social movements and collective identities. And some see the sociology of culture not simply as a subdiscipline but as a general theoretical perspective on social experience. More specific substantive interests include sociology of knowledge and intellectuals, political culture, the culture of work, education and socialization, comparative moral cultures, the cultural dimensions of ethnicity, gender, sexuality, and popular culture.

SOCIOMETRY OF SOCIAL INEQUALITIES

A large number of departmental faculty have expertise in the study of social inequalities, including those based on distinctions of gender, race, ethnicity, class, language, citizenship, and sexuality. Unique to our program are: (1) focus on the processes by which social distinctions and identities are themselves constructed, represented, and maintained over time, (2) comprehensive training in both qualitative and quantitative approaches to studying inequality, (3) emphasis on international and historical inequality research, and (4) expertise in social movements as products of and challenges to inequality. Many members of the department study inequalities in workplaces, schools, markets, states, families, politics, law, and medicine.

SOCIOMETRY OF SCIENCE, TECHNOLOGY, AND MEDICINE

A substantial fraction of the faculty has research and teaching interests focused on the interrelationships between science, technology, and medicine and modern society. Drawing on a range of sociological and historical methodologies, individual faculty are engaged in research on science and social movements, scientists and the state, biomedicine, the social history of madness and psychiatry, the historical sociology of scientific knowledge and practice, and sociological approaches to the Scientific Revolution. (For information on the interdisciplinary Science Studies Program, see below Specialized Programs of Study.)

Admission

Admission to the graduate program in sociology is open to students with excellent undergraduate records in any field. Some previous work in sociology or the social and behavioral sciences is advisable, but not required. New students are admitted in the fall quarter of each academic year. A bachelor’s degree from an accredited college or university is a prerequisite for admission to the graduate program. Prospective applicants should submit the official online application for admission and awards (same form), one set of official transcripts from each institution attended after high school, official scores from the Graduate Record Examination, application fee, at least three letters of recommendation, and one or more samples of the applicant’s own writing, such as a term paper. Additionally, foreign applicants must submit official scores from the Test of English as a Foreign Language (TOEFL) and the Test of Written English (TWE). Applicants are encouraged to contact and communicate with the department to talk with faculty and graduate students. The application deadline is January 4, of each year.

Program of Study

The graduate programs in the University of California system work under the “normative time” standard. Normative time refers to the time period in which students, under normal circumstances, are expected to complete their requirements for the Ph.D. degree. Each department establishes a normative time for its doctoral program, and for the Department of Sociology, as for most graduate programs in the university, it is six years. To provide an incentive for students to complete the Ph.D. within the normative time period, partial fee grants are made to all students who have advanced to candidacy and whose accrued time does not exceed six years (eighteen quarters). Once a student exceeds six years, he or she must again pay the full fees quarterly until graduation.

COURSE REQUIREMENTS

Students are required to enroll as full-time graduate students, to carry a minimum enrollment of twelve units of graduate-level courses each quarter, and to maintain a grade-point average of 3.5 or better.

Theory and Methods Requirements

Students take almost all the courses on theory and methods in their first year in the program. They are required to take two courses in classical sociological theory (Sociology 201A/B) and one in contemporary theory (Sociology 202), two in quantitative methods (Sociology 205 and 206), and two in qualitative methods (from among Sociology 203, Field Methods; Sociology 204, Text and Discourse Analysis; Sociology 207, Comparative-Historical Methods; or Sociology 227, Ethnographic Film). In addition, students enroll in a two-credit introduction to the faculty and their research (Sociology 208, Faculty Research Seminar). Note: Sociology 208 is in addition to other requirements.

The remaining theory and methods requirements are Sociology 252 and 253, a two-quarter practicum, which will be taken in the second or third year. In these courses, students will complete a piece of research they have started in a previous seminar, write a paper, and revise it for submission to a journal. The emphasis in the first quarter will be on the completion of the research for this project, and the second quarter will focus on the writing of the results and revision of drafts.

Core Seminars

These are survey courses in major substantive fields. Students must take three out of the following eight, which the department offers regularly: Sociology 264, Economic Sociology; Sociology 226, Political Sociology; Sociology 216, Sociology of Culture; Sociology 234, Intellectual Foundations of the Study of Science, Technology, and Medicine; Sociology 212, Social Stratification; Sociology 267, Sociology of Gender; Sociology 244, Sociology of Race and Ethnicity; and Sociology 222, Social Movements. These are major areas of sociology and fields in which several of the members of our faculty specialize. Moreover, several of these seminars serve as introductions to the programs of specialization on which the program is based (see below).
Remaining Courses

Beyond these requirements, students must take six seminars, at least two of which must be in the program of specialization selected by the student. In total, eighteen graduate courses, plus the introduction to the faculty, are required for advancing to candidacy.

THE PROGRAMS OF SPECIALIZATION

The department currently offers specialized Ph.D. programs in comparative and historical sociology, sociology of culture, sociology of social inequalities, and the sociology of science, technology, and medicine. Affiliation to the clusters is voluntary and non-exclusive, and the department encourages multiple participation and joint activities among the groups. Students could qualify in more than one concentration, if they wish, and they will not be required to specialize in any one of them (although we are confident that most will find it advantageous to do so). The curriculum for each specialization is relatively light, in order to provide students with a solid common background in theory and methods, and allow for as much interface as possible between the programs. The requirements are: appropriate qualitative methods courses, one of the core seminars (see above) in areas relevant for the concentration, two specialized seminars, pertinent specialties for the field examination, and the dissertation.

The qualitative methods requirement varies according to the program of specialization. Students who concentrate in comparative and historical sociology must take Sociology 207, Comparative-Historical Methods. For sociology of culture, Sociology 203, Field Methods, is required. Students specializing in social inequalities should take at least one of the following courses: Sociology 203, Field Methods; Sociology 204, Text and Discourse Analysis; or Sociology 207, Comparative-Historical Methods. Finally, students specializing in sociology of science, technology, and medicine must choose two of the following three courses in qualitative methods: Sociology 203, Field Methods; Sociology 204, Text and Discourse Analysis; and Sociology 207, Comparative-Historical Methods. The required core seminars are surveys courses in major substantive fields. Students must take three out of the following eight, which the department offers regularly: Sociology 264, Economic Sociology; Sociology 226, Political Sociology; Sociology 216, Sociology of Culture; Sociology 234, Intellectual Foundations of the Study of Science, Technology, and Medicine; Sociology 212, Social Stratification; Sociology 267, Sociology of Gender; Sociology 244, Sociology of Race and Ethnicity; and Sociology 222, Social Movements. These are major areas of sociology and fields in which several of the members of our faculty specialize. Moreover, several of these seminars serve as introduction to the programs of specialization on which the program is based.

The core seminars required for each program of specialization are the following:

- Sociology 264, Economic Sociology or Sociology 226, Political Sociology, for comparative and historical sociology
- Sociology 216, Sociology of Culture, for sociology of culture
- Sociology 212, Social Stratification or Sociology 244, Sociology of Race and Ethnicity or Sociology 267, Sociology of Gender, for social inequalities
- Sociology 234, Intellectual Foundations of the Study of Science, Technology, and Medicine, for sociology of science, technology, and medicine

PROGRAM OVERVIEW

First-year Evaluation

All students are evaluated by the department faculty toward the end of the academic year. At the end of the student’s first year in the program, student performance is also evaluated by the Graduate Program Committee, including the director of Graduate Studies, the faculty teaching the core sequences, and by their faculty advisor. Students whose performance is satisfactory are allowed to continue the regular course of study; others may be asked to repeat some courses or to do additional coursework; others may be asked to withdraw from the program. Evaluations are communicated to students in writing.

Second-year Evaluation and the M.A. Degree

The master’s degree is earned as one of the requirements of the Ph.D. and is based on the quality of the student’s course work described below. At the end of the second year, students are evaluated by the Graduate Program Committee for the master’s degree. At that time, the committee ascertains the student’s suitability for doctoral work.

The 15 core courses required to receive the M.A. degree are:

- Sociology 201A: Classical Sociological Theory I
- Sociology 201B: Classical Sociological Theory II
- Sociology 202: Contemporary Sociological Theory
- Sociology 205: Quantitative Methods I
- Sociology 206: Quantitative Methods II

Two courses chosen from:

- Sociology 203: Field Methods
- Sociology 204: Text and Discourse Analysis
- Sociology 207: Comparative-Historical Methods
- Sociology 227: Ethnographic Film: Media Methods

Three seminars from:

- Sociology 212: Social Stratification
- Sociology 216: Sociology of Culture
- Sociology 222: Social Movements
- Sociology 226: Political Sociology
- Sociology 234: Intellectual Foundation of the Study of Science, Technology, and Medicine
- Sociology 244: Sociology of Race and Ethnicity
- Sociology 264: Economic Sociology
- Sociology 267: Sociology of Gender

Five elective Sociology graduate seminars.

One may be outside the department and may be taken S/U.

At the beginning of the spring quarter of their second year in the program or at the beginning of the quarter in which they wish to to be considered, students must submit to the committee for evaluation, three papers they have written for seminars taught by different faculty. Reviewers assess the quality of the overall record and determine whether it indicates a potential for conducting doctoral research.

The final decision regarding the M.A. degree is based on the student’s GPA, the three papers, and yearly faculty evaluations. The committee makes one of the following three recommendations: pass, M.A. only, and non-pass. Pass means that students may proceed toward the Ph.D. Those given M.A. only evaluations are granted the degree but may not continue toward the Ph.D. Students who received non-pass evaluations are asked to withdraw without a graduate degree.

Students admitted for a Ph.D. with a master’s degree in sociology may not be candidates for a second master’s degree.

The Field Examination

In the quarter in which students expect to finish the theory and methods requirements, the three core seminars, and the six elective seminars, students become eligible to take the field
examination. This examination **must be completed** by the end of the student's third year in the program. The object of the field examination is to demonstrate mastery of two established, broad, and distinct fields of sociological inquiry, selected from a list of fields provided by the department. The examination is carried out by a faculty committee composed of no fewer than four departmental faculty, one of whom serves as chair. The choice of fields and the composition of the committee **must be approved** by the Graduate Program Committee **before the student starts preparing for the exam**. Faculty from departments other than sociology may be added (or, if necessary, substituted) by petition to the Graduate Program Committee.

The demonstration of mastery has both written and oral components. The written part consists of two papers, one in each field, and a course syllabus for a course they would teach in one of the two fields in which they take their orals. In these papers, students are expected to demonstrate a grasp of key issues and debates, of the broad, conceptual history of the field. These reviews are based on a bibliography drawn up by the student in consultation with relevant committee members and other faculty in each field. Students are expected to know the central arguments of all the books and papers in the bibliographies, regardless of the extent to which these books and articles have been used in the papers. Field papers **must be a minimum of thirty and a maximum of fifty pages each, exclusive of notes and should include at least twenty to thirty books or article equivalents**. The two bibliographies may not significantly overlap, either in literature surveyed or in specific titles. The papers, the bibliographies, and the syllabus **must be submitted to the committee at least two weeks before orals**, or the orals cannot go forward.

The oral part lasts two hours and covers both fields. It is given by the examining committee, sitting as a whole, and is based on the bibliographies, papers, and course syllabus submitted by the student. The exam does not focus on the papers, but on the students’ knowledge of the fields. Following the oral examination, the committee evaluates the student on the basis of both the written and the oral components of the examination. Possible grades are high pass, pass, conditional pass, and no pass. High pass recognizes exceptional performance. Conditional pass indicates that the committee has passed the student pending the completion of additional work.

Students receiving a grade of no pass will have an opportunity to retake the examination, should they so desire, no later than the end of the subsequent quarter. Students electing not to retake the examination or receiving a grade of no pass a second time will be asked to withdraw from the graduate program.

Students will have to constitute their field exam committee **two months** before the proposed date of the exam. Once the committee is constituted it can be changed only if a faculty member becomes unavailable. Students will have to submit one copy per member of a substantial draft of their field papers **one month in advance** to the graduate coordinator, who then distributes them to the committee members. Faculty, in turn, will commit to read and comment on the papers in two weeks time.

All papers (as opposed to the drafts) and the syllabus must be submitted to the committee **two weeks before** the fields.

The Dissertation Prospectus and Hearing

The central intellectual activity leading to the award of the Ph.D. degree is the doctoral dissertation: an original contribution to knowledge, based on substantial, original research on a topic of intellectual significance within the field of sociology.

Following successful completion of the field examination, the student establishes a doctoral committee to supervise dissertation research. This is a five-person committee, including three faculty from within the department and two from other departments within the university. The committee should include the faculty members whose fields of expertise make them most appropriate for supervising the students’ research. The student approaches the faculty member he or she would like to include, but the committee **must be approved** by the director of Graduate Studies and the department chair **before** the student starts working on the prospectus. The composition of the committee may or may not overlap with the committee that carried out the field examination. If the student elects to have six member committee, the sixth member has all the same obligations as the other committee members.

By the end of the spring quarter of the fourth year in the department, the student must have a dissertation prospectus approved by his or her doctoral committee. The dissertation prospectus is a document that presents the research topic of the dissertation, places it in the context of the relevant literature, discusses its significance, specifies and justifies the methods the student intends to use, establishes the feasibility of the research, and indicates the anticipated steps leading to completion.

Following submission of the dissertation prospectus, the student must defend it at a hearing before the doctoral committee. The purpose of the hearing is to certify that the prospectus is significant and feasible, that the research design is appropriate, and that the student is prepared to carry it out successfully. Based on the written prospectus and the hearing, the committee may choose to approve the prospectus or to ask for revisions and resubmission. The prospectus hearing serves, in effect, as a qualifying examination, and approval of the dissertation prospectus is the final step to advancement to candidacy for the Ph.D. degree.

Students will have to constitute their dissertation committee **three months** before the proposed date of the exam. Once the committee is constituted it can be changed only if a faculty member becomes unavailable. Students will have to submit one copy per member of a substantial draft of their prospectus **one month in advance** to the graduate coordinator, who then distributes them to the committee members. Faculty in turn, will commit to read and comment on the papers in two weeks time.

The Doctoral Dissertation

Upon approval of the dissertation prospectus, the student proceeds with dissertation research. Students are expected to consult with committee members as the research progresses and to keep the committee chair advised of progress made.

Once the dissertation is substantially completed and committee members have had the opportunity to review drafts of the written work, the committee meets at least one month before the defense takes place, with or without the student present, to consider the progress made and to identify concerns, changes to be made, or further work to be done. Once the committee members are substantially satisfied with the written work, the student, in consultation with the committee, schedules the oral defense of the dissertation. By university regulation, this defense is open to the public.

The final version of the dissertation must be approved by each member of the doctoral committee. **All members of the committee must be**
present at the defense. Exceptions may be made only under very restrictive conditions. Further, the student must consult with the Office of Graduate Studies to be told of appropriate requirements for the thesis to be filed. Having obtained this approval and successfully defended the dissertation in oral examination, the student is eligible to receive the Ph.D. degree. The final version of the dissertation is then filed with the university librarian via the Office of Graduate Studies. Acceptance of the dissertation by the university librarian is the final step in completing all requirements for the Ph.D.

Ph.D. Time Limit Policies

Students must be advanced to candidacy by the end of four years (PCTL—Precandidacy Time Limit). Normative time is six years. Total university financial support (SUTL—Support Time Limit) cannot exceed seven years. Total registered (TRTL—Total Registered Time Limit) time at UCSD cannot exceed eight years.

Interdisciplinary Programs of Study

SOCIOLGY OF SCIENCE, TECHNOLOGY, AND MEDICINE AND THE SCIENCE STUDIES PROGRAM

Students interested in the interrelationships between science, technology, and medicine (STM) and the larger social order can opt for one of two specialized programs of study. The first of these is undertaken wholly within the department (see above). The second approach is to seek admission to the Science Studies Program, a joint doctoral program that brings together graduate students from the Departments of Sociology, History, Philosophy, and Communication. Students in the Program pursue a cross-disciplinary curriculum leading to dissertation research in the sociology of science, technology, or medicine, broadly conceived. Sociology faculty affiliated with this Program have research interests across the broad spectrum of science studies, from the philosophy and history of science to the organization of scientific discovery and the culture of specific work.

Students may seek admission to the Science Studies Program at the same time they apply for admission to the Department of Sociology, or may, in certain circumstances, request to be accepted into the Program at some point after entering the University of California, San Diego.

The requirements of the Science Studies Program are similar to those of the standard graduate program. However, there are some distinct curricular requirements in the first two years of the Program, as well as some distinct emphases in the qualifying examination. The core of the Program is a two-quarter team-taught seminar sequence taken in the first year, the first quarter being an interdisciplinary introduction to science studies and the second quarter (or core seminar) being devoted to special topics in science studies which vary from year to year.

For details on the Science Studies Program, including information about requirements, write to the University of California, San Diego, Coordinator, Science Studies Program 0104, 9500 Gilman Drive, La Jolla, CA 92039-0104; or telephone the program coordinator at (858) 534-0491. Visit their Web site: http://sciencesstudies.ucsd.edu

INTERDISCIPLINARY PROGRAM IN SOCIOLOGY AND COGNITIVE SCIENCE

This program allows students to earn a Ph.D. in sociology and cognitive science. Students must complete all the regular sociology requirements. In addition, they take six cognitive science seminars and select a dissertation committee composed of three Sociology and three Cognitive Science Program faculty. Admission to this program requires a separate application and is contingent on acceptance into the Department of Sociology. For more information, contact the coordinators in the Department of Sociology. (858) 534-4626, (rdacevedo@ucsd.edu) or the Cognitive Science Department, (858) 534-7141, (rburrola@ucsd.edu). Please view our Web site for application and department handbook information: http://dssadmin.ucsd.edu/sociology/gbroch.htm.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

LOWER-DIVISION

Soc/L 1A. The Study of Society (4)

An introduction to the organizing themes and ideas, empirical concerns, and analytical approaches of the discipline of sociology. The course focuses on both classical and contemporary views of modern society, the nature of community, and on inequality, with special attention to class, race, and gender. Materials include both theoretical statements and case studies. (This is a required course for the sociology major. It is normally offered fall quarter.)

Soc/L 1B. The Study of Society (4)

A continuation of Sociology/L 1A. The focus here is on socialization processes; culture, social reproduction, and social control, and collective action. As in 1A, materials include both theoretical statements and case studies. While 1B may be taken as an independent course, it is recommended that students take 1A and 1B in sequence, as the latter builds on the former. (This is a required course for the sociology major. It is normally offered winter quarter.)

Soc/L 10. American Society: Social Structure and Culture in the United States (4)

An introduction to American society in historical, comparative, and contemporary perspectives. Topics will include American cultural traditions; industrialization; class structure; the welfare state; ethnic, racial, and gender relations; the changing position of religion; social movements; and political trends.

Soc/L 20. Social Change in the Modern World (4)

A survey of the major economic, political, and social forces that have shaped the contemporary world. The course will provide an introduction to theories of social change, as well as prepare the student for upper-division work in comparative-historical sociology. (This is a required course for the sociology major.)

A series of case studies of the relations between society and modern science, technology, and medicine. Global warming, reproductive medicine, AIDS, and other topical cases prompt students to view science-society interactions as problematic and complex.

Soc/L 40. Sociology of Health Care Issues (4)

Designed as a broad introduction to medicine as a social institution and its relationship to other institutions as well as its relation to society. It will make use of both micro and macro sociological work in this area and introduce students to sociological perspectives of contemporary health care issues.

Soc/L 50. Introduction to Law and Society

Interrelationships between law and society, in the U.S. and other parts of the world. We examine law’s norms, customs, culture, and institutions, and explain the proliferation of lawyers in the U.S. and the expansion of legal “rights” worldwide.

Soc/L 60. The Practice of Social Research (4)

This course introduces students to the fundamental principles of the design of social research. It examines the key varieties of evidence, sampling methods, logic of comparison, and causal reasoning researchers use in their study of social issues. (This is a required course for the sociology major.)

Soc/L 87. Freshman Seminar (1)

The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminar topics will vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen.

Soc/L 90. Undergraduate Seminar (1)

This seminar will focus on a variety of current issues and special areas in the field of sociology, and will be focussed in particular on students of freshman status. Content will vary from year to year. (P/NP grades only.) Prequisite: freshman status.
Prerequisite: upper-division standing or graduate standing or Soc/L 60. Will satisfy method requirement in Cluster A.

Soc/A 106. Comparative and Historical Methods (4)
A broad-based consideration of the use of historical materials in sociological analysis, especially as this facilitates empirically oriented studies across different societies and through time, and their application in student research projects. Prerequisite: Soc/L 60. Will satisfy method requirement in Cluster A.

Soc/A 106M. Holocaust Diaries (4)
Methods for interpreting diaries, letters, and testaments written by victims and perpetrators of the Holocaust. Students use these sources for original research about life in hiding, ghettos, and death camps. Includes techniques for making comparisons and for generalizing from evidence. Prerequisite: Soc/L 60 and Soc/D 178 or the consent of instructor. Will satisfy method requirement in Cluster A.

Epidemiology is the statistical study of disease, and epidemiological methods are a powerful tool for understanding the causes of certain diseases, e.g., AIDS, scurvy, cholera, and lung cancer. These fundamental epidemiological methods will be taught. Prerequisite: Soc/L 60.

Soc/A 108A. Survey Research Design (4)
Translation of research goals into a research design, including probability sampling, questionnaire construction, data collection (including interviewing techniques), data processing, coding, and preliminary tabulation of data. Statistical methods of analysis will be limited primarily to percentaging. Prerequisite: Soc/L 60. Will satisfy method requirement in Cluster A.

Soc/A 109. Analysis of Sociological Data (4)
Students test their own sociological research hypotheses using data from recent American and International social surveys and state-of-the-art computer software. Application of classical scientific method, interpretation of statistical results, and clear presentation of research findings. Prerequisite: Soc/L 60. Will satisfy method requirement for Cluster A.

Soc/A 109S. Special Topics in Methods (4)
Readings and discussions of particular methodological issues in sociology. Topics will vary from year to year, depending on the current research of regular faculty or visiting faculty. Prerequisite: upper-division standing. Will satisfy method requirement in Cluster A.

Soc/A 110A. Qualitative Research in Educational Settings (4)
Basic understanding of participant observation, interviewing, and other ethnographic research techniques through field experiences in school and community settings sponsored by CREATE. Students will learn to take field notes, write-up interviews, and compose interpretive essays based on their field experiences. Prerequisite: Soc/L 60; Soc/A 110A is a prerequisite for Soc/A 110B. Will satisfy method requirement in Cluster A.

CLUSTER B: CULTURE, LANGUAGE, AND SOCIAL INTERACTION

An inquiry into the concept of human rights, the history of human rights in the twentieth century, and problems in both the concept and its implementation in modern societies. Prerequisite: upper-division standing.

An investigation into human rights practices in contemporary society, focusing on abuses and understanding both their causes and responses to them. We will look at several key cases, probably including the Islamic world and East Asia. Prerequisite: upper-division standing.

Soc/B 112. Social Psychology (4)
This course will deal with human behavior and personality development as affected by social group life. Major theories will be compared. The interaction dynamics of such substantive areas as socialization, normative and deviant behavior, learning and achievement, the social construction of the self, and the social identities will be considered. Prerequisite: upper-division standing.

Soc/B 113. Sociology of the AIDS Epidemic (4)
This course considers the social, cultural, political, and economic aspects of HIV/AIDS. Topics include the social context of transmission; the experiences of women living with HIV; AIDS activism; representations of AIDS; and the impact of race and class differences. Prerequisite: upper-division standing.

Soc/B 114. Culture and Ethnicity (4)
Examines culture and inter-ethnic relations, the links between culture and ethnic variations in socioeconomic achievement, and the intersection of culture and ethnicity with politics and policy. Topics include intermarriage, ethnic conflict, multicultural education and affirmative action. Prerequisite: upper-division standing.

Soc/B 115. Social Problems (4)
Analyzes selected social problems in the United States, such as those regarding education, race relations, and wealth inequality, from various sociological perspectives, and also examines the various sites of debate discussion, like political institutions, TV and other media, and religious institutions. Prerequisite: upper-division standing and co-requisite of 6-unit AIP.

Soc/B 117. Language, Culture, and Education (4)
(Also as EDG 117.) The mutual influence of language, culture, and education will be explored; explanations of students’ school successes and failures that employ linguistic and cultural variables will be considered; bilingualism; cultural transmission through education, Prerequisite: upper-division standing.

Soc/B 118. Sociology of Gender (4)
An analysis of the social, biological, and psychological components of becoming a man or a woman. The course will survey a wide range of information in an attempt to specify what is distinctively social about gender roles and identities; i.e., to understand how a most basic part of the “self”—womanhood or manhood—is socially defined and socially learned behavior. Prerequisite: upper-division standing.

Soc/B 118A. Gender and Language in Society (4)
(Also as LGN 174.) This course examines how language contributes to the social construction of gender
identities, and how gender impacts language use and ideologies. Topics include the ways language and gender interact across the life span (especially childhood and adolescence); within ethnolinguistic minority communities; and across cultures. Prerequisite: upper-division standing.

Soc/B 118L. Sociology of Language (4)
An examination of how the understanding of language can guide and inform sociological inquiries and a critical evaluation of key sociological approaches to language, including ethnolinguistics, structuralism and poststructuralism, and others. Prerequisite: upper-division standing.

Soc/B 119. Sociology of Sexuality and Sexual Identities (4)
Introduction both to the sociological study of sexuality and to sociological perspectives in gay/lesbian studies. Examines the social construction of sexual meanings, identities, movements, and controversies; the relation of sexuality to other institutions; and the intersection of sexuality with gender, class, and race. Prerequisite: upper-division standing.

Soc/B 120. Special Topics in Culture, Language, and Social Interaction (4)
This course will examine key issues in culture, language, and social interaction. Content will vary from year to year. Prerequisite: upper-division standing.

Soc/B 125. Sociology of Immigration (4)
Immigration from a comparative, historical, and cultural perspective. Topics include: factors influencing amount of immigration and destination of immigrants; varying modes of incorporation of immigrants; immigration policies and rights; the impact of immigration on host economies; refugees; assimilation; and return migration. Prerequisite: upper-division standing.

Soc/B 127. Immigration, Race, and Ethnicity (4)
Examination of the role that race and ethnicity play in immigrant group integration. Topics include: theories of integration; racial and ethnic identity formation; racial and ethnic change; immigration policy; public opinion; comparisons between contemporary and historical waves of immigration. Prerequisite: upper-division standing.

Soc/B 131. Sociology of Youth (4)
Chronological age and social status; analysis of social processes bearing upon the socialization of children and adolescents. The emergence of "youth cultures," generational succession as a cultural problem. Prerequisite: upper-division standing.

Soc/B 133. Immigration in Comparative Perspective (4)
Societies across the world are confronting new immigration. In this course, we will focus on Europe, Asia, and North America, and examine issues of nationalism, cultural diversity and integration, economic impacts, and government policy. Prerequisite: upper-division standing.

Soc/B 142. Social Deviance (4)
This course studies the major forms of behavior seen as rule violations by large segments of our society and analyzes the major theories trying to explain them, as well as processes of rule making, rule enforcing, techniques of neutralization, stigmatization and status degradation, and rule change. Prerequisite: upper-division standing.

Soc/B 143. Suicide (4)
Traditional and modern theories of suicide will be reviewed and tested. The study of suicide will be treated as one method for investigating the influence of society on the individual. Prerequisite: upper-division standing.

Soc/B 145. Violence and Society (4)
Focusing on American history, this course explores violence in the light of three major themes: struggles over citizenship and nationhood, the drawing and maintenance of racial, ethnic, and gender boundaries; and the persistence of notions of "masculinity" and its relation to violence. Prerequisite: upper-division standing.

Soc/B 146. Law Enforcement in America (4)
Provides a sociological understanding of policing in practice in the United States. Examines the social, political, and historical forces behind the development and shaping of policing in America—including the functions of police, the "working personality" of police officers, as well as police misconduct and its control. Prerequisite: upper-division standing.

Soc/B 160. Sociology of Culture (4)
This course will examine the concept of culture, its "dis-integration" in the twentieth century, and the repercussions on the integration of the individual. We will look at this process from a variety of perspectives, each focusing on one cultural fragment (e.g., knowledge, education, religion) and all suggesting various means to reunify culture and consequently the individual. Prerequisite: upper-division standing.

Soc/B 160L. Law and Culture (4)
This course examines major formulations of the relationship between law and culture in the sociological literature. Topics include formal law versus embedded law, law and morality, law and the self, legal consciousness, the rule of law, and the construction of legality. Prerequisite: upper-division standing.

Soc/B 161. Sociology of the Life Course (4)
This course explores concepts, theory and empirical research related to demographic, socio-psychological, and institutional aspects of the different stages of human development. It considers social influences on opportunities and constraints by gender, class, race/ethnicity, and historical period. Prerequisite: upper-division standing.

Soc/B 162. Popular Culture (4)
An overview of the historical development of popular culture from the early modern period to the present. Also a review of major theories explaining how popular culture reflects and/or affects patterns of social behavior. Prerequisite: upper-division standing.

Soc/B 162R. Religion and Popular Culture in East Asia (4)
(Same as HIEA 119R) Historical, social, and cultural relationships between religion and popular culture. Secularization of culture through images, worldview, and concepts of right and wrong, which can either arise from or pose challenges to the major East Asian religions. Prerequisite: upper-division standing.

Soc/B 166. Sociology of Knowledge (4)
This course provides a general introduction to the development of the sociology of knowledge, and will explore questions concerning social determination of consciousness as well as theoretical ways to articulate a critique of ideology. Prerequisite: upper-division standing.

Soc/B 170. Sociology of Art (4)
(Conjoined with SOCG 263) This seminar explores the production and interpretation of art forms in cross-cultural context. Processes of symbolic and economic exchange in art worlds will be examined from sociological and semiotic perspectives. Contemporary and popular art forms will be analyzed as types of cultural reproduction. Graduate students will be required to submit a proposal abstract and final research paper of twenty-seven pages; undergraduates must complete a project and eleven-page paper. Prerequisite: upper-division standing.

Soc/B 172. Films and Society (4)
An analysis of films and how they portray various aspects of American society and culture. Prerequisite: upper-division standing.

Soc/B 173. Elite Crime (4)
Explores theoretical and conceptual dimensions in the analysis of the systematic violation of the laws and norms of business and politics in the United States. Covers a range of illegal and unethical practices, the social and political advantages of such violators, as well as the historical bias in both theory and research that has contributed to our lack of understanding of such issues in sociology and criminology. Prerequisite: upper-division standing.

Soc/B 174. Sociology of Literature (4)
Literature will be discussed in the context of the ideas of national and regional culture, "historical situation," and "social order." Other issues to be studied are literary men and women as spokespersons and as rebels, literary movements and social conditions, and literary works as social documents. Prerequisites: upper-division standing.

CLUSTER C: SOCIAL ORGANIZATION AND INSTITUTIONS

Soc/C 121. Economy and Society (4)
An examination of a central concern of classical social theory: the relationship between economy and society, with special attention (theoretically and empirically) on the problem of the origins of modern capitalism. The course will investigate the role of technology and economic institutions in society; the influence of culture and politics on economic exchange, production, and consumption; the process of rationalization and the social division of labor; contemporary economic problems and the welfare state. Prerequisite: upper-division standing.

Soc/C 123. Sociology of Work (4)
A comparative analysis of work in contemporary industrial economies. Topics include: the division of labor in manufacturing and the changing structure of the working class; social and political consequences of skill and wage differentials, bureaucratization and determinants of job satisfaction, trade unions and their strategies, industrial conflict, labor movements, and the relationships between unions and political parties. Prerequisite: upper-division standing.

Soc/C 124. Business and Society (4)
This course places business organization and practices in their social setting. Topics include the relationship between business and government; the mutual impact of business and labor (union and nonunion); the interplay of business values and popular culture; and business and "globalization." Primary focus will be on the United States, past and present. Prerequisite: upper-division standing.
Soc/C 126. Social Organization of Education (4)
(Same as EDS 126.) The social organization of education in the U.S. and other societies; the functions of education for individuals and society; the structure of schools; educational decision making; educational testing; socialization and education; formal and informal education; cultural transmission. Prerequisite: upper-division standing.

Soc/C 129. The Family (4)
An examination of historical and social influences on family life. Analyzes contemporary families in the United States, the influences of gender, class, and race, and current issues such as divorce, domestic violence, and the feminization of poverty. Prerequisite: upper-division standing.

Soc/C 132. Gender and Work (4)
Examination and analysis of empirical research and theoretical perspectives on gender and work. Special attention to occupational segregation. Other topics include: the interplay between work and family; gender, work and poverty; gender and work in the Third World. Prerequisite: upper-division standing.

Soc/C 134A. The Making of Modern Medicine (4)
A study of the social, intellectual, and institutional aspects of the nineteenth-century transformation of clinical medicine, examining both the changing content of medical knowledge and therapeutics, and the organization of the medical profession. Prerequisite: upper-division standing.

Soc/C 135. Medical Sociology (4)
An inquiry into the roles of culture and social structure in mediating the health and illness experiences of individuals and groups. Topics include the social construction of illness, the relationships between patients and health professionals, and the organization of medical work. Prerequisite: upper-division standing.

Soc/C 136A. Sociology of Mental Illness: An Historical Approach (4)
An examination of the social, cultural, and political factors involved in the identification and treatment of mental illness. This course will emphasize historical material, focusing on the eighteenth, nineteenth, and early twentieth centuries. Developments in England as well as the United States will be examined from an historical perspective. Prerequisite: upper-division standing.

Soc/C 136B. Sociology of Mental Illness in Contemporary Society (4)
This course will focus on recent developments in the mental illness sector and on the contemporary sociological literature on mental illness. Developments in England as well as the United States will be examined. Prerequisite: upper-division standing.

Soc/C 138. Genetics and Society (4)
The class will first examine the direct social effects of the "genetic revolution": eugenics, genetic discrimination, and stratification. Second, the implications of thinking of society in terms of genetics, specifically—sociobiology, social Darwinism, evolutionary psychology, and biology. Prerequisite: upper-division standing.

Soc/C 138A-B. Civic Participation (4-4)
(Same as COSF 125A-B) What are the sources of political apathy and political engagement? What are the variety of ways Americans express civic involvement and political concern? Primary focus will be on the contemporary United States, but with substantial attention to comparative and historical perspectives. This will be run as a research seminar. Students will write literary-based or fieldwork-based empirical research papers of twenty-five to forty pages.

Soc/C 139. Social Inequality: Class, Race, and Gender (4)
Massive inequality in wealth, power, and prestige is ever-present in industrial societies. In this course, causes and consequences of class, gender, racial and ethnic inequality ("stratification") will be considered through examination of classical and modern social science theory and research. Prerequisite: upper-division standing.

Soc/C 140. Sociology of Law (4)
This course analyzes the functions of law in society, the social sources of legal change, social conditions affecting the administration of justice, and the role of social science in jurisprudence. Prerequisite: upper-division standing.

Soc/C 140F. Law and the Workplace (4)
This course examines how the U.S. legal system has responded to workplace inequality and demands for employee rights. Particular attention is given to racial, gender, religious, and disability discrimination, as well as the law's role in regulating unions, the global economy, and sweatshop labor. Prerequisite: upper-division standing.

Soc/C 141. Crime and Society (4)
A study of the social origins of criminal law, the administration of justice, causes and patterns of criminal behavior, and the prevention and control of crime, including individual rehabilitation and institutional change, and the politics of legal, police, and correctional reform. Prerequisite: upper-division standing.

Soc/C 144. Forms of Social Control (4)
The organization, development, and mission of social control agencies in the nineteenth and twentieth centuries, with emphasis on crime and madness; agency occupations (police, psychiatrists, correctional work, etc.); theories of control movements. Prerequisite: upper-division standing.

Organizations are dynamic forces in society. This course examines how organizations address human health and social justice issues in national and international settings, focusing on the links between institutional dynamics of organizations and macro-level political, economic, and cultural factors. Prerequisite: upper-division standing.

Soc/C 148. Political Sociology (4)
Course focuses on the interaction between state and society. It discusses central concepts of political sociology (social cleavages, mobilization, the state, legitimacy, institutional characteristics, causes, and consequences of contemporary political regimes [liberal democracies, authoritarianism, communism], and processes of political change. Prerequisite: upper-division standing.

Soc/C 148L. Inequality and Jobs (4)
Some people do much better than others in the world of work. Causes and consequences of this inequality will be examined: How do characteristics of individuals (e.g., class, gender, race, education, talent) and characteristics of jobs affect market outcomes? Prerequisite: upper-division standing.

Soc/C 149. Sociology of the Environment (4)
The "environment" as a socially and technically shaped milieu in which competing values and interests play out. Relation of humanity to nature; conflicts between preservation and development; environmental pollution and contested illnesses.

Soc/C 150. Madness and the Movies (4)
Hollywood has had an ongoing obsession with mental illness. This course will examine a number of important or iconic films on this subject. By examining them against a background provided by relevant scholarly materials, we shall develop a critical perspective on these cultural artifacts. Prerequisite: upper-division standing.

Soc/C 151M. Chicanos in American Society (4)
Survey of contemporary sociological issues affecting Mexican-origin people in the United States. Lectures and reading will be oriented toward understanding the range of experiences within the Mexican-origin population. Focus will also be placed on evaluating theories and evidence used to understand this population. Prerequisite: upper-division standing.

Soc/C 152. Social Inequality and Public Policy (4)
(Same as USP 133.) Primary focus on understanding and analyzing poverty and public policy. Analysis of how current debates and public policy initiatives mesh with alternative social scientific explorations of poverty. Prerequisite: upper-division standing.

Soc/C 153. Urban Sociology (4)
(Same as USP 105) Introduces students to the major approaches in the sociological study of cities and to what a sociological analysis can add to our understanding of urban processes. Prerequisite: upper-division standing or consent of instructor.

Soc/C 154. Religious Institutions in America (4)
Examination of sociological theories for why people have religious beliefs. Also examines types of religious organizations, secularization, fundamentalism, religion and immigration, religion and politics, and religiously inspired violence and terrorism. The class will tend to focus on the American context. Prerequisite: upper-division standing.

Soc/C 155. The City of San Diego (4)
A research-oriented course studying a specific city. Students will describe and analyze a local community of San Diego. Additional work on one citywide institution. Guest lecturers from San Diego organizations and government. Readings largely from city reports and news media. Prerequisite: Introductory sociology.

Soc/C 156. Sociology of Religion (4)
Diverse sociological explanations of religious ideas and religious behavior. The social consequences of different kinds of religious beliefs and religious organizations. The influence of religion upon concepts of history, the natural world, human nature, and the social order. The significance of such notions as "sacred peoples" and "sacred places." The religious-like character of certain political movements and certain sociocultural attitudes. Prerequisite: upper-division standing.

Sacred texts, religious experiences, and ritual settings are explored from the perspective of sociological analysis. The types and dynamics of religious sects and institutions are examined. African and contemporary U.S. religious data provide resources for lecture and comparative analysis. Prerequisite: upper-division standing.
Sociology

Soc/C 159. Special Topics in Social Organizations and Institutions (4)
Readings and discussion of particular substantive issues and research in the sociology of organizations and institutions—including such areas as population, economy, education, family, medicine, law, politics, and religion. Topics will vary from year to year. Prerequisite: upper-division standing.

Soc/C 163. Migration and the Law (4)
Provides a global sociological perspective on the development and consequences of laws regulating migration within and across nation-state borders. The ability of the nation-state to control migration using law and its policy instruments. The effects of different legal statuses on political and socio-economic outcomes. Prerequisite: upper-division standing.

Soc/C 165A. American News Media (4)
History, politics, social organization, and ideology of the American news media. 165A surveys the development of the news media as an institution, from earliest newspapers to modern mass news media. Prerequisite: Soc/L 1A or consent of instructor.

Soc/C 168E. Sociology of Science (4)
A survey of theoretical and empirical studies concerning the workings of the scientific community and its relations with the wider society. Special attention will be given to the institutionalization of the scientific role and to the social constitution of scientific knowledge. Prerequisite: upper-division standing.

Soc/C 168T. Sociology of Technology (4)
An introduction to classic and recent sociological perspectives on technology, giving special attention to the relations between technology and science, technology and work, and technology and politics. Prerequisite: upper-division standing.

Soc/C 180. Social Movements and Social Protest (4)
An examination of the nature of protests and violence, particularly as they occur in the context of larger social movements. The course will further examine those generic facets of social movements having to do with their genesis, characteristic forms of development, relationship to established political configurations, and gradual fading away. Prerequisite: upper-division standing.

CLUSTER D: COMPARATIVE AND HISTORICAL SOCIOLOGY

Soc/D 151. Comparative Race and Ethnic Relations (4)
An historical and comparative analysis of race and ethnic relations in various national settings, with emphasis on the United States. The course will analyze the origins of ethnic stratification systems, their maintenance, the adaptation of minority communities, and the role of reform and revolutionary movements and government policies in promoting civil rights and social change. Prerequisite: upper-division standing.

The role of Islam in the society, culture, and politics of the Muslim people during the nineteenth and twentieth centuries; attempts by Muslim thinkers to accommodate or reject rival ideologies (such as nationalism and socialism); and a critical review of the relationship between Islam and the West. Prerequisite: upper-division standing.

Soc/D 169. Citizenship, Community, and Culture (4)
Will survey the liberal, communitarian, social-democratic, nationalist, feminist, post-nationalist, and multicultural views on the construction of the modern citizen and good society. Prerequisite: upper-division standing.

Soc/D 175. Nationality and Citizenship (4)
Surveys the development of nationality and citizenship law in historical and comparative perspective with an emphasis on the United States, Latin America, and Europe. Examines competing sociological accounts: for national variation and convergence; consequences of the law; and local, transnational, and extraterritorial forms of citizenship. Prerequisite: upper-division standing.

Soc/D 176. War and Society (4)
This course considers classical and contemporary theories that address the social organization of war-making and the effects of war on society since the Middle Ages, emphasizing more recent history. Topics include state formation, citizenship, gender, social stratification, and social protest. Prerequisite: upper-division standing.

Soc/D 177. International Terrorism (4)
(Same as POLI 1420.) This course covers the definitions, history, and internationalization of terrorism; the interrelation of religion, politics and terror; and the representation of terrorism in the media. A number of organizations and their activities in Europe and the Middle East are examined. Prerequisite: upper-division standing.

Soc/D 178. The Holocaust (4)
The study of the unique and universal aspects of the Holocaust. Special attention will be paid to the nature of discrimination and racism, those aspects of modernity that make genocide possible, the relationship among the perpetrators, the victims and the bystanders, and the teaching, memory, and denial of the Holocaust. Prerequisite: upper-division standing.

Soc/D 179. Social Change (4)
Course focuses on the development of capitalism as a worldwide process, with emphasis on its social and political consequences. Topics include: pre-capitalist societies, the rise of capitalism in the West, and the social and political responses to its expansion elsewhere. Prerequisite: upper-division standing.

Soc/D 181. Modern Western Society (4)
This course examines the nature and dynamics of modern western society in the context of the historical process by which this type of society has emerged over the last several centuries. The aim of the course is to help students think about what kind of society they live in, what makes it the way it is, and how it shapes their lives. Prerequisite: upper-division standing.

Soc/D 182. Ethnicity and Indigenous Peoples in Latin America (4)
Ethnicity and the reassertion of Indian identity in contemporary Latin America. Issues related to these trends are examined in comparative perspective, with attention to changes in global conditions and in the socioeconomic, political, and cultural contexts of Latin American modernization. Prerequisite: upper-division standing.

Soc/D 183. Minorities and Nations (4)
We will study minority rights and aspirations as well as the logic and dynamic of nationalist movements in selected cases. We will conclude by examining the chances and challenges of a post-nationalist world. Prerequisite: upper-division standing.

Soc/D 185. Globalization and Social Development (4)
Social development is more than sheer economic growth. It entails improvements in the overall quality of human life, particularly in terms of access to health, education, employment, and income for the poorer sectors of the population. Course examines the impact of globalization on the prospects for attaining these goals in developing countries. Prerequisite: upper-division standing.

Soc/D 187. African Societies through Film (4)
Exploration of contemporary African urbanization and social change via film, including 1) transitional African communities, 2) social change in Africa, 3) Western vs. African filmmakers’ cultural codes. Ideological and ethnographic representations, aesthetics, social relations, and market demand for African films are analyzed. Prerequisite: upper-division standing.

Soc/D 187S. The Sixties (4)
A sociological examination of the era of the 1960s in America, its social and political movements, its cultural expressions, and debates over its significance, including those reflected in video documentaries. Comparisons will also be drawn with events in other countries. Prerequisites: upper-division standing.

Soc/D 188. Community and Social Change in Africa (4)
The process of social change in African communities, with emphasis on changing ways of seeing the world and the effects of religion and political philosophies of social change. The methods and data used in various village and community studies in Africa will be critically examined. Prerequisite: upper-division standing.

Soc/D 188A. Chinese Society (4)
The social structure of the People's Republic of China since 1949, including a consideration of social organization at various levels: the economy, the policy, the community, and kinship institutions. Prerequisite: upper-division standing.

Soc/D 188B. Latin America: Society and Politics (4)
Course focuses on the different types of social structures and political systems in Latin America. Topics include positions in the world economy, varieties of class structure and ethnic cleavages, political regimes, mobilization and legitimacy, class alignments, reform and revolution. Prerequisite: upper-division standing.

Soc/D 188D. Modern Jewish Societies and Israeli Society (4)
Contradictory effects of modernization on Jewish society in Western and Eastern Europe and the plethora of Jewish responses: assimilation, fundamentalism, emigration, socialism, dispora nationalism, and Zionism. Special attention will be paid to issues of dis/continuity between Jewish societies and Israeli society. Simultaneously, we will scrutinize the influence of the Palestinian-Israeli conflict on Israeli society, state, and identity. Prerequisite: upper-division standing.

Soc/D 188S. Change in Modern South Africa (4)
Using sociological and historical perspectives, this course examines the origins and demise of apartheid and assesses the progress that has been made since 1994, when apartheid was officially ended. Contrasts of racism in South Africa and the United States. Prerequisite: upper-division standing.

Soc/D 188X. American Society (4)
Comparative and historical perspectives on U.S. society. The course highlights “American exceptionalism:” did America follow a special historical path, different from comparable nations in its social relations, politics,
and culture? Specific topics include class relations, race, religion, and social policy. Prerequisite: upper-division standing.

Soc/D 188XL. Foreign Language Discussion Section (1) Students will exercise advanced foreign language skills to discuss materials in the correspondingly numbered English language foreign area course. Prerequisite: must be coregistered with parent course.

Soc/D 189. Special Topics in Comparative-Historical Sociology (4) Readings and discussion in selected areas of comparative and historical macro-sociology. Topics may include the analysis of a particular research problem, the study of a specific society or of cross-national institutions, and the review of different theoretical perspectives. Contents will vary from year to year. Prerequisite: upper-division standing.

CLUSTER E: INDEPENDENT RESEARCH AND HONORS PROGRAM

Soc/E 192. Senior Seminar in Sociology (1) The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in sociology (at the upper-division level). Topics will vary from quarter to quarter. Senior Seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. (P/NP grades only.) Prerequisites: instructor permission or department stamp, upper-division standing.

Soc/E 194. Research Seminar in Washington, D.C. (4) (Same as PS 194, COGN 194, ERTH 194, HIST 193, USP 194.) Course attached to six-unit internship taken by students participating in the UCDC Program. Involves weekly seminar meetings with faculty and teaching assistant and a substantial research paper. Prerequisites: department approval. Participating in UCDC Program.

Soc/E 196A. Honors Seminar: Advanced Studies in Sociology (4) This seminar will permit honors students to explore advanced issues in the field of sociology. It will also provide honors students the opportunity to develop a senior thesis proposal on a topic of their choice and begin preliminary work on the honors thesis under faculty supervision. Prerequisite: acceptance into Department of Sociology Honors Program.

Soc/E 196B. Honors Seminar: Supervised Thesis Research (4) This seminar will provide honors candidates the opportunity to complete research on and preparation of a senior honors thesis under close faculty supervision. Prerequisite: completion of Soc/E 196A.

Soc/E 197. Instructional Assistance and Research in Field Methods (4) While fulfilling apprentice-level instructional tasks as peer advisors in the Field Research Methods course (Soc/A 104), students will conduct their own research on selected issues/problems faced by field researchers. Instructional and research activities will be closely supervised by the course instructor. Prerequisites: 3.5 in sociology, having excelled in Soc/A 104 (A or A+ grade); consent of course instructor; approval of sociology department chair.

Soc/E 198. Directed Group Study (4) Group study of specific topics under the direction of an interested faculty member. Enrollment will be limited to a small group of students who have developed their topic and secured appropriate approval from the departmental committee on independent and group studies. These studies are to be conducted only in areas not covered in regular sociology courses. Prerequisites: junior standing and departmental approval required.

Soc/E 199. Independent Study (2 or 4) Tutorial: individual study under the direction of an interested faculty member in an area not covered by the present course offerings. Approval must be secured from the departmental committee on independent studies. Prerequisites: junior standing and departmental approval required.

GRADUATE

Soc/G 201A. Classical Sociological Theory I (4) A discussion of major themes in the work of Tocqueville and Marx. Prerequisite: graduate standing in sociology.

Soc/G 201B. Classical Sociological Theory II (4) A discussion of major themes in the work of Weber and Durkheim. Prerequisite: graduate standing in sociology.

Soc/G 202. Contemporary Sociological Theory (4) Themes important for social theory at the turn of the twenty-first century: Marxism (Gramsci, Althusser), Critical Theory (Adorno, Habermas), Interpretation (Geertz), Social Systems (Parsons), post-structuralism (Foucault), postmodernism, and social constructivism (Bourdieu). Prerequisite: graduate standing in sociology.

Soc/G 203. Field Methods (4) Research will be conducted in field settings. The primary focus will be on mastering the problems and technical skills associated with the conduct of ethnographic and participant observational studies. Prerequisite: graduate standing in sociology.

Soc/G 204. Text and Discourse Analysis (4) Techniques of gathering and analyzing transcripts of naturally occurring conversations, interviews, discourse in institutional settings, public political discourse, and text of historical materials. Prerequisite: graduate standing in sociology.

Soc/G 205. Quantitative Methods I (4) This course covers some of the elementary techniques used 1) to select random samples, 2) to detect statistical patterns in the sample data, and 3) to determine whether any patterns found in sample data are statistically significant. The course also stresses the benefits and drawbacks of survey and aggregate data and some common ways in which these data are used incorrectly. Prerequisite: graduate standing in sociology.

Soc/G 206. Quantitative Methods II (4) The course covers some of the more advanced techniques used 1) to select random samples, 2) to detect statistical patterns in the sample data, and 3) to determine whether any patterns found in sample data are statistically significant. The course also stresses the benefits and drawbacks of survey and aggregate data and some common ways in which these data are used incorrectly. Prerequisite: graduate standing in sociology.

Soc/G 207. Comparative-Historical Methods (4) A broad-based consideration of the use of historical materials in sociological analysis, especially as this facilitates empirically oriented studies across different societies and through time. Prerequisite: graduate standing in sociology.

Soc/G 208. Faculty Research Seminar (2) An introduction for entering graduate students to the range and variety of research and scholarly interest of the department's faculty. Through this introduction students will be better able to relate their own research interests and professional objectives to the ongoing work of faculty. Prerequisite: graduate standing in sociology. (S/U grades only)

Soc/G 212. Social Stratification (4) The causes and effects of social ranking in various societies. Theories of stratification; the dynamics of informal social grouping; determinants of institutional power, and the nature of struggles for power; the distribution of wealth and its causes; the dynamics of social mobility; the effects of stratification on life-styles, culture, and deviance. Prerequisite: graduate standing in sociology.

Soc/G 216. Sociology of Culture (4) The history of the concept of culture; cultural pluralism in advanced industrialized societies; the differentiation of cultural institutions; cultural and political structure; culture as a property of social groups; conflict and accommodation over efforts to change and sustain traditional culture.

Soc/G 217. Globalization, Culture, and Everyday Life (4) This course explores the cultural, economic, and political processes which constitute globalization. Particular emphasis will be placed on understanding how consciousness and daily life practices are formed and transformed in a globalizing world. Prerequisite: graduate standing in sociology.

Soc/G 222. Social Movements (4) An examination of theories accounting for the causes and consequences of social movements, including a discussion of the strengths and weaknesses of such theories for understanding historically specific revolutions, rebellions, and violent and nonviolent forms of protest in various parts of the world. Prerequisite: graduate standing in sociology.

Soc/G 226. Political Sociology (4) This course discusses the relationship between state and society in a comparative perspective. The focus is on the interaction among states, domestic economic elites, and external economic and political processes in the determination of different developmental paths. Analytically, it includes topics such as characteristics and functions of the state in different types of society throughout history (with an emphasis on the varieties of capitalist and socialist states), the autonomy of the state and its causes in different settings, and developmental and predatory consequences of state activity. Readings will include both theoretical and empirical materials, the latter dealing mostly with nineteenth- and twentieth-century Europe and twentieth-century Latin America. Prerequisite: graduate standing in sociology.

Soc/G 227. Ethnographic Film: Media Methods (6) Ethnographic recording of field data in written and audiovisual formats, including film, video, and CD ROM applications. Critical assessment of ethnographies and audiovisual data in terms of style, format, and approaches. Graduate students are required to submit a fifteen-page mid-term paper comparing a written and an audiovisual ethnography and a final video ethnography with a project abstract. Prerequisites: graduate standing/Soc/L 1A, 1B or consent of instructor.
Soc/G 232. Advanced Issues in the Sociology of Knowledge (4)
The social construction of ‘knowledge’ and the social institutions in which these processes take place are examined. Topics include relationships between knowledge and social institutions, foundations of knowledge in society, knowledge and social interactions, and contrasting folk and specialized theories. Prerequisite: graduate standing in sociology.

Soc/G 234. Intellectual Foundation of the Study of Science, Technology, and Medicine (4)
This course focuses on some classic methodological and theoretical resources upon which the sociology of science, technology, and medicine are drawn. It gives special attention to relationships between knowledge and social order, and between knowledge and practice, that are common to science, technology, and medicine. Prerequisite: graduate standing in sociology.

Soc/G 238. Survey of the Sociology of Scientific Knowledge (4)
An introduction to some enduring topics in the sociology of scientific knowledge and to some resources for addressing them. Attention is drawn to problems of accounting for scientific order and change, and to recurrent debates over the proper method for sociological accounts of science. Prerequisite: graduate standing.

An examination of the sociological literature on social control, looking at theoretical developments over time, and examining the contemporary literature dealing with social control in historical and comparative perspective. Prerequisite: graduate standing.

Soc/G 244. Sociology of Race and Ethnicity (4)
Analysis of enduring topics in the study of race and ethnicity, including stratification, discrimination conflict, immigration, assimilation, and politics. Other topics include racial and ethnic identity and the social construction of race and ethnic categories. A special focus is on the role of culture and structure for explaining race/ethnic differentiation. Prerequisite: graduate standing in sociology.

Surveys major theories of the development and functioning of the welfare state, addressing the roles of economic development, political institutions, stratification, and culture. The course focuses on the development of the U.S. social provision in comparison with other advanced industrial societies.

Soc/G 249. Technology and the Human (4)
This course explores the ethical and political implications of technological interventions into human life. Approaches from science studies, the sociology of the body, and philosophy. Topics include transformations in domains of life such as work, health, childhood, and death.

Soc/G 252. Research Practicum I (4)
In this seminar students work on a research project, which might have originated in a paper written for another course. The goal is to produce the first draft of a paper that will be submitted to an academic journal. Prerequisite: graduate standing in sociology.

Soc/G 253. Research Practicum II (4)
In this seminar students revise an existing research paper (usually the one they wrote for Sociology 252) for submission to an academic journal. Emphasis is placed on conceptual development, writing style and structure, and drawing links to the existing theoretical and empirical literature. Prerequisite: graduate standing in sociology.

Soc/G 255A. Introduction to Science Studies (4)
(Same as Phil. 209A, HIGR 238, and COGR 225A.) Study and discussion of classic work in history of science, sociology of science, and philosophy of science, and of work that attempts to develop a unified science studies approach. Required for all students in the Science Studies Program. Prerequisite: enrollment in Science Studies Program.

Soc/G 255B. Seminar in Science Studies (4)
(Same as Phil. 209B, HIGR 239, and COGR 225B.) Study and discussion of selected topics in the science studies field. Required for all students in the Science Studies Program. Prerequisite: enrollment in Science Studies Program.

Soc/G 255C. Colloquium in Science Studies (4)
(Same as Phil. 209C, HIGR 240, and COGR 225C.) A forum for the presentation and discussion of research in progress in science studies, by graduate students, faculty, and visitors. Required of all students in the Science Studies Program. Prerequisite: enrollment in the Science Studies Program.

Soc/G 255D. Advanced Approaches to Science Studies (4)
(Same as COGR 225D, HIGR 241, PHIL 209D.) Focus on recent literature in the history, philosophy, and sociology of science, technology, and medicine. Required of all students in the Science Studies Program. Prerequisite: Soc/G 255A is a prerequisite for Soc/G 255D; enrollment in Science Studies Program or instructor’s permission.

Soc/G 258. Institutional Change in the Contemporary World; Latin American Societies in a Comparative Perspective (4)
This course explores institutional change in contemporary Latin America, and compares this area with other transitional societies. Issues include social and economic consequences of economic liberalization, changing forms of inequality, dynamics of civil society, conceptions of citizenship, quality and future of democracy. Prerequisite: graduate standing.

Soc/G 260. Sociology of Religion (4)
This seminar will examine major theories and debates in the sociology of religion. Possible topics include secularization, religion and immigration, and religion and politics. Prerequisite: graduate standing in sociology.

Soc/G 263. Graduate Seminar in the Sociology of Art (4)
This seminar explores the production and interpretation of art forms in cross-cultural context. Processes of symbolic and economic exchange in art worlds will be examined from sociological and semiotic perspectives. Contemporary and popular art forms will be analyzed as types of cultural reproduction. Graduate students will be required to submit a project abstract and final research paper of twenty-seven pages. Prerequisite: graduate standing in sociology.

Soc/G 264. Economic Sociology (4)
This course provides an overview of the classical and current debates in the economic sociology literature. It presents theories of the rise of industrial economics, and addresses how economic activities are constituted and influenced by institutions, culture, and social structure. Prerequisite: graduate standing in sociology.

Soc/G 267. Sociology of Gender (4)
Course examines social construction of gender focusing on recent contributions to the field, including micro- and macro-level topics, i.e., social psychological issues in the development of gender, gender stratification in the labor force, gender and social protest, feminist methodologies. Prerequisite: graduate standing in sociology.

Soc/G 268. Sociology of Masculinities (4)
This course introduces students to recent developments in the field of masculinities with attention to theoretical conceptualizations as well as empirical analyses of social organization of masculinity. Topics include the development of masculinity in boys, historical and cultural influences on male identity, differences of race, class, sexuality, the male body, and the meaning of work and family in men’s lives.

Soc/G 269. The Citizenship Debates (4)
Will examine the controversies surrounding the construction of the modern citizen and the good society of the liberal outlook, and their alternatives in the communitarian, social-democratic, nationalist, feminist, and multiculturalist perspectives. Prerequisite: graduate standing in sociology.

Soc/G 270. The Sociology of Education (4)
A consideration of the major theories of schooling and society, including functionalist, conflict, and interactional; selected topics in the sociology of education will be addressed in a given quarter, including the debate over inequality, social selection, cultural reproduction and the transition of knowledge, the cognitive and economic consequences of education. Major research methods will be discussed and critiqued. Prerequisite: graduate standing in sociology.

Soc/G 284. Contemporary Biomedicine (4)
Develops central themes in medical sociology in order to understand twentieth- and twenty-first-century medical practice and research. Topics include authority and expertise; health inequalities; managed care; health activism; biomedical knowledge production; and the construction of medical objects and subjects. Prerequisite: graduate standing.

Soc/G 288. Immigration and Citizen (4)
Alternative theories of the relations of immigrants and host societies, and an examination on the debates on, and dynamic of, immigration expansion and restriction. Comparison of the bearing of liberal, communitarian, and ethnic citizenship discourses on the inclusion and exclusion of immigrants and their descendants. Prerequisite: graduate standing in sociology.

Soc/G 289. Modernization and Globalization in East Asia (4)
Can East Asia modernize and globalize and still be distinct from the West? This course examines this question in multiple dimensions—political, cultural, and economic. Topics include human rights, democracy, economic organization, social institutions, and others. Prerequisite: graduate standing.

Soc/G 290. Graduate Seminar (4)
A research seminar in special topics of interest to available staff, provides majors and minors in sociology with research experience in close cooperation with faculty, (S/U grades permitted) Prerequisite: graduate standing in sociology.
Emeritus, Costume/Set Design
Prerequisite: graduate standing in sociology; departmental approval.

Emeritus, Voice
Prerequisite: graduate
Prerequisite: graduate

Chicano Literature, Acting
Prerequisite: graduate
Prerequisite: graduate

The minor, rooted in the theoretical and practical components of theatre and performance, provides an opportunity for students to explore the arts in a way that complements their major studies and aligns with their personal and professional goals. It offers a unique interdisciplinary approach that can foster interdepartmental offerings with a broader focus and provide opportunities for collaborations. The minor has three objectives: it is designed to offer an appropriate preparation for careers in space research and technology, with transcript notation of such a concentration of use to students. The minor can help balance strongly focused departmental offerings with a broader interdisciplinary approach that can foster interdepartmental activities beneficial to students. Finally, such a minor contributes to the preservation and renewal of the broad, interdisciplinary style which has distinguished UCSD from other leading research universities.

Curriculum

The minor consists of two required courses, Space Science (MAE 180A) and Space Engineering (MAE 180B), plus five electives to be chosen from a list of courses with the approval of an advisor. The present list of electives includes:

- CHEM 170. Cosmochemistry
- ECE 120. Solar System Physics
- ECE 166. Microwave Systems and Circuits (extensive prerequisites, lab component)
- ERTH 130. Geodynamics of Terrestrial Planets
- MAE 155A-B. Aerospace Engineering Design
- PHYS 160. Stellar Astrophysics
- PHYS 161. Black Holes and the Milky Way Galaxy
- PHYS 162. Galaxies and Cosmology
- PHYS 163. Exploring the Solar System
- SE 144. Aerospace Structural Analysis

See Entry Level Writing.

See Literature.

See Engineering, School of.

See Literature/Criticism

Judith A. Dolan, Ph.D., Costume Design, Associate Dean, Division of Arts and Humanities
Kyle Donnelly, M.F.A., Arthur and Molli Wagner Chair in Acting, Acting and Directing
Deborah M. Dryden, Emeritus, Costume/Set Design
Floyd Gaffney, Ph.D., Emeritus, Dance/Movement
Allan Havis, M.F.A., Playwriting, Provost, Marshall College
Jorge A. Huerta, Ph.D., Associate Chancellor, Dramatic Literature
James Ingalls, B.F.A., Lighting Design (Adjunct)
Walt Jones, M.F.A., Emeritus, Directing/Acting/Sound Design
Marianne McDonald, Ph.D., Dramatic Literature
Adele Edling Shank, M.A., Emeritus, Playwriting
Theodore Shank, Ph.D., Emeritus, Directing
Janet Smarr, Ph.D., Dramatic Literature and Italian Studies
Yolande Snith, B.A., Dance
Gabor Tompa, Ph.D., Directing
Darko Tresnjak, M.F.A., Directing and Acting
Arthur Wagner, Ph.D., Emeritus, Acting/Directing
Les Waters, B.A., Emeritus, Directing
James R. Winker, M.F.A., Academic Senate Distinguished Teaching Award, Acting

Associate Professors
James Carmody, Ph.D., Dramatic Literature
Mary Corrigan, M.A., Emeritus, Voice
Tony Curiel, M.A., Chicano Literature, Acting
Nadine George-Graves, Ph.D., Dramatic Literature and Dance History
Allyson Green, M.F.A., Dance
Victoria Petrovich, M.F.A., Design
John Rouse, Ph.D., Dramatic Literature
Jonathan Saville, Ph.D., Emeritus, Literature/Criticism

Assistant Professors
Robert Castro, M.F.A., Acting, Directing, Chicano Literature
Liam Clancy, M.F.A., Dance
Kim Rubinstein, B.S., Head of Undergraduate Acting
Emily Roxworthy, Ph.D., Dramatic Literature
Shahrokh Yadegari, Ph.D., Sound Design/Composition/Audio Technology

Senior Lecturers
with Security of Employment
Eva W. Barnes, M.F.A., Speech and Acting
Margaret Marshall, M.F.A., Ballet, Dance History, Choreography
Ursula Meyer, M.F.A., Voice and Acting

Space and Engineering

OFFICE: Galbraith Hall, Room 180, Revelle College

The following are minor requirements for students admitted to UCSD January 1, 1998, and later. Students admitted to UCSD prior to the above date must see the program advisor to confirm minor requirements.

The space science and engineering minor is a focused set of seven upper-division courses open to students with junior standing in one of the following departments: MAE, chemistry, CSE, ECE, or physics. Other students with suitable chemistry, physics, and mathematics preparation may also pursue the minor.

The minor has three objectives. It is designed to offer an appropriate preparation for careers in space research and technology, with transcript notation of such a concentration of use to students. The minor can help balance strongly focused departmental offerings with a broader interdisciplinary approach that can foster interdepartmental activities beneficial to students. Finally, such a minor contributes to the preservation and renewal of the broad, interdisciplinary style which has distinguished UCSD from other leading research universities.

OFFICE: 202 Galbraith Hall, Revelle College
(858) 534-3791
http://theatre.ucsd.edu

Professors
Steven Adler, M.F.A., Provost, Warren College, Stage Management and Directing
Andrei Both, M.F.A., Scenic Design
Frantisek Deak, Ph.D., Emeritus, Criticism and Theory

Spanish Literature

See Literature.

Structural Engineering

See Engineering, School of.

Subject A

See Engineering, School of.

Theatre and Dance

OFFICE: 202 Galbraith Hall, Revelle College
(858) 534-3791
http://theatre.ucsd.edu

Professors
Steven Adler, M.F.A., Provost, Warren College, Stage Management and Directing
Andrei Both, M.F.A., Scenic Design
Frantisek Deak, Ph.D., Emeritus, Criticism and Theory

Judith A. Dolan, Ph.D., Costume Design, Associate Dean, Division of Arts and Humanities
Kyle Donnelly, M.F.A., Arthur and Molli Wagner Chair in Acting, Acting and Directing
Deborah M. Dryden, Emeritus, Costume/Set Design
Floyd Gaffney, Ph.D., Emeritus, Dance/Movement
Allan Havis, M.F.A., Playwriting, Provost, Marshall College
Jorge A. Huerta, Ph.D., Associate Chancellor, Dramatic Literature
James Ingalls, B.F.A., Lighting Design (Adjunct)
Walt Jones, M.F.A., Emeritus, Directing/Acting/Sound Design
Marianne McDonald, Ph.D., Dramatic Literature
Adele Edling Shank, M.A., Emeritus, Playwriting
Theodore Shank, Ph.D., Emeritus, Directing
Janet Smarr, Ph.D., Dramatic Literature and Italian Studies
Yolande Snith, B.A., Dance
Gabor Tompa, Ph.D., Directing
Darko Tresnjak, M.F.A., Directing and Acting
Arthur Wagner, Ph.D., Emeritus, Acting/Directing
Les Waters, B.A., Emeritus, Directing
James R. Winker, M.F.A., Academic Senate Distinguished Teaching Award, Acting

Associate Professors
James Carmody, Ph.D., Dramatic Literature
Mary Corrigan, M.A., Emeritus, Voice
Tony Curiel, M.A., Chicano Literature, Acting
Nadine George-Graves, Ph.D., Dramatic Literature and Dance History
Allyson Green, M.F.A., Dance
Victoria Petrovich, M.F.A., Design
John Rouse, Ph.D., Dramatic Literature
Jonathan Saville, Ph.D., Emeritus, Literature/Criticism

Assistant Professors
Robert Castro, M.F.A., Acting, Directing, Chicano Literature
Liam Clancy, M.F.A., Dance
Kim Rubinstein, B.S., Head of Undergraduate Acting
Emily Roxworthy, Ph.D., Dramatic Literature
Shahrokh Yadegari, Ph.D., Sound Design/Composition/Audio Technology

Senior Lecturers
with Security of Employment
Eva W. Barnes, M.F.A., Speech and Acting
Margaret Marshall, M.F.A., Ballet, Dance History, Choreography
Ursula Meyer, M.F.A., Voice and Acting

Space Science

OFFICE: Galbraith Hall, Room 180, Revelle College

The following are minor requirements for students admitted to UCSD January 1, 1998, and later. Students admitted to UCSD prior to the above date must see the program advisor to confirm minor requirements.

The space science and engineering minor is a focused set of seven upper-division courses open to students with junior standing in one of the following departments: MAE, chemistry, CSE, ECE, or physics. Other students with suitable chemistry, physics, and mathematics preparation may also pursue the minor.

The minor has three objectives. It is designed to offer an appropriate preparation for careers in space research and technology, with transcript notation of such a concentration of use to students. The minor can help balance strongly focused departmental offerings with a broader interdisciplinary approach that can foster interdepartmental activities beneficial to students. Finally, such a minor contributes to the preservation and renewal of the broad, interdisciplinary style which has distinguished UCSD from other leading research universities.

Curriculum

The minor consists of two required courses, Space Science (MAE 180A) and Space Engineering (MAE 180B), plus five electives to be chosen from a list of courses with the approval of an advisor. The present list of electives includes:

- CHEM 170. Cosmochemistry
- ECE 120. Solar System Physics
- ECE 166. Microwave Systems and Circuits (extensive prerequisites, lab component)
- ERTH 130. Geodynamics of Terrestrial Planets
- MAE 155A-B. Aerospace Engineering Design
- PHYS 160. Stellar Astrophysics
- PHYS 161. Black Holes and the Milky Way Galaxy
- PHYS 162. Galaxies and Cosmology
- PHYS 163. Exploring the Solar System
- SE 144. Aerospace Structural Analysis
Auditions are not required. Theatre and Dance advisors can provide guidance and answers to your questions concerning specific course requirements; courses to fulfill Revelle, Thurgood Warren College’s program of concentration requirements; public speaking courses to fulfill requirements in the Schools of Engineering and Pharmacy; and elective courses for the general student desiring experience in theatre or dance. Any student who has been accepted to the University of California, San Diego is eligible to declare theatre or dance as a major, double major by completing a Change of Major form and delivering it to the Registrar’s Office. A departmental stamp is not required.

The Theatre Major

The theatre major provides a student with a solid artistic and academic background. The required lower-division courses equip the student with the skills and knowledge necessary for more advanced work in each of the areas of study. The major is structured to respond to the needs of students who seek a broad-based “liberal arts” education in theatre as well as those who plan to pursue their studies at the graduate level with the aim of acquiring either an M.F.A. or Ph.D. degree. Students should meet with the department’s undergraduate coordinator the quarter in which they declare a theatre major in order to plan an appropriate individual course of study.

The major requirements are those published in the catalog in effect for the first quarter that a first-year student attends UCSD; transfer students will be held to the catalog requirements two years previous to their first quarter at UCSD. Any student in good standing may declare a theatre major by completing a Change of Major form and delivering it to the Registrar’s Office. A department stamp is not required.

The Dance Major

The dance major will offer students an opportunity to specialize their training in the creative, aesthetic, and conceptual discipline of expressive movement as a contemporary art form, within the context of a broad undergraduate education. The primary focus of the dance major will be the study of contemporary and ballet techniques, dance history, theory and choreographic methods, emphasizing innovation and interdisciplinary collaboration, and pushing forward the boundaries of dance as a contemporary art form. It will provide the rigor of an academic program that fosters the balanced development of the dancer’s creative artistic potential, physical skills, and intellectual growth. Our aim is to provide students with a broad range of artistic and conceptual tools for achieving goals in a variety of career areas and for pursuing advanced study in dance and dance related fields. Growth is encouraged of individual artistic potential through the integration of creative, physical and intellectual process, providing a foundation of the creative and critical thinking needed for success in all career paths.

The major requirements are those published in the catalog in effect for the first quarter that a first-year student attends UCSD; transfer students will be held to the catalog requirements two years previous to their first quarter at UCSD. Any student in good standing may declare a theatre major by completing a Change of Major form and delivering it to the Registrar’s Office. A department stamp is not required.
The Theatre-Dance Double Major

The double major in Theatre and Dance provides students with a solid academic base and an artistic base in both theatre and dance disciplines. Furthermore, requirements for this double major will create stronger and more experienced directors (for their exposure to choreography), choreographers (for their exposure to directing), actors (for the poise and strength they will attain from dance), and dancers (for having confronted text and character).

Students should meet with the department's undergraduate coordinator as soon as practical (but no later than the quarter in which they declare the major) in order to plan an appropriate individual course of study.

Double majors should complete the Petition for Double Major form obtained from their college and submit it to the department for review and approval.

Theatre Minor

The theatre minor consists of seven theatre courses, one of which is the Practicum. It is recommended that students declare the theatre minor as soon as possible as priority enrollment in the Practicums is given to majors and minors.

Dance Minor

The dance minor consists of seven courses, one of which is the Practicum. The dance minor will provide a balanced educational experience for the student who has a strong interest in dance, but who wishes to major in another area of study. It is recommended that students declare the dance minor as soon as possible as priority enrollment in the Practicums is given to majors and minors.

Satisfying Your Major Requirements

Fifty percent of all course work required for the theatre or dance major (including both upper- and lower-division) must be taken at UCSD, regardless of approved transfer work, and petitions. Theatre practicum (TDPR) classes, completed elsewhere do not satisfy the theatre and dance department’s requirements unless they have been formally petitioned and approved. Only one practicum class from another institution may be petitioned. All courses required for the major or minor must be taken for a letter grade. A theatre and dance department course for which a student earns a grade lower than C- will not satisfy any of the department's graduation requirements. Four units of Instructional Assistance (TDGE 195, P/NP credit) may be used as an upper-division elective for the theatre major, double major, or minor. Courses taken outside the Department of Theatre and Dance will not satisfy core or elective major requirements.

Major Requirements

Theatre majors are required to complete ten lower-division courses. Dance majors are required to complete three lower-division courses. All lower-division courses should be satisfied before starting upper-division course work in the respective areas.

Theatre and Dance majors and minors should complete a practicum course, either TDPR 1, TDPR 2, TDPR 3, or TDPR 5, within three quarters of declaring their major or minor. Theatre majors should plan to complete their second practicum requirement as soon as possible thereafter, as space in these classes is limited. The second practicum course must be in an area different from the initial practicum course.

Theatre History 10, 21, 22, and 23 are prerequisites for most upper-division theatre history and theory courses. Introduction to Acting (TDAC 1), Theatre Design (TDDE 1), and Theatre Playwriting (TDPW 1) are all prerequisites for any upper-division course work in their respective areas. Students should take these classes as soon as possible after declaring their major. Prerequisites ensure that students are properly prepared for the work required.

THEATRE MAJOR

Please refer to the major requirements section for an overview of the theatre major.

Lower-Division Requirements

1. Two courses selected from:
 TDPR 1. Practicum–Scenery
 TDPR 2. Practicum–Costume
 TDPR 3. Practicum–Lighting
 TDPR 5. Practicum–Sound
2. Each of the following:
 TDHT 10. Introduction to Play Analysis
 TDHT 21. Performance Dynamics: Spaces, Performers, and Audiences
 TDHT 22. One Actor, Two, or More: How Theatre Peoples the World

Upper-Division Requirements

4. TDTR 101. Dance Movement Analysis
5. Two choreography courses chosen from the following:
 TDCH 140. Improvisation/Composition
 TDCH 142. Choreographic Workshop
 TDCH 145. Music for Dance Composition
6. One design course chosen from the following:
 TDDE 113. Costume Design for Dance

NOTE: THGE 197 and 199 may not be used as upper-division electives by theatre majors unless approved by petition.

DANCE MAJOR

Lower-Division Requirements

1. One course from:
 TDPR 1. Practicum–Scenery
 TDPR 2. Practicum–Costume
 TDPR 3. Practicum–Lighting
 TDPR 5. Practicum–Sound
2. TDTR 10. Introduction to Dance
3. TDCH 40. Principles of Choreography

Upper-Division Requirements

4. TDTR 101. Dance Movement Analysis
5. Two choreography courses chosen from the following:
 TDCH 140. Improvisation/Composition
 TDCH 142. Choreographic Workshop
 TDCH 145. Music for Dance Composition
6. One design course chosen from the following:
 TDDE 113. Costume Design for Dance

NOTE: THGE 197 and 199 may not be used as upper-division electives by theatre majors unless approved by petition.
TDPW 1. Introduction to Playwriting

Upper-Division Requirements

5. One upper-division four-unit acting course
6. One upper-division four-unit design course
7. One upper-division four-unit directing course
8. One upper-division four-unit playwriting course
9. One upper-division four-unit stage management course
10. Six upper-division four-unit theatre and dance history courses (TDHT 114 required as one of the six upper-division history courses)
11. Four upper-division theatre electives (with no more than two from the core dance curriculum)
12. TDTR 101. Dance Movement Analysis
13. TDDE 121. Theatre Process: Lighting
14. TDCH 140. Improvisation/Composition
 TDCH 142. Choreographic Workshop
 TDCH 145. Music for Dance Composition
15. Twelve units of advanced movement courses in one of the following areas of emphasis:
 TDMV 111. Advanced Ballet
 TDMV 122. Advanced Contemporary Dance
 TDMV 133. Advanced Jazz
16. One four-unit advanced movement course outside the area of emphasis selected in number 15.

NOTE: TDGE 197 and 199 may not be used as upper-division electives by theatre and dance majors unless approved by petition.

The Dance Minor

Minor forms are available at the advising office of the student’s college. Minor courses may not be taken on a P/NP basis.

The minor requirements are those published in the catalog in effect for the first quarter that a first-year student attends UCSD; Transfer students will be held to the catalog requirements two years previous to their first quarter at UCSD.

DANCE MINOR REQUIREMENTS

Lower-Division Requirements

1. One course from:
 TDPR 1. Practicum—Scenery
 TDPR 2. Practicum—Costumes
 TDPR 3. Practicum—Lighting
 TDPR 5. Practicum—Sound
2. TDAC 1. Introduction to Acting
3. TDCH 40. Principles of Choreography
4. Each of the following threshold classes:
 TDDE 1. Introduction to Design
 TDPW 1. Introduction to Playwriting
 TDDE 121. Lighting Design for Dance
7. Four dance history and theory courses chosen from the following:
 TDHD 171. Dance History I (Ancient to 1900)
 TDHD 172. Dance History II (1900 to 1960)
 TDHD 173. Dance History III (1960 to present)
 TDHD 174. Dance Aesthetics and Criticism
 TDHD 175. Cultural Perspectives on World Dance
8. Forty-eight units of movement courses in ballet and contemporary dance chosen from the following (each of the courses listed below may be repeated up to four times):
 TDMV 110. Intermediate Ballet
 TDMV 111. Advanced Ballet
 TDMV 112. Advanced Ballet for Contemporary Dance
 TDMV 120. Intermediate Contemporary Dance
 TDMV 122. Advanced Contemporary Dance
9. Eight units of electives chosen from the following:
 TDAC 109. Singing for the Actor
 TDAC 111. Freeing the Voice
 TDAC 115. Movement for Actors
 TDCH 143. Choreography and Dramatic Text
 TDMV 133. Advanced Jazz
 TDMV 142. Latin Dance of the World
 TDMV 143. West African Dance
 TDMV 144. Asian Dance
 TDTR 102. Movement Research
 TDTR 103. Dance and Technology
 TDTR 104. Dance Theory and Pedagogy

THEATRE AND DANCE DOUBLE MAJOR

Lower-Division Requirements

1. One course from:
 TDPR 1. Practicum—Scenery
 TDPR 2. Practicum—Costumes
 TDPR 3. Practicum—Lighting
 TDPR 5. Practicum—Sound
2. TDAC 1. Introduction to Acting
3. TDCH 40. Principles of Choreography
4. Each of the following threshold classes:
 TDDE 1. Introduction to Design
 TDPW 1. Introduction to Playwriting
 TDPR 1. Practicum—Scenery
 TDPR 2. Practicum—Costumes
 TDPR 3. Practicum—Lighting
 TDPR 5. Practicum—Sound
2. One course from the following list:
 TDHT 21. Performance Dynamics: Spaces, Performers, and Audiences
 TDHT 22. One Actor, Two, or More: How Theatre Peoples the World
 TDHT 23. Social Contexts of Performance
 TDAC 1. Introduction to Acting
 TDDE 1. Introduction to Design
 TDPW 1. Introduction to Playwriting

Upper-Division Requirements

3. Any five four-unit, upper-division theatre courses chosen from the following subjects:
 TDAC, TDDE, TDGR, TDGE, TDHT, TDPR, TDPW.

The Theatre Minor

Minor forms are available at the advising office of the student’s college. Minor courses may not be taken on a P/NP basis.

The minor requirements are those published in the catalog in effect for the first quarter that a first-year student attends UCSD; Transfer students will be held to the catalog requirements two years previous to their first quarter at UCSD.

DANCE MINOR REQUIREMENTS

Lower-Division Requirements

1. One course from:
 TDPR 1. Practicum—Scenery
 TDPR 2. Practicum—Costumes
 TDPR 3. Practicum—Lighting
 TDPR 5. Practicum—Sound
2. TDAC 1. Introduction to Acting
3. TDCH 40. Principles of Choreography
4. Each of the following threshold classes:
 TDDE 1. Introduction to Design
 TDPW 1. Introduction to Playwriting
 TDPR 1. Practicum—Scenery
 TDPR 2. Practicum—Costumes
 TDPR 3. Practicum—Lighting
 TDPR 5. Practicum—Sound
2. One course from the following list:
 TDHT 21. Performance Dynamics: Spaces, Performers, and Audiences
 TDHT 22. One Actor, Two, or More: How Theatre Peoples the World
 TDHT 23. Social Contexts of Performance
 TDAC 1. Introduction to Acting
 TDDE 1. Introduction to Design
 TDPW 1. Introduction to Playwriting

Upper-Division Requirements

3. Any five four-unit, upper-division theatre courses chosen from the following subjects:
 TDAC, TDDE, TDGR, TDGE, TDHT, TDPR, TDPW.
TDHD 172. Dance History II (1900 to 1960)
TDHD 173. Dance History III (1960 to present)
TDHD 174. Dance Aesthetics and Criticism
TDHD 175. Cultural Perspectives on World Dance

4. Three Movement courses:
 TD MV 110. Intermediate Ballet
 TD MV 111. Advanced Ballet
 TD MV 112. Advanced Ballet for Contemporary Dance
 TD MV 120. Intermediate Contemporary Dance
 TD MV 122. Advanced Contemporary Dance

5. Four units Movement, Theory, or Choreography chosen from:
 TD MV 133. Advanced Jazz
 TD MV 142. Latin Dance of the World
 TDMC 143. West African Dance
 TD MV 144. Asian Dance
 TD TR 101. Dance Movement Analysis
 TD TR 103. Dance and Technology
 TD TR 104. Dance Theory and Pedagogy
 TD CH 143. Choreography and Dramatic Text

Honors Program
The department offers a special program of advanced study for outstanding undergraduates majoring in theatre or dance. Successful completion of the Honors Program enables the student to graduate “With Highest Distinction” (A+), “With High Distinction” (A), or “With Distinction” (A–), depending upon performance in the program.

Eligibility
1. Junior standing (ninety units or more completed)
2. 3.7 GPA or better in the major
3. 3.5 GPA or better overall, which student must maintain until final graduation
4. Completion of at least four upper-division theatre courses
5. Recommendation of a faculty sponsor who is familiar with the student’s work

Guideline
Application to the Honors Program may be made upon completion of ninety units or no later than the fifth week of the quarter preceding the final two quarters before graduation. The Undergraduate Committee will consider the application and, if approved, the student and the principal advisor will have the responsibility of proposing an Honors Thesis Committee to the Undergraduate Committee for final approval.

Eligibility
Students are required to take THGE 196A, Honors Studies in theatre and 196B, Honors Thesis in theatre, in addition to the thirteen upper-division required courses for the major, THGE 196A-B are to be taken consecutively and may not be taken concurrently.

Placement and Proficiency for Dance Majors
The technical command and the expansion of a vocabulary of movement are essential to the dancer’s creative expression. The faculty advise new students in dance to participate in beginning dance in all areas for a minimum of one year, as well as enrolling in TD TR 10. Introduction to Dance. These courses are designed to give the student the basic information needed to move on to the intermediate level. Students should remain in this level for a minimum of one year unless the instructor encourages them to move up to the advanced level. All students are required to audition and be approved by the faculty to be enrolled in advanced dance courses. If you come to UCSD with a background in dance and would like to take an advanced class you need to audition in the class of your choice on the first day of the class meeting so that the teacher can accept you in the class or recommend another more appropriate class.

Undergraduate Student Petitions
Undergraduate student petitions are required whenever an exception to a rule is being requested. They are required for: major or minor requirement substitutions; substitution of courses from other departments or institutions; late course adding or dropping; or requesting a retroactive incomplete grade. Submit petitions for course substitutions well in advance of taking the course. To ensure that your petition is complete and well documented, have the Department of Theatre and Dance undergraduate coordinator assist you with the petition process if you have difficulty with the form.

Receiving Transfer Credit
You must petition the department to substitute courses taken in another department or institution for courses required by the Department of Theatre and Dance. The following procedures and guidelines will help you with the transfer petition process.

First, review the Department of Theatre and Dance residency requirement. It is generally a good idea to petition a course before you take it. The Department of Theatre and Dance undergraduate coordinator will review petitions for all transfer courses. Students may obtain a General Undergraduate Student Petition form on TritonLink. A detailed syllabus for the course to be evaluated must be attached to the completed petition form. Any petition relating to courses within the Department of Theatre and Dance should be dropped off at the main office during normal working hours.

Transfer credits must be accepted by the Admissions Office at the appropriate level and for the appropriate number of units for the substitution to be effective. Upper-division credit cannot be given for lower-division work. Course work done at a junior college can only transfer to UCSD as lower-division credit.

Theatre and Dance Performance and Production Opportunities
The Department of Theatre and Dance produces undergraduate productions throughout the academic year. These productions range in scale from student directed “black box” productions to full-scale faculty directed undergraduate productions on the mainstage. Every effort is made to provide a faculty directed opportunity for undergraduates each quarter.

Each of these productions is staged with undergraduate actors and dancers. Historically, where there are design assignments to be made (sets, costumes, lights, sound), those assignments are given to qualified undergraduates. Upper-division credit is available for students involved in the design or staging of department productions. Students may not work on department productions unless they are formally enrolled in a related class. Information regarding design and advanced crew opportunities is typically available from the design faculty or may be posted on the bulletin board in the lobby of Galbraith Hall as opportunities arise.

Cabaret
Cabarets are independent productions that are produced in Galbraith Hall Studio Theatre 157. Students may submit proposals for cabarets one quarter in advance to the cabaret manager.
The cabaret policy is subject to revision on a quarterly basis. Please check at the front desk for details and deadlines.

Undergraduate Audition Policy

Undergraduates are encouraged to audition for all shows produced in the department. Auditions are typically held in the quarter preceding the staging of a production. Audition announcements will be posted on the bulletin board in the lobby of Galbraith Hall. Undergraduates who have completed or are currently enrolled in TDAC 1—Introduction to Acting are eligible to audition. Qualified undergraduates may audition for roles in graduate productions as they are available.

UCSD Dance Repertory

This repertory is open to dance students through auditions. The company will perform lecture-demonstrations, performances, and teach master classes in the community or at other UC campuses.

Annual Dance Concerts

Two main stage and one studio theatre dance concert are presented each year. In fall quarter a small scale faculty directed laboratory or cabaret performance is presented in the Molli and Arthur Wagner Dance Building’s Studio theatre. In winter quarter’s ‘Dance Alive’ concert students perform choreography created by the professional faculty and international guest artists in the Mandell Weiss Center for the Performing Arts, Forum Theatre or the Potiker Theatre; and in spring quarter’s “New Works” student dance concert, students perform the faculty-directed experimental choreographic works for other students at the Potiker Theatre. In addition, smaller productions and student cabarets take place in our intimate Studio Theatre, located in the dance facility. Auditions are held at the beginning of the quarter for all productions. Students interested in performing in the winter concert must audition for a specific repertory class taught by the faculty or guest choreographer with whom they wish to work. Students who are then cast must enroll in both the appropriate Dance Repertory (TDPF 160, 161, 162) and Studies in Performance (TDPF 163). Students interested in performing in the spring concert must audition at the beginning of spring quarter; if cast, they enroll in Studies in Performance (THPF 160, 161, 162). Students participating in either dance production are required to be concurrently attending a technique class. Students who wish to choreograph for the spring concert must have completed or be concurrently enrolled in a choreography class.

Ushering

A fantastic and simple way for students to become involved with the Department of Theatre and Dance is to be a volunteer usher. When a student volunteers, he or she will receive a complimentary ticket and a guaranteed seat to a predetermined performance in exchange for carrying out easy but important front of house tasks (such as tearing tickets, seating patrons, or handing out programs). Ushering is fun and easy—no experience is required and all majors are welcome.

To inquire about usher availability, contact the Theatre and Dance promotions manager at promotions@ucsd.edu and put the word “USHER” (in all caps) in the subject line. Someone will respond to your inquiry with more information in a timely manner.

Comps

Declared theatre or dance majors are eligible to receive one free complimentary ticket per departmental production. The complimentary tickets are on a first-come-first-served basis. Majors need to come into the department office and fill out a complimentary ticket form at least forty-eight hours prior to the performance. Majors will be notified through e-mail if the request is unable to be filled. For the complete Complimentary Ticket Policy please visit our Web site (http://theatre.ucsd.edu) or come into the office.

The Graduate Program

Master of Fine Arts in Theatre

Joint Doctoral Degree Program

M.F.A. in Theatre

The Department of Theatre and Dance has set an ambitious goal for its M.F.A. program: the training of artists who will shape the future direction of the theatre. The professional theatre training program is ranked third in the nation (and first west of the Hudson River) [US News and World Report, 1997].

The curriculum for all students involves studio classes and seminars. These are integrated with a progressive sequence of work on productions and with a professional residency at the La Jolla Playhouse.

The M.F.A. program at UCSD is built around the master-apprentice system of training. All the faculty are active professionals who teach at UCSD because of a shared commitment to training young artists. Instruction takes place not just in the classroom, but in theatres around the country where faculty, with students as assistants, are involved in professional productions, including those at the La Jolla Playhouse.

Students graduating from the M.F.A. program at UCSD should be prepared to take positions in the professional theatre in the United States and abroad. Students are now working in New York, in resident theatres, in the film and television industry, and in European repertory theatres. M.F.A. candidates in acting, design, directing, playwriting, and stage management will complete at least ninety quarter-units of academic work during their tenure in the program.

Program Descriptions

ACTING

The body and mind of the actor are synthesized to serve as an instrument of expression. Actors must depend on their instrument to perform, and the program places great emphasis on the strengthening and tuning of that instrument. The innate talent of the student is nurtured, coaxed, and challenged with individual attention from an extraordinary team of professionals and specialists in actor training.

Classes

Each year, intensive studio work in movement, voice, speech, and singing accesses, expands, and frees the physical body. Acting process introduces a range of improvisational and rehearsal techniques that help the actor approach onstage events with imagination and a rich emotional life. In the first year, studio classes guide the actor through daily explorations that encourage, change, and enhance artistic expression. The second year is devoted to the study of classical texts as well as the specific vocal and physical skills required to perform them. In the final year, classes focus on the needs of individual actors as they prepare to enter the professional world.

Productions

Actors work on classical and contemporary texts as well as new plays with graduate students, faculty, and professional guest directors. Each year the department schedules from fifteen to twenty
productions of varying size and scope. Graduate students are given casting priority for all but a few plays. Student-scheduled and produced cabaret/workshop productions occur year-round and provide additional acting opportunities.

Externship
All graduate students serve a residency with the La Jolla Playhouse and are cast in positions ranging from supporting to leading roles alongside professional actors and directors of national and international stature. For many actors this opportunity establishes valuable networking relationships and exposure for future employment.

Research and Other Opportunities
 modest funds are sometimes available for the pursuit of research, special technique workshops, and travel to auditions and festivals. In addition, in the third year, the entire acting class receives a showcase presentation in both Los Angeles and New York at which specially invited groups of film, television, and theatre professionals are in attendance.

DESIGN
The design program aims to train students in the best professional practices of regional and commercial theatre. The design faculty are award-winning working professionals also committed to teaching. The design training program stresses an interaction with the works of many visual and sound artists from a wide range of disciplines. Students are trained to create designs that “comment” on the play and the text, not merely “illustrate” it. Students’ talent and design work are showcased at a number of venues that have directly resulted in many national grants, awards, and other work opportunities for our alumni.

Classes
All students take a core curriculum of first-year design studio classes in scenery, costume, lighting, and sound (taken together with directors), and a design seminar where all three years come together in a forum to share production experiences, portfolios, and professional career techniques and skills. This is followed in subsequent years by more specialized Advanced Design classes which combine with production work in the student’s own area of concentration. We are also able to offer a double-emphasis study (e.g., scenery and costume design combined) to appropriate students. Classes in other areas (e.g., drafting, text analysis, visual arts, music) are also normally offered.

Production
We offer a generous number of (fully executed) production opportunities, and generally all productions are designed by students. Designers collaborate with student, faculty, and internationally prominent guest directors. Students are fully supported by the same professional workshop staff as the La Jolla Playhouse and are not expected to build or run their own productions.

Externship
Student designers participate in a residency program at the La Jolla Playhouse, and normally work as assistants to visiting professional designers. However, there are also some opportunities for talented students to be hired as principal designers by the Playhouse during their season.

Research and Other Opportunities
Students may also be offered opportunities to travel with faculty as assistants on professional assignments to major regional theatres, Broadway, England, or Europe. Modest funds are sometimes available for student research and travel to see productions and to attend conferences and workshops.

DIRECTING
With an emphasis on the collaborative process, the Directing Program’s purpose is to develop directors with a solid foundation in the components of production and the interpretation of text. Individuals are encouraged to make challenging choices, to break down barriers, and to create exciting, meaningful theatre. Graduates of the program are prepared to select and get to the heart of a text, communicate effectively with and inspire production designers, and elicit expressive performances from the actors with whom they work.

Classes
The core curriculum of the Directing Process Program offers students opportunities to hone their skills in text analysis and scene work in all three years. The first-year student also completes a sequence in the acting process, develops a visual vocabulary in theatrical design and visual arts courses, and explores the nature of the collaborative process.

Production
Directing students will direct from two to four department scheduled and supervised productions in the Mandell Weiss Center for the Performing Arts during their time at UCSD. In addition, studio, workshop, and cabaret productions of the director’s choice are strongly encouraged. The production season also offers opportunities to assist guest and faculty directors.

Externship
In the second year, the La Jolla Playhouse provides a residency during which students typically serve as assistant directors.

Additional Opportunities
It is common for the directing faculty to take M.F.A directors with them to work as assistant directors at theatres around the United States and internationally.

PLAYWRITING
Playwrights are more than mere writers. They are artists who unleash their imagination in incredibly dramatic ways. The successful playwright writes with intellectual power and emotional honesty, with a distinct and essential voice that speaks with vulnerability and sentiment to the heart and soul of the audience. The dedicated, individual attention and formidable production opportunities of the program offer talented writers the ability to stretch, expand, and witness the unfolding of their work on stage in the bodies of very gifted actors.

Classes
In Playwriting Seminar—the core course—writers in all three years read and discuss their ongoing work, focusing on style, character, and structure. They also observe their work being read by M.F.A actors at times throughout the year. Writing for Television, Screenwriting, and Dramatization/Adaptation are offered in rotation within a three-year cycle. In addition, students take a variety of topics in theatre and dramatic literature along with individual practicum classes. Playwrights can take advantage of rich offerings in literature, music, visual arts, and language study, as well as dramatic texts, theory, and design.

Production
First-year students receive a one-act showcase production each year, while second- and third-year students receive a fully designed production. These are produced in the New Plays Festival each spring, which is attended by literary
managers, agents, and artistic directors from across the country. Typically, these productions are directed, designed, and acted by students in the M.F.A. program. Production of plays in any year of study is dependent on the readiness of the work for staging.

Externship

Each student is assisted with a carefully chosen assignment, typically in the summer of the second year. Our playwrights may have an opportunity to gain exceptional literary and production experiences in a variety of theatres and venues in New York, Seattle, Los Angeles, London, Germany, and Romania.

STAGE MANAGEMENT

The stage manager is a pivotal member of the collaborative process who creates the environment that supports the work of the other members of the artistic team. The stage manager is the prime communicator and liaison who synthesizes the disparate elements of production into a cohesive whole and is responsible for the implementation of diverse artistic choices throughout the production process.

The Stage Management Program at UCSD integrates a comprehensive knowledge of all critical components of this complex field in order to prepare students for work in leading professional theatres. The program develops individualized, creative artists with personal approaches to their work. UCSD creates a supportive and stimulating environment that allows each student to develop the confidence and flexibility necessary to meet the challenges of production in a wide variety of professional venues.

Classes

All first-year students take a core curriculum in stage management process that explores the role of the stage manager in professional theatre today and offers a comprehensive investigation of the work from pre-production to closing a show. Students in all three years attend the stage management seminar, which serves as a weekly forum for sharing insights and solving problems on current production assignments, meeting with a variety of guest artists, and examining the bigger picture of stage management and theatre in America today. Additional coursework is offered in various aspects of theatre administration and management, professional practice, directing, design, and collaborative process.

Productions

Great emphasis is placed on the student’s ability to apply the theories learned in class to the production process. Students typically serve as both ASM and SM on a number of studio and mainstage productions in a variety of theatrical spaces. In addition to established scripts directed by M.F.A., faculty, and nationally prominent guest directors, students also work on new plays by graduate or guest playwrights as well as faculty and student choreographed dance concerts.

Research Opportunities

Students are encouraged to work or research in the field when time permits. Past projects have included stage managing at the National Playwrights Conference at the O’Neill Center in Connecticut, interning at Warner Brothers Feature Animation, working as production assistant for the Broadway production of Play On, stage managing Andrei Serban’s production of Our Country’s Good at the Romanian National Theatre, and researching stage combat and weaponry at the Royal Shakespeare Company.

Externship

Each student is guaranteed at least one production opportunity at the La Jolla Playhouse, or a comparable professional residency experience.

Ph.D. in Theatre and Drama

The UCSD Department of Theatre and Dance and the Department of Drama at UC Irvine began to recruit students for the new Joint Doctoral Program in Theatre and Drama in fall 1999 for admission in fall 2000. Within the context of the program’s twin focus on theory and history, an innovative structure permits each student to pursue a custom designed curriculum that draws from a rich variety of seminars in faculty research areas that include: Greek classical theatre; Shakespeare and his contemporaries; Italian, French and German theatre; U.S.-Latino, African-American, and Asian-American theatre; critical, historical, and performance theories.

Interested students are encouraged to request detailed information about the program and application materials, which will be available from either department each September.

Preparation

Students with a B.A. (minimum GPA: 3.5), M.A., or M.F.A. degrees in drama and theatre are eligible for admission to the doctoral program. We will also consider students with training in literature (or another area in the humanities), provided they can demonstrate a background in drama or theatre. Experience in one of the creative activities of theatre (acting, directing, playwriting, design, dramaturgy) will enhance chances of admission.

All applicants are required to take the Graduate Record Examination and to submit samples of their critical writing.

While not required for admission, a working knowledge of a second language is highly desirable (see Language Requirement).

COURSE OF STUDY

Students are required to take a minimum of 144 units, which is equivalent to four years of full-time study (full-time students must enroll for a minimum of twelve units each quarter). Forty of these units will be taken in required seminars; the balance will be made up of elective seminars, independent study, and research projects (including preparing the three qualifying papers), and dissertation research. Students must take a minimum of one seminar per year in the Department of Drama at UCI. The program of study makes it possible for students to take a significant number of elective courses and independent studies both with faculty in drama and theatre and in other departments.

Required Seminars

1. A minimum of twelve units of TDGR 290 (Dramatic Literature and Theatre History to 1900).
2. A minimum of twelve units of TDGR 291 (Dramatic Literature and Theatre History 1900 to the Present).
3. A minimum of sixteen units of TDGR 292 (Cultural and Critical Theory).

These required seminars must be completed before the end of the student’s third year. In addition to the ten required seminars, students must pass comprehensive examinations at the end of the first and second years (see “Comprehensive Examinations”).

COMPREHENSIVE EXAMINATIONS

In the first year, students prepare for the written comprehensive examination, which is based on a reading list of approximately 150 titles ranging from the Ancient Greeks to the present. Students take the written comprehensive at the
beginning of the fall quarter of the second year. (Comprehensive examinations are scheduled at the beginning of fall quarter in order to allow the students the summer to prepare.) Students who fail the written comprehensive may retake it no later than the first week of winter quarter of the second year. Students who fail the written comprehensive for a second time are dismissed from the program.

In the second year, students prepare for oral comprehensive examination. The reading list for this examination is designed to permit the student to acquire a knowledge of his or her dissertation subject area, broadly conceived. The reading list is compiled by the student and his or her dissertation advisor, in consultation with other members of the faculty, as appropriate; the reading list must be established by the end of winter quarter of the second year. Students take the oral comprehensive at the beginning of the fall quarter of the third year. Students also submit a dissertation prospectus (approx. five pages) at the time of the oral comprehensive. Students who fail the oral comprehensive may retake it no later than the first week of winter quarter of the third year. Students who fail the oral comprehensive for a second time are dismissed from the program.

Advancement to Candidacy: Three Qualifying Papers

Students normally select a dissertation advisor during the second year and must do so before the end of spring quarter of that year. In consultation with the dissertation advisor and other faculty members, students develop topics for three “qualifying papers,” which are written during the third year. The three qualifying papers—one long (approx. fifty pages) and two short (approx. thirty pages each)—must be completed by the end of the third year; when completed, the qualifying papers provide the basis for the oral qualifying examination. Students write the long paper under the direction of the dissertation advisor; it is understood that the long paper is preparatory to the dissertation. The short papers deal with other related topics, subject to the approval of the student’s advisors; the two short papers are understood as engaging in exploring the larger contexts of the dissertation. Students normally pass the qualifying examination and advance to candidacy at the end of the third year; students must advance to candidacy no later than the end of fall quarter of the fourth year. Once admitted to candidacy, students write the dissertation which, upon completion, is defended in a final oral examination. Students may select a dissertation advisor from either UCSD’s Department of Theatre and Dance or UCI’s Department of Drama. All UCSD doctoral dissertation committees must include at least one faculty member from UCI.

Language Requirement

Students are required to complete an advanced research project using primary and secondary material in a second language (“materials” should be understood as including live and/or recorded performance; interviews with artists, critics, and scholars; and other non-documentary sources, as well as more conventional textual sources). This requirement may be satisfied by writing a seminar paper or a qualifying paper (see “Advancement to Candidacy”) that makes extensive use of materials in a second language. The second language requirement must be satisfied before the end of the third year. This requirement will not be waived for students who are bi- or multilingual; all students are required to do research level work in more than one language.

It is assumed that students will have acquired a second language before entering the doctoral program, although second-language proficiency is not a requirement for admission. While students may study one or more second languages while at UCI or UCSD, language classes may not be counted toward program requirements.

Teaching

Students are required to teach a minimum of four quarters. No more than eight units of apprentice teaching (TDGR 500) may be counted toward the required 144 units.

Departmental Ph.D. Time Limit Policies

Students must advance to candidacy by the end of the fall quarter of their fourth year. Departmental normative time for completion of the degree is five years; total registered time in the Ph.D. program at UCSD or UCI cannot exceed seven years. While students with M.A. or M.F.A. degrees may be admitted to the Ph.D. program, they will be required to take all required doctoral seminars.

Financial Support

Students entering the Ph.D. program may be supported (by either employment or fellowships) for four years. Support depends on the funds available and on the student’s rate of progress towards degree.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

Note: For changes in major requirements and in course offering implemented after publication, inquire at the office of the Department of Theatre and Dance.

The subject codes are:

- TDAC (formerly THAC) Theatre Acting
- TDCH Dance Choreography
- TDDE (formerly THDE) Theatre Design
- TDGR (formerly THGR) Theatre Graduate
- TDHT (formerly THHS) Theatre History and Theory
- TDMV Dance Movement
- TDPF Dance Performance
- TDPR (formerly THPR) Theatre/Dance Practicum
- TDPS (formerly THPS) Theatre Playwriting
- TDTN Theatre
- TDCN Dance

TDAC—THEATRE ACTING

TDAC 1. Introduction to Acting (4)
A beginning course in the fundamentals of acting: establishing a working vocabulary and acquiring the basic skills of the acting process. Through exercises, compositions and improvisations, the student actor explores the imagination as the actor’s primary resource, and the basic approach to text through action. **Prerequisite:** none.

TDAC 101. Acting I (4)
This course focuses on beginning scene study with an emphasis on exploring action/objective and the given circumstances of a selected text. **Prerequisite:** THAC or TDAC 1 or consent of instructor.

TDAC 102. Acting II (4)
Further study in the application of the given circumstances to a text and the development of character. The final stages of this course will be selection and preparation of audition material. **Prerequisite:** THAC or TDAC 101 or consent of instructor.

TDAC 104. Classical Text (4)
Studies of the heightened realities of poetic drama. Verse analysis, research, methods and how to
approach a classical dialogue. Prerequisite: THAC or TDAC 102.

TDAC 105. Rehearsing Shakespeare (4)
Advanced exploration of Shakespeare's language through examining and performing scenes from the plays. Admission by audition/interval. Prerequisites: THAC 102 or TDAC 102, department stamp, interview/audition, consent of instructor.

TDAC 106. Chekhov Acting (4)
Practical exercises, discussion, text analysis, and scene work on the writings of Anton Chekhov. Admission by audition/interval. Prerequisites: THAC 101 or TDAC 101, THAC 102 or TDAC 102, interview/audition and consent of instructor.

TDAC 107. Improvisation for the Theatre (4)
Improvisation for the theatre explores improvisation techniques as an alternative and unique approach to acting. Students should have a performance background. Prerequisite: THAC or TDAC 1.

TDAC 108. Advanced Topics (4)
Advanced topics in acting, such as Avant Garde Drama, Commedia, or Beckett, for students who possess basic acting techniques. Prerequisites: THAC or TDAC 102, admission by audition, and department stamp.

TDAC 109. Singing for Actors (4)
This course introduces basic skills of breathing, placement, diction, musicianship, harmony, interpretation, and presentation needed by actors for roles requiring singing. Through a combination of group and individual coaching in class, students will prepare a program of short solo and ensemble pieces for a final-week performance. Prerequisites: THAC or TDAC 1 and audition; department stamp.

TDAC 111. Freeing the Voice (4)
Intensive workshop for actors and directors designed to "free the voice," with special emphasis on characteristics and vocal flexibility in a wide range of dramatic texts. This proven method combines experimental and didactic learning with selected exercises, texts, tapes, films, and total class commitment. Prerequisite: concurrent enrollment in THAC or TDAC 101.

TDAC 112. Major Seminar in Acting (4)
An in-depth study seminar focused on special issues in acting as they relate to contemporary theatre. Of particular interest to students who plan to pursue a career in this area of theatre. Prerequisites: department stamp; theatre majors only; upper-division only.

TDAC 115. Movement for Actors (4)
An exploration of the wide array of physical skills necessary for the actor. Using techniques derived from mime, clowning, sports, acrobatics, and improvisation, students will investigate their individual physical potential as well as their sense of creativity and imagination. Prerequisite: THAC or TDAC 101.

TDAC 120. Ensemble (4)
An intensive theatre practicum designed to generate theatre created by an ensemble with particular emphasis upon the analysis of text. Students will explore and analyze the script and its author. Ensemble segments include black theatre, Chicano theatre, feminist theatre, and media dell'arte. Audition may be required. A maximum of four units may be used for major credit. (Cross-listed with ETHN 146A.) Prerequisite: department stamp.

TDAC 122. Ensemble: Undergraduate Production (4)
Participation in a fully-staged theatre production directed by a M.F.A. or Ph.D. student for the Department of Theatre and Dance. Admission by audition only. A maximum of four units may be used for major credit. Prerequisites: consent of the instructor; department stamp.

TDAC 123. Advanced Studies in Performance (4)
Participation in a fully-staged season production that is directed by a faculty member or guest for the Department of Theatre and Dance. Admission by audition only. A maximum of four units may be used for major credit. Prerequisites: consent of the instructor; department stamp.

TDAC 126. Acting-Directing Process (4)
A studio class that investigates the relationship between the actor and the director. Working alongside directors, students learn how to animate the writer's and director's vision on stage through status exercises and scene work while expanding their skills in the acting process. Prerequisites: THAC or TDAC 1 and THAC or TDAC 101, or consent of instructor.

TDCH 1. DANCE CHOREOGRAPHY

TDCH 40. Principles of Choreography (4)
Prerequisites: THAC or TDAC 1 and audition; department stamp.

TDCH 140. Improvisation/Composition (4)
The study of compositional and improvisation methods concerning the aesthetic awareness of movement, and organization of elements in time, space, and energy. Both structured and unstructured tasks facilitate development of movement vocabulary, imagination, timing, spontaneity, contact skills, and compositional choices. Prerequisite: TDTR 10.

TDCH 142. Choreographic Workshop (4)
Prerequisites: TDTR 1, THDE or TDDE 121, or consent of instructor.

TDCH 143. Choreography and Dramatic Text (4)
The course will explore the relationship between dance and the dramatic text. Emphasis will be placed on dance as a complement to verbal communication and a medium for non-verbal communication. Prerequisites: TDTR 10, TDCH 40.

TDCH 145. Music For Dance Composition (4)
Prerequisites: THAC or TDAC 1 and audition; department stamp.

TDCH 196A. Senior Honors Focus Choreographic (4)
Selected seniors create a significant choreographic work or media project under faculty mentorship, for presentation in the studio theatre, spring dance production, or site-specific alternative location. All courses in the choreography series must be completed or concurrent with the senior honors focus. Individual honors contract for selected senior dance majors. Honors content noted on transcript. Requirements: 3.5 overall GPA, 3.7 major GPA, 90 units completed, and 2 quarter commitment. Prerequisites: TDCH 40, TDCH 140, TDCH 142, department stamp. May be taken two times for credit.

TDCH 196B. Senior Honors Focus Choreographic (4)
Continuation of TDCH 196A. Selected seniors present a significant choreographic work or media project under faculty mentorship, in the studio theatre, spring dance production, or site-specific alternative location. All courses in the choreography series must be completed or concurrent with the senior honors focus. Individual honors contract for selected senior dance majors. Honors content noted on transcript. Requirements: 3.5 overall GPA, 3.7 major GPA, 90 units completed, and 2 quarter commitment. Prerequisites: TDCH 40, TDCH 140, TDCH 142, TDCH 145, TDCH 196A, department stamp. May be taken two times for credit.

TDCH 146. Senior Honors Focus Choreographic (4)
Continuation of TDCH 196A. Selected seniors present a significant choreographic work or media project under faculty mentorship, in the studio theatre, spring dance production, or site-specific alternative location. All courses in the choreography series must be completed or concurrent with the senior honors focus. Individual honors contract for selected senior dance majors. Honors content noted on transcript. Requirements: 3.5 overall GPA, 3.7 major GPA, 90 units completed, and 2 quarter commitment. Prerequisites: TDCH 40, TDCH 140, TDCH 142, TDCH 145, TDCH 196A, department stamp. May be taken two times for credit.

TDDE 1. Introduction to Design for the Theatre (4)
Prerequisites: THAC or TDAC 1 and audition; department stamp. May be taken two times for credit.
TDDE 122. Advanced Lighting Design (4)
Creative projects and topics in lighting design. Work to include studies in design research, concepts, collaboration, professional procedures and systems, paper work, and organization. Varies scales of theoretical and practical projects in the light lab and classroom will be addressed by the student for presentation and critique. Final project will be a lighting design suitable for a design portfolio. Prerequisite: THDE or TDDE 1, THDE or TDDE 121, or consent of instructor.

TDDE 130. Assistant Designer (2-6)
A production-oriented course that continues to introduce students to the fundamentals of design assisting. Laboratory format allows the student to work with faculty, graduate, or advanced undergraduate theatre designers, doing research, developing design concepts, and supporting the designer in a number of professional ways. Prerequisites: THDE or TDDE 1, any upper-division undergraduate theatre design class, THPR or TDDR 1, 2, 3, 4, or 5; and consent of instructor; department stamp. May be taken twice for credit.

TDDE 131. Special Topics in Theatre Design (4)
A course designed to expose the theatre design student to a variety of specialized topics that will vary from quarter to quarter. Prerequisite: THDE or TDDE 1 or consent of instructor. May be taken three times for credit.

TDDE 132. Undergraduate Mainstage Production: Design (4)
A course which will guide a student in a design assignment on the undergraduate mainstage production. Specialized topics dependent on the design requirements of the production. Prerequisites: THDE or TDDE 1 and THDE or TDDE 101, or THDE or TDDE 121, or THDE or TDDE 131, or consent of instructor. May be taken three times for credit.

TDDE 141. Theatre Process—Sound Design (4)
A hands-on course on the process of sound design from conception to planning and implementation. The course will concentrate equally on the technical and artistic aspects of the sound design process and will include a survey of modern audio technologies. Prerequisites: TDDR 5 or MUS 173 or consent of instructor.

TDDE 142. Advance Sound Design (4)
This course focuses on advancing students in their artistic and technical skills in sound design. A large-scale project will be identified with special attention given to text analysis and technical specification of the sound design. Prerequisites: TDDE 1 and TDDE 141 or equivalent, or consent of instructor.

TDDE 190. Major Project in Design/Theatre Production (4)
For the advanced design/production student. Concentration on a particularly challenging design or theatre production assignment, including such areas as assistant designer (scenery, lighting, or costumes), technical director, master cutter, or master electrician. May be repeated one time for credit. A maximum of eight units of major project study regardless of area (design, directing, or stage management) may be used to fulfill major requirements. Prerequisite: admission by consent of instructor only. See department for application form. May be taken two times for credit.

TDTR—THEATRE DIRECTING/STAGE MANAGEMENT

TDTR 101. Stage Management (4)
Discussion and research into the duties, responsibilities, and roles of a stage manager. Work to include studies in script analysis, communication, rehearsal procedures, performance skills, and style and conceptual approach to theatre. THGE or TDTR 1, THAC or TDAC 1, and THDE or TDDE 1 recommended.

TDTR 108. Text Analysis for Actors and Directors (4)
This is an introductory class in the process of understanding the play script. The class will focus on analyzing the story and the underlying dramatic structure in terms of dramatic action. Objectives, actions, choices, given circumstances, and character will be examined. Prerequisite: upper-division standing or consent of instructor.

TDTR 111. Directing-Acting Process (4)
A studio class that investigates the fundamental skills a director needs to work with actors. Working with actors, students learn how to animate the text on stage through status exercises and scene work as they develop their skill in text work, staging, and dramatic storytelling. Prerequisite: THDR or TDTR 108 or THHS or TDHS 10.

TDTR 190. Major Project in Directing (4)
For the advanced student in directing. Intensive concentration on the full realization of a dramatic text from research and analysis through rehearsal and into performance. A maximum of eight units of major project study regardless of area (design, directing, or stage management) may be used to fulfill major requirements. See department for application. Prerequisites: THDR or TDTR 108, TDHR or TDTR 111, consent of instructor, and department stamp. May be taken two times for credit.

TDTR 191. Major Project in Stage Management (4)
For the advanced student in stage management. Intensive concentration on the full realization of a dramatic text from research and analysis through rehearsal and final performance. A maximum of eight units of major project study regardless of area (design, directing, stage management, or playwriting) may be used to fulfill major requirements. See department for application. Prerequisites: THDR or TDTR 108, TDHR or TDTR 111, TDTR 101, or consent of instructor, and department stamp. May be taken two times for credit.

TDGE—THEATRE GENERAL

TDGE 1. Introduction to Theatre (4)
An introduction to fundamental concepts in drama and performance. Students will attend performances and learn about how the theatre functions as an art and as an industry in today’s world. Prerequisite: none.

TDGE 2. Solo Performance (4)
Analysis, history, and literature of solo performance in the United States; screening of solo performances; workshops to design and mount students’ own solo theatre pieces; focus on delivery of American experiences through performance. Prerequisite: none.

TDGE 10. Theatre and Film (4)
Theatre and Film analyzes the essential differences between theatrical and cinematic approaches to drama. Through selected play/film combinations, the course looks at how the director uses actors and the visual languages of the stage and screen to guide and stimulate the audience’s responses. Prerequisite: none.

TDGE 11. Great Performances on Film (4)
Course examines major accomplishments in screen acting from the work of actors in films or in film genres. Prerequisite: none. May be taken three times for credit.

TDGE 25. Public Speaking (4)
This course is designed to establish a clear understanding of the fundamentals of effective oral communication. The methodologies explore the integration of relaxation, concentration, organization, and clear voice and diction as applied to various public speaking modes. Prerequisite: none.

TDGE 27. User-Friendly Shakespeare (4)
Do you get a puzzled or pained expression on your face when people mention Shakespeare? Try a congenial introduction to the world’s greatest playwright from the perspective of performance. Film, live performance, and illuminating facts confront the so-called difficulties in an appreciation of the Bard. Prerequisite: none.

TDGE 87. Freshman Seminar in Theatre and Dance (1)
Seminar on a topic in theatre or dance on a level appropriate for first-year students, conducted in an informal, small group setting limited to ten to twenty students. Topics will vary. Prerequisite: open to freshmen only.

TDGE 90. Undergraduate Seminar (1)
Discussion of various theatre topics.

TDGE 122. The Films of Woody Allen (4)
Students explore a variety of issues: screenwriting, directing, cinematography, and editing; the intersection of comedy and tragedy in Allen’s works; recurring themes; and critical responses. Students view thirteen films and write two three-page essays and one ten-page research paper. Prerequisite: upper-division standing.

TDGE 123. Mary Poppins Meets Bladerunner (4)
A lecture class that examines significant historical and contemporary art direction/scenic design that effectively supports film narration in a unique manner. Highlights and video clips accompany each feature film presentation. (THDE 1 recommended.) Prerequisite: upper-division standing.

TDGE 124. Cult Films: Weirdly Dramatic (4)
A select survey of eight to ten exceptional off-beat, frequently low-budget films from the last sixty years that have attained “cult” status. The mix includes Tod Browning’s “Freaks” (1932) to John Water’s “Pink Flamingos” (1973). Aspects of bad taste, cinematic irony, and theatrical invention will be highlighted. Prerequisite: upper-division standing.

TDGE 125. Topics in Theatre and Film (4)
Great films and the performance of the actors in them are analyzed in their historical, cinematic, or theatrical, contexts. This course examines the actor’s contribution to classic cinema and the social and aesthetic forces at work in film. Prerequisites: upper-division standing or consent of instructor.

TDGE 126. Storytelling and Design in Animation (4)
This course will use a broad range of animation styles and genres to examine larger issues in art practice, focusing closely on the relationship between form and content, and how sound/set/costume/character design impacts narrative. Prerequisite: upper-division standing or consent of instructor.

TDGE 130. Let There Be Light! (4)
An adventure-theory class investigating the power of light and color in art, architecture, theatre, film, and television, and exploring its impact on students’ lives. Students will perform research, submit papers, and create practical examples. No prior light/design skills required. Prerequisites: none.
TDGE 192. Senior Seminar in Theatre and Dance (1)
The Senior Seminar Program is designed to allow sen-ior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in theatre and dance (at the upper-division level). Topics will vary from quarter to quarter. Senior seminars may be taken for credit up to four times, with a change in topic, and permission of the department. Enrollment is limited to twenty students, with preference given to seniors. Prerequisites: senior standing; department stamp and/or consent of instructor.

TDGE 195. Instructional Assistance (2 or 4)
Assist with instruction in undergraduate theatre courses. Full description of duties will appear on the "Application for Instructional Assistance." Prerequisites: upper-division standing; 3.0 GPA; department stamp. May be repeated for a total of 8 units.

TDGE 196A. Honors Study in Theatre (4)
Theatre honors students undertake research for a scholarly thesis or a creative project in playwriting or in directing under the guidance of a faculty mentor. Creative projects will culminate in a written thesis that is either a full-length play or a dramaturgical discus-sion of the directing project. Prerequisites: upper-division course work in the area of thesis, department stamp, 3.5 GPA in major, approval of faculty member.

TDGE 196B. Honors Study in Theatre (4)
Theatre honors students complete the thesis, play, or dramaturgical analysis of a directing project under the close supervision of a faculty mentor. Prerequisites: upper-division course work in the area of thesis, TDGE 196A, 3.5 GPA in major, approval of faculty member.

TDGE 197. Field Studies (1-12)
Designed for advanced students, this course signifi-cantly extends their knowledge of the theatre through intensive participation in the creative work of a major professional theatre, television, or film company under the guidance of artists resident in those theatres or companies. Students will submit regular written evalua-tions, each week of their ongoing field study. Prerequisites: consent of instructor, upper-division standing, and department stamp. May be taken two times for credit.

TDGE 198. Directed Group Studies (0-2-4)
Group studies, readings, projects, and discussions in theatre history, problems of production and perform-ance, and similarly appropriate subjects. Prerequisites: upper-division standing, 2.5 GPA, consent of instructor, and department stamp. May be repeated for a total of 12 units.

TDGE 199. Special Projects (0-2-4)
Qualified students will pursue a special project in theatre history, problems of production and perform-ance, and similarly appropriate topics. Prerequisites: upper-division standing, 2.5 GPA, consent of instructor, and department stamp.

TDHD-DANCE HISTORY

TDHD 171. Dance History I (Ancient to 1900) (4)
The study of the history of dance from antiquity to the early twentieth century. An analysis and understand-ing of the social, political, and cultural forces on the development of early dance theories and practices. Prerequisite: TDTR 10. Not equivalent to THDA 151. Dance History-Ballet.

TDHD 172. Dance History II (1900 to 1960) (4)
The study of the history of dance from the early twen-tieth century to the 1960s. An analysis and under-standing of the social, political, and cultural forces on the development of dance theories and practices. Prerequisite: TDTR 10. Not equivalent to THDA 152. Dance History-Modern.

TDHD 173. Dance History III (1960 to Present) (4)

TDHD 174. Dance Aesthetics and Criticism (4)
An historical overview of the aesthetic concepts that form the foundation for the creation, performance, and critical analysis of dance. Critical and aesthetic theory in related arts will be discussed and contrasted. Prerequisite: TDTR 10 or consent of instructor.

TDHD 175. Cultural Perspectives on World Dance (4)
The study of world dance forms from a global per-spective. An analysis and understanding of ethnic dance traditions and their connections to religion, rit-u-ual, folklore, custom, festive celebration, popular cul-ture, and political movements. Prerequisite: TDTR 10 or consent of instructor.

TDHD 176. Dance History—Special Topics (4)
An in-depth exposure to an important topic in dance history, theory, aesthetics, and criticism. Topics vary from quarter to quarter. Prerequisite: TDTR 10, upper-division standing.

TDHD 196A. Senior Honors Focus Scholarly (4)
Selected seniors will complete a scholarly research project on a dance topic of their choice under faculty mentorship that will be reviewed by the faculty and archived. All courses in the history series must be com-pleted or concurrent with the senior honors focus. Individual honors contract for selected senior dance majors. Honors content noted on transcript. Requirements: 3.5 overall GPA, 3.7 major GPA, 90 units completed, and 2 quarter commitment. Prerequisite: TDHD 171, TDHD 172, TDHD 173, TDHD 174, TDHD 175, consent of instructor, and department stamp.

TDHD 196B. Senior Honors Focus Scholarly (4)
Continuation of TDHD 196A. Selected seniors will present a scholarly research project on a dance topic of their choice under faculty mentorship that will be reviewed by the faculty and archived. All courses in the history series must be completed or concurrent with the senior honors focus. Individual honors contract for selected senior dance majors. Requirements: 3.5 overall GPA, 3.7 major GPA, 90 units completed, and 2 quarter commitment. Prerequisite: TDHD 171, TDHD 172, TDHD 173, TDHD 174, TDHD 175, TDHD 196A, consent of instructor, and department stamp.

TDHD 202. Masters of Theatre (4)
Focus on the artists of seminal importance in the the-atre. Consideration will be given to theory and practice of the artist, with emphasis on theatrical realizations that can be reconstructed by integrated research. Examples of recent courses include Molière, Fugard, and Strindberg. Prerequisite: THHS or TDHT 10 and either THHS or TDHT 10 or consent of instructor. May be taken three times for credit.

TDHD 210. Performance Dynamics: Spaces, Performers, and Audiences (4)
This course introduces the basic parameters of perfor-mance dynamics by exploring varieties of perfor-mance space, acting methods, and actor-audience rela-tions, comparing examples drawn from different historical periods and world cultures. Prerequisite: none.

TDHD 211. Performance Dynamics: Spaces, Performers, and Audiences (4)
This course explores how theatre uses one, two, or many actors to project personal and social identities and relationships, comparing examples from different cultures and historical periods. Prerequisite: none.

TDHT 21. Performance Dynamics: Spaces, Performers, and Audiences (4)
The functions and meaning of theatre depend in part on the social contexts of performance. This quarter looks at performance modes associated with court spectacles, commercial venues, and popular theatre, comparing examples from different cultures and his- torical periods. Prerequisite: none.

TDHT 101. Topics in Dramatic Literature and Theatre History (4)
An in-depth exposure to an important individual writer or subject in dramatic literature and/or theatre history. Topics vary from quarter to quarter. Recent courses have included Modern French Drama, and the History of Russian Theatre. Prerequisite: THHS or TDHT 10 and either THHS or TDHT 10 or consent of instructor. May be taken three times for credit.

TDHT 101X. Topics in Dramatic Literature and Theatre History Foreign Language Discussion Section (1)
Foreign-language discussion of materials in the corre-spondingly-numbered English-language course. This section is taught by the course professor; has no final exam; and does not affect the grade in the parent course. Prerequisite: concurrent enrollment in TDHT 101.

TDHT 102. Masters of Theatre (4)
Focus on the artists of seminal importance in the the-atre. Consideration will be given to theory and practice of the artist, with emphasis on theatrical realizations that can be reconstructed by integrated research. Examples of recent courses include Molière, Fugard, and Strindberg. Prerequisite: THHS or TDHT 10 or consent of instructor. May be taken three times for credit.

TDHT 103. Asian American Theatre (4)
This course examines pivotal dramatic works in the history of professional Asian American theatre in the U.S. (1960s to the present). Issues include intercultural-ism, the crossover between minority theatres and mainstream venues, and the performance of identity. Prerequisite: THHS or TDHT 10 or consent of instructor.

TDHT 104. Italian Comedy (4)
Continuities and changes in Italian comedy from the Romans through the Renaissance and Commedia del-l’arte to modern comedy. Prerequisite: THHS or TDHT 10 or consent of instructor.

TDHT 105. French Comedy (4)
Masterpieces of French farce and comedy from the sev-enteenth century to the twentieth century studied their theatrical and cultural contexts. Readings include plays by Molière, Marivaux, Beaumarchais, and Feydeau. Prerequisite: THHS or TDHT 10 or consent of instructor.

TDHT 106. Brecht and Beyond (4)
Examination of the German playwright and director, Bertolt Brecht and of recent representative plays and performances from world theatre that reveal a cre-
Theatre and Dance

Prerequisite: THHS or TDHT 10 and TDHT 21 or consent of instructor.

TDHT 106XL. Brecht and Beyond Foreign Language Discussion Section (1)
Foreign language discussion of materials in the correspondingly-numbered English-language course. This section is taught by the course professor; has no final exam; and does not affect the grade in the parent course. Prerequisite: concurrent enrollment in TDHT 106.

TDHT 107. American Theatre (4)
In this course we will examine representative plays and playwrights who write about the “American” experience from a variety of historical periods and diverse cultural communities. Playwrights will include O’Neill, Glaspell, Miller, Williams, Hellman, Wasserstein, Wang, and Parks. Prerequisite: THHS or TDHT 10 or consent of instructor.

TDHT 108. Luis Valdez (4)
In this course examines the works of Luis Valdez, playwright, director, screenwriter, film director, and founder of the Teatro Campesino. Readings include plays and essays by Valdez and critical books and articles about this important American theatre artists. Prerequisite: THHS or TDHT 10 or consent of instructor.

TDHT 110. Chicano Dramatic Literature (4)
Focusing on the contemporary evolution of Chicano dramatic literature. This course will analyze playwrights and theatre groups that express the Chicano experience in the United States, examining relevant “actors,” plays, and documentaries for their contributions to the developing Chicano theatre movement. (Cross-listed with Ethnic Studies 132.) Prerequisite: THHS or TDHT 11 or 12 or 13 or consent of instructor.

TDHT 111. Hispanic-American Dramatic Literature (4)
Course examines the plays of leading Cuban-American, Puerto-Rican, and Chicano playwrights in an effort to understand the experience of these Hispanic-American groups in the United States. (Cross-listed with Ethnic Studies 133.) Prerequisite: THHS or TDHT 11 or 12 or 13 or consent of instructor.

TDHT 112. Gay and Lesbian Themes in U.S. Latino Theatre (4)
This course examines plays by Latina and Latino playwrights that include characters who are gay, lesbian, bisexual, or transgendered. Readings include the plays as well as articles and essays about the plays, playwrights, and queer theory. Prerequisites: THHS or TDHT 10 and 13.

TDHT 113. Avant-Garde Theatre (4)
Innovations in theatre production and performance since the late nineteenth century, including the theatre of Artists and movements studied include Jarry, Appia, Constructivism, Expressionism, Dada cabaret, performance art, and dance theatre. Complements TDHT 123’s focus on dramatic innovation. Prerequisite: THHS or TDHT 10 or consent of instructor.

TDHT 114. American Musical Theatre (4)
The class will explore this vital and unique theatre form by examining its origins, evolution components, and innovators. Special emphasis is placed on the process of adaptation and the roles of the director and choreographer. Prerequisites: THHS or TDHT 10 or consent of instructor.

TDHT 115. History and Theory of Directing (4)
Evolution of directing theory from 1850 to the present with reference to the work of internationally influential directors such as Saxe-Meiningen, Antoine, Stanislavski, Meyerhold, Brecht, and Brook, among others. Prerequisite: THHS or TDHT 10, TDHT 21 and THAC 101 or TDAC 101 or consent of instructor.

TDHT 116. Old Myths in New Films (4)
The course will address the work of different writers each quarter, showing how their films derive from classic myths, legends, and traditions of specific ethnic group. Authors discussed may include Kurosawa (Japanese), Herzog (German), Neil Jordan (Irish), and other moderns. Prerequisite: upper-division standing or consent of instructor. May be taken three times for credit.

TDHT 117. Senior Seminar: Dramaturgy (4)
Introduces the discipline of dramaturgy and prepares students to serve as dramaturges on theatrical projects. Material will include a survey of the origins, theories, and practical applications of dramaturgy in the U.S. and other countries. Prerequisites: THHS 11, 12, and 13; or TDHT 11, 12, and 13.

TDHT 118. Dramaturgy in Practice (4)
Provides opportunities for students to undertake dramaturgy assignments for productions or as projects. Class meetings will create a mentoring atmosphere focused on the personal, day-to-day process of dramaturging a project. Prerequisites: major, THHS or TDHT 11, 12, 13, and TDHT 118; at least two UD History courses; consent of instructor.

TDMV–DANCE MOVEMENT

TDMV 1. Beginning Ballet (2)
An introduction to classical ballet principles, technique, and terminology. Develops the body for strength, flexibility, and artistic interpretation. Emphasis on developing a foundation in classical movement for continuation of ballet training. Historical origin of ballet will be discussed. Prerequisite: none. May be taken six times for credit.

TDMV 2. Beginning Contemporary Dance (2)
Introduction to contemporary dance as an expressive medium, building technical skills at the beginning level. Pattern variations analyzed in time, space, medium, building technical skills at the beginning level. Includes the principles, elements, and historical context of contemporary postmodern dance. Prerequisite: six units of THDA 2 or TDMV 2 or consent of instructor. May be taken six times for credit.

TDMV 3. Beginning Jazz (2)
An introduction to the technique of jazz dance, while placing the art form in its historical context as an American vernacular form. Builds an intermediate technical jazz level with a focus on style, musculature, dynamics, and performance. Prerequisite: six units of THDA 3 or TDMV 3 or consent of instructor. May be taken six times for credit.

TDMV 4. Beginning Hip Hop (2)
An introduction to the basic technique of hip hop, studied to enhance an understanding of the historical cultural content of the American form hip-hop and street dances in current choreography. Prerequisite: THDA 3 or TDTR 10 or consent of instructor. May be taken twice for credit.

TDMV 110. Intermediate Ballet (4)
Continued studio work in ballet technique at the intermediate level and terminology. Emphasis on increasing strength, flexibility, and balance, and the interpretation of classical musical phrasing. Includes proper alignment and artistic philosophy of classical ballet. Prerequisite: six units of THDA or TDMV 1 or consent of instructor. May be taken six times for credit.

TDMV 111. Advanced Ballet (4)
Further emphasis on advanced ballet technique, performance, terminology, and an introduction to point work. Introduces historical ballet choreographic varia-
tions. Individual and group composition will be examined and aesthetic criticism applied. Prerequisite: twelve units of THDA 101A-B-C or TDMV 110 or consent of instructor. May be taken six times for credit.

TDMV 112. Advanced Ballet for Contemporary Dance (4)
Designed for students with advanced training in contemporary modern dance and to advanced training in ballet. Emphasis is on increasing composition and performance skills in ballet through contemporary modern dance aesthetics. Prerequisite: twelve units of THDA 101A-B-C or TDMV 111 or consent of instructor. May be taken six times for credit.

TDMV 120. Intermediate-Contemporary Dance (4)
The development of contemporary dance as an expressive medium, with emphasis on technical skills at the intermediate level. Includes the principles, elements, and historical context of contemporary modern postmodern dance. Prerequisite: six units of THDA 2 or TDMV 2 or consent of instructor. May be taken six times for credit.

TDMV 130. Intermediate Jazz (2)
Designed to provide training in the technique of jazz dance, while placing the art form in its historical context as an American vernacular form. Builds an intermediate technical jazz level with a focus on style, musculature, dynamics, and performance. Prerequisite: six units of THDA 3 or TDMV 3 or consent of instructor. May be taken six times for credit.

TDMV 133. Advanced Jazz (4)
Further development in the technique of jazz dance, while placing the art form in its historical context as an American vernacular form. Builds an advanced technical jazz level with a focus on style, musculature, dynamics, and performance. Prerequisite: six units of THDA 120A-B-C or THDA 121A-B-C or TDMV 130 or consent of instructor. May be taken six times for credit.

TDMV 138. Hip Hop (2)
An introduction to the basic technique of hip hop, studied to enhance an understanding of the historical cultural content of the American form hip-hop and street dances in current choreography. Prerequisite: THDA 3 or TDTR 10 or consent of instructor. May be taken twice for credit.

TDMV 139. Pilates (2)
A conditioning program based on the teachings of Joseph Pilates, designed to correct muscular imbalances, and body alignment by incorporating strength, flexibility, and relaxation techniques. Prerequisite: THDA 1 or THDA 2 or THDA 3 or TDMV 1 or TDMV 2 or TDMV 3 or consent of instructor. May be taken three times for credit.

TDMV 140. Beginning Dances of the World (2)
Courses designed for the in-depth study of the dances and historical context of a particular culture or ethnic form: Afro-Cuban, Spanish, Balinese, Japanese, Latin, etc. Specific topic will vary from quarter to quarter. Prerequisite: upper-division standing.
TDMV 141. Advanced Dances of the World (4)
Courses designed for the advanced continuing study of the dances and historical context of a particular culture or ethnic form: Afro-Cuban, Spanish, Balinese, Japanese, Latin, etc. Specific topic will vary from quarter to quarter. Prerequisite: THDA 132 or TDMV 136 or TDMV 142 or TDMV 143 or TDMV 144, or consent of instructor.

TDMV 142. Latin Dance of the World (4)
To develop an appreciation and understanding of the various Latin dances. Emphasis on learning basic social dance movement vocabulary, history of Latin cultures, and use of each dance as a means of social and economic expression.

TDMV 143. West African Dance (4)
An introductory course that explores the history of West African cultures and diasporas through student research, oral presentation, dance movement, and performance. Contemporary African dances influenced by drum masters and performing artists from around the world are also covered. Prerequisite: upper-division standing.

TDPF–DANCE PERFORMANCE

TDPF 160. Studies in Performance—Fall Production (2-4)
The in-depth study of a major dance production in a fall dance cabaret led by faculty. Admission by audition only. Prerequisites: audition; department stamp; concurrent enrollment in TDMV 110, 111, 112, 120, 122, 130, or 133.

TDPF 161. Studies in Performance—Winter Production (2-4)
The in-depth study for a fully staged dance production in various venues, including a fall dance cabaret led by faculty, a winter faculty concert with guest choreographers, and a spring student choreographed concert directed by faculty. Admission by audition only. Prerequisite: audition, department stamp, concurrent enrollment in TDMV 163, TDMV 110 or TDMV 111 or TDMV 112 or TDMV 120 or TDMV 122 or TDMV 130 or TDMV 133. May be taken four times for credit.

TDPF 162. Studies in Performance Winter Production (2-4)
The in-depth study for a fully staged dance production in various venues, including a fall dance cabaret led by faculty, a winter faculty concert with guest choreographers, and a spring student choreographed concert directed by faculty. Admission by audition only. Prerequisite: audition, department stamp, concurrent enrollment in TDMV 163, TDMV 110 or TDMV 111 or TDMV 112 or TDMV 120 or TDMV 122 or TDMV 130 or TDMV 133. May be taken four times for credit.

TDPF 163. Dance Repertory (1-4)
The study and aesthetic examination of major choreographic works by dance faculty or distinguished guest artists. Students will experience the creative process, staging, production and performance of a complete dance work in conjunction with a conceptual study of its form and content. Audition is required. Prerequisite: concurrent enrollment in TDPF 160 or TDPF 161 or TDPF 162. May be taken four times for credit.

TDPF 164. Performance Laboratory (2-4)
A faculty directed dance theatre project culminating in a public performance. Both purely choreographic approaches to creating dance and collaborations with visual design, musical composition, texts, film, and video will be explored, as well as participation in production elements. Prerequisite: audition and department stamp.

TDPW–THEATRE/DANCE PRACTICUM

TDPW 101. Introduction to Playwriting (4)
Begining workshop in the fundamentals of playwriting. Students discuss material from a workbook which elucidates the basic principles of playwriting, do exercises designed to help them put those principles into creative practice, and are guided through the various stages of the playwriting process which culminates with in-class readings of the short plays they have completed. Prerequisite: none.

TDPW 102. Playwriting Workshop I (4)
Advanced workshop where students study the full-length play structure and begin work on a long play. Students present their work at various stages of development for group discussion and analysis. Prerequisite: TDPW or TDPW 101 or consent of the instructor. May be taken twice for credit.

TDPW 104. Screenwriting (4)
Basic principles of screenwriting using scenario composition, plot points, character study, story conflict, with emphasis on visual action and strong dramatic movement. Prerequisite: TDPW or TDPW 1. May be taken twice for credit.

TDPW 105. Writing for Television: Situation Comedy (4)
Basic principles of writing comedy for television. Course incorporates study of sample episodes. Analysis focuses on structure and character development. Students create concept and structure, and write a situation comedy. Prerequisite: TDPW or TDPW 1. May be taken twice for credit.

TDPW 106. Writing for Television: Hour-Long Drama (4)
Basic principles of writing in the hour-long format for television. Course incorporates study of sample programs. Analysis of structure and character development. Students create concepts, structure, pitch, and write treatments and partial script. Prerequisite: TDPW or TDPW 1. May be taken twice for credit.

TDPW 110 Topics (4)
Topics in playwriting, such as documentary theatre, adaptation and modernization, writing for media, for students who possess basic knowledge of playwriting. Admission by interview with instructor. Prerequisites: TDPW or TDPW 1 and department stamp.

TDPW 190. Major Project in Playwriting/Screenwriting (4)
For the advanced student in playwriting/screenwriting. This intensive concentration in the study of playwriting and/or screenwriting will culminate in the creation of a substantial length play. A maximum of eight units of major project study, regardless of area (Design, Directing, Stage Management, Playwriting)
may be used to fulfill major requirements. Applicants must have completed the playwriting sequence, THPW or TDPW 1, 101, and/or consent of instructor. See department for application form. Prerequisite: THPW or TDPW 1 and THPW or TDPW 101.

TDTR–DANCE THEORY

TDTR 10. Introduction to Dance (4)
An overview of dance, examining its social and cultural history and its evolution as an art form. Focus is on dance and its many genres as an expressive medium and form of communication. Prerequisite: none.

TDTR 101. Dance Movement Analysis (4)
An overview and analysis of movement theory systems that offer approaches to improve movement quality, prevent injuries, aid in rehabilitation, develop mental focus and kinesthetic control, establish a positive body language, and develop vocabulary for creative research. Prerequisite: TDTR 10.

TDTR 102. Movement Research (4)
Students will study images of anatomical alignment and use their bodies to translate those images into physical action. They will expand their movement potential, deepen their awareness of body language and alignment and develop their dance coordination and technique. Prerequisite: TDTR 10, TDTR 101, or THDA 101B-C or THDA 110A-B-C, or consent of instructor.

TDTR 103. Dance and Technology (4)
This course introduces the theoretical and practical understanding of both available and developing computer-assisted media for the design and production of choreography. Prerequisite: TDTR 10, TDCH 40.

TDTR 104. Dance Theory and Pedagogy (4)
The study of the theoretical aspects of dance education, including an analysis of movement concepts for all ages. Development of basic technique training in all forms, curriculum planning, social awareness, and problem solving. Fundamental elements of cognitive and kinetic learning skills. Prerequisite: TDTR 10, TDVM 110 or TDVM 120 or TDVM 130 or TDVM 137.

TDTR 193. Dance Externship (1-12)
Assist in teaching and mentoring children in K-12 level schools as well as other venues throughout San Diego. Build skills in communication, teaching, problem solving, and positive motivational techniques. Prerequisites: TDTR 104, technical level II; department stamp.

TDTR 195. Instructional Assistance (2-4)
Assist with instruction in undergraduate dance courses. Full description of duties will appear on the "application for Instructional Assistance." Prerequisite: upper-division standing, 3.0 GPA, etc. (per CEP guidelines).

TDTR 197. Field Studies in Dance (1-12)
Designed for advanced students, this course significantly extends their knowledge of the theatre and dance through intensive participation in the creative work of a major professional theatre or dance company, under the guidance of artists resident in those theatres or companies. Students will submit regular written evaluations each week of their ongoing field study. Prerequisites: upper-division standing and consent of instructor required. 3.0 overall GPA, 90 units completed.

TDGR–GRADUATE

TDGR 200. Dynamics (1)
A daily program of physical, vocal, and speech exercises designed to prepare the student to move in a focused way into specific class areas with minimum amount of warm-up time. The exercises work on development of flexibility, strength, and coordination throughout the body. Strong emphasis is placed on physical and mental centering within a structured and disciplined approach to preparation. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 201. Stage Combat (2)
A study of the dramatic elements of stage violence, and practical work in developing the physical skills necessary to fully realize violent moments on the stage. At the core of the study is the process from text to trusting theatrical action. Physical work revolves around basic principles of energy, focus, and center inherent in unarmed and weapons combat. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 202. Joint Stock (3)
The process of collaborative creation from idea to performance. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 203. Seminar and Supervision for ArtsBridge Scholars (1)
A workshop to address the specific pedagogical requirements and techniques to be employed by students of ArtsBridge (outreach) Scholars and Mentors of ArtsBridge Scholars. Instructor will mentor the students on-site as well as in seminars. Prerequisites: graduate standing and consent of instructor.

TDGR 204A. Text Analysis (4)
Topics to be covered will include: (1) concept of poetic language; lexical and syntactic analysis of dialogue; (2) the semantic context of dialogue; (3) thematic structure, from motive to themes; (4) the concept of dramatic character or hero; (5) dramatic narrative; (6) the material of drama; the relationship of myth and ritual to drama; (7) analysis versus interpretation; (8) practical applications. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 204B. Contemporary Theories of Theatre (4)
An investigation of contemporary theories of theatre with an emphasis on structural and poststructural perspectives on text and textuality. The seminar will focus on adapting contemporary techniques of close reading to the interpretive and creative process in the theatre. Prerequisites: TDGR 204A; admittance to M.F.A. program or consent of instructor.

TDGR 204C. Collective Creation (4)
The culmination of the TDGR 204 sequence, in which students in all disciplines create and perform publicly presented original theatre pieces. Prerequisites: TDGR 204B; admittance to M.F.A. program or consent of instructor.

TDGR 205. Improvisation for the Theatre (3)
A course designed to introduce improvisational techniques to professional acting students. A variety of approaches to the art of improvisation will be presented and practiced, both serious and comic. Small and large group improvisations will be offered for participation. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 206. Faculty Directed Production (4)
Faculty directed production, from the rehearsal process through public performance. All participants will enroll in the same section, the number of units depending upon degree of involvement. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 207. Production (4)
The collaborative process from the rehearsal process through public performance. All participants will enroll in the same section, the same number of units. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 209. Commedia and Comic Techniques (3)
A course designed to provide actors with tools, both physical and verbal, to play comedy. Included will be commedia del arte techniques, clown work, masks, circus techniques, mime, and scene work from comic scripts. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 210A. Process I (4)
The actors focus on the nature of the acting process, using various exercises to stimulate imagination and inspire instinctual choices. Later work includes improvisational and imaginative experiences to explore character and text. The class culminates in intensive scene work chosen for the particular actor to mold the improvisational approach with scripted material. The class is a combination of both actors and directors so that a common language is developed. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 210B. Process II (4)
Intensive studio examination of realistic texts using improvisational and imaginative techniques to realistically based texts commonly from American theatre. Prerequisites: THGR or TDGR 210A and admission to the M.F.A. Theatre program.

TDGR 210C. Process I (4)
The intensive study of the dramatic and fictional work of Anton Chekhov and an actor’s approach to that work. This course includes many of the techniques begun in earlier classes and applies them to this material. Also included is a study of Chekhov’s short stories and plays, and involves adapting and staging these works. Prerequisites: THGR or TDGR 210B and admission to the M.F.A. Theatre program.

TDGR 211A-B-C. Speech for the Actor I (2-2-2)
Introduction of the principles of phonetics and articulation. Constant study and drill to prepare the actor for standard speech and flexibility. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 212. Acting Practicum (2)
One-on-one laboratory workshop which examines practical applications of accents, speech and voice work, dialect, movement and combat work specific and ancillary to the productions in which the students have been cast. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 213A-B-C. Movement for Theatre I (2-2-2)
An intensive studio course in the art of movement as a basis for theatre performance. Theory and practice of energy flow, weight, spatial focus, time consumption, and the shape factor. (S/U grades only) Prerequisites: THGR or TDGR 213A for B, THGR or TDGR 213B for C; admission to the M.F.A. Theatre program.

TDGR 214A-B-C. Voice for Theatre I (2-2-2)
Voice exercises designed to “free the voice” with emphasis on diaphragmatic breathing, articulation exercises, and singing exercises. Course designed to broaden pitch, range, projection, and to expand the full range of potential characterizations. (S/U grades only) Prerequisites: THGR or TDGR 214A for B; THGR or TDGR 214B for C; admission to the M.F.A. Theatre program.
Prerequisite: admission to the M.F.A. Theatre program.

TDRG 220A-B. Process II: Classical Text (4,4,4)
An intensive studio examination of problems and potentials associated with the theatrical realization of the classical text. Prerequisite: admission to the M.F.A. Theatre program.

TDRG 221A-B. Speech for the Actor II (3-3)
Advanced work in phonetics and articulation. Intensive study of stage dialects to prepare actor for variety of roles. Prerequisites: graduate standing, THGR or TDRG 221A prerequisite for THGR or TDRG 221B; admission to the M.F.A. Theatre program.

TDRG 222A-B-C. Theatre Production II (1-4)
Ranging from staged reading of new plays, documents, to synthetically created dramatic text to totally integrated production of full-length plays (facilitating student-directed), and incorporating the creative contribution of actors, directors, playwrights, and critics, this intensive involvement of multiple forms of theatre will serve as the necessary creative laboratory for the M.F.A. program. Prerequisite: admittance to the M.F.A. program or consent of instructor.

TDRG 223A-B. Movement for Theatre II (3-3)
An advanced course in the art of movement for the theatre, building on the knowledge gained in Theatre 213. (S/U grades only.) Prerequisite: THGR or TDRG 223A for B, admission to the M.F.A. Theatre program.

TDRG 224A-B. Voice for Theatre II (3-3)
Advanced voice training designed to help the actor fuse voice, emotion, and body into a fully realized reflection of the text. (S/U grades only.) Prerequisite: THGR or TDRG 224A for B; admission to the M.F.A. Theatre program.

TDRG 225A-B. Singing for the Actor II (1-1)
Continuing vocal technique for the musical theatre. More complicated musical material investigated and prepared. Prerequisite: admission to the M.F.A. Theatre program.

TDRG 227. Directing Assistantship (6-12)
Assisting faculty with productions off-campus. Perform research necessary for project. Assist with casting. Participate in design meetings. Observe and participate in rehearsals. Direct, if delegated to do so. Prerequisite: admission to the M.F.A. Theatre program.

TDRG 228. Designing Assistantship (6-12)
Assisting faculty with productions off-campus. To draft some or all of the project design. To perform research, either visual, historical or technical. To create and maintain all production plans and paperwork records from pre-production through opening night. To organize the staff for focus and work calls. Prerequisite: admission to the M.F.A. Theatre program.

TDRG 229. Theatre Externship (9-12)
Selected professional opportunities in repertory and commercial theatre designed to engage the student in particular creative responsibilities under the guidance of master artist-teachers. Prerequisite: admission to the M.F.A. Theatre program.

TDRG 230. Acting Process III: Actors’ Studio (4)
An advanced studio for graduate actors and directors, this work will explore a single text from the modern theatre under the direction of a master teacher-artist. Concentration will be on multiple possible modes of encountering a text, varieties of interpretation and performance realization, and the development of a theatre ensemble. Prerequisite: admission to the M.F.A. Theatre program.

TDRG 231. New Play Festival (8-12)
The workshop and production of plays written by M.F.A. playwrights.

TDRG 231A. Professional Preparation for the Actor (4)
A twice-weekly seminar focusing on the actor’s confrontation with the industry, including in-depth preparation for auditions; cold readings; and meetings/interviews with producers, casting directors, agents, and managers. Actors will also begin to create material that could be crafted into solo performances. Prerequisite: admittance to M.F.A. program or consent of instructor.

TDRG 233. Acting for the Camera (1)
This course is designed to aid the actor in the transition from stage to film. Emphasis on the adaptation of film to stage, and the development of both stage and screen acting techniques. Prerequisite: admittance to M.F.A. program or consent of instructor.

TDRG 239. Skills (4)
A unified approach to acting skills (voice, movement, and speech) designed to result in providing the graduating actor with a daily regimen appropriate for professional work. Prerequisite: admission to the M.F.A. Theatre program.

TDRG 240. Directing Seminar (1-6)
A seminar focusing on the current directing projects of all graduate directing students. Depending upon individual student needs, the work may include project selection, historical or sociological research, and discussion of emerging directorial concepts, the rehearsal process, and post-production evaluation. Prerequisite: admission to the M.F.A. Theatre program.

TDRG 241. Directing—Site Specific (2-4)
A course designed to create theatre performance in non-theatrical settings. This will be done by using theatrical text in non-conventional settings or text specifically created for individual sites. Prerequisite: admission to the M.F.A. Theatre program.

TDRG 242. Director Designer Collaboration Seminar (4)
A seminar focusing on the creative application of design solutions to problems presented by specific texts. Students will function in directorial and design production concepts. Prerequisite: admittance to M.F.A. program or consent of instructor.

TDRG 245. Directing Practicum (4)
Students enrolled in this course will work on productions in the function of a director. This will include staging, creative interpretation, blocking, etc. Prerequisite: admission to the M.F.A. Theatre program.

TDRG 249A. Music Theatre Workshop (4)
A workshop in which students from music and theatre departments study examples of various forms of music theatre and collaboratively develop creative projects that are presented at the end of the two-quarter sequence. Prerequisite: admittance to M.F.A. program or consent of instructor.

TDRG 249B. Music Theatre Workshop (4)
Continuation of workshop in which students from music and theatre departments study examples of various forms of music theatre and collaboratively develop creative projects that are presented at the end of the two-quarter sequence. Prerequisite: admittance to M.F.A. program or consent of instructor.

TDRG 250. Playwriting Seminar (4)
A seminar focusing on the current playwriting project of all graduate playwriting students. For work for each quarter is individually determined according to student needs, but may include exploration of an inventive idea, development of a scenario or other structural work, and writing dialogue. Students present work to be discussed in class. May include group or individual playwriting exercises. Prerequisite: admission to the M.F.A. Theatre program.

TDRG 251. Playwriting Practicum (2)
Creative writing project developing original scripts from outline to the final play. Plays may vary depending on the quarter, but will include writing of a realistic one-act, a nonrealistic one-act, a one-act documentary or dramatization of fiction, a full-length play. Prerequisite: admission to the M.F.A. Theatre program.

TDRG 252. Dramaturgy Seminar (4)
The seminar will deal with all dramaturgical issues pertaining to departmental productions: production research, textual and analysis, translation, adaptation, rehearsal process, and critique. Concurrently with the dramaturgical issues of the given year, the seminar will discuss possible choices of plays for future production seasons. Prerequisite: admission to the M.F.A. Theatre program.

TDRG 253. Dramaturgy Practicum (1-6)
Students enrolled in this course will work on productions in the function of a dramaturg. This will entail preparation of texts, research, participation at rehearsals, etc. Prerequisite: admission to the M.F.A. Theatre program.

TDRG 254. Television Writing (4)
A one-quarter course covering the hourlong format (five weeks) and situation comedies (five weeks). Includes study and discussion of television script format and structure. Students will create the concept and structure for spec scripts in each genre. Prerequisite: admittance to M.F.A. program or consent of instructor.

TDRG 256. Contemporary Plays (1-4)
A guided reading course focusing exclusively on very recent plays in an attempt to become aware of what is being written now. Course may be repeated for credit. Prerequisite: admission to the M.F.A. Theatre program.

TDRG 257. Screenwriting (4)
Students will develop the concept for an original piece for television or film and write the screenplay. Student work will be discussed in seminar at each phase of the development. Prerequisites: admission to the M.F.A. Theatre program and TDRG or TDRG 250.

TDRG 258. Dramatization and Adaptation (4)
Seminar will deal with dramatization and adaptation of literary texts for the purpose of theatrical production. The class will study some significant examples of such practice from the past, and, subsequently, students will develop their own projects of dramatization, adaptation, or modernization of texts. Prerequisite: admission to the M.F.A. Theatre program.
TDGR 260. New-Play Festival (4)
The collaborative process of new-play development through readings, rehearsals, and public performance. M.F.A. actors, designers, directors, playwrights, and stage managers enroll in one section and collaborate in creating the annual festival of full-length and one-act plays. Prerequisite: admittance to M.F.A. program or consent of instructor.

TDGR 261. Theatre and Drama in Ancient Greece (4)
This class will deal mainly with the fifth-century theatre, drama, and related subjects of mythology and philosophy of art. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 262. Crossing Boundaries: Design Improvisations (4)
Conceiving interactive designs. A project/performance-based course, concentrating on the conception of designs adaptable to improvisatory contexts, in which technological strategies such as real-time processing and control of sound and light are encouraged and discussed. Prerequisite: admittance to M.F.A. program or consent of instructor.

TDGR 267. Automated Lighting (4-6)
Introduces the design student to the technology, control, and creative use of automated lighting in the entertainment lighting field. The class involves substantial independent research. Students create both theoretical and realized design projects. Prerequisite: admittance to M.F.A. program or consent of instructor.

TDGR 268. Storyboarding (4)
Course will cover multiple applications of storyboarding as a tool of communication and expression; comic books, theatre, opera, film, TV, and commercial applications will be explored. Individual and team assignments will be given to develop the basic vocabulary and techniques. Prerequisite: admittance to M.F.A. program or consent of instructor.

TDGR 269A. Photoshop I (4)
Course will introduce the basic functions and applications of Photoshop as they may be applied to theatrical design. Emphasis on using Photoshop as an artistic tool. Prerequisite: admittance to M.F.A. program or consent of instructor.

TDGR 269B. Photoshop II (4)
Advanced Photoshop techniques will be explored and applied to the creation of multimedia projects. Prerequisite: admittance to M.F.A. program or consent of instructor.

TDGR 270A. Design Studio I (4)
This course will focus on beginning-level problems in theatre design, including text analysis, research, conceptualization, and visual expression. Students will work on individual projects in lighting, costume, and scenic design. The course will include group critiques of completed designs and works in progress. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 270B. Design Studio I: Costume Design (4)
This course will focus on beginning-level problems in theatre design, including text analysis, research, conceptualization, and visual expression. Students will work on individual projects in lighting, costume, and scenic design. The course will include group critiques of completed designs and works in progress. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 270C. Design Studio I: Lighting Design (4)
This course will focus on beginning-level problems in theatre design, including text analysis, research, conceptualization, and visual expression. Students will work on individual projects in lighting, costume, and scenic design. The course will include group critiques of completed designs and works in progress. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 270D. Design Studio I: Sound Design (4)
This course will focus on beginning-level problems in theatre design, including text analysis, research, conceptualization, and visual/aural expression. Students will work on individual projects in sound, lighting, costume, and scenic design. The course will include group critiques of completed design and works in progress. Prerequisites: THGR 270A or TDGR 270A, THGR 270B or TDGR 270B, graduate standing, and consent of instructor.

TDGR 271. Design Seminar (2)
A seminar focusing on all aspects of the design profession, including current projects of graduate design students. The work may also include portfolio presentations, research presentations, and guest lecturers. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 272. Master Class in Design (1-4)
Special topics in design taught in an intensive workshop format by professionals in the respective fields of study. Topics could include, but are not limited to, sound design techniques, new development in set design, AutoCAD. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 273. Fashioning the Body (4)
A survey/history of artistic and cultural stylistic change as embodied in clothing from early Western civilization to the contemporary period. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 274. Advanced Scenic Design (4)
This course explores advanced problems in scenic design through development and critique of creative class projects and production works-in-progress. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 275. Advanced Lighting Design (4)
Creative projects and topics in Lighting Design to develop the student's techniques and professional practices. Work to include studies in design research, concepts, psychophysical considerations, collaboration, professional procedures and systems, paperwork, and organization. Various scales of production projects will be addressed by the student for presentation and critique, and may be theoretical or productions in the departmental calendar. Prerequisite: second- or third-year design students only; admission to the M.F.A. Theatre program.

TDGR 276. Advanced Costume Design (4)
Projects in costume design, emphasizing script analysis, research, conceptualization, and visual expression. Studio work includes costume rendering in various media for specific plays. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 277. Special Topics in Playwriting and Writing for Other Media (4)
Topics will focus on various aspects of writing for the stage, television, and film. Topics will vary from quarter to quarter. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 278. Special Topics in Theatre Design (1-6)
A course designed to expose the theatre design student to a variety of specialized topics, including millinery, pattern drafting and draping, scenic painting, model making, figure drawing, drafting, fitting, rendering. Topics will vary from quarter to quarter. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 279. Design Practicum (4)
This course covers the artistic, aesthetic and practical aspects of the designers work as they develop and execute the design toward a fully realized production. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 280A. Stage Management 1 (4)
Discussion and research into the duties, responsibilities, and roles of a stage manager. Work to include studies in script analysis, communication, conflict resolution, rehearsal procedures, performance skills, style, and conceptual approach to stage management. Prerequisite: admittance to M.F.A. program or consent of instructor.

TDGR 280B. Stage Management 2 (4)
The second of the three-part introductory stage management series, this course further explores the stage manager's process, focusing on the technical rehearsal period through the opening of a production. Prerequisites: TDGR 280A; admittance to M.F.A. program or consent of instructor.

TDGR 280C. Stage Management 3 (4)
The final course in the three-part introductory stage management series focuses on the stage manager's role once a production has opened. The course will also address topics such as new plays, touring, dance, multimedia productions, and music. Prerequisites: TDGR 280A and TDGR 280B; admittance to M.F.A. program or consent of instructor.

TDGR 286. Special Topics in Stage Management (1-6)
A course for M.F.A. students in stage management. Topics will focus on various aspects of theatre administration, and advanced stage management including: Non-profit Theatre, Commercial Theatre, Advanced Problems, Venues, Musicals/Dance, Production Management, Theatre Development, Business Problems, and Theatre Marketing. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 288. Stage Management Seminar (4)
A weekly seminar in which all graduate stage managers participate. Includes discussions of problems encountered on current productions, paperwork, methodology, and production approaches. Prerequisite: admission to the M.F.A. Theatre program.

TDGR 289. Introduction to Doctoral Studies (4)
Seminar acquaints doctoral students of all levels with research methods, theoretical models, publishing protocol, professional preparation, and pedagogical approaches particular to theatre and performance studies. Course assignments are tailored to students' scholarly interests and progress toward degree. Prerequisite: admittance to Ph.D. program or consent of instructor.
Third World Studies

OFFICE: 251 Literature Building, Warren College (858) 822-0377

Professors
Carlos Blanco-Aguinaga, Ph.D., Spanish and Latin American Literature, Emeritus
Jaime Concha, Ph.D., Spanish and Latin American Literature
Michael P. Montéon, Ph.D., Latin American History
Rosaura Sanchez, Ph.D., Spanish and Latin American Literature, Linguistics
Yingin Zhang, Ph.D., Chinese and Comparative Literature
Oumelbanine Zhiri, Ph.D., Literature

Associate Professors
Robert Cancel, Ph.D., African and Caribbean Literature, Coordinator of Third World Studies
Ann L. Craig, Ph.D., Political Science
Rosemary George, Ph.D., Literature
Milos Kokotovic, Ph.D., Literature
Max Parra, Ph.D., Mexican Literature
Winnie Woodhull, Ph.D., Literature

Assistant Professor
John D. Blanco, Ph.D., Literatures of the Americas

The Third World Studies Program has three main objectives:

1. To provide an understanding of the Third World and its relationships to the West. In order to understand these relationships, it is necessary to study the historical context out of which the present relationships developed. For example, besides trying to understand what kind of society existed in Meso-America and its relationships to the West. In order to understand these relationships, it is necessary to study the historical context out of which the present relationships developed. For example, besides trying to understand what kind of society existed in Meso-America when the Spaniards arrived in 1520, the student must also have an understanding of the historical development in Europe which resulted in Spain's decision to seek wider trade abroad. There is insistence on both the similarities and differences which Third World societies have among themselves and the similarities and differences with Western societies.

2. To provide an interdisciplinary approach to the study of the Third World. The program is not conceived as being exclusively historically oriented nor as being predominantly a social science program, but rather one that integrates both the social sciences and the humanities.

3. To provide an understanding of the shifting economic and political nature of the countries designated as belonging to the “Third World,” especially in light of the dramatic political and economic changes worldwide in the late 1980s and 1990s. To this end, our Third World studies courses will, where appropriate, address and contextualize the history of the term “Third World” and its current applications in scholarship and the broader international media.

The Major Program

Students interested in Third World studies may focus on a theme, problem, or geo-historical area. A Third World studies program of study must be interdisciplinary. Students must choose course offerings from at least three disciplines (anthropology, economics, history, literature, political science, sociology, etc.).

A Third World studies major requires a minimum of twelve upper-division courses plus three lower-division courses from the Third World studies sequence (TWS 21, 22, 23, 24, 25, or 26). Students at Eleanor Roosevelt College may substitute up to two courses, Making of the Modern World 4 and 5, for two of the three-course lower-division sequence, but must take at least one course in the TWS 21–26 sequence. Selection of a specific concentration, discipline, or department should be determined in consultation with a Third World studies faculty member or program advisor.

Students majoring and minoring in Third World studies are encouraged to experience their areas first-hand by studying abroad in any number of ways. Most convenient, depending on the area, is the University of California’s Education Abroad Program, whereby students can gain UC credit for study at foreign universities. This is especially convenient for students who cannot find sufficient courses at UCSD pertaining to such regions as the Caribbean and the Indian subcontinent. Moreover, Latin America, Asia, and Africa coursework is available in these regions through the Education Abroad Program and various programs available through other U.S. universities.
Double Major

Students interested in Third World studies as a double major must have at least ten upper-division courses that are unique to each departmental major. The courses required for Third World studies may cover one or more disciplines. Courses may focus on a theme or problem or on a geo-historical area. The remaining two courses may overlap with the other major requirements. Approval from both departments is required for overlaps. Students should consult a Third World studies faculty member or program advisor for approval of a major program.

Minor

A student may minor in Third World studies by selecting two courses from the lower-division Third World studies sequence (TWS 21, 22, 23, 24, 25, or 26) and five upper-division courses in disciplines dealing with the Third World.

Third World studies faculty members offer courses in the Departments of Anthropology, Communication, Literature, Political Science, Sociology, History, and in the Third World Studies Program. Appropriate courses in other departments may also be considered. Students should consult departmental and program listings for Third World area offerings.

Courses

For course descriptions not found in the 2007-2008 General Catalog, please contact the department for more information.

See listings also under the Departments of Anthropology, Communication, History, Literature, Political Science, and Sociology for other Third World area offerings.

LOWER-DIVISION

21-22-23-24-25-26. Third World Literatures (4-4-4-4-4-4)
An introduction to the cultures of various Third World countries through close reading of selected literary texts. TWS 21 focuses on African literature, TWS 22 deals with Latin American literature, TWS 23 examines Chinese literature, TWS 24 examines Caribbean literature, TWS 25 examines Middle Eastern literature, and TWS 26 examines literature of the Indian Subcontinent. Topics will vary each quarter. (F,W,S)

UPPER-DIVISION

132. Literature and Third World Societies (4)
This course will investigate novelistic and dramatic treatments of European society in the era of nineteenth-century imperialism. Third World societies under the impact of colonialism, and the position of national minorities inside the United States to the present day. Attention will center on the interplay between the aesthetic merits and social-historical-philosophical content of the works read.

135. Bilingualism: Research and Field Studies (4)
A study of sociolinguistic findings on bilingualism throughout the world and an evaluation of bilingual education theories. The students will also engage in surveys of local communities to assess bilingualism and educational needs of bilingual communities. Prerequisite: upper-division standing.

190. Undergraduate Seminars (4)
Seminars will be organized on the basis of topics with readings, discussions, and papers. Specific subjects to be covered will change each quarter depending on particular interest of instructors or students. May be repeated for credit.

197. Field Work (4)
In an attempt to explore and study some unique processes and aspects of community life, students will engage in research in field settings. Topics to be researched may vary, but in each case the course will provide skills for carrying out these studies.

198. Directed Group Studies (2 or 4)
Directed group study on a topic or in a field not included in the regular department curriculum, by special arrangement with a faculty member. Prerequisite: upper-division standing.

199. Independent Study (2 or 4)
Tutorial, individual guided reading and research projects to be arranged between student and instructor in an area not normally covered in courses currently being offered in the department. (P/NP grades only.) Prerequisites: upper-division standing and consent of instructor. (F,W,S)

Third World studies offerings in other departments:

Anthropology: Regional
ANRG 104. Traditional African Societies and Cultures
ANRG 170. Traditional Chinese Society
ANRG 173. Chinese Popular Religion
ANRG 182. Ethnography of Island Southeast Asia

Communication and Culture
COCU 179. Colonialism and Culture

History
HIAF 110. History of Africa to 1880
HIAF 111. Modern Africa since 1880
HIAF 120. History of South Africa
HIAF 130. African Society and the Slave Trade
HIAF 160. Special Topics in the Economic History of Africa

HIAF 161. Special Topics in African History
HIEA 112. Japan: From the Mid-Nineteenth Century Through the U.S. Occupation
HIEA 113. The Fifteen-Year War in Asia and the Pacific
HIEA 130. History of the Modern Chinese Revolution: 1800–1911
HIEA 132. History of the People’s Republic of China
HIEA 137. Women and Family in Chinese History
HILA 100. Latin America: Colonial Transformation
HILA 102. Latin America in the Twentieth Century
HILA 112. Economic and Social History of Andean Region
HILA 113. Lord and Peasants in Latin America
HILA 114. Social History of Colonial Latin America
HILA 115. The Latin American City: A History
HILA 116. Encounter of Two Worlds: Early Colonial Latin America
HILA 120. History of Argentina
HILA 121. History of Brazil
HILA 122. Cuba: From Colony to Social Republic
HILA 123. The Incas and Their Ancestors
HILA 131. A History of Mexico
HILA 132. A History of Contemporary Mexico
HILA 160. Topics in Latin America Colonial History: 1500–1820
HILA 161. History of Women in Latin America
HILA 162. Special topics in Latin America
HINE 114. History of the Islamic Middle East

Literature

English
LTEN 188. Contemporary Caribbean Literature
LTEN 189. Twentieth Century Postcolonial Literatures

Spanish (texts read in Spanish)
LTSP 130B. Development of Latin American Literature
LTSP 133. Spanish American Literature: Twentieth Century
LTSP 134. Argentine Literature
LTSP 135. Mexican Literature
LTSP 136. Peruvian Literature
LTSP 137. Caribbean Literature
LTSP 140. Spanish-American Novel
LTSP 141. Spanish-American Poetry
LTSP 142. Spanish-American Short Story
LTSP 172. Indigenista Themes in Spanish-American Literature
LTSP 173. Problems in Spanish and Spanish-American Literary History
Thurgood Marshall College

Honors Program and Special Courses

OFFICE: Provost, Thurgood Marshall College Administration Building

The Thurgood Marshall College Honors Program is designed to address one of the greatest responsibilities and challenges of public higher education: the education of students of exceptionally high academic achievement. The program provides the organization and the environment within which students are encouraged to pursue individual excellence.

Honors activities and events are designed to introduce Thurgood Marshall students to the excitement of pioneering research and innovative scholarship in all disciplines at UCSD and to create opportunities for discussion on public issues with locally and nationally known figures. This happens primarily through the honors seminar, offered every quarter, and open to all class levels of honors students.

To qualify for the honors program, incoming transfer and freshmen students must check the Provost Office for more information.

Students wishing to include additional related courses from these and other departments should consult a Third World studies advisor.

Public Service Minor

Thurgood Marshall College sponsors the Public Service Minor at UCSD, which encourages students to understand the history and practices of public service and to participate in the development of civic skills. This minor is open to all UCSD students in good standing. Please see “Public Service Minor” in the departmental listings.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

10. Thurgood Marshall College Methods of Inquiry (2)

In this course, students learn analytical thinking strategies routinely used by professional scholars, historians, and social planners. Each student applies methodologies from the materials presented in lectures, films, and readings relevant to the current course work. Prerequisite: department stamp. (P/NP only)

15. Introduction to Public Service in America (4)

This course is designed to study, discuss, and analyze the history and current role of public service in the United States. Students will be introduced to the different roles held by the three sectors of the American economic structure (government, business, and nonprofit/public service) with opportunity to provide a critical analysis of those roles within American society.

20. Thurgood Marshall College Honors Seminar (1)

Weekly seminar conducted by UCSD faculty and distinguished guest lecturers on topics related to the core curriculum: diversity, justice, and imagination. (P/NP only)

90. Undergraduate Seminar (1)

These seminars are designed to expose undergraduate students, especially freshmen and sophomores, to exciting research conducted by UCSD faculty. Prerequisite: none. (P/NP only)

198. Thurgood Marshall College Directed Group Studies (4)

Directed group studies of a creative project. Designated for TMC students to work as a group on a project supervised by faculty; not included in regular curriculum, where group emphasis would be more beneficial and constructive than individual special studies. Prerequisites: upper-division standing (ninety units) including lower-division writing requirement (DOC 2 and DOC 3), minimum overall GPA of 2.5 and consent of instructor.

199. Marshall College Special Project (1–4)

Individual, independent research, or creative work intended to satisfy Marshall College graduation requirement. Designated for Marshall College students, topics are supervised by Marshall faculty in association with the honors seminar and honors projects. A written application describing the project is required. See Office of the Provost. Prerequisites: upper-division students with 2.5 GPA and 90 units and approval of the provost or faculty designee. Honors standing required for honors projects. (P/NP only)

Undergraduate Seminar Programs

See Freshman Seminar Program and Senior Seminar Program

Urban Studies and Planning

OFFICE: Social Science Building, Room 315
http://www.usp.ucsd.edu

Faculty

Barbara L. Brody, M Public Health, USP Lecturer/FPM
Mirle Rabinowitz Bussell, Ph.D., USP Lecturer
Steven P. Erie, Ph.D., Professor, Political Science, Director of USP
April Linton, Ph.D., Assistant Professor, Sociology
Isaac Martin, Ph.D., Assistant Professor, Sociology
Natalia Molina, Ph.D., Associate Professor, Ethnic Studies
Lisa Sun-Hee Park, Ph.D., Associate Professor, Ethnic Studies
Keith Prazo, Ph.D., Lecturer, Urban Planning, USP Supervisor of Field Studies
Michelle White, Ph.D., Professor, Economics

Affiliated Faculty

David Abel, J.D., USP Lecturer
Gary Fields, Ph.D., Associate Professor, Communication
Greg Freeman, USP Lecturer
Carlos Graib, M Architecture, USP Lecturer
Zoltan Hajnal, Ph.D., Assistant Professor, Political Science
Lawrence Herzog, Ph.D., USP Lecturer
James Ingram, Ph.D., USP Lecturer
Thad Kousser, Ph.D., Assistant Professor, Political Science
Richard Marciano, Ph.D., SD Supercomputer Center
David Pellow, Ph.D., Associate Professor, Ethnic Studies
Sheila Sarkar, USP Lecturer
Abraham Shragge, Ph.D., Lecturer, Director, Dimensions of Culture
Michael Stepner, USP Lecturer
Kenneth E. Sulzer, USP Lecturer

UC San Diego Washington Program (UCDC)

Career Service Center, Room 112
http://career.ucsd.edu/sa/UCDC.shtml/
http://www.ucdc.edu

Since 1997, the UC San Diego Washington Center has provided students an opportunity to intern in the nation’s capital while continuing their academic coursework. The program is open to all students who have completed ninety units toward graduation with a 2.5 grade-point average. Students earn fourteen units of academic credit, continue to be registered full time, and fulfill university residency requirements.

Students maintain financial aid eligibility; the amount can be adjusted to reflect the additional costs of the program. In addition, eligible students are considered for the University of California President’s Washington Scholarship Program. Students live in the new University of California Washington Center, located in the heart of Washington, D.C.

Internship—Students work twenty-four hours per week as interns in federal agencies, interest groups, trade associations, the national news media, museums, research institutions, or in other organizations related to policy, politics, science, and culture and geared to the interests and objectives of individual students. Political Science 197: six or eight units of academic credit.

Research Seminar—Drawing on the internship experience, each student participates in a seminar and undertakes an independent research project. Political Science 194 (or depending on the student’s major, one of the cross-listed equivalents): four units of academic credit.

Elective Course—Each student also enrolls in one upper-division seminar course at the Washington Center. These courses are taught by the different campuses’ resident faculty and change each quarter. Typically they include a mix of political science, international relations, other social sciences, history, and the arts and humanities. In addition to regular instruction, these seminars may take advantage of the Washington locale and often include guest speakers and field work activities.

The Urban Studies and Planning Program

The great majority of U.S. citizens, and a growing proportion of people throughout the world, live in cities. Cities provide the environment in which people work, learn, play, and make decisions together. Local governments make critical interventions in the quality of life. At the same time, the cities of the world are increasingly linked in a global economic system, making diverse contributions to the international division of labor.

Urban studies and planning is an interdisciplinary program providing students with a variety of perspectives for understanding the development, growth, and culture of cities and the communities within them. Course work introduces students to the ways different disciplines understand cities and the societies of which they are a part. Upper-division requirements educate students about the parameters within which urban choices are made.

One of the outstanding features of the Urban Studies and Planning Program is the upper-division research requirement. During a two-quarter sequence designed to be taken in the fall and winter of the senior year, all USP majors are guided through a research internship and writing process. The upper-division field studies sequence allows students to work on specific policy projects in the San Diego region. Eligible students may choose to enroll in USP 190 in the spring to write an honors thesis. The honors option is an opportunity to do advanced research and writing that builds on work already completed in the senior sequence.

Urban studies and planning is an undergraduate community of students with diverse interests and goals. After graduation some majors pursue graduate work in social science disciplines. Others pursue graduate study in public policy, law, planning, or architecture. Urban studies has always also attracted students interested in medicine and public health issues, who continue to study in these areas at schools of medicine or public health. Urban studies and planning provides students with a solid liberal arts background for graduate study or for professional work in a number of fields. Many students find employment opportunities through their internship placement. More generally, graduates of urban studies and
planning will have the analytic skills to think clearly and act creatively about the problems and prospects of the urban environment.

The Urban Studies and Planning Major

A bachelor of arts degree in urban studies and planning will be given to students who satisfactorily complete the general-education requirements of Muir, Revelle, Marshall, Warren, Roosevelt, or Sixth College in addition to the urban studies and planning courses described below. The undergraduate program in urban studies and planning requires a three-quarter lower-division sequence in urban studies (USP 1-2-3); Political Science 30; and twelve courses in upper-division urban studies and planning. Students are encouraged to complete the lower-division prerequisites before they enroll in the upper-division courses.

In accordance with campus academic regulations, courses used to satisfy the major cannot be applied toward a minor, although some overlap is allowed for double majors. All lower-division and upper-division requirements must be taken for a letter grade. A 2.0 grade-point average is required in each course used for the major. Transfer students should see the USP student affairs advisor to determine whether courses taken elsewhere satisfy USP major requirements. No more than one special studies course, USP 198 or USP 199, will be accepted to count towards the major.

Lower-Division Requirements

Students majoring in urban studies and planning must complete the introductory sequence:

1. three foundation courses
2. one research methods course to be taken junior year
3. two senior sequence courses
4. six upper-division elective courses

FOUNDATION COURSES

Foundation courses provide the conceptual tools for the major. Students are to choose three of:

- **USP 102. Urban Economics (Economics 135) (4)**
- **USP 103. U.S. Cities in the Twentieth Century (HIUS 148) (4)**
- **USP 104. Ethnic Diversity and the City (Ethnic Studies 105) (4)**
- **USP 105. Urban Sociology (Sociology C/153) (4)**
- **USP 107. Urban Politics (Political Science 102E) (4)**
- **USP 124. Land Use Planning (4)**

In accordance with campus academic regulations, these courses must be taken for a letter grade. A 2.0 grade-point average is required in each course used for the major.

RESEARCH METHODS COURSES

Students are to choose one course of:

- **USP 125. The Design of Social Research (4)**
- **USP 129. Research Methods: Studying Racial and Ethnic Communities (Ethnic Studies 190) (4)**
- **USP 130. Field Work in Racial and Ethnic Communities (Ethnic Studies 107) (4)**
- **USP 191. GIS for Urban Community Planning (4)**
- **USP 193. San Diego Community Research (4)**

SENIOR SEQUENCE REQUIREMENT

In their senior year, all students must complete the senior sequence, USP 186 in the fall, and USP 187 in the winter. These courses must be taken IN ORDER. The sequence develops each student's ability to: (1) critically review others' research, (2) formulate interesting research questions of their own, (3) design an original research project and investigative strategy, (4) conduct research, and (5) analyze, interpret, and write up findings. The final requirement of USP 186 is a research proposal. By the end of USP 187 each student must complete a Senior Research Project.

Because the senior sequence includes an internship, no other internship or field placement will be counted towards the major.

HONORS IN URBAN STUDIES AND PLANNING

Candidates for Honors in Urban Studies and Planning are required to take USP 190 Senior Honors Seminar, in which students write a senior thesis. Prerequisites for enrolling in USP 190 are a minimum 3.5 GPA in the major, senior standing, USP 186 and USP 187, and consent of instructor. Majors who plan to enroll in USP 190 must declare their intent fall quarter in USP 186. USP 190. Senior Honors Seminar (4)

UPPER-DIVISION ELECTIVE COURSES

Students are encouraged to pick an "area of concentration," and choose upper-division electives listed under that cluster. Students may also define their own "area of concentration" and design an appropriate curriculum drawn from courses offered by USP and other related departments. USP 199 Independent Study taken for pass/no pass counts for one USP upper-division elective course.

Urban/Regional Policy and Planning

- **USP 100. Introduction to Urban Planning**
- **USP 101/Political Science 160AA. Introduction to Policy Analysis**
- **USP 102/Economics 135. Urban Economics**
- **USP 107/Political Science 102E. Urban Politics**
- **USP 109/Political Science 103A. California Government and Politics**
- **USP 110/Political Science 102J. Advanced Topics in Urban Politics**
- **USP 111/Political Science 102JJ. Field Research in Urban Politics**
- **USP 113/Political Science 103B. Politics and Policymaking in Los Angeles**
- **USP 115/Political Science 103C. Politics and Policymaking in San Diego**
- **USP 124. Land Use Planning**
- **USP 133/Sociology C/152. Social Inequality and Public Policy**
- **USP 137. Housing and Community Development Policy and Practice**
- **USP 170. Sustainable Planning**
- **USP 171. Sustainable Development**
- **USP 173. History of Urban Planning and Design**
- **USP 174. Regional Governance and Planning Reconsidered**
- **USP 180. Transportation Planning**
- **USP 181. Public Transportation**
- **USP 191. GIS for Urban Community Planning**
- **USP 193. San Diego Community Research**
- **Anthropology (ANBI) 132/Biology (BIEB) 176. Conservation and the Human Predicament**
- **Economics 116. Economic Development**
- **Economics 130. Public Policy**
- **Economics 131. Economics of the Environment**
- **Economics 139. Labor Economics**
Economics 150. Economics of the Public Sector: Taxation
Economics 151. Economics of the Public Sector: Expenditures
Economics 155. Economics of Voting and Public Choice
Envi 102. Selected Topics in Environmental Studies
Envi 130. Environmental Issues: Social Sciences
Political Science 160AB. Introduction to Policy Analysis
Political Science 162. Environmental Policy
Political Science 168. Policy Assessment
Sociology B/146. Law Enforcement in America
Sociology C/121. Economy and Society
Sociology C/155. The City of San Diego
Sociology C/180. Social Movements and Social Protest
Sociology D/169. Citizenship, Community, and Culture
Sociology D/179. Social Change

Urban Design/Built Environment

USP 103/History (HIUS) 148. American Cities in the Twentieth Century
USP 124. Land Use Planning
USP 137. Housing and Community Development Policy and Practice
USP 165/History (HIUS) 147. History of the American Suburb
USP 170. Sustainable Planning
USP 171. Sustainable Development
USP 173. History of Urban Planning and Design
USP 174. Regional Governance and Planning Reconsidered
USP 178. Urban Design for Redevelopment
USP 179. Urban Design, Theory, and Practice
USP 180. Transportation Planning
USP 191. GIS for Urban and Community Planning
USP 193. San Diego Community Research
Envi 102. Selected Topics in Environmental Studies
Envi 110. Environmental Law
Envi 130. Environmental Issues: Social Sciences
Ethnic Studies 103. Environmental Racism
Ethnic Studies 104. Race, Space, and Segregation
History (HISC) 172/272. Building America: Technology, Culture, and the Built Environment in the United States
History (HIUS) 137. The Built Environment in the United States
Political Science 125A. Communities and the Environment
Political Science 162. Environmental Policy

Health, Social Services and Education

USP 101/Political Science 160AA. Introduction to Policy Analysis
USP 133/Sociology C/152. Social Inequality and Public Policy
USP 143. The U.S. Health Care System
USP 144. Environmental and Preventive Health Issues
USP 145. Aging-Social and Health Policy Issues
USP 147. Case Studies in Health Care Programs/Poor and Underserved Populations
Economics 130. Public Policy
Economics 138A-B. Economics of Health Economics 139. Labor Economics
Economics 150. Economics of the Public Sector: Taxation
Economics 151. Economics of the Public Sector: Expenditures
Economics 155. Political Economics
Education Studies 140. Introduction to Academic Mentoring of Elementary/School Students
Ethnic Studies 142. Medicine, Race, and the Global Politics of Inequality
Ethnic Studies 163. Leisure in Urban America
Philosophy 163. Biomedical Ethics
Political Science 117. Violence and Social Order
Political Science 168. Policy Assessment
Psychology 104. Introduction in Social Psychology
Psychology 186. Psychology and Social Policy
Sociology B/112. Social Psychology
Sociology B117/EDS 117. Language, Culture, and Education
Sociology C/123. Sociology of Work
Sociology C126/EDS 126. Social Organization of Education
Sociology C/128/Gender and Work
Sociology C/135. Medical Sociology
Sociology C/136A. Sociology of Mental Illness: An Historical Approach
Sociology C/136B. Sociology of Mental Illness in Contemporary Society
Sociology C/141. Crime and Society
Sociology C/159. Special Topics in Social Organizations and Institutions

Urban Diversity

USP 104/Ethnic Studies 105. Ethnic Diversity and the City
USP 129/Ethnic Studies 190. Research Methods: Studying Racial and Ethnic Communities
USP 130/Ethnic Studies 107. Field Work in Racial and Ethnic Communities
USP 132/Ethnic Studies 188. African Americans, Religion, and the City
USP 135/Ethnic Studies 129. Asian and Latina Immigrant Workers in the Global Economy
Anthropology (ANRG) 114. Urban Cultures in Latin America
Ethnic Studies 118. Contemporary Immigration Issues
Ethnic Studies 121. Contemporary Asian-American History
Ethnic Studies 123. Asian-American Politics
Ethnic Studies 131/History (HIUS) 159. Social and Economic History of the Southwest II
Ethnic Studies 151. Ethnic Politics in America
Ethnic Studies 161. Black Politics and Protest Since 1941
Ethnic Studies 182/History (HIUS) 165. Segregation, Freedom Movements, Crisis 20th Century
Ethnic Studies 184. Black Intellectuals in the 20th Century
History (HILA) 115. The Latin American City, a History
History (HILA) 121. History of Brazil
History (HIUS) 114. California History
History (HIUS) 117. History of Los Angeles
History (HIUS) 180/Ethnic Studies 134. Immigration and Ethnicity in Modern American Society
Political Science 100H. Race and Ethnicity in American Politics
Political Science 100J. Race in American Political Development
Political Science 150A. Politics of Immigration
Sociology A/100. Classical Sociological Theory
Sociology B/125. Sociology of Immigration
Sociology C/139. Social Inequality: Class, Race, and Gender
Sociology C/144. Forms of Social Control
Sociology C/148. Political Sociology
Sociology C/148L. Inequality and Jobs
Sociology D/151. Comparative Race and Ethnic Relations

Cities in Historical and Comparative Perspectives

USP 103/History (HIUS) 148. American Cities in the Twentieth Century
USP 105/Sociology C/153. Urban Sociology
USP 107/Political Science 102E. Urban Politics
USP 165/History (HIUS) 147. History of the American Suburb
USP 166. History of San Diego
USP 173. History of Urban Planning and Design
Anthropology (ANRG) 114. Urban Cultures in Latin America
Economics 116. Economic Development
Ethnic Studies 121. Contemporary Asian-American History
Ethnic Studies 131/History (HIUS) 159. Social and Economic History of the Southwest II
History (HIEU) 129. Paris, Past and Present
History (HILA) 115. The Latin American City, a History
History (HILA) 121. History of Brazil
History (HISU) 105. History of Environmentalism
History (HITO) 121. Geographic Information Systems for Historians and Social Scientists
History (HIUS) 114. California History
History (HIUS) 117. History of Los Angeles
History (HIUS) 124/ETHN 125. Asian American History
History (HIUS) 137. The Built Environment in the Twentieth Century
History (HIUS) 139. African-American History in the Twentieth Century
History (HIUS) 140/Economics 158A. Economic History
History (HIUS) 141/Economics 158B. Economic History of the United States II
History (HIUS) 154. Western Environmental History
History (HIUS) 184. Special Topics in American Urban History

The Minor Program

The urban studies and planning minor consists of seven courses in urban studies and planning, selected with the prior approval of the USP student affairs advisor. Students who wish to minor in urban studies may do so by taking any two courses from among the lower-division sequence and the upper-division foundation courses, and five upper-division courses from among those that serve the USP major. All courses must be taken for a letter grade and students must earn at least C– in each course used for the minor.

Education Abroad Program

Students are encouraged to participate in the UC Education Abroad Program (EAP) or Opportunities Abroad Program (OAP) while still making progress towards completing their USP major. For more information on EAP, see the section of this catalog on the Education Abroad Program or visit http://programsabroad.ucsd.edu. Students considering this option are advised to discuss their plans with the USP student affairs advisor before going abroad.

COURSES

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

LOWER-DIVISION

1. History of US Urban Communities (4)
This course charts the development of urban communities across the United States both temporally and geographically. It examines the patterns of cleavage, conflict, convergence of interest, and consensus that have structured urban life. Social, cultural, and economic forces will be analyzed for the roles they have played in shaping the diverse communities of America’s cities.

2. Urban World System (4)
Examines cities and the environment in a global context. Emphasizes how the world’s economy and the earth’s ecology are increasingly interdependent. Focuses on biophysical and ethnocultural concerns rooted in the contemporary division of labor among cities, Third World industrialization, and the post-industrial transformation of U.S. cities.

3. The City and Social Theory (4)
An introduction to the sociological study of cities, focusing on urban society in the United States. Students in the course will examine theoretical approaches to the study of urban life; social stratification in the city; urban social and cultural systems—ethnic communities, suburbia, family life in the city, religion, art, and leisure.

87. Freshman Seminar (1)
The Freshman Seminar Program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to 15 to 20 students, with preference given to entering freshmen.

UPPER-DIVISION

100. Introduction to Urban Planning (4)
This course is designed to provide an introduction to the fundamentals of urban planning. It surveys important topics in urban planning, including economic development, urban design, transportation, environmental planning, housing, and the history of urban planning. Prerequisite: upper-division standing or consent of instructor.

101. Introduction to Policy Analysis (4)
(Same as Political Science 160AA.) This course will explore the process by which the preferences of individuals are converted into public policy. Also included will be an examination of the complexity of policy problems, methods for designing better policies, and a review of tools used by analysts and policy makers. Prerequisite: upper-division standing or consent of instructor.

102. Urban Economics (4)
(Same as Economics 135.) Economic analysis of why and where cities develop, problems they cause, and public policies to deal with these problems. Determination of urban land rent/use, reasons for urbanization. Transportation and congestion in cities, zoning, poverty and housing, urban local government. Prerequisites: Economics 1A-B or 1-2 and Mathematics 10A or 20A.

103. American Cities in the Twentieth Century (4)
(Same as HIUS 148.) This course surveys changes in U.S. cities since about 1900. Case studies of individual cities illustrate the social, political, and environmental consequences of rapid urban expansion, as well as the ways in which “urban problems” have been understood historically. Prerequisite: upper-division standing or consent of instructor.

104. Ethnic Diversity and the City (4)
(Same as Ethnic Studies 105.) This course will examine the city as a crucible of ethnic identity exploring both the racial and ethnic dimensions of urban life in the U.S. from the Civil War to the present. Prerequisite: upper-division standing.

105. Urban Sociology (4)
(Same as Sociology C/153.) Introduces students to the major approaches in the sociological study of cities and to what a sociological analysis can add to our understanding of urban processes. Prerequisite: upper-division standing or consent of instructor.

107. Urban Politics (4)
(Same as Political Science 102E.) This survey course focuses upon the following six topics: the evolution of urban politics since the mid-nineteenth century; the urban fiscal crisis; federal/urban relationships; the “new” politics; urban power structure and leadership; and selected contemporary policy issues such as downtown redevelopment, poverty, and race.

109. California Government and Politics (4)
(Same as Political Science 103A.) This survey course explores six topics: 1) the state’s political history; 2) campaigning, the mass media, and elections; 3) actors and institutions in the making of state policy; 4) local government; 5) contemporary policy issues, e.g., Proposition 13, school desegregation, crime, housing and land use, transportation, water; 6) California’s role in national politics. Prerequisite: upper division standing.

110. Advanced Topics in Urban Politics (4)
(Same as Political Science 102J.) Building upon the introductory urban politics course, the advanced topics course explores issues such as community power, minority empowerment, and the politics of growth. A research paper is required. Students wishing to fulfill the paper requirement with field research should enroll in the subsequent Political Science 102JJ course offered Summer Session II. Prerequisites: upper division standing, consent of instructor.

111. Field Research in Urban Politics (4)
(Same as Political Science 102JJ.) To be taken with the approval of the Political Science 102J instructor, this course allows students to do original field research on topics in urban politics. This course is offered in Summer Session II subsequent to a spring 102J course. May not be used to fulfill any major or minor requirements in politics science or urban studies and planning. Prerequisites: USP 110/Political Science 102J and consent of instructor.

113. Politics and Policymaking in Los Angeles (4)
(Same as Political Science 103B.) This course examines politics and policymaking in the five-county Los Angeles region. It explores the historical development of the city, suburbs, and region; politics, power, and governance; and major policy challenges facing the city and metropolitan area. Prerequisite: upper-division standing.

115. Politics and Policymaking in San Diego (4)
(Same as Political Science 103C.) This course examines how major policy decisions are made in San Diego. In analysing the region’s power structure (including the roles of non-governmental organizations and the media); governance systems and reform efforts, and the politics of major infrastructure projects. Prerequisite: upper-division standing or consent of instructor.

124. Land Use Planning (4)
Introduction to land use planning in the United States: zoning and subdivision, regulation, growth management, farmland preservation, environmental protection, and comprehensive planning. Prerequisite: upper-division standing or consent of instructor.
125. The Design of Social Research (4)
Research methods are tools for improving knowledge. Beginning with a research question, students will learn to select appropriate methods for sampling, collecting, and analyzing data to improve their research activities and research results. Prerequisite: upper-division standing or consent of instructor.

129. Research Methods: Studying Racial and Ethnic Communities (4)
(Same as ETHN 190.) The course offers students the basic research methods with which to study ethnic and racial communities. The various topics to be explored include human and physical geography, transportation, employment, economic structure, cultural values, housing, health, education, and intergroup relations. Prerequisite: upper-division standing or consent of instructor.

130. Field Work in Racial and Ethnic Communities (4)
(Same as ETHN 107.) This is a research course examining social, economic, and political issues in ethnic and racial communities through field work. Topics are examined through a variety of research methods which may include interviews and archival, library, and historical research. Prerequisite: upper-division standing.

132. African Americans, Religion, and the City (4)
(Same as Ethnic Studies 188.) This course details the history of African-American migration to urban areas after World War I and World War II and explores the role of religion in their lives as well as the impact that their religious experiences had upon the cities in which they lived. Prerequisite: upper-division standing.

133. Social Inequality and Public Policy (4)
(Same as SOC C/152.) Primary focus on understanding and analyzing poverty and public policy. Analysis of how current debates and public policy initiatives mesh with alternative social scientific explanations of poverty. Prerequisite: upper-division standing.

135. Asian and Latina Immigrant Workers in the Global Economy (4)
(Same as ETHN 129.) This course will explore the social, political, and economic implications of global economic restructuring, immigration policies, and welfare reform on Asian and Latina immigrant women in the United States. We will critically examine these larger social forces from the perspectives of Latina and Asian immigrant women workers, incorporating theories of race, class, and gender to provide a careful reading of the experiences of immigrant women on the global assembly line. Prerequisite: upper-division standing.

137. Housing and Community Development Policy and Practice (4)
History, theory, and practice of U.S. housing and community development. Public, private, and nonprofit sectors shape and implement planning and policy decisions at the federal, state, local and neighborhood levels. Prerequisite: upper-division standing.

143. The U.S. Health Care System (4)
This course will provide an overview of the organization of health care within the context of the community with emphasis on the political, social, and cultural influences. It is concerned with the structure, objectives, and trends of major health and health-related programs in the United States to include sponsorship, financing, training and utilization of health personnel. Prerequisite: upper-division standing or consent of instructor. Offered winter quarter.

144. Environmental and Preventive Health Issues (4)
This course will analyze needs of populations, highlighting current major public health problems such as chronic and communicable diseases, environmental hazards of diseases, psychiatric problems and additional diseases, new social mores affecting health maintenance, consumer health awareness and health practices, special needs of economically and socially disadvantaged populations. The focus is on selected areas of public and environmental health, namely: epidemiology, preventive services in family health, communicable and chronic disease control, and occupational health. Prerequisite: upper-division standing or consent of instructor. (Offered fall quarter.)

145. Aging—Social and Health Policy Issues (4)
This course will provide a brief introduction to the nature and problems of aging, with emphasis on socioeconomic and health status; determinants of priorities of social and health policies will be examined through analysis of the structure and organization of selected programs for the elderly. Field visits will constitute part of the course. Prerequisite: upper-division standing. (Not offered in 2006–07.)

147. Case Studies in Health Care Programs/Poor and Underserved Populations (4)
The purpose of this course is to identify the special health needs of low income and underserved populations and to review their status of care, factors influencing the incidence of disease and health problems, and political and legislative measures related to access and the provision of care. Selected current programs and policies that address the health care needs of selected underserved populations such as working poor, inner city populations, recent immigrants, and persons with severe disabling mental illnesses will be studied. Offered in alternate years. Prerequisite: upper-division standing or consent of instructor. (Offered spring quarter.)

156. History of the American Suburb (4)
(Same as HUS 147.) This lecture course explores the development of suburbs in America, from the early nineteenth-century to the contemporary era. Topics include suburban formation, class, ethnic and racial dimensions, government influences, social life, and cultural responses to suburbia. The class will explore competing theories of suburbanization as it surveys the major literature. Prerequisite: upper-division standing.

166. History of San Diego (4)
Course surveys the social, political, economic, cultural, and environmental history of the San Diego region from pre-colonial times to the present, with an emphasis on the urban development that has occurred since 1900. Prerequisite: upper-division standing.

170. Sustainable Planning (4)
This course will explore the different factors and processes that shape a sustainable city. Contemporary green planning techniques and values will be evaluated. The course will also discuss planning, designing, and implementation of sustainable facilities that will reduce sprawl. Prerequisite: upper-division standing or consent of instructor.

171. Sustainable Development (4)
Sustainable development is a concept invoked by an increasingly wide range of scholars, activists, and organizations dedicated to promoting environmentally sound approaches to economic development. This course critically examines the diverse, often contradictory, interests in sustainability. It provides a transdisciplinary overview of emergent theories and practices. Prerequisite: upper-division standing.

173. History of Urban Planning and Design (4)
The analysis of the evolution of city designs over time; study of the forces that influence the form and content of a city: why cities change; comparison of urban planning and architecture in Europe and the United States. Prerequisite: upper-division standing.

174. Regional Governance and Planning Reconsidered (4)
Regional planning and local governance in California, focusing upon San Diego. Current systems, the state/local relationship, and the incentives and disincentives for restructuring regional and local governance and planning. Prerequisite: upper-division standing.

178. Urban Design for Redevelopment (4)
This course addresses inner-city and suburban redevelopment focusing on urban design, ecological, and ethnic issues using advanced physical planning and urban design methods. Also included will be the environmental-impact assessments of redevelopment projects. Prerequisite: upper-division standing.

179. Urban Design, Theory, and Practice (4)
Roles of the urban designer, preparing schematic proposals and performance statements, identifying opportunities for and constraints on designers. Each student will prepare a practical exercise in urban design using various urban design methods. Prerequisite: upper-division standing.

180. Transportation Planning (4)
Introduction to the history and current state of urban transportation planning, including the relationship between transportation and urban form; role of automotive, mass transit, and alternative modes; methods for transportation systems analysis; decision-making, regulatory, and financing mechanisms; and public attitudes. Prerequisite: upper-division standing.

181. Public Transportation (4)
Livable cities rely on balanced transportation systems that can mitigate the negative impacts of a car-oriented environment and society. This course will explore the role of public transit in creating a balanced transportation system. A variety of public transportation systems will be analyzed. Prerequisite: upper-division standing or consent of instructor.

186. Senior Sequence Research Proposal (6)
Introduces students to the theory and practice of social research including the challenges of writing a scholarly proposal. Students are required to complete 100 hours of an internship experience while critically examining the relations between social science and society. Prerequisites: upper-division standing, USP major.

187. Senior Sequence Research Project (6)
An intensive research, internship, and writing experience that culminates in an original senior research project. Students learn about the theoretical, ethical, and technical challenges of scholarly research and publication. Prerequisite: USP 186.

190. Senior Honors Seminar (4)
Each student enrolled will be required to write an honors essay, a substantial research paper on a current urban policy issue, under the supervision of a member of the faculty. Most often the essay will be based on their previous fieldwork courses and internship. This essay and other written exercises, as well as class participation, will be the basis of the final grade for the course. The seminar will rotate from year to year.
Visual Arts

OFFICE: 216 Mandeville Center for the Arts
http://visarts.ucsd.edu

Professors
David Antin, M.A., Emeritus
Eleanor Antin, B.A., Emeritus
Sheldon G. Brown, M.F.A.
Norman Bryson, Ph.D.

Harold Cohen, Diploma of Fine Arts, Emeritus
Steve Fagin, M.A.
Manny Farber, Emeritus
Jean-Pierre Gorin, Licence de Philosophie
Helen Mayer Harrison, M.A., Emeritus
Newton A. Harrison, M.F.A., Emeritus
Louis J. Hock, M.F.A.
Fred S. Lonidier, M.F.A.
Kim R. MacConnel, M.F.A.
Babette M. Mangolte
Lev Manovich, Ph.D.
Sheldon A. Nodelman, Ph.D.
Rubén Ortiz-Torres, M.F.A.
Patricia A. Patterson, Emeritus
Faith Ringgold, M.A., Emeritus
Jerome Rothenberg, M.A., Emeritus
Ernest R. Silva, M.F.A.
Haim Steinbach, M.F.A.
Lesley F. Stern, Ph.D.
John C. Welchman, Ph.D.

Associate Professors
Amy Adler, M.F.A.
Jordan Crandall
Edwin Teddy Cruz, MDeS
Jack M. Greenstein, Ph.D.
Adriene Jenik, M.F.A.
Grant Kester, Ph.D.
Standish D. Lawder, Ph.D., Emeritus
Elizabeth Newsome, Ph.D.
Jennifer Pastor, M.F.A.
Kuiyi Shen, Ph.D.
Susan L. Smith, Ph.D.
Phel Steinmetz, Academic Senate Distinguished Teaching Award
Mary Vidal, Ph.D.

Assistant Professors
Amy J. Alexander, M.F.A.
Ricardo Dominguez, M.A.
Natalie Jeremijenko. B.F.A.
Roberto Tejada, Ph.D.

Lecturer with Security of Employment
Claudio Fenner-Lopez, M.A., Emeritus

Lecturer with Potential for Security of Employment
Brett Stalbaum

The Department of Visual Arts offers courses in painting, drawing, sculpture, performance, computing in the arts, film, video, photography, and art history/criticism (including that of film and video). A bachelor’s degree from this department provides students with a solid liberal arts background and is preparatory training for careers as artists, art historians, filmmakers, video artists, photographers, digital media artists, and art critics. It also provides students the initial skills required for teaching and work in museums, television, and the commercial film, photography, and internet industries.

By its composition, the Department of Visual Arts is biased in the direction of actively producing artists and critics whose presence at the center of the contemporary art world necessitates reconsideration and reevaluation of artistic productions, their information structure, and significance. Consequently, a flexible introductory program of historically based courses has been devised mainly to provide the student an opportunity to concentrate on areas involving significantly different aesthetic and communication structures. A series of studio courses, in which painting and sculpture are included, is presented to bring the student into direct contact with the real contingencies compelling redistribution of aesthetic attitudes and reinterpretation of genres.

Because of the exploratory nature of our program, the department is prepared to emphasize new media that would traditionally be considered to have scant relation to the visual arts. Thus, courses in theatrical events, linguistic structures, etc., are provided. In this context, theoretical courses with a media orientation, as in film, video, photography, or computing, are also offered.

The Department of Visual Arts is located in the Mandeville Center for the Arts. In addition, the graduate program office, as well as faculty and graduate students’ offices/studios/research spaces are located in the Visual Arts Facility situated at the Mandeville Center and at the campus-wide Media Center, providing the opportunity to study painting, drawing, photography, computing in the arts, 16mm film, performance, sculpture, and video. Facilities at the Media Center include portable video recording equipment, video and audio editing suites, nonlinear editing, and production studios. Additional film equipment available includes an animation stand, optical printer, two sound-mixing studios, and numerous film editing suites. Courses in computing in the arts take place in the Silicon Graphics/Mac/NT lab located at the Visual Arts Facility, the INTEL-shared lab in the Applied Physics and Mathematics building, and a dedicated ICAM lab in building 201 University Center.
The University Art Gallery displays a continually changing series of exhibitions, and the Mandeville Annex Gallery, located on the lower level, is directed by visual arts undergraduate students. A gallery and performance space, located in the Visual Arts Facility, are directed by graduate students.

The Undergraduate Program

College Requirements
The Department of Visual Arts teaches courses applicable toward the Muir, Sixth, and Warren general-education requirements, the Marshall Humanities requirement, the Eleanor Roosevelt and Revelle fine arts requirements. Optional minors may be taken within any college.

Minor in Visual Arts
The Department of Visual Arts offers minors in seven areas of study: studio painting/drawing/sculpture, photography, computing, art history, media history/criticism, film/video, and ICAM. A minor consists of seven specific courses, of which at least five must be upper-division. Because the requirements differ for each minor, prospective visual arts minors should consult with the departmental advisor for a complete list of appropriate classes acceptable for the minor.

Students are advised to begin their program in the second year; otherwise, they cannot be guaranteed enough time to complete the classes required for a minor.

Education Abroad Program
Students are often able to participate in the UC Education Abroad Program (EAP) and UCSD’s Opportunities Abroad Program (OAP) while still making progress toward completing their major. Financial aid is applicable to study abroad and special study abroad scholarships are readily available. Students considering this option should discuss their plans with the director of Undergraduate Studies before going abroad, and courses taken abroad must be approved by the department. More information on EAP/OAP is detailed in the Education Abroad Program of the UCSD General Catalog or on their Web site http://ucsd.edu/icenter/pao. Interested students should contact the Programs Abroad Office in the International Center.

Residency Requirements
A minimum of two-thirds of the course work completed for the major must be taken at UCSD. Students who transfer to UCSD in their second or third year may petition to substitute courses taken at other colleges and universities for major requirements.

Visual Arts 111, Structure of Art, must be taken at UCSD by all students, including transfer students, in the art history, media, and studio majors.

Honors Programs
The department offers honors programs in art history, in media, and in studio for outstanding students.

The art history honors program will provide outstanding students with pre-professional experience. It consists of an issue-oriented seminar followed by a directed group study and will result in an exhibition with catalogue, a scholarly conference with a mock publication and/or series of research papers. Students who meet the criteria may, with permission of the art history faculty advisor or the art history honors seminar instructor, enroll in the art history honors program during the last quarter of their junior year or as a senior. This program is open to juniors and seniors who meet eligibility requirements: minimum GPA of 3.5 (3.3 overall), completion of all lower-division art history requirements, completion of all upper-division art history distribution requirements, and completion of Art Historical Methods (VIS 112) and at least one additional art history seminar. The level of distinction will be determined by the faculty committee on the basis of work in the honors seminar and on the research project.

The media honors program will help students develop high quality professional portfolios. The honors thesis project sequence of individual studies runs the length of an academic year to provide sufficient time for ideas to develop and critically aware work to be produced. Students may arrange to work with different faculty advisors each term or may engage a single advisor for the year. To be eligible for the honors thesis sequence, students must have at least a 3.5 GPA in the major and have approval of all the advisors with whom they will work. Qualified students may begin their sequence in the last quarter of their junior year or during their senior year. At the end of the third quarter, all involved media faculty will meet to critique the overall quality of the final thesis work to determine level of distinction.

Through exhibition, verbal and written presentations and course work, the studio honors program is intended to give the student as strong a technical, critical, and theoretical base as possible. The program is open to juniors and seniors with a minimum 3.5 GPA in the major (3.0 overall), who have completed all lower-division studio requirements and all upper-division groups I, II, III, and IV (subgroup A) requirements.

Students interested in participating in an honors program should consult with the departmental advisor.

Double Major within the Department
There are three double majors within the Visual Arts department: Art History/Theory/Criticism paired with either studio, media, or ICAM. Students interested in a double major within the department must have at least ten upper-division courses that are unique to each departmental major and the remaining courses may overlap with other major requirements. Students should consult with the departmental advisor for additional information.

Major Requirements
Twenty courses are required in studio, media, and ICAM and eighteen courses in art history for the attainment of the bachelor of arts degree. A minimum of twelve of these courses must be upper-division, however, some majors may require more upper-division courses.

All courses taken to satisfy major requirements must be taken for a letter grade, and only grades of C– or better will be accepted in the visual arts major.

Studio Major
The studio major is aimed at producing a theoretically based, highly productive group of artists. Lower-division courses are structured to expose students to a variety of ideas in and about the visual arts. Introductory skills are taught, but their development will occur at the upper-division level in conjunction with the student’s increasing awareness of the range of theoretical possibilities in the field. The curriculum includes courses in drawing, painting, sculpture, performance, photography, video, 16mm
film, many offerings in art history/criticism, as well as new courses in digital imaging and electronics.

GROUP I: LOWER-DIVISION

Foundation Level

Five courses required

1. Introduction to Art Making: Two-Dimensional Practices
2. Introduction to Art Making: Motion and Time Based Art
3. Introduction to Art Making: Three-Dimensional Practices
4. Formations of Modern Art
5. Choose one from:
 - Introduction to Art History
 - Introduction to the Arts of the Americas or Africa and Oceania
 - Introduction to Asian Art
 - History of Film

GROUP II: UPPER-DIVISION

Entry Level

Five courses required

11. Structure of Art

Note: Required for Visual Arts studio, media, and art history majors. VIS 40, 60, or 70N can be taken to fulfill Group II entry level studio requirements, but will not count toward the fifteen upper-division courses needed to fulfill the major requirements.

Choose four from:

10. Introduction to Computing in the Arts
20. Introduction to Photography
21A. Introduction to the Arts of the Americas or Africa and Oceania
21B. Introduction to Asian Art
40. Introduction to Media
60. Drawing: Representing the Subject
104A. Drawing: Practices and Genre
105A. Painting: Representing the Subject
106A. Painting: Practices and Genre
107A. Sculpture: Making the Object

GROUP III: UPPER-DIVISION

Intermediate Level

Two courses required

104BN. Verbal Performance
105B. Drawing: Practices and Genre
105D. The Aesthetics of Chinese Calligraphy
106B. Painting: Practices and Genre
107B. Sculpture: Practices and Genre

140/ICAM 101 Digital Imaging: Image and Interactivity
147A. Electronic Technologies for Art I

GROUP IV: UPPER-DIVISION

Advanced Level

Five courses required

GROUP A:

Choose two from:

- 104CN. Personal Narrative
- 105C. Drawing: Portfolio Projects
- 105E. Chinese Calligraphy as Installation
- 106C. Painting: Portfolio Projects
- 107CN. Sculpture: Portfolio Projects
- 147B. Electronic Technologies for the Art II

GROUP B:

Group A must be completed before Group B can be taken.

Choose three from:

- 108. Advanced Projects in Art
- 110A. Contemporary Issues and Practices
- 110B. New Genres/New and Old Technologies
- 110C. Proposals, Plans, Presentations
- 110D. Visual Narrative/Tableau
- 110E. Art in Public Places/Site Specific Art
- 110F. Installation: Cross-Disciplinary Projects
- 110G. The Natural and Altered Environment
- 110H. Image and Text Art
- 111. Performing for the Camera
- 111J. Performing for the Camera
- 110K. Installation Performance
- 130. Special Projects in Visual Arts
- 132. Installation Production and Studio

GROUP V: UPPER-DIVISION

Non-Studio

Three courses required

Upper-division art history, film history, and theory/criticism courses such as:

- 113CN*. History of Criticism III: Contemporary (1950–present)
- 117B*. Theories of Representation
- 117D*. Portraiture
- 117*. Western and Non-Western Rituals and Ceremonies
- 124CN. Nineteenth Century Art
- 125A. Twentieth Century Art
- 125BN. Contemporary Art
- 125CN. Histories and Contexts of Conceptual Art
- 125E*. History of Performance
- 152. Film in Social Context
- 154. Hard Look at the Movies
- 157. Video History and Criticism
- 158. Histories of Photography
- 159/ICAM 150 History of Art and Technology
- 194. Fantasy in Film

*seminar

HONORS PROGRAM IN STUDIO

110M. Studio Honors I
110N. Studio Honors II

The Studio Honors I and the attached Studio Honors II count as one course towards the fulfillment of a Group IV requirement.

Art History/Theory/Criticism Major

The major in art history, theory, and criticism is designed both for students who desire a broadly based education in the humanities and for those who plan to pursue a career in an art-related profession. In both cases, the foundation for study is proficiency in the languages of artistic expression. Through the study of art history, students learn to treat works of art as manifestations of human belief, thought, and experience in Western and non-Western societies from prehistory to the present day. Courses in criticism review the theoretical approaches which are used to understand artistic achievement. By combining art historical and critical study, the program promotes in the student an awareness of the cultural traditions which have shaped his or her intellectual outlook and provides a framework for informed judgment on the crucial issues of meaning and expression in contemporary society.

Majors are encouraged to take relevant courses in allied disciplines such as history, communication, anthropology, and literature, and in such area programs as classics and Italian studies. In addition, students who plan to apply to graduate schools are strongly advised to develop proficiency in one or more foreign languages, as is dictated by their area of specialization.

FOUNDATION LEVEL—LOWER-DIVISION

Three courses required
<table>
<thead>
<tr>
<th>Introduction to Art History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formations of Modern Art</td>
</tr>
<tr>
<td>Information Technologies in Art History</td>
</tr>
</tbody>
</table>

Choose one from:

- Introduction to the Art of the Americas or Africa and Oceania
- Introduction to Asian Art

Choose one from:

- Introduction to Art-Making
- Introduction to Photography
- Introduction to Media

Note: VIS 23 must be completed by the end of the sophomore year or taken the first time it is offered after a junior declares an art history major or transfers into the program.

Advanced Level—Upper-Division

Thirteen courses required

Group I—Required Courses

Two courses

These two courses are required for all art history and criticism majors:

- 111 Structure of Art*
- 112 Art Historical Methods

Note: Majors must complete VIS 112 by the end of their junior year and are strongly advised to do so earlier.

* Required of Visual Arts art history, media, and studio majors.

Group II—Distributional Requirement

Six courses

Choose one course from each of the following areas:

A. European Pre-Modern: Ancient and Medieval

- 120A Greek Art
- 120B Roman Art
- 120C Late Antique Art
- 120D Prehistoric Art
- 121A The Idea of Medieval Art
- 121B Castles, Cathedrals, and Cities
- 121C Art and Gender in the Middle Ages and Renaissance
- 121D* The Illuminated Manuscript in the Middle Ages
- 128A Topics in Pre-Modern Art History
- 129A* Seminar in Pre-Modern Art History

B. European Early Modern: Renaissance and Baroque

- 122AN Renaissance Art
- 122CN Defining High Renaissance Art
- 122D Michelangelo
- 122E* The City in Italy
- 122F* Leonardo's *La Gioconda*
- 123AN Between Spirit and Flesh: Northern Art of the Early Renaissance
- 123BN* Jan van Eyck
- 123CN* Early Print Culture: The First Media Revolution
- 124AN Baroque Art
- 128B Topics in Early Modern Art History
- 129B* Seminar in Early Modern Art History

C. Modern and Contemporary

- 124BN Art and the Enlightenment
- 124CN Nineteenth Century Art
- 125A Twentieth Century Art
- 125BN Contemporary Art
- 125CN Histories and Contexts of Conceptual Art
- 125DN* Marcel Duchamp
- 125E* History of Performance
- 126F Latin American Film
- 128C Topics in Modern Art History
- 129C* Seminar in Modern Art History
- 15B Histories of Photography
- 159/ICAM 150 History of Art and Technology

D. Arts of the Americas

- 126AN Pre-Columbian Art of Ancient Mexico and Central America
- 126BN The Art and Civilization of the Ancient Maya
- 126C* Problems in Mesoamerican Art History
- 126D* Problems in Ancient Maya Iconography and Inscriptions
- 126H Pacific Coast American Indian Art
- 126I Southwest American Indian Art
- 126J African and Afro-American Art
- 126K Oceanic Art
- 126P Latin American Art, 1890–1950
- 126Q Latin American Art, 1950–Present
- 126R Latin American Photography
- 128D Topics in Art History of the Americas
- 129D* Seminar in Art History of the Americas

E. Arts of Asia

- 127B Arts of China
- 127C Arts of Modern China
- 127D* Early Chinese Painting
- 127E* Later Chinese Painting
- 127F* Japanese Buddhist Art
- 127G* Twentieth-Century Chinese Art
- 127N* Twentieth-Century Art in China and Japan
- 127P Arts of Japan
- 127Q* Japanese Paintings and Prints
- 128E Topics in Art History of Asia
- 129E* Seminar in Art History of Asia

F. Theory

- 113AN* History of Criticism I: Early Modern
- 113BN* History of Criticism II: Early Twentieth Century (1900–1950)
- 113CN* History of Criticism III: Contemporary (1950–Present)
- 117A* Narrative Structures
- 117B* Theories of Representation
- 117C* Art in Time: The Historical Dimension
- 117D* Portraiture
- 117E* Problems in Ethnoaesthetics
- 117F Theorizing the Americas
- 117G Critical Visual Theory and Practice since 1980
- 117H Constructing Gender in Fifth-Century BC Athens and Eighteenth-Century France
- 117I* Western and Non-Western Rituals and Ceremonies
- 128F Topics in Art Theory and Criticism
- 129F* Seminar in Art Theory and Criticism

* Seminar

Students must take at least three upper-division seminars in addition to VIS 112. These three additional seminars may come from any area and be taken in fulfillment of the distribution requirements or as open electives.

In accordance with standard university policy, the department requires that students take two-thirds of the upper-division courses in their major at UCSD. The distribution requirement must be fulfilled with courses taken at UCSD. Courses taken abroad or at other U.S. institutions do not count towards, and will not be substituted for, the six-course distribution requirement.

Art history majors cannot enroll in more than one upper-division seminar without having
completed Information Technologies in Art History (VIS 23) and Art Historical Methods (VIS 112).

GROUP III—Electives

Five courses

Students are required to take five upper-division courses in addition to VIS 111, VIS 112 and those used to fulfill the distribution requirements. At least three of these must be courses in art history or theory. For the remaining three, choose from the following:

- Any upper-division art history course(s) in history or theory
- Any upper-division course(s) in media history and criticism (e.g., VIS 150, 151, 152, 153, 154, 155, 156N, 157);
- Up to two upper-division courses in studio or media production; or
- With permission of art history faculty advisor, one upper-division course in a related department or program such as anthropology, history, literature, or critical gender studies.
- Two one-unit curatorial practices workshop courses (VIS 128P) count as one course towards the fulfillment of an elective.

HONORS PROGRAM IN ART HISTORY

129G* Art History Honors Seminar
129H* Art History Honors Directed Group Study

*Seminar

The completion of both the Art History Honors Seminar and the Art History Honors Directed Group Study counts as one course towards the fulfillment of the Group III requirement.

Students who meet the criteria may, with permission of the art history faculty advisor or the Art History Honors Seminar instructor, enroll in the Art History Honors Program during the last quarter of their junior year or as a senior. This program is open to juniors and seniors who meet eligibility requirements. Please consult with the departmental advisor for these requirements.

Media Major

With a visual arts foundation, the program is designed for students who want to become creative videomakers, filmmakers, photographers, and computer artists, encouraging the hybridity of media. The curriculum combines hands-on experience of making with practical and theoretical criticism, provides historical, social, and aesthetic backgrounds for the understanding of modern media, and emphasizes creativity, versatility, and intelligence over technical specializations. It should allow students to go on to more specialized graduate programs in the media arts, to seek careers in film, television, computing, or photography, or to develop as independent artists. All media majors should see the Visual Arts Undergraduate Advisor upon entrance into UCSD.

FOUNDATIONS LEVEL—LOWER-DIVISION

Six courses required

GROUP A

1 or 2 or 3 Introduction to Art Making
22 Formations of Modern Art
84 History of Film

GROUP B

40/ICAM 40 Introduction to Computing in the Arts
60 Introduction to Photography
70N Introduction to Media

All six courses listed under Groups A and B above are required. VIS 70N is a prerequisite for use of the Media Center facilities; no further production courses may be taken until VIS 70N is completed.

INTERMEDIATE LEVEL—UPPER-DIVISION

Nine courses required: six from Group A and three from Group B

GROUP A

Two courses required.

Required courses for all emphases.

111 Structure of Art
174 Media Sketchbook

VIS 174 is a prerequisite for all production classes below.

CHOOSE ONE EMPHASIS:

Four courses required

Computing Emphasis

Three courses plus one from photography or video and digital cinema

140/ICAM 101 Digital Imaging: Image and Interactivity
145A/ ICAM 102 Digital Media I: Time, Movement, Sound
147A Electronic Technologies for Art I

Photography Emphasis

Two courses plus two from computing or video and digital cinema

164 Photographic Strategies
165 Camera Techniques

Video and Digital Cinema Emphasis

Three courses plus one from computing or photography

171 Digital Cinema Theory and Production
175 Editing—Theory and Production
176 16mm Filmmaking
177 Scripting Strategies
178 Sound—Theory and Production

GROUP B—History, Criticism, and Theory

Three courses required

113BN History of Criticism II: Early Twentieth Century (1900–1950)
113CN History of Criticism III: Contemporary (1950–Present)
117B Theories of Representation
150 History and Art of the Silent Cinema
151 History of Experimental Film
152 Film in Social Context
153 The Genre Series
154 Hard Look at the Movies
155 The Director Series
156N Special Problems in Film History and Theory
157 Video History and Criticism
158 Histories of Photography
159/ICAM 150 History of Art and Technology

Note: Any art history courses in Pre-Modern, Early Modern, Modern, and Theory may be taken to fulfill the Group B requirement.

VIS 158 is required for all students with a photography emphasis.

VIS 159/ICAM 150 is required for all students with a computing emphasis.

ADVANCED LEVEL—UPPER DIVISION

Five courses required

180A Documentary Evidence and the Construction of Authenticity in Current Media Practices
180B Fiction and Allegory in Current Media Practices
183A Strategies of Self
183B Strategies of Alterity
Three of the above are required for the photography and video and digital cinema emphases and two are required for the computing emphasis. The A and B portion of VIS 180 and VIS 183 courses cannot be taken concurrently.

ELECTIVES

Computing Emphasis
Three courses required.
145B Time- and Process-Based Digital Media II
147B Electronic Technologies for Art II
149/ICAM 130 Seminar in Contemporary Computer Topics

Photography Electives
Two courses required.
166 Advanced Camera Techniques
168 Color Techniques in Photography

Video and Digital Cinema Electives
Two of the courses below required.
181 Sound and Lighting
182 Advanced Editing
184 Advanced Scripting

If not taken previously, one of the 180A, 180B, 183A, or 183B courses must be used toward the upper-division elective requirement.

Students must have senior standing before any of the following four courses may be taken and instructor approval is required to enroll.
109 Advanced Projects in Media
131 Special Projects in Media
132 Installation Production and Studio
197 Media Honors Thesis

Note: Enrollment in production courses is limited to two per quarter. Production courses are numbered VIS 109, 131, 132, 140/ICAM 101, 145A/ICAM 102, 145B, 147A-B, 164-184.

Pre-Interdisciplinary Computing in the Arts (ICAM) Major

Changes pending; contact department for most current information.

Student interest in the Interdisciplinary Computing in the Arts (ICAM) major has been strong. Because the department has limited resources to accommodate student demand, it is necessary to limit admission to this major to the most highly qualified students. Beginning fall 2002, any student admitted to UCSD who wishes to declare an ICAM major will be admitted to the pre-major.

Freshmen designated as pre-majors must complete the eight required lower-division courses for the ICAM pre-major within six quarters (i.e., by the end of their sophomore year). Upon completion of these courses, pre-majors seeking entrance into the major must formally apply at the Department of Visual Arts Undergraduate Program Office. Admission to the major will be based on the following criteria: 1) performance in the required lower-division courses as measured by GPA of 3.0 or higher, determined by the department on an annual basis; 2) submission of a portfolio of work acceptable to the department; and 3) an artistic statement. The portfolio will consist of at least two projects that the student has produced in ICAM 40/VIS 40, in another digital arts class, or independently that in the faculty’s judgment demonstrate that the student possesses the artistic ability and technical skills to perform at a high level in upper-division courses within the major. Pre-majors should consult the undergraduate staff advisor to the form in which projects should be submitted (disks, slides, tapes, etc.). Transfer students are admitted initially as pre-majors and must apply for admission to the major when they have completed their lower-division requirements. Transfer students entering with thirty-six or more quarter units must apply for admission to the major no later than their third quarter of study at UCSD. At the time of admission to the pre-major, transfer students’ transcripts will be evaluated by the department to determine what courses they have completed elsewhere, if any, may be petitioned as equivalent to required courses. Transfer students should be prepared to provide course descriptions and other materials that may be required to determine the content of such courses.

ARTS (four courses required)
MUS 4 Introduction to Western Music
VIS 1 Introduction to Art-Making: Two-Dimensional Practices
VIS 22 Formations of Modern Art
VIS 70N Introduction to Media

COMPUTING AND THE ARTS (one course required)
VIS 40/ICAM 40 Introduction to Computing in the Arts

COMPUTER SCIENCE (one course required)
CSE 11 Introduction to Computer Science and Object-Oriented Programming: JAVA

Note: CSE 11 is an accelerated course in the JAVA programming language. CSE 8A/8L and 8B, which cover the same material in a non-accelerated format, may be substituted.

MATHMATICS (two courses required)
MATH 20A Calculus for Science and Engineering
MATH 20B Calculus for Science and Engineering

Note: MATH 20A and 20B are accelerated calculus courses for science and engineering. MATH 10A, 10B, and 10C, which cover similar material in a non-accelerated format, may be substituted.

Pre-ICAM majors are not permitted to enroll in any upper-division production courses until the student has applied and been officially accepted to the ICAM major. Upper-division production courses are numbered VIS 109, 131, 132, 140/ICAM 101, 141A-B, 145A/ICAM 102, 145B, 147A-B, 174, ICAM 120, 160A-B.

Any student admitted to UCSD before fall 2002, whether as a freshman or a transfer student, may continue to declare an ICAM major by completing a Change of Major form at the Department of Visual Arts Undergraduate Program Office, attending a departmental orientation meeting, and obtaining a department stamp.

Interdisciplinary Computing and the Arts (ICAM)

The Interdisciplinary Computing and the Arts major in the Music and Visual Arts departments draws upon, and aims to bring together, ideas and paradigms from computer science, art, and cultural theory. It takes for granted that the computer has become a metamedium and that artists working with computers are expected to combine different media forms in their works. All of this makes the program unique among currently existing computer art or design programs which, on the one hand, usually focus on the use of computers for a particular media (for instance, specializing in computer animation, or computer music, or computer design for print) and, on the other hand, do not enter into a serious dialogue with current research in computer
science, only teaching the students “off-the-shelf” software.

The program also recognizes that creating sophisticated artistic works with computers requires a new model of the creative process, one which combines traditional artistic procedures with the experimental research characteristic of the sciences. All in all, it aims to train a new type of cultural producer, who is familiar with art and media history, who is equally proficient with computer programming and artistic skills, who is always ready to learn new technologies, and who is comfortable interacting with scientists and computer industry resources.

The goals of the program are:
• to prepare the next generation of artists who will be functioning in a computer-mediated culture
• to give students necessary technical, theoretical, and historical backgrounds so they can contribute to the development of new aesthetics for computer media
• to prepare students to mediate between the worlds of computer science and technology, the arts, and the culture at large by being equally proficient with computing and cultural concepts
• to give students sufficient understanding of the trajectories of development in computing so they can anticipate and work with the emerging trends, rather than being locked in particular software currently available on the market

LOWER-DIVISION
Eight courses required

Arts
Four courses required
MUS 4 Introduction to Western Music
VIS 1 Introduction to Art-Making: Two-Dimensional Practices
VIS 22 Formations of Modern Art
VIS 70N Introduction to Media

Computer Science
One course required
CSE 11 Introduction to Computer Science: JAVA

NOTE: CSE 11 is an accelerated course in the JAVA programming language. CSE 8A/8L and 8B, which cover the same material in a non-accelerated format, may be substituted.

Mathematics
Two courses required
MATH 20A Calculus for Science and Engineering
MATH 20B Calculus for Science and Engineering

NOTE: MATH 20A and 20B are accelerated calculus courses for Science and Engineering. MATH 10A, 10B, and 10C, which cover similar material in a non-accelerated format, may be substituted.

Computing and the Arts
One course required
ICAM 10 Introduction to Computing in the Arts

Foundations
Three courses required
ICAM 101/ VIS 140 Digital Imaging: Image and Interactivity
ICAM 102/ VIS 145A Digital Media I: Time, Movement, Sound
ICAM 103/ MUS 170 Musical Acoustics

Advanced
Four courses required
Choose one from:
VIS 141B Computer Programming for the Arts II
VIS 145B Time- and Process-Based Digital Media II
VIS 147B Electronic Technologies for Art II
MUS 172 Computer Music II

Choose three from:
ICAM 120 Virtual Environments
ICAM 130/ VIS 149 Seminar in Contemporary Computer Topics
VIS 109 Advanced Projects in Media
VIS 131 Special Projects in Media
VIS 132 Installation Production and Studio
VIS 141A Computer Programming for the Arts I
VIS 147A Electronic Technologies for Art I
VIS 174 Media Sketchbook

MUS 171 Computer Music I
MUS 173 Audio Production: Mixing and Editing
MUS 174A-B-C Recording/MIDI Studio Techniques
MUS 175 Musical Psychoacoustics
MUS 176 Music Technology Seminar

Theory and History
Two courses required
ICAM 150/ VIS 159 History of Art and Technology
and one of:
VIS 123CN Early Print Culture: The First Media Revolution
VIS 125E History of Performance
VIS 150 History of Silent Cinema
VIS 151 History of the Experimental Film
VIS 152 Film in Social Context
VIS 153 The Genre Series
VIS 154 Hard Look at the Movies
VIS 155 The Director Series
VIS 156N Special Problems in Film History and Theory
VIS 157 Video History and Criticism
VIS 158 Histories of Photography
VIS 194 Fantasy in Film
MUS 111 Topics/World Music Traditions
MUS 114 Music of the Twentieth Century

Senior Project
Two courses required
ICAM 160A Senior Project in Computer Arts I
ICAM 160B Senior Project in Computer Arts II

NOTE: Enrollment in production courses is limited to two per quarter. Production courses are numbered VIS 109, 131, 132, 140/ICAM 101, 141A-B, 145A/ICAM 102, 145B, 147A-B, 174. ICAM 120, 160A-B.

Master of Fine Arts Program

The program is designed to provide intensive professional training for the student who proposes to pursue a career within the field of art—including art making, criticism, and theory. The scope of the UCSD program includes painting, sculpture, performance, installation art, photography, film, video, and digital media. The program is unique in that the course of study provides for and encourages student mobility within this range of traditional and media-based components. It also offers opportunities for collaborative work.
The educational path of students is focused around their particular interests in art. The department seeks to provide an integrated and comprehensive introduction to the possibilities of contemporary art production, the intellectual structures which underlie them, and the “world view” which they entail. All art-making activities are considered serious intellectual endeavors, and all students in the program find themselves confronted by the need to develop their intellectual and critical abilities in working out their artistic positions. A body of theory-oriented courses is required. Therefore, we have no craft-oriented programs or facilities; nor do we have any courses in art education or art therapy. The courses offered are intended to develop in the student a coherent and informed understanding of the past and recent developments in art and art theory. The program also provides for establishing a confident grasp of contemporary technological possibilities, including those involved in film, video, photography, and the electronic media.

The program includes formal education in lecture and seminar courses as well as study groups, studio meetings, and quarterly departmental critiques. Course work is intended to place art making in critical and intellectual context but doesn’t underestimate the central importance of the student’s own work. In fact, this aspect of the student’s activity is expected to be self-motivated and forms the core around which the program of study operates and makes sense.

No two students will necessarily follow the same path through the degree program, and the constitution of individual programs will depend upon the analysis of their individual needs and interests, worked out by students in collaboration with their individual faculty advisors.

Admission Requirements

Grade-Point Average—An overall GPA of 3.00 and a 3.50 in a student’s undergraduate major is required.

Art History—Students are expected to have had at least four semester courses or six quarter courses in art history and/or film history/criticism at the undergraduate level. Those who have a broader art history background will have a better chance of being awarded teaching assistantships. Students without this requirement can be admitted, but they may be expected to make up the six courses in excess of the seventy-two units required for the degree. If there are questions concerning this requirement, check with the department student affairs advisor.

Statement—Students are required to submit an essay of one-to-three pages on the direction of their work and its relationship to contemporary art. This essay should be critical in nature, refer explicitly to the student’s own work, and may refer to other artists, recent events in art history, and issues in domains other than art that have bearing on the student’s process, thought, and work.

Work—Students are asked to submit documentation of their best work in a suitable format such as slides, videotape, film, diskettes, CD, DVD, photographs, etc. These will be returned upon review of the application. It is necessary to include a self-addressed, stamped envelope for return of work.

Regular University Admission Policies

Please note that no application will be processed until all required information has been received.

Students should submit applications with the application fee to the graduate admissions office using the UCSD online application on or before Wednesday, January 16, 2008. Portfolio, statement of purpose, letters of recommendation, and official transcripts should be sent directly to the department and postmarked no later than January 16, 2008.

Requirements for the Degree

The M.F.A. is considered a terminal degree in studio work, and is a two- to three-year program. The following requirements must be completed in order to receive the M.F.A.:

First Year Review—This review takes place in the third quarter in residence. Students make a formal presentation of their work to a faculty committee; this includes a position paper and an oral examination. This presentation is considered a departmental examination, and if at its conclusion the student’s work is judged to be inadequate, the student may be dismissed regardless of GPA, or may be reviewed again in the fourth quarter.

Seventy-two units of course work, including a four-unit apprentice teaching course, are required. Students may select sixteen of these units (four courses) from upper-division undergraduate course offerings. (See listings in this catalog.)

There are six required Visual Arts core seminars:

- Introduction to Graduate Studies in the Visual Arts (VIS 200)
- Contemporary Critical Issues (VIS 201)
- Art Practice Seminar (VIS 202)
- Working Critique Seminar (VIS 203)
- Introduction to Graduate Studies in Art Practice (VIS 205)
- one course in either Art Practice/Theory group or the Art History/Theory/Criticism group

Specific information on other course distribution requirements can be obtained from the department. One additional graduate course is required and must be taken in another department.

Students who remain registered in the third (optional) year must average one graduate course per quarter.

The M.F.A. Final Presentation

Presentation of Work—During the last quarter in residence, each student is required to present to the public a coherent exhibition or screening of his or her work.

Oral Examination—A committee of three Department of Visual Arts faculty members and one faculty member from another department will administer an oral examination to each student covering the student’s work and its relationship to the field of art.

Thesis—Students are required to submit some form of written work for the M.F.A. degree. Four options are available:

1. **Catalog**—The student would design and have printed an actual catalog. This would include a critical essay of approximately 1,500 words.

2. **Critical paper**—The student would write a critical paper of 3,000 words analyzing his or her process and the relationship of his or her work to recent art history, with references to contemporary styles and specific artists.

3. **Analytical essay on some phase of art**—Students who have focused on both art production and art criticism would write a 3,000 word critical essay on any current art position. A brief discussion (750 words) of the student’s work would also be included.
4. Critical thesis—Students whose emphasis is essentially criticism and who do not present an M.F.A. exhibition would write a forty- to fifty-page thesis—the topic to be decided by the student and his or her advisor.

Additional information can be obtained from the graduate office of the Department of Visual Arts.

Ph.D. Program

The Department of Visual Arts offers the Ph.D. degree in art history, theory, and criticism with concentrations in any of the areas in which faculty do research (see below). Offering a distinct alternative to existing Ph.D. programs in art history, the program centers on a unique curriculum that places art objects and practice at the center of inquiry; both past and present, and encompassing fine art, media, and mass culture, even as it encourages examination of the larger frameworks—historical, cultural, social, intellectual, and theoretical—within which the category “art” has been contextualized in the most recent developments in the discipline.

This program is also distinctive in that it is housed within a department that has been for many years one of the nation’s leading centers of art practice and graduate education in studio, media, and—most recently—digital media. The offering of the Ph.D. and M.F.A. degrees is based on the department’s foundational premise that the production of art and the critical, theoretical, and historical reflection upon it inherently and necessarily participate in a single discursive community. This close integration of art history and art practice is reflected in the inclusion of a concentration in art practice within the Ph.D. in art history, theory, and criticism.

The innovative character of this program is most evident in a unique curricular structure that is broadly organized into three groups of seminars. The importance of critical theory to the field today is reflected in the seminars under the Theories/New Visions group, while the study of art in its concrete historical, social, and cultural contexts, across different cultures and media, is emphasized in time, place, and media specific seminars listed under Times/Terrains.

The program builds most distinctively on recent developments in the field in the seminars under the heading Categories/Constructs. These seminars address the core questions about artworks and practices that the department believes every doctoral student in art and media history, whatever his or her area of specialization, should engage. How is the category “art” itself produced, now and in the past, in the urbanized and in other cultures, and in the context of ever-changing technologies? How are artistic identities constructed across distinct epochs and societies, and with reference to categories such as gender and ethnicity? What are the circumstances and contexts (social, intellectual, institutional, and the like) within which art is both produced and disseminated? What are the alternative modes of engaging art objects and practices and what are the histories and theoretical assumptions of the specialized discourses used to describe and analyze them?

Seminars in the Categories/Constructs group are unique in the degree to which they foreground the self-critical turn in recent art and media history by making reflection upon the central concepts, constructs, categories, and languages of art historical inquiry a key programmatic concern. They are also distinctive in that they are designed to cut across traditional categories of history and contemporaneity, art and media (film, video, photography, digital media), history and theory, and to promote cross-cultural inquiry insofar as they center on questions crucial to the study of art of diverse cultures as well as diverse art forms and historical epochs.

Admission

Applicants may apply to the Ph.D. program only. The policy of UCSD is to admit in the fall quarter only. Applications for admission must be postmarked January 16, and selections will be made by April 1. For circumstances under which the M.A. is granted, see below. Prior to matriculation, students must have obtained a bachelor’s or master’s degree in art history, art practice, or another field approved by the departmental committee on graduate studies, such as (but not limited to) history, literature, anthropology, or philosophy.

Applicants must submit their academic transcripts, scores on the Graduate Record Examination, three letters of recommendation, a statement of purpose (no more than 750 words), and a sample of written work (e.g., senior honors thesis, M.A. thesis, or other research or critical paper, preferably in art or media history). An overall GPA of 3.00 and a 3.50 in a student’s undergraduate major are required. The Test of English as a Foreign Language (TOEFL) is required for international applicants. Applicants must have a good reading knowledge of at least one of the foreign languages required for graduate study at the time they enter the program.

Please note that no application will be processed until all required information has been received. Students should submit applications with the application fee to the graduate admissions office on or before Wednesday, January 16, 2008. The Statement of Purpose and letters of recommendation may be submitted online along with the application. If submitting hard copies they are to be sent directly to the department graduate coordinator.

Areas of Concentration

During the first year of study, each student must declare an area of major concentration in consultation with his or her individual faculty advisor and with the approval of the Ph.D. graduate advisor. The major concentration may be selected from the following: ancient art; medieval art; renaissance art; early modern art; modern art (nineteenth and twentieth centuries); contemporary art; media studies (film, video, photography, digital media); Meso-American art; and art practice. A student may also choose, in consultation with his or her advisor and the Ph.D. graduate advisor, a field of emphasis that cuts across the areas within the department (e.g., art or media theory and criticism) or, with appropriate approvals, one that involves another department (e.g., early modern art history and history). Once the field of emphasis is established, it will be the responsibility of the student and his or her advisor to devise a program of courses, independent study and outside reading, over and above the required program, that will ensure that the student will attain command of the major field of emphasis.

Course Work

A normal full-time program consists of twelve units per quarter. Prior to the qualifying examination, students will be expected to complete eighty-four units, equivalent to twenty-one four-unit courses (normally accomplished in seven to nine quarters). This twenty-one-course requirement will normally be satisfied by a combination of graduate seminars, reading courses, independent study, and apprentice teaching. No more
than three may be apprentice teaching; no more than two may be reading courses; and no more than two may be graduate seminars in art practice or art practice/theory. By reading course, we mean an upper-division undergraduate course which a student takes with additional reading and writing requirements. Full-time study is expected; part-time study will be considered on a case-by-case basis and for a limited time. Graduate seminars in Art History, Theory, and Criticism should comprise the bulk of the student’s twenty-one-course requirement.

All students are required to take the following seminars in their first year of study: VIS 200 Introduction to Graduate Studies in Visual Art and VIS 204 Re-Thinking Art History. For students in the art practice concentration, VIS 206 Seminar in Art Practice Research must also be taken in their first year of study. Students will also take, at some point, one seminar from the Art Practice/Theory group, VIS 210-VIS 219. One four-unit apprentice teaching course is also required.

In order to ensure that students attain a reasonable measure of historical and cultural breadth, all students are required to take one seminar from at least four of the following areas: 1) ancient or medieval art; 2) renaissance or early modern art; 3) modern or contemporary art; 4) media studies; 5) non-western art.

A student who has completed some graduate work in art history, theory, and criticism before entering UCSD, there may be some appropriate adjustments in course work as approved by petition to the Ph.D. graduate advisor and the department chair.

Foreign Language Requirements

Students will be required to demonstrate reading knowledge of at least two of the foreign languages required for advanced study in art history, theory, and criticism. One should be the language most directly relevant to the student’s area of specialization. The student and his or her individual advisor will jointly determine the examination languages.

Foreign language requirements will normally be satisfied by passing examinations requiring sight translation of texts in art history, theory, and criticism. Students are required to pass their entering language examination in order to be advanced to their second year in the program. The first-year language examination will be offered during the fall quarter of the entering year. The second required language examination will be offered during the fall quarter of the second year in the program. Students must pass both language examinations by the end of their second year to continue in the program.

Examinations

No later than the first quarter of the third year, the student, in consultation with his or her individual advisor, will form a qualifying examination committee which will consist of four members drawn from the visual arts department faculty (two art history, theory, and criticism faculty and at least one tenured studio faculty) and one tenured faculty member drawn from another department. This committee will conduct the qualifying examination required by university policy and oversee completion of the dissertation. The membership of the committee must be approved by the Ph.D. graduate advisor and ultimately the dean of Graduate Studies. The qualifying examination will consist of a three-hour written examination, followed within the next two days by a two-hour oral examination, in the student’s major field. A student must have completed all required course work and passed all language examinations before taking the qualifying examination, which will be held no later than the end of the third year. Upon successful completion of the qualifying examination, the student will be advanced to candidacy.

A student who fails either the written or the oral examination may petition the committee and Ph.D. graduate advisor to repeat the examination. Any student who fails a second time will not be advanced to candidacy. In some cases, the committee and graduate program director may judge such student eligible to receive a terminal M.A. (see below).

Dissertation

Following successful completion of the qualifying examinations, the student will complete a doctoral dissertation in his or her field of emphasis. Upon selection of the dissertation topic, a colloquium will be held at which the student will present a prospectus that outlines the topic and program of research for discussion by the graduate group and for approval by his or her committee. After the committee has reviewed the finished dissertation, the student will defend his or her thesis orally.

Normative Time from Matriculation to Degree

The student will normally advance to candidacy in two and one-half to three years and must be advanced to candidacy by the end of fourth years. He or she will normally complete the research for and writing of the dissertation by the end of his or her sixth year of study. Total university support may not exceed seven years, and total registered time at UCSD may not exceed eight years.

M.A. Degree

All students will apply for and be admitted to the Ph.D. program. An M.A. degree may be awarded to continuing Ph.D. students upon successful completion of the following: (1) at least 12 four-unit courses, including VIS 200 Introduction to Graduate Studies in Visual Art, VIS 204 Re-Thinking Art History, and one seminar from the group VIS 210-219; (2) a three-hour written examination in a designated field of emphasis (see Examinations above); (3) one language examination; and (4) an M.A. thesis. The M.A. is not automatically awarded; students must apply in advance to the Ph.D. graduate advisor and in accordance with university procedures, no later than the first two weeks of the quarter in which they expect to receive the degree.

Students interested in an M.A. only are not admitted to our program.

Courses

For course descriptions not found in the 2007–2008 General Catalog, please contact the department for more information.

Note: The following list of courses represents all visual arts offerings; not all courses are offered each year.

Lower-Division

1. Introduction to Art-Making: Two-Dimensional Practices (4)

An introduction to the concepts and techniques of art making with specific reference to the artists and issues of the twentieth century. Lectures and studio classes will examine the nature of images in relation to various themes. Drawing, painting, found objects, and texts will be employed. Prerequisite: none. This course is offered only one time each year.
2. Introduction to Art Making: Motion and Time Based Art (4)
An introduction to the process of art making utilizing the transaction between people, objects, and situations. Includes both critical reflection on relevant aspects of avant-garde art of the last two decades (Duchamp, Cage, Rauschenberg, Gertrude Stein, conceptual art, happenings, etc.) and practical experience in a variety of artistic exercises. This course is offered only one time each year.

3. Introduction to Art-Making: Three-Dimensional Practices (4)
An introduction to art making that uses as its base the idea of the “conceptual.” The lecture exists as a bank of knowledge about various art world and non-art world conceptual plays. The studio section attempts to incorporate these ideas into individual and group projects using any “material.” This course is offered only one time each year.

20. Introduction to Art History (4)
This course examines history of Western art and architecture through such defining issues as the respective roles of tradition and innovation in the production and appreciation of art; the relation of art to its broader intellectual and historical contexts; and the changing concepts of the monument, the artist, meaning, style, and “art” itself. Representative examples will be selected from different periods, ranging from Antiquity to Modern. Content will vary with the instructor. Prerequisite: none.

21A. Introduction to the Art of the Americas or Africa and Oceania (4)
Course offers a comparative and thematic approach to the artistic achievements of societies with widely divergent structures and political organizations from the ancient Americas to Africa and the Pacific Islands. Topics vary with the interests and expertise of the instructor. Prerequisites: none.

21B. Introduction to Asian Art (4)
Survey of the major artistic trends of India, China, and Japan, taking a topical approach to important developments in artistic style and subject matter to highlight the art of specific cultures and religions. Prerequisites: none.

22. Formations of Modern Art (4)
Wide-ranging survey introducing the key aspects of modern art and criticism in the nineteenth and twentieth centuries, including Neo-Classicism, Romanticism, Realism, Impressionism, Post-Impressionism, Symbolism, Fauvism, Cubism, Dada and Surrealism, Abstract Expressionism, Minimalism, Earth Art, and Conceptual Art. Prerequisite: none.

23. Information Technologies in Art History (4)
This seminar introduces fundamentals of art historical practice such as descriptive and analytical writing, compiling annotated bibliographies with traditional and online resources, defining research topics, and writing project proposals. Prerequisite: none.

Note: Prerequisite for VIS 112 and highly recommended for all other seminars. Must be taken within a year of declaring major or transferring into the art history program.

40. Introduction to Computing in the Arts (4)
(Cross-listed with ICAM 40.) An introduction to the conceptual uses and historical precedents for the use of computers in art making. Preparation for further study in the computer arts area by providing overview of theoretical issues related to the use of computers by artists. Introduces the students to the program’s computer facilities and teaches them basic computer skills. Prerequisite: none. Materials fee required.

60. Introduction to Photography (4)
An in-depth exploration of the camera and darkroom techniques in color photography. Emphasis on developing reliable control of the fundamental materials and procedures through lectures, field, and lab experience. Basic discussion of image making included. Prerequisite: none. Materials fee required.

70N. Introduction to Media (6)
Operating as both a lecture and production course, this introductory class provides a technical foundation and theoretical context for all subsequent production-oriented film and video studies. In the laboratory, the student will learn the basic skills necessary to initiate video production. Completion of Visual Arts 70N is necessary to obtain a media card. Prerequisite: none. Materials fee required.

84. History of Film (4)
A survey of the history and the art of the cinema. The course will stress the origins of cinema and the contributions of the earliest filmmakers, including those of Europe, Russia, and the United States. Prerequisites: two from VIS 1, 2, 3 and either 22 or 111.

87. Freshman Seminar (1)
The Freshman Seminar program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman seminars are offered in all campus departments and undergraduate colleges, and topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students with preference given to entering freshmen.

UPPER-DIVISION

104A. Performing the Self (4)
Using autobiography, dream, confession, fantasy, or other means to invent one’s self in a new way, or to evoke the variety of selves in our imagination, the course experiments with and explores the rich possibilities available to the contemporary artist in his or her own persona. Prerequisites: two from VIS 1, 2, 3 and either 22 or 111.

104BN. Verbal Performance (4)
The course is designed to introduce the student to the part played by language in contemporary performance art. Monologues, musically derived sound poetry, vocalizations, verbally inscribed installations, and the uses of language and voice in film and video are some of the areas explored. Prerequisite: VIS 104A.

104CN. Personal Narrative (4)
The course will explore primary experiential materials to more fully understand the relationship of voice, style, language, and personality, to issues of memory, identity, self-awareness, and desire. Instructor and student will discuss student work as well as published personal narrative. Prerequisite: VIS 104BN.

105A. Drawing: Representing the Subject (4)
A studio course in beginning drawing covering basic drawing and composition. These concepts will be introduced by the use of models, still life, landscapes, and conceptual projects. Prerequisites: two from VIS 1, 2, 3 and either 22 or 111.

105B. Drawing: Practices and Genre (4)
A continuation of VIS 105A. A studio course in which the student will investigate a wider variety of technical and conceptual issues involved in contemporary art practice related to drawing. Prerequisite: VIS 105A.

105C. Drawing: Portfolio Projects (4)
A studio course in drawing, emphasizing individual creative problems. Class projects, discussions, and critiques will focus on issues related to intention, subject matter, and context. Prerequisite: VIS 105B.

105D. The Aesthetics of Chinese Calligraphy (4)
This course examines Chinese calligraphy as an art form. This conceptually based introductory course combines fundamental studio exercises with creative explorations. Students are exposed to traditional and contemporary forms of Chinese calligraphy while encouraged to experiment with basic aesthetic grammars. Prerequisite: VIS 105A.

105E. Chinese Calligraphy as Installation (4)
This course concerns East–West aesthetic interactions. What are the conceptual possibilities when calligraphy, an ancient form of Chinese art, is combined with installation, a contemporary artistic Western practice? Emphasis is placed on such issues as cultural hybridity, globalization, multiculturalism, and commercialization. Prerequisite: VIS 105D.

106A. Painting: Image Making (4)
A studio course focusing on problems inherent in painting—transferring information and ideas onto a two-dimensional surface, color, composition, as well as manual and technical procedures. These concepts will be explored through the use of models, still life, and landscapes. Prerequisites: two from VIS 1, 2, 3 and either 22 or 111.

106B. Painting: Practices and Genre (4)
A continuation of VIS 106A. A studio course in which the student will investigate a wider variety of technical and conceptual issues involved in contemporary art practice related to painting. Prerequisite: VIS 106A.

106C. Painting: Portfolio Projects (4)
A studio course in painting emphasizing individual creative problems. Class projects, discussions, and critiques will focus on issues related to intention, subject matter, and context. Prerequisite: VIS 106B.

107A. Sculpture: Making the Object (4)
A studio course focusing on the problems involved in transferring ideas and information into three-dimensions. Course will explore materials and construction as dictated by the intended object. Specific problems to be investigated will be determined by the individual professor. Prerequisites: two from VIS 1, 2, 3 and either 22 or 111.

107B. Sculpture: Practices and Genre (4)
A studio course in which the student will investigate a wider variety of technical and conceptual issues as well as materials involved in contemporary art practice related to sculpture. Prerequisite: VIS 107A.

107CN. Sculpture: Portfolio Projects (4)
A studio course in sculpture emphasizing individual creative problems. Class projects, discussions, and critiques will focus on issues related to intention, subject matter, and context. Prerequisite: VIS 107B.

108. Advanced Projects in Art (4)
A studio course for serious art students at the advanced level. Stress will be placed on individual cre-
ative problems. Specific orientation of this course will vary with the instructor. Topics may include film, video, photography, painting, performance, etc. May be repeated twice for credit. Prerequisite: consent of instructor, department stamp required.

109. Advanced Projects in Media (4)
Individual or group projects over one or two quarters. Specific project organized by the student(s) will be realized during this course with instructor acting as a close advisor/critic. Concept papers/scripts must be completed by the instructor prior to enrollment. Prerequisites: VIS 180A and VIS 180B for media majors, or consent of instructor for ICAM majors. Open to media and ICAM majors only. Two production course limitation.

110A. Contemporary Issues and Practices (4)
An examination of contemporary studio art practice. The course is divided among research, discussion, and projects. Field trips to galleries and discussions with artists will combine with the students moving their work into a dialogue with the issues raised. Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B.

110B. New Genre/New and Old Technologies (4)
Advances the idea of different materials, methods, and practices raised at the intermediate level in drawing, painting, and sculpture, and explores and utilizes new and traditional media in studio production of work. Emphasis on multiple media, combining traditional and electronic media, as well as different genres, in an attempt to create new directions for the student’s ideas. Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B.

110C. Proposals, Plans, Presentations (4)
Explores the use of the maquette, or sketch, in the process of developing, proposing and planning visual works in various media for public projects, site specific works, grants, exhibition proposals, etc. The student will work on synthesizing ideas and representing them in alternate forms that deal with conception, fabrication and presentation. Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B.

110F. Installation: Cross-Disciplinary Projects (4)
Attempts to expand the idea contained in a singular work or object, into the use of multiple objects, images, and media that redefines the idea as well as the space for which it is intended. Examination of historic, modern, and contemporary works would be brought into discussion of project development and execution. Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B.

110G. The Natural and Altered Environment (4)
Explores the natural and altered environment as a basis for subject as well as placement of work pertaining to the environment. Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B.

110H. Image and Text Art (4)
Devoted to the study and practice of the multiple ways in which writing and other forms of visible language have been incorporated into contemporary and traditional artworks, including artists’ books, collaging and poster art, visual and concrete poetry, typographical experiments, and calligraphies. Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B.

110I. Performing for the Camera (4)
The dematerialization of the performer into a media based image—video, film, slides, still photographs, using the camera as a spy, a co-conspirator, a friend or a foe—employing time lags, spatial derangement, image deconstruction, along with narrative, text, history, to invent time based pieces that break new ground while being firmly rooted in an understanding of the rich body of work done in this area over the last three decades. Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B.

110J. Ritual Performance (4)
The course will explore forms of art making that use dream and myth, body art, dance, social drama, happenings, story telling, and enactments of contemporary and traditional forms of performance art that involve a crossing of the lines between different art genres. Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B.

110K. Installation Performance (4)
The artist as performer working with materials, objects, props, technology, to create multi-layered, experimental, interesting three-dimensional art spaces in which the artist’s body, voice, actions, or memory, moves through, enlivens, or haunts the physical space. Prerequisites: two from VIS 104CN, 105C, 106C, 107CN and 147B.

110M. Studio Honors I (4)
An advanced studio course intended for the productive, motivated, and self-disciplined student with a clear and unified body of work. The intent is to help refine and expand the student’s work and ideas towards an exhibition and verbal written position. Prerequisite: consent of the instructor, department stamp required. Note: The Studio Honors I and the attached Studio Honors II count as one course toward the fulfillment of a Group IV requirement.

110N. Studio Honors II (4)
The second advanced studio course in the Honors Program in Studio, the successful completion of which will lead towards an honors degree in the studio major. The course builds on the critical and technical issues raised in Studio Honors I. Prerequisite: VIS 110M.

111. The Structure of Art (4)
This course will address the structure of signification in art. We will consider the modes of signification in a wide range of representational and nonrepresentational artworks from architecture through drawing, painting, sculpture, photography, video, and film to performance. Examples will be selected from various places and epochs. This course is required for transfer students. This course is offered during winter quarter only.

112. Art Historical Methods (4)
A critical review of the principal strategies of investigation in past and present art-historical practice, a scrutiny of their contexts and underlying assumptions, and a look at alternative possibilities. The various traditions for formal and iconographic analysis as well as the categories of historical description will be studied. Required for all art history and criticism majors. Prerequisites: VIS 23 and one upper-division art history course; two recommended.

113AN. History of Criticism I: Early Modern (4)
Introducing Classical Medieval and Renaissance theories of the image, we concentrate on developments in the eighteenth and nineteenth centuries: Neo-Classicism, Romanticism, Realism, and Symbolism. Prerequisite: one from VIS 20; VIS 21A; VIS 21B; VIS 22 or upper-division standing.

113BN. History of Criticism II: Early Twentieth Century (1900–1950) (4)
The principal theories of art and criticism from Symbolism until 1945: formalism and modernism, abstraction, Surrealism, Marxism, and social art histories, phenomenology, existentialism. Prerequisite: none; VIS 112 or two upper-division courses in art history strongly recommended.

113CN. History of Criticism III: Contemporary (1950–Present) (4)
Recent approaches to the image in art history and visual culture: structuralism, semiotics, psychoanalysis, post-structuralism, post-modernism, feminism, post-colonialism, cultural studies. Prerequisite: none; VIS 112 or two upper-division courses in art history strongly recommended.

117A. Narrative Structures (4)
How can a fixed image represent events in time? The strategies of storytelling and their consequences for the meaning of works of art will be investigated. Content of the course will vary. May be repeated twice for credit with permission of the instructor. Prerequisite: none; VIS 112 or two upper-division courses in art history strongly recommended.

117B. Theories of Representation (4)
A discussion of major Western theories of representation with a critique of their applicability to art. Material is drawn from a wide variety of historical periods from Antiquity to Modern. Emphasis is given to theories of special significance for art history, but some attention is given to representation theories in other contexts. Readings may include selections from such modern theorists as Peirce, Panofsky, Gombrich, Bernheimer, Barfield, Barthes, Goodman, Foucault, Bryson, Summers, and Mitchell and from classic texts by Plato, Aristotle, John of Damascus, Alberti, and Leonardo. Prerequisite: none; one or more upper-division courses in art history strongly recommended. Note: Majors must have taken VIS 23.

117E. Problems in Ethnoaesthetics (4)
This seminar will address and critique various approaches to studying the art of non-Western societies with respect to their own aesthetic and cultural systems. Students are encouraged to explore comparative philosophies of art and test paradigms of Western aesthetic scholarship. Prerequisite: none; VIS 2 or 112 or two upper-division courses in art history strongly recommended.

117F. Theorizing the Americas (4)
Examines the philosophical debates that locate the Americas in relation to the modern world. Prerequisite: upper-division standing.

117G. Critical Theory and Visual Practice since 1980 (4)
This seminar will examine key moments in the interaction between the world of art and the world of ideas: the goal is to get you thinking about the whole theory/practice relation, as it connects with your own projects and research. Prerequisite: upper-division standing.

117H. Constructing Gender in Fifth-Century BC Athens and Eighteenth-Century France (4)
Ideas concerning gender and sexuality are crucial in every human society, but there are enormous shifts between cultures and historical periods. This course examines the changing cultural constructions of sexuality by examining in detail two very different epochs. Prerequisite: upper-division standing.
117I. Western and Non-Western Rituals and Ceremonies (4)
This course will examine the process of image-making within specific ceremonies and/or rituals. Selected ceremonies from West Africa, Melanesia, Nepal, and the United States, including both Christian and non-Christian imagery, will be considered. Performance art and masquerade will be examined within a non-Western framework. Prerequisite: upper-division standing; VIS 21A recommended.

120A. Greek Art (4)
Greek classical civilization was a turning point in the history of humanity. Within a new kind of society, the idea of the individual as free and responsible was forged, and with it the invention of history, philosophy, tragedy, and science. The arts which expressed this cultural explosion were no less revolutionary. The achievements of Greek art in architecture, sculpture, and painting will be examined from their beginnings in the archaic period, to their epoch-making fulfillment in the classical decades of the fifth century B.C., to their diffusion over the entire ancient world in the age of Alexander and his successors. Prerequisite: none; VIS 20 recommended.

120B. Roman Art (4)
Roman art was the “modern art” of antiquity. Out of their Italic tradition and the great inheritance of Greek classic and Hellenistic art, the Romans forged a new language of form to meet the needs of a vast empire, a complex and tumultuous society, and a sophisticated, intellectually diverse culture. An unprecedented architecture of shaped space used new materials and revolutionary engineering techniques in boldly functional ways for purposes of psychological control and symbolic assertion. Sculpture in the round and in relief was pictorialized to gain spatial effects and immediacy of presence, and an extraordinary art of portraiture investigated the psychology while asserting the status claims of the individual. Extreme shifts of style, from the classicism of the age of Augustus to the expressionism of the third century A.D., are characteristic of this period. The new modes of architecture, sculpture, and painting, whether in the service of the rhetoric of state power or of the individual quest for meaning, were passed on to the medieval and ultimately to the modern West. Prerequisite: none; VIS 20 recommended.

120C. Late Antique Art (4)
During the later centuries of the Roman Empire, the ancient world underwent a profound crisis. Betrayed by barbarian invasions, torn by internal conflict and drastic social change, inflamed with religious passion which was to lead to a transformed vision of the individual, the world, and the divine, this momentous age saw the conversion of the Roman world to Christianity, the transfer of power from Rome to Constantinople, and the creation of a new society and culture. Out of this ferment, during the centuries from Constantine to Justinian, there emerged new art forms fit to represent the new vision of an otherworldly reality: a vaulted architecture of diaphanous space, a new art of mosaic which dissolved surfaces in light, a figural language both abstractly symbolic and urgently expressive. The great creative epoch transformed the heritage of classical Greco-Roman art and laid the foundations of the art of the Christian West and Muslim East for the next thousand years. Prerequisite: none; VIS 20 or 120B recommended.

120D. Prehistoric Art (4)
Tens of thousands of years before the dawn of history, the hunting peoples of Ice Age Europe used ways the first language of visual images. Their painted cave sanctuaries, such as Lascaux and Altamira, are dazzling in their expressive vitality and mystifying of meaning. This course link cave art with what is known about contemporary conditions of nature, society, and human life. Prerequisite: none; VIS 20 recommended.

121AN. The Idea of Medieval Art (4)
This course introduces the art and architecture of Western Europe from the fourth through the thirteenth centuries. A leading theme is the changing idea of what “medieval” has come to mean, from the coin- ing of the terms “Middle Ages” and “Dark Ages” by Renaissance humanists, to the Romantic fascination with Gothic ruins, and finally to the fantasy medievalism of twentieth century popular culture and current approaches to medieval art in art historical scholarship. Prerequisite: upper-division standing; VIS 20 recommended.

121B. Castles, Cathedrals, and Cities (4)
This course explores European art and architecture of the twelfth- through the fourteenth-centuries against the background of the rituals of chivalry, church, and civic life that made a dazzling spectacle of art and life in the High Middle Ages. Prerequisite: upper-division standing; VIS 20 recommended.

121D. The Illuminated Manuscript in the Middle Ages (4)
This seminar charts the changing pictorial problematical elements of the Roman world to Christianity, the transfer of power from Rome to Constantinople, and the creation of a new society and culture. Out of this ferment, during the centuries from Constantine to Justinian, there emerged new art forms fit to represent the new vision of an otherworldly reality: a vaulted architecture of diaphanous space, a new art of mosaic which dissolved surfaces in light, a figural language both abstractly symbolic and urgently expressive. The great creative epoch transformed the heritage of classical Greco-Roman art and laid the foundations of the art of the Christian West and Muslim East for the next thousand years. Prerequisite: none; VIS 20 recommended.

122AN. Renaissance Art (4)
Italian artists and critics of the fourteenth through sixteenth centuries were convinced that they were participating in a revival of the arts unparalleled since Antiquity. Focusing primarily on Italy, this course traces the emergence in painting, sculpture and architecture, of an art based on natural philosophy, optical principles, and humanist values, which embodied the highest intellectual achievement and deepest spiritual beliefs of the age. Artists treated include Giotto, Donatello, Masaccio, Brunelleschi, Jan van Eyck, Mantegna, Botticelli, Leonardo da Vinci, Michelangelo, Raphael, Bramante, Durer, and Titian. Prerequisite: none; VIS 20 recommended.

122CN. Defining High Renaissance Art (4)
Since the sixteenth century, the names of Leonardo da Vinci, Raphael, and Bramante have conjured up images of the highest artistic achievement. This course shows the intellectual concerns common to the artist and scientific productions of Leonardo help illuminate the distinctive character of the art of two of his greatest contemporaries. Prerequisite: none; VIS 20, 122AN, or 122BN recommended.

122D. Michelangelo (4)
This course offers new approaches to understanding Michelangelo’s greatest creations. By considering how each work relates to the setting for which it was intended, by regarding critical literature and artistic borrowings as evidence about the works, and by studying the thought of the spiritual reformers who counseled Michelangelo, new interpretations emerge which show the artist to be a deeply religious man who invested his works with both public and private meanings. Prerequisite: upper-division standing; or one of the following courses: VIS 20, 21, 22 or 23; or any upper-division course in art history and criticism or in European history.

122F. Leonardo’s La Gioconda (4)
A critical, art historical look at the world’s most famous painting and its interpretations. Prerequisites: VIS 23, One upper-division course in art history (113AN-129F) is recommended.

123AN. Between Spirit and Flesh: Northern Art of the Early Renaissance (4)
The art of the Early Renaissance in Northern Europe is marked by what appears to be striking conflict: on the one hand, a new love of nature and of the pleasures of court society; and on the other, an intensified spiritual- ity and focus on personal devotion. This course explores these provocative cross-currents in works by master painters like Jan van Eyck and Hieronymous Bosch as well as in lesser known mass-produced objects of everyday use. Prerequisite: none; VIS 20, 121AN, and/or 122AN recommended.

123BN. Jan van Eyck (4)
Intensive study of the career of Jan van Eyck, whose magical paintings have always fascinated viewers with their microscopically detailed naturalism and subtly disguised spiritual meanings. Masterpieces such as the “Arnolfini Wedding” are emphasized. Prerequisite: none; VIS 112 or two upper-division courses in art history recommended.

124AN. Baroque Art (4)
This course discusses the achievement of such major artists as Caravaggio, Gentileschi, Bernini, Borromini, Rubens, Rembrandt, Velasquez, and Vermeer within a culture marked by increasing intellectual specialization, the entrenchment of modern national boundaries, the co-existence of rival religious organizations, the formation of artistic academies, and the rise of an art market serving the flourishing middle class. Prerequisite: none; VIS 20 recommended.

124BN. Art and the Enlightenment (4)
Eighteenth century artists and critics were convinced that art could be a force to improve society. This course places Rococo and Neo-Classical artists such as Watteau, Fragonard, Tiepolo, Hogarth, Reynolds, Vige Lebrun, Blake, and David, within the context of art academies, colonialism, the Grand Tour, Enlightenment conceptualizations of history and nature, and the American and French Revolutions. Prerequisite: none; VIS 20 or 22 recommended.

124CN. Nineteenth Century Art (4)
A critical survey discussing the crisis of the Enlightenment, Romanticism, Realism and Naturalism, Academic Art and History Painting, representations of the New World, the Pre-Raphaelites, Impressionism, international Symbolism, Post-Impressionism, and the beginnings of Modernism. Prerequisite: none; VIS 20 or 22 recommended.

125A. Twentieth Century Art (4)
A critical survey outlining the major avant-gardes after 1900: Fauvism, Cubism, Metaphysical Painting, Futurism, Dada, Surrealism, Neo-Plasticism, Purism, the Soviet avant-garde, Socialist Realism, and American art before Abstract Expressionism. Prerequisite: none; VIS 20 or 22 recommended.

125BN. Contemporary Art (4)
Art after Abstract Expressionism: Happenings, Post-painterly Abstraction, Minimalism, Performance, Earth Art, Conceptual Art, Neo-Expressionism, Post-Conceptualism and development in the 1990s, including non-Western contexts. We also explore the relation of these tendencies to Postmodernism, Feminism, and ideas of Postcoloniality. Prerequisite: none; VIS 20 or 22 recommended.
125DN. Marcel Duchamp (4) A critical examination of the work of one of the most radical twentieth century artists. In Duchamp’s four dimensional perspective, the ideas of art-object, artist, and art itself are deconstructed. The Large Glass and Etant Données…are the twin foci of an oeuvre without boundaries in which many twentieth-century avant-garde devices such as chance techniques, conceptual art, and the fashioning of fictive identities, are invented. Prerequisite: none.

125F. Latin American Film (4) An overview of film and filmmaking in Latin America and its reception in a national context and beyond. Prerequisite: upper-division standing.

126AN. Pre-Columbian Art of Mexico and Central America (4) An introduction to the cities and monuments of the ancient civilizations which flourished in Mexico and Central America before the Spanish Conquest. This course will cover the major cultures of Mesoamerica, including the Olmec, Aztec, and neighboring groups. Prerequisite: none; VIS 21 recommended.

126BN. The Art and Civilization of the Ancient Maya (4) This course offers a history of Maya society from its formative stages to the eve of the Spanish Conquest through an investigation of its art and archeology. Special attention is given to its unique calendar and writing systems. Prerequisite: none; VIS 21 recommended.

126C. Problems in Mesoamerican Art History (4) Topics of this seminar will address special problems or areas of research related to the major civilizations of ancient Mexico and Central America. Course offerings will vary to focus upon particular themes, subjects, or interpretive problems. Prerequisite: upper-division standing. VIS 21A recommended.

126D. Problems in Ancient Maya Iconography and Inscriptions (4) This seminar focuses upon the art, architecture, and inscriptions of the ancient Maya. Topics will vary within a range of problems that concern hieroglyphic writing, architecture, and visual symbols the Maya elite used to mediate their social, political, and spiritual worlds. Prerequisite: upper-division standing. VIS 21A recommended.

126HJ. Pacific Coast American Indian Art (4) Explores the art and expressive culture of American Indians of far western United States, including California and Pacific Northwest. Social and cultural contexts of artistic traditions and their relations to the lifeways, ceremonialism, beliefs, and creative visions of their makers. Prerequisites: upper-division standing. VIS 21A recommended.

126I. Southwest American Indian Art (4) Examines the history, art, and architecture of Navajo, Hopi, Zuni, and other Native American communities of New Mexico and Arizona; the origins of their civilization; and how their arts survived, adapted, and changed in response to Euro-American influences. Prerequisites: upper-division standing. VIS 21A recommended.

126J. African and Afro-American Art (4) The dynamic, expressive arts of selected West African societies and their subsequent survival and transformation in the New World will be studied. Emphasis will be placed on Afro-American modes of art and ceremony in the United States, Haiti, Brazil, and Suriname. Prerequisite: upper-division standing. VIS 21A recommended.

126K. Oceanic Art (4) An examination of the relation of art to ritual life, mythology, and social organization in the native Polynesian and Melanesian cultures of Hawaii, New Guinea, the Solomon Islands, and Australia. Prerequisite: upper-division standing. VIS 21A recommended.

126L. Latin American Art: Modern to Postmodern, 1890–1950 (4) A survey of major figures and movements in Latin American art from the late-nineteenth century to the mid-twentieth century. Prerequisite: upper-division standing.

126M. Latin American Art: Modern to Postmodern, 1950–Present (4) A survey of major figures and movements in Latin American art from the mid-twentieth century to the present. Prerequisite: upper-division standing.

127B. Arts of China (4) Course will survey major trends in the arts of China from a thematic point of view, explore factors behind the making of works of art, including political and religious meanings, and examine contexts for art in contemporary cultural phenomena. Prerequisite: upper-division standing. VIS 21B recommended.

127C. Arts of Modern China (4) Course will explore Chinese art of the twentieth century. By examining artworks in different media, we will investigate the most compelling of the multiple realities that Chinese artists have constructed for themselves. Prerequisite: upper-division standing. VIS 21B recommended.

127D. Early Chinese Painting (4) Explore representations of figures and landscapes from the dawn of Chinese painting through the Yuan dynasty, with stress on developments in style and subject matter and relationships to contemporary issues in philosophy, religion, government, society, and culture. Prerequisite: upper-division standing. VIS 21B recommended.

127E. Later Chinese Painting (4) Explore major schools and artists of the Ming and Qing periods, including issues surrounding court patronage of professional painters, revitalization of art through reviving ancient styles, commercialization’s challenges to scholar-amateur art, and the influences of the West. Prerequisite: upper-division standing. VIS 21B recommended.

127F. Japanese Buddhist Art (4) Explore the development of Buddhist art and architecture in Japan. Focus on the role of art in Buddhist practice and philosophy and the function of syncretic elements in Japanese Buddhist art. Prerequisite: upper-division standing. VIS 21B recommended.

127G. Twentieth-Century Chinese Art (4) Through examining artworks in different media, theoretical writings and documentary data, will explore the ways in which Chinese artists of the twentieth century have defined modernity and their own tradition against the complex background of China’s history. Prerequisite: upper-division standing. VIS 21B recommended.

127H. Japanese and Korean Art (4) Surveys the key works and developments in the modern art and visual culture of Japan from Edo and Meiji to the present and of China from the early twentieth century to contemporary video, performance, and installation art. Prerequisite: upper-division standing. VIS 21B recommended.

127I. Chinese and Japanese Ceramics (4) Course is a survey of the visual arts of Japan, considering how the arts developed in the context of Japan’s history and discussing how art and architecture were used for philosophical, religious, and material ends. Prerequisite: upper-division standing. VIS 21B recommended.

127J. Japanese Painting and Prints (4) Explore major trends in Japanese pictorial art from the seventh century to the eleventh century, with focus on function, style and subject matter, and with particular emphasis on the relationship between Japanese art and that of continental Asia. Prerequisite: upper-division standing. VIS 21B recommended.

128A-F. Topics in Art History and Theory These lecture courses are on topics of special interest to visiting and permanent faculty. Topics vary from term to term and with instructor and many not be repeated. These courses fulfill upper-division distribution requirements. As the courses under this heading will be offered less frequently than those of the regular curriculum, students are urged to check for availability and descriptions of these supplementary courses in the annual catalogue listings. Like the courses listed under VIS 129, below, the letters following the course number designate the general area in which the courses fall. Students may take courses with the same number but of different content, with consent of instructor and/or program advisor. May be repeated three times for credit. Prerequisite: none; courses in art history recommended.

128A. Topics in Pre-Modern Art History (4) A lecture course on a topic of special interest in ancient or medieval art. Prerequisites: upper-division standing; courses in art history (VIS 113AN–129F) are recommended.

128B. Topics in Early Modern Art History (4) A lecture course on a topic of special interest in Renaissance or Baroque art. May be repeated three times for credit. Prerequisites: upper-division standing; courses in art history (VIS 113AN–129F) are recommended.

128C. Topics in Modern Art History (4) A lecture course on a topic of special interest on Modern or Contemporary art. May be repeated three times for credit. Prerequisites: upper-division standing; courses in art history (VIS 113AN–129F) are recommended.

128D. Topics in Art History of the Americas (4) A lecture course on the topic of special interest in the Ancient Americas or Africa and the Pacific Islands. Prerequisite: upper-division standing. Courses in art history (VIS 113AN–129F) are recommended.

128E. Topics in Art History of Asia (4) A lecture course on the topic of special interest in India, China, and Japan. Prerequisites: upper-division standing. Courses in art history (VIS 113AN–129F) are recommended.

128F. Topics in Art Theory and Criticism (4) A lecture course on a topic of special interest in art theory, art criticism, or the history of literature on art.
May be repeated three times for credit. Prerequisites: upper-division standing. Courses in art history (VIS 113AN-129F) are recommended.

129P. Curatorial Practices Workshop (2)
Students will be exposed to the professional context of institutional art research, preparation, exhibition and publication. The content of the course will revolve around the curatorial experience of the particular faculty member. May be repeated once for credit. Two-credit curatorial practices workshop courses count as one course towards the fulfillment of a Group III Elective requirement in the major. Prerequisites: VIS 112 or two upper-division courses in art history (VIS 113AN-129F).

129A-F. Seminar in Art Criticism and Theory (4)
These seminar courses provide the opportunity for in-depth study of a particular work, artist, subject, period, or issue. Courses offered under this heading may reflect the current research interests of the instructor or treat a controversial theme in the field of art history and criticism. Active student research and classroom participation are expected. Enrollment is limited and preference will be given to majors. The letters following 129 in the course number designate the particular area of art history or theory concerned. Students may take courses with the same number but of different content more than once for credit, with consent of the instructor and/or the program advisor. May be repeated three times for credit. Prerequisite: VIS 112 or two upper-division courses in art history.

129A. Seminar in Pre-Modern Art History (4)
A seminar on an advanced topic of special interest in ancient or medieval art. Prerequisites: VIS 112 or two upper-division courses in art history (VIS 113AN-129F).

129B. Seminar in Early Modern Art History (4)
A seminar on an advanced topic of special interest in Renaissance or Baroque art. Prerequisites: VIS 112 or two upper-division courses in art history (VIS 113AN-129F).

129C. Seminar in Modern Art History (4)
A seminar on an advanced topic of special interest in Modern or Contemporary art. Prerequisites: VIS 112 or two upper-division courses in art history (VIS 113AN-129F).

129D. Seminar in Art History of the Americas (4)
A seminar on an advanced topic of special interest in the Ancient Americas to Africa and the Pacific Islands. Prerequisites: VIS 112 or two upper-division courses in art history (VIS 113AN-129F).

129E. Seminar in Art History of Asia (4)
A seminar on an advanced topic of special interest in India, China, and Japan. Prerequisites: VIS 112 or two upper-division courses in art history (VIS 113AN-129F).

129F. Seminar in Art Theory and Criticism (4)
A seminar on an advanced topic of special interest in art theory, art criticism, or the history of literature on art. Prerequisites: VIS 112 or two upper-division courses in art history (VIS 113AN-129F).

129G. Art History Honors Seminar (4)
This research seminar, centered on a series of critical, thematic, theoretical, and/or historical issues that cut across subdisciplinary specializations, provides outstanding advanced students with the opportunity to undertake graduate-level research. The first part of a two-part sequence completed by Art History Honors Directed Group Study (VIS 129H). Prerequisite: consent of instructor or art history faculty advisor, department stamp required. Note: The Art History Honors Seminar and the attached Art History Honors Directed Group Study counts as one course towards the fulfillment of the Group III requirement.

129H. Art History Honors Directed Group Study (4)
The second part of the honors program sequence, this course provides a forum for students engaged in research and writing to develop their ideas with the help of a faculty advisor and in conjunction with similarly engaged students. Prerequisite: consent of instructor or art history faculty advisor, department stamp required.

130. Special Projects in Visual Arts (4)
Specific content will vary each quarter. Areas will cover expertise of visiting faculty. May be repeated twice for credit. Prerequisite: two from (VIS 104CN, 105C, 106C, 107CN, and 147B) or one from (VIS 180A, 180B, 183A, and 183B) or consent of instructor or department stamp required. Visual arts/media, studio, ICAM majors only.

131. Special Projects in Media (4)
Specific content will vary each quarter. Areas will cover expertise of visiting faculty. May be repeated twice for credit. Prerequisites: two from (VIS 104CN, 105C, 106C, 107CN, or 147B) or one from (VIS 180A, 180B, 183A, and 183B) or consent of instructor. Open to studio, visual arts/media, and ICAM majors only.

132. Installation Production and Studio (4)
Through discussions and readings, the class will examine the issues and aesthetics of installation art-making. Using media familiar to them, students will produce several projects. May be repeated once for credit. Studio and visual arts/media majors only. Prerequisites: two from (VIS 104CN, 105C, 106C, 107CN, or 147B) or one from (VIS 180A, 180B, 183A, and 183B) or consent of instructor. Open to studio, media majors only.

140. Digital Imaging: Image and Interactivity (4)
(Cross-listed with ICAM 101.) Introduction to digital imaging involving images, texts, and interactive display and operates both within computer-mediated space (i.e., Web site) and in physical space (i.e., artist book). Interactive narrative and computer programming are explored. Materials fee required. Prerequisite: VIS 40 or ICAM 40. Open to media, ICAM, and studio majors; computing and ICAM minors only. Two production course limitation.

141A. Computer Programming for the Arts I (4)
Computer programming as a tool and conceptual framework for art-making. Course will use Silicon Graphics workstations to teach fundamental aspects of using C programming language and UNIX operating system to create computer graphics, audio, and text-based works. Materials fee required. Prerequisites: VIS 40 or ICAM 40; and VIS 140 or ICAM 101. Open to ICAM majors and minors only. Two production course limitation.

141B. Computer Programming for the Arts II (4)
Continuation of VIS 141A. Students extend their programming capabilities to include image processing, multimedia, and interactive 3-D graphics programming contextualized by a further exploration of topics in algorithmic and procedural modeling. Materials fee required. Prerequisite: VIS 141A. Open to ICAM majors and minors only. Two production course limitation.

145A. Digital Media I: Time, Movement, Sound (4)
(Cross-listed with ICAM 102.) Exploration of time-dependent media components. Creation and manipulation of digital sound as well as moving images and their integration in multimedia work. Use of computer programming to control time is emphasized. Materials fee required. Prerequisites: VIS 40 or ICAM 40 and VIS 140 or ICAM 101. Open to media and ICAM majors; ICAM minors only. Two production-course limitation.

145B. Time- and Process-Based Digital Media II (4)
Students will implement time- and process-based projects under direction of faculty. Projects such as software and hardware interfacing, computer mediated performance, software art, installation, interactive environments, data visualization and sonification will be produced as advanced study and portfolio project. Materials fee required. Prerequisite: VIS 145A or ICAM 102. Open to media and ICAM majors; ICAM minors only. Two production course limitation.

147A. Electronic Technologies for Art I (4)
Development of artworks and installations that utilize digital electronics. Techniques in digital electronic construction and computer interfacing for interactive control of sound, lighting, and electromechanics. Construction of devices which responsively adapt artworks to conditions involving viewer participation, space activation, machine intelligence. Purchase of components kit required. Prerequisite: VIS 1. Open to media, studio, and ICAM majors; computing and ICAM minors only. Two production course limitation.

147B. Electronic Technologies for Art II (4)
Continuation of the electronics curriculum. Design of programmable microcontroller systems for creating artworks that are able to respond to complex sets of input conditions, perform algorithmic and procedural processing and generate real time output. Purchase of components kit required. Prerequisite: VIS 147A. Open to media, studio, and ICAM majors; computing and ICAM minors only. Two production course limitation.

149. Seminar in Contemporary Computer Topics (4)
(Cross-listed with ICAM 130.) Topics relevant to computer-based art- and music-making, such as computer methods for making art/music, design of interactive systems, spatialization of visual/musical elements, critical studies. Topics will vary. May be repeated twice. Materials fee required. Prerequisite: VIS 140 or ICAM 101, VIS 145A or ICAM 102, and MUS 170 or ICAM 103 recommended. Open to media and ICAM majors; ICAM minors only. Two production course limitation.

150. History of Silent Cinema (4)
An investigation of silent films from early cinema to the development of a classical style in the twenties, exploring issues of spectatorship, analyzing differences between American and European cinema, and highlighting the interaction between film and other arts. Materials fee required. Prerequisites: VIS 84 or consent of instructor.

151. History of the Experimental Film (4)
An inquiry into a specialized alternative history of film, consisting of experimental works made outside the conventions of the movie industry and which in their style and nature are closer to modernist painting, poetry, etc., than to the mainstream theatrical cinema. Works by such film artists as Man Ray, Salvador Dali, Maya Deren, Stan Brakhage, and Michael Snow will be examined in depth. Materials fee required. Prerequisite: VIS 84 or consent of instructor.

152. Film in Social Context (4)
This collection of courses gathers, under one cover, films that are strongly marked by period, geography, and the culture within which they received their dominating local quality. These courses pay particular attention to the stamp of place—climate, dress, habitation,
language, music, politics—as well as the filmic moves that helped color such works as environmental. The series takes in the following subjects: Third World films, the Munich films (the new wave of Germans who made their first features in Munich following 1967), Japanese movies, films of the American thirties and their relationship to current thought, American Westerns, Ethnographic Film, Brazil’s Cinema Novo, etc. Specific topics to be covered will vary with the instructor. May be repeated twice for credit. Materials fee required. Prerequisite: VIS 84 or consent of instructor.

153. The Genre Series (4)
A group of related courses exploring the conventions within such generic and mythic forms as the cowboy, shamus, chorus girls, and vampire films. May be repeated twice for credit. Materials fee required. Prerequisite: VIS 84 recommended.

154. Hard Look at the Movies (4)
Examines a choice of films, selected along different lines of analysis, coherent within the particular premise of the course. Films are selected from different periods and genres among Hollywood, European, and Third World films. May be repeated once for credit. Materials fee required. Prerequisite: VIS 84 or consent of instructor.

155. The Director Series (4)
A course that describes the experiences, looks, and structure of director-dominated films. A different director will be studied each quarter. The student will be required to attend the lecture in the course and to meet with the instructor at least once each week. May be repeated three times for credit. Materials fee required. Prerequisite: VIS 84 or consent of instructor.

156N. Special Problems in Film History and Theory (4)
Seminar on an advanced topic in the history and theory of film. Content will vary from quarter to quarter. Prerequisite: VIS 84 or consent of instructor. Note: Materials fee required.

157. Video History and Criticism (4)
A lecture course that examines video as an art form, its relationship to the development from television and other art forms, and surveys current work in the medium. Materials fee required. Prerequisites: VIS 22, 84, and 111.

158. Histories of Photography (4)
Photography is so ubiquitous a part of our culture that it seems to defy any simple historical definition. Accordingly, this course presents a doubled account of the medium; it explores both the historical and cultural specificity of a singular photography as well as some of the multitude of photographies that inhabit our world. Will examine a number of the most important photographic themes from the past 200 years. Prerequisite: none.

159. History of Art and Technology (4)
(Cross-listed with ICAM 150). Aims to provide historical context for computer arts by examining the interaction between the arts, media technologies, and sciences in different historical periods. Topics vary (e.g., Renaissance perspective, futurism and technology, and computer art of the 1950s and 1960s). Prerequisite: none. Note: Materials fee required.

164. Photographic Strategies (4)
Introduction to the aesthetic problems in photography. Portfolio required for admission. Materials fee required. Both historical and contemporary art practices will be examined. Students will create photographs to engage these conceptual issues. Prerequisites: VIS 60 and consent of instructor. Open to media majors and photography minors only.

165. Camera Techniques (4)
An intermediate course designed to teach students to develop fiber-based black and white printing skills, to introduce the fundamentals of digital photography, and to address the issues of text in relation to image in art practice. Materials fee required. Two production course limitation. Prerequisites: VIS 60 and consent of instructor. Open to media majors and photography minors only.

166. Advanced Camera Techniques (4)
Advanced-level course working with refined techniques in traditional and digital photographic art practices. The student will also be instructed in the development of a portfolio for use in post-graduation career development. Materials fee required (photo lab). Two production course limitation. Prerequisites: VIS 164, 165, and consent of instructor. Open to media majors only.

168. Color Techniques in Photography (4)
Instruction in color photography and printing. Lectures on theory and demonstration in shooting and printing color negatives. Prerequisites: VIS 60, 164, 165. Open to media majors only. Note: Portfolio required for admission. Materials fee required.

171. Digital Cinema—Theory and Production (4)
A digital image is not a film image, and this reality and its technological and conceptual implications are what this course will attempt to map out, exploring its possibilities and the massive overhaul of media aesthetics it implies. Prerequisites: (VIS 40/ICAM 40), VIS 60, VIS 70N and VIS 174, plus one from VIS 1, VIS 2, VIS 3, VIS 22 or VIS 84. Open to media majors only. Two production-course limitation.

174. Media Sketchbook (4)
Video medium used both as production technology and as device to explore the fundamental character of filmmaking and time-based computer art practices. Students perform all aspects of production with attention to developing ideas and building analytical/critical skills. Prerequisite: VIS 70N. Open to media and ICAM majors only. Two production-course limitation.

175. Editing—Theory and Production (4)
The evolving aims and grammars of editing practice in film and digital media will be examined. These histories will create a context for exploring contemporary editing strategies. The production projects will be centered on digital editing practice. Prerequisites: (VIS 40/ICAM 40), VIS 60, VIS 70N, and VIS 174 plus one from VIS 1, VIS 2, VIS 3, VIS 22 or VIS 84. Open to media majors only. Two production-course limitation.

176. 16mm Filmmaking (4)
A technical foundation and creative theoretical context for film production will be provided. Students will produce a short film with post-synchronized sounds and final mixed-track. Prerequisites: (VIS 40/ICAM 40), VIS 60, 70N and 174; plus one from VIS 1, VIS 2, VIS 3, VIS 22 or VIS 84. Open to media majors only. Two production-course limitation.

177. Scripting Strategies (4)
Script writing, reading, and analysis of traditional and experimental media productions. The emphasis will be on the structural character of the scripting process and its language. Students will write several short scripts along with analytical papers. Prerequisites: VIS 70N and VIS 174. Open to media majors only. Two production-course limitation.

178. Sound—Theory and Production (4)
Sound design plays an increasing role in media production and has opened up new structural possibilities for narrative strategies. A critical and historical review of sound design and a production methodology component. Critical papers and soundtracks for short film projects will be required. Prerequisites: VIS 70N and VIS 174. Open to media majors only. Two production-course limitation.

180A. Documentary Evidence and the Construction of Authenticity in Current Media Practices (4)
Exploration of concepts in representational artworks by critically examining “found” vs. “made” recorded material. Advanced film/video, photography, computing work. Issues of narrative and structure, attention to formal aspects of media work emphasized. Cannot be taken the same quarter as VIS 180B. Prerequisites: VIS 174 and one from VIS 140/ICAM 101, 145A/ICAM 102, 145B, 164, 165, 172, 175, 176, 177; VIS 177 strongly recommended. Open to media majors only. Two production-course limitation.

180B. Fiction and Allegory in Current Media Practices (4)
Exploration of choices in invention, emphasizing “made” over “found.” Advanced film/video, photography, and computing. Issues of narrative and structure, and formal aspects of media work emphasized. Cannot be taken the same quarter as VIS 180A. Prerequisites: VIS 174 and one from VIS 140/ICAM 101, 145A/ICAM 102, 145B, 164, 165, 172, 175, 176, 177; VIS 177 strongly recommended. Open to media majors only. Two production-course limitation.

181. Sound and Lighting (4)
Advanced course to gain sophisticated control of lighting and sound recording techniques with understanding of theoretical implications and interrelation between production values and subject matter. Interactions between sound and image in various works in film, video, or installation. Prerequisite: VIS 174, and three of the following courses depending on emphasis: VIS 164, 165, 172, 175, 176, 177. Open to media majors only. Two production-course limitation.

182. Advanced Editing (4)
Film/video editing and problems of editing from theoretical and practical points-of-view. Films and tapes analyzed on a frame-by-frame, shot-by-shot basis. Edit stock material and generate own materials for editing final project. Aesthetic and technical similarities/differences of film/video. Prerequisites: VIS 175 and two courses from the 180 and 183 series. Open to media majors only. Two production-course limitation.

183A. Strategies of Self (4)
Looks at the way that self-identity is reflected and produced through various media practices. Focus is on rhetorical strategies of biography and autobiography in media, comparing and contrasting these strategies with those drawn from related cultural forms. Cannot be taken the same quarter as VIS 183B. Prerequisites: VIS 174 and one from VIS 140/ICAM 101, (VIS 145A/ICAM 102), VIS 147A, VIS 164, VIS 165, VIS 175, VIS 176, VIS 177; VIS 177 strongly recommended. Open to media majors only. Two production-course limitation.

183B. Strategies of Alterity (4)
Looks at difference as it is reflected and constructed in various media practices. Course will examine a wide
range of forms and genres such as ethnography, science fiction, crime narratives, documentary film, political drama, and animated shorts. Cannot be taken same quarter as VIS 183A. Prerequisites: VIS 174 and one from (VIS 140/ICAM 101), (VIS 145A/ICAM 102), VIS 147A, VIS 164, VIS 165, VIS 175, VIS 176, VIS 177; VIS 177 strongly recommended. Open to media majors only. Two production-course limitation.

184. Advanced Scripting (4)
Film/video production will be framed through the script writing process, focusing on the problems of longer duration, density, and adaptation from other media. Students will both read and analyze both historical and contemporary scripts and produce a thirty- to sixty-minute script. Prerequisites: VIS 177 and two courses from VIS 180A, VIS 180B, VIS 183A, VIS 183B. Open to media majors only. Two production-course limitation.

194. Fantasy in Film (4)
This course will explore the path of the deliberately "unreal" in movies. Fantasy in film will be considered both in terms of its psychological manifestations and also in terms of imaginary worlds created in such willfully anti-realistic genres as science-fiction, horror, and musical films. Prerequisite: none. Offered in summer session only.

197. Media Honors Thesis (4)
This advanced-level sequence coordinates three consecutive independent research courses to culminate in a completed thesis project in the third quarter of study. After the project's public presentation, the faculty involved in the project will determine whether the student will graduate with departmental honors. Prerequisite: consent of instructor. Note: Requires a written proposal, 3.5 GPA in the major, prior consent from all involved and approvals by the department chair and provost.

198. Directed Group Study (2-4)
Directed group study on a topic or in a group field not included in regular department curriculum, by special arrangement with a faculty member. Prerequisite: consent of instructor. Note: Open only to upper-division students. Requires instructor's, department chair's, and provost's approval. Pass/Not Pass grades only.

199. Special Studies in the Visual Arts (4)
Independent reading, research, or creative work under direction of a faculty member. Prerequisite: consent of instructor. Note: Open only to upper-division students. ReQUIRES instructor's, department chair's, and provost's approval. Pass/Not Pass grades only.

ICAM 103. Musical Acoustics (4)
(Cross-listed with MUS 170.) An introduction to the acoustics of music with particular emphasis on contemporary digital techniques for understanding and manipulating sound. Prerequisites: MUS 1A, 2A, or 4.

ICAM 110. Computing in the Arts: Current Practice (4)
Designed around the presentations by visiting artists, critics, and scientists involved with contemporary issues related to computer arts. Lectures by the instructor and contextual readings provide background material for the visitor presentations. Prerequisite: none. Note: Materials fee required.

ICAM 120. Virtual Environments (4)
Students create virtual reality artworks. Projects may be done individually or in groups. Exploration of theoretical issues involved will underlie acquisition of techniques utilized in the construction of virtual realities.

Materials fee required. Prerequisites: VIS 145A or ICAM 102; CSE 11 recommended. Open to ICAM majors and minors only. Two production course limitation.

ICAM 160A. Senior Project in Computer Arts I (4)
Students pursue projects of their own design over two quarters with support from faculty in a seminar environment. Project proposals are developed, informed by project development guidelines from real-world examples. Collaborations are possible. Portfolio required for admission. Prerequisites: VIS 141B or VIS 145B or VIS 147B or MUS 172. Open to ICAM majors only. Department stamp required.

ICAM 160B. Senior Project in Computer Arts II (4)
Continuation of ICAM 160A. Completion and presentation of independent projects along with documentation. Prerequisites: ICAM 160A. Open to ICAM majors only. Department stamp required.

ICAM 198. Directed Group Study (2-4)
Directed group study on a topic or in a group field not included in regular department curriculum by special arrangement with a faculty member. May be repeated twice for credit. Prerequisites: consent of instructor. Note: Only open to upper-division students. Requires instructor approval. Pass/Not Pass grades only.

ICAM 199. Special Studies (2-4)
Independent reading, research or creative work under direction of faculty member. Prerequisites: department stamp and upper-division standing required.

GRADUATE

CORE SEMINARS

200. Introduction to Graduate Studies in the Visual Arts (4)
Introduces incoming students to the work of art history, studio, and media faculty as it engages key common and comparative themes. Required of all first-year students in both the Ph.D. and M.F.A. programs. (Required, M.F.A., Ph.D.)

201. Contemporary Critical Issues (4)
An exploration of a range of issues important on the contemporary critical scene through readings and writing assignments. Topics will vary from year to year. Offered every fall. (Required, M.F.A.)

202. Art Practice (4)
A workshop/seminar devoted to a particular materials practice (e.g., media, painting, digital media, etc.) that engages with critical questions arising within that discipline. Content will vary from quarter to quarter. May be repeated once for credit. (Required, M.F.A.)

203. Working Critique (4)
Workshop in which students engage in an extensive evaluation of each others’ ongoing work in preparation for either the First Year Review or MFA Review. Offered every winter. May be repeated once for credit. (Required, M.F.A.)

204. Re-Thinking Art History (4)
Critical evaluation of the methods, practices, and disciplinary commitments of art history, encompassing both revisionist interventions of the late twentieth century and earlier paradigms, in order to envision new discipline-specific and interdisciplinary directions for the future of art history and visual culture. (Required, Ph.D.)

205. Introduction to Graduate Studies in Art Practice (4)
This seminar introduces art practice students to the graduate program in a workshop environment. Emphasis is on the production of new work and on situating that work in relation to a larger art context. (Required, M.F.A.)

ART PRACTICE/ THEORY

211. Fact and Fiction (4)
This seminar addresses the space between narrative work generated from a factual base and that generated from a fictional one. Special attention will be given to discussing work that confounds the assumed gap between the two.

212. History and Memory (4)
This seminar will engage the space between personal and larger histories. How is one’s own past both intertwined with and determined by larger social histories?

213. Public Space (4)
An exploration of what public space is and how it operates, with a view toward an expanded context for considering how public artwork can operate within it. Included are areas such as mass media, activism, community action, computer networks, ecology, and alternative forums.

215. Human Interface (4)
Examines human interface as it informs or transforms how we read and participate in culture at large. Concepts such as subject/author/object relationships, abstraction, metaphor, analogy, visualization, and complexity are discussed to establish context.

216. The Object (4)
An investigation of the world of artifacts ("works of art" and others) and how they function as agents of communication and modifiers of consciousness. Contemporary perspectives drawn from the fields of art theory, anthropology, contemporary art, and semiotics will be utilized.

217. Communities and Subcultures (4)
A critical examination of the practices of self-defined communities (e.g., Bauhaus, Shaker, Surrealists) which have attempted to change the social and spiritual quality of life by aesthetic means and of communities and subcultures defined by other means.

219. Special Topics in Art Practice/Theory (4)
Examines a topic of special interest to permanent and visiting faculty that is not addressed in the regular curriculum. As in other Art Practice/Theory seminars, students will both produce work and read and write critically about the topic. Topics will vary.

HISTORY/THEORY/CRITICISM

Categories/Constructs

230. "Art" as Category (4)
Explores the complex and changing criteria by which certain (categories of) objects and practices are designated as "art" in culturally and historically diverse societies.
231N. Confronting the Object (4)
Investigates the nature and status of art objects and practices and the forms of engagement with them through topics such as the practice and metaphysics of description; phenomenological analysis; film analysis; and ekphrasis and visual analysis.

232. Artistic Identities (4)
Explores the historical, theoretical, and cross-cultural concepts of the artist/author and his/her varied and shifting identities as inscribed in works of art, recorded in biography and critical literature, and enacted through social roles.

233N. Frames of Production (4)
Critical and historical analysis of the institutions, social networks, and communicative media that enable the production of art, including particular institutions (art academies, workshops and studios, including film studios), artists’ communities, ritual frameworks, state and private patronage, etc.

234N. Frames of View (4)
Critical and historical analysis of the institutions, social networks, and communicative media through which art is presented to its audiences. May also address theories of vision and visuality, spectatorship, public space, originality and reproduction, and public space.

235N. Frames of Analysis (4)
Historical critique and philosophical analysis of the central terminology and constructs of art history, theory, and criticism. May address such key terms as style, genre, and periodization or a topic such as theories of representation and narrative.

Theories/New Visions

240. Histories of Theory and Criticism: Plato to Post-Modernism (4)
Historical and cross-cultural investigations of art theory and criticism, antiquity to the present. May be taught as an historical overview or focus on a particular topic, e.g., Critical Currents Since World War II, Renaissance Foundations, From Culture to Popular Culture.

241. Topics in Contemporary Critical Theory (4)
Focused studies, changing from year to year, in contemporary theoretical positions and perspectives (e.g., New Social Theory, Post-Colonialism, Gender Theory) and one or more leading theorists (e.g., Deleuze, C. S. Peirce, Steinberg).

242. Theories of Media and New Media (4)
Critical study of the ways in which media (film, video, photography) and new media have been theorized. May be taught from an historical or comparative perspective or focus on a single topic or theorist.

243. Aesthetic Theory (4)
Study of the philosophical concepts of the function of art and visual culture and the criteria for its evaluation in diverse epochs and cultures. May be taught as an historical overview or comparative study or focus a single topic or theorist.

244. Studies in the Relationship of Theory and Practice (4)
Investigations of one or more artist-theorists or movements, contemporary or historical, that put in issue the interface between theory and practice. May also focus on a topic such as perspective, color, or narrative, or genre such as film or new media.

Times/Terrains

250N. Seminar in Ancient Art (4)
The arts of Greece, Rome, and allied cultures in the ancient world. Topics will vary, e.g., Roman Portrait Art; Social and Social Mask; The Invention of Perspective and Revolution in Two-Dimensional Representation; The “Modern” Art of Antiquity (late third to early fourth century A.D.).

251. Seminar in Medieval Art (4)
European art from late antiquity through the fourteenth century and the historical processes by which “medieval” art has been constructed as a category. Topics may include Devotional Vision and the Sacred Image; Medieval Comic Genres; Neo-Medievalisms, Fifteenth Century to Today.

252. Seminar in Renaissance Art (4)
Concentrates on the art of the Renaissance in Italy and the North through a changing series of topics, e.g., Vision and Composition in Perspective; The Sistine Chapel; Envisioning Jan Van Eyck; Renaissance Print-Making; Leonardo da Vinci’s La Gioconda.

253. Seminar in Early Modern Art (4)
European and American art, 1580s to 1850. Topics might include Deconstructing the Enlightenment: Images of Disorder; Escaping History: Genre Painting, Rococo to Impressionism; Politics and Love in the Art of Jacques-Louis David; Art and Urbanism in Baroque Rome.

254. Seminar in Modern Art (4)
European and American art, ca. 1850 to 1960. Questions in Impressionism and Post-Impressionism; The Cubist Revolution: Marcel Duchamp and the Anti-Formalist Tradition; American Modernism; Reckoning with Abstract Art; Issues in Dada and Surrealism; Soviet Avant-Gardes.

255. Seminar in Contemporary Art (4)
Thematic and critical discussions of recent U.S. and International art, 1960s to the present. Art/Text; Mixed Media Practices; Conceptual Art; Art After Appropriation; Global Art at the Millennium; New Genres of Public Art; Mike Kelly and the Conceptual Vernacular: Art and Activism.

256. Seminar in Media and New Media (4)
Topics in media (photography, film, video) and new media, contemporary or historical. Coverage may be broad or addressed to a particular topic such as Film Remakes; Silent Cinema; Photography and American Social Movements; The Language of New Media.

257. Seminar in Meso-American Art (4)
Topics relating to the art and civilizations of Precolumbian Mexico and Central America, either specifically art historical (such as iconographic, formal, and stylistic analysis) or encompassing a spectrum of interdisciplinary and cultural/historical problems.

258. Seminar in Chinese Art (4)
Advanced studies in the secular and religious art traditions of China. From year to year, the seminar may focus on early China (Neolithic to the end of the Tang dynasty), on later dynasties (Sung, Yuan, Ming) or on art of the People’s Republic.

259. Seminar in Latin American Art (4)
Historical and theoretical problems in the art of Mexico, Central, and South America art from the colonial period to today, as well as from the Hispanic traditions of the American Southwest.

269. Contextual Studies: Special Topics (4)
Studies in the art of cultures and time periods not covered in the currently published curriculum (e.g., African Art, Japanese Art, Byzantine Art, Islamic Art) or of issues and genres crossing epochal, cultural, and media boundaries.

OTHER

280. Workshop in Critical Writing (4)
Practice in writing about art (both one’s own and others) accompanied by analysis of selected contemporary critical writings.

281. Curatorial Practice (4)
Methodological investigation of and training in the practices of art museums, galleries, film and digital environments, public arts organizations, and the like. Instruction by museum and gallery curators and opportunities for participation in ongoing programs at local art institutions.

282. Special Projects in Art Practice (4)
Advanced workshop in specialized areas of art practice (e.g., Sound and Lighting, Editing).

295. Individual Studies for Graduate Students (1-12)
Individual research with the student’s individual faculty advisor in preparation for their comprehensive examinations for the M.F.A. degree or qualifying exam for the Ph.D. These units are intended to be with the chair of the student’s review committee. For the M.F.A. degree, these units can only be taken after completing the First Year Review. (Required, M.F.A., Ph.D.)

298. Directed Group Study (1-12)
Directed group study on specific topics not covered at present in the normal curriculum. Used as an experimental testing of courses that may be given regular course numbers if proved successful. Special arrangement with faculty member. Prerequisite: consent of department.

299. Graduate Research (1-4)
Graduate-level research under the direct guidance of a faculty member. Prerequisite: consent of instructor.

500. Apprentice Teaching (1-4)
Apprentice teaching in undergraduate courses given by the Department of Visual Arts. Graduate students are required to teach a minimum of one quarter (four units) within the department to fulfill degree requirements.

501. Apprentice Teaching in Culture, Art, and Technology (CAT) (4)
Consideration and development of pedagogical methods appropriate to undergraduate teaching in the interdisciplinary Sixth College Core Sequence, Culture, Art and Technology. Supervised by the Core Program faculty, director and associate directors for the Writing and Thematic Programs. Prerequisites: graduate student and consent of instructor.
Prerequisites: completion of WCWP 10A and must be a Warren College student.

The Writing Program

Each student must complete a two-course sequence in Warren Writing (10A and 10B) within four quarters (following successful completion of the UC entry level writing requirement). Note: All students entering as freshmen are required to complete Warren writing courses only at UCSD. The purpose of the sequence is to teach and thereby enable students, through intensive practice, to read critically and write appropriately in a variety of academic contexts. Classes are seminar-size and center on discussion of student work.

The two-quarter sequence emphasizes written argumentation based on primary and secondary sources. The curriculum provides a context within which a diversity of cultural experiences is foregrounded to address a range of issues inherent in the relationship of the "Individual and U.S. Society," the primary theme of the sequence. The readings are accessible, scholarly writings that interrogate aspects of this relationship, and may include novels, short stories, essays, autobiographies, political documents, and book-length nonfictional treatments of the theme. Thus, the writing and readings prepare students for their work in various academic disciplines.

In both 10A and 10B, student writing is duplicated and discussed by the class in a workshop setting. Instructors hold conferences with students individually during the quarter and provide written and oral commentaries on student work. The minimum writing requirement is 8,000 words per quarter.

10A. The Writing Course A (4)
A workshop course in reading and writing required of all Warren College students. The course emphasizes argumentation and critical writing based on sources. (Letter grade only.) Prerequisite: satisfaction of the university entry level writing requirement and must be a Warren College student.

10B. The Writing Course B (4)
A workshop course in reading and writing required of all Warren College students who have completed 10A. The course continues the emphasis on argumentation and critical writing based on sources. (Letter grade only.) Prerequisite: completion of WCWP 10A and must be a Warren College student.

The Writing Center

The Writing Center, staffed by trained undergraduate mentors, provides academic support for all Warren student writers. The center offers individual peer mentoring sessions on a one-time or ongoing basis. The center coordinator also provides group workshops covering particular types of writing, such as application essays and timed essay exams. Writing mentors enroll in Warren 189 to receive training and supervision.

189. Academic Mentoring and the Writing Process (2)
Students will gain a fundamental understanding of all stages of the writing process and develop the necessary skills to serve as productive mentors for their peers. (P/NP grade only.)

Warren Honors Program

The Warren Honors Program offers students educational, cultural, and social experiences designed to broaden their intellectual interests. The activities vary each quarter and are planned to foster student interaction and promote a sense of community.

Entering freshmen with a high school GPA of 3.8 or above and SATI scores of 700 reading/700 math/700 writing are eligible to participate in the Honors Program. Students remain in the program until thirty-six units of UCSD credit are completed. After that, a cumulative GPA of 3.7 on all units completed at UCSD must be maintained to remain in the program.

Students who do not qualify for the Honors Program at the time of admission and all transfer students may join as soon as a cumulative GPA of 3.7 is attained on twelve or more units completed at UCSD. After that, a cumulative GPA of 3.7 on all units completed at UCSD must be maintained to remain in the program. Students in the Warren Honors Program are not required to produce research projects in order to continue in the program.

Any Warren Honors student who writes a research paper for a departmental honors course may submit his or her paper to the Warren College Provost’s Office for consideration for the Michael Addison Award. The award is presented annually at commencement to the Warren Honors student who is judged to have written the most distinguished research paper. The submission must be accompanied by a letter of support from the faculty departmental honors advisor.

Warren Scholars Seminar

The Warren Scholars Seminar offers an interdisciplinary curriculum that is designed to help students broaden their intellectual interests and prepare them for rigorous academic inquiry. Students enroll in two seminars, Warren 11A-B, which fulfill the college writing requirement. The seminars are taught by a Warren College lecturer and feature distinguished guest speakers from a variety of disciplines.

Entering first-year Honors Program students are admitted to the Warren Scholars Seminar by application and invitation.

Students in the Honors Program may serve as undergraduate assistants in Warren 11A-B (Warren 195, Apprentice Teaching). Undergraduate assistants participate in planning class meetings, introduce guest speakers, facilitate small-group discussions, and support students in the paper-writing process.

11A, Warren Scholars Seminar A (4)
The Warren College Scholars Seminar A allows students to develop and refine their expressive and analytical skills. The seminar offers an interdisciplinary approach to topics on the relation of individuals and society, and the function of evidence and observation in the formation of theories. The course emphasizes argumentation and critical thinking. (Letter grade only.) Prerequisite: limited to freshman Warren College Honors Program students with math/verbal/writing scores of 700 and above, and upon approval of a submitted writing sample.

11B, Warren Scholars Seminar B (4)
The Warren College Scholars Seminar B allows students to develop and refine their expressive and analytical skills by exploring a topic that offers viewpoints from a wide range of disciplines. The seminar emphasizes argumentation and critical writing. The topic will vary each year. (Letter grade only.) Prerequisite: Warren 11A or by consent of instructor.

195. Apprentice Teaching (1)
Undergraduate instructional assistance. Responsible both in area of learning and instruction. Student must prepare reading materials assigned by the professors and lead student discussions in Warren 11A or 11B. (P/NP grade only.) Prerequisite: student must be in the Warren College Honors Program.
Nondiscrimination and
Affirmative Action Policy
Statement for University
of California

It is the policy of the university not to engage in discrimination against or harassment of any person employed by or seeking employment with the University of California on the basis of race, color, national origin, religion, sex, gender identity, pregnancy (includes pregnancy, childbirth, and medical conditions related to pregnancy or childbirth), physical or mental disability, medical condition (cancer-related or genetic characteristics), ancestry, marital status, age, sexual orientation, citizenship, or status as a covered veteran (special disabled veteran, Vietnam era veteran, recently separated veteran, or any other veteran who served on active duty during a war or in a campaign or expedition for which a campaign badge has been authorized). This policy applies to admissions, access, and all employment practices, including recruitment, selection, promotion, transfer, merit increase, salary, training and development, demotion, and separation. This policy is intended to be consistent with the provisions of applicable state and federal laws and university policies.

In addition, it is the policy of the university to undertake affirmative action, consistent with its obligations as a federal contractor, for people of color and women, for persons with disabilities, and for covered veterans. The university commits itself to apply every good faith effort to achieve prompt and full utilization of people of color and women in all segments of its workforce where deficiencies exist. These efforts conform to all current legal and regulatory requirements, and are consistent with university standards of quality and excellence.

Inquiries regarding the University of California, San Diego’s (UCSD) equal employment opportunity policies and student-related nondiscrimination policies may be directed to:

Student Affairs—
Joseph W. Watson
Vice Chancellor—Student Affairs
Bldg. 112 University Center,
UCSD
9500 Gilman Drive, Dept. 0015
La Jolla, CA 92093-0015
(858) 534-4370

Academic Affairs—
Marsha A. Chandler
Senior Vice Chancellor—
Academic Affairs
Bldg. 105 University Center,
UCSD
9500 Gilman Drive, Dept. 0001
La Jolla, CA 92093-0001
(858) 534-3130

Staff and Management—
Steve W. Relyea
Vice Chancellor Business Affairs
Sec. 504 Coordinator—Staff
Bldg. 110 University Center, UCSD
9500 Gilman Drive, Dept. 0007
La Jolla, CA 92093-0007
(858) 534-3390

UCSD recognizes its obligation to provide program accessibility (as described in Section 504 of the 1973 Rehabilitation Act and the Americans with Disabilities Act of 1990) for persons with disabilities. For information as to the existence and location of services, activities, and facilities that are accessible to and usable by persons with disabilities, contact:

Joseph W. Watson
Vice Chancellor Student Affairs
Sec. 504 Coordinator—Students
Bldg. 112 University Center, UCSD
9500 Gilman Drive, Dept. 0015
La Jolla, CA 92093-0015
(858) 534-4370

David R. Miller
Acting Senior Vice Chancellor Academic Affairs
Sec. 504 Coordinator—Faculty
Bldg. 105 University Center, UCSD
9500 Gilman Drive, Dept. 0001
La Jolla, CA 92093-0001
(858) 534-3130
Appendix

Barry J. Niman
ADA Coordinator
Manager, Employee Rehabilitation Program
Torrey Pines Center South, Suite 348
9500 Gilman Drive, Dept. 0944
La Jolla, CA 92039-0944
(858) 534-6743
(858) 534-3059
Steve W. Relyea
Vice Chancellor Business Affairs
Sec. 504 Coordinator—Staff
Bldg. 110 University Center, UCSD
9500 Gilman Drive, Dept. 0007
La Jolla, CA 92093-0007
(858) 534-3390

UCSD Policies and Procedures Applying to Student Activities

Students enrolling at UCSD are required to observe campus regulations, including but not limited to the Standards of Conduct and the Policies and Procedures Applying to Student Activities, which are available to students at http://ugr8.ucsd.edu/judicial/ as well as the following locations:

Student Legal Services
Student Organizations and Leadership Opportunities
College Dean Offices
Office of Graduate Studies and Research
Office of the Student Affairs Dean, School of Medicine
Student Policies and Judicial Affairs
SIO, Graduate Student Department

Notice to Students of Their Privacy Rights Under UCSD PPM 160-2 and FERPA

In accordance with the Federal Family Educational Rights and Privacy Act of 1974 and UCSD PPM 160-2, the campus procedures implementing the University of California policies applying to the Disclosure of Information from student records, students at the San Diego campus of the university have the right to:

1. Refuse to permit any or all of the categories of personally identifiable information to be designated as directory information with respect to themselves;
2. Inspect and review the student’s own records;
3. Request correction of the student’s own records;
4. Grieve an alleged violation of privacy rights, as specified in this policy;
5. Have personally identifiable information contained in student records not be disclosed without a signed and dated written consent that specifically identifies:
 a. The records to be disclosed,
 b. The purpose of the disclosure, and
 c. The party or class to whom disclosures are to be made. Consent is not required for those disclosures authorized by sections VIII and IX of PPM 160-2; and
6. File with the United States Department of Education a complaint concerning alleged failures by UCSD to comply with the requirements of FERPA; and
7. Be informed where copies of student records policies are located and obtain a copy.

Directory or Public Information

The following has been designated by UCSD as “directory information:” a student’s name; address (local and/or permanent); e-mail address; telephone numbers; date of birth; major fields of study; dates of attendance; degrees and honors received; participation in officially recognized activities, including intercollegiate athletics; and the name, weight, and height of participants on intercollegiate UCSD athletic teams.

Notification of Rights Under FERPA for Postsecondary Institutions

The Family Educational Rights and Privacy Act (FERPA) affords students certain rights with respect to their education records. They are:

1. The right to inspect and review the student’s education records within forty-five days of the day UCSD receives the student’s written request.
 Students should submit written requests that identify the record(s) that the student wishes to inspect. The UCSD official to whom the request was submitted will notify the student of the time and place where the records may be inspected.
2. The right to request amendments of the student’s education records that the student believes are inaccurate or misleading.
 The request may be submitted in writing to the UCSD official responsible for the record, clearly identify the part of the record they want changed, and specify why it is inaccurate or misleading. If the UCSD official decides not to amend the record as requested by the student, that official will notify the student of the decision and advise the student of the procedures to appeal the denial.
3. The right to consent to disclosures of personally identifiable information contained in the student’s education records, except to the extent that FERPA authorizes disclosure without consent.
 One exception which permits disclosure without consent is disclosures to UCSD or UC officials with legitimate educational interests. A UCSD or UC official is a person employed by UCSD or UC in an administrative, supervisory, academic, research, or support staff position; a person or company with whom UCSD or UC has contracted (such as attorney, auditor, or collection agent); or a student serving on an official committee, such as a disciplinary or grievance committee. A UCSD or UC official has a legitimate educational interest if the information requested is relevant and necessary for the official to perform a task or determination that it is an employment responsibility or perform a task that is related specifically to the official’s participation in the student’s education or perform a task that is related specifically to the discipline or the student, and provides a service or benefit to the student, or the student’s family.
4. The right to file a complaint with the U.S. Department of Education concerning alleged failures by UCSD to comply with the requirements of FERPA.
 The name and address of the office that administers FERPA is:
 Family Policy Compliance Office
 U.S. Department of Education
 400 Maryland Avenue, SW
 Washington, DC, 20202-4605
Questions about these rights or any other aspect of student records management by UCSD officials may be referred to the director, Student Policies and Judicial Affairs, Student Center, Building B, or by telephone at (858) 534-6225 or e-mail at judicialaffairs@ucsd.edu. The text of FERPA may be found in the government documents section of the UCSD Geisel Library. Copies of the UCSD student records policy, PPM 160-2, may be accessed electronically at http://adminrecords.ucsd.edu/ppm/docs/160-2.html.

UCSD Sexual Harassment Prevention and Policy

The University of California, San Diego is committed to creating and maintaining a community where all persons who participate in UCSD programs and activities can work and learn together in an atmosphere free of all forms of harassment, exploitation, or intimidation. Every member of the UCSD community should be aware that UCSD is strongly opposed to sexual harassment and that such behavior is prohibited both by law and UCSD policy. Retaliation against a person who brings a complaint of sexual harassment is also strictly prohibited and may result in separate disciplinary action. UCSD will respond promptly and effectively to reports of sexual harassment and will take appropriate action to prevent, correct, and if necessary, discipline behavior that violates this policy.

Laws and University Policies Prohibiting Sexual Harassment

The University of California Policy on Sexual Harassment applies to UCSD, including the medical centers and all auxiliary university locations. The California Fair Employment and Housing Act and Title VII of the Federal Civil Rights Act of 1964, as amended, prohibit sexual harassment in employment. Title IX of the Education Amendments of 1972 prohibits sexual harassment in educational institutions which are recipients of federal funds.

Defining Sexual Harassment

Sexual harassment is defined as unwelcome sexual advances, requests for sexual favors, and other verbal or physical conduct of a sexual nature when submission to or rejection of this conduct explicitly or implicitly affects a person's employment or education, unreasonably interferes with a person's work or educational performance, or creates an intimidating, hostile, or offensive working or learning environment. UCSD will respond to reports of any such conduct.

In determining whether the reported conduct constitutes sexual harassment, consideration shall be given to the record of the conduct as a whole and to the totality of the circumstances, including the context in which the conduct occurred.

Sexual harassment does not typically include verbal expression or written material that is relevant and appropriately related to course subject matter or curriculum. This policy is intended to protect members of the UCSD community from discrimination, not to regulate protected speech.

Sexual harassment may occur between persons of differing power or between peers. In addition, sexual harassment may involve a female harassing a male, or a male or female harassing a person of the same gender. Harassment that is not sexual in nature but is based on gender, gender identity, sex-stereotyping, or sexual orientation also is prohibited if it is sufficiently severe to deny or limit a person's ability to participate in or benefit from UCSD educational programs, employment, or services. In determining whether a hostile environment due to sexual harassment exists, UCSD may take into account acts of discrimination based on gender, gender identity, sex-stereotyping, or sexual orientation.

Consensual Relationships

UCSD's consensual relationship policy addresses potential ethical and legal issues that arise when individuals develop romantic or sexual relationships. In addition, the UC regents have approved a systemwide faculty-student relationship policy that prohibits a faculty member from becoming romantically or sexually involved with students for whom the faculty member has or should expect to have supervisory responsibility.

Prevention and Education

To implement UCSD's policy regarding sexual harassment, the Office of Sexual Harassment Prevention and Policy (OSHPP) provides assistance in investigating and resolving complaints and provides education to the entire UCSD community. Emphasis is on prevention and early resolution. Copies of UCSD's policy and procedures may be obtained at OSHPP at 201 University Center or at its campus Web page at http://oshpp.ucsd.edu. Sexual harassment prevention materials, including the university policy, are available in Spanish. Students are encouraged to review the interactive online education program, Preventing Sexual Harassment, available on the OSHPP Web page. Under California state law, large employers are required to provide their supervisors with two hours of sexual harassment prevention training every two years. At the University of California, for the purpose of sexual harassment prevention training, supervisors include all faculty.

Complaint Resolution

UCSD has established guidelines for resolving sexual harassment complaints. There are several early resolution options, depending on the circumstances, including educational programs for targeted campus units or for particular individuals and mediation between the parties. Where early resolution is unsuccessful or inappropriate, a formal complaint may be filed and a formal investigation undertaken. There is no prescribed sequence, so choosing one option first does not prevent a complainant from choosing a different option for resolution later on.

Because complaints are most effectively resolved at the earliest possible stage, UCSD encourages early reporting of concerns or complaints regarding sexual harassment. If you believe you have been sexually harassed, you are encouraged to discuss your options and learn about UCSD procedures by contacting OSHPP at (858) 534-8298. You may obtain advice without filing a complaint. Unreasonable delay in reporting sexual harassment or failure to utilize UCSD's complaint resolution procedures may affect your legal rights.

A number of governmental agencies also accept complaints of sexual harassment, including the California Department of Fair Employment and Housing, the U.S. Equal Employment Opportunity Commission, and the Office for Civil Rights, U.S. Department of Education. The time deadlines for filing such complaints vary between 180 and 365 days.
Retaliation

Threats, other forms of intimidation, and retaliation against a faculty member, student, or staff employee for bringing a complaint of sexual harassment or for assisting another in bringing a complaint are prohibited. Retaliation is itself a violation of UCSD policy and applicable law, and is a serious offense. Complaints of retaliation may be brought through the sexual harassment complaint procedures. Acts of retaliation may result in discipline.

Title IX Compliance Coordinator/Sexual Harassment Officer

Persons who wish to bring a complaint alleging a violation of Title IX of the Education Amendments of 1972 may contact the Title IX Coordinator as follows:

Lori Chamberlain, Title IX Compliance Coordinator/Sexual Harassment Officer
University of California, San Diego
9500 Gilman Drive, Mail Code 0024
La Jolla, California 92093
(858) 534-8298

Appendix

The Regents of the University of California

REGENTS EX OFFICIO
Governor of California and President of the Board of Regents
Arnold Schwarzenegger
Lieutenant Governor of California
Cruz Bustamante
Speaker of the Assembly
Fabian Nunez
State Superintendent of Public Instruction
Jack O’Connell
President of the Alumni Associations of the University of California
Richard E. Rominger
Vice President of the Alumni Associations of the University of California
Eric G. Julin
President of the University
Robert C. Dynes

APPOINTED REGENTS
The term of office of appointed regents is twelve years, and terms expire on March 1 of the year indicated.

Benjamin Allen, Student Regent Designate (2007)
Richard C. Blum, Vice Chair (2014)
Eleanor V. Brewer, Alumni Regents Designate (2007)
Michael T. Brown, Faculty Representative (2008)
Phillip J. Bugay, Alumni Regents Designate (2007)
William de la Peña (2018)
Russell Gould (2017)
Judith L. Hopkinson (2009)
Eddie Island (2017)
Odessa Johnson (2012)
Joanne Kozberg (2010)
Sherry L. Lansing (2010)
Maria C. Ledesma, Student Regent (2007)
Monica Lozano (2013)
George M. Marcus (2012)
John J. Moores (2009)
John B. Oakley, Faculty Representative (2007)
Gerald L. Parsky, Chair (2008)
Norman J. Pattiz (2015)
Peter Preuss (2008)
Frederick Ruiz (2016)
Leslie Tang Shilling (2013)
Bruce D. Varner (2018)
Paul Wachter (2016)

PRINCIPAL OFFICERS OF THE REGENTS
President of the Regents
Arnold Schwarzenegger
Chair of the Regents
Gerald L. Parsky
Vice Chair of the Regents
George M. Marcus
Interim Treasurer
Marie Berggren
General Counsel
James E. Holst
Secretary of the Regents
1111 Franklin Street, 12th Floor
Oakland, CA 94607
Leigh Trivette

FACULTY REPRESENTATIVES TO THE BOARD OF REGENTS
Clifford Brunk
(September 1, 2004, to September 1, 2006)
John Oakley
(September 1, 2005, to August 31, 2007)

Systemwide Administration
President of the University
Robert C. Dynes
Acting Provost and Senior Vice President—Academic Affairs
Wyatt R. Hume
Senior Vice President—Business and Finance
Joseph P. Mullinix
Senior Vice President—University Affairs
Bruce B. Darling
Vice President—Health Affairs
Wyatt R. Hume
Vice President—Agriculture and Natural Resources
W. R. Gomes
Vice President—Clinical Services
William H. Gurtner
Vice President for Budget
Lawrence C. Hershman
Vice President—Educational Outreach
Winston Doby
Vice President—Laboratory Management
S. Robert Foley
Chancellors of the UC Campuses

Berkeley
Robert J. Birgeneau
Davis
Larry N. Vanderhoef
Irvine
Michael Drake
Los Angeles
Albert Carnesale
Merced
Carol Tomlinson-Keasey
Riverside
France A. Córdova
San Diego
Marye Anne Fox
San Francisco
J. Michael Bishop
Santa Barbara
Henry T. Yang
Santa Cruz
Denise D. Denton

UNIVERSITY PROFESSORS
http://www.universityofcalifornia.edu/facultystaff/universityprofessors.pdf

University Professor
Alexandre J. Chorin
Department of Mathematics
UC Berkeley
University Professor
Marvin L. Cohen
Department of Physics
UC Berkeley
University Professor
Michael Cole
Department of Communications
UC San Diego
University Professor Emeritus
Robert B. Edgerton
Departments of Psychiatry and Biobehavioral Sciences and Anthropology
UC Los Angeles
University Professor
Emory Elliott
Department of English and Center for Ideas and Society
UC Riverside
University Professor
Sandra M. Faber
Department of Astronomy and Astrophysics
UC Santa Cruz
University Professor Emeritus
Arturo Gomez-Pompa
Department of Botany and Plant Sciences
UC Riverside
University Professor
M. Frederick Hawthorne
Department of Chemistry and Biochemistry
UC Los Angeles
University Professor
Richard Karp
Department of Electrical Engineering and Computer Sciences, Bioengineering, Industrial Engineering and Operations Research and Mathematics
UC Berkeley
University Professor Emeritus
Yuan T. Lee
Department of Chemistry
UC Berkeley
University Professor Emeritus
Frank H. Shu
Department of Astronomy
UC Berkeley
University Professor Emeritus
S. Jonathan Singer
Department of Biological Sciences
UC San Diego
University Professor Emeritus
Neil J. Smelser
Department of Sociology and Institute for International Studies
UC Berkeley
University Professor
Gabor A. Somorjai
Department of Chemistry
UC Berkeley
University Professor Emeritus
Charles H. Townes
Department of Physics
UC Berkeley
University Professor
Ming T. Tsuang
Department of Psychiatry, School of Medicine
UC San Diego
University Professor Emeritus
John R. Whinnery
Department of Electrical Engineering and Computer Sciences
UC Berkeley
University Professor Emeritus
Hayden White
Department of History of Consciousness
UC Santa Cruz
Appendix

Academic and Administrative Officers
University of California, San Diego

 Chancellor
Marye Anne Fox

Senior Vice Chancellor
Marsha A. Chandler, Academic Affairs

Vice Chancellors
David A. Brenner, M.D., Health Sciences
Arthur B. Ellis, Research
Anthony D. J. Haymet, Marine Sciences
V. Wayne Kennedy, Interim, External Relations
Gary C. Matthews, Interim, Resource Management and Planning
Steven W. Relyea, Business Affairs
Joseph W. Watson, Student Affairs

Associate Chancellors
Jorge Huerta
Clare Kristofco

Chair, Academic Senate
Jean-Bernard Minster, 2005–06
Henry C. Powell, 2006-07

Academic Deans
Arts and Humanities
TBD, Interim Dean
Biological Sciences
Suresh Subramani, Interim Dean
Extended Studies and Public Programs
Mary Lindenstein Walshok, Dean
Graduate School of International Relations and Pacific Studies
Peter Cowhey, Dean
Rady School of Management
Robert S. Sullivan, Dean
Graduate School of Marine Sciences
Anthony D. J. Haymet, Dean
Graduate Studies
Kim E. Barrett, Dean
Jacobs School of Engineering
Frieder Seibele, Dean
Physical Sciences
Mark Thiemens, Dean
School of Medicine
David A. Brenner, Dean
Skaggs School of Pharmacy and Pharmaceutical Sciences
Palmer Taylor, Dean
Social Sciences
Paul Drake, Dean

Chief Officers
Chief of Staff—Health Sciences
Thomas Jackiewicz
Chief of Staff—Chancellor’s Office
Clare Kristofco
Campus Counsel, Acting
Dan Park
University Librarian
Brian E.C. Schottlaender
Chief of Staff—Resource Management and Planning
Ann Briggs Addo
Chief Diversity Officer
Jorge Huerta

College Provosts
Revelle College
Daniel Wulbert
John Muir College
Susan Smith
Thurgood Marshall College
Allan Havis
Earl Warren College
Steven Adler
Eleanor Roosevelt College
Ann L. Craig
Sixth College
Gabriele Wienhausen
Associate Vice Chancellors

Mark Appelbaum, Undergraduate Education
Tom Collins, Marine Sciences
Edward Furtek, Science and Technology Policy and Projects and Government and Community Relations
David Miller, Academic Planning and Resources
Rebecca Newman, Associate Vice Chancellor, Development
John A. Orcutt, Marine Sciences
Stacie Spector, University Communications
Mary Lindenstein Walshok, Public Programs
John Wooley, Research

Assistant Vice Chancellors

Ann Briggs Addo, Resource Management and Planning
Mae Brown, Admissions and Enrollment Services
Jennefer Collins, Academic Affairs
Thomas R. Leet, Human Resources
Marianne Generales, Research
Elazar Harel, Administrative Computing and Telecommunications
M. Boone Hellmann, Facilities Design and Construction
Bonnie Horstmann, Program Planning and Undergraduate Education

Donald Larson, Controller, Business and Financial Services
Sylvia Lepe-Askari, Campus Budget
Gary Matthews, Auxiliary and Plant Services
Deborah McGraw, Resource Administration
Brian J. Murray, Student Health and Wellness
Jane C. Moores, Interim Director, Technology Transfer and Intellectual Property Services
Gary R. Ratcliff, Acting Assistant Vice Chancellor, Student Life
Marlene D. Shaver, Information and Financial Systems
Edward J. Spriggs, Financial Management
Jeffrey A. Steindorf, Campus Planning
Loren C. Thompson, Student Educational Advancement

Dean of International Education
Lynn C. Anderson

Deans of Academic Advising
Eleanor Roosevelt College
Nancy Friedlander
John Muir College
Kay Reynolds
Revelle College
Mirasol Espanola
Sixth College
Brigitte Benoist
Thurgood Marshall College
Anne Porter
Earl Warren College
Catherine A. Joseph

Deans of Student Affairs
Eleanor Roosevelt College
Patricia S. Goen
John Muir College
Patricia Mahaffey
Revelle College
Renee Barnett-Terry
Sixth College
James Stascavage
Thurgood Marshall College
Ashanti Houston Hands
Earl Warren College
Paul DeWine
Organized Research Units, Institutes, Laboratories, and Projects

African and African American Studies Project
Bennetta Jules-Rosette, Director

AIDS Research Institute
Douglas Richman, Director

California Institute for Telecommunications and Information Technology (Calit2),
San Diego Division
Ramesh Rao, Director

Rebecca and John Moores UCSD Cancer Center

Dennis Carson, Director

Center for Astrophysics and Space Sciences
Arthur Wolfe, Director

Center for Atmospheric Sciences
V. Ramanathan, Director

Center for Comparative Immigration Studies
Wayne Cornelius, Director

Center for Energy Research
Farrokh Najmabadi, Director

Center for Human Development
Joan Stiles, Director

Center for Human Information Processing
V.S. Ramachandran, Director

Center for Iberian and Latin American Studies
Christine Hunefeldt, Director

Center for Interface and Materials Science
M. Brian Maple, Director

Center for Magnetic Recording Research
Paul Siegel, Director

Center for Marine Biodiversity and Conservation
Nancy Knowlton, Director

Center for Marine Biotechnology and Biomedicine
William Fenical, Director

Center for Marine Genomics
Terry Gaasterland, Director

Center for Molecular Agriculture
Maarten Chrispeels, Director

Center for Molecular Genetics
Steven Wasserman, Director

Center for Networked Systems
Amin Vahdat, Director

Center for Observations, Modeling, and Prediction
Detlef Stammer, Director

Center for Research in Biological Structure
Mark Ellisman, Director

Center for Research in Computing and the Arts
Sheldon Brown, Director

Center for Research in Language
Maria Polinsky and Marta Kutas, Co-Directors

Center for U.S.-Mexican Studies
Christopher Woodruff, Director

Climate Research Division
Daniel Cayan, Director

Clinical Investigation Institute
Gary Firestein, Director

Geosciences Research Division
Steve Cande, Director

Glycobiology Research and Training Center
Ajit Varki, Director

Institute of Geophysics and Planetary Physics
Bernard Minster, Director

Institute on Global Conflict and Cooperation
Susan Shirk, Director

Institute of International, Comparative, and Area Studies
Gershon Shafir, Director

Institute for Neural Computation
Terrence Sejnowski, Director

Institute for Nonlinear Science
Henry Abarbanel, Director

Institute for Pure and Applied Physical Sciences
M. Brian Maple, Director

Integrative Oceanography Division
Elizabeth Venrick and Robert Guza, Co-Directors

Kavli Institute for Brain and Mind
Nicholas Spitzer and Jeffrey Elman, Co-Directors

Laboratory of Comparative Human Cognition
Michael Cole, Director

Marine Biology Research Division
Ronald Burton, Director

Marine Physical Laboratory
William Kuperman, Director

Marine Physical Laboratory
Bruce Cornuelle, Director

Project for Explaining the Origin of Humans
Ajit Varki, Director

Project for the Responsible Conduct of Research Education
Michael Kalichman, Director

Project in Econometric Analysis
Graham Elliott, Coordinator

Project in Geometry and Physics
James Bunch, Coordinator

Project on International Affairs
Barbara Walter, Director

Public Policy Research Project
Mathew McCubbins, Director

San Diego Supercomputer Center
Francine Berman, Director

Stein Institute for Research on Aging
Dilip Jeste, Director

Whitaker Institute of Biomedical Engineering
Shu Chien, Director

White Mountain Research Station
Frank Powell, Director
UCSD Medical Center

David I. Sakai, Chief Financial Officer
Richard Liekweg, Chief Executive Officer, UCSD Medical Center
Scott S. Hofferber, Chief Operating Officer, Medical Group
Thomas McAfee, Physician-in-Chief, UCSD Health Sciences
Edward Babakanian, Chief Information Officer
Lawrence S. Friedman, Medical Director, Ambulatory and Primary Care
Robert W. Hogan, Associate Director, Director of Finance, UCSD Medical Center
James D. Kaufman, Purchasing Manager
Dennis E. Goodrich, Director, Facilities and Safety Management, UCSD Medical Center
Margarita Baggett, Associate Director, Patient Care Services, Chief Nursing Officer UCSD Medical Center
Dennis Moran, Associate Director, Professional Services, UCSD Medical Center
Angela Scioscia, Chief Medical Officer, UCSD Medical Center
Mona Sonnenshein, Chief Operating Officer, UCSD Medical Center

UCSD School of Medicine

Sara Steinhoffer, Manager, Public Affairs and Community Relations
Ruth Covell, Associate Dean, Program and Policy Analysis
Terence Davidson, Associate Dean, Continuing Medical Education
Leslie Franz, Director, Health Sciences Communications and Community Relations
Gordon N. Gill, Dean, Scientific Affairs
David Brenner, M.D., Vice Chancellor, Dean
Pam Bylen, Director, Marketing and Planning
Ronaldo G. Espiritu, Interim Associate Vice Chancellor, Finance and Administration Health Sciences
Leland M. Giddings, Corporate Compliance/Privacy Officer
Jacqueline Parthemore, Chief of Staff/Medical Director, VA San Diego Healthcare Center
Carolyn Kelly, Associate Dean, Admissions and Student Affairs
Dennis Carson, Director, Cancer Center
Maria Savoia, Vice Dean for Medical Education, Professor of Medicine
Brian Zeglen, Director of Admissions
Appendix

Endowed Chairs
University of California, San Diego

Akamai Chair of Internet Mathematics
Fan Chung Graham
Victor C. Alderson Chair of Applied Ocean Science
Veerabhadran Ramanathan
American Heart Association California Affiliate Chair in Cardiovascular Research
Ken Chien
Atkinson Family Chair
—
Richard C. Atkinson Chair
Eduardo Macagno
Rita L. Atkinson Chair
Efim Zelmanov
Atkinson/Epstein Chair in Management Leadership
—
Sanford I. Berman Chair in Language and Human Communication
Michael Cole
J. Robert Beyster Chair in Engineering
Joseph Pasquale
Blasker Chair in Environmental Engineering
Paul Linden
Simon Bolivar Chair in Latin American Studies
Peter H. Smith
Dan Broida Chair in Elementary Particle Physics
—
Callaway Golf Chair in Structural Mechanics
John B. Kosmatka
Center for Magnetic Recording Research Chair in Materials IV
—
Center for Magnetic Recording Research Chair in Materials V
—
Center for Magnetic Recording Research Chair in Mechanics and Tribology III
Frank E. Talke
Center for Magnetic Recording Research Chair in Physics II
—
Chair in High Performance Computing
Francine Berman
Chancellor's Associates Chair I in Cognitive Science
Jeffrey Elman
Chancellor's Associates Chair II in Economics
Halbert White
Chancellor's Associates Chair III in Theatre
Jorge A. Huerta
Chancellor's Associates Chair IV in Physics
Arthur Wolfe
Chancellor's Associates Chair V in Ethnic Studies
Ramon A. Gutierrez
Chancellor's Associates Chair VI in Chemistry and Biochemistry
Mark H. Thiemens
Chancellor's Associates Chair VII in Biological Science
Stephen Hedrick
Chancellor's Associates Chair VIII in Political Science
Mathew McCubbins
Chugai Pharmaceutical Chair in Cancer
Dennis A. Carson
Communications Industry Professorship in Engineering
Lawrence Larson
Francis Crick Chair in Physical Science
Peter G. Wolynes
Cymer Corporation Endowed Chair
Robert Bitmead
Ericsson Endowed Chair in Wireless Communication Access Techniques
Laurence Milstein
Friedman Chair in Global Observation Research
Uwe Send
Pierre M. Galletti Professor of Bioengineering Innovation
Bernhard Palsson
Gildred Chair for United States-Mexican Relations
Wayne A. Cornelius
Frank Caylus Grandier Chair in Medieval European History
—
Harry E. Gruber Chair in Computer Science and Information Technologies
Larry Smarr
Chair in Hebrew Biblical Studies
David Noel Freedman
Walter F. Heiligenberg Professorship in Neuroethology
Daniel Feldman
Ingrid and Joseph W. Hibben Chair in Space Science and Education
Sally Ride
Hwei-Chih and Julia Hsiu Chair in Chinese Studies
Joseph W. Esherick
Chair in Infectious Diseases
Joshua Fierer
Institute of the Americas Chair for Inter-American Affairs
Paul W. Drake
John Dove Isaacs Chair in Natural Philosophy
Nancy Knowlton
Kazuo Iwama Chair in Material Science
Sung Ho Jin
Irwin Mark and Joan Klein Jacobs Chair of Information and Computer Science
Ronald Graham
Helen A. Jarrett Chair in Alzheimer's Disease Research
David P. Salmon, M.D.
Chair of Judaic Studies
David Goodblatt
Nancy Kaehr Chair in Pediatric Research
Sanjay K. Nigam
Jerome Katzin Chair in Corporate Governance
David Schkade
Katzin Chair of Jewish Civilization
Richard E. Friedman
Larry L. Hillblom Foundation Endowed Chair in Geriatrics
Laura Dugan
Norma Kershaw Endowed Chair in the Archaeology of Ancient Israel
—
Lawrence B. and Sallye K. Krause Chair in Korean Studies
Stephen Haggard
Stephen W. Kuffler Chair in Biology
Anirvan Ghosh
Richard K. Lansche, M.D., and Tatiana Lansche Endowed Chair in Ophthalmology
Stuart Brown
Appendix

Estelle and Edgar Levi Memorial Chair in Aging
Dilip Jeste

Benard L. Maas Chair in Inherited Metabolic Disease

Mary Gilman Marston Chair in Psychiatry
Lewis L. Judd

Quinn Martin Chair in Drama

Visiting Professors
Bernd T. Matthias Chair in Physics
M. Brian Maple
Joseph E. Mayer Chair of Theoretical Chemistry
J. Andrew McCammon
Hajime Mori Chair in Japanese Language and Literature

Kenneth M. Moser Endowed Chair

Professorship in Neuroregeneration
Lisa Boulanger

Nancy Olmsted Chair in Pediatric Pulmonology
Paul M. Quinton

Pacific Economic Cooperation Chair in International Economic Relations
Takeo Hoshi

Edith and William M. Perlman Chair in Clinical Cardiology
Kirk L. Peterson

Charles Lee Powell Chair in Mathematics

Charles Lee Powell Chair in Wireless Communication
Bang-Sup Song

Presidential Chair in Energy and Combustion Research
Forman A. Williams

Presidential Chair in Philosophy II
Patricia S. Churchland

Professorship in Neuroregeneration
Marla Feller

Qualcomm Endowed Chair in Communications and Technology Policy
Peter Cowhey

Qualcomm Endowed Chair in Embedded Microsystems
Rajesh Gupta

Qualcomm Endowed Chair in Mobile Computing

Qualcomm Endowed Chair in Sensor Networks

Qualcomm Endowed Chair in Telecommunications and Information Technologies

Ramesh Rao
Gerry and Jeannie Ranglas Endowed Chair in Ancient Greek History

Helen Ranney Endowed Chair in Medicine
Kenneth Kaushansky
Anne Ratner Chair in Pediatric Ophthalmology
David Granet
Eric and Johanna Reissner Chair in the Department of Structural Engineering
Frieder Seible
Stephen O. Rice Chair in Magnetic Recording Research
Jack K. Wolf
Florence Seeley Riford Chair for Acquired Immune Deficiency Syndrome (AIDS) Research
Douglas Richman
Florence Riford Chair for Alzheimer’s Disease Research
Leon J. Thal
William E. and Mary B. Ritter Memorial Chair
Jeremy Jackson
Rohr Chair in Pacific International Relations
Miles Kahler
Paul D. Saltman Chair in Science Education
Randolph Hampton
Science Applications International Corporation Chair in Engineering
Shiley Endowed Chair in Alzheimer’s Disease Research
Shiley Endowed Chair in Alzheimer’s Disease Research
Harold Simon Chair in International Health and Cross Cultural Medicine
Steffanie Strathdee
Skyworks Chair in High Performance Communications Devices and Circuits
Peter Asbeck
Sokwanlock Chair in Chinese International Affairs
Barry Naughton
Herbert Stern Chair in Biology
Jean Wang

Structural Systems Research Chair

Tasch Endowed Chair in Parkinson’s Disease Research

Evelyn and Edwin Tasch Chair in Cancer Research
Thomas Kipps
Ronald R. Taylor Chair in Information Technology in Computer Science
Pavel Pezner
Torrey Mesa Research Institute Chair in Plant Science
Julian I. Schroeder
Sandra and Monroe Trout Chair in Pharmacology
Palmer W. Taylor
Monroe E. Trout Chair in Surgery
David Hoyt
Harold Clayton Urey Chair in Chemistry
Clifford Kubiak
Valtz Family Chair in Philosophy
Paul M. Churchland
Alkiviadis Vassiliadis Endowed Chair in Byzantine Greek History

Arthur and Molli Wagner Chair in Acting
Kyle Donnelly
Sam M. Walton Endowed Chair for Cancer Research
John P. Pierce
Judith and Jack White Chair in Cardiology
Anthony Demaria
Sheryl and Harvey White Endowed Chair in Management Leadership
Vish Krishnan
Muriel Jeannette Whitehill Chair in Bio-Medical Ethics
Theodore Friedmann
Kent R. Wilson Chair in Physical Chemistry
Herman Wouk Chair of Modern Jewish Studies
Deborah Hertz
Samuel S.C. Yen Chair in Reproductive Medicine
Walter J. Zable Chair in Engineering
Frieder Seible
Appendix

UC San Diego Foundation

Chancellor
Marye Anne Fox
President
Dr. Keith E. Brant
Chair
Elaine Galinson
Vice Chairs
Dr. John D. Cambon, ’74
Robert B. Horsman
Treasurer
Arthur Brody
Chairs Emeriti
William E. Beamer
Dr. J. R. Beyster
Malin Burnham
Jerome S. Katzin
Richard C. Levi
R. Barry McComic
Duane J. Roth
Dr. Monroe E. Trout

Trustees
Dr. Robert P. Akins, ‘74, ’77, and ’83
Deborah Bronston-Culp, ’80
Julia R. Brown
Carol Littlejohn Chang
Gary A. Curtis, ’69
John G. Davies
Mark Diamond, ’87
Sheldon C. Engelhorn, ’72
Erik T. Engelson, ’82 and ’84
Daniel J. Epstein
Dr. Peter C. Farrell
Pauline M. Foster
Lucy A. Haugh
Darcel L. Hulse
Dr. Irwin M. Jacobs
Mel I. Katz
Brian A. Kenner, ’89
Prof. Clifford P. Kubiak
Warner C. Lusardi
Robert S. Marren, ’86
James W. Montgomery, ’81
Judith B. Morgan
James B. Morris
William E. Nelson
Anne S. Otterson
Paul A. Peterson
Sheila M. Potiker
Peggy Preuss
Ernest S. Rady
Rudolph J. Rehm
William H. Scripps
Claudia Skaggs Lutrell
William R. Stensrud
Eugene L. Step
Dr. Jerome Swartz
Ronald R. Taylor
Brian M. Walsh, ’89
Jack K. White

Board of Overseers
University of California, San Diego

Jennifer Adams-Brooks
Laurie Black
Josie Calderon
Ramon Castro
Morris Casuto
Etran Chane
Martin Colby
Daniel Eaton
Herman Gadon
Adolfo Gonzales
Alan Greenway
Ben Haddad
Sook Hansen
Lucy Haugh
Joel Holliday
Gary Jacobs
Jerome Katzin
Lucy Killea
Richard Kiy
Minerva Kunzel
George Lattimer
Linda Legerrette
James Lemke
Richard Levi
Jack McGrory
Paul I. Meyer
Judith Morgan
Thomas Page
Ray Peet
Olivia Puentes-Reynolds
Major General Robert Scurlock
Darlene Shiley
Robert Spanjian
Donald Stone
Susan Taylor
Dixie Unruh
Carol Veit
Diana Venable
Victor Woo
Elizabeth Yamada
On-campus student enrollment

Undergraduate 21,369
Revelle 3,627
John Muir 4,088
Thurgood Marshall 3,769
Earl Warren 4,151
Eleanor Roosevelt 3,376
Sixth 2,358
Graduate 3,910
Medicine 968
Total 26,247

Grade-point averages

Freshman 2.89
Sophomore 2.97
Junior 3.00
Senior 3.05

Number of undergraduates in most populous departments

Biology 4,273
Economics 1,993
Psychology 1,340
Political Science 1,226
Chemistry 1,137
Mechanical and Aerospace Engineering (MAE) 1,068
Bioengineering 879
International Studies 763
Communications 721
Computer Science and Engineering (CSE) 682

UCSD Facts and Figures (as of fall 2006)

Based upon the previous year’s experience, 94 percent of all new freshmen enrolled at UCSD in the fall quarter are also enrolled in the subsequent fall quarter. Eighty-three percent of all students who begin their undergraduate studies as freshmen at UCSD complete their degree requirements here within six years. Questions or requests for more detailed information should be directed to the Office of Student Research and Information/Student Affairs.

UCSD Extension enrollment 30,412
Summer Session enrollment 15,455
On-campus teaching faculty members 1,886
Bound books in library collection 3,236,219

Members of Honorary Societies/Prizes/Awards

A.B. Wood Medal and Prize 1
Academia Sinica 1
Academic Senate Distinguished Teaching Awards 59
Academie des Sciences, France 1
Acoustical Society of America 1
African Studies Association 1
American Academy of Arts and Sciences 82
American Academy of Mechanics 3
American Academy of Microbiology ... 2
American Academy of Pediatrics 1
American Academy of Religion 1
American Anthropological Association 4
American Association for the Advancement of Science 72
American Astronomical Society 9
American Chemical Society 49
American Geophysical Union 7
American Institute of Aeronautics and Astronautics 8
American Institute of Architects 1
American Institute of Chemists 2
American Mathematical Society 21
American Meteorological Society 1
American Nuclear Society 2
American Philosophical Association 1
American Philosophical Society 14
American Physical Society 34
American Psychological Association 8
American Society for Biological Chemists 12
American Society for Cell Biology 4
American Society for Clinical Investigation 1
American Society of Composers, Authors & Publishers 3
American Society of Mechanical Engineers 5
American Sociological Association 1
American Thoracic Society (Edward Livingston Trudeau Medal) 1
Arthur C. Cope Scholar Award 2
Association of American Physicians 2
Association for Computing Machinery 1
<table>
<thead>
<tr>
<th>Award/Institute</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balzan</td>
<td>2</td>
</tr>
<tr>
<td>Beckman Foundation Young Investigator</td>
<td>2</td>
</tr>
<tr>
<td>Carol Nachman Prize</td>
<td>2</td>
</tr>
<tr>
<td>Chancellor’s Medal</td>
<td>2</td>
</tr>
<tr>
<td>Chancellor’s Summer Faculty Fellowship</td>
<td>18</td>
</tr>
<tr>
<td>Charles E. Molnar Award</td>
<td>1</td>
</tr>
<tr>
<td>Cognitive Science Society</td>
<td>1</td>
</tr>
<tr>
<td>College Teaching Awards</td>
<td>1</td>
</tr>
<tr>
<td>Cottrell Scholar</td>
<td>1</td>
</tr>
<tr>
<td>C.U. Ariens Kappers</td>
<td>1</td>
</tr>
<tr>
<td>Distinguished Teaching</td>
<td>6</td>
</tr>
<tr>
<td>Econometric Society</td>
<td>8</td>
</tr>
<tr>
<td>Fields Medal</td>
<td>1</td>
</tr>
<tr>
<td>Fulbright Fellowship</td>
<td>39</td>
</tr>
<tr>
<td>German Marshall Fund</td>
<td>4</td>
</tr>
<tr>
<td>Gregory Luebbert Prize</td>
<td>1</td>
</tr>
<tr>
<td>Guggenheim Fellowship</td>
<td>126</td>
</tr>
<tr>
<td>Gustav Steinhein Medal</td>
<td>1</td>
</tr>
<tr>
<td>Hellman Faculty Fellowship</td>
<td>30</td>
</tr>
<tr>
<td>Humboldt Research Award</td>
<td>9</td>
</tr>
<tr>
<td>Huntsman Medal</td>
<td>2</td>
</tr>
<tr>
<td>Institute of Electrical & Electronic Engineers</td>
<td>22</td>
</tr>
<tr>
<td>Institute of Mathematical Statistics</td>
<td>3</td>
</tr>
<tr>
<td>Institute of Medicine</td>
<td>25</td>
</tr>
<tr>
<td>Institute of Scientific Information</td>
<td>2</td>
</tr>
<tr>
<td>International Academy of Astronautics</td>
<td>5</td>
</tr>
<tr>
<td>International Union of Radio Scientists</td>
<td>1</td>
</tr>
<tr>
<td>Johan Skyette Prize</td>
<td>1</td>
</tr>
<tr>
<td>KGTV Channel 10 News Leadership Award</td>
<td>1</td>
</tr>
<tr>
<td>Kyoto Prize</td>
<td>1</td>
</tr>
<tr>
<td>MacArthur Foundation</td>
<td>8</td>
</tr>
<tr>
<td>Meteorical Society</td>
<td>1</td>
</tr>
<tr>
<td>National Academy of Education</td>
<td>3</td>
</tr>
<tr>
<td>National Academy of Engineering</td>
<td>14</td>
</tr>
<tr>
<td>National Academy, Institute of Medicine</td>
<td></td>
</tr>
<tr>
<td>National Academy of Sciences</td>
<td>63</td>
</tr>
<tr>
<td>National Humanities Medal</td>
<td>1</td>
</tr>
<tr>
<td>National Medal of Science</td>
<td>6</td>
</tr>
<tr>
<td>New York Academy of Science</td>
<td>2</td>
</tr>
<tr>
<td>Nierenberg Prize</td>
<td>4</td>
</tr>
<tr>
<td>Nobel Prize Winners (Nobel Laureates)</td>
<td>8</td>
</tr>
<tr>
<td>Oceanology International Lifetime</td>
<td></td>
</tr>
<tr>
<td>Achievement Award</td>
<td>1</td>
</tr>
<tr>
<td>Optical Society of America</td>
<td>5</td>
</tr>
<tr>
<td>Packard Foundation Fellowship</td>
<td>2</td>
</tr>
<tr>
<td>Potamkin Prize</td>
<td>4</td>
</tr>
<tr>
<td>Presidential Early Career Award for Scientists and Engineers (PECASE)</td>
<td>2</td>
</tr>
<tr>
<td>Presidential Young Investigators Award</td>
<td>2</td>
</tr>
<tr>
<td>Prince Albert I. Medal</td>
<td>1</td>
</tr>
<tr>
<td>Pulitzer Prize</td>
<td>18</td>
</tr>
<tr>
<td>Revelle Medal</td>
<td>15</td>
</tr>
<tr>
<td>Robert Guthrie Award</td>
<td>1</td>
</tr>
<tr>
<td>Roy Harvey Pearce/Archive for New Poetry Prize</td>
<td></td>
</tr>
<tr>
<td>Royal Anthropological Institute</td>
<td>1</td>
</tr>
<tr>
<td>Royal Astronomical Society</td>
<td>6</td>
</tr>
<tr>
<td>Royal Historical Society</td>
<td>1</td>
</tr>
<tr>
<td>Royal Netherlands Academy of Science</td>
<td>1</td>
</tr>
<tr>
<td>Royal Society of Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Royal Society of London</td>
<td>9</td>
</tr>
<tr>
<td>Royal Society of Victoria</td>
<td>1</td>
</tr>
<tr>
<td>Royal Statistical Society</td>
<td>1</td>
</tr>
<tr>
<td>Searle Scholar</td>
<td>7</td>
</tr>
<tr>
<td>Seismological Society of America</td>
<td>1</td>
</tr>
<tr>
<td>Sloan Research Fellows</td>
<td>18</td>
</tr>
<tr>
<td>Society of Experimental Psychology</td>
<td>6</td>
</tr>
<tr>
<td>Swedish Royal</td>
<td>1</td>
</tr>
<tr>
<td>Tyler Prize</td>
<td>1</td>
</tr>
<tr>
<td>UC Presidential Fellowship</td>
<td>1</td>
</tr>
<tr>
<td>UCSD Endowed Chairs</td>
<td>113</td>
</tr>
<tr>
<td>UCSD Medal</td>
<td>9</td>
</tr>
<tr>
<td>Van Courtland Elliott Prize</td>
<td>1</td>
</tr>
<tr>
<td>Vannevar Bush Award</td>
<td>2</td>
</tr>
</tbody>
</table>
A

Absence, Leave of, Graduate .. 91
Absence/Readmission, Undergraduate 72
Academic Advising ... 93
Academic and Administrative Calendars 5
Academic Computing Services .. 93
Academic Enrichment Programs ... 94
Academic Internship Program (see also Warren College) 168
Accreditation (Western Association of Schools and Colleges [WASC]) 11
Add/Drop Courses .. 52
Administrative Officers ... 680
Admission, Graduate ... 87
Admissions, Policies and Procedures, Undergraduate 37
admission policy .. 38
Intent to Register, Statement of ... 47
Notification of Admission ... 47
reapplication .. 47
student health requirement .. 47
applying for admission .. 46
application fees ... 46
college choice ... 46
transcripts ... 46
UC campus choice ... 46
college board advanced placement credit (chart) 48
colleges and majors .. 37
impacted majors ... 38
pre-major status ... 38
definitions ... 37
freshman applicant .. 37
international applicant .. 37
nonresident applicant .. 37
transfer applicant ... 37
undergraduate applicant .. 37
educational opportunity programs .. 37
fees and expenses .. 50
estimated expenses for undergraduate residents (chart) 51
freshman applicant admission .. 39
additional preparation ... 42
college credit (advanced placement) ... 42
college credit (courses) .. 42
eligibility .. 41
examination requirement ... 41
high school diploma requirement ... 39
honors level courses .. 41
nonresident requirement .. 41
scholarship requirement ... 41
international applicants .. 45
transfer applicant admission .. 43
credit from another college ... 44
determining your grade-point average eligibility 44
eligibility .. 43, 44
second baccalaureate or limited status applicant 44
transfer admission requirements ... 43

Adult Education—see UCSD Extension

Advanced Placement Credit (chart) .. 48
Adviser, Graduate ... 73
Affirmative Action Policy Statement, Nondiscrimination and 675
African American Studies Minor .. 168
African Studies Minor .. 169
Alumni Association, UCSD ... 116
Anthropology, Department of ... 170
Apartments .. 110
Appendix .. 675
Application for Degree ... 62
Application Procedures, Graduate ... 84
Applied Ocean Science .. 182
Art Galleries .. 116
Art—see Visual Arts
Assistance in Courses .. 63
Assistantships, student researchers .. 83
Astronomy—see Physics, see Center for Astrophysics and Space Sciences
Astrophysics—see Physics, see Center for Astrophysics and Space Sciences
Athletics—see Recreation
Audiology ... 183
Auditing .. 72
Index

- **B**
 - Bachelor's Degree 59
 - general requirements for 59
 - see also Marshall, Muir, Revelle, Sixth, Roosevelt, and Warren colleges
 - Billing Statement .. 55
 - Biochemistry, Chemistry and, Department of 186, 217
 - Bioengineering (BE), Department of 299
 - Bioinformatics Graduate Program 186
 - Bioinformatics Undergraduate Program 191
 - Biological Sciences, Division of 192
 - Biomedical Sciences 212
 - Board of Overseers, UCSD 686
 - Bookstore .. 117

- **C**
 - Caledonian Society 24
 - Calendars
 - Academic and Administrative 5
 - Undergraduate Admission Information and Enrollment Deadlines 9
 - Graduate Admission Information and Enrollment Deadlines 10
 - California Cultures in Comparative Perspective Minor 215
 - California Residence, definition of 53
 - Campus Map ... 700
 - Candidacy, Advancement to
 - M.A.-M.S. degrees 75, 77
 - doctoral degrees .. 78
 - Ph.D.-M.D. program 79
 - Candidate in Philosophy Degree (C.Phil.) 79
 - Career Services ... 102
 - Career Services, Graduate 74, 102
 - Centers
 - Cancer Center .. 125
 - Center for Astrophysics and Space Sciences 126
 - Center for Comparative Immigration Studies 126
 - Center for Energy Research 126
 - Center for Human Development (CHD) 126
 - Center for Human Information Processing 126
 - Center for Iberian and Latin American Studies (CILAS) 127
 - Center for Magnetic Recording Research 127
 - Center for Molecular Agriculture (CMA) 128
 - Center for Molecular Genetics 128
 - Center for Networked Systems 128
 - Center for Research in Biological Structure (CRBS) 128
 - Center for Research in Computing and the Arts 129
 - Center for Research in Language 129
 - Center for U.S.-Mexican Studies 129
 - Child Development Center 116
 - Crafts Center .. 116
 - Cross-Cultural Center 116
 - Glycobiology Research and Training Center 130
 - Price Center, The .. 114
 - San Diego Supercomputer Center (SDSC) 96, 130
 - Student Center, The ... 114
 - Change of Address ... 53
 - Chemical Engineering Program (CENG) 314
 - Chemistry and Biochemistry, Department of 217
 - Chemistry, Joint Doctoral Program 226
 - Chicano Literature—see Ethnic Studies and Literature
 - Chicano/a–Latino/a Arts and Humanities Minor (CLAH) 35, 231
 - Child Development Center 116
 - Chinese Literature .. 486
 - Chinese Studies Program, The 232
 - Choosing a College at UCSD 15
 - CILAS—see Centers
 - Classical Studies Program, The 235
 - Clinical Psychology .. 241
 - joint doctoral program in 242
 - Clinical Research .. 243
 - Clubs
 - recreation .. 112
 - sport ... 112
 - Cognitive Science, Department of 244
 - College Credit, advanced placement and courses 42
 - College, Choosing a UCSD 15
 - Colleges and Majors, Undergraduate 14, 37
 - Communication, Department of 254
 - Comparative Literature ... 486
 - Comparison of Graduation Requirements 17
 - Computer Science and Engineering (CSE), Department of 319

Computing and the Arts—see Music and Visual Arts, Departments of
Computing Services ... 93
Concurrent Registration, Extension .. 99
Confidentiality of and Access to Student Records 676
Contemporary Issues, Program in ... 265
Contents ... 3
Continuing Education—see UCSD Extension
Correspondence Directory .. 1
Costs—see Fees
Counseling and Psychological Services 111
Courses, Curricula, and Programs of Instruction 168
Crafts Center ... 116
Credit by Examination ... 64
Credit, Transfer ... 44, 51, 75
Critical Gender Studies Program ... 265
Culture, Art, and Technology ... 34, 270

D

Dialogue, San Diego ... 100
Dimensions of Culture Program (DOC) 271
Dining Services .. 103
Disabilities, Office for Students with .. 103
Dishonesty, Academic .. 68
Division of Extended Studies and Public Programs 98
Doctor of Philosophy Degree (Ph.D.) .. 77
Double Majors .. 59
Drop/Add Courses .. 52
Duplicating Services—see Imprints

E

Earl Warren College—see Warren College
Earth Sciences—see Scripps Institution of Oceanography
Economics, Department of .. 272
EDNA (Student Information Center) ... 114
Education Abroad Program (EAP) .. 71, 80, 95, 280
Education Studies Program (EDS) .. 282
Educational Fee ... 57
Educational Opportunity Programs .. 37
Educators, Continuing Education for .. 98
Eleanor Roosevelt College .. 16, 30, 295
honors ... 33, 295
Electrical and Computer Engineering (ECE), Department of 337
Engineering, Jacobs School of .. 296
see also
Bioengineering .. 299
Chemical Engineering Program (CENG) 314
Computer Science and Engineering (CSE) 319
Electrical and Computer Engineering (ECE) 337
Mechanical and Aerospace Engineering (MAE) 357
Structural Engineering (SE) .. 372
English as a Second Language .. 382
English Composition (Entry Level Writing) 60
English, Literatures in .. 481
Enrollment
adding and dropping courses .. 52
continuing student .. 52
new student ... 52
Enrollment Deadlines
undergraduate .. 9
graduate .. 10
Entry Level Writing Requirement, UC 60, 382
Environmental Studies .. 383
Environmental Systems .. 384
Ethics and Spirituality, The Center for 103
Ethnic Studies, Department of ... 388
Examination Papers, Retention of .. 64
Examinations
 College Board Advanced Placement ... 42
credit by ... 64
eligibility ... 41
final ... 63
graduate student language examinations 89
GRE (Graduate Record Examination) .. 88
TSE (Test of Spoken English) ... 89

Expenses—see Fees
Extended Studies and Public Programs 98
Extension, UCSD ... 98

F
Faculty, UCSD ... 140
Family Educational Rights and Privacy Act (FERPA) 676
Fees and Expenses ... 50
application .. 46
educational fee ... 57, 81, 82
estimated expenses for undergraduate residents
 of California (chart) ... 51
exemption from ... 57
graduate ... 81
health insurance, mandatory .. 57
miscellaneous .. 57
payment of .. 55
recreation facility ... 82
student center .. 82
tuition fee, nonresident ... 57
university registration fee ... 57, 81
Film Studies ... 398
Final Examinations ... 63
Final Grades .. 66, 87
Financial Assistance ... 83, 103
 assistantships ... 83
 fellowships and traineeships ... 83
 grants ... 84, 104
 loans .. 84, 104
 scholarships .. 105
 work-study .. 104
Food Services—see Dining Services
Foreign Language Requirements (Graduate) 78

Foreign Students, Admission ... 45, 88
Foreign Study
 Education Abroad Program (EAP) .. 71, 80, 95, 280
French Language and Literature—see Linguistics and Literature
French, Literatures in ... 481
Freshman Applicant .. 39
Freshman Seminar Program .. 399

G
General Undergraduate Degree Requirements 59
General-Education Requirements
 Eleanor Roosevelt College ... 17, 30
 Marshall College ... 17, 25
 Muir College .. 17, 22
 Revelle College .. 17, 19
 Sixth College .. 17, 34
 Warren College ... 17, 28
Geology—see Earth Sciences
German Studies, Program in .. 399
German, Literatures in .. 481
German—see Linguistics and Literature, Departments of
Grade-Point Average .. 44, 64
Grades, Graduate ... 85
Grading Policy, Undergraduate .. 64
 changes in grades ... 64
 extension of incomplete (I) .. 66
 grade appeals ... 66
 grade points ... 64
 in progress (IP) grade ... 65
 incomplete (I) grade .. 66
 no report/no record (NR) .. 65
 pass/not pass (P/NP) grade .. 65
 withdrawal (W) grade ... 65
Graduate Admission Information and Enrollment Deadlines 10
Graduate Degrees Offered .. 76
Graduate Record Examinations (GRE) 88
Graduate Student Association (GSA) .. 73
Graduate Student Diversity ... 74
Index

student conduct .. 84
taxability of awards 84
teaching .. 75
tests for admission to graduate studies 89
time limits, doctoral 78
time limits for graduate student support 84
traineeships .. 83
transcript fees .. 82
transcript of records 88
transferring credit 75
university registration fee 81
withdrawal ... 87, 92
Graduation Requirements 17
Eleanor Roosevelt College 32
Marshall College .. 26
Muir College ... 23
Revelle College .. 21
Sixth College .. 35
Warren College .. 29
Grants .. 84, 104
Greek Literature ... 493

H

Health Care—Leadership of Healthcare Organizations .. 400
Health Care—Social Issues 402
Health Insurance, Mandatory 50, 57, 81
Health Requirement, undergraduate 47
Health Sciences, Graduate Programs in 79
Health Service, Student 113
Hebrew—see Judaic Studies
High School Diploma Requirement 39
History, Department of 403
"Holds," Registration 53
Honors
 Caledonian Society 24
 college honors 61
 department honors 24, 61
 Phi Beta Kappa .. 18, 24, 61
 provost honors 61

Housing
 commuter student services 110
 off-campus (affiliated) 110
 on-campus .. 110
Human Development Program 423
Humanities, Program in 427

I

Identification Card, Student 90
Imprints ... 117
Incompletes ... 66, 86
Information Center, Student (EDNA) 114
Institutes
 AIDS Research Institute 121
 California Institute for Telecommunications and
 Information Technology (Calit2) 122
 Institute for International, Comparative, and
 Area Studies (IICAS) 122
 Institute for Neural Computation 123
 Institute for Nonlinear Science 123
 Institute for Pure and Applied Physical Sciences 123
 Institute of Geophysics and Planetary Physics 120
 Kavli Institute for Brain and Mind (KIBM) 124
 Sam and Rose Stein Institute for Research on Aging 124
 University of California Institute on Global Conflict
 and Cooperation (IGCC) 121
 Whitaker Institute of Biomedical Engineering (WIBE) 124
 White Mountain Research Station 121
Intent to Register .. 47
Intercampus Exchange Program for Graduate Students .. 80
Intercampus Transfer, Undergraduate 71
Intercampus Visitor, Undergraduate 71
Intercollegiate Athletics 112
International Applicants 45
International Center 96, 109
International Migration Studies Minor 428
International Relations and Pacific Studies, Graduate School
 of (IR/PS) ... 138, 430
International Scholar Team 95
International Student Team ... 95
International Studies ... 441
Internship Program, Academic 168
Intramural Sports .. 111
Introduction ... 11
Italian Studies, Program in 448
Italian, Literatures in .. 481
Italian—see Linguistics and Literature

J
Japanese Studies, Program in 448
John Muir College—see Muir College
Joint Doctoral Programs .. 79
Judaic Studies, Program in 450
Judicial Affairs ... 113

K
Key to Course Listings .. 168
Korean, Language and Literature 494

L
Laboratories (list) .. 682
Language and Communicative Disorders 453
Language—see Linguistics
Latin American Studies, Program in 454
Latin Literature ... 495
Latin—see Literature
Law and Society, minor in 460
Law, Pre-law ... 102
Leave of Absence
 graduate ... 91
 undergraduate ... 72
Legal Services, Student ... 113
Libraries .. 100
Limited Status .. 44
Linguistics, Department of 462
Literature, Department of 477

M
Majors, Undergraduate ... 14, 37
Mail Services .. 117, 120
Making of the Modern World 505
Management, Rady School of 133, 506
Mandatory Health Insurance 57
Map ... 700
Marine Biodiversity and Conservation 509
Marshall College—see Thurgood Marshall College
Master of Arts and Master of Science Degrees 74
Materials Science and Engineering Program 510
Mathematics and Science Education Program 526
Mathematics, Department of 513
Mechanical and Aerospace Engineering (MAE),
 Department of .. 357
Medical History Form ... 47
Medicine, Pre-medicine ... 94, 102
Medicine, School of ... 134
Middle East Studies Program 527
Minimum Progress ... 62
Minimum Units for Graduation 18
Minors and Programs of Concentration 61
Molecular Pathology Program 528
Muir College ... 15, 22, 530
 Caledonian Society ... 24
 character of the college 22
 Dartmouth Exchange Program 22
general-education reuirements 22
 graduation requirements 23
 Muir Special Project major 23, 530
 special projects .. 23
transfer students .. 19
 writing program .. 530
Music, Department of ... 530

Literature/Cultural Studies 486
Literature/Composition Theory 484
Loans .. 84, 104
N
Natural Reserve System .. 132
Neurosciences, Department of 546
Night School—see UCSD Extension
Nondiscrimination and Affirmative Action Policy Statement 675
Nonresident
applicant ... 37
scholarship requirements ... 41
tuition fee ... 51, 57
O
OASIS (Office of Academic Support and Instructional Services) 95
Oceanography—see Scripps Institution of Oceanography
Off-Campus Study, Graduate Student 77, 80
Opportunities Abroad Program (OAP) 96
Organized Research Units .. 120, 682
P
Parking on Campus .. 117
Part-Time Student, Graduate ... 89
Part-Time Student, Undergraduate 58
Payment of Registration Fees ... 55
Petition, Student .. 64
Ph.D. Degree ... 77
Ph.D.-M.D. Program .. 79
Phi Beta Kappa .. 18, 61
Philosophy, Department of .. 549
Physical Education Courses, Graduation Credit for 60
Physics, Department of .. 558
Police, University ... 119
Policies and Procedures, Student Activities 676
Political Science, Department of ... 572
Post Office .. 117, 120
Postdoctoral Study .. 80
Practicum ... 34
Price Center .. 114
Privacy Rights Notification .. 676
Probation .. 62
Progress toward Degrees ... 62
Projects .. 131, 682
African and African-American Studies Research Project 131
Project for Explaining the Origin of Humans 131
Project In Econometric Analysis ... 131
Project in Geometry and Physics ... 131
Project on International Affairs (PIA) 131
Project on Responsible Conduct of Research Education
(RCR Education Project) ... 131
Public Policy Research Project ... 132
Provost ... 18
Psychological and Counseling Services 111
Psychology, Clinical, joint doctoral program in 79
Psychology, Department of ... 582
Public Health–Epidemiology, joint doctoral program 593
Public Health–Health Behavior, joint doctoral program 593
Public Service, minor in ... 594
Q
Quick Copy Center—see Imprints
R
Rady School of Management .. 133, 506
Reapplication for Admission .. 50
Recreation Facilities ... 111
Regents of the University .. 678
Registration Fee, University ... 57
Registration Requirements and Procedures, Graduate 89
Registration, Graduate ... 89
Registration, Undergraduate ... 52
approval for enrollment for more than 200 units 52
California residence requirements 53
change of address ... 53
definitions ... 52
enrolled students ... 52
registered students .. 52
Transportation and Parking Services 117
Tuition—see Fees
Tutorial Programs (OASIS) 95

U
UC Campus Change .. 45
UC Entry Level Writing Requirement 60
UC San Diego Foundation 686
UC San Diego Washington Program (UCDC) 651
UCSD Admission Policy and Selection Criteria 38
UCSD Bookstore .. 117
UCSD Extension ... 80, 98
UCSD Facts and Figures 687
UCSD Faculty .. 140
UCSD Libraries .. 100
Undergraduate Departments (list) 13
Undergraduate Majors 14
Undergraduate Seminar Programs—see Freshman Seminar Program and Senior Seminar Program
Unit Limitation to Degree 60
University Art Gallery 116
University Centers .. 114
University Events .. 115
University of California Transfer Agreements 44
University Professors 679
Urban Studies and Planning, Program in 651

V
Veterans’ Affairs ... 115
Visual Arts, Department of 656

W
Warren College ... 28, 674
academic internship 30
general-education requirements 28
graduation requirements 29
honors program ... 29, 674
scholars seminar .. 674
transfer students ... 19, 29
writing program .. 674
Withdrawal .. 65, 92
Withdrawal, Undergraduate 65
Work-Study Program .. 104
World Literatures .. 482
Writing Programs
Eleanor Roosevelt College 505
Marshall College ... 271
Muir College ... 530
Revelle College ... 598
Sixth College .. 270
Warren College ... 674
Writing Requirement 41, 60
Writing/Literature ... 483
For a more detailed campus map and wayfinder information, go to: http://maps.ucsd.edu